Science.gov

Sample records for porous silica supporter

  1. Porous Silica-Supported Solid Lipid Particles for Enhanced Solubilization of Poorly Soluble Drugs.

    PubMed

    Yasmin, Rokhsana; Rao, Shasha; Bremmell, Kristen E; Prestidge, Clive A

    2016-07-01

    Low dissolution of drugs in the intestinal fluid can limit their effectiveness in oral therapies. Here, a novel porous silica-supported solid lipid system was developed to optimize the oral delivery of drugs with limited aqueous solubility. Using lovastatin (LOV) as the model poorly water-soluble drug, two porous silica-supported solid lipid systems (SSL-A and SSL-S) were fabricated from solid lipid (glyceryl monostearate, GMS) and nanoporous silica particles Aerosil 380 (silica-A) and Syloid 244FP (silica-S) via immersion/solvent evaporation. SSL particles demonstrated significantly higher rate and extent of lipolysis in comparison with the pure solid lipid, depending on the lipid loading levels and the morphology. The highest lipid digestion was observed when silica-S was loaded with 34% (w/w) solid lipid, and differential scanning calorimeter (DSC) analysis confirmed the encapsulation of up to 2% (w/w) non-crystalline LOV in this optimal SSL-S formulation. Drug dissolution under non-digesting intestinal conditions revealed a three- to sixfold increase in dissolution efficiencies when compared to the unformulated drug and a LOV-lipid suspension. Furthermore, the SSL-S provided superior drug solubilization under simulated intestinal digesting condition in comparison with the drug-lipid suspension and drug-loaded silica. Therefore, solid lipid and nanoporous silica provides a synergistic effect on optimizing the solubilization of poorly water-soluble compound and the solid lipid-based porous carrier system provides a promising delivery approach to overcome the oral delivery challenges of poorly water-soluble drugs. PMID:27048207

  2. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Deng, Lu; Sun, Chaochao; Li, Junqi; Zhu, Zhenfeng

    2015-01-01

    A new synthetic strategy has been developed to encapsulate Ag nanoparticles in heterogeneous catalysts to prevent their dropping and sintering. Ag nanoparticles with diameters about 5-10 nm were first supported on the porous silica bead. These were then covered with a fresh layer of titanium dioxide with the thickness about 5 nm. SEM and TEM images were used to confirm the success of each synthesis step, and the photocatalytic activity of the as-synthesized samples was evaluated by photocatalytic decolorization of Rhodamine B (Rh B) aqueous solution at ambient temperature under both UV and visible light irradiation. The resulting titanium dioxide encapsulated Ag nanoparticles exhibited an enhanced photocatalytic activity under both UV and visible light irradiation, this can be attributed to effective charge separation and light harvesting of the plasmonic silver nanoparticles decoration, even the reducing of the exciton recombination rate caused by the small grain size of anatase TiO2 nanocrystals.

  3. Transport of nano zero-valent iron supported by mesoporous silica microspheres in porous media.

    PubMed

    Yang, Zhangmei; Qiu, Xinhong; Fang, Zhanqiang; Pokeung, Tsang

    2015-01-01

    Effective in situ remediation of groundwater requires the successful delivery of reactive iron particles through sand. However, the agglomeration of nano zero-valent iron (NZVI) particles limits the migration distance, which inhibits their usefulness. In the study described herein, NZVI supported by mesoporous silica microspheres covered with FeOOH (SiO2@FeOOH@Fe) was synthesized, and its mobility was demonstrated on the basis of transport in porous media. Degradation of decabromodiphenyl ether (BDE209) was more efficient by SiO2@FeOOH@Fe than by 'bare' NZVI. Breakthrough curves and mass recovery showed the mobility of SiO2@FeOOH@Fe in granular media was better than that of bare NZVI. It increased greatly in the presence of natural organic matter (NOM) and decreased when high Ca2+ and Mg2+ concentrations were encountered. Analysis of the transport data on the basis of filtration theory showed diffusion to be the main mechanism for particle removal in silicon sand. Increasing the NOM may decrease agglomeration of the grains of sand, which has a positive effect on the mobility of SiO2@FeOOH@Fe. Presumably, increasing the concentrations of Ca2+ and Mg2+ compresses the diffuse double layer of SiO2@FeOOH@Fe, resulting in a reduction of mobility. PMID:26067499

  4. TiO2 supported over porous silica photocatalysts for pesticide degradation using solar light: Part 2. Silica prepared using acrylic acid emulsion.

    PubMed

    Sharma, Mangalampalli V Phanikrishna; Kumari, Valluri Durga; Subrahmanyam, Machiraju

    2010-03-15

    An acrylic acid emulsion mixture is used for synthesis of novel porous silica (E-Si) material. The photocatalytic activity of TiO2 under solar light irradiation for isoproturon (herbicide) degradation is drastically increased when dispersed over E-Si support using solid state dispersion (SSD) technique. The composite material is characterized by XRD, nitrogen adsorption-desorption isotherms, UV-vis DRS, SEM and TEM measurements. The photocatalytic activities of the composite catalysts are evaluated for different parameters. The 5 wt% TiO2/E-Si is found to be highly active for isoproturon degradation. PMID:19962829

  5. Encapsulation of folic acid in different silica porous supports: A comparative study.

    PubMed

    Pérez-Esteve, Édgar; Ruiz-Rico, María; de la Torre, Cristina; Villaescusa, Luis A; Sancenón, Felix; Marcos, María D; Amorós, Pedro; Martínez-Máñez, Ramón; Barat, José Manuel

    2016-04-01

    Although folic acid is essential to numerous bodily functions, recent research indicates that a massive exposition to the vitamin could be a double-edged sword. In this study, the capacity of different caped mesoporous silica particles (i.e. Hollow Silica Shells, MCM-41, SBA-15 and UVM-7) to dose FA during its passage through the gastrointestinal tract has been evaluated. Results confirmed that the four capped materials were capable to hinder the delivery of FA at low pH (i.e. stomach) as well as able to deliver great amounts of the vitamin at neutral pH (i.e. intestine). Nevertheless, the encapsulation efficiency and the deliver kinetics differed among supports. While supports with large pore entrance exhibited an initial fast release, MCM-41, showed a sustained release along the time. This correlation between textural properties and release kinetics for each of the supports reveals the importance of a proper support selection as a strategy to control the delivery of active molecules. PMID:26593466

  6. Fluid diffusion in porous silica

    NASA Astrophysics Data System (ADS)

    McCann, Lowell I.

    Fluid motion in porous media has received a great deal of theoretical and experimental attention due to its importance in systems as diverse as ground water aquifers, catalytic processes, and size separation schemes. Often, the motion of interest is the random thermal motion of molecules in a fluid undergoing no net flow. This diffusive motion is particularly important when the size of the pores is nearly the same as the size of the molecules. In this study, fluid diffusion is measured in several varieties of porous silica whose pore structure is determined by the process by which it is made. The samples in this study have porosities (φ, the ratio of the pore volume to the total sample volume) that vary from 0.3 to 0.75 and average pore radii that range from approximately 15 to 120 A. Determining the effect of the pore structure on the diffusion of a liquid in a porous material is complicated by the chemical interactions between the diffusing molecules and the pore surface. In this study, ions in a hydrophilic fluid are used to block the adsorption of the diffusing dye molecules to the hydroxyl groups covering the silica surface. This technique is unlike typical surface treatments of silica in that it does not permanently alter the pore geometry. In this work, fluid diffusion is measured with a transient holographic grating technique where interfering laser beams create a periodic refractive index modulation in the fluid. The diffraction of a third laser off this grating is monitored to determine how quickly the grating relaxes, thereby determining the diffusion coefficient of the molecules in the fluid. Varying the grating periodicity controls the length scale of the diffusion measurement from 1.2 to 100 μm which is much larger than the average pore sizes of the samples. Therefore, over these large scales, we measure 'normal' diffusion, where the mean squared displacement of a diffusing particle varies linearly with time. In one particular type of porous silica

  7. Enhancing Nucleation rates using Porous Silica

    NASA Astrophysics Data System (ADS)

    Akella, Sathish; Fraden, Seth

    2013-03-01

    The role of nucleants in promoting protein crystal nucleation is an on-going field of research. Porous silica acts as heterogeneous nucleation centers and enhances nucleation rates. For the protein lysozyme there are multiple polymorphs and we demonstrate that porous silica preferentially increases one of the polymorphs. Preliminary studies are presented in which accurate nucleation rates for the different polymorphs as a function of nucleant concentration are obtained through optical microscopy studies of thousands of crystallization trials in identical water-in-oil emulsion drops produced using microfluidics. NSF-IDBR

  8. Dynamic Compaction Modeling of Porous Silica Powder

    NASA Astrophysics Data System (ADS)

    Borg, John P.; Schwalbe, Larry; Cogar, John; Chapman, D. J.; Tsembelis, K.; Ward, Aaron; Lloyd, Andrew

    2006-07-01

    A computational analysis of the dynamic compaction of porous silica is presented and compared with experimental measurements. The experiments were conducted at Cambridge University's one-dimensional flyer plate facility. The experiments shock loaded samples of silica dust of various initial porous densities up to a pressure of 2.25 GPa. The computational simulations utilized a linear Us-Up Hugoniot. The compaction events were modeled with CTH, a 3D Eulerian hydrocode developed at Sandia National Laboratory. Simulated pressures at two test locations are presented and compared with measurements.

  9. Chitosan-silica hybrid porous membranes.

    PubMed

    Pandis, Christos; Madeira, Sara; Matos, Joana; Kyritsis, Apostolos; Mano, João F; Ribelles, José Luis Gómez

    2014-09-01

    Chitosan-silica porous hybrids were prepared by a novel strategy in order to improve the mechanical properties of chitosan (CHT) in the hydrogel state. The inorganic silica phase was introduced by sol-gel reactions in acidic medium inside the pores of already prepared porous scaffolds. In order to make the scaffolds insoluble in acidic media chitosan was cross-linked by genipin (GEN) with an optimum GEN concentration of 3.2 wt.%. Sol-gel reactions took place with Tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) acting as silica precursors. GPTMS served also as a coupling agent between the free amino groups of chitosan and the silica network. The morphology study of the composite revealed that the silica phase appears as a layer covering the chitosan membrane pore walls. The mechanical properties of the hybrids were characterized by means of compressive stress-strain measurements. By immersion in water the hybrids exhibit an increase in elastic modulus up to two orders of magnitude. PMID:25063153

  10. Selective porous gates made from colloidal silica nanoparticles

    PubMed Central

    Avetta, Paola; Calza, Paola; Fabbri, Debora; Magnacca, Giuliana; Scalarone, Dominique

    2015-01-01

    Summary Highly selective porous films were prepared by spin-coating deposition of colloidal silica nanoparticles on an appropriate macroporous substrate. Silica nanoparticles very homogenous in size were obtained by sol–gel reaction of a metal oxide silica precursor, tetraethyl orthosilicate (TEOS), and using polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers as soft-templating agents. Nanoparticles synthesis was carried out in a mixed solvent system. After spin-coating onto a macroporous silicon nitride support, silica nanoparticles were calcined under controlled conditions. An organized nanoporous layer was obtained characterized by a depth filter-like structure with internal porosity due to interparticle voids. Permeability and size-selectivity were studied by monitoring the diffusion of probe molecules under standard conditions and under the application of an external stimulus (i.e., electric field). Promising results were obtained, suggesting possible applications of these nanoporous films as selective gates for controlled transport of chemical species in solution. PMID:26665082

  11. Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic-inorganic hybridization combined with sucrose and polyethylene glycol imprinting.

    PubMed

    Li, Feng; Du, Ping; Chen, Wei; Zhang, Shusheng

    2007-03-01

    A new porous sorbent for wastewater treatment of metal ions was synthesized by covalent grafting of molecularly imprinted organic-inorganic hybrid on silica gel. With sucrose and polyethylene glycol 4000 (PEG 4000) being synergic imprinting molecules, covalent surface coating on silica gel was achieved by using polysaccharide-incorporated sol-gel process starting from the functional biopolymer, chitosan and an inorganic epoxy-precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS) at room temperature. The prepared porous sorbent was characterized by using simultaneous thermogravimetry and differential scanning calorimeter (TG/DSC), scanning electron microscopy (SEM), nitrogen adsorption porosimetry measurement and X-ray diffraction (XRD). Copper ion, Cu(2+), was chosen as the model metal ion to evaluate the effectiveness of the new biosorbent in wastewater treatment. The influence of epoxy-siloxane dose, buffer pH and co-existed ions on Cu(2+) adsorption was assessed through batch experiments. The imprinted composite sorbent offered a fast kinetics for the adsorption of Cu(2+). The uptake capacity of the sorbent imprinted by two pore-building components was higher than those imprinted with only a single component. The dynamic adsorption in column underwent a good elimination of Cu(2+) in treating electric plating wastewater. The prepared composite sorbent exhibited high reusability. Easy preparation of the described porous composite sorbent, absence of organic solvents, cost-effectiveness and high stability make this approach attractive in biosorption. PMID:17386667

  12. Solid dispersions of carvedilol with porous silica.

    PubMed

    Kovačič, Borut; Vrečer, Franc; Planinšek, Odon

    2011-01-01

    Solid dispersion particles of carvedilol (CAR) were prepared with porous silica (Sylysia 350) by the solvent evaporation method in a vacuum evaporator to ensure an effective pore-filling procedure. Two sets were prepared, each with various amounts of CAR in solid dispersions, and with the pore-filling process differing each time. Set A was prepared by a one-step filling method and set B by a multiple-step pore-filling method of CAR into porous silica. The solid dispersions were then characterized using thermal analysis, X-ray diffraction, and nitrogen adsorption experiments. The results showed that the drug release can be significantly improved compared with the dissolution of the drug in its pure crystalline or amorphous state. Drug release from solid dispersion was faster when the drug content in the solid dispersion was low, which enabled the drug to be finely dispersed along the hydrophilic carrier's surface. The results also showed that a multiple-step pore-filling procedure is more effective for drug loading as indicated by the absence of a crystalline drug state, greatly reduced porosity, and improved wettability and physical stability of the amorphous CAR. PMID:21467668

  13. Skeletal silica characterization in porous-silica low-dielectric-constant films by infrared spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Takada, Syozo; Hata, Nobuhiro; Seino, Yutaka; Fujii, Nobutoshi; Kikkawa, Takamaro

    2005-06-01

    Porous-silica low-dielectric-constant (low-k) films were prepared using a sol-gel method based on the self-assembly of surfactant templates. No change in the refractive index at 633 nm nor in the infrared-absorption intensities of C-H and O-H stretching vibrations at around 2900 and 3400cm-1 of porous-silica low-k films were observed after annealing at each temperature from 523 to 723 K. On the other hand, the Young's elastic modulus and hardness increased with the increase of annealing temperature. The structure in the complex dielectric function of porous-silica low-k films observed in between 1000 and 1400cm-1 is assigned as the asymmetric stretching vibration mode of the Si-O-Si bond. By applying the effective-medium theory by Bruggeman to the experimental results from infrared spectroscopic ellipsometry, we analyzed the skeletal silica structures. The peak positions of transverse (ωTO) and longitudinal (ωLO) vibration modes for Si-O-Si network in the silica skeleton of porous-silica films changed from 1061 to 1068cm-1 and from 1219 to 1232cm-1, respectively, with the annealing temperature. It is shown that the ωLO2/ωTO2 of skeletal silica correlates with Young's elastic modulus of porous-silica low-k films.

  14. A Sinter-Resistant Catalytic System Based on Platinum Nanoparticles Supported on TiO2 Nanofibers and Covered by Porous Silica

    SciTech Connect

    Dai, Yunqian; Lim, Byungkwon; Yang, Yong; Cobley, Claire M.; Li, Weiyang; Cho, Eun Chul; Grayson, Benjamin; Fanson, Paul T.; Campbell, Charles T.; Sun, Yueming; Xia, Younan

    2010-10-25

    Platinum is a key catalyst that is invaluable in many important industrial processes such as CO oxidation in catalytic converters, oxidation and reduction reactions in fuel cells, nitric acid production, and petroleum cracking.[1] Many of these applications utilize Pt nanoparticles supported on oxides or porous carbon.[2] However, in practical applications that involve high temperatures (typically higher than 3008C), the Pt nanoparticles tend to lose their specific surface area and thus catalytic activity during operation because of sintering. Recent studies have shown that a porous oxide shell can act as a physical barrier to prevent sintering of unsupported metal nanoparticles and, at the same time, provide channels for chemical species to reach the surface of the nanoparticles, thus allowing the catalytic reaction to occur. This concept has been demonstrated in several systems, including Pt@SiO2,[3] Pt@CoO,[4] Pt/CeO2@SiO2,[5] Pd@SiO2,[6] Au@SiO2,[7] Au@SnO2 [8] and Au@ZrO2 [9] core– shell nanostructures. Despite these results, a sinter-resistant system has not been realized in supported Pt nanoparticle catalysts.

  15. Porous thin films of functionalized mesoporous silica nanoparticles.

    PubMed

    Kobler, Johannes; Bein, Thomas

    2008-11-25

    The synthesis of extremely small mesoporous silica nanoparticles via a specific co-condensation process with phenyl groups is demonstrated. The suspensions are ideally suited for the production of nanoscale thin films by spin-coating. Thanks to the small particle size and the resulting low surface roughness, the films show excellent optical qualities and exhibit good diffusion properties and a highly accessible pore system. The availability of such homogeneous porous thin films made it possible to use ellipsometric porosimetry (EP) as a convenient method to determine the effective porosity of the films on their original support without destroying it. It was possible to record sorption isotherms of the thin films with ellipsometry and to correlate the data with nitrogen sorption data of dried powders of the same material. The thin films showed very low refractive indices of around 1.2. PMID:19206399

  16. Synthesis design of polar polymers and nanostructured porous silica

    NASA Astrophysics Data System (ADS)

    Schmidt-Winkel, Patrick Niels

    Nanostructured and functional materials have attracted a great deal of attention because of their importance for scientific and technological progress in our society. We have proposed a novel concept for functional, polar organic polymers that is based on the ferrielectric ordering of electric dipoles along the polymer backbone. In this context, a polar odd-numbered aliphatic polysulfone and low-molecular weight model compounds possessing remarkable thermal stability, degrading at 100°C above previously prepared polysulfones, have been synthesized and characterized. Mesoporous molecular sieves with uniform pores ranging from 2--50 nm in size are promising materials for catalysis, host-guest chemistry, separation, immobilization, encapsulation, insulation, etc. We have described a novel synthesis method to produce hierarchically ordered mesoporous silica in which the ordering on meso- to macroscopic length scales is controlled and significantly improved in one step. In search of a simple, efficient procedure to synthesize porous materials with ultralarge mesopores (30--50 nm), we have discovered microemulsions as novel colloidal templates for mesostructured cellular foams (MCFs). MCFs represent a new class of materials with well-defined, adjustable, and continuous ultralarge mesopores (9--42 nm). The microemulsion templating route has opened up new possibilities to engineer mesoporous systems for applications such as catalyst supports where mass transport is often limited by narrow pore openings. The microemulsion templates used to prepare MCF materials have been characterized by small-angle neutron scattering (SANS) studies. The microemulsion droplet size increases linearly with the cube root of the oil concentration, ethanol is required as cosurfactant, and the temperature behavior of the microemulsions is similar to the pure surfactant solution. In situ SANS studies of acid-synthesized SBA-15- and MCF-type silica have shown that silica condensation is fast early

  17. Nucleic acid separations using superficially porous silica particles

    PubMed Central

    Close, Elizabeth D.; Nwokeoji, Alison O.; Milton, Dafydd; Cook, Ken; Hindocha, Darsha M.; Hook, Elliot C.; Wood, Helen; Dickman, Mark J.

    2016-01-01

    Ion pair reverse-phase liquid chromatography has been widely employed for nucleic acid separations. A wide range of alternative stationary phases have been utilised in conjunction with ion pair reverse-phase chromatography, including totally porous particles, non-porous particles, macroporous particles and monolithic stationary phases. In this study we have utilised superficially porous silica particles in conjunction with ion pair reverse-phase liquid chromatography for the analysis of nucleic acids. We have investigated a range of different pore-sizes and phases for the analysis of a diverse range of nucleic acids including oligonucleotides, oligoribonucleotides, phosphorothioate oligonucleotides and high molecular weight dsDNA and RNA. The pore size of the superficially porous silica particles was shown to significantly affect the resolution of the nucleic acids. Optimum separations of small oligonucleotides such as those generated in RNase mapping experiments were obtained with 80 Å pore sizes and can readily be interfaced with mass spectrometry analysis. Improved resolution of larger oligonucleotides (>19 mers) was observed with pore sizes of 150 Å. The optimum resolution for larger dsDNA/RNA molecules was achieved using superficially porous silica particles with pore sizes of 400 Å. Furthermore, we have utilised 150 Å pore size solid-core particles to separate typical impurities of a fully phosphorothioated oligonucleotide, which are often generated in the synthesis of this important class of therapeutic oligonucleotide. PMID:26948761

  18. Dynamic Compaction Modeling Comparison for Porous Silica Powder

    NASA Astrophysics Data System (ADS)

    Borg, John; Schwalbe, Larry; Chapman, D. J.; Lloyd, Andrew; Ward, Aaron

    2005-07-01

    A computational analysis of the dynamic compaction of porous silica is presented and compared with experimental measurements. The experiments were conducted at Cambridge University's one-dimensional flyer plate facility. The experiments shock loaded samples of silica dust of various initial porous densities up to a pressure of 2.25 GPa. The computational simulations utilized porous material models, P-lambda and P-alpha, in conjunction with a linear Us-up Hugoniot. Two hydrocodes were used to simulate the compaction event: CTH and KO. CTH is a three-dimensional Eulerian hydrocode developed at Sandia National Laboratory and KO is a one-dimensional Lagrangian hydrocode developed at Lawrence Livermore National Laboratory. A comparison of the advantages and disadvantages, along with a discussion of the salient features, of the two models are presented.

  19. Porous polylactic acid-silica hybrids: preparation, characterization, and study of mesenchymal stem cell osteogenic differentiation.

    PubMed

    Pandis, Christos; Trujillo, Sara; Matos, Joana; Madeira, Sara; Ródenas-Rochina, Joaquín; Kripotou, Sotiria; Kyritsis, Apostolos; Mano, João F; Gómez Ribelles, José Luis

    2015-02-01

    A novel approach to reinforce polymer porous membranes is presented. In the prepared hybrid materials, the inorganic phase of silica is synthesized in-situ and inside the pores of aminolyzed polylactic acid (PLA) membranes by sol-gel reactions using tetraethylorthosilicate (TEOS) and glycidoxypropyltrimethoxysilane (GPTMS) as precursors. The hybrid materials present a porous structure with a silica layer covering the walls of the pores while GPTMS serves also as coupling agent between the organic and inorganic phase. The adjustment of silica precursors ratio allows the modulation of the thermomechanical properties. Culture of mesenchymal stem cells on these supports in osteogenic medium shows the expression of characteristic osteoblastic markers and the mineralization of the extracellular matrix. PMID:25303745

  20. Positronium formation from porous silica in backscattering and transmission geometries

    NASA Astrophysics Data System (ADS)

    Andersen, Søren L.; Johansen, Rasmus R.; Overgaard, Jakob B.; Mortensen, Johan K.; Andersen, Kristoffer K.; Thomsen, Heine D.; Lund, Mikkel D.; Chevallier, Jacques; Knudsen, Helge; Uggerhøj, Ulrik I.

    2014-05-01

    The Aarhus positron beam line is utilised to measure the positronium formation fraction from porous silica thin films created by the Glancing Angle Deposition technique. The highest formation fraction found from these studies in a backscattering geometry is (57.7 ± 1.0)% in good agreement with other measurements. In transmission mode, the maximum positronium output is found to be (12.5 ± 0.5)%. These are the first measurements of positronium formation in transmission of a porous silica thin film, a starting point for future attempts to optimise the positronium formation in transmission. Contribution to the Topical Issue "Electron and Positron Induced Processes", edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

  1. Nanomachines on Porous Silica Nanoparticles for Cargo Delivery

    NASA Astrophysics Data System (ADS)

    Tarn, Derrick

    The field of nanomachines based on mesoporous and microporous silica nanoparticles is a relatively new one, but has quickly gained widespread popularity due to their large potential applications. These porous nanomaterials can both carry and release a therapeutic drug molecule at a targeted location. In order to regulate the movement of cargo, nanomachines are designed and assembled onto the silica nanoparticle, ultimately creating a delivery system on the nanoscale that is capable of a stimulus-responsive delivery of its cargo. This dissertation focuses on the design, synthesis and assembly of nanomachines on both meso- and microporous silica nanoparticles to achieve the goal of cargo delivery. The six chapters of this dissertation are presented as follows: 1) the design, synthesis and modification of silica nanoparticles for their use in biology, 2) a light activated, reversible nanovalve assembled on mesoporous silica nanoparticles to achieve a size-selective cargo delivery, 3) biological applications and the delivery of anti-cancer drugs using a pseudorotaxane-based light activated nanovalve, 4) a nanogate machine that is capable of the storage and delivery of both small metal ions and useful organic cargo molecules, 5) biological applications of the nanogate machine in order to deliver calcium ions to cancerous cells to induce cell apoptosis, and 6) thin wax coated microporous silica nanoparticles that are capable of delivering small ions including oxidizers.

  2. Liquid chromatography of dextrans on porous silica beds.

    PubMed

    Eltekov, A Yu

    2005-12-23

    Kinetics, equilibrium isotherms and chromatography retention times for sorption of dextrans T-10, T-20, T-40, T-70, T-110, T-161, T-250 and T-500 on porous silica were measured at 25 degrees C. The Henry constant and retention factors for the dextrans were obtained. The values of the partition coefficient for the distribution of the dextrans between the bulk solution and the pore space were calculated within the framework of a pore volume filling model with consideration given to the ratio between the sizes of the macromolecular coils and the pore inlet. The measurements showed that this parameter depends on the structure of the sorbent and the molecular mass distribution of the dextran. The interaction of aqueous dextran solution with porous silica is characterized by the sieve effect. Large macromolecular coils of dextran T-161 cannot penetrate into the pore space of the silica sorbent with pore diameter 14 nm. The difference in Henry law constants calculated from adsorption and chromatographic data for dextrans T-70 and T-110 can be explained by the slow diffusion of dextran macromolecules into silica pores under chromatographic conditions. PMID:16183069

  3. Preparation of silica nanospheres and porous polymer membranes with controlled morphologies via nanophase separation

    PubMed Central

    2012-01-01

    We successfully synthesized two different structures, silica nanospheres and porous polymer membranes, via nanophase separation, based on a sol–gel process. Silica sol, which was in situ polymerized from tetraorthosilicate, was used as a precursor. Subsequently, it was mixed with a polymer that was used as a matrix component. It was observed that nanophase separation occurred after the mixing of polymer with silica sol and subsequent evaporation of solvents, resulting in organizing various structures, from random network silica structures to silica spheres. In particular, silica nanospheres were produced by manipulating the mixing ratio of polymer to silica sol. The size of silica beads was gradually changed from micro- to nanoscale, depending on the polymer content. At the same time, porous polymer membranes were generated by removing the silica component with hydrofluoric acid. Furthermore, porous carbon membranes were produced using carbon source polymer through the carbonization process. PMID:22873570

  4. Temperature dependence of porous silica antireflective (AR) coating

    NASA Astrophysics Data System (ADS)

    Tang, Yongxing; Le, Yueqin; Zhang, Weiqing; Jiang, Minhua; Sun, Jinren; Liu, Xiaolin

    1998-02-01

    In this paper, the antireflective coatings consisting of porous silica particles from a silica sol are applied by dip method. The relationships among composition, viscosity and temperature have been studied. The coating homogeneity is opium for the laser wavelengths of 1064 nm, 532 nm and 355 nm. The peak transmission of coated BK-7 glass substrate is higher than 99.5%. The laser induced damage thresholds of the antireflective coatings were range of 7 - 10 J/cm2, for 1 ns pulse width and 1064 nm wavelength. These damage thresholds were suitable for our national ICF program. It is noted that the optical homogeneity of coating and the viscosity of coating sol were strongly influenced by the temperatures in the duration of sol ripening.

  5. A Compaction Model for Highly Porous Silica Powder.

    NASA Astrophysics Data System (ADS)

    Church, P. D.; Tsembelis, K.

    2005-07-01

    This paper describes research to develop an equation of state to describe the behaviour of a highly porous silica powder. It shows that whilst molecular modelling techniques can be readily applied to develop a description of a compact material the description of the compaction process is more problematic. An empirical model, based upon the Lennard-Jones potential, has been shown to be capable of describing the compaction process observed in simple experiments. This development and application of the model in the Eulerian hydrocode GRIM to reproduce experimental plate impact data over a wide range of impact velocities is described and the results compared with experimental data.

  6. Photothermally responsive gold nanoparticle conjugated polymer-grafted porous hollow silica nanocapsules.

    PubMed

    Paramelle, David; Gorelik, Sergey; Liu, Ye; Kumar, Jatin

    2016-08-01

    Polymer-grafted porous hollow silica nanoparticles prepared by reversible addition-fragmentation chain transfer polymerisation have an upper critical solution temperature of 45 °C. Conjugation of 5 nm gold nanoparticles onto polymer-grafted porous hollow silica nanoparticles enables remarkable specific photothermally-induced controlled release of encapsulated Rhodamine B by laser-stimulation at physiological temperature. PMID:27427407

  7. Porous silicon nanocrystals in a silica aerogel matrix

    PubMed Central

    2012-01-01

    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation. PMID:22805684

  8. Porous silicon nanocrystals in a silica aerogel matrix.

    PubMed

    Amonkosolpan, Jamaree; Wolverson, Daniel; Goller, Bernhard; Polisski, Sergej; Kovalev, Dmitry; Rollings, Matthew; Grogan, Michael D W; Birks, Timothy A

    2012-01-01

    Silicon nanoparticles of three types (oxide-terminated silicon nanospheres, micron-sized hydrogen-terminated porous silicon grains and micron-size oxide-terminated porous silicon grains) were incorporated into silica aerogels at the gel preparation stage. Samples with a wide range of concentrations were prepared, resulting in aerogels that were translucent (but weakly coloured) through to completely opaque for visible light over sample thicknesses of several millimetres. The photoluminescence of these composite materials and of silica aerogel without silicon inclusions was studied in vacuum and in the presence of molecular oxygen in order to determine whether there is any evidence for non-radiative energy transfer from the silicon triplet exciton state to molecular oxygen adsorbed at the silicon surface. No sensitivity to oxygen was observed from the nanoparticles which had partially H-terminated surfaces before incorporation, and so we conclude that the silicon surface has become substantially oxidised. Finally, the FTIR and Raman scattering spectra of the composites were studied in order to establish the presence of crystalline silicon; by taking the ratio of intensities of the silicon and aerogel Raman bands, we were able to obtain a quantitative measure of the silicon nanoparticle concentration independent of the degree of optical attenuation. PMID:22805684

  9. Dependences of Young's modulus of porous silica low dielectric constant films on skeletal structure and porosity

    NASA Astrophysics Data System (ADS)

    Takada, Syozo; Hata, Nobuhiro; Seino, Yutaka; Fujii, Nobutoshi; Kikkawa, Takamaro

    2006-12-01

    Porous silica films were prepared by spin coating the mixtures of acidic silica sol and nonionic surfactant template. The (a) porosity and (b) skeletal structure of the films were varied by adjusting the (a) template concentration and the (b) annealing temperature, respectively. Fourier transform infrared spectroscopic ellipsometry was employed to evaluate the skeletal silica structure of the films. The analysis was focused on the midinfrared (1000-1300cm-1) spectral structure which is assigned as the asymmetric stretching vibration mode of Si-O-Si bonds [Kamitsos et al., Phys. Rev. B 48, 12499 (1993)]. The spectral structure depended on both porosity and chemical bonding structure. Bruggemann's effective medium theory was employed to obtain the spectrum of "skeletal" silica from that of "porous" silica. The skeletal silica structure was then discussed in terms of the peak positions of the transverse optical (ωTO) and longitudinal optical (ωLO) vibration modes of Si-O-Si network. It was shown that the Young's elastic modulus of skeletal silica correlates well with ωLO2/ωTO2. We have obtained good correlations between ωLO2/ωTO2 of skeletal silica and elastic modulus E for two series of porous silica films with around 55% and 40% porosity. The experimental results show that the structural change in silica skeleton strongly affects the mechanical properties of porous silica low-k films.

  10. Molecular engineering of porous silica using aryl templates

    DOEpatents

    Loy, Douglas A.; Shea, Kenneth J.

    1994-01-01

    A process for manipulating the porosity of silica using a series of organic template groups covalently incorporated into the silicate matrix. The templates in the bridged polysilsesquioxanes are selectively removed from the material by oxidation with oxygen plasma or other means, leaving engineered voids or pores. The size of these pores is dependent upon the length or size of the template or spacer. The size of the templates is measured in terms of Si-Si distances which range from about 0.67 nm to 1.08 nm. Changes introduced by the loss of the templates result in a narrow range of micropores (i.e. <2 nm). Both aryl and alkyl template groups are used as spacers. Novel microporous silica materials useful as molecular seives, dessicants, and catalyst supports are produced.

  11. Molecular engineering of porous silica using aryl templates

    DOEpatents

    Loy, D.A.; Shea, K.J.

    1994-06-14

    A process is described for manipulating the porosity of silica using a series of organic template groups covalently incorporated into the silicate matrix. The templates in the bridged polysilsesquioxanes are selectively removed from the material by oxidation with oxygen plasma or other means, leaving engineered voids or pores. The size of these pores is dependent upon the length or size of the template or spacer. The size of the templates is measured in terms of Si-Si distances which range from about 0.67 nm to 1.08 nm. Changes introduced by the loss of the templates result in a narrow range of micropores (i.e. <2 nm). Both aryl and alkyl template groups are used as spacers. Novel microporous silica materials useful as molecular sieves, desiccants, and catalyst supports are produced. 3 figs.

  12. Preparation and characterization of silica nanoparticulate polyacrylonitrile composite and porous nanofibers

    NASA Astrophysics Data System (ADS)

    Ji, Liwen; Saquing, Carl; Khan, Saad A.; Zhang, Xiangwu

    2008-02-01

    In this study, polyacrylonitrile (PAN) composite nanofibers containing different amounts of silica nanoparticulates have been obtained via electrospinning. The surface morphology, thermal properties and crystal structure of PAN/silica nanofibers are characterized using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, wide-angle x-ray diffraction (WAXD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The results indicate that the addition of silica nanoparticulates affects the structure and properties of the nanofibers. In addition to PAN/silica composite nanofibers, porous PAN nanofibers have been prepared by selective removal of the silica component from PAN/silica composite nanofibers using hydrofluoric (HF) acid. ATR-FTIR and thermal gravimetric analysis (TGA) experiments validate the removal of silica nanoparticulates by HF acid, whereas SEM and TEM results reveal that the porous nanofibers obtained from composite fibers with higher silica contents exhibited more nonuniform surface morphology. The Brunauer-Emmett-Teller (BET) surface area of porous PAN nanofibers made from PAN/silica (5 wt%) composite precursors is higher than that of pure nonporous PAN nanofibers.

  13. Nanocomposites obtained by embedding of conjugated polymers in porous silicon and silica

    NASA Astrophysics Data System (ADS)

    Errien, N.; Vellutini, L.; Froyer, G.; Louarn, G.; Simos, C.; Skarka, V.; Haesaert, S.; Joubert, P.

    2005-06-01

    Porous silicon and porous silica matrices are filled up by conjugated polymers in order to obtain nanocomposite with enhanced third order optical nonlinearity. The active component is either PDA-TS thermally polymerized in situ or PT12 electropolymerized in porous silicon. The first measurements of the nonlinear properties of these nanocomposites give evidence of a significant increase of the nonlinear refractive index with respect to the standard optical materials.

  14. One-pot pseudomorphic crystallization of mesoporous porous silica to hierarchical porous zeolites

    SciTech Connect

    Xing, Jun-Ling; Jiang, Shu-Hua; Pang, Jun-Ling; Yuan, En-Hui; Ma, Xiao-Jing; Lam, Koon-Fung; Xue, Qing-Song; Zhang, Kun

    2015-09-15

    Hierarchically porous silica with mesopore and zeolitic micropore was synthesized via pseudomorphic crystallization under high-temperature hydrothermal treatment in the presence of cetyltrimethylammonium tosylate and tetrapropylammonium ions. A combined characterization using small-angle X-ray diffraction (XRD), nitrogen adsorption, high-resolution transmission electron microscopy (TEM), thermogravimetric analysis (TG), and elemental analysis showed that dual templates, CTA{sup +} and TPA{sup +} molecules, can work in a cooperative manner to synthesize mesoporous zeolite in a one-pot system by precisely tuning the reaction conditions, such as reaction time and temperature, and type and amount of heterometal atoms. It is found that the presence of Ti precursor is critical to the successful synthesis of such nanostructure. It not only retards the nucleation and growth of crystalline MFI domains, but also acts as nano-binder or nano-glue to favor the assembly of zeolite nanoblocks. - Graphical abstract: Display Omitted - Highlights: • A facile method to synthesize mesoporous zeolites with hierarchical porosity was presented. • It gives a new insight into keeping the balance between mesoscopic and molecular ordering in hierarchical porous materials. • A new understanding on the solid–solid transformation mechanism for the synthesis of titanosilicate zeolites was proposed.

  15. Formation of bimodal porous silica-titania monoliths by sol-gel route

    NASA Astrophysics Data System (ADS)

    Ruzimuradov, O. N.

    2011-10-01

    Silica-titania monoliths with micrometer-scale macroporous and nanometer-scale mesoporous structure and high titania contents are prepared by sol-gel process and phase separation. Titanium alkoxide precursor was not effective in the preparation of high titania content composites because of strong decrease in phase separation tendency. Bimodal porous gels with high titania content were obtained by using inorganic salt precursors such as titanium sulfate and titanium chloride. Various characterization techniques, including SEM, XRD, Hg porosimetry and N2 adsorption have been carried out to investigate the formation process and physical-chemical properties of silica-titania monoliths. The characterization results show that the silica-titania monoliths possess a bimodal porous structure with well-dispersed titania inside silica network. The addition of titania in silica improves the thermal stability of both macroporous and mesoporous structures.

  16. Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles.

    PubMed

    Liu, Juewen; Stace-Naughton, Alison; Jiang, Xingmao; Brinker, C Jeffrey

    2009-02-01

    Mixing liposomes with hydrophilic particles induces fusion of the liposome onto the particle surface. Such supported bilayers have been studied extensively as models of the cell membrane, while their applications in drug delivery have not been pursued. In this communication, we report liposome fusion on mesoporous particles as a synergistic means to simultaneously load and seal cargo within the porous core. We find fusion of a cationic lipid (DOTAP) on an anionic silica particle loads an anionic fluorescent dye (calcein) into the particle to a concentration exceeding 100x that in the surrounding medium. The loaded "protocell" particles are taken up efficiently by Chinese hamster ovary cells, where, due to a reduced pH within endosomal compartments, calcein is effectively released. Compared to some other nanoparticle systems, protocells provide a simple construct for cargo loading, sealing, delivery, and release. They promise to serve as useful vectors in nanomedicine. PMID:19173660

  17. Dopamine/Silica Nanoparticle Assembled, Microscale Porous Structure for Versatile Superamphiphobic Coating.

    PubMed

    Li, Fang; Du, Miao; Zheng, Qiang

    2016-02-23

    Artificial superamphiphobic surfaces, which could repel both water and low surface tension organic liquids, have been limited to particular kinds of materials or surfaces thus far. In this work, a kind of microscale porous coating was developed. Taking dopamine and hydrophilic fumed silica nanoparticles as initial building blocks, microscale porous coating was constructed via ice templation. Polydopamine bound silica nanoparticles together to form a porous structure network and rendered the coating to have potential for further postfunctionalization. After two-step CVD, the microscale porous coating changes from superhydrophilic to superamphiphobic, exhibiting super-repellency to droplets with surface tension of 73-23 mN/m. The influences of concentration of initial dopamine, hydrophilic fumed silica nanoparticles, and dry conditions on the formation of the porous structure have been studied to optimize the conditions. Coatings with different pore sizes and pore heights have been fabricated to discover the relationship between the structure parameters and the repellency of the porous coatings. Only with optimal pore size and pore height can the porous coating display superamphiphobicity. Compared with nanoscale, the microscale structure favors the achievement of superamphiphobicity. Given the outstanding adhesive ability of polydopamine, the superamphiphobic coatings have been successfully applied to various materials including artificial materials and natural materials. PMID:26828414

  18. Characterization of stoichiometric nanocrystalline spinel ferrites dispersed on porous silica aerogel.

    PubMed

    Casula, M F; Concas, G; Congiu, F; Corrias, A; Loche, D; Marras, C; Spano, G

    2011-11-01

    Stoichiometric magnetic nanosized ferrites MFe2O4 (M = Mn, Co, Ni) were prepared in form of nearly spherical nanocrystals supported on a highly porous silica aerogel matrix, by a sol-gel procedure. X-ray diffraction and transmission electron microscopy indicate that these materials are made out of non-agglomerated ferrite nanocrystals having size in the 5-10 nm range. Investigation by Mössbauer Spectroscopy was used to gain insights on the superparamagnetic relaxation and on the inversion degree. Magnetic ordering at room temperature varies from superparamagnetic in the NiFe2O4 sample, highly blocked (approximately 70%) in the MnFe2O4 sample and nearly fully blocked in the CoFe2O4 sample. A fitting procedure of the Mössbauer data has been used in order to resolve the spectrum into the tetrahedral and octahedral components; in this way, an inversion degree of 0.68 (very close to bulk values) was obtained for 6 nm silica-supported CoFe2O4 nanocrystals. PMID:22413356

  19. Fabrication of autofluorescent porous silica nanoparticles for redox-responsive drug release.

    PubMed

    Cao, Na; Zhao, Yanbao; Sang, Bin; Wang, Zhihua; Cao, Liuqin; Sun, Lei; Zou, Xueyan

    2016-12-01

    Porous silica nanoparticles were prepared by emulsion-condensation route. The silica nanoparticles with diameter of 50nm have both accessible center-radial large pore channels (19.9nm) and small pore size of 3.5nm. The hierarchical porous structure endows them large pore volume for loading drugs and sustained release property. The silica nanoparticles were further modified with glucose-oxidized glutathione. The formulated Schiff base and disulfide bonds render the silica nanoparticles auto-fluorescent and redox-responsive properties. The cleavage of disulfide bonds caused by reactive thiols facilitates aminomethylbenzoic acid (AMA) release. The release of drug leads to the loss of fluorescence, which would be used to monitor the drug delivery and carrier distribution. PMID:27612720

  20. Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers

    NASA Astrophysics Data System (ADS)

    Mohanta, Jagdeep; Singh, Udai P.; Panda, Subhendu K.; Si, Satyabrata

    2016-09-01

    The current study represents the design and synthesis of polyethylene oxide (PEO)-based solid polymer electrolytes by solvent casting approach using surface tailored porous silica as nanofillers. The surface tailoring of porous silica nanostructure is achieved through silanization chemistry using 3-glycidyloxypropyl trimethoxysilane in which silane part get anchored to the silica surface whereas epoxy group get stellated from the silica surface. Surface tailoring of silica with epoxy group increases the room temperature electrochemical performances of the resulting polymer electrolytes. Ammonical hydrolysis of organosilicate precursor is used for both silica preparation and their surface tailoring. The composite solid polymer electrolyte films are prepared by solution mixing of PEO with lithium salt in presence of silica nanofillers and cast into film by solvent drying, which are then characterized by impedance measurement for conductivity study and wide angle x-ray diffraction for change in polymer crystallinity. Room temperature impedance measurement reveals Li+ ion conductivity in the order of 10‑4 S cm‑1, which is correlated to the decrease in PEO crystallinity. The enhancement of conductivity is further observed to be dependent on the amount of silica as well as on their surface characteristics.

  1. Racetrack micro-resonators based on ridge waveguides made of porous silica

    NASA Astrophysics Data System (ADS)

    Girault, P.; Lorrain, N.; Lemaitre, J.; Poffo, L.; Guendouz, M.; Hardy, I.; Gadonna, M.; Gutierrez, A.; Bodiou, L.; Charrier, J.

    2015-12-01

    The fabrication of micro-resonators, made from porous silica ridge waveguides by using an electrochemical etching method of silicon substrate followed by thermal oxidation and then by a standard photolithography process, is reported. The design and fabrication process are described including a study of waveguide dimensions that provide single mode propagation and calculation of the coupling ratio between a straight access waveguide and the racetrack resonator. Scanning electronic microscopy observations and optical characterizations clearly show that the micro-resonator based on porous silica ridge waveguides has been well implemented. This porous micro-resonator is destined to be used as an optical sensor. The porous nature of the ridge waveguide constitutes the detection medium which will enhance the sensor sensitivity compared to usual micro-resonators based on the evanescent wave detection. A theoretical sensitivity of 1170 nm per refractive index unit has been calculated, taking into consideration experimental data obtained from the optical characterizations.

  2. Electrode With Porous Three-Dimensional Support

    DOEpatents

    Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier

    1999-07-27

    Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m

  3. Superwetting hierarchical porous silica nanofibrous membranes for oil/water microemulsion separation.

    PubMed

    Yang, Shan; Si, Yang; Fu, Qiuxia; Hong, Feifei; Yu, Jianyong; Al-Deyab, Salem S; El-Newehy, Mohamed; Ding, Bin

    2014-11-01

    Novel flexible, thermally stable and hierarchical porous silica nanofibrous membranes with superhydrophilicity and underwater superoleophobicity were prepared by a facile in situ synthesis method, which can effectively separate oil-in-water microemulsions solely driven by gravity, with an extremely high flux of 2237 L m(-2) h(-1). PMID:25260122

  4. Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating

    DOEpatents

    Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

    2006-05-02

    An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

  5. Evaluation of the properties of a superficially porous silica stationary phase in hydrophilic interaction chromatography.

    PubMed

    McCalley, David V

    2008-06-01

    The sample capacity, column efficiency (and its variation with flow) of a superficially porous unbonded silica phase (Halo) was investigated using hydrophilic interaction chromatography (HILIC), particularly for separation of basic compounds. Sample capacity compared with totally porous silica phases was somewhat reduced, broadly in line with the decreased surface area, but still favourable compared with reversed-phase separations of these solutes. Efficiencies in excess of 100,000 plates were obtained at room temperature in reasonable analysis times by using a 45 cm coupled column, while generating back pressures compatible with conventional HPLC. Shorter columns offered the possibility of fast analysis of bases, and the unfavourable mass transfer properties reported by others at high flow rate for similar reversed-phase columns, were not apparent. While excellent peak shapes were obtained for many bases on silica HILIC phases, problems may still occur for some solutes. PMID:18440010

  6. Thermal-stable carbon nanotube-supported metal nanocatalysts by mesoporous silica coating.

    PubMed

    Sun, Zhenyu; Zhang, Hongye; Zhao, Yanfei; Huang, Changliang; Tao, Ranting; Liu, Zhimin; Wu, Zhenduo

    2011-05-17

    A universal strategy was developed for the preparation of high-temperature-stable carbon nanotube (CNT) -supported metal nanocatalysts by encapsulation with a mesoporous silica coating. Specifically, we first showed the design of one novel catalyst, Pt(@)CNT/SiO(2), with a controllable mesoporous silica coating in the range 11-39 nm containing pores ≈3 nm in diameter. The hollow porous silica shell offers a physical barrier to separate Pt nanoparticles from contact with each other, and at the same time the access of reactant species to Pt was not much affected. As a result, the catalyst showed high thermal stability against metal particle agglomeration or sintering even after being subjected to harsh treatments up to 500 °C. In addition, degradation in catalytic activity was minimized for the hydrogenation of nitrobenzene over the catalyst treated at 300 °C for 2 h. The scheme was also extended to coat porous silica onto the surfaces of CuRu(@)CNT and the resultant catalyst thereby can be reusable at least four times without loss of activity for the hydrogenolysis of glycerol. These results suggest that the as-prepared nanostructured CNT-supported catalysts may find promising applications, especially in those processes requiring rigorous conditions. PMID:21480615

  7. Combination of porous silica monolith and gold thin films for electrode material of supercapacitor

    NASA Astrophysics Data System (ADS)

    Pastre, A.; Cristini-Robbe, O.; Boé, A.; Raulin, K.; Branzea, D.; El Hamzaoui, H.; Kinowski, C.; Rolland, N.; Bernard, R.

    2015-12-01

    An all-solid electrical double layer supercapacitor was prepared, starting from a porous silica matrix coated with a gold thin-film. The metallization of the silica xerogel was performed by an original wet chemical process, based on the controlled growth of gold nanoparticles on two opposite faces of the silica monolith as a seed layer, followed by an electroless deposition of a continuous gold thin film. The thickness of the metallic thin film was assessed to be 700 nm. The silica plays two major roles: (1) it is used as a porous matrix for the gold electrode, creating a large specific surface area, and (2) it acts as a separator (non-metallized part of the silica). The silica monolith was soaked in a polyvinyl alcohol and phosphoric acid mixture which is used as polymer electrolyte. Capacitance effect was demonstrated by cyclic voltammetry experiments. The specific capacitance was found to be equal to 0.95 mF cm- 2 (9.5 F g-1). No major degradation occurs within more than 3000 cycles.

  8. Sol-gel synthesis of a multifunctional, hierarchically porous silica/apatite composite.

    PubMed

    Andersson, Jenny; Areva, Sami; Spliethoff, Bernd; Lindén, Mika

    2005-12-01

    In this study, a degradable, hierarchically porous silica/apatite composite material is developed from a simple low-temperature synthesis. Mesoporosity is induced in the silica portion by the use of supramolecular templating. The template is further removed by calcination. Firstly, hydroxyapatite is synthesized through a sol-gel method at near room temperature conditions. After the mineralization process, the crystal surface is coated with a mesoporous silica matrix using the templates already present in the bulk solution. The material is characterized by XRD, N(2)-sorption, FT-IR, SEM/EDS, and TEM. The coating layer is distributed fairly homogeneously over the apatite surface and the coating thickness is easily adjustable and dependent on the amount of added silica precursor. The hybrid material is shown to efficiently induce calcium phosphate formation under in vitro conditions and simultaneously work as a carrier system for drugs. PMID:15993485

  9. Porous Silica Sol-Gel Glasses Containing Reactive V2O5 Groups

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E.

    1995-01-01

    Porous silica sol-gel glasses into which reactive vanadium oxide functional groups incorporated exhibit number of unique characteristics. Because they bind molecules of some species both reversibly and selectively, useful as chemical sensors or indicators or as scrubbers to remove toxic or hazardous contaminants. Materials also oxidize methane gas photochemically: suggests they're useful as catalysts for conversion of methane to alcohol and for oxidation of hydrocarbons in general. By incorporating various amounts of other metals into silica sol-gel glasses, possible to synthesize new materials with broad range of new characteristics.

  10. Superwetting hierarchical porous silica nanofibrous membranes for oil/water microemulsion separation

    NASA Astrophysics Data System (ADS)

    Yang, Shan; Si, Yang; Fu, Qiuxia; Hong, Feifei; Yu, Jianyong; Al-Deyab, Salem S.; El-Newehy, Mohamed; Ding, Bin

    2014-10-01

    Novel flexible, thermally stable and hierarchical porous silica nanofibrous membranes with superhydrophilicity and underwater superoleophobicity were prepared by a facile in situ synthesis method, which can effectively separate oil-in-water microemulsions solely driven by gravity, with an extremely high flux of 2237 L m-2 h-1.Novel flexible, thermally stable and hierarchical porous silica nanofibrous membranes with superhydrophilicity and underwater superoleophobicity were prepared by a facile in situ synthesis method, which can effectively separate oil-in-water microemulsions solely driven by gravity, with an extremely high flux of 2237 L m-2 h-1. Electronic supplementary information (ESI) available: Detailed synthesis and structural confirmation of BA-CHO, FT-IR and EDX results, Movie S1-S3. See DOI: 10.1039/c4nr04668d

  11. Anisotropic magnetic porous assemblies of oxide nanoparticles interconnected via silica bridges for catalytic application.

    PubMed

    Wacker, Josias B; Parashar, Virendra K; Gijs, Martin A M

    2011-04-19

    We report the microfluidic chip-based assembly of colloidal silanol-functionalized silica nanoparticles using monodisperse water-in-oil droplets as templates. The nanoparticles are linked via silica bridges, thereby forming superstructures that range from doublets to porous spherical or rod-like micro-objects. Adding magnetite nanoparticles to the colloid generates micro-objects that can be magnetically manipulated. We functionalized such magnetic porous assemblies with horseradish peroxidase and demonstrate the catalytic binding of fluorescent dye-labeled tyramide over the complete effective surface of the superstructure. Such nanoparticle assemblies permit easy manipulation and recovery after a heterogeneous catalytic process while providing a large surface similar to that of the individual nanoparticles. PMID:21417232

  12. Nanoscale assembly of lanthanum silica with dense and porous interfacial structures

    NASA Astrophysics Data System (ADS)

    Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R.; Smart, Simon; Diniz da Costa, João C.

    2015-02-01

    This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate.

  13. Nanoscale assembly of lanthanum silica with dense and porous interfacial structures

    PubMed Central

    Ballinger, Benjamin; Motuzas, Julius; Miller, Christopher R.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    This work reports on the nanoscale assembly of hybrid lanthanum oxide and silica structures, which form patterns of interfacial dense and porous networks. It was found that increasing the molar ratio of lanthanum nitrate to tetraethyl orthosilicate (TEOS) in an acid catalysed sol-gel process alters the expected microporous metal oxide silica structure to a predominantly mesoporous structure above a critical lanthanum concentration. This change manifests itself by the formation of a lanthanum silicate phase, which results from the reaction of lanthanum oxide nanoparticles with the silica matrix. This process converts the microporous silica into the denser silicate phase. Above a lanthanum to silica ratio of 0.15, the combination of growth and microporous silica consumption results in the formation of nanoscale hybrid lanthanum oxides, with the inter-nano-domain spacing forming mesoporous volume. As the size of these nano-domains increases with concentration, so does the mesoporous volume. The absence of lanthanum hydroxide (La(OH)3) suggests the formation of La2O3 surrounded by lanthanum silicate. PMID:25644988

  14. Development of sensors for direct detection of organophosphates. Part I: Immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports.

    PubMed

    Singh, A K; Flounders, A W; Volponi, J V; Ashley, C S; Wally, K; Schoeniger, J S

    1999-12-01

    Biosensors for organophosphates in solution may be constructed by monitoring the activity of acetylcholinesterase (AChE) or organophosphate hydrolase (OPH) immobilized to a variety of microsensor platforms. The area available for enzyme immobilization is small (< 1 mm2) for microsensors. In order to construct microsensors with increased surface area for enzyme immobilization, we used a sol-gel process to create highly porous and stable silica matrices. Surface porosity of sol-gel coated surfaces was characterized using scanning electron microscopy; pore structure was found to be very similar to that of commercially available porous silica supports. Based upon this analysis, porous and non-porous silica beads were used as model substrates of sol-gel coated and uncoated sensor surfaces. Two different covalent chemistries were used to immobilize AChE and OPH to these porous and non-porous silica beads. The first chemistry used amine-silanization of silica followed by enzyme attachment using the homobifunctional linker glutaraldehyde. The second chemistry used sulfhydryl-silanization followed by enzyme attachment using the heterobifunctional linker N-gamma-maleimidobutyryloxy succinimide ester (GMBS). Surfaces were characterized in terms of total enzyme immobilized, total and specific enzyme activity, and long term stability of enzyme activity. Amine derivitization followed by glutaraldehyde linking yielded supports with greater amounts of immobilized enzyme and activity. Use of porous supports not only yielded greater amounts of immobilized enzyme and activity, but also significantly improved long term stability of enzyme activity. Enzyme was also immobilized to sol-gel coated glass slides. The mass of immobilized enzyme increased linearly with thickness of coating. However, immobilized enzyme activity saturated at a porous silica thickness of approximately 800 nm. PMID:10641290

  15. Modified porous silica antireflective coatings with laser damage resistance for Ti:sapphire

    NASA Astrophysics Data System (ADS)

    Jia, Qiaoying; Li, Haiyuan; Liu, Ruijun; Tang, Yongxing; Jiang, Zhonghong

    2005-04-01

    Porous SiO2 antireflective (AR) coatings are prepared from the colloidal silica solution modified with methyltriethoxysilane (MTES) based on the sol-gel route. The viscosity of modified silica suspensions changes but their stability keeps when MTES is introduced. The refractive indices of modified coatings vary little after bake treatment from 100 to 150 Celsius. The modified silica coatings on Ti:sapphire crystal, owning good homogeneity, display prominent antireflective effect within the laser output waveband (750-850 nm) of Ti:sapphire lasers, with average transmission above 98.6%, and own laser induced damage thresholds (LIDTs) of more than 2.2 J/cm2 at 800 nm with the pulse duration of 300 ps.

  16. The effect of elevated temperature on the strength parameters of silica acid ester consolidated porous limestones

    NASA Astrophysics Data System (ADS)

    Pápay, Zita; Török, Ákos

    2013-04-01

    The porous limestone is one of the most widespread construction materials of the monuments in Central Europe, with emblematic buildings in Vienna, Bratislava, Budapest and many other cities of Austria, Slovakia, Czech Republic and Hungary. The restoration of these monuments very often requires the consolidation of the porous limestone material, where various types of consolidants are used to strengthen the highly weathered stone. Our research focused on the understanding of the behaviour of consolidated porous limestone when the material is subjected to higher temperatures. Test procedure included the preparation of cylindrical test specimens from the Miocene porous limestone which was followed by consolidation by four various types of silica acid ester. The samples after consolidation were heated to 300 and 600 °C in electric oven. The material properties such as ultrasonic pulse velocity, density were tested before and after the treatment. Indirect tensile strength (Brazilian test) was used to compare the strength parameters of non treated and consolidated samples. Silica acid ester treated samples after heating were also measured in terms of strength, density and ultrasonic pulse velocity. The results show that there are significant changes in strength of various pre-treated samples after heating indicating the sensitivity of the materials to temperature changes and accidental fire.

  17. CO adsorption on a silica bilayer supported on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Schlexer, Philomena; Pacchioni, Gianfranco; Włodarczyk, Radosław; Sauer, Joachim

    2016-06-01

    Silica bilayers are built up of two layers of corner sharing SiO4-tetrahedra and constitute an inert ultra-thin membrane supported on the Ru(0001) surface. We have investigated the adsorption of CO on that system using DFT with inclusion of dispersion corrections. The molecules adsorb at the interface between the SiO2 film and Ru(0001) surface. The estimated barrier for diffusion of CO through the silica bilayer is around 0.5 eV. The CO bond length, the C-O stretching frequency and the silica-ruthenium distance depend strongly on the CO coverage. The band observed at 2051 cm- 1 in previous experiments can be assigned to a CO coverage of around 0.5 ML on Ru(0001), with the silica bilayer floating above the CO molecules.

  18. Photocatalytic activity of erbium-doped TiO{sub 2} nanoparticles immobilized in macro-porous silica films

    SciTech Connect

    Castaneda-Contreras, J.; Maranon-Ruiz, V.F.; Chiu-Zarate, R.; Perez-Ladron de Guevara, H.; Rodriguez, R.; Michel-Uribe, C.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Erbium-doped TiO{sub 2} nanoparticles were immobilized on macro-porous silica films. Black-Right-Pointing-Pointer The films were obtained by a phase separation process. Black-Right-Pointing-Pointer The samples exhibited photo-catalytic activity under visible light. Black-Right-Pointing-Pointer The sensitization of TiO{sub 2} was attributed to a red shift in the TiO{sub 2} band-gap. -- Abstract: A macro-porous silica film served as mechanical support to immobilize TiO{sub 2} nanoparticles, which were doped with erbium. The films and the nanoparticles were prepared by sol-gel route. The nanoparticles exhibited photocatalytic activity under visible light. We obtained a degradation rate of methylene blue that followed first order kinetics. The sensitization of the nanoparticles to visible light was attributed to a red shift in the band-gap of the TiO{sub 2} due to the addition of erbium ions.

  19. Porous silica coated spherical microresonator for vapor phase sensing of ammonia at a sub-ppm level

    NASA Astrophysics Data System (ADS)

    Mallik, Arun K.; Farrell, Gerald; Liu, Dejun; Kavungal, Vishnu; Wu, Qiang; Semenova, Yuliya

    2016-05-01

    A new type of fiber optic sensor for the detection and quantification of ammonia (NH3) vapor levels is proposed and experimentally demonstrated. This sensor is based on a spherical silica micro resonator coated with porous silica gel. Whispering gallery modes (WGMs) in the micro resonator are excited by evanescent coupling to a tapered fiber with a 3.3 μm waist diameter. The optical properties of the porous silica layer change when it is exposed to ammonia vapor, leading to a spectral shift of the WGM resonant wavelengths. The sensitivity of the proposed sensor has been tested by exposing it to different low level concentrations of ammonia: 4 ppm, 8 ppm, 12 ppm and 30 ppm at a constant relative humidity (50% RH) and constant temperature (23°C). The detection limit is calculated from experimental results as 57 ppb of ammonia for a 282 μm diameter porous silica coated microsphere.

  20. Evaluation of the acid properties of porous zirconium-doped and undoped silica materials

    SciTech Connect

    Fuentes-Perujo, D.; Santamaria-Gonzalez, J.; Merida-Robles, J.; Rodriguez-Castellon, E.; Jimenez-Lopez, A.; Maireles-Torres, P. . E-mail: maireles@uma.es; Moreno-Tost, R.

    2006-07-15

    A series of porous silica and Zr-doped silica molecular sieves, belonging to the MCM-41 and MSU families, were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N{sub 2} adsorption at 77 K. Their acid properties have been evaluated by NH{sub 3}-TPD, adsorption of pyridine and deuterated acetonitrile coupled to FT-IR spectroscopy and the catalytic tests of isopropanol decomposition and isomerization of 1-butene. The acidity of purely siliceous solids were, in all cases, very low, while the incorporation of Zr(IV) into the siliceous framework produced an enhancement of the acidity. The adsorption of basic probe molecules and the catalytic behaviour revealed that Zr-doped MSU-type silica was more acidic than the analogous Zr-MCM-41 solid, with a similar Zr content. This high acidity observed in the case of Zr-doped silica samples is due to the presence of surface zirconium atoms with a low coordination, mainly creating Lewis acid sites. - Graphical abstract: The adsorption of basic probe molecules and the catalytic behaviour have revealed that MSU-type materials are more acidic than the analogous MCM-41 solids, mainly after the incorporation of zirconium into the silica framework.

  1. Shape control of self-organized porous silica submicron particles and their strength evaluation

    NASA Astrophysics Data System (ADS)

    Kiyohara, Keita; Inoue, Keita; Inoue, Shozo; Namazu, Takahiro

    2016-06-01

    In this paper, precise control of the shape, size, and porosity of porous silica submicron particles and their strength evaluation are described. Self-organization phenomenon of silica nanopowders and submicron polystyrene latex (PSL) balls in an atomized mist is used for the fabrication of the particles. When temperatures of lower- and upper-zone heaters are 100 and 600 °C, and N2 gas flow rate is 0.4 l/min, spherical particles are produced. When PSL concentration increases, the number of pores increases. Particles with uniformly-arranged pores are produced at the PSL concentration of around 3 wt %. By using the PSL balls of different diameters, porous silica particles including different size pores are made. Also, compressive fracture test is conducted to check the effect of vacuum annealing on the strength of particles. The annealed particle shows higher fracture force than the unannealed particle, which indicates that the annealing would be effective for improving the mechanical reliability.

  2. Toward compositional design of reticular type porous films by mixing and coating titania-based frameworks with silica

    NASA Astrophysics Data System (ADS)

    Kimura, T.

    2015-12-01

    A recently developed reticular type porous structure, which can be fabricated as the film through the soft colloidal block copolymer (e.g., PS-b-PEO) templating, is very promising as the porous platform showing high-performance based on its high surface area as well as high diffusivity of targeted organic molecules and effective accommodation of bulky molecules, but the compositional design of oxide frameworks has not been developed so enough to date. Here, I report reliable synthetic methods of the reticular type porous structure toward simple compositional variations. Due to the reproducibility of reticular type porous titania films from titanium alkoxide (e.g., TTIP; titanium tetraisopropoxide), a titania-silica film having similar porous structure was obtained by mixing silicon alkoxide (e.g., tetraethoxysilane) and TTIP followed by their pre-hydrolysis, and the mixing ratio of Ti to Si composition was easily reached to 1.0. For further compositional design, a concept of surface coating was widely applicable; the reticular type porous titania surfaces can be coated with other oxides such as silica. Here, a silica coating was successfully achieved by the simple chemical vapor deposition of silicon alkoxide (e.g., tetramethoxysilane) without water (with water at the humidity level), which was also utilized for pore filling with silica by the similar process with water.

  3. Evaluation of the acid properties of porous zirconium-doped and undoped silica materials

    NASA Astrophysics Data System (ADS)

    Fuentes-Perujo, D.; Santamaría-González, J.; Mérida-Robles, J.; Rodríguez-Castellón, E.; Jiménez-López, A.; Maireles-Torres, P.; Moreno-Tost, R.; Mariscal, R.

    2006-07-01

    A series of porous silica and Zr-doped silica molecular sieves, belonging to the MCM-41 and MSU families, were prepared and characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N 2 adsorption at 77 K. Their acid properties have been evaluated by NH 3-TPD, adsorption of pyridine and deuterated acetonitrile coupled to FT-IR spectroscopy and the catalytic tests of isopropanol decomposition and isomerization of 1-butene. The acidity of purely siliceous solids were, in all cases, very low, while the incorporation of Zr(IV) into the siliceous framework produced an enhancement of the acidity. The adsorption of basic probe molecules and the catalytic behaviour revealed that Zr-doped MSU-type silica was more acidic than the analogous Zr-MCM-41 solid, with a similar Zr content. This high acidity observed in the case of Zr-doped silica samples is due to the presence of surface zirconium atoms with a low coordination, mainly creating Lewis acid sites.

  4. YVO4:Eu3+ functionalized porous silica submicrospheres as delivery carriers of doxorubicin.

    PubMed

    Cheng, Ziyong; Ma, Pingan; Hou, Zhiyao; Wang, Wenxin; Dai, Yunlu; Zhai, Xuefeng; Lin, Jun

    2012-02-01

    Porous silica microspheres were fabricated by a facile surface-protected etching strategy. Polyvinylpyrrolidone (PVP) was used as a protecting polymer absorbed on the surface of silica microspheres and NaOH was employed as an etching agent. Owing to the protective action of PVP and inhomogeneous etching, mesopores were created in the silica microspheres. Then, based on the Pechini-type sol-gel and impregnating process, YVO(4):Eu(3+) nanocrystals were integrated into the channels to form highly luminescent YVO(4):Eu(3+)@SiO(2) composite microspheres. The biocompatibility tests on L929 fibroblast cells using MTT assay reveal low cytotoxicity of the system. Owing to the large interior space and electrostatic interaction, the porous microspheres show a relatively high loading capacity (438 mg DOX/YVO(4):Eu(3+)@SiO(2) g) and encapsulation efficiency (87.6%) for the anti-cancer drug doxorubicin hydrochloride (DOX). The drug release behavior and cytotoxic effect against human cervical carcinoma cells (HeLa cells) of the DOX-loaded YVO(4):Eu(3+)@SiO(2) carriers were investigated in vitro. It was found that the carriers present a highly pH-dependent drug release behavior due to electrostatic interaction between the silica surface and DOX molecules. The drug release rate became greater at low pH owing to the increased electrostatic repulsion. The DOX-loaded carriers demonstrate a similar or even greater anti-cancer activity with respect to the free DOX against HeLa cells. Furthermore, the PL intensity of the microspheres shows correlation with the cumulative release of DOX. These results suggest that the composite can potentially act as a multifunctional drug carrier system with luminescent tagging and pH-controlled release properties. PMID:22124278

  5. Thermal pretreatments of superficially porous silica particles for high-performance liquid chromatography: Surface control, structural characterization and chromatographic evaluation.

    PubMed

    Mignot, Mélanie; Sebban, Muriel; Tchapla, Alain; Mercier, Olivier; Cardinael, Pascal; Peulon-Agasse, Valérie

    2015-11-01

    This study reports the impact of thermal pretreatment between 400 and 1100°C on superficially porous silica particles (e.g. core-shell, fused-core; here abbreviated as SPP silica). The different thermally pretreated SPP silica (400°C, 900°C and 1100°C) were chemically bonded with an octadecyl chain under microwave irradiation. The bare SPP silica, thermally untreated and pretreated, as well as the chemically bonded phases (CBPs) were fully characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), and solid state cross polarization magic angle spinning (CP-MAS) (29)Si NMR. The chromatographic properties of the overall set of C18-thermally pretreated SPP silica stationary phases were determined using the Tanaka test. Complementary, the simplified Veuthey test was used to deeply study the silanol activity, considering a set of 7 basic solutes with various physicochemical properties. Both tests were also performed on different commercial SPP silica columns and different types of bonding chemistry (C18, Phenyl-hexyl, RP-amide, C30, aQ). Multivariate data analyses (hierarchical cluster analysis and principal component analysis) were carried out to define groups of stationary phases with similar chromatographic properties and situate them in relation to those commercially available. These different C18-thermally pretreated SPP silicas represented a wide range of stationary phases as they were spread out along the score plot. Moreover, this study highlighted that the thermal pretreatment improved the chemical stability of the SPP silica compare to untreated SPP silica and untreated porous silica. Consequently, higher thermal pretreatment can be applied (up to 900°C) before functionalization without destruction of the silica matrix. Indeed, a significantly lower dissolution of the thermally pretreated SPP silica under aggressive conditions could allow the use of the corresponding functionalized stationary phases at high

  6. Biodiesel production from transesterification of palm oil with methanol over CaO supported on bimodal meso-macroporous silica catalyst.

    PubMed

    Witoon, Thongthai; Bumrungsalee, Sittisut; Vathavanichkul, Peerawut; Palitsakun, Supaphorn; Saisriyoot, Maythee; Faungnawakij, Kajornsak

    2014-03-01

    Calcium oxide-loaded porous materials have shown promise as catalysts in transesterification. However, the slow diffusion of bulky triglycerides through the pores limited the activity of calcium oxide (CaO). In this work, bimodal meso-macroporous silica was used as a support to enhance the accessibility of the CaO dispersed inside the pores. Unimodal porous silica having the identical mesopore diameter was employed for the purpose of comparison. Effects of CaO content and catalyst pellet size on the yield of fatty acid methyl esters (FAME) were investigated. The basic strength was found to increase with increasing the CaO content. The CaO-loaded bimodal porous silica catalyst with the pellet size of 325μm achieved a high %FAME of 94.15 in the first cycle, and retained an excellent %FAME of 88.87 after five consecutive cycles. PMID:24525218

  7. The role of porous nanostructure in controlling lipase-mediated digestion of lipid loaded into silica particles.

    PubMed

    Joyce, Paul; Tan, Angel; Whitby, Catherine P; Prestidge, Clive A

    2014-03-18

    The rate and extent of lipolysis, the breakdown of fat into molecules that can be absorbed into the bloodstream, depend on the interfacial composition and structure of lipid (fat) particles. A novel method for controlling the interfacial properties is to load the lipid into porous colloidal particles. We report on the role of pore nanostructure and surface coverage in controlling the digestion kinetics of medium-chain and long-chain triglycerides loaded into porous silica powders of different particle size, porosity, and hydrophobicity/hydrophilicity. An in vitro lipolysis model was used to measure digestion kinetics of lipid by pancreatic lipase, a digestive enzyme. The rate and extent of lipid digestion were significantly enhanced when a partial monolayer of lipid was loaded in porous hydrophilic silica particles compared to a submicrometer lipid-in-water emulsion or a coarse emulsion. The inhibitory effect of digestion products was clearly evident for digestion from a submicrometer emulsion and coarse emulsion. This effect was minimal, however, in the two silica-lipid systems. Lipase action was inhibited for lipid loaded in the hydrophobic silica and considered due to the orientation of lipase adsorption on the methylated silica surface. Thus, hydrophilic silica promotes enhanced digestion kinetics, whereas hydrophobic silica exerts an inhibitory effect on hydrolysis. Evaluation of digestion kinetics enabled the mechanism for enhanced rate of lipolysis in silica-lipid systems to be derived and detailed. These investigations provide valuable insights for the optimization of smart food microparticles and lipid-based drug delivery systems based on lipid excipients and porous nanoparticles. PMID:24552363

  8. Construction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers.

    PubMed

    Wang, Yan; Cui, Haixin; Sun, Changjiao; Zhao, Xiang; Cui, Bo

    2014-12-01

    Photolysis and poor solubility in water of Abamectin are key issues to be addressed, which causes low bioavailability and residual pollution. In this study, a novel hydrophilic delivery system through loading Abamectin with porous silica nanoparticles (Abam-PSNs) was developed in order to improve the chemical stability, dispersity, and the controlled release of Abamectin. These results suggest that Abam-PSNs can significantly improve the performance of controllable release, photostability, and water solubility of Abamectin by changing the porous structure of silica nanoparticles, which is favorable to improve the bioavailability and reduce the residues of pesticides. PMID:26088998

  9. Construction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Cui, Haixin; Sun, Changjiao; Zhao, Xiang; Cui, Bo

    2014-12-01

    Photolysis and poor solubility in water of Abamectin are key issues to be addressed, which causes low bioavailability and residual pollution. In this study, a novel hydrophilic delivery system through loading Abamectin with porous silica nanoparticles (Abam-PSNs) was developed in order to improve the chemical stability, dispersity, and the controlled release of Abamectin. These results suggest that Abam-PSNs can significantly improve the performance of controllable release, photostability, and water solubility of Abamectin by changing the porous structure of silica nanoparticles, which is favorable to improve the bioavailability and reduce the residues of pesticides.

  10. Characterization and structural investigation of fractal porous-silica over an extremely wide scale range of pore size.

    PubMed

    Ono, Yusuke; Mayama, Hiroyuki; Furó, István; Sagidullin, Alexander I; Matsushima, Keiichiro; Ura, Haruo; Uchiyama, Tomoyuki; Tsujii, Kaoru

    2009-08-01

    We have succeeded in creating Menger sponge-like fractal body, i.e., porous-silica samples with Menger sponge-like fractal geometries, by a novel template method utilizing template particles of alkylketene dimer (AKD) and a sol-gel synthesis of tetramethyl orthosilicate (TMOS). We report here the first experimental results on characterization and structural investigations of the fractal porous-silica samples prepared with various conditions such as calcination temperature and packing condition of the template particles. In order to characterize the fractal porous-silica samples, pore volume distribution, porosity and specific surface area were measured over an extremely wide scale from 1 nm to 100 microm by means of mercury porosimetry, (1)H NMR cryoporometry, nitrogen gas adsorption experiments together with direct evaluations of cross-sectional fractal dimension D(cs), and size limits of D(cs). We have found that the pore volume distribution and specific surface area of the fractal porous-silica samples can be discussed in terms of different fractal porous structures at different scale regions. PMID:19406424

  11. Guest–host interactions of a rigid organic molecule in porous silica frameworks

    PubMed Central

    Wu, Di; Hwang, Son-Jong; Zones, Stacey I.; Navrotsky, Alexandra

    2014-01-01

    Molecular-level interactions at organic–inorganic interfaces play crucial roles in many fields including catalysis, drug delivery, and geological mineral precipitation in the presence of organic matter. To seek insights into organic–inorganic interactions in porous framework materials, we investigated the phase evolution and energetics of confinement of a rigid organic guest, N,N,N-trimethyl-1-adamantammonium iodide (TMAAI), in inorganic porous silica frameworks (SSZ-24, MCM-41, and SBA-15) as a function of pore size (0.8 nm to 20.0 nm). We used hydrofluoric acid solution calorimetry to obtain the enthalpies of interaction between silica framework materials and TMAAI, and the values range from −56 to −177 kJ per mole of TMAAI. The phase evolution as a function of pore size was investigated by X-ray diffraction, IR, thermogravimetric differential scanning calorimetry, and solid-state NMR. The results suggest the existence of three types of inclusion depending on the pore size of the framework: single-molecule confinement in a small pore, multiple-molecule confinement/adsorption of an amorphous and possibly mobile assemblage of molecules near the pore walls, and nanocrystal confinement in the pore interior. These changes in structure probably represent equilibrium and minimize the free energy of the system for each pore size, as indicated by trends in the enthalpy of interaction and differential scanning calorimetry profiles, as well as the reversible changes in structure and mobility seen by variable temperature NMR. PMID:24449886

  12. Porous Silica-Coated Gold Nanorods: A Highly Active Catalyst for the Reduction of 4-Nitrophenol.

    PubMed

    Mohanta, Jagdeep; Satapathy, Smithsagar; Si, Satyabrata

    2016-02-01

    The successful coating of thin porous silica layers of various thicknesses [(10±1), (12±1), and (14±1) nm] on cetyl trimethylammonium bromide (CTAB) capped gold nanorods was achieved through a modified Stöber procedure. The resulting material was applied as a novel catalyst for the reduction of 4-nitrophenol. The catalytic activities of the gold nanorods increased up to eight times after coating with a layer of porous silica and the reaction followed a zero-order kinetics, having a rate constant as high as 2.92×10(-1) mol L(-1) min(-1). The spectral changes during the reduction reaction of 4-nitrophenol were observed within a very short span of time and a complete conversion to 4-aminophenol occured within 5-6 mins, including the induction period of ≈2 mins. The reusability of the catalyst was studied by running the catalytic reaction during five consecutive cycles with good efficiency without destroying the nanostructure. The methodology can be effectively applied to the development of composite catalysts with highly enhanced catalytic activity. PMID:26663755

  13. Incorporation, oxidation and pyrolysis of ferrocene into porous silica glass: a route to different silica/carbon and silica/iron oxide nanocomposites.

    PubMed

    Schnitzler, Mariane C; Mangrich, Antônio S; Macedo, Waldemar A A; Ardisson, José D; Zarbin, Aldo J G

    2006-12-25

    This work reports the incorporation of ferrocene into a porous silica glass under ambient temperature and atmosphere. After or during the ferrocene incorporation, the spontaneous formation of ferricinium ions was observed by electron paramagnetic resonance (EPR), UV-visible, X-ray absorption near-edge structure (XANES), and 57Fe Mössbauer measurements. It was shown that the oxidation of ferrocene molecules to ferricinium ions was promoted by air and that the Si-O- groups on the surface of the pores act as counteranions. Pyrolysis of the porous glass/ferricinium material under argon atmosphere and variable temperature yields different glass/carbon nanocomposites, which were subsequently treated with an HF solution in order to remove the glassy fraction. The resulting insoluble carbon materials were characterized by transmission electron microscopy (TEM), Raman, and EPR spectroscopy and consisted of amorphous carbon when the pyrolysis was carried out at 900 or 1000 degrees C and of a mixture of carbon nanotubes and carbonaceous materials at a pyrolysis temperature of 1100 degrees C. When the pyrolysis was conducted under air, the incorporated ferricinium forms alpha-Fe2O3, and the resulting material is a transparent and highly homogeneous glass/iron oxide nanocomposite. PMID:17173419

  14. Kinetics of Oligonucleotide Hybridization to DNA Probe Arrays on High-Capacity Porous Silica Substrates

    PubMed Central

    Glazer, Marc I.; Fidanza, Jacqueline A.; McGall, Glenn H.; Trulson, Mark O.; Forman, Jonathan E.; Frank, Curtis W.

    2007-01-01

    We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of ∼23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-μm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-μm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22°C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (ka, kd, and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22°C is described well by the predictive equations for

  15. Transport of Colloidal Silica in Fractured and Porous Media: Applications to Geothermal & Geological Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Ezzedine, S. M.; Bourcier, W. L.; Hunt, J. D.; Ryerson, F. J.

    2012-12-01

    Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for geothermal and carbon sequestration reservoir management. For example, a) sustaining long term heat extraction from geothermal systems can be achieved by optimizing thermal sweeping of available conductive surface area; b) minimizing supercritical CO2 leaks through caprock can be insured by blocking any possible leakage pathways. Diverting and blocking agents have been effectively used in the petroleum industry to enhance recovery; however, these are often organic polymers that raise environmental concerns. Silicas are inorganic and environmentally friendly. In the current study we have developed a numerical model to simulate the flow mass and heat transport of silica gel in both geothermal and immiscible supercritical CO2 sequestration reservoirs. We illustrate the application of the model for a) maximizing thermal extraction and minimizing water loses for hydrothermal systems by using the gel as a diverter and blocking agent and b) minimizing CO2 leakages to the caprock by using the gel as blocking and coating agent. Several 2D and 3D examples in porous and fractured network will be presented and design criteria for both application will be discussed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Thermally modulated porous silica multispectral filters and their application in remote imaging.

    PubMed

    Garcia Sega, Adrian; King, Brian H; Lee, Jessica Y; Sailor, Michael J; Miskelly, Gordon M

    2013-09-24

    We report a thermally tunable multispectral imaging filter based on reversible condensation of volatile organic fluids within a nanoporous one-dimensional photonic crystal. The photonic crystal (optical rugate filter) comprises oxidized porous silicon, prepared by electrochemical etch of silicon and subsequent air oxidation (porous silica rugate filter, pSiF). The reflectance spectrum of the pSiF is designed and constructed to match two of the red emission bands of the luminescent complex europium(III) tris-dipicolinate, [Eu(dpa)3](3-), which has been used as an indicator for anthrax spores. When the pSiF is fitted with a thermoelectric Peltier cooler/heater and sealed in a container with 2-propanol vapor, microcapillary effects drive the temperature-dependent condensation/evaporation of 2-propanol into/out of the porous nanostructure. Thermal cycling experiments show that the wavelengths of the spectral bands of the pSiF are reversibly tuned by ±35 nm for a temperature change of ±40 °C. Difference images of a UV-illuminated scene containing the [Eu(dpa)3](3-) target, obtained by reflection from pSiF that is continuously thermally cycled through the emission bands of the dye, show that the target can be discriminated from the background or from control targets with overlapping but dissimilar luminescence spectra. PMID:23968219

  17. Preparation of silica sphere with porous structure in supercritical carbon dioxide.

    PubMed

    Chatterjee, Maya; Chatterjee, Abhijit; Ikushima, Yutaka; Kawanami, Hajime; Ishizaka, Takayuki; Sato, Masahiro; Suzuki, Toshishige; Yokoyama, Toshirou

    2010-08-01

    Silica sphere with porous structure has been synthesized in supercritical carbon dioxide. The structure originates from a delicate CO(2) trapping phenomenon intended for void formation in the inorganic framework. Silicate polymerization and subsequent removal of CO(2) by depressurization leaves the porous architecture. The key factor to obtain stable porous spherical structure was CO(2) pressure. Different characterization techniques such as X-ray diffraction, scanning and transmission electron microscopy and N(2) adsorption-desorption isotherm were used to determine the framework structure, morphology and porosity of the material. Microscopic visualization of calcined material suggested that the spherical structure was consisted of macroporous windows of diameter approximately 100 nm and the space between macropores presents a wormhole like mesoporous/microporous structure. The pore diameter of the mesoporous structure has been calculated as approximately 3 nm. X-ray diffraction and N(2) adsorption isotherm analysis confirmed the presence of micropores and also the macropores. In addition, the resulting material possess high thermal and hydrothermal stability associated with fully SiO(4) cross-linking. The spherical structure with different types of porosity was successfully obtained without using any molding agent. PMID:20417524

  18. Laser supported solid state absorption fronts in silica

    SciTech Connect

    Carr, C W; Bude, J D

    2010-02-09

    We develop a model based on simulation and experiment that explains the behavior of solid-state laser-supported absorption fronts generated in fused silica during high intensity (up to 5GW/cm{sup 2}) laser exposure. We find that the absorption front velocity is constant in time and is nearly linear in laser intensity. Further, this model can explain the dependence of laser damage site size on these parameters. This behavior is driven principally by the temperature-activated deep sub band-gap optical absorptivity, free electron transport and thermal diffusion in defect-free silica for temperatures up to 15,000K and pressures < 15GPa. The regime of parameter space critical to this problem spans and extends that measured by other means. It serves as a platform for understanding general laser-matter interactions in dielectrics under a variety of conditions.

  19. Impact of carbon on the surface and activity of silica-carbon supported copper catalysts for reduction of nitrogen oxides

    NASA Astrophysics Data System (ADS)

    Spassova, I.; Stoeva, N.; Nickolov, R.; Atanasova, G.; Khristova, M.

    2016-04-01

    Composite catalysts, prepared by one or more active components supported on a support are of interest because of the possible interaction between the catalytic components and the support materials. The supports of combined hydrophilic-hydrophobic type may influence how these materials maintain an active phase and as a result a possible cooperation between active components and the support material could occur and affects the catalytic behavior. Silica-carbon nanocomposites were prepared by sol-gel, using different in specific surface areas and porous texture carbon materials. Catalysts were obtained after copper deposition on these composites. The nanocomposites and the catalysts were characterized by nitrogen adsorption, TG, XRD, TEM- HRTEM, H2-TPR, and XPS. The nature of the carbon predetermines the composite's texture. The IEPs of carbon materials and silica is a force of composites formation and determines the respective distribution of the silica and carbon components on the surface of the composites. Copper deposition over the investigated silica-carbon composites leads to formation of active phases in which copper is in different oxidation states. The reduction of NO with CO proceeds by different paths on different catalysts due to the textural differences of the composites, maintaining different surface composition and oxidation states of copper.

  20. SEPARATION PROPERTIES OF SURFACE MODIFIED SILICA SUPPORTED LIQUID MEMBRANES FOR DIVALENT METAL REMOVAL/RECOVERY

    EPA Science Inventory

    The synthesis and separation properties of a mesoporous silica supported liquid membrane (SLM) were studied. The membranes consisted of a silica layer, from dip-coated colloidal silica, on a a-alumina support, modified with DCDMS (dichlorodimethyl silane) to add surface methyl g...

  1. PILOT-PLANT EVALUATION OF POROUS BIOMASS SUPPORTS (JOURNAL VERSION)

    EPA Science Inventory

    Several porous biomass-support systems are currently available for use in the activated-sludge process. One of these systems, Captor, utilizes polyurethane foam pads to provide biofilm growth sites that transform an aerobic suspended-growth reactor into a fixed-film reactor. In a...

  2. Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica-titania pillars-synthesis and characterization

    SciTech Connect

    Chmielarz, Lucjan; Gil, Barbara; Kustrowski, Piotr; Piwowarska, Zofia; Dudek, Barbara; Michalik, Marek

    2009-05-15

    Porous clay heterostructures (PCHs) were synthesized using natural montmorillonite as a raw material. Apart from pure silica pillars also silica-titania pillars were intercalated into the interlayer space of the parent clay. The detailed studies of the calcination process of the as-prepared PCH samples as well as thermal stability of the pillared structure of these materials were performed. The pillared structure of PCHs intercalated with both silica and silica-titania clusters was found to be thermally stable up to temperatures exceeding 600 deg. C. It was found that titanium incorporated into the silica pillars was present mainly in the form of separated tetracoordinated cations. For the samples with the higher Ti loading also small contribution of titanium in the form of the polymeric oxide species was detected. Titanium incorporated into the PCH materials significantly increased their surface acidity forming mainly Bronsted acid sites. - Graphical abstract: Synthesis of the montmorillonite based porous clay heterostructures (PCHs) intercalated with silica-titania pillars has been performed. The mechanism of the thermal degradation of organic templates in the pore system of PCHs was studied. PCHs were characterized with respect to structure, texture, composition, surface acidity, thermal stability and form of introduced titanium.

  3. Aging influence on sensing properties of porous silica films sensitized toward ammonia

    NASA Astrophysics Data System (ADS)

    Tyszkiewicz, Cuma; Rogoziński, Roman

    2015-12-01

    The sol-gel technology allows preparation of thin silica films ranging in porosity from dense to highly porous. These films can function as a matrix binding molecules of the pH-sensitive dyes and can be utilized as the sensitive films for intensity based planar evanescent wave chemical sensors. Sensitive properties of these dyes decreases in time due to aging processes. We report characterization of weakening of sensing properties of highly porous silica films doped with the bromocresole purple (BCP). In the presence of the gaseous ammonia, the absorption band (AB) of protonated BCP centered at λ=430 nm, is shifted toward λ=591 nm due to deprotonation, resulting in the increase of sensitive films absorption in the range of wavelengths of shifted AB. Two sets of films were investigated. Films from the first one were cyclically exposed to the ammonia and stored isolated from the daylight. Films from the second set weren't exposed to the ammonia and were stored in a staining jar exposed to the daylight. A depth of the AB at λ=430 nm was measured using a spectrophotometer. A sensitivity of the films toward ammonia was measured using LED emitting at center wavelength λ=610 nm. As was shown, the sensitivity of these films exposed to the ammonia diluted in dry air, and isolated from the daylight, decreases in time exponentially. The magnitude of that decrease monotonically depends on the ammonia concentration. It was also shown that the daylight causes quick aging of films not exposed to the ammonia. A depth of the AB centered at λ=430 nm relatively quickly decreased when compared with films isolated from the daylight and exposed to the ammonia.

  4. A silica-supported solid dispersion of bifendate using supercritical carbon dioxide method with enhanced dissolution rate and oral bioavailability.

    PubMed

    Cai, Cuifang; Liu, Muhua; Li, Yun; Guo, Bei; Chang, Hui; Zhang, Xiangrong; Yang, Xiaoxu; Zhang, Tianhong

    2016-01-01

    In this study, to enhance the dissolution rate and oral bioavailability of bifendate, a silica-supported solid dispersion (SD) of bifendate was prepared using supercritical carbon dioxide (ScCO2) technology. The properties of bifendate-silica SD were characterized by differential scanning calorimetry (DSC), X-ray diffraction (X-RD) and scanning electron microscopy. The pharmacokinetic study was carried out in beagle dogs using commercial bifendate dropping pills as a reference which is a conventional SD formulation of bifendate and PEG6000. A novel method of Ultra Performance Convergence Chromatography-tandem mass spectrometry (UPC(2)™-MS/MS) method was applied to determine bifendate concentration in plasma. The amorphous state of bifendate in bifendate-silica SD was revealed in X-RD and DSC when the ratios of bifendate and silica were 1:15 and 1:19, respectively. In vitro dissolution rate was significantly improved with cumulative release of 67% within 20 min relative to 8% for the physical mixture of bifendate and silica, and which was also higher than the commercial dropping pill of 52%. After storage at 75% relative humidity (RH) for 10 d, no recrystallization was found and reduced dissolution rate was obtained due to the absorption of moisture. In pharmacokinetic study, Cmax and AUC0-t for bifendate-silica SD were 153.1 ng/ml and 979.8 ng h/ml, respectively. AUC0-t of bifendate-silica SDs was ∼1.6-fold higher than that of the commercial dropping pills. These results suggest that adsorbing bifendate onto porous silica via ScCO2 technique could be a feasible method to enhance oral bioavailability together with a higher dissolution rate. PMID:26219343

  5. Ion-specific adsorption and electroosmosis in charged amorphous porous silica.

    PubMed

    Hartkamp, Remco; Siboulet, Bertrand; Dufrêche, Jean-François; Coasne, Benoit

    2015-10-14

    Monovalent and divalent aqueous electrolytes confined in negatively charged porous silica are studied by means of molecular simulations including free energy calculations. Owing to the strong cation adsorption at the surface, surface charge overcompensation (overscreening) occurs which leads to an effective positive surface next to the Stern layer, followed by a negatively charged diffuse layer. A simple Poisson-Boltzmann model in which the single-ion potential of mean force is introduced is shown to capture the most prominent features of ion density profiles near an amorphous silica surface. Nevertheless, due to its mean-field nature, which fails to account for correlations, this simple model does not predict overscreening corresponding to charge inversion at the surface. Such an overscreening drastically affects the transport of confined electrolytes as it leads to flow reversal when subjected to an electric field. A simple continuum theory is shown to capture how the electro-osmotic flow is affected by overscreening and by the apparent enhanced viscosity of the confined electrolytes. Comparison with available experimental data is discussed, as well as the implications of these phenomena for ζ-potential measurements. PMID:26343799

  6. Biodegradation of 2,4-dinitrophenol with laccase immobilized on nano-porous silica beads

    PubMed Central

    2013-01-01

    Many organic hazardous pollutants, including 2,4-dinitrophenol (2,4-DNP), which are water soluble, toxic, and not easily biodegradable make concerns for environmental pollution worldwide. In the present study, degradation of nitrophenols-contained effluents by using laccase immobilized on the nano-porous silica beads was evaluated. 2,4-DNP was selected as the main constituent of industrial effluents containing nitrophenols. The performance of the system was characterized as a function of pH, contact time, temperature, pollutant, and mediator concentrations. The laccase-silica beads were employed in a mixed-batch reactor to determine the degradation efficiency after 12 h of enzyme treatment. The obtained data showed that the immobilized laccase degraded more than 90% of 2,4-DNP within 12 h treatment. The immobilization process improved the activity and sustainability of laccase for degradation of the pollutant. Temperatures more than 50°C reduced the enzyme activity to about 60%. However, pH and the mediator concentration could not affect the enzyme activity. The degradation kinetic was in accordance with a Michaelis–Menten equation with Vmax and Km obtained as 0.25–0.38 μmoles/min and 0.13–0.017 mM, respectively. The stability of the immobilized enzyme was maintained for more than 85% of its initial activity after 30 days. Based on the results, it can be concluded that high resistibility and reusability of immobilized laccase on CPC-silica beads make it considerable choice for wastewater treatment. PMID:23547870

  7. ZnFe2O4 nanoparticles dispersed in a highly porous silica aerogel matrix: a magnetic study.

    PubMed

    Bullita, S; Casu, A; Casula, M F; Concas, G; Congiu, F; Corrias, A; Falqui, A; Loche, D; Marras, C

    2014-03-14

    We report the detailed structural characterization and magnetic investigation of nanocrystalline zinc ferrite nanoparticles supported on a silica aerogel porous matrix which differ in size (in the range 4-11 nm) and the inversion degree (from 0.4 to 0.2) as compared to bulk zinc ferrite which has a normal spinel structure. The samples were investigated by zero-field-cooling-field-cooling, thermo-remnant DC magnetization measurements, AC magnetization investigation and Mössbauer spectroscopy. The nanocomposites are superparamagnetic at room temperature; the temperature of the superparamagnetic transition in the samples decreases with the particle size and therefore it is mainly determined by the inversion degree rather than by the particle size, which would give an opposite effect on the blocking temperature. The contribution of particle interaction to the magnetic behavior of the nanocomposites decreases significantly in the sample with the largest particle size. The values of the anisotropy constant give evidence that the anisotropy constant decreases upon increasing the particle size of the samples. All these results clearly indicate that, even when dispersed with low concentration in a non-magnetic and highly porous and insulating matrix, the zinc ferrite nanoparticles show a magnetic behavior similar to that displayed when they are unsupported or dispersed in a similar but denser matrix, and with higher loading. The effective anisotropy measured for our samples appears to be systematically higher than that measured for supported zinc ferrite nanoparticles of similar size, indicating that this effect probably occurs as a consequence of the high inversion degree. PMID:24469688

  8. Understanding support mediated activity by investigating highly active, thermally stable, silica supported gold catalysts

    SciTech Connect

    Veith, Gabriel M; Lupini, Andrew R; Rashkeev, Sergey; Pennycook, Stephen J; Schwartz, Viviane; Mullins, David R; Dudney, Nancy J

    2009-01-01

    2.5 nm gold nanoparticles were grown on a fumed silica support using the physical vapor deposition technique magnetron sputtering. Combining electron microscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and catalytic studies revealed that the silica supported gold catalysts are thermally stable when annealed in an oxygen containing environment up to at least 500oC. This surprising stability is attributed to the absence of residual halide impurities and a strong bond between gold and defects at the silica surface (2.7 - 3.8 eV), as estimated from density functional theory (DFT) calculations. The Au/SiO2 catalysts are slightly less active for CO oxidation than the prototypical Au/TiO2 catalysts, however they can be regenerated far more easily, fully recovering the activity of a freshly prepared catalyst after deactivation.

  9. Electroassisted codeposition of sol-gel derived silica nanocomposite directs the fabrication of coral-like nanostructured porous gold.

    PubMed

    Farghaly, Ahmed A; Collinson, Maryanne M

    2014-05-13

    Herein, we report on a one-step coelectrodeposition method to form gold-silica nanocomposite materials from which high surface area nanostructured gold electrodes can be produced. The as-prepared Au-SiO2 films possess an interconnected three-dimensional porous framework with different silica-gold ratios depending on the deposition solutions and parameters. Chemical etching of the nanocomposite films using hydrofluoric acid resulted in the formation of nanostructured porous gold films with coral-like structures and pores in the nanometer range. The cross-linkage of the gold coral branches resulted in the generation of a porous framework. X-ray photoelectron spectroscopy confirms the complete removal of silica. Well-controlled surface area enhancement, film thickness, and morphology were achieved by manipulating the deposition parameters, such as potential, time, and gold ion and sol-gel monomer concentrations in the deposition solution. An enhancement in the surface area of the electrode up to 57 times relative to the geometric area has been achieved. The thickness of the as-prepared Au-SiO2 nanocomposite films is relatively high and varied from 8 to 15 μm by varying the applied deposition potential while the thickness of the coral-like nanostructured porous gold films ranged from 0.22 to 2.25 μm. A critical sol-gel monomer concentration (CSGC) was determined at which the deposited silica around the gold coral was able to stabilize the coral-like gold nanostructures, while below the CSGC, the coral-like gold nanostructures were unstable and the surface area of the nanostructured porous gold electrodes decreased. PMID:24766096

  10. Porous Carbon Supports: Recent Advances with Various Morphologies and Compositions

    DOE PAGESBeta

    Zhang, Pengfei; Zhu, Huiyuan; Dai, Sheng

    2015-08-31

    The importance of porous carbon as the support material is well recognized in the catalysis community, and it would be even more attractive if several characteristics are considered, such as the stability in acidic and basic media or the ease of noble metal recovery through complete burn off. Because it is still difficult to obtain constant properties even from batch to batch, activated carbons are not popular in industrial catalysis now.

  11. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    DOE PAGESBeta

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpinmore » moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.« less

  12. Investigating the mesostructure of ordered porous silica nanocomposites by transmission electron microscopy techniques

    SciTech Connect

    Bullita, S.; Casula, M. F.; Piludu, M.; Falqui, A.; Carta, D.; Corrias, A.

    2014-10-21

    Nanocomposites made out of FeCo alloy nanocrystals supported onto pre-formed mesoporous ordered silica which features a cubic arrangement of pores (SBA-16) were investigated. Information on the effect of the nanocrystals on the mesostructure (i.e. pore arrangement symmetry, pore size, and shape) were deduced by a multitechnique approach including N2 physisorption, low angle X-ray diffraction, and Transmission electron microscopy. It is shown that advanced transmission electron microscopy techniques are required, however, to gain direct evidence on key compositional and textural features of the nanocomposites. In particular, electron tomography and microtomy techniques make clear that the FeCo nanocrystals are located within the pores of the SBA-16 silica, and that the ordered mesostructure of the nanocomposite is retained throughout the observed specimen.

  13. Control of silica-zirconia nanoparticles for uniform porous SiO2-ZrO2 membranes.

    PubMed

    Ryeon Lee, Hye; Lee, Jinkyeong; Seo, Bongkuk

    2014-11-01

    Silica-zirconia composite sols were prepared by means of a sol-gel method, using tetraethylorthosilicate (TEOS) and zirconium tetra-n-butoxide (ZrTB) precursors. TEOS, ZrTB, HCl, H2O and EtOH were mixed at 70 degrees C for 24 hours to give molar ratios of 1:1:8-80:0.2-1.0:100-300. The mean particle size of the silica-zirconia sol was controlled by the concentration of the alkoxides and catalyst, as well as the water molar ratio in the starting solution. The particle size of the SiO2-ZrO2 sol, which was analyzed by dynamic light scattering (DLS) and field emission scanning electron microscopy (FE-SEM), was in the range of 20 to 350 nm. The SiO2-ZrO2 sol solutions of different sol sizes were coated onto porous stainless steel supports (O.D. 10 mm, length: 20 mm, 316L SUS, Mott corp. USA) by a dipping-rolling-freezing-fast drying (DRFF) and soaking-rolling-freezing-fast drying (SRFF) method. After coating with SiO2-ZrO2 sol, the single gas permeation characteristics (He, H2 and N2) of the resulting SiO2-ZrO2 membranes were evaluated at room temperature. This produced a decrease in the mean flow diameter and H2/N2 permselectivity in the range of 2.0-3.5. Finally, following the results of gas permeation testing, the pore size of the membranes was controlled by changing their particle size. PMID:25958574

  14. Porous Nanoparticle Supported Lipid Bilayers (Protocells) as Delivery Vehicles

    PubMed Central

    Liu, Juewen; Stace-Naughton, Alison; Jiang, Xingmao; Brinker, C. Jeffrey

    2009-01-01

    Mixing liposomes with hydrophilic particles will induce fusion of the liposome onto the particle surface. Such supported bilayers have been extensively studied as a model for the cell membrane, while its application in drug delivery has not been pursued. In this communication, we report the use of phospholipids to achieve synergistic loading and encapsulating of a fluorescent dye (calcein) in mesoporous silica nanoparticles, and its delivery into mammalian cells. We found that cationic lipid DOTAP provides the highest calcein loading with the concentration inside silica ∼110× higher than that in the solution under experimental conditions. Compared to some other nanoparticle systems, protocells provide a simple construct for loading, sealing, delivering and releasing, and should serve as a useful system in nanomedicine. PMID:19173660

  15. On the stabilization of gold nanoparticles over silica-based magnetic supports modified with organosilanes.

    PubMed

    Oliveira, Rafael L; Zanchet, Daniela; Kiyohara, Pedro K; Rossi, Liane M

    2011-04-11

    The immobilization of gold nanoparticles (Au NPs) on silica is made possible by the functionalization of the silica surfaces with organosilanes. Au NPs could only be stabilized and firmly attached to silica-support surfaces that were previously modified with amino groups. Au NPs could not be stabilized on bare silica surfaces and most of the NPs were then found in the solution. The metal-support interactions before and after the Au NP formation, observed by X-ray absorption fine structure spectroscopy (XAFS), indicate a stronger interaction of gold(III) ions with amino-modified silica surfaces than with the silanol groups in bare silica. An amino-modified, silica-based, magnetic support was used to prepare an active Au NP catalyst for the chemoselective oxidation of alcohols, a reaction of great interest for the fine chemical industry. PMID:21360597

  16. Synthesis and Characterisation of Porous Titania-Silica Composite Aerogel for NO(x) and Acetaldehyde Removal.

    PubMed

    Lee, Kwang Young; Park, Se Min; Kim, Jong Beom; El Saliby, Ibrahim; Shahid, Mohammad; Kim, Geon-Joong; Shon, Ho Kyong; Kim, Jong-Ho

    2016-05-01

    In this study, the synthesis of porous titania-silica (TiO2-SiO2) composite aerogel at ambient pressure by using non-hazardous chemicals as a source of silica was investigated. TiO2-SiO2 composite aerogels were characterised and their photocatalytic performances were investigated for the removal efficiency of acetaldehyde and NO(x) under UV light. Results showed that porous composite aerogel with aggregated morphology, high surface area and an increased mesoporosity were formed. TiO2-SiO2(1.8) composite, with high Ti/Si ratio, showed the best results in terms of photocatalytic removal of acetaldehyde and nitrogen oxide. PMID:27483782

  17. Fabrication of silica moth-eye structures by photo-nanoimprinting using ordered anodic porous alumina molds

    NASA Astrophysics Data System (ADS)

    Yanagishita, Takashi; Endo, Takahide; Nishio, Kazuyuki; Masuda, Hideki

    2014-01-01

    Moth-eye structures composed of an ordered array of tapered SiO2 pillars were fabricated by photo-nanoimprinting using anodic porous alumina as a mold. The formation of SiO2 moth-eye structures was carried out using a photosensitive polysilane solution as a precursor of silica. The SiO2 moth-eye structures formed on the surface of a glass plate effectively suppressed the reflection of incident light.

  18. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.

    PubMed

    Li, Chien-Hung; Jamison, Andrew C; Rittikulsittichai, Supparesk; Lee, Tai-Chou; Lee, T Randall

    2014-11-26

    Porous silica-coated hollow gold-silver nanoshells were successfully synthesized utilizing a procedure where the porous silica shell was produced prior to the transformation of the metallic core, providing enhanced control over the structure/composition of the bimetallic hollow core. By varying the reaction time and the precise amount of gold salt solution added to a porous silica-coated silver-core template solution, composite nanoparticles were tailored to reveal a readily tunable surface plasmon resonance that could be centered across the visible and near-IR spectral regions (∼445-800 nm). Characterization by X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that the synthetic methodology afforded particles having uniform composition, size, and shape. The optical properties were evaluated by absorption/extinction spectroscopy. The stability of colloidal solutions of our composite nanoparticles as a function of pH was also investigated, revealing that the nanoshells remain intact over a wide range of conditions (i.e., pH 2-10). The facile tunability, enhanced stability, and relatively small diameter of these composite particles (∼110 nm) makes them promising candidates for use in tumor ablation or as photothermal drug-delivery agents. PMID:25321928

  19. Multifunctional nanocomposites constructed from Fe3O4-Au nanoparticle cores and a porous silica shell in the solution phase.

    PubMed

    Chen, Fenghua; Chen, Qingtao; Fang, Shaoming; Sun, Yu'an; Chen, Zhijun; Xie, Gang; Du, Yaping

    2011-11-01

    This work is directed towards the synthesis of multifunctional nanoparticles composed of Fe(3)O(4)-Au nanocomposite cores and a porous silica shell (Fe(3)O(4)-Au/pSiO(2)), aimed at ensuring the stability, magnetic, and optical properties of magnetic-gold nanocomposite simultaneously. The prepared Fe(3)O(4)-Au/pSiO(2) core/shell nanoparticles are characterized by means of TEM, N(2) adsorption-desorption isotherms, FTIR, XRD, UV-vis, and VSM. Meanwhile, as an example of the applications, catalytic activity of the porous silica shell-encapsulated Fe(3)O(4)-Au nanoparticles is investigated by choosing a model reaction, reduction of o-nitroaniline to benzenediamine by NaBH(4). Due to the existence of porous silica shells, the reaction with Fe(3)O(4)-Au/pSiO(2) core/shell nanoparticles as a catalyst follows second-order kinetics with the rate constant (k) of about 0.0165 l mol(-1) s(-1), remarkably different from the first-order kinetics with the k of about 0.002 s(-1) for the reduction reaction with the core Fe(3)O(4)-Au nanoparticles as a catalyst. PMID:21637876

  20. Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings

    PubMed Central

    Chaudhari, Amol; Braem, Annabel; Vleugels, Jozef; Martens, Johan A.; Naert, Ignace; Cardoso, Marcio Vivan; Duyck, Joke

    2011-01-01

    Background Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings. Methodology Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO2); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 µm, BAF-500), in the implant vicinity (100 µm, BAF-100) and further away (100–500 µm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis. Principal Findings After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p>0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-µm compared to the 400-µm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR. Conclusions BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didn't stimulate bone regeneration but allowed bone growth into the pores. Although AMS didn't stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation. PMID:21935382

  1. Adsorption characteristics of haloacetonitriles on functionalized silica-based porous materials in aqueous solution.

    PubMed

    Prarat, Panida; Ngamcharussrivichai, Chawalit; Khaodhiar, Sutha; Punyapalakul, Patiparn

    2011-09-15

    The effect of the surface functional group on the removal and mechanism of dichloroacetonitrile (DCAN) adsorption over silica-based porous materials was evaluated in comparison with powdered activated carbon (PAC). Hexagonal mesoporous silicate (HMS) was synthesized and functionalized by three different types of organosilanes (3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane and n-octyldimethysilane). Adsorption kinetics and isotherm models were used to determine the adsorption mechanism. The selective adsorption of five haloacetonitriles (HANs) in the single and mixed solute systems was also studied. The experiments revealed that the surface functional groups of the adsorbents largely affected the DCAN adsorption capacities. 3-Mercaptopropyl-grafted HMS had a high DCAN adsorption capacity compared to PAC. The adsorption mechanism is believed to occur via an ion-dipole electrostatic interaction in which water interference is inevitable at low concentrations of DCAN. In addition, the adsorption of DCAN strongly depended on the pH of the solution as this related to the charge density of the adsorbents. The selective adsorption of the five HANs over PAC was not observed, while the molecular structure of different HANs obviously influenced the adsorption capacity and selectivity over 3-mercaptopropyl-grafted HMS. PMID:21752539

  2. A novel approach to a fine particle coating using porous spherical silica as core particles.

    PubMed

    Ishida, Makoto; Uchiyama, Jumpei; Isaji, Keiko; Suzuki, Yuta; Ikematsu, Yasuyuki; Aoki, Shigeru

    2014-08-01

    Abstract The applicability of porous spherical silica (PSS) was evaluated as core particles for pharmaceutical products by comparing it with commercial core particles such as mannitol (NP-108), sucrose and microcrystalline cellulose spheres. We investigated the physical properties of core particles, such as particle size distribution, flow properties, crushing strength, plastic limit, drying rate, hygroscopic property and aggregation degree. It was found that PSS was a core particle of small particle size, low friability, high water adsorption capacity, rapid drying rate and lower occurrence of particle aggregation, although wettability is a factor to be carefully considered. The aggregation and taste-masking ability using PSS and NP-108 as core particles were evaluated at a fluidized-bed coating process. The functional coating under the excess spray rate shows different aggregation trends and dissolution profiles between PSS and NP-108; thereby, exhibiting the formation of uniform coating under the excess spray rate in the case of PSS. This expands the range of the acceptable spray feed rates to coat fine particles, and indicates the possibility of decreasing the coating time. The results obtained in this study suggested that the core particle, which has a property like that of PSS, was useful in overcoming such disadvantages as large particle size, which feels gritty in oral cavity; particle aggregation; and the long coating time of the particle coating process. These results will enable the practical fine particle coating method by increasing the range of optimum coating conditions and decreasing the coating time in fluidized bed technology. PMID:23781858

  3. Mesoporous Silica-Supported Amidozirconium-Catalyzed Carbonyl Hydroboration

    SciTech Connect

    Eedugurala, Naresh; Wang, Zhuoran; Chaudhary, Umesh; Nelson, Nicholas; Kandel, Kapil; Kobayashi, Takeshi; Slowing, Igor I.; Pruski, Marek; Sadow, Aaron D.

    2015-11-04

    The hydroboration of aldehydes and ketones using a silica-supported zirconium catalyst is reported. Reaction of Zr(NMe2)4 and mesoporous silica nanoparticles (MSN) provides the catalytic material Zr(NMe2)n@MSN. Exhaustive characterization of Zr(NMe2)n@MSN with solid-state (SS)NMR and infrared spectroscopy, as well as through reactivity studies, suggests its surface structure is primarily ≡SiOZr(NMe2)3. The presence of these nitrogen-containing zirconium sites is supported by 15N NMR spectroscopy, including natural abundance 15N NMR measurements using dynamic nuclear polarization (DNP) SSNMR. The Zr(NMe2)n@MSN material reacts with pinacolborane (HBpin) to provide Me2NBpin and the material ZrH/Bpin@MSN that is composed of interacting surface-bonded zirconium hydride and surface-bonded borane ≡SiOBpin moieties in an approximately 1:1 ratio, as well as zirconium sites coordinated by dimethylamine. The ZrH/Bpin@MSN is characterized by 1H/2H and 11B SSNMR and infrared spectroscopy and through its reactivity with D2. The zirconium hydride material or the zirconium amide precursor Zr(NMe2)n@MSN catalyzes the selective hydroboration of aldehydes and ketones with HBpin in the presence of functional groups that are often reduced under hydroboration conditions or are sensitive to metal hydrides, including olefins, alkynes, nitro groups, halides, and ethers. Remarkably, this catalytic material may be recycled without loss of activity at least eight times, and air-exposed materials are catalytically active. These supported zirconium centers are robust catalytic sites for carbonyl reduction and that surface-supported, catalytically reactive zirconium hydride may be generated from zirconium-amide or zirconium alkoxide sites.

  4. Interactions of Supercritical Carbon Dioxide with Porous Silica and Montmorillonite Clay

    NASA Astrophysics Data System (ADS)

    Rother, G.; Cole, D. R.; Ilton, E. S.; Anovitz, L.; Krukowski, E.

    2011-12-01

    The high and increasing level of carbon dioxide (CO2) in the atmosphere resulting from burning of fossil fuels is likely to cause global warming. Large-scale carbon capture and sequestration (CCS) of CO2 produced in power plants may play an important role in controlling the level of this greenhouse gas in the atmosphere. In this process, CO2 is stripped from the emissions, compressed, and stored in subsurface reservoirs in very large quantities. The specific CO2-rock interactions control the storage capacity of the reservoir and the fluid mobility. The dominant interactions of supercritical CO2 with reservoir rocks over the first couple of years after injection are sorption and capillary trapping. By combining sorption measurements and neutron scattering data in the Adsorbed Phase Model we obtain a full microstructural characterization of the pore fluid. We studied mesoporous CPG-10 silica materials with pore sizes of 75 Å and 350 Å at pressures from 0-200 bars and temperatures of 35°C and 50°C, covering a range typical for carbon storage sites. Porous silica glass serves as a proxy for quartz-rich rocks, including sandstones that may serve as reservoir rocks. The CO2 excess sorption isotherms were measured using a high-pressure sorption balance. Strong adsorption of CO2 to the silica was found at low fluid pressure and density, followed by formation of a maximum in the excess sorption isotherm. The excess sorption exhibited small or even negative values at high pressure. An inverse temperature dependence of the sorption strength was found in the adsorption region at low and intermediate pressure, while the excess sorption showed little temperature dependence at high pressure. A shift of the excess sorption maximum to higher fluid density was observed with increasing pore width. From small-angle neutron scattering data the density and volume of the sorption phase of CO2 is calculated. Caprocks overlying the porous reservoir rock serve to retain buoyant plumes

  5. Core-shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application

    NASA Astrophysics Data System (ADS)

    Prabhakar, Neeraj; Näreoja, Tuomas; von Haartman, Eva; Karaman, Didem Şen; Jiang, Hua; Koho, Sami; Dolenko, Tatiana A.; Hänninen, Pekka E.; Vlasov, Denis I.; Ralchenko, Victor G.; Hosomi, Satoru; Vlasov, Igor I.; Sahlgren, Cecilia; Rosenholm, Jessica M.

    2013-04-01

    Recent advances within materials science and its interdisciplinary applications in biomedicine have emphasized the potential of using a single multifunctional composite material for concurrent drug delivery and biomedical imaging. Here we present a novel composite material consisting of a photoluminescent nanodiamond (ND) core with a porous silica (SiO2) shell. This novel multifunctional probe serves as an alternative nanomaterial to address the existing problems with delivery and subsequent tracing of the particles. Whereas the unique optical properties of ND allows for long-term live cell imaging and tracking of cellular processes, mesoporous silica nanoparticles (MSNs) have proven to be efficient drug carriers. The advantages of both ND and MSNs were hereby integrated in the new composite material, ND@MSN. The optical properties provided by the ND core rendered the nanocomposite suitable for microscopy imaging in fluorescence and reflectance mode, as well as super-resolution microscopy as a STED label; whereas the porous silica coating provided efficient intracellular delivery capacity, especially in surface-functionalized form. This study serves as a demonstration how this novel nanomaterial can be exploited for both bioimaging and drug delivery for future theranostic applications.Recent advances within materials science and its interdisciplinary applications in biomedicine have emphasized the potential of using a single multifunctional composite material for concurrent drug delivery and biomedical imaging. Here we present a novel composite material consisting of a photoluminescent nanodiamond (ND) core with a porous silica (SiO2) shell. This novel multifunctional probe serves as an alternative nanomaterial to address the existing problems with delivery and subsequent tracing of the particles. Whereas the unique optical properties of ND allows for long-term live cell imaging and tracking of cellular processes, mesoporous silica nanoparticles (MSNs) have proven

  6. Studies of Immobilized Homogeneous Metal Catalysts on Silica Supports

    SciTech Connect

    Keith James Stanger

    2003-05-31

    The tethered, chiral, chelating diphosphine rhodium complex, which catalyzes the enantioselective hydrogenation of methyl-{alpha}-acetamidocinnamate (MAC), has the illustrated structure as established by {sup 31}P NMR and IR studies. Spectral and catalytic investigations also suggest that the mechanism of action of the tethered complex is the same as that of the untethered complex in solution. The rhodium complexes, [Rh(COD)H]{sub 4}, [Rh(COD){sub 2}]{sup +}BF{sub 4}{sup -}, [Rh(COD)Cl]{sub 2}, and RhCl{sub 3} {center_dot} 3H{sub 2}O, adsorbed on SiO{sub 2} are optimally activated for toluene hydrogenation by pretreatment with H{sub 2} at 200 C. The same complexes on Pd-SiO{sub 2} are equally active without pretreatments. The active species in all cases is rhodium metal. The catalysts were characterized by XPS, TEM, DRIFTS, and mercury poisoning experiments. Rhodium on silica catalyzes the hydrogenation of fluorobenzene to produce predominantly fluorocyclohexane in heptane and 1,2-dichloroethane solvents. In heptane/methanol and heptane/water solvents, hydrodefluorination to benzene and subsequent hydrogenation to cyclohexane occurs exclusively. Benzene inhibits the hydrodefluorination of fluorobenzene. In DCE or heptane solvents, fluorocyclohexane reacts with hydrogen fluoride to form cyclohexene. Reaction conditions can be chosen to selectively yield fluorocyclohexane, cyclohexene, benzene, or cyclohexane. The oxorhenium(V) dithiolate catalyst [-S(CH{sub 2}){sub 3}s-]Re(O)(Me)(PPh{sub 3}) was modified by linking it to a tether that could be attached to a silica support. Spectroscopic investigation and catalytic oxidation reactivity showed the heterogenized catalyst's structure and reactivity to be similar to its homogeneous analog. However, the immobilized catalyst offered additional advantages of recyclability, extended stability, and increased resistance to deactivation.

  7. XPS studies of Pt catalysts supported on porous carbon

    NASA Astrophysics Data System (ADS)

    Tyagi, Deepak; Varma, Salil; Bharadwaj, S. R.

    2016-05-01

    Pt catalysts supported on porous carbon were prepared by hard templating route and used for HI decomposition reaction of Sulfur Iodine thermochemical cycle. These catalysts were characterized by X-ray photoelectron spectroscopy for oxidation state of platinum as well as nature of carbon present in the catalysts. It was found that platinum is present in metallic state and carbon is present in both sp2 and sp3 hybridization states. The catalysts were evaluated for their activity and stability for liquid phase HI decomposition reaction and it was observed that mesoporous carbon based catalysts were more active and stable under the reaction conditions.

  8. Experimental study on heat transfer of supercritical carbon dioxide in a long silica-based porous-media tube

    NASA Astrophysics Data System (ADS)

    Hsieh, Jui-Ching; Lin, David T. W.; Lee, Bo-Heng; Chung, Ming-Che

    2016-07-01

    The heat transfer phenomena of supercritical carbon dioxide were experimentally investigated in a vertical tube containing silica-based porous media. The experiment was conducted at various levels of static pressure, flow rates, and initial wall temperatures as well as with silica sand of porous media in a long test section to study the heat transfer characteristics of supercritical carbon dioxide (CO2). The results indicated that the average heat transfer coefficient and outlet temperature at an initial wall temperature of 150 °C were higher and lower than that of 200 °C. The heat transfer performance was significantly influenced by flow rate of supercritical CO2. The porous media was provided large heat exchange surface between particles and CO2 to increase the heat transfer coefficient, especially when small diameter of particles. When the inlet temperature was higher than the pseudocritical temperature, the heat transfer coefficient sharply dropped when x/L ≥ 0.5, because of the development of a thermal boundary and the decrease of CO2 thermophysical properties of CO2 in a far pseudocritical temperature. When the pseudocritical temperature was higher than the inlet temperature of the fluid, the local heat transfer coefficient was affected by a thermal boundary and thermophysical properties of CO2 in pseudocritical point at a higher initial wall temperature or lower supercritical pressure when x/L ≤ 0.75; only the thermophysical properties of supercritical CO2 in pseudocritical point played a pivotal role when x/L > 0.75 at a lower initial wall temperature or higher supercritical pressure. In the present study, the supercritical pressure of 10.5 MPa constituted an optimal operating condition for supercritical CO2 a long silica-based porous-media tube because of the high heat transfer performance at 150 and 200 °C.

  9. N-doped mesoporous carbons supported palladium catalysts prepared from chitosan/silica/palladium gel beads.

    PubMed

    Zeng, Minfeng; Wang, Yudong; Liu, Qi; Yuan, Xia; Feng, Ruokun; Yang, Zhen; Qi, Chenze

    2016-08-01

    In this study, a heterogeneous catalyst including palladium nanoparticles supported on nitrogen-doped mesoporous carbon (Pd@N-C) is synthesized from palladium salts as palladium precursor, colloidal silica as template, and chitosan as carbon source. N2 sorption isotherm results show that the prepared Pd@N-C had a high BET surface area (640m(2)g(-1)) with large porosity. The prepared Pd@N-C is high nitrogen-rich as characterized with element analysis. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy characterization of the catalyst shows that the palladium species with different chemical states are well dispersed on the nitrogen-containing mesoporous carbon. The Pd@N-C is high active and shows excellent stability as applied in Heck coupling reactions. This work supplies a successful method to prepare Pd heterogeneous catalysts with high performance from bulk biopolymer/Pd to high porous nitrogen-doped carbon supported palladium catalytic materials. PMID:27155234

  10. Direct-writing of PbS nanoparticles inside transparent porous silica monoliths using pulsed femtosecond laser irradiation

    PubMed Central

    2011-01-01

    Pulsed femtosecond laser irradiation at low repetition rate, without any annealing, has been used to localize the growth of PbS nanoparticles, for the first time, inside a transparent porous silica matrix prepared by a sol-gel route. Before the irradiation, the porous silica host has been soaked within a solution containing PbS precursors. The effect of the incident laser power on the particle size was studied. X-ray diffraction was used to identify the PbS crystallites inside the irradiated areas and to estimate the average particle size. The localized laser irradiation led to PbS crystallite size ranging between 4 and 8 nm, depending on the incident femtosecond laser power. The optical properties of the obtained PbS-silica nanocomposites have been investigated using absorption and photoluminescence spectroscopies. Finally, the stability of PbS nanoparticles embedded inside the host matrices has been followed as a function of time, and it has been shown that this stability depends on the nanoparticle mean size. PMID:21970510

  11. Magnetic Silica Supported Copper: A Modular Approach to Aqueous Ullmann-type Amination of Aryl Halides

    EPA Science Inventory

    One-pot synthesis of magnetic silica supported copper catalyst has been described via in situ generated magnetic silica (Fe3O4@SiO2); the catalyst can be used for the efficacious amination of aryl halides in aqueous medium under microwave irradiation.

  12. Magnetic isotope effects in the photolysis of dibenzyl ketone on porous silica. /sup 13/C and /sup 17/O enrichments

    SciTech Connect

    Turro, N.J.; Cheng, C.C.; Wan, P.; Chung, C.; Mahler, W.

    1985-04-25

    The photolysis of dibenzyl ketone (DBK) on porous silica has been investigated. Both /sup 13/C and /sup 17/O isotopic enrichment in the ketone remaining after partial photolysis is demonstrated. The efficiency of /sup 13/C enrichment was found to be relatively insensitive to the average pore diameter of the silica host, to the percent coverage by DBK, and to the application of an external magnetic field. A significant dependence of /sup 13/C enrichment with temperature, with a maximum in the enrichment-temperature profile, was observed. The results are interpreted in terms of the competition between pathways available to the triplet C/sub 6/H/sub 5/CH/sub 2/COCH/sub 2/C/sub 6/H/sub 5/ radical pair produced by photolysis of DBK.

  13. Supported metal nanoparticles on porous materials. Methods and applications.

    PubMed

    White, Robin J; Luque, Rafael; Budarin, Vitaliy L; Clark, James H; Macquarrie, Duncan J

    2009-02-01

    Nanoparticles are regarded as a major step forward to achieving the miniaturisation and nanoscaling effects and properties that have been utilised by nature for millions of years. The chemist is no longer observing and describing the behaviour of matter but is now able to manipulate and produce new types of materials with specific desired physicochemical characteristics. Such materials are receiving extensive attention across a broad range of research disciplines. The fusion between nanoparticle and nanoporous materials technology represents one of the most interesting of these rapidly expanding areas. The harnessing of nanoscale activity and selectivity, potentially provides extremely efficient catalytic materials for the production of commodity chemicals, and energy needed for a future sustainable society. In this tutorial review, we present an introduction to the field of supported metal nanoparticles (SMNPs) on porous materials, focusing on their preparation and applications in different areas. PMID:19169462

  14. Effect of content of chiral selector and pore size of core-shell type silica support on the performance of amylose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phases in nano-liquid chromatography and capillary electrochromatography.

    PubMed

    Rocchi, Silvia; Fanali, Salvatore; Farkas, Tivadar; Chankvetadze, Bezhan

    2014-10-10

    In this study the separation performance of various chiral stationary phases (CSPs) made of polysaccharide-based chiral selectors coated onto superficially porous (core-shell or fused-core) silica supports were evaluated. The CSPs obtained by coating of various amounts of chiral selector (1-5%) onto supports of various pore size (100 and 300 Å) were studied. Their evaluation was pursued in both chiral nano-liquid chromatography (nano-LC) and chiral capillary electrochromatography (CEC). Among the goals of this study was to re-examine our previous unexpected finding of better performance of superficially porous CSP under CEC conditions compared to nano-LC conditions for a new set of chiral compounds, as well as to study the effect of varying the chiral selector content and nominal pore size of supporting silica on the performance of core-shell silica-based polysaccharide-type CSPs. Based on the results of this study it can be seen that CSPs based on superficially porous silica can successfully be used for the separation of enantiomers in both nano-LC and CEC mode. Only a slight advantage of CEC over nano-LC mode was observed in this study from the viewpoint of plate numbers, especially at higher mobile phase flow rates. It must also be noted that the optimal theoretical plate height is still too high and further optimization of superficially porous CSPs is necessary for both nano-LC and CEC applications. PMID:24908153

  15. Physical and chemical immobilization of choline oxidase onto different porous solid supports: Adsorption studies.

    PubMed

    Passos, Marieta L C; Ribeiro, David S M; Santos, João L M; Saraiva, M Lúcia M F S

    2016-08-01

    This work carries out for the first time the comparison between the physical and chemical immobilization of choline oxidase onto aminated silica-based porous supports. The influence on the immobilization efficiency of concentration, pH, temperature and contact time between the support and choline oxidase, was evaluated. The immobilization efficiency was estimated taking into consideration the choline oxidase activity, which was assessed by using cadmium telluride (CdTe) quantum dots (QDs), obtained by hydrothermal synthesis, as photoluminescent probes. Hydrogen peroxide produced by enzyme activity was capable of quenching CdTe QDs photoluminescence. The magnitude of the PL quenching process was directly related with the enzyme activity. By comparing the chemical process with the physical adsorption, it was observed that the latter provided the highest choline oxidase immobilization. The equilibrium data were analyzed using Langmuir and Freundlich isotherms and kinetic data were fitted to the pseudo-first-order and pseudo-second-order models. Thermodynamic parameters, such as Gibbs free energy and entropy were also calculated. These results will certainly contribute to the development of new sensing schemes for choline, taking into account the growing demand for its quantification in biological samples. PMID:27241295

  16. New support for high-performance liquid chromatography based on silica coated with alumina particles.

    PubMed

    Silveira, José Leandro R; Dib, Samia R; Faria, Anizio M

    2014-01-01

    A new material based on silica coated with alumina nanoparticles was proposed for use as a chromatographic support for reversed-phase high-performance liquid chromatography. Alumina nanoparticles were synthesized by a sol-gel process in reversed micelles composed of sodium bis(2-ethylhexyl)sulfosuccinate, and the support material was formed by the self-assembly of alumina layers on silica spheres. Spectroscopic and (29)Si nuclear magnetic resonance results showed evidence of chemical bonds between the alumina nanoparticles and the silica spheres, while morphological characterizations showed that the aluminized silica maintained the morphological properties of silica desired for chromatographic purposes after alumina incorporation. Stability studies indicated that bare silica showed high dissolution (~83%), while the aluminized silica remained practically unchanged (99%) after passing one liter of the alkaline mobile phase, indicating high stability under alkaline conditions. The C18 bonded aluminized silica phase showed great potential for use in high-performance liquid chromatography to separate basic molecules in the reversed-phase mode. PMID:24521917

  17. Preparing mesoporous carbon and silica with rosin-silica composite gel.

    PubMed

    Liu, Haidi; Du, Shangfeng; Chen, Yunfa

    2009-02-01

    Mesoporous carbon and mesoporous silica were prepared respectively with a same rosin-silica nanocomposite gel which was synthesized by cogelating tetra-ethyl-oxy-silane (silica source) and rosin (carbon source). Carbonizing the gel in nitrogen and then etching away silica with alkaline solution, mesoporous carbon with specific surface area larger than 800 m2/g was obtained. If calcining the gel at high temperature in air for given time, porous silica with surface area higher than 700 m2/g was done. BET measurement was employed to investigate the pore distribution and surface area of the samples. Most of the pores in both the porous carbon and porous silica were mesoscale, which makes the materials potential in enzyme supports for bio-catalyzed reaction or adsorbents for contaminants with large molecular size. PMID:19441395

  18. Interplay of carbon-silica sources on the formation of hierarchical porous composite materials for biological applications such as lipase immobilization.

    PubMed

    Higuita, Mario; Bernal, Claudia; Mesa, Monica

    2014-10-01

    The porous inorganic materials, with hierarchical structures, find application in many processes where the chemical stability and pore connectivity are key points, such as separation, adsorption and catalysis. Here, we synthesized carbon-silica composite materials, which combine hydrolytic stability of the carbon with the surface chemical reactivity of silica in aqueous media. The polycondensation of carbonaceous and siliceous species from sucrose, Triton X-100 surfactant and tetraethylortosilicate during the hydrothermal synthesis led to the formation of hydrochar composite materials. The subsequent carbonization process of these composite hydrochars gave carbon-silica hierarchical porous materials. The study of the micellar reaction system and the characterization of the derivate materials (carbon-silica composite, carbon and silica) were carried out. The results indicate that synthesis conditions allowed the formation of a silica network interpenetrated with a carbon one, which is produced from the incorporated organic matter. The control of the acidity of the reaction medium and hydrothermal conditions modulated the reaction yield and porous characteristics of the materials. The composite nature in conjunction with the hierarchical porosity increases the interest of these materials for future biological applications, such as lipase immobilization. PMID:25175205

  19. Thin porous alumina sheets as supports for stabilizing gold nanoparticles.

    PubMed

    Wang, Jie; Lu, An-Hui; Li, Mingrun; Zhang, Weiping; Chen, Yong-Sheng; Tian, Dong-Xu; Li, Wen-Cui

    2013-06-25

    Thin porous alumina sheets have been synthesized using a lysine-assisted hydrothermal approach resulting in an extraordinary catalyst support that can stabilize Au nanoparticles at annealing temperatures up to 900 °C. Remarkably, the unique architecture of such an alumina with thin sheets (average thickness ~15 nm and length 680 nm) and rough surface is beneficial to prevent gold nanoparticles from sintering. HRTEM observations clearly showed that the epitaxial growth between Au nanoparticles and alumina support was due to strong interfacial interactions, further explaining the high sinter-stability of the obtained Au/Al2O3 catalyst. Consequently, despite calcination at 700 °C, the catalyst maintains its gold nanoparticles of size predominantly 2 ± 0.8 nm. Surprisingly, catalyst annealed at 900 °C retained the highly dispersed small gold nanoparticles. It was also observed that a few gold particles (6-25 nm) were encapsulated by an alumina layer (thickness less than 1 nm) to minimize the surface energy, revealing a surface restructuring of the gold/support interface. As a typical and size-dependent reaction, CO oxidation is used to evaluate the performance of Au/Al2O3 catalysts. The results obtained demonstrated Au/Al2O3 catalyst calcined at 700 °C exhibited excellent activity with a complete CO conversion at ∼30 °C (T100% = 30 °C), and even after calcination at 900 °C, the catalyst still achieved its T50% at 158 °C. In sharp contrast, Au catalyst prepared using conventional alumina support shows almost no activity under the same preparation and catalytic test conditions. PMID:23682983

  20. Study of the dispersion of molybdenum(VI) supported on silica and. gamma. -alumina

    SciTech Connect

    Rodrigo, L.; Marcinkowska, K.; Adnot, A.; Roberge, P.C.; Kaliaguine, S.; Stencel, J.M.; Makovsky, L.E.; Diehl, J.R.

    1986-06-05

    A comparative study of O/sub 2/ chemisorption on molybdenum supported on silica and ..gamma..-alumina is reported. The catalysts had been prepared either by pore-filling impregnation or by reaction of the surface OH groups with the eta-allyl complex of Mo. The same catalysts have been the object of a systematic study of ESCA intensity ratio showing that this last method yields information concerning Mo dispersion and surface segregation. The two series of silica-supported catalysts were also analyzed by laser Raman spectroscopy and ion-scattering spectroscopy. In particular, the LRS study shows the presence of MoO/sub 3/ microcrystals at Mo loadings as low as 2% on impregnated silica catalysts and of silicomolybdic anions down to 1 wt % Mo on both series of silica-supported catalysts.

  1. Gated silica mesoporous supports for controlled release and signaling applications.

    PubMed

    Coll, Carmen; Bernardos, Andrea; Martínez-Máñez, Ramón; Sancenón, Félix

    2013-02-19

    Blending molecular and supramolecular advances with materials science has resulted in recent years in the development of new organic-inorganic hybrid materials displaying innovative functionalities. One appealing concept in this field is the development of gated nanodevices. These materials are prepared by grafting molecular or supramolecular caps onto the external surface of mesoporous inorganic scaffolds loaded with a particular cargo. The caps or "gates" can then be opened and the cargo delivered at will upon the application of a given stimulus. In this Account, we report some of the recent advances we have made in designing such materials for drug delivery and as new chromo-fluorogenic probes. For controlled release applications, we have prepared capped hybrid mesoporous supports capable of being selectively opened by applying certain physical and chemical stimuli. We report examples of gated materials opened by changes in pH (using polyamines as caps), light (employing spiropyran derivatives or gold nanoparticles), and temperature (using selected paraffins). We also report gated materials opened by enzymes that cleave capping molecules based on lactose, hydrolyzed starch, and peptides. The use of enzymes is especially appealing because molecular caps built of enzyme-specific sequences made of peptides or other cleavable molecules could allow on-command delivery of drugs and biomolecules in specialized contexts. In the second part of the manuscript, we revisit the possibility of using hybrid gated nanomaterials as sensory systems. In such systems, when target analytes interact with the cap, their presence triggers the transport of a dye from pores to the solution, resulting in a chromo-fluorogenic signal that allows their detection. Two approaches are possible. In the first one, pores remain open and the dye can diffuse into the solution, until the presence of a target analyte binds to receptors in the caps and closes the gate. In the second approach, the caps

  2. [Preparation of 1 µm non-porous C18 silica gel stationary phase for chiral-pressurized capillary electrochromatography].

    PubMed

    Lu, Yangfang; Wang, Hui; Wang, Guiming; Wang, Yan; Gu, Xue; Yan, Chao

    2015-03-01

    Non-porous C18 silica gel stationary phase (1 µm) was prepared and applied to chiral separation in pressurized capillary electrochromatography (pCEC) for the enantioseparation of various basic compounds. The non-porous silica particles (1 µm) were synthesized using modified St6ber method. C18 stationary phase (1 µm) was prepared by immobilization of chloro-dimethyl-octadecylsilane. Using carboxymethyl-β-cyclodextrin (CM-β-CD) as the chiral additive, the pCEC conditions including the content of acetonitrile (ACN), concentration of buffer, pH, the concentration of chiral additive and flow rate as well as applied voltage were investigated to obtain the optimal pCEC conditions for the separation of four basic chiral compounds. The column provided an efficiency of up to 190,000 plates/m. Bupropion hydrochloride, clenbuterol hydrochloride, metoprolol tartrate, and esmolol hydrochloride were baseline separated under the conditions of 5 mmol/L ammonium acetate buffer at pH 4. 0 with 20% (v/ v) acetonitrile, and 15 mmol/L CM-β-CD as the chiral additive. The applied voltage was 2 kV and flow rate was 0.03 mL/min with splitting ratio of 300:1. The resolution were 1.55, 2.82, 1. 69, 1. 70 for bupropion hydrochloride, clenbuterol hydrochloride, metoprolol tartrate, esmolol hydrochloride, respectively. The C18 coverage was improved by repeating silylation method. The synthesized 1 µm C18 packings have better mechanical strength and longer service life because of the special, non-porous structure. The column used in pCEC mode showed better separation of the racemates and a higher rate compared with those used in the capillary liquid chromatography (cLC) mode. This study provided an alternative way for the method of pCEC enantioseparation with chiral additives in the mobile phase and demonstrated the feasibility of micron particle stationary phase in chiral separation. PMID:26182460

  3. Removal of formaldehyde from air using functionalized silica supports.

    PubMed

    Ewlad-Ahmed, Abdunaser M; Morris, Michael A; Patwardhan, Siddharth V; Gibson, Lorraine T

    2012-12-18

    This paper demonstrates the use of functionalized meso-silica materials (MCM-41 or SBA-15) as adsorbents for formaldehyde (H₂CO) vapor from contaminated air. Additionally new green nanosilica (GNs) materials were prepared via a bioinspired synthesis route and were assessed for removal of H₂CO from contaminated indoor air. These exciting new materials were prepared via rapid, 15 min, environmentally friendly synthesis routes avoiding any secondary pollution. They provided an excellent platform for functionalization and extraction of H₂CO demonstrating similar performance to the conventional meso-silica materials. To the authors' knowledge this is the first reported practical application of this material type. Prior to trapping, all materials were functionalized with amino-propyl groups which led to chemisorption of H₂CO; removing it permanently from air. No retention of H₂CO was achieved with nonfunctionalized material and it was observed that best extraction performance required a dynamic adsorption setup when compared to passive application. These results demonstrate the first application of GNs as potential adsorbents and functionalized meso-silica for use in remediation of air pollution in indoor air. PMID:23181357

  4. Porous silica particles grafted with an amphiphilic side-chain polymer as a stationary phase in reversed-phase high-performance liquid chromatography.

    PubMed

    Shahruzzaman, Md; Takafuji, Makoto; Ihara, Hirotaka

    2015-07-01

    The amphiphilic polymer-grafted silica was newly prepared as a stationary phase in high-performance liquid chromatography. Poly(4-vinylpyridine) with a trimethoxysilyl group at one end was grafted onto porous silica particles and the pyridyl side chains were quaternized with 1-bromooctadecane. The obtained poly(octadecylpyridinium)-grafted silica was characterized by elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy and Brunauer-Emmett-Teller analysis. The degree of quaternization of the pyridyl groups on the obtained stationary phase was estimated to be 70%. The selective retention behaviors of polycyclic aromatic hydrocarbons including some positional isomers were investigated using poly(octadecylpyridinium)-grafted silica as an amphiphilic polymer stationary phase in high-performance liquid chromatography and results were compared with commercially available polymeric octadecylated silica and phenyl-bonded silica columns. The results indicate that the selectivity toward polycyclic aromatic hydrocarbons exhibited by the amphiphilic polymer stationary phase is higher than the corresponding selectivity exhibited by a conventional phenyl-bonded silica column. However, compared with the polymeric octadecylated silica phase, the new stationary phase presents similar retention behavior for polycyclic aromatic hydrocarbons but different retention behavior particularly for positional isomers of disubstituted benzenes as the aggregation structure of amphiphilic polymers on the surface of silica substrate has been altered during mobile phase variation. PMID:25944152

  5. Efficient Immobilization of Ammonium Tungstophosphate at the Mesoporous Silica Support for the Removal of Cs Ion.

    PubMed

    Park, Younjin; Shin, Won Sik; Choi, Sang-June

    2015-09-01

    The ammonium salt of phosphotugstic acid (NH4PTA) deposited on the surface of mesoporous silica (SBA-15) support was prepared and characterized using several analytical techniques. The spectroscopic results showed that the NH4PTA was evenly dispersed on the internal and external silica surfaces. The ion exchange capacity tests demonstrated that the specific activity for Cs removal increased with insertion of the NH4PTA phase on the silica surface. The results showed that the ion exchange capacity of Cs increased with increasing the PTA loading. The NH4PTA at a loading of 50 wt% supported on silica showed the highest ion exchange capacity for Cs ion among the loading range of 20-50 wt%. The effects of co-existing cations and nitric acid on the Cs sorption efficiency onto the composites were also studied. PMID:26716312

  6. The effect of porous support composition and operating parameters on the performance of supported liquid membranes

    SciTech Connect

    Takigawa, D.Y.

    1991-02-01

    Factors, such as porous support composition and operating parameters, that influence the performance of supported liquid membranes (SLMs) were investigated. SLMs of varying porous support compositions and structures were studied for the transport of metal ions. A microporous polybenzimidazole support was synthesized and prepared in the form of an SLM. This SLM containing the selective extractant di-(2-ethylhexyl)phosphoric acid was evaluated for the transport of copper and neodymium. Dramatically improved performance over that of commercially available membranes was found in tests for removing the metal ions from solution. Metal ion transport reaches near completion in less than 3 hours, whereas Celgard-polypropylene and Nuclepore-polycarbonate reaches only 50% completion even after 15 hours. The transport driving force for acidic extractants is a pH gradient between the feed and strip solutions. Polybenzimidazole, an acid- and radiation-resistant polymer, has two protonatable tertiary nitrogens per repeat unit that may help sustain the pH driving force. Another factor may be the ability of the polybenzimidazole to hydrogen bond with the extractant. Transport through the flat-sheet SLMs were tested using a unique cell design. Countercurrent flow of the feed and strip solutions was established through machined channels in half-cell faceplates that are in a spiral, mirror-image pattern with respect to each other, with the flat-sheet SLM interposed between the two channeled solutions. 7 refs., 14 figs.

  7. Refractive index detection range adjustable liquid-core fiber optic sensor based on surface plasmon resonance and a nano-porous silica coating

    NASA Astrophysics Data System (ADS)

    Chen, Yuzhi; Li, Xuejin; Zhou, Huasheng; Hong, Xueming; Geng, Youfu

    2016-09-01

    A liquid-core fiber optic surface plasmon resonance sensor with an adjustable nano-porous silica coating is first presented in this paper. By adjusting the refractive index of the nano-porous silica coating, the sensor can be used in different refractive index detection ranges. A low refractive index interval of 1.33–1.34 and a high refractive index interval of 1.42–1.44 are taken as examples to be investigated. Results show that our sensor works well in these two intervals by using appropriate nano-porous silica coatings. The highest sensitivities of the low and high refractive index intervals are obtained to be 5840 nm/RIU and 5120 nm/RIU, respectively. In addition, the sensing performances and the working wavelengths can be adjusted to meet different working requirements by changing the refractive index of the nano-porous silica coating. We also take the single mode incidence cases to explain the effects of different single incident light modes on the sensing performances.

  8. Fabrication of Hollow Porous Silica Using a Combined Emulsion Sol-Gel Process and Amphiphilic Triblock Copolymer for Loading of Quercetin.

    PubMed

    Lee, Sang Gil; Kim, Young Ho; Bae, Jun Tae; Lee, Chung Hee; Pyo, Hyeong Bae; Kang, Kuk Hyoun; Lee, Dong Kyu

    2015-10-01

    Flavonoids have recently attracted significant interest as potential reducing agents, hydrogen-donating antioxidants, and singlet oxygen-quenchers. Quercetin, in particular, induces the expression of a gene, known to be associated with cell protection, in dose- and time-dependent manners. Therefore, quercetin may be used as an effective cosmeceutical material useful in the protection of dermal skin. In this study, hollow porous silica spheres used to load quercetin were prepared by using a combined emulsion sol-gel process and triblock copolymer as a template. Fabrication of hollow porous silica spheres was performed under various conditions such as the molar ratios of H2O/TEOS (Rw) and weight ratios of poloxamer 184/poloxamer 407. Loading of quercetin in hollow porous silica spheres was devised to improve the stability of quercetin and to consider the possibility as a raw cosmetic material. The surface of inclusion complexes of quercetin in hollow porous silicas was modified to enhance the stability of quercetin. The physicochemical properties of the samples were investigated using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA)-differential thermal analysis (DTA) and Brunauer-Emmett-Teller (BET) surface area and porosity analysis. Determination of quercetin concentration was carried out by high-performance liquid chromatography (HPLC) analysis. PMID:26726443

  9. Reactions of methyl radicals with silica supported silver nanoparticles in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zidki, Tomer; Hänel, Andreas; Bar-Ziv, Ronen

    2016-07-01

    Silica supported silver nanoparticles (Ag°-SiO2-NCs, NCs=nanocomposites) suspended in aqueous solutions are efficient catalysts for the dimerization of methyl radicals to produce ethane, while bare silica is quite inert towards the interaction with methyl radicals. In the presence of small amounts of ethanol adsorbed on the SiO2 surface, the reaction path with methyl radicals is changed and methane is formed as the major product.

  10. Covalent immobilization of glucose oxidase onto new modified acrylonitrile copolymer/silica gel hybrid supports.

    PubMed

    Godjevargova, Tzonka; Nenkova, Ruska; Dimova, Nedyalka

    2005-08-12

    New polymer/silica gel hybrid supports were prepared by coating high surface area of silica gel with modified acrylonitrile copolymer. The concentrations of the modifying agent (NaOH) and the modified polymer were varied. GOD was covalently immobilized on these hybrid supports and the relative activity and the amount of bound protein were determined. The highest relative activity and sufficient amount of bound protein of the immobilized GOD were achieved in 10% NaOH and 2% solution of modified acrylonitrile copolymer. The influence of glutaraldehyde concentration and the storage time on enzyme efficiency were examined. Glutaraldehyde concentration of 0.5% is optimal for the immobilized GOD. It was shown that the covalently bound enzyme (using 0.5% glutaraldehyde) had higher relative activity than the activity of the adsorbed enzyme. Covalently immobilized GOD with 0.5% glutaraldehyde was more stable for four months in comparison with the one immobilized on pure silica gel, hybrid support with 10% glutaraldehyde and the free enzyme. The effect of the pore size on the enzyme efficiency was studied on four types of silica gel with different pore size. Silica with large pores (CPC-Silica carrier, 375 A) presented higher relative activity than those with smaller pore size (Silica gel with 4, 40 and 100 A). The amount of bound protein was also reduced with decreasing the pore size. The effect of particle size was studied and it was found out that the smaller the particle size was, the greater the activity and the amount of immobilized enzyme were. The obtained results proved that these new polymer/silica gel hybrid supports were suitable for GOD immobilization. PMID:16080168

  11. Synthesis and properties of porous silica obtained by the template method

    NASA Astrophysics Data System (ADS)

    Kuznetsova, T. F.; Rat'ko, A. I.; Eremenko, S. I.

    2012-10-01

    Micromesoporous samples of SiO2 were synthesized by the sol-gel method using tetraethoxysilane as a starting reagent and 1-5 wt % cetylpyridinium chloride as a template under the conditions of preadsorption of colloid silica by polyethyleneglycol macromolecules. The adsorption and texture of the samples were studied by the low-temperature nitrogen adsorption-desorption technique. Preadsorption of silica sol was shown to affect the adsorption and capillary-condensation properties of silica. The surface area and the volume of mesopores increased at cetylpyridinium concentrations higher than 1 wt %. The micropore volume increased to a maximum. The capillary-condensation hysteresis loop of H4 type transformed into an H3 loop according to the IUPAC classification.

  12. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution.

    PubMed

    Petala, Eleni; Dimos, Konstantinos; Douvalis, Alexios; Bakas, Thomas; Tucek, Jiri; Zbořil, Radek; Karakassides, Michael A

    2013-10-15

    MCM-41-supported nanoscale zero-valent iron (nZVI) was sytnhesized by impregnating the mesoporous silica martix with ferric chloride, followed by chemical reduction with NaHB4. The samples were studied with a combination of characterization techniques such as powder X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) and Mössbauer spectroscopy, N2 adsorption measurements, transmission electron microscopy (TEM), magnetization measurements, and thermal analysis methods. The experimental data revealed development of nanoscale zero-valent iron particles with an elliptical shape and a maximum size of ∼80 nm, which were randomly distributed and immobilized on the mesoporous silica surface. Surface area measurements showed that the porous MCM-41 host matrix maintains its hexagonal mesoporous order structure and exhibits a considerable high surface area (609 m(2)/g). Mössbauer and magnetization measurements confirmed the presence of core-shell iron nanoparticles composed of a ferromagnetic metallic core and an oxide/hydroxide shell. The kinetic studies demonstrated a rapid removal of Cr(VI) ions from the aqueous solutions in the presence of these stabilized nZVI particles on MCM-41, and a considerably increased reduction capacity per unit mass of material in comparison to that of unsupported nZVI. The results also indicate a highly pH-dependent reduction efficiency of the material, whereas their kinetics was described by a pseudo-first order kinetic model. PMID:23959249

  13. Quantitative investigation of a hybrid Ziegler-Natta catalyst support prepared by grafting di(n-butyl)magnesium onto partially dehydroxylated silica.

    PubMed

    Lee, Ming-Yung; Scott, Susannah L

    2011-04-11

    MgCl(2)-modified silica is an important component of some Ziegler-Natta catalysts used in the manufacture of polyethylene. Information about the structure of the dispersed magnesium sites formed by the reaction of di-n-butylmagnesium (nBu(2)Mg) with silica was sought to provide a basis for understanding their subsequent interactions with transition-metal or co-catalyst components. From infrared spectra and elemental analysis, we deduced that nBu(2)Mg reacts with porous silica in two ways: about half (47%, 0.99 mmol g(-1)) is grafted through protonolysis by surface hydroxyl groups (≡SiOH), whereas the other half (53%, 1.11 mmol g(-1)) reacts directly with siloxane bonds (≡SiOSi≡). In the (29)Si and (13)C CP/MAS NMR spectra of Sylopol-2100 silica pretreated at 500 °C then modified with nBu(2)Mg at room temperature, both alkylsilicon and alkylmagnesium sites are evident. The alkylmagnesium-modified silica surface is proposed to contain dimers and/or tetramers with the empirical formula [≡SiOMg(nBu)](n). Upon exposure of nBu(2)Mg-modified silica to anhydrous HCl, alkanes are liberated, hydroxyl groups are regenerated, and water is formed. The appearance of water suggests condensation of hydroxyl group pairs, induced by the coordinatively unsaturated nanoclusters (MgCl(2))(n) that arise by ligand exchange on the silica-supported n-butylmagnesium oligomers. PMID:21433118

  14. The effect of porous support composition and operating parameters on the performance of supported liquid membranes

    SciTech Connect

    Takigawa, D.Y. )

    1992-03-01

    Supported liquid membranes (SLMs) of varying porous support compositions and structures were studied for the transport of metal ions. A microporous polybenzimidazole support was synthesized and prepared in the form of an SLM. This SLM, containing the selective extractant di-(2-ethylhexyl) phosphoric acid, was evaluated for the transport of copper and neodymium. Metal ion transport reaches near completion in less than 3 h, whereas Celgard-polypropylene and Nucleopore-polycarbonate reaches only 50% completion even after 15 h. The transport driving force for acidic extractants is a pH gradient between the feed and strip solutions. Polybenzimidazole, an acid-and radiation-resistant polymer, has two protonatable tertiary nitrogens per repeat unit that may help sustain the pH driving force. Another factor may be the ability of the polybenzimidazole to hydrogen bond with the extractant. Transport through the flat-sheet SLMs was tested by using a unique cell design. Countercurrent flow of the feed and strip solutions was established through machined channels in half-cell face plates that are in a spiral, mirror-image pattern with respect to each other, with the flat-sheet SLM interposed between the two channeled solutions. Advantages comprised in the design of the two clamped half-cells (tangential entry, zero primary pressure, zero pressure differential, controlled flow regimes, no sharp turns, and channeled flow) give operating parameters that will not physically dislodge the liquid membrane from the porous support; consequently, the lifetime of the support is increased. Permeability coefficients remained unchanged after a month of daily use versus 20 to 100% declines for membranes in other cell configurations.

  15. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    SciTech Connect

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang Gao, Ziwei

    2015-01-15

    A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.

  16. Synthesis of poly(N-[tris(hydroxymethyl)methyl]acrylamide) functionalized porous silica for application in hydrophilic interaction chromatography.

    PubMed

    Bui, Nhat Thi Hong; Jiang, Wen; Sparrman, Tobias; Irgum, Knut

    2012-12-01

    Porous silica coated by a highly hydrophilic and nonionic tentacle-type polymeric layer was synthesized by free radical "grafting from" polymerization of N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-2-propenamide (TRIS-acrylamide) in partly aqueous solutions. The radical initiator sites were incorporated on the silica surfaces via a two-step reaction comprising thionyl chloride activation and subsequent reaction with tert-butyl hydroperoxide. The surface-bound tert-butylperoxy groups were then used as thermally triggered initiators for graft polymerization of TRIS-acrylamide. The synthesized materials were characterized by diffusive reflectance Fourier transform infrared specotroscopy, X-ray photoelectron spectroscopy, and CHN elemental analysis. Photon correlation spectroscopy was used to determine changes in ζ-potentials resulting from grafting, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy (MAS-NMR) spectroscopy was used to assess the ratio of silanol to siloxane groups in the substrate and the grafted material, and the changes in surface area and mesopore distribution were determined by nitrogen cryosorption. Chromatographic evaluation in hydrophilic interaction chromatography (HILIC) mode showed that the materials were suitable for use as stationary phases, featuring good separation efficiency, a comparatively high retention, and a selectivity that differed from most commercially available HILIC phases. A comparison of this neutral phase with a previously reported N-(2-hydroxypropyl)-linked TRIS-type hydrophilic tentacle phase with weak anion exchange functionality revealed substantial differences in retention patterns. PMID:23184369

  17. Embedding of individual ferritin molecules in large, self-supporting silica nanofilms.

    PubMed

    Fujikawa, Shigenori; Muto, Emi; Kunitake, Toyoki

    2007-04-10

    We report herein the fabrication of ferritin-embedded self-supporting silica nanofilms via a simple spin-coating process. Ferritin was employed as a template molecule, and solutions of ferritin and silica were spread on a polymer-coated silicon substrate, in this order. After dissolving the polymer underlayer by simply immersing ethanol, a centimeter-sized self-supporting nanofilm of ferritin/silica composite with a thickness of 15 nm was successfully transferred onto an alumina membrane without the film breaking. Ozone and hydrochloric acid solution treatment removed the template ferritin molecules from the composite film to produce corresponding transmembrane nanoholes. The reported method is very simple, and the fabrication of a protein-embedded self-supporting nanofilm enables the design of biomembrane-mimetic devices. PMID:17328567

  18. Hydrogen and oxygen adsorption stoichiometries on silica supported ruthenium nanoparticles

    SciTech Connect

    Berthoud, Romain; Delichere, Pierre; Gajan, David; Lukens, Wayne; Pelzer, Katrin; Basset, Jean-Marie; Candy, Jean-Pierre; Coperet, Christophe

    2008-12-01

    Treatment under H{sub 2} at 300 C of Ru(COD)(COT) dispersed on silica yields 2 nm ruthenium nanoparticles, [Ru{sub p}/SiO{sub 2}], according to EXAFS, HRTEM and XPS. H{sub 2} adsorption measurements on [Ru{sub p}/SiO{sub 2}] in the absence of O{sub 2} show that Ru particles adsorb up to ca. 2 H per surface ruthenium atoms (2H/Ru{sub s}) on various samples; this technique can therefore be used to measure the dispersion of Ru particles. In contrast, O{sub 2} adsorption on [Ru{sub p}/SiO{sub 2}] leads to a partial oxidation of the bulk at 25 C, to RuO{sub 2} at 200 C and to sintering upon further reduction under H{sub 2}, showing that O{sub 2} adsorption cannot be used to measure the dispersion of Ru particles.

  19. Porous carbon-coated silica macroparticles as anode materials for lithium ion batteries: Effect of boric acid

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Moon, Jong-Woo; Lee, Jung-Goo; Baek, Youn-Kyung; Hong, Seong-Hyun

    2014-12-01

    We report carbon-coated porous silica macroparticles (SiO2@C) prepared using polymeric templates and subsequent carbonization with sucrose for improved electrochemical energy storage in lithium-ion batteries (LIBs). In addition, boron is introduced to improve the stability of electrochemical cells by pyrolyzing mixtures of sucrose and boric acid (SiO2@C + B) under inert atmosphere. The initially large surface area of porous SiO2 (SBET ∼ 658 m2 g-1) is reduced to 102 m2 g-1 after carbonization and introduction of boric acid. Surface of both SiO2@C and SiO2@C + B are covered with amorphous carbon. In particular, SiO2@C + B particles containing borosilicate (Si-O-B) phase and B-O bondings and Si-C-O bondings are also detected from the X-ray photoelectron spectra. The SiO2@C + B macroparticles shows high reversible charge capacity up to 503 mAh g-1 after 103 cycles of Li intercalation/de-intercalation although initial capacity was 200 mAh g-1. The improved charge capacity of SiO2@C + B is attributed to formation of advantageous microstructures induced from boric acid.

  20. Encapsulation of protein molecules in transparent porous silica matrices via an aqueous colloidal sol-gel process

    SciTech Connect

    Liu, D.M.; Chen, I.W.

    1999-12-10

    Encapsulation of several biologically important proteins, cytochrome c, catalase, myoglobin, and hemoglobin, into transparent porous silica matrices by an aqueous colloidal sol-gel process that requires no alcohol is reported. Optical characterization indicates a successful retention of protein conformation after encapsulation. The conformation retention is strongly correlated to both the rate of gelation and the subsequent drying speed. Using hemoglobin as a model protein, a higher colloidal solid concentration and a lower synthesis pH were found, both causing faster gelation, resulting in a better retention of conformation. Hemoglobin encapsulated in a thin film, which dries faster, also showed a better retention than in the bulk. This is attributed to the fact that when a protein is isolated, and especially when it is confined to a space close to its own dimensions, conformational changes are sterically hindered, hence the structural stability. Enzymatic activity of bovine liver catalase was also monitored and showed a remarkable improvement when encapsulated using the aqueous colloidal process, compared to using the conventional alkoxide-based process. Thus, the aqueous colloidal sol-gel process offers a promising alternative to the conventional sol-gel process for encapsulating biomolecules into transparent, porous matrices.

  1. Porous carbon-coated silica macroparticles as anode materials for lithium ion batteries: Effect of boric acid

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Moon, Jong-Woo; Lee, Jung-Goo; Baek, Youn-Kyung; Hong, Seong-Hyun

    2014-12-01

    We report carbon-coated porous silica macroparticles (SiO2@C) prepared using polymeric templates and subsequent carbonization with sucrose for improved electrochemical energy storage in lithium-ion batteries (LIBs). In addition, boron is introduced to improve the stability of electrochemical cells by pyrolyzing mixtures of sucrose and boric acid (SiO2@C + B) under inert atmosphere. The initially large surface area of porous SiO2 (SBET ˜ 658 m2 g-1) is reduced to 102 m2 g-1 after carbonization and introduction of boric acid. Surface of both SiO2@C and SiO2@C + B are covered with amorphous carbon. In particular, SiO2@C + B particles containing borosilicate (Si-O-B) phase and B-O bondings and Si-C-O bondings are also detected from the X-ray photoelectron spectra. The SiO2@C + B macroparticles shows high reversible charge capacity up to 503 mAh g-1 after 103 cycles of Li intercalation/de-intercalation although initial capacity was 200 mAh g-1. The improved charge capacity of SiO2@C + B is attributed to formation of advantageous microstructures induced from boric acid.

  2. Controllable synthesis of hollow mesoporous silica spheres and application as support of nano-gold

    SciTech Connect

    Wang, Tao; Ma, Weihua Shangguan, Junnan; Jiang, Wei; Zhong, Qin

    2014-07-01

    Hollow silica spheres with mesoporous structure were synthesized by sol–gel/emulsion method. In the process, the surfactant, cetyltrimethylammonium bromide (CTAB) was used to stabilize the oil droplet and also used as structure direct agent. The diameter of the hollow silica spheres, ranging from 895 nm to 157 nm, can be controlled by changing the ratio of ethanol to water and the concentration of the surfactant as well. The shell thickness of the spheres decreased when the ratio of ethanol to water decreased. The proposed mechanism of the formation of silica spheres could elucidate the experimental results well. Furthermore, the resultant hollow mesoporous silica spheres were then employed as support of nano-gold which was used to catalyze the isomerization reaction of propylene oxide to produce allyl alcohol. - Graphical abstract: It is the schematic mechanism for the formation of hollow mesoporous silica spheres. - Highlights: • The formation mechanism of the hollow spheres is proposed. • The isomerization of propylene oxide can be catalyzed by the nano-gold/SiO{sub 2}. • The hollow silica spheres can be prepared controllably.

  3. A new high-throughput method utilizing porous silica-based nano-composites for the determination of partition coefficients of drug candidates.

    PubMed

    Yu, Chih H; Tam, Kin; Tsang, Shik C

    2011-09-01

    We show that highly porous silica-based nanoparticles prepared via micro-emulsion and sol-gel techniques are stable colloids in aqueous solution. By incorporating a magnetic core into the porous silica nano-composite, it is found that the material can be rapidly separated (precipitated) upon exposure to an external magnetic field. Alternatively, the porous silica nanoparticles without magnetic cores can be equally separated from solution by applying a high-speed centrifugation. Using these silica-based nanostructures a new high-throughput method for the determination of partition coefficient for water/n-octanol is hereby described. First, a tiny quantity of n-octanol phase is pre-absorbed in the porous silica nano-composite colloids, which allows an establishment of interface at nano-scale between the adsorbed n-octanol with the bulk aqueous phase. Organic compounds added to the mixture can therefore undergo a rapid partition between the two phases. The concentration of drug compound in the supernatant in a small vial can be determined by UV-visible absorption spectroscopy. With the adaptation of a robotic liquid handler, a high-throughput technology for the determination of partition coefficients of drug candidates can be employed for drug screening in the industry based on these nano-separation skills. The experimental results clearly suggest that this new method can provide partition coefficient values of potential drug candidates comparable to the conventional shake-flask method but requires much shorter analytical time and lesser quantity of chemicals. PMID:21780284

  4. EPR in functional structures based on doped (nano, meso)-porous silica and titanium dioxide

    NASA Astrophysics Data System (ADS)

    Kassiba, A.; Makowska-Janusik, M.; Mehdi, A.

    2011-04-01

    EPR investigations are performed on mesoporous silica (SBA15) functionalized by Nickel-cyclam complexes (1,4,8,11-tetraazacyclotetradecane groups chelating nickel ions) and on mesoporous titanium dioxide with nitrogen doping. For functionalized silica, the magnetic behaviour of organometallic groups, their mutual interactions and dispersion in the host matrices are compared with respect to the doping rates and the synthesis procedures. The relaxation processes were analyzed from the thermal evolution of the paramagnetic spin susceptibilities and EPR line-widths. Particularly, some samples show the formation of clusters where phonon assisted one dimensional (1D) ferromagnetic ordering occurs below 45 K. For the mesoporous TiO2, systematic EPR investigations were performed on two main classes of materials with regard to the porosity degrees. The EPR experiments point out the efficiency of EPR method to probe the degree of functionalization of mesoporous silica or the nitrogen doping achievement in TiO2, and in general to give a valuable feedback to improve the synthesis routes of smart materials.

  5. Supported porous carbon and carbon-CNT nanocomposites for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Schopf, Dimitri; Es-Souni, Mohammed

    2016-03-01

    Supported porous carbon and porous carbon-MWCNT-nanocomposite films are produced by pyrolysis of porous polyvinylidene fluoride (PVDF) or porous PVDF-MWCNT-nanocomposite films on thermally resistant substrates. All films are characterized by SEM, RAMAN and XRD. The application of these films as supercapacitors is explored with outstanding supercapacitance values ranging from 80 to 120 F g-1 (up to 70 mF cm-2) in a three-electrode set-up in 1 M KOH, depending on microstructure. Additionally, the implementation of porous nanocarbon-MWCNT-nanocomposite films as electrodes in a symmetrical supercapacitor device is investigated. In all cases, long-term charge-discharge stability is demonstrated.

  6. Preparation and characterization of titania-deposited silica composite hollow fiber membranes with high hydrothermal stability.

    PubMed

    Kwon, Young-Nam; Kim, In-Chul

    2013-11-01

    Hydrothermal stability of a porous nickel-supported silica membrane was successfully improved by deposition of titania multilayers on colloidal silica particles embedded in the porous nickel fiber support. Porous nickel-supported silica membranes were prepared by means of a dipping-freezing-fast drying (DFF) method. The titania layers were deposited on colloidal silica particles by repeating hydrolysis and condensation reactions of titanium isopropoxide on the silica particle surfaces. The deposition of thin titania layers on the nickel-supported silica membrane was verified by various analytical tools. The water flux and the solute rejection of the porous Ni fiber-supported silica membranes did not change after titania layer deposition, indicating that thickness of titania layers deposited on silica surface is enough thin not to affect the membrane performance. Moreover, improvement of the hydrothermal stability in the titania-deposited silica membranes was confirmed by stability tests, indicating that thin titania layers deposited on silica surface played an important role as a diffusion barrier against 90 degrees C water into silica particles. PMID:24245310

  7. Switching on the Metathesis Activity of Re Oxo Alkylidene Surface Sites through a Tailor-Made Silica-Alumina Support.

    PubMed

    Valla, Maxence; Stadler, David; Mougel, Victor; Copéret, Christophe

    2016-01-18

    Re oxo alkylidene surface species are putative active sites in classical heterogeneous Re-based alkene-metathesis catalysts. However, the lack of evidence for such species questions their existence and/or relevance as reaction intermediates. Using Re(O)(=CH-CH=CPh2)(OtBuF6)3(THF), the corresponding well-defined Re oxo alkylidene surface species can be generated on both silica and silica-alumina supports. While inactive on the silica support, it displays very good activity, even for functionalized olefins, on the silica-alumina support. PMID:26756446

  8. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.

  9. Magnetic silica supported palladium catalyst: synthesis of allyl aryl ethers in water

    EPA Science Inventory

    A simple and benign procedure for the synthesis of aryl allyl ethers has been developed using phenols, allyl acetates and magnetically recyclable silica supported palladium catalyst in water; performance of reaction in air and easy separation of the catalyst using an external mag...

  10. Investigation of porous silica nanostructures in diatoms isolated from Kurichi and Sulur lakes of Coimbatore, India using field emission scanning electron microscopy.

    PubMed

    N, Seethalakshmi; R, Selvakumar

    2015-12-01

    Diatoms are unicellular algae that possess cell wall made of silica. These diatoms play a pivotal role in synthesis of variety of silica nanostructures and have adorning morphology in nature. In the present study, we have used field emission scanning electron microscopy (FE-SEM) to investigate their morphological features like pore size, shape, and porous pattern in various diatoms isolated from Kurichi and Sulur fresh water lakes, Coimbatore, Tamil Nadu, India. Diatoms were identified as Nitzschia sp., Cyclotella meneghiniana, Coscinodiscus sp. and Cyclotella atomus based on their morphological features. The arrangement of porous nanostructures in these diatoms have been characterized. The change in the nanostructures present in the diatoms have been correlated to the contamination of water bodies. PMID:26296232

  11. Accessibility control on copper(II) complexes in mesostructured porous silica obtained by direct synthesis using bidentate organosilane ligands.

    PubMed

    Zhou, Wen-Juan; Albela, Belén; Perriat, Pascal; He, Ming-Yuan; Bonneviot, Laurent

    2010-08-17

    The accessibility of metal(II) complexes in 2D hexagonal mesostructured porous silicas obtained by direct synthesis is controlled using an appropriate organosilane ligand. This is exemplified here using copper(II) as a transition metal probe and a neutral or negatively charged ligand: N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, L(A), and, N-salicylaldimine-propylamine-trimethoxysilane, L(B)(-), respectively. L(A) leads to inaccessible complexes located into the pore wall and called "embedded" sites here where silanolate groups from the siliceous network block the access to Cu(II) ions. By contrast, L(B)(-) generates accessible complexes, named "showing-on" sites here. The copper-containing silicas were synthesized with various metal molar ratios (M/SiO(2) = 0.5-3%) in basic media, with cetyltrimethylammonium p-toluenesulfonate (CTATos) as template and with sodium silicate solution as silicon source. A soft template extraction procedure has been developed to preserve the complex integrity of the showing-on copper sites during the treatment. The embedded copper(II) and nickel(II) sites were compared. Materials containing embedded, showing-on, and grafted sites were also compared with regard to pore size, surface polarity, and metal leaching. The material containing showing-on sites was found to be catalytically active for the hydroxylation of phenol into catechol and hydroquinone. Both textural and structural properties of the material and the copper sites were investigated using XRD, TEM, N(2) sorption isotherms, TGA, FT-IR, UV-visible, and EPR spectroscopies. PMID:20695596

  12. Preparation of alumina nanoshell coated porous silica spheres for inorganic anions separation.

    PubMed

    Song, Zhihua; Wu, Dapeng; Ding, Kun; Guan, Yafeng

    2016-02-12

    It had been reported that alumina nanoshell coating could be obtained on the external surface of various substrates in one-nanometer precision in aqueous solution. In this work, alumina nanoshell coated mesoporous silica microbeads (nanoAl2O3/mesoSiO2) were prepared with the similar method, and were successfully applied to inorganic anions separation. As the mass transfer speed is largely constrained in the mesopore compared with that on the open surface, it was found that a complete alumina nanoshell coating could be obtained within the mesopore until the five-time coating was carried out. After characterization by BET, SEM and FTIR, it was found that the obtained nanoAl2O3/mesoSiO2 particles are smooth and well dispersed, and the mesopores are well reserved. In addition, the full coverage of nanoAl2O3 shell in mesopores was also confirmed by the binding capacity experiments with berberine. Finally, the nanoAl2O3/mesoSiO2 particles were packed in silica capillary for the separation of inorganic anions I(-), SCN(-), Br(-), NO2(-) and NO3(-) with ion chromatography (IC), and a column efficiency of 3.8 × 10(4) plates per meter was obtained for I(-). PMID:26803440

  13. Decolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads

    PubMed Central

    2014-01-01

    Background Decolorization of hazardous synthetic dyes using laccases in both free and immobilized form has gained attention during the last decades. The present study was designed to prepare immobilized laccase (purified from Paraconiothyrium variabile) on porous silica beads followed by evaluation of both free and immobilized laccases for decolorization of two synthetic dyes of Acid Blue 25 and Acid Orange 7. Effects of laccase concentration, pH and temperature alteration, and presence of 1-hydroxybenzotriazole (HBT) as laccase mediator on decolorization pattern were also studied. In addition, the kinetic parameters (K m and V max ) of the free and immobilized laccases for each synthetic dye were calculated. Results Immobilized laccase represented higher temperature and pH stability compare to free one. 39% and 35% of Acid Blue 25 and Acid Orange 7 was decolorized, respectively after 65 min incubation in presence of the free laccase. In the case of immobilized laccase decolorization percent was found to be 76% and 64% for Acid Blue 25 and Acid Orange 7, respectively at the same time. Increasing of laccase activity enhanced decolorization percent using free and immobilized laccases. Relative decolorization of both applied dyes was increased after treatment by laccase-HBT system. After nine cycles of decolorization by immobilized laccase, 26% and 31% of relative activity were lost in the case of Acid Blue 25 and Acid Orange 7, respectively. Conclusions To sum up, the present investigation introduced the immobilized laccase of P. variabile on porous beads as an efficient biocatalyst for decolorization of synthetic dyes. PMID:24393474

  14. Adsorption dynamics of CO on copper and gold clusters supported on silica - How special is nanogold?

    NASA Astrophysics Data System (ADS)

    Shan, J.; Komarneni, M.; Burghaus, U.

    2011-11-01

    A twist about an atomistic explanation for the unusual particle size-dependent reactivity enhancement of supported gold clusters still exists in the surface science and catalysis communities. A molecular beam scattering technique allowed the active sites of a catalyst to be mapped. In doing so, copper and gold clusters, both supported on silica, were studied. Indeed, Au clusters showed quite unusual behavior, however, that would be consistent with the influence of defects rather than quantum size effects.

  15. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    SciTech Connect

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  16. Ion channel mimetic membranes and silica nanotubes prepared from porous aluminum oxide templates

    NASA Astrophysics Data System (ADS)

    Mitchell, David Tanner

    Chapter 1 provides background information on the template synthesis of nanomaterials. The template synthesis method is examined with special attention to the use of membranes containing monodisperse cylindrical pores as templates. Several examples of the utility of template-synthesized nanomaterials are given. The production of one type of template membrane, nanopore alumina, is reviewed. Reviews of sol-gel and silane chemistry are also provided. In Chapter 2, a sol-gel template synthesis process is used to produce silica nanotubes within the pores of alumina templates. The nanotubes can be modified using a variety of chemistries, typically via a silanization process. Because the nanotubes are formed in a template, the interior and exterior surface can be modified independently. Modified nanotubes can be used for drug detoxification or as extractants for the removal of metal ions. The nanotube surface can also be biotinylated, which causes binding to avidinated surfaces. Composite microtubes of silica and various polymers are also prepared. Additionally, Au nanowires are shown to assemble with colloidal Au particles using dithiols as linkers. Chapter 3 describes the attachment of proteins onto template-synthesized silica nanotubes. The proteins are covalently linked via an aldehyde silane bridge that binds to pendant primary amino moieties on the protein. Protein-modified nanotubes function as highly specific extractants. Avidin-modified nanotubes extract biotin-coated Au nanoparticles from solution with high extraction efficiency. Immunoprotein-modified nanotubes extract the corresponding antibody from solution with high specificity. Antibody-modified nanotubes extract one enantiomer from a racemic mix. Enzymes, including drug detoxification enzymes, were also attached to the nanotubes and were shown to retain their catalytic activity. Immunoproteins on the outside of nanotubes can be used to direct nanotube binding, creating specific labeling agents. Chapter 4

  17. Silica-particle-supported zwitterionic polymer monolith for microcolumn liquid chromatography.

    PubMed

    An, Ran; Weng, Qianfeng; Li, Jinxiang

    2014-10-01

    A silica-particle-supported zwitterionic polymeric monolithic column, shortened as supported column (S-column), was prepared by the in situ polymerization of methacrylic acid, ethylene dimethacrylate, and 2-(dimethylamino)ethyl methacrylate in the presence of a ternary porogenic solvent containing water, methanol, and cyclohexanol in a 250 μm id fused-silica capillary prepacked with 5 μm bare silica particles. In the S-column, a thin layer of the polymers was formed around the silica particles in the form of nanoglobules, leaving the interstitial spaces between the particles free for liquid flow. The effects of the preparation conditions on the morphology of the monolith were investigated by scanning electron microscopy and backpressure measurements. The selected volumetric ratio of porogens, monomer concentration, polymerization time, and temperature are 1:1:8 (water/methanol/cyclohexanol), 25% v/v, 5 h, and 60°C, respectively. The S-column was evaluated by comparison with its conventional organic counterpart in terms of morphology, mechanical stability, permeability, swelling-shrinking behavior, capacity, and efficiency. The results demonstrate that the S-column is superior to its counterpart in all the terms with the exception of permeability. The above merits and zwitterionic property of the S-column were further confirmed by separate separations of four inorganic anions and three organic cations. PMID:25044794

  18. Competitive sorption of cis-DCE and TCE in silica gel as a model porous mineral solid.

    PubMed

    Avila, Manuel Alejandro Salaices; Breiter, Roman

    2008-08-01

    The competitive sorption of 1,2-cis-dichloroethene (cis-DCE) and trichloroethene (TCE) was investigated by means of column experiments using a model porous mineral solid represented by silica gel. The experimental isotherms were obtained by employing a chromatographic method. The competitive sorption isotherms were modelled with the extended Freundlich and extended Langmuir isotherms, using the parameters from single-solute experiments. The breakthrough curves were modelled with the advection-dispersion transport equation coupled with the lumped pore diffusion model. The best results were obtained when the extended Freundlich isotherm was employed. The competitive sorption was revealed with the presence of an overshoot in the breakthrough curve of cis-DCE and a decrease in the degree of sorption of cis-DCE (20%) and TCE (12%). A linear dependency of the overshoot with an increase in the concentration of cis-DCE at a fixed concentration of TCE was observed, between 16% and 20%, and at least at concentrations <6 mg L(-1) in the liquid phase. The displaced molecules of cis-DCE by TCE were accumulated through the column causing its overshoot; thus short columns may hinder its observation. Thermodynamic analysis shows an exothermic adsorption process of -34 to -41 kJ mol(-1), which is enhanced by sorption in micropores. The Gibbs free energy is positive for cis-DCE in the multi-component case, due to its displacement by TCE. PMID:18541287

  19. Crosslinking Amine-Modified Silica Aerogels with Epoxies: Mechanically Strong Lightweight Porous Materials

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Fabrizio, Eve F.; Ilhan, Faysal; Dass, Amala; Zhang, Guo-Hui; Vassilaras, Plousia; Johnston, J. Chris; Leventis, Nicholas

    2005-01-01

    The mesoporous surfaces of TMOS-derived silica aerogels have been modified with amines by co-polymerization of TMOS with APTES. The amine sites have become anchors for crosslinking the nanoparticles of the skeletal backbone of the aerogel by attachment of di-, tri and tetra-functional epoxies. The resulting conformal coatings increase the density of the native aerogels by a factor of 2-3 but the strength of the resulting materials may increase by more than two orders of magnitude. Processing variables such as amount of APTES used to make the gels, the epoxy type and concentration used for crosslinking, as well as the crosslinking temperature and time were varied according to a multivariable design-of-experiments (DOE) model. It was found that while elastic modulus follows a similar trend with density, maximum strength is attained neither at the maximum density nor at the highest concentration of -NH2 groups, suggesting surface saturation effects. Aerogels crosslinked with the tri-functional epoxide always show improved strength compared with aerogels crosslinked with the other two epoxides under identical conditions. Solid C-13 NMR studies show residual unreacted epoxides, which condense with ne another by heating crosslinked aerogels at 150 C.

  20. The AMWCNTs supported porous nanocarbon composites for high-performance supercapacitor

    SciTech Connect

    Fu, Yu; Sun, Li; Tian, Chungui; Lin, Haibo

    2013-11-15

    Graphical abstract: The AMWCNTs supported porous nanocarbon composites were prepared by a easy method. The composites had shown good performances for electrochemical energy storage with high specific capacitance and good stability. - Highlights: • The AMWCNTs supported porous nanocarbon composites were prepared. • The composites have good conductivity and large BET specific surface areas. • The composites had shown high specific capacitance, and good stability. - Abstract: The porous nanocarbons supported by acid-treated multiwall carbon nanotubes (PC@ACNTs) were prepared by the combination of the hydrothermal polymerization of glucose on ACNTs, carbonization under N{sub 2} protection and final activation with ZnCl{sub 2}. The materials were characterized by transmission electron microscopy, X-ray powder diffraction and Raman spectra. The results indicated that the ACNTs distributed uniformly into the framework of the porous carbon. The composites showed the high BET specific surface area up to 1712 m{sup 2} g{sup −1} and good conductivity. The electrochemical measurements indicated that the composites processed good performances for electrochemical energy storage (210 F g{sup −1} at 0.5 A g{sup −1}), and high stability (>99.9%), much higher than the corresponding ACNTs, porous carbons and the samples prepared by using raw MWCNTs as source. The good performance of PC@ACNTs composites was relative with the synergy of good conductivity of ACNTs and large specific surface areas of PC.

  1. Carvedilol dissolution improvement by preparation of solid dispersions with porous silica.

    PubMed

    Planinšek, Odon; Kovačič, Borut; Vrečer, Franc

    2011-03-15

    Impregnation of porous SiO(2) (Sylysia) with carvedilol from acetone solution was used to improve dissolution of this poorly water-soluble drug. Solvent evaporation in a vacuum evaporator and adsorption from acetone solution were the methods used to load various amounts of carvedilol into the Sylysia pores. The impregnated carriers were characterized using nitrogen-adsorption experiments, X-ray diffraction, wettability measurements, attenuated total reflectance FTIR spectroscopy and thermal analysis. The impregnation procedures resulted in a significant improvement of drug release compared to dissolution of pure carvedilol or its physical mixtures with Sylysia. The results showed that when the drug precipitated in a thin layer within the carrier the dispersion retained a high specific surface area, micropore volume, and drug-release rate from the solid dispersion. Increasing the amount of drug in the solid dispersion caused particle precipitation within the pores that decreased the carrier's specific surface area and pore volume and decreased the release rate of the drug. The results also suggest that the amorphous form of carvedilol, the improved wettability and weak interactions between the drug and carrier in the solid dispersion also contribute to improved dissolution of the drug from the dispersion. PMID:21219991

  2. Sintering of highly porous silica-particle samples: analogues of early Solar-System aggregates

    NASA Astrophysics Data System (ADS)

    Poppe, T.

    2003-07-01

    I describe a new method to make particle layers which consist of SiO 2 spheres with 0.78 μm radius. The layers were produced by sedimentation of aggregates which had grown in ballistic particle collisions, and the layers had a porosity of 0.95. They were used for experiments on sintering, i.e., the samples were heated in an oven at varying temperatures and heating durations, and the samples were analyzed by scanning electron microscopy. Based on the change of particle diameter, surface diffusion sintering and viscous flow are identified as important transformation mechanisms. The first effect dominated at the start of restructuring and the latter at higher temperatures. The neck growth of adjacent particles was fitted to a surface diffusion sintering model and predicts neck radii as a heating temperature and duration function. Between the temperature range of neck formation and of melting, further restructuring occurred which lead to dissolution of particulate structure and to densification and which resulted in a porous object consisting of straight elongated substructures which connected kinks of higher material density. The thermal transformation is important for the change of strength, collisional behavior, light-scattering properties, and thermal conductivity with relevance to dust aggregates, planetesimals, comets, interplanetary dust particles, and regolith-covered celestial bodies.

  3. Highly porous silica-polyaniline nanocomposite as a novel solid-phase microextraction fiber coating.

    PubMed

    Gholivand, Mohammad B; Abolghasemi, Mir M; Fattahpour, Peyman

    2012-01-01

    A highly porous fiber-coated SBA-15/polyaniline material was prepared for solid-phase microextraction (SPME). The SBA-15/polyaniline nanocomposite was synthesized via chemical polymerization. The prepared SBA-15/polyaniline particles were analyzed by scanning electron microscopy analysis. The prepared nanomaterial was immobilized onto a stainless steel wire for fabrication of the SPME fiber. The fiber was evaluated for the extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions in combination with gas chromatography-mass spectrometry (GC-MS). In optimum conditions (extraction temperature 60°C, extraction time 40 min, ionic strength 20%, stirring rate: 500 rpm, desorption temperature 260°C, desorption time 2 min), the repeatability for one fiber (n=3), expressed as relative standard deviation (RSD%), was between 5.3 and 8.6% for the test compounds. For deionized water, spiked with selected PAHs, the detection limits for the studied compounds were between 2 and 20 pg/mL. PMID:22144100

  4. Protocells: Modular Mesoporous Silica Nanoparticle-Supported Lipid Bilayers for Drug Delivery.

    PubMed

    Butler, Kimberly S; Durfee, Paul N; Theron, Christophe; Ashley, Carlee E; Carnes, Eric C; Brinker, C Jeffrey

    2016-04-27

    Mesoporous silica nanoparticle-supported lipid bilayers, termed 'protocells,' represent a potentially transformative class of therapeutic and theranostic delivery vehicle. The field of targeted drug delivery poses considerable challenges that cannot be addressed with a single 'magic bullet'. Consequently, the protocell has been designed as a modular platform composed of interchangeable biocompatible components. The mesoporous silica core has variable size and shape to direct biodistribution and a controlled pore size and surface chemistry to accommodate diverse cargo. The encapsulating supported lipid bilayer can be modified with targeting and trafficking ligands as well as polyethylene glycol (PEG) to effect selective binding, endosomal escape of cargo, drug efflux prevention, and potent therapeutic delivery, while maintaining in vivo colloidal stability. This review describes the individual components of the platform, including the mesoporous silica nanoparticle core and supported lipid bilayer, their assembly (by multiple techniques) into a protocell, and the combined, often synergistic, performance of the protocell based on in vitro and in vivo studies, including the assessment of biocompatibility and toxicity. In closing, the many emerging variations of the protocell theme and the future directions for protocell research are commented on. PMID:26780591

  5. Particle size effect of redox reactions for Co species supported on silica

    NASA Astrophysics Data System (ADS)

    Chotiwan, Siwaruk; Tomiga, Hiroki; Katagiri, Masaki; Yamamoto, Yusaku; Yamashita, Shohei; Katayama, Misaki; Inada, Yasuhiro

    2016-09-01

    Conversions of chemical states during redox reactions of two silica-supported Co catalysts, which were prepared by the impregnation method, were evaluated by using an in situ XAFS technique. The addition of citric acid into the precursor solution led to the formation on silica of more homogeneous and smaller Co particles, with an average diameter of 4 nm. The supported Co3O4 species were reduced to metallic Co via the divalent CoO species during a temperature-programmed reduction process. The reduced Co species were quantitatively oxidized with a temperature-programmed oxidation process. The higher observed reduction temperature of the smaller CoO particles and the lower observed oxidation temperature of the smaller metallic Co particles were induced by the higher dispersion of the Co oxide species, which apparently led to a stronger interaction with supporting silica. The redox temperature between CoO and Co3O4 was found to be independent of the particle size.

  6. POPC Bilayers Supported on Nanoporous Substrates: Specific Effects of Silica-Type Surface Hydroxylation and Charge Density.

    PubMed

    Duro, Nalvi; Gjika, Marion; Siddiqui, Ahnaf; Scott, H Larry; Varma, Sameer

    2016-07-01

    Recent advances in nanotechnology bring to the forefront a new class of extrinsic constraints for remodeling lipid bilayers. In this next-generation technology, membranes are supported over nanoporous substrates. The nanometer-sized pores in the substrate are too small for bilayers to follow the substrate topology; consequently, the bilayers hang over the pores. Experiments demonstrate that nanoporous substrates remodel lipid bilayers differently from continuous substrates. The underlying molecular mechanisms, however, remain largely undetermined. Here we use molecular dynamics (MD) simulations to probe the effects of silica-type hydroxylation and charge densities on adsorbed palmitoyl-oleoylphosphatidylcholine (POPC) bilayers. We find that a 50% porous substrate decorated with a surface density of 4.6 hydroxyls/nm(2) adsorbs a POPC bilayer at a distance of 4.5 Å, a result consistent with neutron reflectivity experiments conducted on topologically similar silica constructs under highly acidic conditions. Although such an adsorption distance suggests that the interaction between the bilayer and the substrate will be buffered by water molecules, we find that the substrate does interact directly with the bilayer. The substrate modifies several properties of the bilayer-it dampens transverse lipid fluctuations, reduces lipid diffusion rates, and modifies transverse charge densities significantly. Additionally, it affects lipid properties differently in the two leaflets. Compared to substrates functionalized with sparser surface hydroxylation densities, this substrate adheres to bilayers at smaller distances and also remodels POPC more extensively, suggesting a direct correspondence between substrate hydrophilicity and membrane properties. A partial deprotonation of surface hydroxyls, as expected of a silica substrate under mildly acidic conditions, however, produces an inverse effect: it increases the substrate-bilayer distance, which we attribute to the formation of

  7. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.; Mittelsteadt, Cortney K.; McCallum, Thomas J.

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  8. Method of making porous conductive supports for electrodes. [by electroforming and stacking nickel foils

    NASA Technical Reports Server (NTRS)

    Schaer, G. R. (Inventor)

    1973-01-01

    Porous conductive supports for electrochemical cell electrodes are made by electroforming thin corrugated nickel foil, and by stacking pieces of the corrugated foil alternatively with pieces of thin flat nickel foil. Corrugations in successive corrugated pieces are oriented at different angles. Adjacent pieces of foil are bonded by heating in a hydrogen atmosphere and then cutting the stack in planes perpendicular to the foils.

  9. High strength porous support tubes for high temperature solid electrolyte electrochemical cells

    DOEpatents

    Rossing, Barry R.; Zymboly, Gregory E.

    1986-01-01

    A high temperature, solid electrolyte electrochemical cell is made, having an electrode and a solid electrolyte disposed on a porous, sintered support material containing thermally stabilized zirconia powder particles and from about 3 wt. % to about 45 wt. % of thermally stable oxide fibers.

  10. Preparation and evaluation of monodispersed, submicron, non-porous silica particles functionalized with β-CD derivatives for chiral-pressurized capillary electrochromatography.

    PubMed

    Yangfang, Lu; Hui, Wang; Yun, Xue; Xue, Gu; Yan, Wang; Chao, Yan

    2015-09-01

    Submicron, non-porous, chiral silica stationary phase has been prepared by the immobilization of functionalized β-CD derivatives to isocyanate-modified silica via chemical reaction and applied to the pressurized capillary electrochromatography (pCEC) enantio-separation of various chiral compounds. The submicron, non-porous, cyclodextrin-based chiral stationary phases (sub_μm-CSP2) exhibited excellent chiral recognition of a wide range of analytes including clenbuterol hydrochloride, mexiletine hydrochloride, chlorpheniramine maleate, esmolol hydrochloride, and metoprolol tartrate. The synthesized submicron particles were regularly spherical and uniformly non-porous with an average diameter of around 800 nm and a mean pore size of less than 2 nm. The synthesized chiral stationary phase was packed into 10 cm × 100 μm id capillary columns. The sub_μm-CSP2 column used in the pCEC system showed better separation of the racemates and at a higher rate compared to those used in the capillary liquid chromatography mode (cLC) system. The sub_μm-CSP2 possessed high mechanical strength, high stereoselectivity, and long lifespan, demonstrating rapid enantio-separation and good resolution of samples. The column provided an efficiency of up to 170,000 plates/m for n-propylbenzene. PMID:25990895

  11. Supported and inserted monomeric niobium oxide species on/in silica: a molecular picture.

    PubMed

    Tranca, Diana C; Wojtaszek-Gurdak, Anna; Ziolek, Maria; Tielens, Frederik

    2015-09-14

    The geometry, energetic, and spectroscopic properties of molecular structures of silica-supported niobium oxide catalysts are studied using periodic density functional calculations (DFT) and compared with experimental data. The calculations are done for Nb oxide species inserted or grafted in/on an amorphous hydroxylated silica surface. Different positions of the Nb atom/atoms in the silica structure have been investigated. By means of DFT calculations the geometry and the degree of hydration of Nb oxide species with oxidation state +5 have been studied. The local Nb geometry depends on different parameters such as the number of Nb-O-Si groups vs. Nb-O-H groups, the formation of H bonds and the distance between Nb atoms. The interaction between the oxide and silanol groups occurs by formation of Si-O-Nb bonds with chemically and thermally stable Brønsted and Lewis acid sites. UV-Vis, reflection absorption infrared vibrational spectra (RAIRS) as well as various thermodynamic properties have also been investigated in order to get a better insight into the system studied and to provide support to possible experimental studies. PMID:26250394

  12. Synthesis and Nanofiltration Membrane Performance of Oriented Mesoporous Silica Thin Films on Macroporous Supports.

    PubMed

    Clark Wooten, M Kaitlyn; Koganti, Venkat R; Zhou, Shanshan; Rankin, Stephen E; Knutson, Barbara L

    2016-08-24

    Silica thin films with accessible hexagonal close-packed (HCP) pores have been deposited on macroporous supports to achieve composite nanofiltration membranes. The properties of these pore channels have been characterized through solvent flux and solute diffusion experiments. A chemically neutral surface (provided by a cross-linked layer of P123 copolymer) for silica thin film synthesis on the alumina macroporous support promotes the alignment of HCP channels vertical to the substrate, where the mesopore templating agent is block copolymer P123 (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)). Vertical pore alignment is achieved for thin films (less than ∼100 nm) on a neutral surface and by sandwiching thicker films (∼240 nm) between two chemically neutral surfaces. Solvent flux through the composite membranes is consistent with accessible 10 nm diameter pores. Size selectivity of the membranes is characterized from the permeability of fluorescently tagged solutes (ranging from 4000 to 70 000 Da), where a size cut off occurs at 69 000 Da for the model protein bovine serum albumin. These permeability studies of the nanofiltration membranes serve to demonstrate solute transport in oriented silica thin film membranes and also highlight their versatility for membrane-based separations. PMID:27479791

  13. Thermal Stability and Catalytic Activity of Gold Nanoparticles Supported on Silica

    SciTech Connect

    Veith, G.; Lupini, A; Rashkeev, S; Pennycook, S; Mullins, D; Schwartz, V; Bridges, C; Dudney, N

    2009-01-01

    2.5 nm gold nanoparticles were grown on a fumed silica support, using the physical vapor deposition technique of magnetron sputtering, that are thermally stable when annealed in an oxygen containing environment up to at least 500 C. Traditional Au/TiO{sub 2} catalysts rapidly sinter to form large 13.9 nm gold clusters under these annealing conditions. This surprising stability of Au/SiO{sub 2} is attributed to the absence of residual impurities (ensured by the halide-free production method) and a strong bond between gold and defects at the silica surface (about 3 eV per bond) estimated from density functional theory (DFT) calculations. The Au/SiO{sub 2} catalysts are less active for CO oxidation than the prototypical Au/TiO2 catalysts, however they can be regenerated far more easily, allowing the activity of a catalyst to be fully recovered after deactivation.

  14. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  15. Resolving Interparticle Heterogeneities in Composition and Hydrogenation Performance between Individual Supported Silver on Silica Catalysts

    PubMed Central

    2015-01-01

    Supported metal nanoparticle catalysts are commonly obtained through deposition of metal precursors onto the support using incipient wetness impregnation. Typically, empirical relations between metal nanoparticle structure and catalytic performance are inferred from ensemble averaged data in combination with high-resolution electron microscopy. This approach clearly underestimates the importance of heterogeneities present in a supported metal catalyst batch. Here we show for the first time how incipient wetness impregnation leads to 10-fold variations in silver loading between individual submillimeter-sized silica support granules. This heterogeneity has a profound impact on the catalytic performance, with 100-fold variations in hydrogenation performance at the same level. In a straightforward fashion, optical microscopy interlinks single support particle level catalytic measurements to structural and compositional information. These detailed correlations reveal the optimal silver loading. A thorough consideration of catalyst heterogeneity and the impact thereof on the catalytic performance is indispensable in the development of catalysts. PMID:26618052

  16. Selective adsorption mechanisms of antilipidemic and non-steroidal anti-inflammatory drug residues on functionalized silica-based porous materials in a mixed solute.

    PubMed

    Suriyanon, Nakorn; Permrungruang, Jutima; Kaosaiphun, Jidanan; Wongrueng, Aunnop; Ngamcharussrivichai, Chawalit; Punyapalakul, Patiparn

    2015-10-01

    The selective adsorption mechanisms of naproxen (NAP), acetaminophen (ACT), and clofibric acid (CFA) on silica-based porous materials were examined by single and mixed-batch adsorption. Effects of the types and densities of surface functional groups on adsorption capacities were determined, including the role of hydrophobic and hydrophilic dissolved organic matters (DOMs). Hexagonal mesoporous silica (HMS), superparamagnetic HMS (HMS-SP) and SBA-15 were functionalized and applied as adsorbents. Compared with powdered activated carbon (PAC), amine-functionalized HMS had a better adsorption capacity for CFA, but PAC possessed a higher adsorption capacity for the other pharmaceuticals than HMS and its two derivatives. In contrast to PAC, the adsorption capacity of the mesoporous silicas varied with the solution pH, being highest at pH 5. Electrostatic interactions and hydrogen bonding were found to be the main mechanisms. Increase in grafted amine group density on silica surfaces can enhance the CFA adsorption capacity. Further, hydrophilic DOM can decrease CFA adsorption capacities on amino-grafted adsorbents by adsorption site competition, while hydrophobic DOM can interfere with CFA adsorption by the interaction between hydrophobic DOM and CFA. Finally, in a competitive adsorption study, the adsorption capacity of hydrophilic adsorbents for acidic pharmaceuticals varied with their pKa values. PMID:26025186

  17. Mixtures of Supported and Hybrid Lipid Membranes on Heterogeneously Modified Silica Nanoparticles

    PubMed Central

    Piper-Feldkamp, Aundrea R.; Wegner, Maria; Brzezinski, Peter; Reed, Scott M.

    2013-01-01

    Simple supported lipid bilayers do not accurately reflect the complex heterogeneity of cellular membranes; however, surface modification makes it possible to tune membrane properties to better mimic biological systems. Here, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (DETAS), a silica modifier, facilitated formation of supported lipid bilayers on silica nanoparticles. Evidence for a stable supported bilayer came from the successful entrapment of a soluble fluorophore within an interstitial water layer. A fluorescence-quenching assay that utilized a pore-forming peptide was used to demonstrate the existence of two separate lipid leaflets. In this assay, fluorescence was quenched by dithionite in roughly equal proportions prior to and after addition of melittin. When a hydrophobic modifier, octadecyltriethoxysilane, was co-deposited on the nanoparticles with DETAS, there was a decrease in the amount of supported bilayer on the nanoparticles and an increase in the quantity of hybrid membrane. This allowed for a controlled mixture of two distinct types of membranes on a single substrate, one separated by a water cushion and the other anchored directly on the surface, thereby providing a new mimic of cellular membranes. PMID:23387352

  18. Wettability of modified silica layers deposited on glass support activated by plasma

    NASA Astrophysics Data System (ADS)

    Terpiłowski, Konrad; Rymuszka, Diana; Goncharuk, Olena V.; Sulym, Iryna Ya.; Gun'ko, Vladimir M.

    2015-10-01

    Fumed silica modified by hexamethyldisilazane [HDMS] and polydimethylsiloxane [PDMS] was dispersed in a polystyrene/chloroform solution. To increase adhesion between deposited silica layers and a glass surface, the latter was pretreated with air plasma for 30 s. The silica/polystyrene dispersion was deposited on the glass support using a spin coater. After deposition, the plates were dried in a desiccator for 24 h. Water advancing and receding contact angles were measured using the tilted plate method. The apparent surface free energy (γS) was evaluated using the contact angle hysteresis approach. The surface topography was determined using the optical profilometry method. Contact angles changed from 59.7° ± 4.4 (at surface coverage with trimethylsilyl groups Θ = 0.14) to 155° ± 3.1 at Θ = 1. The value of γS decreased from 51.3 ± 2.8 mJ/m2 (for the sample at the lowest value of Θ) to 1.0 ± 0.4 mJ/m2 for the most hydrophobic sample. Thus, some systems with a high degree of modification by HDMS showed superhydrophobicity, and the sliding angle amounted to about 16° ± 2.1.

  19. Rhizopus oryzae lipase immobilized on hierarchical mesoporous silica supports for transesterification of rice bran oil.

    PubMed

    Ramachandran, Prashanth; Narayanan, Guru Krupa; Gandhi, Sakthivel; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-03-01

    The tunable textural properties of self-oriented mesoporous silica were investigated for their suitability as enzyme immobilization matrices to support transesterification of rice bran oil. Different morphologies of mesoporous silica (rod-like, rice-like, and spherical) were synthesized and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption-desorption isotherms. The surface area, pore size, and ordered arrangement of the pores were found to influence the immobilization and activity of the enzyme in the mesopores. The immobilization in rod-like silica was highest with an immobilization efficiency of 63 % and exhibited minimal activity loss after immobilization. Functionalization of the mesoporous surface with ethyl groups further enhanced the enzyme immobilization. The free enzyme lost most of its activity at 50 °C while the immobilized enzyme showed activity even up to 60 °C. Transesterified product yield of nearly 82 % was obtained for 24 h of reaction with enzyme immobilized on ethyl-functionalized SBA-15 at an oil:methanol ratio of 1:3. Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectrometry (GC-MS) were used to characterize the transesterified product obtained. The reusability of the immobilized enzyme was studied for 3 cycles. PMID:25488500

  20. Cooperative Effect of Monopodal Silica-Supported Niobium Complex Pairs Enhancing Catalytic Cyclic Carbonate Production.

    PubMed

    D'Elia, Valerio; Dong, Hailin; Rossini, Aaron J; Widdifield, Cory M; Vummaleti, Sai V C; Minenkov, Yury; Poater, Albert; Abou-Hamad, Edy; Pelletier, Jérémie D A; Cavallo, Luigi; Emsley, Lyndon; Basset, Jean-Marie

    2015-06-24

    Recent discoveries highlighted the activity and the intriguing mechanistic features of NbCl5 as a molecular catalyst for the cycloaddition of CO2 and epoxides under ambient conditions. This has inspired the preparation of novel silica-supported Nb species by reacting a molecular niobium precursor, [NbCl5·OEt2], with silica dehydroxylated at 700 °C (SiO(2-700)) or at 200 °C (SiO(2-200)) to generate diverse surface complexes. The product of the reaction between SiO(2-700) and [NbCl5·OEt2] was identified as a monopodal supported surface species, [≡SiONbCl4·OEt2] (1a). The reactions of SiO(2-200) with the niobium precursor, according to two different protocols, generated surface complexes 2a and 3a, presenting significant, but different, populations of the monopodal surface complex along with bipodal [(≡SiO)2NbCl3·OEt2]. (93)Nb solid-state NMR spectra of 1a-3a and (31)P solid-state NMR on their PMe3 derivatives 1b-3b led to the unambiguous assignment of 1a as a single-site monopodal Nb species, while 2a and 3a were found to present two distinct surface-supported components, with 2a being mostly monopodal [≡SiONbCl4·OEt2] and 3a being mostly bipodal [(≡SiO)2NbCl3·OEt2]. A double-quantum/single-quantum (31)P NMR correlation experiment carried out on 2b supported the existence of vicinal Nb centers on the silica surface for this species. 1a-3a were active heterogeneous catalysts for the synthesis of propylene carbonate from CO2 and propylene oxide under mild catalytic conditions; the performance of 2a was found to significantly surpass that of 1a and 3a. With the support of a systematic DFT study carried out on model silica surfaces, the observed differences in catalytic efficiency were correlated with an unprecedented cooperative effect between two neighboring Nb centers on the surface of 2a. This is in an excellent agreement with our previous discoveries regarding the mechanism of NbCl5-catalyzed cycloaddition in the homogeneous phase. PMID:25950495

  1. Stopping the growth of particles to silica-supported mono-nuclear Ru hydride surface species by tuning silica with surface silanes

    SciTech Connect

    Berthoud, Romain; Fenet, Bernard; Lukens, Wayne; Pelzer, Katrin; Basset, Jean-Marie; Candy, Jean-Pierre; Coperet, Christophe

    2007-07-11

    Tuning silica by replacing surface silanols with silanes allows chemical grafting of Ru(COD)(COT) through a covalent Ru-Si bond, as evidenced by elemental analysis, IR spectroscopy and EXAFS. Treatment of these surface species under H2 at 300 oC yields a mononuclear Ru hydride species, without any sintering of the metal according to TEM and EXAFS analyses. This supported system displays catalytic properties different from those of supported Ru particles (2 nm), selectively hydrogenating olefins over aromatics.

  2. Iniferter-mediated grafting of molecularly imprinted polymers on porous silica beads for the enantiomeric resolution of drugs.

    PubMed

    Gutiérrez-Climente, Raquel; Gómez-Caballero, Alberto; Halhalli, Mahadeo; Sellergren, Börje; Goicolea, M Aránzazu; Barrio, Ramón J

    2016-03-01

    A surface-imprinted chiral stationary phase for the enantiomeric resolution of the antidepressant drug, citalopram, is presented in this work. N, N'-diethylaminodithiocarbamoylpropyl(trimethoxy)silane has been used as silane iniferter for the surface functionalization of the solid silica support. A molecularly imprinted polymer thin film, in the nm scale, was then grafted on the silanized silica using itaconic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linker in the presence of the template S-citalopram. The total monomer amount was calculated to obtain the desired thickness. Non-imprinted stationary phases were prepared similarly in the absence of S-citalopram. Characterization of the materials was carried out by scanning electron microscopy, thermogravimetric analysis, elemental analysis and Fourier transform infrared spectroscopy. Stationary phases have been applied to the chromatographic separation of the target. Conditions for best chromatographic resolution of the enantiomers were optimized, and it was found that a mobile phase consisting of a mixture of formate buffer (40 mM, pH 3) and acetonitrile (30:70 v/v) at 40 °C provided best results. Binding behaviour of the developed material was finally assessed by batch rebinding experiments. The obtained binding isotherm was fitted to different binding models being the Freundlich-Langmuir model, the one that best fitted the experimental data. The developed material has shown high selectivity for the target enantiomer, and the stationary phase could be undoubtedly exploited for chiral separation of the drug. PMID:25683741

  3. Silica Supported Ceria Nanoparticles: A Hybrid Nanostructure To Increase Stability And Surface Reactivity Of Nano-crystalline Ceria

    SciTech Connect

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Varga, Tamas; Thevuthasan, Suntharampillai

    2014-01-21

    The mixed oxidation state (3+/4+) of ceria nanoparticles of smaller sizes make them attractive materials for their catalytic antioxidant biological properties. However the unmodified smaller ceria nanoparticles are limited in their use due to particles agglomeration and reduced surface chemical reactivity in the solutions used to disperse the nanoparticles. This work describes an effort to stabilize small ceria nanoparticles, retaining their desired activity, on a larger stable silica support. The ceria nanoparticles attached to silica was synthesized by a solution synthesis technique in which the surface functional groups of silica nanoparticles were found to be essential for the formation of smaller ceria nanoparticles. The surface chemical and vibrational spectroscopy analysis revealed cerium–silicate (Ce-O-Si) covalent bond linkage between silica and cerium oxide nanoparticles. The colloidal properties (agglomerate particle size and suspension stability) of ceria attached to silica was significantly improved due to inherent physico-chemical characteristics of silica against random collision and gravitation settling as opposed to unmodified ceria nanoparticles in solution. The bio-catalytic activity of ceria nanoparticles in the 3+ oxidation state was not found to be limited by attachment to the silica support as measured by free radical scavenging activity in different biological media conditions.

  4. Synthesis of silica supported titania nanocomposite in controllable phase content and morphology

    NASA Astrophysics Data System (ADS)

    Lim, Yew Von; Fan, Haiming; Shen, Zexiang; Kang, Chiang Huen; Feng, Yuanping; Wang, Shijie

    2009-05-01

    The silica supported titania nanocomposite thin films with controllable particle size and phase content were successfully prepared by a convenient post annealing approach involving in solid-solid interfacial reaction. The effects of growth conditions, such as the annealing temperature and silicon concentration on the particle size and phase content, were systematically studied by using Atomic force microscopy (AFM), Raman spectroscopy, X-ray diffraction (XRD), and X-ray spectroscopy (XPS). The results indicate that the silicon concentration is a dominant factor in the morphology, crystallization and phase transformation of these nanocomposites. A mechanism for the high temperature phase transformation is also proposed based on the migration of the oxygen vacancies.

  5. Functionalized porous silica&maghemite core-shell nanoparticles for applications in medicine: design, synthesis, and immunotoxicity

    PubMed Central

    Zasońska, Beata A.; Líšková, Aurélia; Kuricová, Miroslava; Tulinská, Jana; Pop-Georgievski, Ognen; Čiampor, Fedor; Vávra, Ivo; Dušinská, Mária; Ilavská, Silvia; Horváthová, Mira; Horák, Daniel

    2016-01-01

    Aim To determine cytotoxicity and effect of silica-coated magnetic nanoparticles (MNPs) on immune response, in particular lymphocyte proliferative activity, phagocytic activity, and leukocyte respiratory burst and in vitro production of interleukin-6 (IL-6) and 8 (IL-8), interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and granulocyte macrophage colony stimulating factor (GM-CSF). Methods Maghemite was prepared by coprecipitation of iron salts with ammonia, oxidation with NaOCl and modified by tetramethyl orthosilicate and aminosilanes. Particles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). Cytotoxicity and lymphocyte proliferative activity were assessed using [3H]-thymidine incorporation into DNA of proliferating human peripheral blood cells. Phagocytic activity and leukocyte respiratory burst were measured by flow cytometry; cytokine levels in cell supernatants were determined by ELISA. Results γ-Fe2O3&SiO2-NH2 MNPs were 13 nm in size. According to TEM, they were localized in the cell cytoplasm and extracellular space. Neither cytotoxic effect nor significant differences in T-lymphocyte and T-dependent B-cell proliferative response were found at particle concentrations 0.12-75 μg/cm2 after 24, 48, and 72 h incubation. Significantly increased production of IL-6 and 8, and GM-CSF cytokines was observed in the cells treated with 3, 15, and 75 µg of particles/cm2 for 48 h and stimulated with pokeweed mitogen (PHA). No significant changes in TNF-α and IFN-γ production were observed. MNPs did not affect phagocytic activity of monocytes and granulocytes when added to cells for 24 and 48 h. Phagocytic respiratory burst was significantly enhanced in the cultures exposed to 75 µg MNPs/cm2 for 48 h. Conclusions The cytotoxicity and in vitro immunotoxicity were found to be minimal in the newly developed porous core-shell γ-Fe2

  6. Silica-Supported Oligomeric Benzyl Phosphate (Si-OBP) and Triazole Phosphate (Si-OTP) Alkylating Reagents.

    PubMed

    Maity, Pradip K; Faisal, Saqib; Rolfe, Alan; Stoianova, Diana; Hanson, Paul R

    2015-10-16

    The syntheses of silica-supported oligomeric benzyl phosphates (Si-OBP(n)) and triazole phosphates (Si-OTP(n)) using ring-opening metathesis polymerization (ROMP) for use as efficient alkylating reagents is reported. Ease of synthesis and grafting onto the surface of norbornenyl-tagged (Nb-tagged) silica particles has been demonstrated for benzyl phosphate and triazole phosphate monomers. It is shown that these silica polymer hybrid reagents, Si-OBP(n) and Si-OTP(n), can be used to carry out alkylation reactions with an array of different nucleophiles to afford the corresponding benzylated and (triazolyl)methylated products in good yield and high purity. PMID:26430955

  7. Silica xerogel/aerogel-supported lipid bilayers: consequences of surface corrugation.

    PubMed

    Goksu, Emel I; Hoopes, Matthew I; Nellis, Barbara A; Xing, Chenyue; Faller, Roland; Frank, Curtis W; Risbud, Subhash H; Satcher, Joe H; Longo, Marjorie L

    2010-04-01

    The objective of this paper was to review our recent investigations of silica xerogel and aerogel-supported lipid bilayers. These systems provide a format to observe relationships between substrate curvature and supported lipid bilayer formation, lipid dynamics, and lipid mixtures phase behavior and partitioning. Sensitive surface techniques such as quartz crystal microbalance and atomic force microscopy are readily applied to these systems. To inform current and future investigations, we review the experimental literature involving the impact of curvature on lipid dynamics, lipid and phase-separated lipid domain localization, and membrane-substrate conformations and we review our molecular dynamics simulations of supported lipid bilayers with the atomistic and molecular information they provide. PMID:19766590

  8. Investigation of Hexagonal Mesoporous Silica-Supported Composites for Trace Moisture Adsorption

    NASA Astrophysics Data System (ADS)

    Li, Li; Tang, Nian; Wang, Yaxue; Cen, Wanglai; Liu, Jie; Zhou, Yongyan

    2015-11-01

    Moisture control is an important part of effective maintenance program for gas-insulated switchgear (GIS). Herein, hexagonal mesoporous silica (HMS) materials were synthesized by adopting dodecylamine as a structure directing agent, which was then employed as a host for supporting polyethylenimine (PEI) without further calcinations or extraction treatment. The physicochemical properties of the silica support and composites were characterized, and the moisture adsorption capacity of these composites was determined. The reserved template agents resulted in a dramatic improvement in moisture adsorption amount. Among them, 50PEI/DHMS showed the highest adsorption value. The enhanced adsorption could be attributed to the generated hydrogen bonding between amino groups and H2O molecules and the improved diffusion of moisture into the bulk networks of PEI polymers due to its better spatial dispersion imposed by the long alkyl chains of template agents, which was confirmed by thermogravimetry results and hydrogen efficiency analysis. Moreover, the maintained terminal amino groups of templates could also function as active sites for moisture adsorption. The results herein imply that the PEI/DHMS composites could be appealing materials for capturing moisture in GIS.

  9. Investigation of Hexagonal Mesoporous Silica-Supported Composites for Trace Moisture Adsorption.

    PubMed

    Li, Li; Tang, Nian; Wang, Yaxue; Cen, Wanglai; Liu, Jie; Zhou, Yongyan

    2015-12-01

    Moisture control is an important part of effective maintenance program for gas-insulated switchgear (GIS). Herein, hexagonal mesoporous silica (HMS) materials were synthesized by adopting dodecylamine as a structure directing agent, which was then employed as a host for supporting polyethylenimine (PEI) without further calcinations or extraction treatment. The physicochemical properties of the silica support and composites were characterized, and the moisture adsorption capacity of these composites was determined. The reserved template agents resulted in a dramatic improvement in moisture adsorption amount. Among them, 50PEI/DHMS showed the highest adsorption value. The enhanced adsorption could be attributed to the generated hydrogen bonding between amino groups and H2O molecules and the improved diffusion of moisture into the bulk networks of PEI polymers due to its better spatial dispersion imposed by the long alkyl chains of template agents, which was confirmed by thermogravimetry results and hydrogen efficiency analysis. Moreover, the maintained terminal amino groups of templates could also function as active sites for moisture adsorption. The results herein imply that the PEI/DHMS composites could be appealing materials for capturing moisture in GIS. PMID:26577389

  10. Hydrodynamic and dispersion behavior in a non-porous silica monolith through fluid dynamic study of a computational mimic reconstructed from sub-micro-tomographic scans.

    PubMed

    Loh, Kai-Chee; Vasudevan, Vivek

    2013-01-25

    An analysis of the transport properties of the bulk homogeneous core of a commercially available silica monolith (Chromolith(®)) is presented via direct numerical simulations in a topological model reconstructed from 3D nanotomographic scans at isotropic resolutions of 390 nm, 290 nm and 190 nm. The pore and skeleton size distributions were calculated from image analysis and a representative unit cell from each resolution was reconstructed to simulate the hydrodynamic transport properties using Computational Fluid Dynamics (CFD). A 30 μm × 30 μm × 30 μm unit cell extracted at 190 nm resolution was found to be representative of hydrodynamic permeability. Numerical peak parking simulations yielded an axial external obstruction factor (γ(e)) of 0.8. Mass transfer characteristics of a large non-penetrating molecule (BSA) were evaluated under non-retained conditions so as to elucidate the eddy dispersion contribution to total HETP. Transverse and axial dispersion length scales in the reconstructed model were resolved and related to the structural heterogeneities in the silica monolith. Deviations of simulated HETP from experimental measurements were attributed to a transcolumn dispersion contribution, which amounted to about 90% of the total HETP. The presented approach provides great scope to analyze the contributions of pore network topology to separation performance of silica monoliths (and other porous media) in HPLC applications. A significant reduction in simulation time and memory resources has been observed due to the lower scanning resolution, without significant loss in prediction accuracy. PMID:23290336

  11. Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yang, Linjing; Zhou, Weijia; Hou, Dongman; Zhou, Kai; Li, Guoqiang; Tang, Zhenghua; Li, Ligui; Chen, Shaowei

    2015-03-01

    Advanced materials for electrocatalytic water splitting are central to renewable energy research. In this work, MoS2 nanosheets supported on porous metallic MoO2 (MoS2/MoO2) were produced by sulfuration treatments of porous and highly conductive MoO2 for the hydrogen evolution reaction. Porous MoO2 with one-dimensional channel-like structures was prepared by calcination at elevated temperatures using phosphomolybdic acid as the precursor and mesoporous silica (SBA-15) as the template, and the subsequent hydrothermal treatment in the presence of thioacetamide led to the transformation of the top layers to MoS2 forming MoS2/MoO2 composites. Electrochemical studies showed that the obtained composites exhibited excellent electrocatalytic activity for HER with an onset potential of -104 mV (vs. RHE), a large current density (10 mA cm-2 at -0.24 V), a small Tafel slope of 76.1 mV dec-1 and robust electrochemical durability. The performance might be ascribed to the high electrical conductivity and porous structures of MoO2 with one-dimensional channels of 3 to 4 nm in diameter that allowed for fast charge transport and collection.Advanced materials for electrocatalytic water splitting are central to renewable energy research. In this work, MoS2 nanosheets supported on porous metallic MoO2 (MoS2/MoO2) were produced by sulfuration treatments of porous and highly conductive MoO2 for the hydrogen evolution reaction. Porous MoO2 with one-dimensional channel-like structures was prepared by calcination at elevated temperatures using phosphomolybdic acid as the precursor and mesoporous silica (SBA-15) as the template, and the subsequent hydrothermal treatment in the presence of thioacetamide led to the transformation of the top layers to MoS2 forming MoS2/MoO2 composites. Electrochemical studies showed that the obtained composites exhibited excellent electrocatalytic activity for HER with an onset potential of -104 mV (vs. RHE), a large current density (10 mA cm-2 at -0.24 V), a

  12. Porous Carbon-Supported Gold Nanoparticles for Oxygen Reduction Reaction: Effects of Nanoparticle Size.

    PubMed

    Wang, Likai; Tang, Zhenghua; Yan, Wei; Yang, Hongyu; Wang, Qiannan; Chen, Shaowei

    2016-08-17

    Porous carbon-supported gold nanoparticles of varied sizes were prepared using thiolate-capped molecular Au25, Au38, and Au144 nanoclusters as precursors. The organic capping ligands were removed by pyrolysis at controlled temperatures, resulting in good dispersion of gold nanoparticles within the porous carbons, although the nanoparticle sizes were somewhat larger than those of the respective nanocluster precursors. The resulting nanocomposites displayed apparent activity in the electroreduction of oxygen in alkaline solutions, which increased with decreasing nanoparticle dimensions. Among the series of samples tested, the nanocomposite prepared with Au25 nanoclusters displayed the best activity, as manifested by the positive onset potential at +0.95 V vs RHE, remarkable sustainable stability, and high numbers of electron transfer at (3.60-3.92) at potentials from +0.50 to +0.80 V. The performance is comparable to that of commercial 20 wt % Pt/C. The results demonstrated the unique feasibility of porous carbon-supported gold nanoparticles as high-efficiency ORR catalysts. PMID:27454707

  13. Recycling of fly ash for preparing porous mullite membrane supports with titania addition.

    PubMed

    Dong, Yingchao; Hampshire, Stuart; Zhou, Jian-er; Lin, Bin; Ji, Zhanlin; Zhang, Xiaozhen; Meng, Guangyao

    2010-08-15

    In order to effectively utilize industrial waste fly ash, porous mullite ceramic membrane supports were prepared from fly ash and calcined bauxite with chemically pure titania as sintering additive. The effects of TiO(2) on the sintering behaviors and main properties of porous mullite were studied in detail. Due to the addition of titania, the sintering of the flyash-based mullite was inhibited at low temperatures, but effectively improved at high temperatures, the latter is suitable for preparing porous mullite membrane supports by incomplete sintering. Titania entered into liquid glassy phase with low high-temperature viscosity during sintering, resulting in the improvement of sintering activity, as well as the lowering of secondary mullitization temperature (where 2.0% titania). Between 1300 and 1500 degrees C, with increasing titania content, the samples exhibit increased trends in both linear shrinkage percent and bulk density, but a slightly decreased trend in open porosity, at all sintering temperatures. At 1300-1500 degrees C, the samples sintered at 1450 degrees C for 2h exhibit the lowest shrinkage and bulk density, as well as the highest open porosities in the investigated titania content range of 0-6.0 wt.%. Also, with increasing titania content, the pore size decreases slightly but the three-point flexural strength increases gradually at 1450 degrees C. PMID:20452727

  14. Capping-agent-free synthesis of substrate-supported porous icosahedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Ji Hong; Guan, Zhenping; Yang, Su Ke; Yuan, Peiyan; Xu, Qing-Hua; Xu, Guo Qin

    2013-03-01

    We report a new capping-agent-free strategy for the synthesis of substrate-supported porous icosahedral Au nanoparticles (NPs) with rough naked surfaces, based on the crystallization from substrate-supported thin solution layers followed by solid-phase thermolysis. The plasmonic properties of icosahedral Au NPs have been studied using single particle dark-field scattering microscopy and spectroscopy. The two distinct localized surface plasmon resonance (LSPR) bands observed in the single particle dark-field spectra can be ascribed to the quadrupole resonance at ca. 425 nm and the size-dependent dipole resonance in the red region (645-708 nm). The unique rough naked surface, the facile synthesis, together with the ability to control the nanoparticle size and to vary the LSPR frequency in the red region, would make the substrate-supported porous icosahedral Au NPs promising on multiple levels in the applications of catalysis, ultrasensitive biosensors, and in surface-enhanced Raman scattering (SERS).We report a new capping-agent-free strategy for the synthesis of substrate-supported porous icosahedral Au nanoparticles (NPs) with rough naked surfaces, based on the crystallization from substrate-supported thin solution layers followed by solid-phase thermolysis. The plasmonic properties of icosahedral Au NPs have been studied using single particle dark-field scattering microscopy and spectroscopy. The two distinct localized surface plasmon resonance (LSPR) bands observed in the single particle dark-field spectra can be ascribed to the quadrupole resonance at ca. 425 nm and the size-dependent dipole resonance in the red region (645-708 nm). The unique rough naked surface, the facile synthesis, together with the ability to control the nanoparticle size and to vary the LSPR frequency in the red region, would make the substrate-supported porous icosahedral Au NPs promising on multiple levels in the applications of catalysis, ultrasensitive biosensors, and in surface

  15. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Yang, Xu; Yang, Hui; Huang, Peiyan; Song, Huiyu; Liao, Shijun

    2014-10-01

    A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation-hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  16. Size control of rhodium particles of silica-supported catalysts using water-in-oil microemulsion

    NASA Astrophysics Data System (ADS)

    Kishida, Masahiro; Hanaoka, Toshiaki; Kim, Won Young; Nagata, Hideo; Wakabayashi, Katsuhiko

    1997-11-01

    Effects of components of water-in-oil microemulsions on rhodium particle sizes of silica-supported rhodium catalysts were investigated in the catalyst preparation method using microemulsion. In the case of the microemulsion of polyoxyethylene(23)dodecyl ether/ n-alcohols/RhCl 3 aq., the rhodium particle size increased from 3.4 to 5.0 nm as the specific permittivity of the organic solvent increased. The chain length of hydrophilic group of polyoxyethylene- p-nonylphenyl ether ( n = 5 to 15) employed as surfactants had an effect on the rhodium particle size where the rhodium size ranged between 2.0 and 3.6 nm. The rhodium particle size was 1.5 nm in the case of sodium bis(2-ethylhexyl) sulfocuccinate and this value was found to be the smallest. These results could be interpreted in terms of the adsorption of the surfactant on rhodium-hydrazine particle surface.

  17. Effect of particle size on CO hydrogenation activity of silica supported cobalt catalysts

    SciTech Connect

    Ho, Suiwen; Houalla, M.; Hercules, D.M. )

    1990-08-09

    Two series of silica supported cobalt catalysts were prepared by incipient wetness impregnation, one by varying the calcination temperature (200-400{degree}C, 3 wt % Co) and the other by changing the cobalt loading (1-10 wt % Co). Examination by ESCA, XRD, and H{sub 2} chemisorption showed that Co{sub 3}O{sub 4} is the dominant phase. The cobalt phase is reduced to cobalt metal at 400{degree}C. The cobalt particle sizes obtained from ESCA correlated well with those derived from H{sub 2} chemisorption and XRD line broadening. The turnover frequency of Co/SiO{sub 2} for CO hydrogenation was invariant with cobalt dispersion in the range of 6-20% dispersion.

  18. Organically functionalized mesoporous silica as a support for synthesis and catalysis

    NASA Astrophysics Data System (ADS)

    McEleney, Kevin Andrew

    Mesoporous silicates are excellent materials for supported catalysis due to their ease of functionalization, tunable pore size and high surface areas. Mesoporous silicates have been utilized in a variety of applications such as drug delivery scaffolds and catalyst supports. Functionalization of the surface can be achieved by either grafting of alkoxy silanes or co-condensation of the organosilane with the inorganic silica source. My research in this area can be divided into two components. In the first, we address the significant issue of metal contamination after reactions that are catalyzed by transition metals. In the second, we examine the design of new catalysts based on organic/inorganic composites. Ruthenium catalyzed processes such as olefin metathesis or asymmetric hydrogenation, are often underutilized due to the difficulty of removing the ruthenium by-products. Attempts to remove ruthenium involve treating the solution with a scavenging reagent followed by silica chromatography. Often these scavenging agents are expensive phosphines or toxic agents like lead tetra-acetate. SBA-15 functionalized with aminopropyl triethoxysilane displays a high affinity for ruthenium. Furthermore, it can be utilized to remove ruthenium by-products from olefin metathesis or hydrogenation reactions without the need for silica chromatography. We have also prepared sulfur-functionalized mesoporous silicates that have a high affinity for palladium. The materials after loading prove to be active catalysts for a variety of palladium catalyzed processes such as Suzuki-Miyaura and Sonogashira couplings. The catalysts are recyclable with moderate loss of activity and structure, depending on the method of incorporation of the thiol. We have characterized the as-synthesized and used catalysts by nitrogen sorption, TEM, X-ray photoelectron spectroscopy (XPS) and a variety of homogeneity tests were performed on the catalysts. Periodic mesoporous organosilicates (PMOs) are a well known

  19. Multi-wavelength Raman Spectroscopic Study of Silica-supported Vanadium Oxide Catalysts

    SciTech Connect

    Wu, Zili; Dai, Sheng; Overbury, Steven {Steve} H

    2010-01-01

    The molecular structure of silica-supported vanadium oxide (VOx) catalysts over wide range of surface VOx density (0.0002 8 V/nm2) has been investigated in detail under dehydrated condition by in situ multi-wavelength Raman spectroscopy (laser excitations at 244, 325, 442, 532, and 633 nm) and in situ UV-Vis diffuse reflectance spectroscopy. Resonance Raman scattering is clearly observed using 244 and 325-nm excitations while normal Raman scattering occurs using excitation at the three visible wavelengths. The observation of strong fundamentals, overtones and combinational bands due to selective resonance enhancement effect helps clarify assignments of some of the VOx Raman bands (920, 1032, and 1060 cm-1) whose assignments have been controversial. The resonance Raman spectra of dehydrated VOx/SiO2 show V=O band at smaller Raman shift than that in visible Raman spectra, an indication of the presence of two different surface VOx species on dehydrated SiO2 even at sub-monolayer VOx loading. Quantitative estimation shows that the two different monomeric VOx species coexist on silica surface from very low VOx loadings and transform to crystalline V2O5 at VOx loadings above monolayer. It is postulated that one of the two monomeric VOx species has pyramidal structure and the other is in partially hydroxylated pyramidal mode. The two VOx species show similar reduction-oxidation behavior and may both participate in redox reactions catalyzed by VOx/SiO2 catalysts. This study demonstrates the advantages of multi-wavelength Raman spectroscopy over conventional single-wavelength Raman spectroscopy in structural characterization of supported metal oxide catalysts.

  20. Formation of supported lipid bilayers on silica: relation to lipid phase transition temperature and liposome size.

    PubMed

    Jing, Yujia; Trefna, Hana; Persson, Mikael; Kasemo, Bengt; Svedhem, Sofia

    2014-01-01

    DPPC liposomes ranging from 90 nm to 160 nm in diameter were prepared and used for studies of the formation of supported lipid membranes on silica (SiO2) at temperatures below and above the gel to liquid-crystalline phase transition temperature (Tm = 41 °C), and by applying temperature gradients through Tm. The main method was the quartz crystal microbalance with dissipation (QCM-D) technique. It was found that liposomes smaller than 100 nm spontaneously rupture on the silica surface when deposited at a temperature above Tm and at a critical surface coverage, following a well-established pathway. In contrast, DPPC liposomes larger than 160 nm do not rupture on the surface when adsorbed at 22 °C or at 50 °C. However, when liposomes of this size are first adsorbed at 22 °C and at a high enough surface coverage, after which they are subject to a constant temperature gradient up to 50 °C, they rupture and fuse to a bilayer, a process that is initiated around Tm. The results are discussed and interpreted considering a combination of effects derived from liposome-surface and liposome-liposome interactions, different softness/stiffness and shape of liposomes below and above Tm, the dynamics and thermal activation of the bilayers occurring around Tm and (for liposomes containing 33% of NaCl) osmotic pressure. These findings are valuable both for preparation of supported lipid bilayer cell membrane mimics and for designing temperature-responsive material coatings. PMID:24651504

  1. Electron beam-induced immobilization of laccase on porous supports for waste water treatment applications.

    PubMed

    Jahangiri, Elham; Reichelt, Senta; Thomas, Isabell; Hausmann, Kristin; Schlosser, Dietmar; Schulze, Agnes

    2014-01-01

    The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a "green" water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate) mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 µm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste- water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA). Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel- than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state. PMID:25111026

  2. Adsorption of simazine on zeolite H-Y and sol-gel technique manufactured porous silica: A comparative study in model and natural waters.

    PubMed

    Sannino, Filomena; Marocco, Antonello; Garrone, Edoardo; Esposito, Serena; Pansini, Michele

    2015-01-01

    In this work, we studied the removal of simazine from both a model and well water by adsorption on two different adsorbents: zeolite H-Y and a porous silica made in the laboratory by using the sol-gel technique. The pH dependence of the adsorption process and the isotherms and pseudo-isotherms of adsorption were studied. Moreover, an iterative process of simazine removal from both the model and well water, which allowed us to bring the residual simazine concentration below the maximum concentration (0.05 mg L(-1)) of agrochemicals in wastewater to be released in surface waters or in sink allowed by Italian laws, was proposed. The results obtained were very interesting and the conclusions drawn from them partly differed from what could reasonably be expected. PMID:26357888

  3. Immobilization of pectinase on silica-based supports: Impacts of particle size and spacer arm on the activity.

    PubMed

    Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz

    2016-06-01

    The pectinase was separately immobilized onto Florisil and nano silica supports through both glutaraldehyde and 3-glyoxypropyltrietoxysilane spacer arms. The effects of spacer arm, particle size of support and ionic liquids on the activities of pectinase preparations were investigated. The immobilization of pectinase onto Florisil and nano silica through 3-glyoxypropyltrietoxysilane spacer arm completely led to inactivation of enzyme; however, 10 and 75% pectinase activity were retained when it was immobilized through glutaraldehyde spacer arm onto Florisil and nano silica, respectively. The pectinase immobilized onto nano silica through glutaraldehyde spacer arm showed 6.3-fold higher catalytic efficiency than that of the pectinase immobilized onto Florisil through same spacer arm. A 2.3-fold increase in thermal stability of pectinase was provided upon immobilization onto nano silica at 35°C. The effects of IL/buffer mixture and volume ratio of IL/buffer mixture on the catalytic activities of free and immobilized pectinase preparations were also tested. All the pectinase preparations showed highest activity in 10% (v/v) 1-butyl-3-methylimidazolium hexafluorophosphate containing medium and their activities significantly affected from the concentration of 1-butyl-3-methylimidazolium hexafluorophosphate. PMID:26964525

  4. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    SciTech Connect

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L

    2008-10-30

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  5. Comparison of stress, strain, and elastic properties for porous silicon layers supported by substrate and corresponding membranes

    NASA Astrophysics Data System (ADS)

    Dariani, R. S.; Nazari, M.

    2016-09-01

    This paper describes characterization of mechanical properties of porous silicon (PS) layers with different porosities using high resolution XRD. The XRD measurement determined various mechanical properties of PS such as; Young modulus, Poisson's ratio, and lattice parameter expansion. Our results indicated that mechanical properties reduce with increasing porosity. Also, the mechanical properties of two different porous layers, either supported by or detached from the substrate were examined. Comparison of the two porous layers showed that the constraint in the interatomic spacing is the origin of the lattice constant expansion in the planes perpendicular to the surface. This phenomenon can be useful for gas sensor applications.

  6. Rapid and efficient synthesis of 4(3H)-quinazolinones under ultrasonic irradiation using silica-supported Preyssler nanoparticles.

    PubMed

    Heravi, Majid M; Sadjadi, Samaheh; Sadjadi, Sodeh; Oskooie, Hossein A; Bamoharram, Fatemeh F

    2009-08-01

    A new synthesis of 4(3H)-quinazolinone from the reaction of 2-amino-benzamide, and acylchlorides in the presence of catalytic amounts of silica-supported Preyssler nano particles as green, reusable and efficient catalyst under ultra sonic irradiation is reported. PMID:19362508

  7. A convenient sol-gel approach to the preparation of nano-porous silica coatings with very low refractive indices.

    PubMed

    Zhang, Yulu; Zhao, Chaoxia; Wang, Pingmei; Ye, Longqiang; Luo, Jianhui; Jiang, Bo

    2014-11-18

    Silica coatings with refractive indices as low as 1.10 were prepared via a one-step base-catalysed sol-gel process using methyltriethoxysilane and tetraethoxysilane as co-precursors. No expensive equipment was required and the method did not require etching or high-temperature calcination. PMID:25253239

  8. The thermal stability of porous alumina/stainless steel catalyst support obtained by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Novaković, Tatjana; Radić, Nenad; Grbić, Boško; Dondur, Vera; Mitrić, Miodrag; Randjelović, Danijela; Stoychev, Dimitar; Stefanov, Plamen

    2008-12-01

    Active porous alumina coatings were obtained by deposition of boehmite sol on stainless steel (SS) substrate by spray pyrolysis method. The temperature and the doping of polyethylene glycol (PEG) and La 3+ in the boehmite sol effects on the textural and structural properties and surface morphology of alumina coatings on stainless steel samples are presented. It was found that the addition of polyethylene glycol combined with La 3+ to the boehmite sol before spraying improves the thermal stability of porous alumina coatings. X-ray diffraction patterns of a doped sample, even after 5 h at 1000 °C, point out to the presence only of δ-Al 2O 3, with a SBET of 74 m 2/g. XPS data and SEM photographs of coated samples show that alumina were well deposited on the metallic supports. The absence of any lanthanum compounds indicates very well homogeneous dispersion of La 3+-ions on the surface of alumina crystallites. AFM images show sphere like alumina grains and agglomerates with surface roughness from 60 to 180 nm, depending on temperature and doping. Surface roughness of doped alumina samples was higher than that of non-doped. It was pointed out that spray pyrolysis method enables preparation of alumina layers with relatively high specific surface area, suitable for applications as catalysts supports.

  9. Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations

    DOE PAGESBeta

    Lee, Pyung -Soo; Bhave, Ramesh R.; Nam, Seung -Eun; Kim, Daejin

    2016-01-11

    Thin carbon molecular sieve membranes (<500 nm) were fabricated inside of long geometry (9 inch) of stainless steel tubes with all welded construction. Alumina intermediate layer on porous stainless steel tube support was used to reduce effective support pore size and to provide a more uniform surface roughness. Novolac phenolic resin solution was then coated on the inside of porous stainless steel tube by slip casting while their viscosities were controlled from 5 centipoises to 30 centipoises. Carbonization was carried out at 700 °C in which thermal stress was minimized and high quality carbon films were prepared. The highest separationmore » performance characteristics were obtained using 20 cP phenolic resin solutions. The fabricated CMSM showed good separation factor for He/N2 462, CO2/N2 97, and O2/N2 15.4. As the viscosity of polymer precursor solution was reduced from 20 cP to 15 cP, gas permeance values almost doubled with somewhat lower separation factor He/N2 156, CO2/N2 88, and O2/N2 7.7.« less

  10. Thin Porous Metal Sheet-Supported NaA Zeolite Membrane for Water/Ethanol Separation

    SciTech Connect

    Zhang, Jian; Liu, Wei

    2011-04-01

    This paper reports preparation and separation testing results of water-selective zeolite membrane, such as NaA (or 4A-type), supported on a robust, porous metal sheet of 50um thickness. The thin sheet support is of large potential for development of a low-cost, inorganic membrane module of high surface area packing density. The porous Ni alloy sheet of micrometer or sub-micrometer mean pore size, which was prepared by a proprietary process, is used to evaluate different zeolite membrane deposition methods and conditions. The membranes are characterized by SEM, XRD and water/ethanol separation tests. Quality NaA zeolite membrane at thickness <2um is obtained with the secondary hydrothermal growth method. This membrane shows water/ethanol separation factor of >10,000 and water permeation flux of about 4 kg/(m2•h) at 75ºC with a feed of 10wt% water in ethanol. The membrane is also demonstrated with good stability in 66-hour continuous testing at 75ºC and 90ºC.

  11. Planar, Polysilazane-Derived Porous Ceramic Supports for Membrane and Catalysis Applications

    PubMed Central

    Konegger, Thomas; Williams, Lee F.; Bordia, Rajendra K.

    2015-01-01

    Porous, silicon carbonitride-based ceramic support structures for potential membrane and catalysis applications were generated from a preceramic polysilazane precursor in combination with spherical, ultrahigh-molecular weight polyethylene microparticles through a sacrificial filler approach. A screening evaluation was used for the determination of the impact of both porogen content and porogen size on pore structure, strength, and permeability characteristics of planar specimens. By optimizing both the composition as well as cross-linking parameters, maximum characteristic biaxial flexural strengths of 65 MPa and porosities of 42% were achieved. The evolution of an interconnected, open-pore network during thermal porogen removal and conversion of the preceramic polymer led to air permeabilities in the order of 10−14 m2. The materials were further exposed to long-term heat treatments to demonstrate the stability of properties after 100 h at 800°C in oxidizing, inert, and reducing environments. The determined performance, in combination with the versatile preparation method, illustrates the feasibility of this processing approach for the generation of porous ceramic support structures for applications at elevated temperatures in a variety of fields, including membrane and catalysis science. PMID:26681809

  12. Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord.

    PubMed

    Dengler, Ellen C; Liu, Juewen; Kerwin, Audra; Torres, Sergio; Olcott, Clara M; Bowman, Brandi N; Armijo, Leisha; Gentry, Katherine; Wilkerson, Jenny; Wallace, James; Jiang, Xingmao; Carnes, Eric C; Brinker, C Jeffrey; Milligan, Erin D

    2013-06-10

    Amorphous mesoporous silica nanoparticles ('protocells') that support surface lipid bilayers recently characterized in vitro as carrier constructs for small drug and DNA delivery are reported here as highly biocompatible both in vitro and in vivo, involving the brain and spinal cord following spinal delivery into the lumbosacral subarachnoid space (intrathecal; i.t.). Specifically, positively charged, 1, 2-Dioleoyl-3-Trimethylammonium-Propane (DOTAP)-cholesterol (DOTAP:Chol) liposome-formulated protocells revealed stable in vitro cargo release kinetics and cellular interleukin-10 (IL-10) transgene transfection. Recent approaches using synthetic non-viral vector platforms to deliver the pain-suppressive therapeutic transgene, IL-10, to the spinal subarachnoid space have yielded promising results in animal models of peripheral neuropathy, a condition involving aberrant neuronal communication within sensory pathways in the nervous system. Non-viral drug and gene delivery protocell platforms offer potential flexibility because cargo release-rates can be pH-dependent. We report here that i.t. delivery of protocells, with modified chemistry supporting a surface coating of DOTAP:Chol liposomes and containing the IL-10 transgene, results in functional suppression of pain-related behavior in rats for extended periods. This study is the first demonstration that protocell vectors offer amenable and enduring in vivo biological characteristics that can be applied to spinal gene delivery. PMID:23517784

  13. Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord

    PubMed Central

    Dengler, Ellen C.; Liu, Juewen; Kerwin, Audra; Torres, Sergio; Olcott, Clara M.; Bowman, Brandi N.; Armijo, Leisha; Gentry, Katherine; Wilkerson, Jenny; Wallace, James; Jiang, Xingmao; Carnes, Eric C.; Brinker, C. Jeffrey; Milligan, Erin D.

    2013-01-01

    Amorphous mesoporous silica nanoparticles (‘protocells’) that support surface lipid bilayers recently characterized in vitro as carrier constructs for small drug and DNA delivery are reported here as highly biocompatible both in vitro and in vivo, involving the brain and spinal cord following spinal delivery into the lumbosacral subarachnoid space (intrathecal; i.t.). Specifically, positively charged, 1, 2-Dioleoyl-3-Trimethylammonium-Propane (DOTAP) -cholesterol (DOTAP:Chol) liposome-formulated protocells revealed stable in vitro cargo release kinetics and cellular interleukin-10 (IL-10) transgene transfection. Recent approaches using synthetic non-viral vector platforms to deliver the pain-suppressive therapeutic transgene, IL-10, to the spinal subarachnoid space has yielded promising results in animal models of peripheral neuropathy, a condition involving aberrant neuronal communication within sensory pathways in the nervous system. Non-viral drug and gene delivery protocell platforms offer potential flexibility because cargo release-rates can be pH-dependent. We report here that i.t. delivery of protocells, with modified chemistry supporting a surface coating of DOTAP:Chol liposomes and containing the IL-10 transgene, results in functional suppression of pain-related behavior in rats for extended periods. This study is the first demonstration that protocell vectors offer amenable and enduring in vivo biological characteristics that can be applied to spinal gene delivery. PMID:23517784

  14. Anchoring and promotion effects of metal oxides on silica supported catalytic gold nanoparticles.

    PubMed

    Luo, Jingjie; Ersen, Ovidiu; Chu, Wei; Dintzer, Thierry; Petit, Pierre; Petit, Corinne

    2016-11-15

    The understanding of the interactions between the different components of supported metal doped gold catalysts is of crucial importance for selecting and designing efficient gold catalysts for reactions such as CO oxidation. To progress in this direction, a unique supported nano gold catalyst Au/SS was prepared, and three doped samples (Au/SS@M) were elaborated. The samples before and after test were characterized by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). It is found that the doping metal species prefer to be located on the surface of gold nanoparticles and that a small amount of additional reductive metal leads to more efficient reaction. During the catalytic test, the nano-structure of the metal species transforms depending on its chemical nature. This study allows one to identify and address the contribution of each metal on the CO reaction in regard to oxidative species of gold, silica and dopants. Metal doping leads to different exposure of interface sites between Au and metal oxide, which is one of the key factors for the change of the catalytic activity. The metal oxides help the activation of oxygen by two actions: mobility inside the metal bulk and transfer of water species onto of gold nanoparticles. PMID:27501036

  15. Spectroscopic Investigation into Oxidative Degradation of Silica-Supported Amine Sorbents for CO2 Capture

    PubMed Central

    Srikanth, Chakravartula S; Chuang, Steven S C

    2012-01-01

    Oxidative degradation characteristics of silica-supported amine sorbents with varying amounts of tetraethylenepentamine (TEPA) and polyethylene glycol (PEG; P200 or P600 represents PEG with molecular weights of 200 or 600) have been studied by IR and NMR spectroscopy. Thermal treatment of the sorbents and liquid TEPA at 100 °C for 12 h changed their color from white to yellow. The CO2 capture capacity of the TEPA/SiO2 sorbents (i.e., SiO2-supported TEPA with a TEPA/SiO2 ratio of 25:75) decreased by more than 60 %. IR and NMR spectroscopy studies showed that the yellow color of the degraded sorbents resulted from the formation of imide species. The imide species, consisting of NH associated with two C—O functional groups, were produced from the oxidation of methylene groups in TEPA. Imide species on the degraded sorbent are not capable of binding CO2 due to its weak basicity. The addition of P200 and P600 to the supported amine sorbents improved both their CO2 capture capacities and oxidative degradation resistance. IR spectroscopy results also showed that TEPA was immobilized on the SiO2 surface through hydrogen bonding between amine groups and the silanol groups of SiO2. The OH groups of PEG interact with NH2/NH of TEPA through hydrogen bonding. Hydrogen bonds disperse TEPA on SiO2 and block O2 from accessing TEPA for oxidation. Oxidative degradation resistance and CO2 capture capacity of the supported amine sorbents can be optimized through adjusting the ratio of hydroxyl to amine groups in the TEPA/PEG mixture. PMID:22744858

  16. Tubular solid oxide fuel cells with porous metal supports and ceramic interconnections

    DOEpatents

    Huang, Kevin; Ruka, Roswell J.

    2012-05-08

    An intermediate temperature solid oxide fuel cell structure capable of operating at from 600.degree. C. to 800.degree. C. having a very thin porous hollow elongated metallic support tube having a thickness from 0.10 mm to 1.0 mm, preferably 0.10 mm to 0.35 mm, a porosity of from 25 vol. % to 50 vol. % and a tensile strength from 700 GPa to 900 GPa, which metallic tube supports a reduced thickness air electrode having a thickness from 0.010 mm to 0.2 mm, a solid oxide electrolyte, a cermet fuel electrode, a ceramic interconnection and an electrically conductive cell to cell contact layer.

  17. Porous hollow carbon spheres for electrode material of supercapacitors and support material of dendritic Pt electrocatalyst

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Liu, Pei-Fang; Huang, Zhong-Yuan; Jiang, Tong-Wu; Yao, Kai-Li; Han, Ran

    2015-04-01

    Porous hollow carbon spheres (PHCSs) are prepared through hydrothermal carbonization of alginic acid and subsequent chemical activation by KOH. The porosity of the alginic acid derived PHCSs can be finely modulated by varying activation temperature in the range of 600-900 °C. The PHCSs activated at 900 °C possess the largest specific surface area (2421 m2 g-1), well-balanced micro- and mesoporosity, as well as high content of oxygen-containing functional groups. As the electrode material for supercapacitors, the PHCSs exhibit superior capacitive performance with specific capacitance of 314 F g-1 at current density of 1 A g-1. Pt nanodendrites supported on the PHCSs are synthesized by polyol reduction method which exhibit high electrocatalytic activity towards methanol oxidation reaction (MOR). Moreover, CO-poisoning tolerance of the Pt nanodendrites is greatly enhanced owing to the surface chemical property of the PHCSs support.

  18. A study on the preparation and gas permeation of porous alumina supports

    SciTech Connect

    Ting-Chia Huang; Huey-Ing Chen

    1995-06-01

    The preparation and gas permeation of porous alumina supports were studied. The influence of the amount of PVA on the properties of the alumina slips, microstructure of the supports, and gas permeation were investigated. The experimental results show that the addition of PVA in the preparation process is useful for controlling the porosity of the supports without significantly changing other microstructural properties. Permeation measurements of H{sub 2}, He, Ch{sub 4}, N{sub 2}, O{sub 2}, and CO{sub 2} showed that gas transport through various supports under low transmembrane pressures (100-220 kPa) at room temperature (26.5{degrees}C) was in the transition region, which combined the Knudsen diffusion and Poiseuille flow. The average radii of active pores for the supports, calculated from the gas permeability method, were compared with those measured by mercury porosimetry. The porosity-tortuosity factors and the tortuosity factors of the supports were also estimated and are discussed.

  19. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  20. Hydrazine N-N Bond Cleavage over Silica-Supported Tantalum-Hydrides.

    PubMed

    Jia, Hong-Peng; Gouré, Eric; Solans-Monfort, Xavier; Llop Castelbou, Jessica; Chow, Catherine; Taoufik, Mostafa; Eisenstein, Odile; Quadrelli, Elsje Alessandra

    2015-12-21

    Hydrazine reacts with silica-supported tantalum-hydrides [(≡SiO)2TaHx] (x = 1, 3), 1, under mild conditions (100 °C). The IR in situ monitoring of the reaction with N2H4 or (15)N2H4, and the solid-state MAS NMR spectra of the fully (15)N labeled compounds (CP (15)N, (1)H-(15)N HETCOR, (1)H-(1)H double-quantum, and (1)H-(1)H triple-quantum spectra) were used to identify stable intermediates and products. DFT calculations were used for determining the reaction pathway and calculating the (15)N and (1)H NMR chemical shifts. Combining the experimental and computational studies led to the following results. At room temperature, only hydrazine adducts, 1-N2H4, are formed. Upon heating at 100 °C, the hydrazine adducts are converted to several species among which [(≡SiO)2Ta(═NH)(NH2)], 2, [(≡SiO)2TaH(NH2)2], 3, and [(≡SiO)2TaH2(NH-NH2)], 4, were identified. The final product 2 is also formed in the reaction of N2 with the same silica-supported tantalum-hydride complexes, and the species identified as 3 and 4 had been previously suggested by DFT studies as intermediates on the reaction pathway for N-N cleavage in N2. The present computational studies (cluster models with M06 functional complemented by selected calculations with periodic calculations) show that 2 is formed via 3 and 4, with either N2 or N2H4. This strengthens the previous proposal of the existence of 3 and 4 as intermediates in the reaction of N2 with the tantalum-hydrides. However, the reaction of N2 does not imply the formation of N2H4 or its hydrazido monoanionic or dianionic ligand as an intermediate. For this reason, this study informs both on the similarities and differences of the reaction pathways involving N2 and N2H4 with tantalum-hydrides. PMID:26650850

  1. Silylated mesoporous silica membranes on polymeric hollow fiber supports: synthesis and permeation properties.

    PubMed

    Kim, Hyung-Ju; Brunelli, Nicholas A; Brown, Andrew J; Jang, Kwang-Suk; Kim, Wun-gwi; Rashidi, Fereshteh; Johnson, Justin R; Koros, William J; Jones, Christopher W; Nair, Sankar

    2014-10-22

    We report the synthesis and organic/water separation properties of mesoporous silica membranes, supported on low-cost and scalable polymeric (polyamide-imide) hollow fibers, and modified by trimethylsilylation with hexamethyldisilazane. Thin (∼1 μm) defect-free membranes are prepared, with high room-temperature gas permeances (e.g., 20,000 GPU for N2). The membrane morphology is characterized by multiple techniques, including SEM, TEM, XRD, and FT-ATR spectroscopy. Silylation leads to capping of the surface silanol groups in the mesopores with trimethylsilyl groups, and does not affect the integrity of the mesoporous silica structure and the underlying hollow fiber. The silylated membranes are evaluated for pervaporative separation of ethanol (EtOH), methylethyl ketone (MEK), ethyl acetate (EA), iso-butanol (i-BuOH), and n-butanol (n-BuOH) from their dilute (5 wt %) aqueous solutions. The membranes show separation factors in the range of 4-90 and high organic fluxes in the range of 0.18-2.15 kg m(-2) h(-1) at 303 K. The intrinsic selectivities (organic/water permeability ratios) of the silylated membranes at 303 K are 0.33 (EtOH/water), 0.5 (MEK/water), 0.25 (EA/water), 1.25 (i-BuOH/water), and 1.67 (n-BuOH/water) respectively, in comparison to 0.05, 0.015, 0.005, 0.08, and 0.14 for the unmodified membranes. The silylated membranes allow upgradation of water/organics feeds to permeate streams with considerably higher organics content. The selective and high-flux separation is attributed to both the organophilic nature of the modified mesopores and the large effective pore size. Comparison with other organics/water separation membranes reveals that the present membranes show promise due to high flux, use of scalable and low-cost supports, and good separation factors that can be further enhanced by tailoring the mesopore silylation chemistry. PMID:25255051

  2. An Efficient, Versatile, and Safe Access to Supported Metallic Nanoparticles on Porous Silicon with Ionic Liquids.

    PubMed

    Darwich, Walid; Haumesser, Paul-Henri; Santini, Catherine C; Gaillard, Frédéric

    2016-01-01

    The metallization of porous silicon (PSi) is generally realized through physical vapor deposition (PVD) or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM) precursors in ionic liquid (IL), we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru) and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi), the safety and the cost of the process are improved. PMID:27271608

  3. An Efficient, Versatile, and Safe Access to Supported Metallic Nanoparticles on Porous Silicon with Ionic Liquids

    PubMed Central

    Darwich, Walid; Haumesser, Paul-Henri; Santini, Catherine C.; Gaillard, Frédéric

    2016-01-01

    The metallization of porous silicon (PSi) is generally realized through physical vapor deposition (PVD) or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM) precursors in ionic liquid (IL), we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru) and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi), the safety and the cost of the process are improved. PMID:27271608

  4. In Situ Reductive Synthesis of Structural Supported Gold Nanorods in Porous Silicon Particles for Multifunctional Nanovectors.

    PubMed

    Zhu, Guixian; Liu, Jen-Tsai; Wang, Yuzhen; Zhang, Dechen; Guo, Yi; Tasciotti, Ennio; Hu, Zhongbo; Liu, Xuewu

    2016-05-11

    Porous silicon nanodisks (PSD) were fabricated by the combination of photolithography and electrochemical etching of silicon. By using PSD as a reducing agent, gold nanorods (AuNR) were in situ synthesized in the nanopores of PSD, forming PSD-supported-AuNR (PSD/AuNR) hybrid particles. The formation mechanism of AuNR in porous silicon (pSi) was revealed by exploring the role of pSi reducibility and each chemical in the reaction. With the PSD support, AuNR exhibited a stable morphology without toxic surface ligands (CTAB). The PSD/AuNR hybrid particles showed enhanced plasmonic property compared to free AuNR. Because high-density "hot spots" can be generated by controlling the distribution of AuNR supported in PSD, surface-enhanced raman scattering (SERS) using PSD/AuNR as particle substrates was demonstrated. A multifunctional vector, PSD/AuNR/DOX, composed of doxorubicin (DOX)-loaded PSD/AuNR capped with agarose (agar), was developed for highly efficient, combinatorial cancer treatment. Their therapeutic efficacy was examined using two pancreatic cancer cell lines, PANC-1 and MIA PaCa-2. PSD/AuNR/DOX (20 μg Au and 1.25 μg DOX/mL) effectively destroyed these cells under near-IR laser irradiation (810 nm, 15 J·cm(-2) power, 90 s). Overall, we envision that PSD/AuNR may be a promising injectable, multifunctional nanovector for biomedical application. PMID:27123698

  5. Silica supported palladium nanoparticles for the decarboxylation of high-acid feedstocks: Design, deactivation and regeneration

    NASA Astrophysics Data System (ADS)

    Ping, Eric Wayne

    2011-12-01

    The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. Initial catalyst designs were based on the SBA-15 silica support, but in an effort to maximize loading and minimize mass transfer limitations, silica MCF was synthesized as catalyst support. Functionalization with various silane ligands yielded a surface that facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. Complete characterization was performed on this Pd-MCF catalyst. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300°C. Hydrogen was found to be an unnecessary reactant in the absence of unsaturations, but was required in their presence---full hydrogenation of the double bonds occurs before any decarboxylation can take place. The Pd-MCF also exhibited good activity for alkyl esters and glycerol, providing a nice hypothetical description of a stepwise reaction pathway for catalytic decarboxylation of acids and their derivatives. As expected, the Pd-MCF catalyst experienced severe deactivation after only one use. Substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. H2 chemisorption confirmed a loss of active surface area, but TEM and

  6. Transformations of cyclohexene over silica-supported copper in the presence of deuterium

    SciTech Connect

    Fasi, A.; Palinko, I.; Katona, T.

    1997-04-01

    The transformations of cyclohexene were investigated over a silica-supported copper catalyst in a static circulation reactor in the presence of varying amount of D{sub 2} at 443 K and in a flow system in the 323-573 K temperature range under D{sub 2} flow. In the static system D{sub 2} pressure significantly influenced the types of reactions taking place (distinct regions for dehydrogenation, dehydrogenation plus hydrogenation, and hydrogenation were observed). In the flow reactor benzene and cyclohexane were always formed together, due to the partial reactivation of the catalytic surface. The temperature of the reaction significantly influenced product distribution. During transformations, the deuterium content and the deuterium distribution were also monitored in both reactor types. The half-hydrogenated state, i.e., the adsorbed d{sub 1}-cyclohexyl species, was found to be the key intermediate; nevertheless, {pi}-allyl adsorption was also significant at higher D{sub 2} pressure and in the flow system. 35 refs., 3 figs., 6 tabs.

  7. Catalytic etherification of glycerol to produce biofuels over novel spherical silica supported Hyflon® catalysts.

    PubMed

    Frusteri, Francesco; Frusteri, Leone; Cannilla, Catia; Bonura, Giuseppe

    2012-08-01

    Etherification of glycerol (GLY) with isobutylene (IB) to produce biofuels was investigated in liquid phase using spherical silica supported Hyflon® catalysts (SSHC). As reference catalyst, Amberlyst® 15 (A-15) acid ion-exchange resin was used. Experiments were carried out in batch mode at a reaction temperature ranging from 323 to 343 K. SSHC were found to be very effective systems in etherification of glycerol with IB, providing cumulative di- and tri-ethers yields higher than that obtained by using A-15 catalyst. Furthermore, such catalysts were stable and easily reusable; no leaching of active phase was observed. The formation of poly-substituted ethers, suitable additives for conventional fuels, was favored by operating at an isobutylene/glycerol molar ratio >3 and low reaction time (<6 h); however, the concentration of mono-ether reached values lower than 3 wt.% only when SSHC catalyst was used. Turnover frequency of glycerol (TOF(GLY)) highlighted that SSHC systems were much more active than A-15 catalyst: the accessibility and nature of active sites and the surface properties of catalysts were indicated as the main factors affecting the catalytic behavior. A lower acid site density of SSHC than that of A-15 catalyst was decisive in preventing the occurrence of oligomerization reaction which leads to the formation of di-isobutylene (DIB), precursors of gummy products. PMID:22705542

  8. Dehydration of Glycerin to Acrolein Over Heteropolyacid Nano-Catalysts Supported on Silica-Alumina.

    PubMed

    Kang, Tae Hun; Choi, Jung Ho; Choi, Jun Seon; Song, In Kyu

    2015-10-01

    A series of H3PW12O40 nano-catalysts supported on silica-alumina (XH3PW12O40/SA (X = 10, 15, 20, 25, and 30)) with different H3PW12O40 content (X, wt%) were prepared, and they were applied to the dehydration of glycerin to acrolein. The effect of H3PW12O40 content on the physicochemical properties and catalytic activities of XH3PW12O40/SA nano-catalysts was investigated. Surface area and pore volume of XH3PW12O40/SA catalysts decreased with increasing H3PW12O40 content. Formation of H3PW12O40 aggregates was observed in the catalysts with high H3PW12O40 loading. Brønsted acidity of the catalysts showed a volcano-shaped trend with respect to H3PW12O40 content. It was revealed that yield for acrolein increased with increasing Brønsted acidity of XH3PW12O40/SA catalysts. Brønsted acidity of XH3PW12O40/SA catalysts served as a crucial factor determining the catalytic performance in the dehydration of glycerin. Among the catalysts tested, 25H3PW12O40/SA catalyst with the largest Brønsted acidity showed the best catalytic performance. PMID:26726511

  9. Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles

    SciTech Connect

    Van Der Grift, C.J.G.; Wielers, A.F.H.; Joghi, B.P.J.; Van Beijnum, J.; De Boer, M.; Versluijs-Helder, M.; Geus, J.W. )

    1991-09-01

    Silica-supported copper particles of high thermostability have been subjected to oxidation-reduction treatments after which the metal particle size, the surface structure, and the catalytic hydrogenolysis of methyl acetate were investigated. The metal particle size was assessed from the dissociative adsorption of nitrous oxide, x-ray line broadening, and transmission electron microscopy. The surface structure of the copper particles was derived from infrared spectra of adsorbed carbon monoxide. The hydrogenolysis of methyl acetate was used as a structure-sensitive test reaction to illustrate the effect of the surface structure on the activity of the catalyst. The copper particle size is not affected by reduction treatments up to 873 K, whereas the surface structure of the copper particles and thereby the oxygen uptake during dissociative adsorption of nitrous oxide and the activity of the catalyst in the hydrogenolysis of methyl acetate strongly depend upon the temperature and duration of the reduction treatment. Without a change of the copper particle size, prolonged reduction of the catalyst results in more densely packed copper surfaces that are more susceptible to penetration of oxygen during passivation with nitrous oxide and less active in the hydrogenolysis of methyl acetate. The rearrangement of the surface structure of the copper particles is reversible upon repeated oxidation-reduction cycles.

  10. Mechanistic investigation of ultrasonic enhancement of glycerol bioconversion by immobilized Clostridium pasteurianum on silica support.

    PubMed

    Khanna, Swati; Goyal, Arun; Moholkar, Vijayanand S

    2013-06-01

    Glycerol, the principal byproduct of biodiesel production, can be a valuable carbon source for bioconversion into diverse class of compounds. This article attempts to investigate the mechanistic aspects of ultrasound mediated bioconversion of glycerol to ethanol and 1,3-propanediol (1,3-PDO) by immobilized Clostridium pasteurianum cells on silica support. Our approach is of coupling experimental results with simulations of cavitation bubble dynamics and enzyme kinetics. In addition, the statistical analysis (ANOVA) of experimental results was also done. The glycerol uptake by cells was not affected by either immobilization or with ultrasonication. Nonetheless, both immobilization and ultrasonication were found to enhance glycerol consumption. The enhancement effect of ultrasound on glycerol consumption was most marked (175%) at the highest glycerol concentration of 25 g/L (271.7 mM). The highest glycerol consumption (32.4 mM) was seen for 10 g/L (108.7 mM) initial glycerol concentration. The immobilization of cells shifted the metabolic pathway almost completely towards 1,3-PDO. No formation of ethanol was seen with mechanical shaking, while traces of ethanol were detected with ultrasonication. On the basis of analysis of enzyme kinetics parameters, we attribute these results to increased substrate-enzyme affinity and decreased substrate inhibition for 1,3-PDO dehydrogenase in presence of ultrasound that resulted in preferential conversion of glycerol into 1,3-PDO. PMID:23322632

  11. Strong, Lightweight, Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Meador, Mary Ann B.; Johnston, James C.; Fabrizio, Eve F.; Ilhan, Ulvi

    2007-01-01

    A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

  12. Fabrication of silica nanotubes with an anisotropic functionality as a smart catalyst supporter.

    PubMed

    Seo, Young Deok; Lee, Choonghyeon; Lee, Kyung Jin; Jang, Jyongsik

    2016-08-14

    An anisotropic nanomaterial with different internal and external functionalities can serve as a versatile nanocarrier for smart nanocatalysts. Anisotropically functionalized silica nanotubes were prepared using a vapor phase synthesis (VPS) method with anodic aluminum oxide (AAO) as the hard template. The anisotropically functionalized silica nanotubes were used for the olefination of aryl iodide by embedded palladium nanoparticles and the highest olefination efficiency was 99%. PMID:27426837

  13. In situ assembly of porous Au-paper electrode and functionalization of magnetic silica nanoparticles with HRP via click chemistry for Microcystin-LR immunoassay.

    PubMed

    Ge, Shenguang; Liu, Weiyan; Ge, Lei; Yan, Mei; Yan, Jixian; Huang, Jiadong; Yu, Jinghua

    2013-11-15

    A simple, low-cost and sensitive origami electrochemical immunoassay-device was developed based on a novel gold nanoparticle modified porous paper working electrode (Au-PWE) for point-of-care testing. Azide-functionalized Au-PWE was prepared by the functionalization of Au-PWE with 1-azidoundecan-11-thiol. Alkyne end-terminated antibody was prepared with 4-pentynoic acid and antibody by the 1-ethyl-3-(3-(dimethylamino) propyl) carbodiimide hydrochloride and N-hydroxysuccinimide activation reaction. Alkyne-antibody was coupled to azido-Au-PWE by click reaction as a recognition element. Nearly monodispersed sphere-like silica-coated ferroferric oxide (Fe3O4@SiO2) nanoparticles were prepared via the reverse microemulsion method. Azide-functionalized Fe3O4@SiO2 was prepared by the functionalization of silica shell with 3-bromopropyltrichlorosilane followed by substitution with sodium azide. Alkyne-functionalized antibody and horse radish peroxidase were coupled to azide-functionalized Fe3O4@SiO2 by click reaction as signal label. Horse radish peroxidase and ferroferric oxide could catalyze the oxidation of thionine in the presence of hydrogen peroxide. After the sandwich immunoreaction, the current was proportional to the logarithm of the Microcystin-LR. The linear regression equation was i(μA)=119.89+46.27 log cMC-LR (μg/mL) in the range from 0.01 to 200 μg/mL. The limit of detection was 0.004 μg/mL. This immunoassay would provide a universal immunoassay method in environmental monitoring and public health. PMID:23728196

  14. C,N-bipyrazole receptor grafted onto a porous silica surface as a novel adsorbent based polymer hybrid.

    PubMed

    Radi, Smaail; Attayibat, Ahmed; El-Massaoudi, Mohamed; Bacquet, Maryse; Jodeh, Shehdeh; Warad, Ismail; Al-Showiman, Salim S; Mabkhot, Yahia N

    2015-10-01

    A simple heterogeneous synthesis of pure adsorbent based polymer hybrid made by condensing a functionalized C,N-bipyrazole with a 3-glycidoxypropyl-trimethoxysilane silylant agent, previously anchored on a silica surface was developed. The formed material (SG2P) was characterized through elemental analysis, FT-IR spectroscopy, (13)C NMR of solid state, scanning electron microscope (SEM), and was studied and evaluated by determination of the surface area using the BET equation, the adsorption and desorption capability using the isotherm of nitrogen and B.J.H. pore sizes. The new material exhibits good thermal stability determined by thermogravimetry curves and good chemical stability was examined in various acidic and buffer solutions (pH 1-7). The binding and adsorption abilities of SG2P were investigated for Hg(2+), Cd(2+), Pb(2+), Zn(2+), K(+), Na(+) and Li(+) cations and compared to the results of classical liquid-liquid extraction with the unbound C,N-bipyrazole compound. The grafting at the surface of silica does not affect complexing properties of the ligand and the SG2P exhibits a high selectivity toward Hg(2+) ion with no complexation being observed towards zinc and alkali metals. The extracted and the complexing cation percentages were determined by atomic absorption measurements. PMID:26078121

  15. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    NASA Astrophysics Data System (ADS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  16. Silica Embedded Metal Hydrides

    SciTech Connect

    Heung, L.K.; Wicks, G.G.

    1998-08-01

    A method to produce silica embedded metal hydride was developed. The product is a composite in which metal hydride particles are embedded in a matrix of silica. The silica matrix is highly porous. Hydrogen gas can easily reach the embedded metal hydride particles. The pores are small so that the metal hydride particles cannot leave the matrix. The porous matrix also protects the metal hydride particles from larger and reactive molecules such as oxygen, since the larger gas molecules cannot pass through the small pores easily. Tests show that granules of this composite can absorb hydrogen readily and withstand many cycles without making fines.

  17. A Simple, Efficient Synthesis of 2-Aryl Benzimidazoles Using Silica Supported Periodic Acid Catalyst and Evaluation of Anticancer Activity

    PubMed Central

    Sontakke, Vyankat A.; Ghosh, Sougata; Lawande, Pravin P.; Chopade, Balu A.; Shinde, Vaishali S.

    2013-01-01

    A new, efficient method for the synthesis of 2-aryl substituted benzimidazole by using silica supported periodic acid (H5IO6-SiO2) as a catalyst has been developed. The salient feature of the present method includes mild reaction condition, short reaction time, high yield and easy workup procedure. The synthesized benzimidazoles exhibited potent anticancer activity against MCF7 and HL60 cell lines. PMID:24052861

  18. Tailoring Silica-alumina Supported Pt-Pd As Poison Tolerant Catalyst For Aromatics Hydrogenation

    SciTech Connect

    Yu, Yanzhe; Gutierrez, Oliver Y.; Haller, Gary L.; Colby, Robert J.; Kabius, Bernd C.; Rob van Veen, J. A.; Jentys, Andreas; Lercher, Johannes A.

    2013-08-01

    The tailoring of the physicochemical and catalytic properties of mono- and bimetallic Pt-Pd catalysts supported on amorphous silica-alumina is studied. Electron energy loss spectroscopy and extended X-ray absorption fine structure analyses indicated that bimetallic Pt-Pd and relatively large monometallic Pd particles were formed, whereas the X-ray absorption near edge structure provided direct evidence for the electronic deficiency of the Pt atoms. The heterogeneous distribution of metal particles was also shown by high resolution transmission electron microscopy. The average structure of the bimetallic particles (Pt-rich core and Pd-rich shell) and the presence of Pd particles led to surface Pd enrichment, which was independently shown by IR spectra of adsorbed CO. The specific metal distribution, average size, and surface composition of the Pt-Pd particles depend to a large extent on the metal precursors. In the presence of NH3 ligands, Pt-Pd particles with a fairly homogeneous bulk and surface metal distribution were formed. Also high Lewis acid site concentration of the carrier leads to more homogeneous bimetallic particles. All catalysts were active for the hydrogenation of tetralin in the absence and presence of quinoline and dibenzothiophene (DBT). Monometallic Pt catalysts had the highest hydrogenation activity in poison-free and quinoline-containing feed. When DBT was present, bimetallic Pt-Pd catalysts with the most homogenous metal distribution showed the highest activity. The higher resistance of bimetallic catalysts towards sulfur poisoning compared to their monometallic Pt counterparts results from the weakened metal-sulfur bond on the electron deficient Pt atoms. Thus, increasing the fraction of electron deficient Pt on the surface of the bimetallic particles increases the efficiency of the catalyst in the presence of sulfur.

  19. Impact of pore characteristics of silica materials on loading capacity and release behavior of ibuprofen.

    PubMed

    Numpilai, Thanapha; Muenmee, Suthaporn; Witoon, Thongthai

    2016-02-01

    Impact of pore characteristics of porous silica supports on loading capacity and release behavior of ibuprofen was investigated. The porous silica materials and ibuprofen-loaded porous silica materials were thoroughly characterized by N2-sorption, thermal gravimetric and derivative weight analyses (TG-DTW), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) to determine the physical properties of materials, amount of ibuprofen adsorbed and position of ibuprofen. The detailed characterization reveals that the ibuprofen molecules adsorbed inside the mesopores. Increasing the mesopore size from 5nm to 10nm increased the ibuprofen loading from 0.74 to 0.85mmol/g, respectively. Incorporation of macropore into the structure of porous silica materials enhanced the ibuprofen loading capacity of 11.8-20.3%. The ibuprofen-loaded bimodal meso-macroporous silica materials exhibited the highest dissolution of 92wt.% within an hour. The ibuprofen particles deposited on the external surface of the porous silica materials showed a lower dissolution rate than the ibuprofen adsorbed inside the mesopores due to the formation of ibuprofen crystalline. PMID:26652347

  20. Selective, ultrathin membrane skins prepared by deposition of novel polymer films on porous alumina supports

    NASA Astrophysics Data System (ADS)

    Balachandra, Anagi Manjula

    Membrane-based separations are attractive in industrial processes because of their low energy costs and simple operation. However, low permeabilities often make membrane processes uneconomical. Since flux is inversely proportional to membrane thickness, composite membranes consisting of ultrathin, selective skins on highly permeable supports are required to simultaneously achieve high throughput and high selectivity. However, the synthesis of defect-free skins with thicknesses less than 50 nm is difficult, and thus flux is often limited. Layer-by-layer deposition of oppositely charged polyelectrolytes on porous supports is an attractive method to synthesize ultrathin ion-separation membranes with high flux and high selectivity. The ion-transport selectivity of multilayer polyelectrolyte membranes (MPMs) is primarily due to Donnan exclusion; therefore increase in fixed charge density should yield high selectivity. However, control over charge density in MPMs is difficult because charges on polycations are electrostatically compensated by charges on polyanions, and the net charge in the bulk of these films is small. To overcome this problem, we introduced a templating method to create ion-exchange sites in the bulk of the membrane. This strategy involves alternating deposition of a Cu2+-poly(acrylic acid) complex and poly(allylamine hydrochloride) on a porous alumina support followed by removal of Cu2+ and deprotonation to yield free -COO- ion-exchange sites. Diffusion dialysis studies showed that the Cl-/SO42-. Selectivity of Cu2+-templated membranes is 4-fold higher than that of membranes prepared in the absence of Cu2+. Post-deposition cross-linking of these membranes by heat-induced amide bond formation further increased Cl-/SO42- selectivity to values as high as 600. Room-temperature, surface-initiated atom transfer radical polymerization (ATRP) provides another convenient method for formation of ultrathin polymer skins. This process involves attachment of

  1. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns.

    PubMed

    Ataei-Germi, Taher; Nematollahzadeh, Ali

    2016-05-15

    Bimodal meso/macro-porous silica microspheres (MSM) were synthesized by a modified sol-emulsion-gel method and then the surface was coated with polydopamine (PDA) nano-particles of 39nm in size. Focusing on the encouraging properties of the synthesized adsorbent, such as high specific surface area (612.3m(2)g(-1), because of mesopores), fast mass transfer (0.9-2.67×10(-3)mLmin(-1)mg, because of macropores), and abundant "adhesive" functional groups of PDA, it was used for the removal of methylene blue (MB) from aqueous solution in a fixed-bed column. The effect of different parameters such as pH, initial concentration, and flow rate was studied. The results revealed that an appropriate sorption condition is an alkaline solution of MB (e.g., pH 10) at low flow rate (less than 5mLmin(-1)). Furthermore, the compatibility of the experimental data with mathematical models such as Thomas and Adams-Bohart was investigated. Both of the models showed a good agreement with the experimental data (R(2)=0.9954-0.9994), and could be applied for the prediction of the column properties and breakthrough curves. Regeneration of the column was performed by using HCl solution with a concentration of 0.1M as an eluent. PMID:26943002

  2. A simple and rapid determination of valproic acid in human plasma using a non-porous silica column and liquid chromatography with tandem mass spectrometric detection.

    PubMed

    Matsuura, Katsuhiko; Ohmori, Tomofumi; Nakamura, Mitsuhiro; Itoh, Yoshinori; Hirano, Kazuyuki

    2008-04-01

    A liquid chromatographic tandem mass spectrometric (LC-MS/MS) assay was developed and validated to determine valproic acid in human plasma. The method involved a solid-phase extraction of valproic acid and betamethasone valerate, an internal standard, from plasma and detection using an LC-MS/MS system with electrospray ionization source in negative ion mode. Separation was achieved within 3 min on a non-porous silica column with mobile phase containing ammonium acetate and methanol. Multiple reaction monitoring was utilized for detection monitoring at 142.89-142.89 for valproic acid and 457.21-457.21 for the internal standard. The calibration curve for valproic acid was linear over the range of 0.5-150 microg/mL. The limit of detection was 0.17 microg/mL and the lower limit of quantification was 0.5 microg/mL, when 0.2 mL plasma was used for extraction. The percentage coefficient of validation for accuracy and precision (inter- and intra-day) for this method was less than 9.5% with recovery ranging from 82.3 to 86.9% for valproic acid. PMID:18004739

  3. Development and characterization of ultra-porous silica films made by the sol-gel method. Application to biosensing

    NASA Astrophysics Data System (ADS)

    Desfours, Caroline; Calas-Etienne, Sylvie; Horvath, Robert; Martin, Marta; Gergely, Csilla; Cuisinier, Frédéric; Etienne, Pascal

    2014-02-01

    The aim of this work is to demonstrate the sensing ability of reverse-symmetry waveguides to investigate adsorption of casein and build-up of poly-L-lysine mediated casein multilayers. A first part of this study is dedicated to the elaboration and characterization of ultra-porous thin films with very low refractive indices by an appropriate sol-gel method. This will form the basis of our planar optical sensors. Optical waveguide light mode spectroscopy is a real-time and sensitive method to study protein adsorption kinetics and lipid bilayers. We used it to test the obtained waveguides for in-situ monitoring of biomolecule adsorption. As a result, significant changes in the incoupling peak position were observed during the layer-by-layer adsorption. Finally, refractive index and thickness of the adsorbed layers were established.

  4. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support

    PubMed Central

    Panthi, Dhruba; Tsutsumi, Atsushi

    2014-01-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical energy conversion devices owing to their high power generation efficiency and environmentally benign operation. Micro-tubular SOFCs, which have diameters ranging from a few millimeters to the sub-millimeter scale, offer several advantages over competing SOFCs such as high volumetric power density, good endurance against thermal cycling, and flexible sealing between fuel and oxidant streams. Herein, we successfully realized a novel micro-tubular SOFC design based on a porous yttria-stabilized zirconia (YSZ) support using multi-step dip coating and co-sintering methods. The micro-tubular SOFC consisted of Ni-YSZ, YSZ, and strontium-doped lanthanum manganite (LSM)–YSZ as the anode, electrolyte, and cathode, respectively. In addition, to facilitate current collection from the anode and cathode, Ni and LSM were applied as an anode current collector and cathode current collector, respectively. Micro-crystalline cellulose was selected as a pore former to achieve better shrinkage behavior of the YSZ support so that the electrolyte layer could be densified at a co-sintering temperature of 1300°C. The developed micro-tubular design showed a promising electrochemical performance with maximum power densities of 525, 442, and 354 mW cm−2 at 850, 800, and 750°C, respectively. PMID:25169166

  5. Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support

    NASA Astrophysics Data System (ADS)

    Panthi, Dhruba; Tsutsumi, Atsushi

    2014-08-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical energy conversion devices owing to their high power generation efficiency and environmentally benign operation. Micro-tubular SOFCs, which have diameters ranging from a few millimeters to the sub-millimeter scale, offer several advantages over competing SOFCs such as high volumetric power density, good endurance against thermal cycling, and flexible sealing between fuel and oxidant streams. Herein, we successfully realized a novel micro-tubular SOFC design based on a porous yttria-stabilized zirconia (YSZ) support using multi-step dip coating and co-sintering methods. The micro-tubular SOFC consisted of Ni-YSZ, YSZ, and strontium-doped lanthanum manganite (LSM)-YSZ as the anode, electrolyte, and cathode, respectively. In addition, to facilitate current collection from the anode and cathode, Ni and LSM were applied as an anode current collector and cathode current collector, respectively. Micro-crystalline cellulose was selected as a pore former to achieve better shrinkage behavior of the YSZ support so that the electrolyte layer could be densified at a co-sintering temperature of 1300°C. The developed micro-tubular design showed a promising electrochemical performance with maximum power densities of 525, 442, and 354 mW cm-2 at 850, 800, and 750°C, respectively.

  6. Surface spectroscopic studies of a model silica-supported copper catalyst: Adsorption and reactions of CO, H[sub 2]O, and NO

    SciTech Connect

    Xu, X.; Vesecky, S.M.; He, J.; Goodman, D.W. )

    1993-07-01

    A model silica-supported copper catalyst has been studied with temperature programmed desorption, x-ray photoelectron spectroscopy, infrared reflection--absorption spectroscopy, and scanning tunneling microscopy. The reactions of water and nitric oxide on the Cu/SiO[sub 2] catalyst were also investigated. The model catalyst was prepared by evaporating copper onto a silica thin film ([similar to]100 A) which was, in turn, supported on a Mo(110) surface. Copper forms small metallic clusters on the silica surface with a small fraction being partially oxidized. Water dissociates on the Cu/SiO[sub 2] catalyst to yield dihydrogen at 400 K and surface oxygen during temperature programmed reaction. Nitric oxide reacts with the model silica-supported copper catalyst to produce nitrous oxide and surface oxygen, which does not desorb until copper evaporates at high temperatures.

  7. Highly Porous Carbon Derived from MOF-5 as a Support of ORR Electrocatalysts for Fuel Cells.

    PubMed

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Nadeem, Muhammad Arif; Zhao, Dan

    2016-07-13

    The development of highly competent electrocatalysts for the sluggish oxygen reduction reaction (ORR) at cathodes of proton-exchange membrane fuel cells (PEMFCs) is extremely important for their long-term operation and wide applications. Herein, we present highly efficient ORR electrocatalysts based on Pt/Ni bimetallic nanoparticles dispersed on highly porous carbon obtained via pyrolysis of a metal-organic framework MOF-5. In comparison to the commercial Pt/C (20%), the electrocatalyst Pt-Ni/PC 950 (15:15%) in this study exhibits a pronounced positive shift of 90 mV in Eonset. In addition, it also demonstrates excellent long-term stability and durability during the 500-cycle continue-oxygen-supply (COS) accelerating durability tests (ADTs). The significantly improved activity and stability of Pt-Ni/PC 950 (15:15%) can be attributed to the Pt electron interaction with Ni and carbon support as has been proved in X-ray and microscopic analysis. PMID:27327655

  8. Tubular ceramic-supported sol-gel silica-based membranes for flue gas carbon dioxide capture and sequestration.

    SciTech Connect

    Tsai, C. Y.; Xomeritakis, George K.; Brinker, C. Jeffrey; Jiang, Ying-Bing

    2009-03-01

    Pure, amine-derivatized and nickel-doped sol-gel silica membranes have been developed on tubular Membralox-type commercial ceramic supports for the purpose of carbon dioxide separation from nitrogen under coal-fired power plant flue gas conditions. An extensive synthetic and permeation test study was carried out in order to optimize membrane CO{sub 2} permeance, CO{sub 2}:N{sub 2} separation factor and resistance against densification. Pure silica membranes prepared under optimized conditions exhibited an attractive combination of CO{sub 2} permeance of 2.0 MPU (1 MPU = 1 cm{sup 3}(STP) {center_dot} cm{sup -2} min{sup -1} atm{sup -1}) and CO{sub 2}:N{sub 2} separation factor of 80 with a dry 10:90 (v/v) CO{sub 2}:N{sub 2} feed at 25 C. However, these membranes exhibited flux decline phenomena under prolonged exposure to humidified feeds, especially in the presence of trace SO{sub 2} gas in the feed. Doping the membranes with nickel (II) nitrate salt was effective in retarding densification, as manifested by combined higher permeance and higher separation factor of the doped membrane compared to the pure (undoped) silica membrane after 168 hours exposure to simulated flue gas conditions.

  9. Temperature-programmed desorption study of the selective oxidation of alcohols on silica-supported vanadium oxide.

    PubMed

    Feng, T; Vohs, J M

    2005-02-17

    The partial oxidation of methanol and ethanol on silica-supported vanadium oxide catalysts was studied using temperature-programmed desorption (TPD), Raman spectroscopy, and diffuse reflectance infrared spectroscopy (DRIFTS). Methanol TPD results for V2O5/SiO2 samples as a function of vanadia loading in conjunction with X-ray diffraction data and Raman spectra indicated that dispersed vanadia on silica agglomerates into vanadia crystallites during a CH3OH TPD experiment. For ethanol-dosed samples, agglomeration of the dispersed vanadia was less severe, and it was possible to measure the activation energy for the dehydrogenation of adsorbed ethoxides to produce CH3CHO. Assuming a preexponential factor of 10(13) s(-1), the activation energy for this reaction was estimated to be 132 kJ/mol. The results of this study further demonstrate that there is a relatively weak interaction between vanadia and silica and suggest that adsorbed methoxide species help facilitate agglomeration of dispersed vanadia. PMID:16851203

  10. Preparation and characterization of micro-cell membrane chromatographic column with silica-based porous layer open tubular capillary as cellular membrane carrier.

    PubMed

    Zhang, Fugeng; Zhao, Xinchao; Xu, Bei; Cheng, Shuai; Tang, Cheng; Duan, Hongquan; Xiao, Xuefeng; Du, Wuxun; Xu, Liang

    2016-04-01

    Cell membrane chromatography (CMC) is a powerful tool to study membrane protein interactions and to screen active compounds extracted from natural products. Unfortunately, a large amount of cells are typically required for column preparation in order to carry out analyses in an efficient manner. Micro-CMC (mCMC) has recently been developed by using a silica capillary as a membrane carrier. However, a reduced retention of analytes is generally associated with mCMC mostly due to a low ligand (cellular membrane) capacity. To solve this common problem, in this work a silica-based porous layer open tubular (PLOT) capillary was fabricated and, to the best of our knowledge, for the first time applied to mCMC. The mCMC column was prepared by physical adsorption of rabbit red blood cell (rRBC) membranes onto the inner surface of the PLOT capillary. The effects of the PLOT capillaries fabricated by different feed compositions, on the immobilization amount of cellular membranes (represented by the fluorescence intensity of the capillary immobilized with fluorescein isothiocyanate isomer-labeled cellular membranes) and on the dynamic binding capacity (DBC) of verapamil (VP, a widely used calcium antagonist which specific interacts with L-type calcium channel proteins located on cellular membrane of rRBC) have been systematically investigated. The fluorescence intensity of the mCMC column when combined with the PLOT capillary was found to be more than five times higher than the intensity using a bare capillary. This intriguing result indicates that the PLOT capillary exhibits a higher cellular membrane capacity. The DBC of VP in the PLOT column was found to be more than nine times higher than that in the bare capillary. An rRBC/CMC column was also prepared for comparative studies. As a result, mCMC provides similar chromatographic retention factors and stability with common CMC; however, the cellular membrane consumption for mCMC was found to be more than 460 times lower than

  11. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media

    NASA Astrophysics Data System (ADS)

    Busch, Jan; Meißner, Tobias; Potthoff, Annegret; Oswald, Sascha E.

    2014-08-01

    Injection of nanoscale zero-valent iron (nZVI) has recently gained great interest as emerging technology for in-situ remediation of chlorinated organic compounds from groundwater systems. Zero-valent iron (ZVI) is able to reduce organic compounds and to render it to less harmful substances. The use of nanoscale particles instead of granular or microscale particles can increase dechlorination rates by orders of magnitude due to its high surface area. However, classical nZVI appears to be hampered in its environmental application by its limited mobility. One approach is colloid supported transport of nZVI, where the nZVI gets transported by a mobile colloid. In this study transport properties of activated carbon colloid supported nZVI (c-nZVI; d50 = 2.4 μm) are investigated in column tests using columns of 40 cm length, which were filled with porous media. A suspension was pumped through the column under different physicochemical conditions (addition of a polyanionic stabilizer and changes in pH and ionic strength). Highest observed breakthrough was 62% of the injected concentration in glass beads with addition of stabilizer. Addition of mono- and bivalent salt, e.g. more than 0.5 mM/L CaCl2, can decrease mobility and changes in pH to values below six can inhibit mobility at all. Measurements of colloid sizes and zeta potentials show changes in the mean particle size by a factor of ten and an increase of zeta potential from - 62 mV to - 80 mV during the transport experiment. However, results suggest potential applicability of c-nZVI under field conditions.

  12. Characterization of 430L porous supports obtained by powder extrusion moulding for their application in solid oxide fuel cells

    SciTech Connect

    Sotomayor, María Eugenia Ospina, Liliana María Levenfeld, Belén Várez, Alejandro

    2013-12-15

    The characterization of 430L stainless steel planar porous supports obtained by powder extrusion moulding was performed in this work. A thermoplastic multicomponent binder based on high density polyethylene and paraffin wax was selected for the process. Green supports were shaped by extrusion moulding, and subsequently the binder was removed by a thermal cycle previously optimized. Sintering was carried out at different temperatures in low vacuum. Density of sintered parts was measured by Archimedes' method and porosity was also evaluated through a microstructural analysis by optical microscopy. The porosity degree of samples sintered at low temperature was close to 35% which is a very suitable value for their application in SOFCs. Tensile tests were carried out in order to determine mechanical strength as a function of porosity degree. Based on these results, the best feedstock composition and processing parameters were selected. The oxidation behaviour in static air at high temperature was studied, and formed oxides were characterized in a scanning electron microscope equipped with energy dispersive analysis of X-rays. X-ray diffraction experiments were performed in order to identify the formed oxides based on formula Fe{sub 2−x}Cr{sub x}O{sub 3}. The results of these studies showed that this kind of ferritic stainless steel would be more suitable to be used as anodic supports where a rich hydrogen atmosphere is employed. Preliminary deposition tests allowed obtaining a homogeneous Ni–YSZ anode layer with a thickness of 10 μm on the porous metallic substrates. - Highlights: • 430L stainless steel porous supports were obtained by powder extrusion moulding. • Porosity degree was controlled sintering at different temperatures in low vacuum. • Tensile tests allowed determining mechanical strength of porous supports. • A study about its oxidation behaviour in static air at high temperature was realized. • After oxidation, formed oxides were

  13. Derivatization of ethylene dibromide with silica-supported silver picrate for improved high-performance liquid chromatographic detection

    SciTech Connect

    Colgan, S.T.; Krull, I.S.; Dorschel, C.; Bidlingmeyer, B.

    1986-10-01

    Silica-supported silver picrate was used as an off-line, precolumn derivatization reagent for ethylene dibromide (EDB). Two products were obtained, the ratio of which, as a function of reaction conditions, is characteristic of EDB. The derivatives were monitored with UV, reductive electrochemical, and photolysis/oxidative electrochemical detection. Sub-parts-per-billion detection limits were obtained. The method was used to quantitate EDB in leaded gasoline, and the results were confirmed with gas chromatography with electron capture detection (GC/ECD). The method was further validated with a single blind analysis of spiked EDB in gasoline. This is the first report of an HPLC method for EDB.

  14. Role of Surface Cobalt Silicate in Single-Walled Carbon Nanotube Synthesis from Silica-Supported Cobalt Catalysts

    SciTech Connect

    Li, N.; Wang, X; Derrouiche, S; Haller, G; Pfefferle, L

    2010-01-01

    A silica-supported cobalt catalyst has been developed via incipient wetness impregnation for high-yield synthesis of single-walled carbon nanotubes (SWNTs). Co/SiO{sub 2}-impregnated catalysts have not been observed to be efficient for SWNT synthesis. Using an appropriately chosen precursor, we show that effective catalysts can be obtained for SWNT synthesis with yields up to 75 wt %. Detailed characterization indicates that the active sites for SWNT synthesis are small cobalt particles resulting from the reduction of a highly dispersed surface cobalt silicate species. The SWNTs produced by this catalyst are of high quality and easy to purify, and the process is simple and scalable.

  15. Bactericidal activity and silver release of porous ceramic candle filter prepared by sintering silica with silver nanoparticles/zeolite for water disinfection

    NASA Astrophysics Data System (ADS)

    Trinh Nguyen, Thuy Ai; Phu Dang, Van; Duy Nguyen, Ngoc; Le, Anh Quoc; Thanh Nguyen, Duc; Hien Nguyen, Quoc

    2014-09-01

    Porous ceramic candle filters (PCCF) were prepared by sintering silica from rice husk with silver nanoparticles (AgNPs)/zeolite A at about 1050 °C to create bactericidal PCCF/AgNPs for water disinfection. The silver content in PCCF/AgNPs was of 300-350 mg kg-1 determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and the average pore size of PCCF/AgNPs was of 50-70 Å measured by Brunauer-Emmett-Teller (BET) method. The bactericidal activity and silver release of PCCF/AgNPs have been investigated by flow test with water flow rate of 5 L h-1 and initial inoculation of E. coli in inlet water of 106 CFU/100 mL. The volume of filtrated water was collected up to 500 L. Results showed that the contamination of E. coli in filtrated water was <1 CFU/100 mL and the content of silver released from PCCF/AgNPs into filtrated water was <1 μg L-1, it is low, far under the WHO guideline of 100 μg L-1 at maximum for drinking water. Based on the content of silver in PCCF/AgNPs and in filtrated water, it was estimated that one PCCF/AgNPs could be used to filtrate of ˜100 m3 water. Thus, as-prepared PCCF/AgNPs releases low content of silver into water and shows effectively bactericidal activity that is promising to apply as point-of-use water treatment technology for drinking water disinfection.

  16. Behaviour of Silica and Florisil as Solid Supports in the Removal Process of As(V) from Aqueous Solutions

    PubMed Central

    Gabor, Andreea; Davidescu, Corneliu Mircea; Negrea, Adina; Ciopec, Mihaela; Lupa, Lavinia

    2015-01-01

    In this study two solid supports, silica and florisil, were impregnated with crown ether (dibenzo-18-crown-6) and Fe(III) ions and their efficiency was compared in the adsorption process of As(V) from aqueous solutions. The solid supports were impregnated with crown ether due to their ability to build complexes with positives ions. Fe(III) was used because of As(V) affinity for it. The impregnated solid supports were characterized by energy dispersive X-ray analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and the specific surface area. The influence of the solid : liquid ratio on the adsorption process, kinetic studies for the pseudo-first-order and pseudo-second-order, and activation energy were studied. Thermodynamic studies as well as equilibrium studies were carried out. The obtained results showed that, from the two considered materials, impregnated silica presents a higher efficiency with a good selectivity, able to remove As(V) from aqueous solutions containing trace concentrations. PMID:25821633

  17. Fabrication of SrCo{sub 0.5}FeO{sub x} oxygen separation membranes on porous supports

    SciTech Connect

    Man Fai Ng; Riechert, T.L.; Schwartz, R.W.; Collins, J.P.

    1996-09-01

    SrCo{sub 0.5}FeO{sub x} (SCF) is an attractive material for oxygen separation membranes and for use in catalytic membrane reactors. While tubes of this material have been prepared by extrusion, further improvements in oxygen transport performance may be gained by preparing thinner membranes on porous supports. In this paper, we will discuss the deposition of thick films by spray deposition and centrifugal casting, and thin films by pyrolysis of chemical precursors. For the chemically derived thin films, porous MgO supports were used as membrane supports. Three types of precursor solutions were employed for dipcoating: a Pechini type solution, a nitrate-based solution, and a citrate-based solution. To prevent the infiltration of the precursor into the support, the support was backfilled with a material that decomposed at higher temperatures than the precursors. Cracking due to the volume changes during drying and pyrolysis of the precursors is discussed. Thick films were prepared by spray coating and centrifugal casting. Spray deposition of thick film membranes was accomplished by air brushing SCF from a water-based suspension onto the surface of a porous MgO support. Films on the interior surface of the supports were prepared by centrifugal casting using a xylene/butanol-based SCF suspension. Unlike extruded tubes, thick films undergo constrained sintering due to the presence of the support, which greatly reduces the densification rate. For membranes prepared by both approaches, we will discuss the effects of heating schedules on membrane microstructure, densification behavior, and cracking.

  18. A density functional theory study of the oxidation of methanol to formaldehyde over vanadia supported on silica, titania, and zirconia

    SciTech Connect

    Khaliullin, Rustam Z.; Bell, Alexis T.

    2002-09-05

    Density functional theory was used to investigate the mechanism and kinetics of methanol oxidation to formaldehyde over vanadia supported on silica, titania, and zirconia. The catalytically active site was modeled as an isolated VO{sub 4} unit attached to the support. The calculated geometry and vibrational frequencies of the active site are in good agreement with experimental measurements both for model compounds and oxide-supported vanadia. Methanol adsorption is found to occur preferentially with the rupture of a V-O-M bond (M = Si, Ti, Zr) and with preferential attachment of a methoxy group to V. The vibrational frequencies of the methoxy group are in good agreement with those observed experimentally as are the calculated isobars. The formation of formaldehyde is assumed to occur via the transfer of an H atom of a methoxy group to the O atom of the V=O group. The activation energy for this process is found to be in the range of 199-214 kJ/mol and apparent activation energies for the overall oxidation of methanol to formaldehyde are predicted to lie in the range of 112-123 kJ/mol, which is significantly higher than that found experimentally. Moreover, the predicted turnover frequency (TOF) for methanol oxidation is found to be essentially independent of support composition, whereas experiments show that the TOF is 10{sup 3} greater for titania- and zirconia-supported vanadia than for silica-supported vanadia. Based on these findings, it is proposed that the formation of formaldehyde from methoxy groups may require pairs of adjacent VO{sub 4} groups or V{sub 2}O{sub 7} dimer structures.

  19. Self-supported fibrous porous aromatic membranes for efficient CO2/N2 separations.

    PubMed

    Meng, Lingbo; Zou, Xiaoqin; Guo, Shukun; Ma, Heping; Zhao, Yongnan; Zhu, Guangshan

    2015-07-22

    In this paper, we describe a new synthesis protocol for the preparation of self-supported hollow fiber membranes composed of porous aromatic framework PAF-56P and PSF. PAF-56P was facilely prepared by the cross-coupling reaction of triangle-shaped cyanuric chloride and linear p-terophenyl monomers. The prepared PAF-56P material possesses an extended conjugated network, the structure of which is confirmed by nuclear magnetic resonance and infrared characterizations, as well as a permanent porosity with a BET surface area of 553.4 m(2) g(-1) and a pore size of 1.2 nm. PAF-56P was subsequently integrated with PSF matrix into PAF-56P/PSF asymmetric hollow fiber membranes via the dry jet-wet quench method employing PAF-56P/PSF suspensions. Scanning electron microscopy studies show that PAF-56P particles are embedded in the PSF matrix to form continuous membranes. Fabricated PAF-56P/PSF membranes were further exploited for CO2 capture, which was exemplified by gas separations of CO2/N2 mixtures. The PAF-56P/PSF membranes show a high selectivity of CO2 over N2 with a separation factor of 38.9 due to the abundant nitrogen groups in the PAF-56P framework. A preferred permeance for CO2 in the binary CO2/N2 gas mixture is obtained in the range of 93-141 GPU due to the large CO2 adsorption capacity and a large pore size of PAF-56P. Additionally, PAF-56P/PSF membranes exhibit excellent thermal and mechanical stabilities, which were examined by thermal analysis and gas separation tests with the dependencies of temperatures and pressures. The merits of high selectivity for CO2, good stability, and easy scale up make PAF-56P/PSF hollow fiber membranes of great interest for the industrial separations of CO2 from the gas exhausts. PMID:26120972

  20. Carbon-13 NMR spectroscopy study of L-zeolite- and silica-supported platinum catalysts

    SciTech Connect

    Sharma, S.B.; Laska, T.E.; Balaraman, P.; Root, T.W.; Dumesic, J.A.

    1994-12-01

    NMR studies of CO adsorbed on small Pt particles show evidence of changes in the metallic nature of these particles with size. Large particles on silica or the exterior of zeolite crystallites have conduction-band electrons that cause a Knight shift for adsorbed CO. Small particles in zeolite cavities are diamagnetic clusters, and yield spectra for linear and bridging carbonyls similar to those of transition-metal cluster compounds. {sup 13}C NMR of CO offers a simple probe of metal dispersion and particle size for these Pt catalysts and other noble metal systems. 29 refs., 7 figs., 2 tabs.

  1. On the properties of silica-supported bimetallic Fe-Cu catalysts. Part 1. Preparation and characterization

    SciTech Connect

    Wielers, A.F.H.; Hop, C.E.C.A.; van Beijnum, J.; Geus, J.W. ); van der Kraan, A.M. )

    1990-02-01

    In this work a series of silica-supported bimetallic iron-copper catalysts has been prepared and characterized. The bimetallic catalysts were prepared via homogeneous deposition-precipitation involving a procedure in which first copper ions (as copper hydrosilicate) and consecutively iron(III) ions (as goethite) are precipitated onto the support. The results show that copper facilitates the reduction of iron(III) to iron(II) (which is present as iron(II)silicate) as well as the reduction to zero-valent iron. In the reduced iron/copper catalyst zero-valent iron is present as monometallic {alpha}-Fe particles and as iron clusters in bimetallic Fe-Cu particles. The relative amounts of the various iron species vary with the overall composition. Whereas the surfaces of the freshly reduced bimetallic particles are not extensively enriched in one of the constituents, prolonged CO exposure at room temperature leads to a considerable iron enrichment.

  2. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    PubMed

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene. PMID:26928967

  3. Effects of surface activation on the structural and catalytic properties of ruthenium nanoparticles supported on mesoporous silica.

    PubMed

    Ma, Xianfeng; Lin, Rui; Beuerle, Christopher; Jackson, James E; Obare, Sherine O; Ofoli, Robert Y

    2014-01-31

    Using colloid-based methods to prepare supported catalytic metallic nanoparticles (NPs) often faces the challenge of removing the stabilizer used during synthesis and activating the catalyst without modifying the particles or the support. We explored three surface activation protocols (thermal oxidation at 150 °C, thermal reduction at 350 °C, and argon-protected calcination at 650 °C) to activate ruthenium NPs supported on mesoporous silica (MSU-F), and assessed their effects on the structural and catalytic properties of the catalysts, and their activity by the aqueous phase hydrogenation of pyruvic acid. The NPs were synthesized by polyol reduction using poly-N-vinyl-2-pyrrolidone (PVP) as a stabilizer, and supported on MSU-F by sonication-assisted deposition. The NPs maintained their original morphology on the support during activation. Ar-protected calcination was the most efficient of the three for completely removing PVP from particle surfaces, and provided the highest degree of particle crystallinity and a metal dispersion comparable to commercial Ru/SiO2. Its catalytic performance was significantly higher than the other two protocols, although all three thermally activated catalysts achieved higher activity than the commercial catalyst at the same Ru loading. Post-reaction analysis also showed that the supported catalyst activated at 650 °C retained its morphology during the reaction, which is an important requirement for recyclability. PMID:24394435

  4. Effects of surface activation on the structural and catalytic properties of ruthenium nanoparticles supported on mesoporous silica

    NASA Astrophysics Data System (ADS)

    Ma, Xianfeng; Lin, Rui; Beuerle, Christopher; Jackson, James E.; Obare, Sherine O.; Ofoli, Robert Y.

    2014-01-01

    Using colloid-based methods to prepare supported catalytic metallic nanoparticles (NPs) often faces the challenge of removing the stabilizer used during synthesis and activating the catalyst without modifying the particles or the support. We explored three surface activation protocols (thermal oxidation at 150 ° C, thermal reduction at 350 ° C, and argon-protected calcination at 650 ° C) to activate ruthenium NPs supported on mesoporous silica (MSU-F), and assessed their effects on the structural and catalytic properties of the catalysts, and their activity by the aqueous phase hydrogenation of pyruvic acid. The NPs were synthesized by polyol reduction using poly-N-vinyl-2-pyrrolidone (PVP) as a stabilizer, and supported on MSU-F by sonication-assisted deposition. The NPs maintained their original morphology on the support during activation. Ar-protected calcination was the most efficient of the three for completely removing PVP from particle surfaces, and provided the highest degree of particle crystallinity and a metal dispersion comparable to commercial Ru/SiO2. Its catalytic performance was significantly higher than the other two protocols, although all three thermally activated catalysts achieved higher activity than the commercial catalyst at the same Ru loading. Post-reaction analysis also showed that the supported catalyst activated at 650 ° C retained its morphology during the reaction, which is an important requirement for recyclability.

  5. A solid-state NMR investigation of the structure of mesoporous silica nanoparticle supported rhodium catalysts

    SciTech Connect

    Rapp, Jennifer; Huang, Yulin; Natella, Michael; Cai, Yang; Lin, Victor S.-Y.; Pruski, Marek

    2009-01-04

    A detailed study of the chemical structure of mesoporous silica catalysts containing rhodium ligands and nanoparticles (RhP-MSN) was carried out by multi-dimensional solid-state NMR techniques. The degree of functionalization of the rhodium-phosphinosilyl complex to the surface of the RhP-MSN channels was determined by {sup 29}Si NMR experiments. The structural assignments of the rhodium-phosphinosilyl complex were unambiguously determined by employing the novel, indirectly detected heteronuclear correlation ({sup 13}C-{sup 1}H and {sup 31}P-{sup 1}H idHETCOR) techniques, which indicated that oxidation of the attached phosphinosilyl groups and detachment of Rh was enhanced upon syngas conversion.

  6. Thiol-modified gold nanoparticles deposited on silica support using dip coating

    NASA Astrophysics Data System (ADS)

    Magura, Jozef; Zeleňáková, Adriana; Zeleňák, Vladimír; Kaňuchová, Maria

    2014-10-01

    In our work, we have prepared thin layers of gold nanoparticles deposited via dip coating technique on silica glass substrate. The prepared thin layers were modified by two different ligands, namely 1,4-dithiothreitol (sample Au-DTT NPs) and L-glutathione (sample Au-GSH NPs). The spectral, structural and magnetic properties of the prepared samples were investigated. The modification of Au nanoparticles with thiol ligands leads to change of their plasmon resonance fields, as indicated by UV-vis spectra. The magnetic measurements showed that the magnetization of the samples is composed from two magnetic contributions: diamagnetic contribution and low field ferromagnetic contribution. Our experimental results show that the charge transfer between Au and S atoms gives rise to the ferromagnetic behaviour of prepared thin layers.

  7. Methane activation on nickel oxide clusters with a concerted mechanism: a density functional theory study of the effect of silica support.

    PubMed

    Xi, Yanyan; Chen, Bili; Lin, Xufeng; Wang, Chuangye; Fu, Hui

    2016-04-01

    The support effect is an important issue in heterogeneous catalysis. A systematic density functional theory (DFT) study was performed to investigate the support effect of a silica model on the initial step of methane activation on NixOx (x =2,3) clusters with a concerted mechanism. Four reactions were examined by exploring their potential energy surfaces (PES): CH4 reacting with unsupported Ni2O2, with silica-supported Ni2O2, with unsupported Ni3O3, and with silica-supported Ni3O3. For each reaction, PES with different spin states were explored. For CH4 activation taking place via a concerted mechanism, the reaction barriers in terms of free energy and reaction free energy increased with the involvement of the model silica support. Only one PES made a major contribution to the overall reaction rate of all four reactions examined. No spin transition process was required for the reactions to undergo their most-favorable pathway from their starting reactants. These results provide a deeper insight into the support effect on C-H bond activation of small alkanes in general, and of methane in particular, on supported transition metal catalysts. PMID:26979607

  8. Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells.

    PubMed

    Liu, Jian; Bo, Xiangjie; Zhao, Zheng; Guo, Liping

    2015-12-15

    In this study, we developed a novel biosensor based on highly exposed Pt nanoparticles (Pt NPs) decorated porous graphene (PG) for the reliable detection of extracellular hydrogen peroxide (H2O2) released from living cells. The commercially available low-cost hydrophilic CaCO3 spheres were used as template for preparing PG. The porous structure provided larger surface area and more active sites. Due to the porous structure of PG, the Pt NPs supported on PG were not secluded by aggregated graphene layers and were highly exposed to target molecules. Ultrafine Pt NPs were well dispersed and loaded on PG by a method of microwave assistance. Electrochemical performances of the Pt/PG nanocomposites modified glassy carbon electrode (GCE) were investigated. The electrocatalytic reduction of H2O2 showed a wide linear range from 1 to 1477 μM, with a high sensitivity of 341.14 μA mM(-1) cm(-2) and a limit of detection (LOD) as low as 0.50 μM. Moreover, the Pt/PG/GCE exhibited excellent anti-interference property, reproducibility and long-term storage stability. Because of these remarkable analytical advantages, the constructed sensor was used to determine H2O2 released from living cells with satisfactory results. The superior catalytic activity makes Pt/PG nanocomposites a promising candidate for electrochemical sensors and biosensors design. PMID:26120812

  9. Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane.

    PubMed

    Wu, Pingping; Bai, Peng; Yan, Zifeng; Zhao, George X S

    2016-01-01

    Homogeneous immobilization of gold nanoparticles (Au NPs) on mesoporous silica has been achieved by using a one-pot synthesis method in the presence of organosilane mercapto-propyl-trimethoxysilane (MPTMS). The resultant Au NPs exhibited an excellent catalytic activity in the solvent-free selective oxidation of cyclohexane using molecular oxygen. By establishing the structure-performance relationship, the origin of the high activity of mesoporous supported Au catalyst was identified to be due to the presence of low-coordinated Au (0) sites with high dispersion. Au NPs were confirmed to play a critical role in the catalytic oxidation of cyclohexane by promoting the activation of O2 molecules and accelerating the formation of surface-active oxygen species. PMID:26729288

  10. Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane

    PubMed Central

    Wu, Pingping; Bai, Peng; Yan, Zifeng; Zhao, George X. S.

    2016-01-01

    Homogeneous immobilization of gold nanoparticles (Au NPs) on mesoporous silica has been achieved by using a one-pot synthesis method in the presence of organosilane mercapto-propyl-trimethoxysilane (MPTMS). The resultant Au NPs exhibited an excellent catalytic activity in the solvent-free selective oxidation of cyclohexane using molecular oxygen. By establishing the structure-performance relationship, the origin of the high activity of mesoporous supported Au catalyst was identified to be due to the presence of low-coordinated Au (0) sites with high dispersion. Au NPs were confirmed to play a critical role in the catalytic oxidation of cyclohexane by promoting the activation of O2 molecules and accelerating the formation of surface-active oxygen species. PMID:26729288

  11. Effects of Silica Nanoparticle Supported Ionic Liquid as Additive on Thermal Reversibility of Human Carbonic Anhydrase II

    PubMed Central

    Fallahbagheri, Azadeh; Saboury, Ali Akbar; Ma'mani, Leila; Taghizadeh, Mohammad; Khodarahmi, Reza; Ranjbar, Samira; Bohlooli, Mousa; Shafiee, Abbas; Foroumadi, Alireza; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2013-01-01

    Silica nanoparticle supported imidazolium ionic liquid [SNImIL] was synthesized and utilized as a biocompatible additive for studying the thermal reversibility of human carbonic anhydrase II (HCA II). For this purpose, we prepared additive by modification of nanoparticles through the grafting of ionic liquids on the surface of nanoparticles (SNImIL). The SNImIL were fully characterized by Fourier Transform Infrared spectroscopy, scanning electron microscopy and thermo gravimetric analysis. The characterization of HCA II was investigated by various techniques including UV–Vis and ANS fluorescence spectrophotometry, differential scanning calorimetry, and docking study. SNImIL induced disaggregation, enhanced protein stability and increased thermal reversibility of HCA II by up to 42% at pH 7.75. PMID:22829053

  12. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Huang, Chao; Yang, Fan; Yang, Xu; Du, Li; Liao, Shijun

    2015-12-01

    A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (NIr/NPd = 0.1), the activity of PdIr0.1/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd-Ir electronic interaction caused by the addition of Ir.

  13. Computational study of silica-supported transition metal fragments for Kubas-type hydrogen storage.

    PubMed

    Skipper, Claire V J; Hamaed, Ahmad; Antonelli, David M; Kaltsoyannis, Nikolas

    2010-12-01

    To verify the role of the Kubas interaction in transition metal grafted mesoporous silicas, and to rationalize unusual rising enthalpy trends with surface coverage by hydrogen in these systems, computational studies have been performed. Thus, the interaction of H2 with the titanium centers in molecular models for experimentally characterized mesoporous silica-based H2 absorption materials has been studied quantum chemically using gradient corrected density functional theory. The interaction between the titanium and the H2 molecules is found to be of a synergic, Kubas type, and a maximum of four H2 molecules can be bound to each titanium, in good agreement with previous experiments. The average Ti-H2 interaction energies in molecules incorporating benzyl ancillary ligands (models of the experimental systems) increase as the number of bound H2 units increases from two to four, in agreement with the experimental observation that the H2 adsorption enthalpy increases as the number of adsorbed H2 molecules increases. The Ti-H2 interaction is shown to be greater when the titanium is bound to ancillary ligands, which are poor π-acceptors, and when the ancillary ligand causes the least steric hindrance to the metal. Extension of the target systems to vanadium and chromium shows that, for molecules containing hydride ancillary ligands, a good relationship is found between the energies of the frontier molecular orbitals of the molecular fragments, which interact with incoming H2 molecules, and the strength of the M-H2 interaction. For the benzyl systems, both the differences in M-H2 interaction energies and the energy differences in frontier orbital energies are smaller than those in the hydrides, such that conclusions based on frontier orbital energies are less robust than for the hydride systems. Because of the high enthalpies predicted for organometallic fragments containing hydride ligands, and the low affinity of Cr(III) for hydrogen in this study, these features may

  14. Silica-Supported Titania-Zirconia Nanocomposites: Structural and Morphological Characteristics in Different Media

    NASA Astrophysics Data System (ADS)

    Sulym, Iryna; Goncharuk, Olena; Sternik, Dariusz; Skwarek, Ewa; Derylo-Marczewska, Anna; Janusz, Wladyslaw; Gun'ko, Vladimir M.

    2016-02-01

    A series of TiO2-ZrO2/SiO2 nanocomposites were synthesized using a liquid-phase method and characterized by various techniques, namely, nitrogen adsorption-desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy, and photon correlation spectroscopy (PCS). It was revealed that the component ratio and calcination temperature affect the phase composition of nanocomposites. Composites TiZrSi1 (TiO2:ZrO2:SiO2 = 3:10:87) and TiZrSi2 (10:10:80) calcined at 1100 °C demonstrate the presence of t-ZrO2 crystallites in TiZrSi1 and ZrTiO4 phase in TiZrSi2. The samples calcined at 550 °C were amorphous as it was found from XRD data. According to the Raman spectra, the bands specific for anatase are observed in TiZrSi2. According to XPS data, Zr and Ti are in the highest oxidation state (+4). Textural analysis shows that initial silica is mainly meso/macroporous, but composites are mainly macroporous. The particle size distributions in aqueous media showed a tendency of increasing particle size with increasing TiO2 content in the composites.

  15. Silica-Supported Titania-Zirconia Nanocomposites: Structural and Morphological Characteristics in Different Media.

    PubMed

    Sulym, Iryna; Goncharuk, Olena; Sternik, Dariusz; Skwarek, Ewa; Derylo-Marczewska, Anna; Janusz, Wladyslaw; Gun'ko, Vladimir M

    2016-12-01

    A series of TiO2-ZrO2/SiO2 nanocomposites were synthesized using a liquid-phase method and characterized by various techniques, namely, nitrogen adsorption-desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy, and photon correlation spectroscopy (PCS). It was revealed that the component ratio and calcination temperature affect the phase composition of nanocomposites. Composites TiZrSi1 (TiO2:ZrO2:SiO2 = 3:10:87) and TiZrSi2 (10:10:80) calcined at 1100 °С demonstrate the presence of t-ZrO2 crystallites in TiZrSi1 and ZrTiO4 phase in TiZrSi2. The samples calcined at 550 °С were amorphous as it was found from XRD data. According to the Raman spectra, the bands specific for anatase are observed in TiZrSi2. According to XPS data, Zr and Ti are in the highest oxidation state (+4). Textural analysis shows that initial silica is mainly meso/macroporous, but composites are mainly macroporous. The particle size distributions in aqueous media showed a tendency of increasing particle size with increasing TiO2 content in the composites. PMID:26924815

  16. Environment-oriented low-cost porous mullite ceramic membrane supports fabricated from coal gangue and bauxite.

    PubMed

    Lü, Qikai; Dong, Xinfa; Zhu, Zhiwen; Dong, Yingchao

    2014-05-30

    Porous mullite ceramic supports for filtration membrane were successfully fabricated via recycling of coal gangue and bauxite at sintering temperatures from 1100 to 1500°C with corn starch as pore-forming agent. The dynamic sintering behaviors, phase evolution, shrinkage, porosity and pore size, gas permeation flux, microstructure and mechanical property were systematically studied. A unique volume-expansion stage was observed at increased temperatures from 1276 to 1481°C caused by a mullitization-crystal-growth process. During this stage, open porosity increases and pore size distributions broaden, which result in a maximum of nitrogen gas flux at 1400°C. The X-ray diffraction results reveal that secondary mullitization took place from 1100°C and the major phase is mullite with a content of ∼84.7wt.% at 1400°C. SEM images show that the as-fabricated mullite supports have a porous microstructure composed of sintered glassy particles embedded with inter-locked mullite crystals, which grew gradually with increasing temperature from rod-like into blocky-like morphologies. To obtain mullite membrane supports with sufficient porosity and acceptable mechanical strength, the relationship between porosity and mechanical strength was investigated, which was fitted using a parabolic equation. PMID:24727016

  17. Highly selective BTX from catalytic fast pyrolysis of lignin over supported mesoporous silica.

    PubMed

    Elfadly, A M; Zeid, I F; Yehia, F Z; Rabie, A M; Aboualala, M M; Park, Sang-Eon

    2016-10-01

    The post synthesis of Al(3+) or Zr(4+) substituted MCM-48 framework with controlled acidity is challenging because the functional groups exhibiting acidity often jeopardize the framework integrity. Herein, we report the post-synthesis of two hierarchically porous MCM-48 composed of either aluminum (Al(3+)) or zirconium (Zr(4+)) clusters with high throughput. All prepared catalysts have been characterized by HR-TEM, XRD, IR, N2-adsorption, NH3-TPD, TGA and MAS NMR. They exhibit BET surface areas of 597 and 1112m(2)g(-1) for 8.4% Al/MCM-48 and 2.9% Zr/MCM-48, respectively. XRD analysis reveals that the hierarchical porosity of parental MCM-48 is reserved even after incorporation of Al(3+)or Zr(4+). Zr/MCM-48 catalysts are demonstrate a superior performance versus that of Al/MCM-48 and MCM-48 because of the mild (ZrO2) or nil (SiO2) Lewis acidity contributed from Zr-μ2-O group as well as smaller pore sizes suitable for the restriction of unwanted side reactions. The reaction conditions which were affecting the catalytic pyrolysis and final products were gas flow rate, pyrolysis temperature, and catalyst to lignin ratio. A total of 49% of BTX product were obtained over 2.9% Zr/MCM-48 at 600°C. The Lewis acid character was the governing factor which helps in pyrolysis and directly affects the BTX formation. PMID:27196367

  18. Development of a simple method for the preparation of novel egg-shell type Pt catalysts using hollow silica nanostructures as supporting precursors

    SciTech Connect

    Wang Jiexin; Chen Jianfeng

    2008-04-01

    A simple method for the preparation of novel egg-shell type platinum catalysts was developed and achieved by utilizing unique hollow silica nanostructures, i.e., hollow silica nanospheres and nanotubes, as supports. The observation by transmission electron microscopy indicated that the well-dispersed hollow silica supported Pt catalysts with a Pt particle diameter of 8-14 nm can be successfully prepared by wet impregnation process and heat treatment. The Pt-loaded hollow silica nanostructures were also characterized by inductively coupled plasma, X-ray diffraction, specific surface area, Fourier transformation infrared spectroscopy, X-ray photoelectron spectroscopy and energy dispersive spectroscopy. It was thus demonstrated that a higher Pt loading amount (0.392%) could be obtained under the same conditions except the addition of ammonia, which was found to be more effective than that (0.061%) with the addition of HCl in the immobilization of Pt. In addition, the effect of soaking time, Pt precursor concentration and calcination temperature on the loading of Pt in hollow silica nanostructures were investigated as well.

  19. Effects of molecular weight and tacticity on the Tg of poly(methyl methacrylate) films supported by silica

    NASA Astrophysics Data System (ADS)

    Geng, Kun; Chen, Fei; Tsui, Ophelia

    The glass transition temperature (Tg) of poly(methyl methacrylate) (PMMA) films supported by silica is studied as a function of film thickness at different molecular weights (Mw) for different polymer tacticities. The Tg confinement effect is found to depend on the Mw and tacticity. For the films with a low Mw of 2.5 kg/mol,Tg is depressed for the atactic films, consistent with previous results. In contrast, the films with a higher syndiotactic content exhibit Tg enlargement as thickness decreases. We tentatively suggest this to be caused the influence of chain stiffness on the Tg that dominates at low Mw and varies with tacticity. For sufficiently high Mw, the effect of chain stiffness is expected to be small. At Mw = 50 kg/mol, the Tg confinement effect of the atatic and more syndiotactic films reverses from that observed of the low-Mw counterpart films. We suggest the chain stiffness effect to be negligible at this Mw, and attribute the opposite Tg confinement effect to be caused by a competition between the surface Tg and the substrate Tg in these films. The Tg found of bilayers made of the atatic and more syndiotatic PMMAs with this Mw supports our attribute. We are grateful to the support of NSF through the project DMR-1310536.

  20. pH-Responsive Fe3O4 Nanopartilces-Capped Mesoporous Silica Supports for Protein Delivery.

    PubMed

    Gan, Qi; Zhu, Jiaoyang; Yuan, Yuan; Liu, Changsheng

    2016-06-01

    Delivery of proteins and peptides with excellent bioactivity and controlled release still is a great challenge nowadays. In this study, a pH-responsive delivery system obtained by anchoring 8-nm Fe3O4 nanoparticles (NPs) onto SBA-15 supports with a particle diameter in the range of 0.6-1 μm and a pore size of 6.2 nm was synthesized and investigated. The pH-stimulative response is based on the interaction between the tris(aminomethyl)ethane (TAE) groups anchored onto the pore outlet of mesoporous silica scaffolds and the carboxybenzaldehyde (CBA) groups coated on the Fe3O4 NPs, which can lead to a rapid release under the acid condition (pH = 5) and a zero release with the increase of pH value (pH = 7.4). With BMP-2 as a model protein, this Fe3O4 nanopartilces-capped mesoporous silica showed a rapid response to the change of pH for protein delivery. Furthermore, the released BMP-2 could still maintain its bioactivity and induce the osteoblast differentiation of BMSCs. Besides, the magnetic orientation mainly attributes to the Fe3O4 NPs served as the nanocaps. The excellent bio-compatibility is demonstrated by the MTT assay on BMSCs model cells. These results show that Fe3O4 NPs-capped SBA-15 materials have an effective load for large molecule size proteins, such as BMP-2, and show an excellent applied prospect in pH-responsive controlled release system. PMID:27427586

  1. In-situ growth of porous alumino-silicates and fabrication of nano-porous membranes

    NASA Astrophysics Data System (ADS)

    Kodumuri, Pradeep

    2009-12-01

    Feasibility of depositing continuous films of nano-porous alumino-silicates, primarily zeolites and MCM-41, on metallic and non-metallic substrates was examined with an aim to develop membranes for separation of gaseous mixtures and also for application as hydrogen storage material. Mesoporous silica was deposited in-side the pores of these nano-porous disks with an aim to develop membranes for selective separations. Our study involves supported zeolite film growth on substrates using in-situ hydrothermal synthesis. Faujasite, Silicalite and Mesoporous silica have been grown on various metallic and non-metallic supports. Metallic substrates used for film growth included anodized titanium, sodium hydroxide treated Titanium, Anodized aluminum, and sintered copper. A non-metallic substrate used was nano-porous aluminum oxide. Zeolite film growth was characterized using Scanning Electron Microscope (AMRAY 1820) and High Resolution Transmission electron microscope. Silicalite was found to grow uniformly on all the substrates to form a uniform and closely packed film. Faujasite tends to grow in the form of individual particles which do not inter-grow like silicalite to form a continuous film. Mesoporous silica was found to grow uniformly on anodized aluminum compared to growth on sintered copper and anodized titanium. Mesoporous silica growth on AnodiscRTM was found to cover more than half the surface of the substrate. Commercially obtained AnodiscRTM was found to have cylindrical channels of the pore branching into each other and since we needed pore channels of uniform dimension for Mesoporous silica growth, we have fabricated nano-porous alumina with uniform pore channels. Nano-porous alumina membranes containing uniform distribution of through thickness cylindrical pore channels were fabricated using anodization of aluminum disks. Free-standing nano-porous alumina membranes were used as templates for electro-deposition in order to fabricate nickel and palladium nano

  2. Non-linear dynamic analysis of a flexible rotor supported on porous oil journal bearings

    NASA Astrophysics Data System (ADS)

    Laha, S. K.; Kakoty, S. K.

    2011-03-01

    In the present paper, the non-linear dynamic analysis of a flexible rotor with a rigid disk under unbalance excitation mounted on porous oil journal bearings at the two ends is carried out. The system equation of motion is obtained by finite element formulation of Timoshenko beam and the disk. The non-linear oil-film forces are calculated from the solution of the modified Reynolds equation simultaneously with Darcy's equation. The system equation of motion is then solved by the Wilson- θ method. Bifurcation diagrams, Poincaré maps, time response, journal trajectories, FFT-spectrum, etc. are obtained to study the non-linear dynamics of the rotor-bearing system. The effect of various non-dimensional rotor-bearing parameters on the bifurcation characteristics of the system is studied. It is shown that the system undergoes Hopf bifurcation as the speed increases. Further, slenderness ratio, material properties of the rotor, ratio of disk mass to shaft mass and permeability of the porous bush are shown to have profound effect on the bifurcation characteristics of the rotor-bearing system.

  3. Controlling Ethylene Hydrogenation Reactivity on Pt13 Clusters by Varying the Stoichiometry of the Amorphous Silica Support.

    PubMed

    Crampton, Andrew S; Rötzer, Marian D; Schweinberger, Florian F; Yoon, Bokwon; Landman, Uzi; Heiz, Ueli

    2016-07-25

    Ethylene hydrogenation was investigated on size-selected Pt13 clusters supported on three amorphous silica (a-SiO2 ) thin films with different stoichiometries. Activity measurements of the reaction at 300 K revealed that on a silicon-rich and a stoichiometric film, Pt13 exhibits a similar activity to that of Pt(111), in line with the known structure insensitivity of the reaction. On an oxygen-rich film, a threefold increased rate was measured. Pulsing ethylene at 400 K, then measuring the activity at 300 K, resulted in complete loss of activity on the silicon-rich surface compared to only marginal losses on the other surfaces. The measured reactivity trends correlate with charging characteristics of a Pt13 cluster on the SiO2 films, predicted through first-principle calculations. The results reveal that the stoichiometry-dependent charging by the support can be used to tune the selectivity of reaction pathways during a catalytic hydrogenation reaction. PMID:27356301

  4. Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells.

    PubMed

    Zhang, Xinxin; Li, Feifei; Guo, Shiyan; Chen, Xi; Wang, Xiaoli; Li, Juan; Gan, Yong

    2014-04-01

    Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. A polymer-lipid supported mesoporous silica nanoparticle (PLS-MSNs) is described here to facilitate intracellular delivery of anticancer drug and enhance the antitumor efficacy against MDR breast cancer cells. By coating MSNs with a synthetic dual-functional polymer-lipid material P123-DOPE, the supported membrane acted as an intact barrier against the escape of encapsulated drugs before reaching the target cells, leading to depolymerization and triggered storm release of loaded irinotecan (CPT-11) in acidic endosomal pH of tumor cells. In addition, P123-DOPE can inhibit breast cancer resistance protein (BCPR) mediated CPT-11 efflux in drug resistant MCF-7/BCRP breast cancer cells, thus acting as a "door blocker". Compared to free CPT-11, PLS-MSNs resulted in a maximum increase in the intracellular CPT-11 concentration (12.9-fold), had 7.1-fold higher cytotoxicity and processed a stronger cell cycle arrest in MCF-7/BCRP cells. Moreover, CPT-11 loaded PLS-MSNs showed high therapeutic performance and low toxicity in BALB/c nude mice bearing drug resistant breast tumors, with an inhibition rate of 81.2% compared to free CPT-11 treatment group. The reported PLS-MSNs provide promising applicability in future preclinical and clinical MDR cancer treatment. PMID:24462359

  5. Extrudate versus powder silica alumina as support for Re₂O₇ catalyst in the metathesis of seed oil-derivatives - a comparison.

    PubMed

    Marvey, Bassie B

    2009-01-01

    Self- and cross-metathesis of fatty acid methyl esters (FAMEs) was investigated using a silica alumina supported Re(2)O(7) catalyst. Although a 3 wt% Re(2)O(7)/SiO(2)-Al(2)O(3)/SnBu(4) is already active for the metathesis of unsaturated FAMEs, the results have shown that particle size of silica alumina support has a profound influence on its activity and selectivity. Consequently, high substrate conversions coupled with improved product yields (for mono- and diesters) and reaction rates were obtained upon using powder, as opposed to extrudate silica alumina as the support material. Diesters are platform compounds for the synthesis of polymers and fragrances. In this paper a comparative outline of the influence of particle size of silica alumina (extrudate versus powder) on catalytic performance of a 3 wt% Re(2)O(7)/SiO(2)-Al(2)O(3)/SnBu(4) for self- and cross-metathesis of FAMEs is made. Low surface area and diffusion constraints associated with extrudates were identified as some of the factors leading to low catalytic activity and selectivity. PMID:19333442

  6. Investigation into the diffusion and oxidation behavior of the interface between a plasma-sprayed anode and a porous steel support for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zhang, Shan-Lin; Li, Cheng-Xin; Li, Chang-Jiu; Liu, Meilin; Yang, Guan-Jun

    2016-08-01

    Porous metal-supported solid oxide fuel cells (SOFCs) have attracted much attention because their potential to dramatically reduce the cost while enhancing the robustness and manufacturability. In particular, 430 ferritic steel (430L) is one of the popular choice for SOFC support because of its superior performance and low cost. In this study, we investigate the oxidation and diffusion behavior of the interface between a Ni-based anode and porous 430L support exposed to a humidified (3% H2O) hydrogen atmosphere at 700 °C. The Ni-GDC (Ce0.8Gd0.2O2-δ) cermet anodes are deposited on the porous 430L support by atmospheric plasma spraying (APS). The effect of exposure time on the microstructure and phase structure of the anode and the supports is studied and the element diffusion across the support/anode interface is characterized. Results indicate that the main oxidation product of the 430L support is Cr2O3, and that Cr and Fe will diffuse to the anode and the diffusion thickness increases with the exposure time. The diffusion thickness of Cr and Fe reach about 5 and 2 μm, respectively, after 1000 h exposure. However, the element diffusion and oxidation has little influence on the area-specific resistance, indicating that the porous 430L steel and plasma sprayed Ni-GDC anode are promising for durable SOFCs.

  7. Structure sensitive adsorption of hydrogen on ruthenium and ruthenium-silver catalysts supported on silica

    SciTech Connect

    Kumar, N.

    1999-02-12

    Supported metal catalysts typically consist of particles with sizes less than 10 nm, and because of the small crystallite size, low coordination number sites (edges and corners) represent a significant fraction of all surface sites. Furthermore, it has been demonstrated that adsorption rates can be much greater at these low coordination sites than on basal plane sites. What has not been generally appreciated, however, is that preferential adsorption at edge and corner sites may explain the mechanism by which a promoter, or the addition of a second metal to form a bimetallic, can alter the selectivity and rate of reaction. For example, the measurements of hydrogen adsorption onto supported Ru-Ag catalysts show marked decreases in the amount of hydrogen adsorbed relative to the amount adsorbed on Ru catalysts. Although it is known that Ag does not dissociatively adsorb hydrogen, this decrease cannot be explained by a simple one-to-one site blocking mechanism unless Ag preferentially populates edges and corners, thereby reducing the number of Ru edge sites. Indeed, Monte Carlo simulations of Ru-Group IB metal catalysts predict that Group IB metal atoms preferentially populate corner and edge sites of ruthenium crystals. This evidence, taken together, suggests that adsorption occurs preferentially at Ru corner and edge sites, which act as portals onto basal planes. A model based on this portal theory for hydrogen adsorption onto supported ruthenium bimetallic catalysts has been developed using a rate equation approach. Specifically, the model accounts for the following features: (1) preferential adsorption through portals, (2) basal plane site-energy multiplicity, and (3) hydrogen spillover onto the support. A comparison of model predictions with experiment is presented for different concentration of Ag in Ru-Ag catalysts. The portal model of hydrogen adsorption can explain the observed decreased in the amount of hydrogen adsorbed on Ru-Ag catalysts. The model can be

  8. A porous silica rock ("tripoli") in the footwall of the Jurassic Úrkút manganese deposit, Hungary: composition, and origin through carbonate dissolution

    USGS Publications Warehouse

    Polgari, Marta; Szabo, Zoltan; Szabo-Drubina, Magda; Hein, James R.; Yeh, Hsueh-Wen

    2005-01-01

    The mineralogical, chemical, and isotopic compositions were determined for a white tripoli from the footwall of the Jurassic Úrkút Mn-oxide ore deposit in the Bakony Mountains, Hungary. The tripoli consists of quartz and chalcedony, with SiO2 contents up to 100 wt.%; consequently, trace-element contents are very low. Oxygen isotopes and quartz crystallinity indicate a low-temperature diagenetic origin for this deposit. The tripoli was formed by dissolution of the carbonate portion of the siliceous (sponge spicules) Isztimér Limestone. Dissolution of the carbonate was promoted by inorganic and organic acids generated during diagensis and left a framework composed of diagenetic silica that preserved the original volume of the limestone layer. The relative enrichment of silica and high porosity is the result of that carbonate dissolution. The silty texture of this highly friable rock is due to the structurally weak silica framework.

  9. Solid-State NMR and DFT Studies on the Formation of Well-Defined Silica-Supported Tantallaaziridines: From Synthesis to Catalytic Application.

    PubMed

    Hamzaoui, Bilel; Pelletier, Jérémie D A; Abou-Hamad, Edy; Chen, Yin; El Eter, Mohamed; Chermak, Edrisse; Cavallo, Luigi; Basset, Jean-Marie

    2016-02-24

    Single-site, well-defined, silica-supported tantallaaziridine intermediates [≡Si-O-Ta(η(2) -NRCH2 )(NMe2 )2 ] [R=Me (2), Ph (3)] were prepared from silica-supported tetrakis(dimethylamido)tantalum [≡Si-O-Ta(NMe2 )4 ] (1) and fully characterized by FTIR spectroscopy, elemental analysis, and (1) H,(13) C HETCOR and DQ TQ solid-state (SS) NMR spectroscopy. The formation mechanism, by β-H abstraction, was investigated by SS NMR spectroscopy and supported by DFT calculations. The C-H activation of the dimethylamide ligand is favored for R=Ph. The results from catalytic testing in the hydroaminoalkylation of alkenes were consistent with the N-alkyl aryl amine substrates being more efficient than N-dialkyl amines. PMID:26875939

  10. Antimicrobial peptide interactions with silica bead supported bilayers and E. coli: buforin II, magainin II, and arenicin.

    PubMed

    Davis, Ryan W; Arango, Dulce C; Jones, Howland D T; Van Benthem, Mark H; Haaland, David M; Brozik, Susan M; Sinclair, Michael B

    2009-08-01

    Using the unique quantitative capabilities of hyperspectral confocal microscopy combined with multivariate curve resolution, a comparative approach was employed to gain a deeper understanding of the different types of interactions of antimicrobial peptides (AMPs) with biological membranes and cellular compartments. This approach allowed direct comparison of the dynamics and local effects of buforin II, magainin II, and arenicin with nanoporous silica bead supported bilayers and living E. coli. Correlating between experiments and comparing these responses have yielded several important discoveries for pursuing the underlying biophysics of bacteriocidal specificity and the connection between structure and function in various cellular environments. First, a novel fluorescence method for direct comparison of a model and living system is demonstrated by utilizing the membrane partitioning and environmental sensitivity of propidium iodide. Second, measurements are presented comparing the temporal dynamics and local equilibrium concentrations of the different antimicrobial agents in the membrane and internal matrix of the described systems. Finally, we discuss how the data lead to a deeper understanding of the roles of membrane penetration and permeabilization in the action of these AMPs. PMID:19591202

  11. Preparation, surface characterization and performance of a Fischer-Tropsch catalyst of cobalt supported on silica nanosprings

    NASA Astrophysics Data System (ADS)

    Kengne, Blaise-Alexis Fouetio; Alayat, Abdulbaset M.; Luo, Guanqun; McDonald, Armando G.; Brown, Justin; Smotherman, Hayden; McIlroy, David N.

    2015-12-01

    The reduction of cobalt (Co) catalyst supported on silica nanosprings for Fischer-Tropsch synthesis (FTS) has been monitored by X-ray photoelectron spectroscopy (XPS) and compared to FT catalytic activity. The cobalt is present in the starting catalyst as a Co3O4 spinel phase. A two-step reduction of Co3O4 to CoO and then to Co0 is observed, which is consistent with the results of H2-temperature programmed reduction. During the reduction the two steps occur concurrently. The deconvolution of the Co 2p core level state for the catalyst reduced at 385 °C and 1.0 × 10-6 Torr of H2 revealed signatures of Co0, CoO, and Co3O4. The reduction saturates at a Coo concentration of approximately 41% after 20 h, which correlates with the activity and lifetime of the catalyst during FTS testing. Conversely, at 680 °C and 10 Torr of H2, the catalyst is completely reduced after 10 h. The evolution of the Co d-band at the Fermi level in the valence band XPS spectrum definitively verifies the metallic phase of Co. FTS evaluation of the Co/NS catalyst reduced at 609 °C showed higher production rate (3-fold) of C6-C17 hydrocarbons than the catalyst reduced at 409 °C and is consistent with the XPS analysis.

  12. Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid State NMR and Quantum Chemistry Calculations

    SciTech Connect

    Hu, Jian Z.; Kwak, Ja Hun; Wang, Yong; Hu, Mary Y.; Turcu, Romulus VF; Peden, Charles HF

    2011-10-18

    The acidic sites in dispersed tungsten oxide supported on SBA-15 mesoporous silica were investigated using a combination of pyridine titration, both fast-, and slow-MAS {sup 15}N NMR, static {sup 2}H NMR, and quantum chemistry calculations. It is found that the bridged acidic -OH groups in surface adsorbed tungsten dimers (i.e., W-OH-W) are the Broensted acid sites. The unusually strong acidity of these Broensted acid sites is confirmed by quantum chemistry calculations. In contrast, terminal W-OH sites are very stable and only weakly acidic as are terminal Si-OH sites. Furthermore, molecular interactions between pyridine molecules and the dimer Broensted and terminal W-OH sites for dispersed tungsten oxide species is strong. This results in restricted molecular motion for the interacting pyridine molecules even at room temperature, i.e., a reorientation mainly about the molecular 2-fold axis. This restricted reorientation makes it possible to estimate the relative ratio of the Broensted (tungsten dimer) to the weakly acidic terminal W-OH sites in the catalyst using the slow-MAS {sup 1}H-{sup 15}N CP PASS method.

  13. Preparation and adsorption behavior of berberine hydrochloride imprinted polymers by using silica gel as sacrificed support material

    NASA Astrophysics Data System (ADS)

    Li, Hui; Li, Yuzhuo; Li, Zhiping; Peng, Xiyang; Li, Yanan; Li, Gui; Tan, Xianzhou; Chen, Gongxi

    2012-03-01

    Preparation of berberine hydrochloride (B-Cl) imprinted polymers (MIPs) based on surface imprinting technique with silica gel as sacrificial support material was performed successfully by using B-Cl as template, methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. The prepared polymers were characterized by Fourier transmission infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Adsorption behavior of the MIPs for the template and its structural analogues was investigated. Sites distribution on the surface of MIPs was explored by using different isotherm adsorption models and thermodynamic parameters for the adsorption of B-Cl on the MIPs determined. Sample application and reusability for the MIPs was also evaluated. Results indicated the strong adsorption and high selectivity of the MIPs for B-Cl. Saturated adsorption capacity reached 27.2 μmol g-1 and the selectivity coefficient of the MIPs for B-Cl relative to jatrorrhizine hydrochloride (J-Cl) and palmatine palmatus hydrochloride (P-Cl) are 3.70 and 6.03, respectively. In addition, the MIPs were shown with good reusability and selectively retention ability in sample application.

  14. Studies of n-butane conversion over silica-supported platinum, platinum-silver and platinum-copper catalysts

    SciTech Connect

    Gu, Junhua

    1992-06-09

    The present work was undertaken to elucidate effect of adding silver and copper to silica-supported platinum catalyst on the activity and selectivity in the n-butane reactions. At the conditions of this study n-butane underwent both hydrogenolysis and structural isomerization. The catalytic activity and selectivities between hydrogenolysis and isomerization and within hydrogenolysis were measured at temperature varying from 330 C to 370 C. For platinum-silver catalysts, at lower temperatures studied the catalytic activity per surface platinum atom (turnover frequency) remained constant at lower silver content (between 0 at. % and 30 at. %) and decreased with further increased silver loading, suggesting that low- index planes could be dominant in the hydrogenolysis of n-butane. Moreover, increasing silver content resulted in an enhancement of the selectivity of isomerization products relative to hydrogenolysis products. At the higher temperature studied, no suppression in catalytic activity was observed. It is postulated that surface structure could change due to the mobility of surface silver atoms, leading to surface silver atoms forming islands or going to the bulk, and leaving large portions of basal planes exposed with active platinum atoms. It is also suggested that the presence of inert silver atoms results in weakening of the H-surface bond. This results in increased mobility of hydrogen atoms on the surface and hence, higher reactivity with other adsorbed species. For platinum copper catalysts, the mixed ensembles could play an active role in the hydrogenolysis of n-butane.

  15. A novel processing approach for free-standing porous non-oxide ceramic supports from polycarbosilane and polysilazane precursors

    PubMed Central

    Konegger, Thomas; Patidar, Rajesh; Bordia, Rajendra K.

    2015-01-01

    In this contribution, a low-pressure/low-temperature casting technique for the preparation of novel free-standing macrocellular polymer-derived ceramic support structures is presented. Preceramic polymers (polycarbosilane and poly(vinyl)silazane) are combined with sacrificial porogens (ultra-high molecular weight polyethylene microbeads) to yield porous ceramic materials in the Si—C or Si—C—N systems, exhibiting well-defined pore structures after thermal conversion. The planar-disc-type specimens were found to exhibit biaxial flexural strengths of up to 60 MPa. In combination with their observed permeability characteristics, the prepared structures were found to be suitable for potential applications in filtration, catalysis, or membrane science. PMID:26339126

  16. The structure of amorphous bulk and silica-supported copper(II) hydroxides

    SciTech Connect

    Kriventsov, V.V.; Kochubey, D.I.; Elizarova, G.L.; Matvienko, L.G.; Parmon, V.N.

    1999-07-01

    Determination of the structure of surface hydroxocompounds is one of the most delicate areas of environmental chemistry, geochemistry, and catalysis. In nature, these compounds are formed everywhere, mostly by absorption of multicharged metal cations on different soil constitutents from water solutions. The data obtained show that at pH 7 copper(II) ions are adsorbed on a SiO{sub 2} surface as polymeric species of hydroxide nature. The structure of these species is similar to that of the bulk amorphous copper hydroxide. The amorphous state of supported Cu(OH){sub 2} is caused by a small (ca. 11 {angstrom}) size of the surface particles. In contrast, the overstoichiometric water molecules seem to act as ``amorphizers`` of the bulk copper hydroxide. The structures of the bulk and dispersed amorphous copper(II) hydroxide were determined. The amorphous Cu(OH){sub 2} has a layered structure close to the structure of the crystalline hydroxide, but the layers in the amorphous hydroxide are shifted toward one another approximately for {1/4} of the c period of the lattice.

  17. Structure-Property Relationships in Porous 3-D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Papadopoulos, Demetrios S.; Leventis, Nicholas

    2007-01-01

    Sol-gel derived silica aerogels are attractive candidates for many unique thermal, optical, catalytic, and chemical applications because of their low density and high mesoporosity. However, their inherent fragility has restricted use of aerogel monoliths to applications where they are not subject to any load. We have previously reported cross-linking the mesoporous silica structure of aerogels with di-isocyanates, styrenes or epoxies reacting with amine decorated silica surfaces. These approaches have been shown to significantly increase the strength of aerogels with only a small effect on density or porosity. Though density is a prime predictor of properties such as strength and thermal conductivity for aerogels, it is becoming clear from previous studies that varying the silica backbone and size of the polymer cross-link independently can give rise to combinations of properties which cannot be predicted from density alone. Herein, we examine the effects of four processing parameters for producing this type of polymer cross-linked aerogel on properties of the resulting monoliths. We focus on the results of 13C CP-MAS NMR which gives insight to the size and structure of polymer cross-link present in the monoliths, and relates the size of the cross-links to microstructure, mechanical properties and other characteristics of the materials obtained.

  18. Structure-Property Relationships in Porous 3-D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Capadona, Lynn A.; McCorkle, Linda; Padadopoulos, Demetrios S.; Leventis, Nicholas

    2007-01-01

    Sol-gel derived silica aerogels are attractive candidates for many unique thermal, optical, catalytic, and chemical applications because of their low density and high mesoporosity. However, their inherent fragility has restricted use of aerogel monoliths to applications where they are not subject to any load. We have previously reported cross-linking the mesoporous silica structure of aerogels with di-isocyanates, styrenes or epoxies reacting with amine decorated silica surfaces. These approaches have been shown to significantly increase the strength of aerogels with only a small effect on density or porosity. Though density is a prime predictor of properties such as strength and thermal conductivity for aerogels, it is becoming clear from previous studies that varying the silica backbone and size of the polymer cross-link independently can give rise to combinations of properties which cannot be predicted from density alone. Herein, we examine the effects of four processing parameters for producing this type of polymer cross-linked aerogel on properties of the resulting monoliths. We focus on the results of C-13 CP-MAS NMR which gives insight to the size and structure of polymer cross-link present in the monoliths, and relates the size of the cross-links to microstructure, mechanical properties and other characteristics of the materials obtained.

  19. Dichloro (1,10-phenanthroline-5,6-dione) palladium (II) complex supported by mesoporous silica SBA-15 as a photocatalyst for degradation of 2,4-dichlorophenol

    NASA Astrophysics Data System (ADS)

    Abolhosseini Sh., A.; Mahjoub, A. R.; Eslami-Moghadam, M.; Fakhri, H.

    2014-11-01

    A new photocatalyst, dichloro (1,10-phenanthroline-5,6-dione) palladium (II) complex supported on SBA-15 silica was synthesized by ship-in-a-bottle method. The products obtained were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Ultraviolet-Visible spectroscopy (UV-Vis), 1H NMR spectroscopy, N2 adsorption-desorption and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The band gap energy of the complex was determined by the diffuse reflectance spectroscopy (DRS) and density functional theory (DFT) calculation, indicating that it can be considered appropriate candidate for photocatalytic activity in the region of solar spectrum. The results indicated improved photocatalytic efficiency for the complex supported on SBA-15 silica compared to the pure complex. To improve photocatalytic activity, the effect of complex loading and optimal synthesis conditions were investigated.

  20. Performance and durability of carbon black-supported Pd catalyst covered with silica layers in membrane-electrode assemblies of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Fujii, Keitaro; Ito, Mizuki; Sato, Yasushi; Takenaka, Sakae; Kishida, Masahiro

    2015-04-01

    Pd metal particles supported on a high surface area carbon black (Pd/CB) were covered with silica layers to improve the durability under severe cathode condition of proton exchange membrane fuel cells (PEMFCs). The performance and the durability of the silica-coated Pd/CB (SiO2/Pd/CB) were investigated by rotating disk electrode (RDE) in aqueous HClO4 and single cell test of the membrane-electrode assemblies (MEAs). SiO2/Pd/CB showed excellent durability exceeding Pt/CB during potential cycle in single cell test as well as in RDE measurement while Pd/CB significantly degraded. Furthermore, the MEA using SiO2/Pd/CB as the cathode catalyst showed higher performance than that using Pd/CB even in the initial state. The catalytic activity of SiO2/Pd/CB was higher than that of Pd/CB, and the drop of the cell performances due to the inhibition of electron conduction, proton conduction, and oxygen diffusion by the silica layer was not significant. It has been shown that the silica-coating is a very practical technique that can stabilize metal species originally unstable in the cathode condition of PEMFCs without a decrease in the cell performance.

  1. TiO{sub 2} supported on rod-like mesoporous silica SBA-15: Preparation, characterization and photocatalytic behaviour

    SciTech Connect

    Li, Yanjuan; Li, Nan; Tu, Jinchun; Li, Xiaotian; Wang, Beibei; Chi, Yue; Liu, Darui; Yang, Dianfan

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Rod-like SBA-15 and normal SBA-15 were used to prepare TiO{sub 2}/SBA-15 composites. Black-Right-Pointing-Pointer TiO{sub 2}/SBA-15 composites were studied as catalysts for methyl orange photodegradation. Black-Right-Pointing-Pointer TiO{sub 2}/Rod-SBA-15 exhibited higher photocatalytic activity than TiO{sub 2}/Nor-SBA-15. Black-Right-Pointing-Pointer The higher catalytic activity was a result of the controlled morphology of SBA-15. -- Abstract: TiO{sub 2} nanoparticles have been successfully incorporated in the pores of mesoporous silica SBA-15 with different morphologies by a wet impregnation method. The composites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP) emission spectroscopy, transmission electron microscopy (TEM), N{sub 2}-sorption and UV-Vis diffuse reflectance spectroscopy. The photodegradation of methyl orange (MO) was used to study their photocatalytic property. It is indicated that the morphology of SBA-15 had a great influence on the photocatalytic activity of the composites. When TiO{sub 2}/SBA-15 composite was prepared by loading TiO{sub 2} nanoparticles on uniform rod-like SBA-15 of 1 {mu}m length, it showed higher photocatalytic degradation rate than that on less regular but much larger SBA-15 support. This difference was rationalized in terms of the homogeneously distributed and shorter channels of rod-like SBA-15, which favored mass transport and improved the efficient utilization of the pore surface.

  2. New reversed-phase/anion-exchange/hydrophilic interaction mixed-mode stationary phase based on dendritic polymer-modified porous silica.

    PubMed

    Li, Yun; Yang, Jiajia; Jin, Jing; Sun, Xiaoli; Wang, Longxing; Chen, Jiping

    2014-04-11

    A novel dendritic polymer-modified silica (DPS) stationary phase was prepared by a divergent synthesis scheme starting from propylamine on silica by consecutive amine-epoxy reactions with 1,4-butanedioldiglycidyl ether and aniline. Both elemental analysis and infrared spectra data shows the successful growth of dendritic polymer on silica particles. The carbon and nitrogen contents increased with an increasing number of reaction cycles and achieved 25.2% and 2.1% (w/w) after 11 reaction cycles. The combination of a phenyl ring with a quaternary ammonium, or a tertiary amine at the branch point along with embedded polar functionalities (including ether and hydroxyl groups) in the branch, generated hydrophobic, electrostatic, as well as hydrophilic interactive domains. Depending on solute structure and mobile phase composition, the DPS stationary phase provided multiple retention mechanisms, including reversed phase (RP), anion-exchange (AEX), and hydrophilic interactions. The RP capability achieved separation of polycyclic aromatic hydrocarbons. Basic, neutral and acidic molecules were well separated under RP/AEX mixed mode. Effective separation of small polar compounds (such as nucleobases and nucleosides) was also obtained under hydrophilic interaction liquid chromatography (HILIC) mode. PMID:24630062

  3. Endurance Evaluation of Sintered, Porous, Strut-Supported Turbine Blades made by Federal-Mogul-Bower-Bearings, Incorporated, under Bureau of Aeronautics Contract NOas 55-124-C

    NASA Technical Reports Server (NTRS)

    Hickel, Robert O.; Richards, Hadley T.

    1957-01-01

    Four strut-supported, transpiration-cooled turbine blades were investigated experimentally in a turbojet engine. The blade shells were fabricated by the mold-sintering method with spherical stainless-steel powder. Two blades were investigated in order to evolve suitable capping methods for the blade tip. Two other blades were used to evaluate the durability of the porous-shell material. The blades were investigated at a turbine-tip speed of 1305 feet per second, an average turbine-inlet temperature of about 1670 F, and at a porous-shell temperature limited to a maximum of approximately 1040 F.

  4. Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography.

    PubMed

    Borges, Endler M

    2015-04-01

    Free silanols on the surface of silica are the "villains", which are responsible for detrimental interactions of those compounds and the stationary phase (i.e., bad peak shape, low efficiency) as well as low thermal and chemical stability. For these reasons, we began this review describing new silica and hybrid silica stationary phases, which have reduced and/or shielded silanols. At present, in liquid chromatography for the majority of analyses, reversed-phase liquid chromatography is the separation mode of choice. However, the needs for increased selectivity and increased retention of hydrophilic bases have substantially increased the interest in hydrophilic interaction chromatography (HILIC). Therefore, stationary phases and this mode of separation are discussed. Then, non-silica stationary phases (i.e., zirconium oxide, titanium oxide, alumina and porous graphitized carbon), which afford increased thermal and chemical stability and also selectivity different from those obtained with silica and hybrid silica, are discussed. In addition, the use of these materials in HILIC is also reviewed. PMID:25234386

  5. Deposition of Ni nanoparticles onto porous supports using supercritical CO2: effect of the precursor and reduction methodology.

    PubMed

    Morère, Jacobo; Royuela, Sergio; Asensio, Guillermo; Palomino, Pablo; Enciso, Eduardo; Pando, Concepción; Cabañas, Albertina

    2015-12-28

    The deposition of Ni nanoparticles into porous supports is very important in catalysis. In this paper, we explore the use of supercritical CO(2) (scCO(2)) as a green solvent to deposit Ni nanoparticles on mesoporous SiO2 SBA-15 and a carbon xerogel. The good transport properties of scCO(2) allowed the efficient penetration of metal precursors dissolved in scCO(2) within the pores of the support without damaging its structure. Nickel hexafluoroacetylacetonate hydrate, nickel acetylacetonate, bis(cyclopentadienyl)nickel, Ni(NO(3))2⋅6H(2)O and NiCl(2)⋅6H(2)O were tried as precursors. Different methodologies were used: impregnation in scCO(2) and reduction in H(2)/N(2) at 400°C and low pressure, reactive deposition using H(2) at 200-250°C in scCO(2) and reactive deposition using ethanol at 150-200°C in scCO(2). The effect of precursor and methodology on the nickel particle size and the material homogeneity (on the different substrates) was analysed. This technology offers many opportunities in the preparation of metal-nanostructured materials. PMID:26574525

  6. Selective hydrogenation of halogenated arenes using porous manganese oxide (OMS-2) and platinum supported OMS-2 catalysts.

    PubMed

    McManus, Iain J; Daly, Helen; Manyar, Haresh G; Taylor, S F Rebecca; Thompson, Jillian M; Hardacre, Christopher

    2016-07-01

    Porous manganese oxide (OMS-2) and platinum supported on OMS-2 catalysts have been shown to facilitate the hydrogenation of the nitro group in chloronitrobenzene to give chloroaniline with no dehalogenation. Complete conversion was obtained within 2 h at 25 °C and, although the rate of reaction increased with increasing temperature up to 100 °C, the selectivity to chloroaniline remained at 99.0%. Use of Pd/OMS-2 or Pt/Al2O3 resulted in significant dechlorination even at 25 °C and 2 bar hydrogen pressure giving a selectivity to chloroaniline of 34.5% and 77.8%, respectively, at complete conversion. This demonstrates the potential of using platinum group metal free catalysts for the selective hydrogenation of halogenated aromatics. Two pathways were observed for the analogous nitrobenzene hydrogenation depending on the catalyst used. The hydrogenation of nitrobenzene was found to follow a direct pathway to aniline and nitrosobenzene over Pd/OMS-2 in contrast to the OMS and Pt/OMS-2 catalysts which resulted in formation of nitrosobenzene, azoxybenzene and azobenzene/hydrazobenzene intermediates before complete conversion to aniline. These results indicate that for Pt/OMS-2 the hydrogenation proceeds predominantly over the support with the metal acting to dissociate hydrogen. In the case of Pd/OMS-2 both the hydrogenation and hydrogen adsorption occur on the metal sites. PMID:27095631

  7. Fabrication of Pd Micro-Membrane Supported on Nano-Porous Anodized Aluminum Oxide for Hydrogen Separation.

    PubMed

    Kim, Taegyu

    2015-08-01

    In the present study, nano-porous anodized aluminum oxide (AAO) was used as a support of the Pd membrane. The AAO fabrication process consists of an electrochemical polishing, first/second anodizing, barrier layer dissolving and pores widening. The Pd membrane was deposited on the AAO support using an electroless plating with ethylenediaminetetraacetic acid (EDTA) as a plating agent. The AAO had the regular pore structure with the maximum pore diameter of ~100 nm so it had a large opening area but a small free standing area. The 2 µm-thick Pd layer was obtained by the electroless plating for 3 hours. The Pd layer thickness increased with increasing the plating time. However, the thickness was limited to ~5 µm in maximum. The H2 permeation flux was 0.454 mol/m2-s when the pressure difference of 66.36 kPa0.5 was applied at the Pd membrane under 400 °C. PMID:26369167

  8. Effects of porogen and cross-linking agents on improved properties of silica-supported macroporous chitosan membranes for enzyme immobilization.

    PubMed

    Yang, Wen-Yi; Thirumavalavan, Munusamy; Lee, Jiunn-Fwu

    2015-04-01

    A series of silica-supported macroporous chitosan membranes (CM15, CM20, and CM25) was prepared by varying the ratio of 70-230-μm-sized silica particles. These synthesized membranes were further cross-linked using different cross-linking agents for covalent immobilization of biological macromolecules especially enzymes and in this study, Bovine serum albumin and laccase. Effects of silica particle and cross-linking agents on their flow rates, surface properties, and chemical and biological properties were explored. Pore size of as-synthesized membranes was 0.1192, 0.1268, and 0.1623 μm, respectively, for CM15, CM20, and CM25. The effect of various parameters such as temperature and pH on the relative activity of both free and immobilized enzymes was studied in details. The relative enzyme activity upon immobilization was greatly enhanced several folds of its original activity. The stability of enzymes over a range of temperature and pH was significantly improved by immobilization. The optimum temperature and pH were determined to be 50 °C and pH 3, respectively, for both the free and the immobilized enzymes. The immobilized enzyme possessed good operational stability and reusability properties that support its potentiality for practical applications. Among three membranes, CM25 is confirmed to be efficient candidate due to its improved characteristics. PMID:25432857

  9. Effect of the porous structure of the support on hydrocarbon distribution in the Fischer-Tropsch reaction

    NASA Astrophysics Data System (ADS)

    Bartolini, Monica; Molina, Jhoanna; Alvarez, Juan; Goldwasser, Mireya; Pereira Almao, Pedro; Zurita, M. Josefina Pérez

    2015-07-01

    Emissions standards are increasingly stringent due mainly to its impact on the environment. Although the diesel engine is an attractive solution for carbon dioxide reduction, a challenge remains to simultaneously control nitrogen oxides and matter particulate emissions to accepted levels. On engine tests, it has been observed that Fischer-Tropsch diesel significantly reduces CO, HC, PAHs and particulate emissions compared to oil derived diesel. However, selectivity control in Fischer Tropsch Synthesis is still a key challenge due the Anderson-Schultz-Flory polymerization mechanism followed by hydrocarbon distribution. In this work we are presenting the first steps towards a new strategy that can tune, in one step, the selectivity to desired products by taking advantage of the shape selectivity properties of SBA-15 mesoporous silica used as support. Co-SBA-15 (30%wt) catalysts with different pore size were prepared by excess solution impregnation. Our results show that pore diameter not only affects the size and reducibility of Co particles but it also significantly influence the liquid products distribution, with the high molecular weight hydrocarbon fraction increasing on large pores, attributed to the existence of a shape selectivity effect induced by the textural properties of the catalyst namely its pore size and pore volume.

  10. Preparation of reusable bioreactors using reversible immobilization of enzyme on monolithic porous polymer support with attached gold nanoparticles.

    PubMed

    Lv, Yongqin; Lin, Zhixing; Tan, Tianwei; Svec, Frantisek

    2014-01-01

    Porcine lipase has been reversibly immobilized on a monolithic polymer support containing thiol functionalities prepared within confines of a fused silica capillary and functionalized with gold nanoparticles. Use of gold nanoparticles enabled rejuvenation of the activity of the deactivated reactor simply by stripping the inactive enzyme from the nanoparticles using 2-mercaptoethanol and subsequent immobilization of fresh lipase. This flow through enzymatic reactor was then used to catalyze the hydrolysis of glyceryl tributyrate (tributyrin). The highest activity was found within a temperature range of 37-40°C. The reaction kinetics is characterized by Michaelis-Menten constant, Km  = 10.9 mmol/L, and maximum reaction rate, Vmax  = 5.0 mmol/L min. The maximum reaction rate for the immobilized enzyme is 1,000 times faster compared to lipase in solution. The fast reaction rate enabled to achieve 86.7% conversion of tributyrin in mere 2.5 min and an almost complete conversion in 10 min. The reactor lost only less than 10% of its activity even after continuous pumping through it a solution of substrate equaling 1,760 reactor volumes. Finally, potential application of this enzymatic reactor was demonstrated with the transesterification of triacylglycerides from kitchen oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. PMID:23860941

  11. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, Narayan K.; Brinker, Charles Jeffrey

    1998-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  12. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, Narayan K.; Brinker, Charles Jeffrey

    1999-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  13. Molecular sieving silica membrane fabrication process

    DOEpatents

    Raman, N.K.; Brinker, C.J.

    1999-08-10

    A process is described for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film. 11 figs.

  14. One-step synthesis of highly efficient nanocatalysts on the supports with hierarchical pores using porous ionic liquid-water gel.

    PubMed

    Kang, Xinchen; Zhang, Jianling; Shang, Wenting; Wu, Tianbin; Zhang, Peng; Han, Buxing; Wu, Zhonghua; Mo, Guang; Xing, Xueqing

    2014-03-12

    Stable porous ionic liquid-water gel induced by inorganic salts was created for the first time. The porous gel was used to develop a one-step method to synthesize supported metal nanocatalysts. Au/SiO2, Ru/SiO2, Pd/Cu(2-pymo)2 metal-organic framework (Cu-MOF), and Au/polyacrylamide (PAM) were synthesized, in which the supports had hierarchical meso- and macropores, the size of the metal nanocatalysts could be very small (<1 nm), and the size distribution was very narrow even when the metal loading amount was as high as 8 wt %. The catalysts were extremely active, selective, and stable for oxidative esterification of benzyl alcohol to methyl benzoate, benzene hydrogenation to cyclohexane, and oxidation of benzyl alcohol to benzaldehyde because they combined the advantages of the nanocatalysts of small size and hierarchical porosity of the supports. In addition, this method is very simple. PMID:24575937

  15. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells.

    PubMed

    Petrochenko, Peter E; Torgersen, Jan; Gruber, Peter; Hicks, Lucas A; Zheng, Jiwen; Kumar, Girish; Narayan, Roger J; Goering, Peter L; Liska, Robert; Stampfl, Jürgen; Ovsianikov, Aleksandr

    2015-04-01

    A reproducible method is needed to fabricate 3D scaffold constructs that results in periodic and uniform structures with precise control at sub-micrometer and micrometer length scales. In this study, fabrication of scaffolds by two-photon polymerization (2PP) of a biodegradable urethane and acrylate-based photoelastomer is demonstrated. This material supports 2PP processing with sub-micrometer spatial resolution. The high photoreactivity of the biophotoelastomer permits 2PP processing at a scanning speed of 1000 mm s(-1), facilitating rapid fabrication of relatively large structures (>5 mm(3)). These structures are custom printed for in vitro assay screening in 96-well plates and are sufficiently flexible to enable facile handling and transplantation. These results indicate that stable scaffolds with porosities of greater than 60% can be produced using 2PP. Human bone marrow stromal cells grown on 3D scaffolds exhibit increased growth and proliferation compared to smooth 2D scaffold controls. 3D scaffolds adsorb larger amounts of protein than smooth 2D scaffolds due to their larger surface area; the scaffolds also allow cells to attach in multiple planes and to completely infiltrate the porous scaffolds. The flexible photoelastomer material is biocompatible in vitro and is associated with facile handling, making it a viable candidate for further study of complex 3D-printed scaffolds. PMID:25522214

  16. Grafting of [(64)Cu]-TPPF20 porphyrin complex on Functionalized nano-porous MCM-41 silica as a potential cancer imaging agent.

    PubMed

    Fazaeli, Yousef; Feizi, Shahzad; Jalilian, Amir R; Hejrani, Ali

    2016-06-01

    Mesoporous silica, MCM-41, functionalized with 3-aminopropyltriethoxysilane (APTES) was investigated as a potential drug delivery system, using [(64)Cu]-5, 10, 15, 20-tetrakis penta fluorophenyl porphyrin complex. [(64)Cu]-TPPF20 complex was grafted on functionalized MCM-41. The product was characterized by paper chromatography, FTIR spectroscopy, low angle X-ray diffraction, CHN and TGA/DTA analyses and atomic force microscopy. The biological evaluations of the grafted complex, [(64)Cu]-TPPF20@NH2-MCM-41, were done in Fibrosarcoma tumor-bearing Sprague-Dawley rats using scarification studies and Sopha DST-XL Dual-Head SPECT system. The actual loading amount of aminopropyl groups was found about 1.6mmol per gram of final silica. The specific activity of the final compound was found to be 3Ci/g. Amine functionalized MCM-41 was found to be a good platform for theranostic radiopharmaceuticals such as copper-64 complexes. Considering the accumulation of the tracer in tumor cells, fast wash-out from normal tissues, the short half-life copper-64 and less imposed radiation doses to patients, [(64)Cu]-TPPF20@NH2-MCM-41 can potentially be a suitable candidate for tumor imaging applications and future PET studies. PMID:26974487

  17. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    SciTech Connect

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  18. Microgravity effects on water supply and substrate properties in porous matrix root support systems

    NASA Technical Reports Server (NTRS)

    Bingham, G. E.; Jones, S. B.; Or, D.; Podolski, I. G.; Levinskikh, M. A.; Sytchov, V. N.; Ivanova, T.; Kostov, P.; Sapunova, S.; Dandolov, I.; Bubenheim, D. B.; Jahns, G.; Campbell, W. F. (Principal Investigator)

    2000-01-01

    The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles. c 2001 Published by Elsevier Science Ltd. All rights reserved.

  19. Novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane-silica monolithic capillary microextraction and its application to the fractionation of aluminum in rainwater and fruit juice by electrothermal vaporization inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Fei; Hu, Bin

    2008-01-01

    A novel bimodal porous N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AAPTS)-silica monolithic capillary was prepared by sol-gel technology, and used as capillary microextraction (CME) column for aluminum fractionation by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV)-ICP-MS with the use of polytetrafluoroethylene (PTFE) slurry as fluorinating agent. The extraction behaviors of different Al species were studied and it was found that in the pH range of 4-7, labile monomeric Al (free Al 3+, Al-OH and Al-F) could be retained quantitatively on the monolithic capillary, while non-labile monomeric Al (Al-Cit and Al-EDTA) passed through the capillary directly. The labile monomeric Al retained on monolithic capillary was eluted with 10 μL 1 mol L - 1 HCl and the elution was introduced into the ETV for fluorination assisted ETV-ICP-MS determination. The total monomeric Al fraction was also determined by AAPTS-silica monolithic CME-fluorination-assisted electrothermal vaporization (FETV)-ICP-MS after the sample solution was adjusted to pH 8.8. Non-labile monomeric Al was obtained by subtracting labile monomeric Al from the total monomeric Al. Under the optimized conditions, the relative standard deviation (R.S.D) was 6.2% ( C = 1 μg L - 1 , n = 7; sample volume, 5 mL), and the limit of detection was 1.6 ng L - 1 for Al with an enrichment factor of 436 fold and a sampling frequency of 9 h - 1 . The prepared AAPTS-silica monolithic capillary showed an excellent pH tolerance and solvent stability and could be used for more than 250 times without decreasing adsorption efficiency. The developed method was applied to the fraction of Al in rainwater and fruit juice, and the results demonstrated that the established system had advantages over the existing 8-hydroxyquinoline (8-HQ) chelating system for Al fractionation such as wider pH range, higher tolerance of interference and better regeneration.

  20. Chemically Layered Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve

    1991-01-01

    Aerogels and other porous solids in which surfaces of pores have chemical properties varying with depth below macroscopic surfaces prepared by sequences of chemical treatments. Porous glass or silica bead treated to make two depth zones having different chemical properties. Beads dropped along tube filled with flowing gas containing atomic oxygen, generated in microwave discharge. General class of materials treatable include oxides of aluminum, silicon, zirconium, tin, titanium, and nickel, and mixtures of these oxides. Potential uses of treated materials include chromatographic separations, membrane separations, controlled releases of chemicals, and catalysis.

  1. Effect of the support and the reduction temperature on the formation of metallic nickel phase in Ni/silica gel precursors of vegetable oil hydrogenation catalysts

    NASA Astrophysics Data System (ADS)

    Gabrovska, M.; Krstić, J.; Tzvetkov, P.; Tenchev, K.; Shopska, M.; Vukelić, N.; Jovanović, D.

    2011-12-01

    Ni/SiO2 materials with identical composition (SiO2/Ni = 1.0) have been synthesized by precipitation of Ni(NO3)2 · 6H2O solution with Na2CO3 solution on the silica gel, obtained at three different pH values. The present investigation was undertaken in an endeavor to study the effects of the silica gel support type and the reduction temperature on the formation and dispersion of the metallic nickel phase in the reduced Ni/SiO2 precursors of the vegetable oil hydrogenation catalyst. The physicochemical characterization of the unreduced and reduced precursors has been accomplished appropriately by powder X-ray diffraction, infrared spectroscopy, temperature programmed reduction and H2-chemisorption techniques. It can be stated that the texture peculiarities of the silica gels used as supports influence on the crystalline state and distribution of the deposited Ni-containing phases during the preparation of the precursors, on the reduction temperature of the investigated solids as well as on the bulk size and surface dispersion of the arising metallic nickel particles. It was shown that two types of Ni2+-species are formed during the synthesis procedure, namely basic nickel carbonate-like and Ni-phyllosilicate with different extent of presence, location and strength of interaction. The different location of these species is supposed to result in various strength of Ni-O and Ni-O-Si interaction, thus determining the overall reducibility of the precursors. It was specified that the Ni2+-species are strongly bonded to the surface of the silica gel obtained at neutral pH value and weakly bonded to the surface of those prepared in acidic and alkaline conditions. It was established that the precursor, derivates from the silica gel obtained at alkaline conditions, demonstrates both significant reduction of the Ni2+ ions at 430°C and finely dispersed metallic nickel particles on its surface. High dispersion of the metallic nickel might be the crucial reason for achieving of

  2. A Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values

    PubMed Central

    Pham, Anh Le-Tuan; Lee, Changha; Doyle, Fiona M.; Sedlak, David L.

    2009-01-01

    Iron oxides catalyze the conversion of hydrogen peroxide (H2O2) into oxidants capable of transforming recalcitrant contaminants. Unfortunately, the process is relatively inefficient at circumneutral pH values due to competing reactions that decompose H2O2 without producing oxidants. Silica- and alumina-containing iron oxides prepared by sol-gel processing of aqueous solutions containing Fe(ClO4)3, AlCl3 and tetraethyl orthosilicate efficiently catalyzed the decomposition of H2O2 into oxidants capable of transforming phenol at circumneutral pH values. Relative to hematite, goethite and amorphous FeOOH, the silica-iron oxide catalyst exhibited a stoichiometric efficiency, defined as the number of moles of phenol transformed per mole of H2O2 consumed, that was 10 to 40 times higher than that of the iron oxides. The silica-alumina-iron oxide catalyst had a stoichiometric efficiency that was 50 to 80 times higher than that of the iron oxides. The significant enhancement in oxidant production is attributable to the interaction of Fe with Al and Si in the mixed oxides, which alters the surface redox processes, favoring the production of strong oxidants during H2O2 decomposition. PMID:19943668

  3. Synthesis of sulfated titania supported on mesoporous silica using direct impregnation and its application in esterification of acetic acid and n-butanol

    NASA Astrophysics Data System (ADS)

    Wang, Yuhong; Gan, Yunting; Whiting, Roger; Lu, Guanzhong

    2009-09-01

    A new method has been developed for the preparation of sulfated titania (S-TiO 2) supported on mesoporous silica. The use of direct exchange of metal containing precursors for the surfactants in the as-synthesized MCM-41 substrate produced a product with high sulfur content without serious blockage of the pore structure of MCM-41. The pore sizes and volumes of the resultant S-TiO 2/MCM-41 composites were found to vary markedly with the loading of TiO 2. The strong acidic character of the composites obtained was examined by using them as catalysts for the esterification of acetic acid and n-butanol.

  4. Well-dispersed platinum nanoparticles supported on hierarchical nitrogen-doped porous hollow carbon spheres with enhanced activity and stability for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Ma, Li; Gan, Mengyu; Yang, Fangfang; Fu, Shenna; Li, Xiao

    2015-08-01

    Hierarchical nitrogen-doped porous hollow carbon spheres (HNPHCS) with porous-thin mesoporous shell and hollow macroporous core structure have been prepared via in-situ oxidation polymerization method using polyaniline as the precursor. After carbonization at 900 °C, the average diameter of HNPHCS is ca. 140 nm with shell thickness of ∼1 nm. Pt nanoparticles with high dispersion and small size have been successfully deposited on the HNPHCS by a microwave-assisted polyol process to synthesize Pt/HNPHCS catalyst. The obtained samples are characterized by physical characterization and electrochemical measurements. Electrochemical studies reveal that the prepared Pt/HNPHCS catalyst possesses notably higher catalytic activity and CO-tolerance, and better stability toward methanol electrooxidation in comparison with Pt/nitrogen-doped porous carbon and the commercial Pt/C catalysts. It is likely that enhanced catalytic properties of the Pt/HNPHCS could be due to the high dispersion of small Pt nanoparticles, the presence of nitrogen species, developed porous-thin mesoporous shell and hollow macroporous core structure of support HNPHCS. As a result, the as-developed Pt/HNPHCS present attractive advantages for the application in fuel cell electrocatalyst.

  5. The role of hydroxyl group acidity on the activity of silica-supported secondary amines for the self-condensation of n-butanal.

    PubMed

    Shylesh, Sankaranarayanapillai; Hanna, David; Gomes, Joseph; Canlas, Christian G; Head-Gordon, Martin; Bell, Alexis T

    2015-02-01

    The catalytic activity of secondary amines supported on mesoporous silica for the self-condensation of n-butanal to 2-ethylhexenal can be altered significantly by controlling the Brønsted acidity of M--OH species present on the surface of the support. In this study, M--OH (M=Sn, Zr, Ti, and Al) groups were doped onto the surface of SBA-15, a mesoporous silica, prior to grafting secondary propyl amine groups on to the support surface. The catalytic activity was found to depend critically on the synthesis procedure, the nature and amount of metal species introduced and the spatial separation between the acidic sites and amine groups. DFT analysis of the reaction pathway indicates that, for weak Brønsted acid groups, such as Si--OH, the rate-limiting step is C--C bond formation, whereas for stronger Brønsted acid groups, such as Ti and Al, hydrolysis of iminium species produced upon C--C bond formation is the rate-limiting step. Theoretical analysis shows further that the apparent activation energy decreases with increasing Brønsted acidity of the M--OH groups, consistent with experimental observation. PMID:25314616

  6. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    PubMed

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given. PMID:26802999

  7. More sensitive and quantitative proteomic measurements using very low flow rate porous silica monolithic LC columns with electrospray ionization-mass spectrometry

    SciTech Connect

    Luo, Quanzhou; Tang, Keqi; Yang, Feng; Elias, Ayesha; Shen, Yufeng; Moore, Ronald J.; Zhao, Rui; Hixson, Kim K.; Rossie, Sandra S.; Smith, Richard D.

    2006-05-01

    The sensitivity of proteomics measurements using liquid chromatography (LC) separations interfaced with electrospray ionization-mass spectrometry (ESI-MS) improves approximately inversely with liquid flow rate, making attractive the use of smaller inner diameter LC columns. We report the development and initial application of 10 µm i.d. silica-based monolithic LC columns providing more sensitive proteomics measurements. The implementation provides robust performance and suitability for automated proteome analyses due to integration with a micro solid phase extraction pre-column for ease of sample injection and clean-up prior to the reversed phased LC separation. Greater than 10-fold improvement in sensitivity was obtained compared to analyses using more conventional capillary LC, enabling e.g. the identification of >5000 different peptides by MS/MS from 100-ng of a Shewanella oneidensis tryptic digest using an ion trap MS. The low nL/min LC flow rates provide more uniform signal intensities for different peptides, and provided improved quantitative measurements compared to conventional separation systems without the use of internal standards or isotopic labeling. The improved sensitivity allowed LC-MS measurements of immunopurified protein phosphatase 5 that were in good agreement with quantitative western blot analyses.

  8. Synergy between Two Metal Catalysts: A Highly Active Silica-Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane.

    PubMed

    Samantaray, Manoja K; Dey, Raju; Kavitake, Santosh; Abou-Hamad, Edy; Bendjeriou-Sedjerari, Anissa; Hamieh, Ali; Basset, Jean-Marie

    2016-07-13

    A well-defined, silica-supported bimetallic precatalyst [≡Si-O-W(Me)5≡Si-O-Zr(Np)3] (4) has been synthesized for the first time by successively grafting two organometallic complexes [W(Me)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple-quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON = 1436) than the monometallic W hydride (TON = 650) in the metathesis of n-decane at 150 °C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation that occurs on Zr. The produced olefin resulting from a β-H elimination undergoes easy metathesis on W. PMID:27248839

  9. Preparation and characterization of a molecularly imprinted polymer by grafting on silica supports: a selective sorbent for patulin toxin.

    PubMed

    Zhao, Dayun; Jia, Jingfu; Yu, Xuelei; Sun, Xiangjun

    2011-10-01

    A new molecularly imprinted polymer (MIP) has been prepared on silica beads using the radical "grafting from" polymerization method for selective extraction of minor contaminant mycotoxin of patulin (PTL). After the introduction of amino groups onto the silica surface with 3-aminopropyltriethoxysilane, azo initiator onto the silica surface was achieved by the reaction of surface amino groups with 4,4'-azobis(4-cyanopentanoic acid). The scale-up synthesis of MIP was then carried out in the presence of 6-hydroxynicotinic acid as template substitute, functional, and cross-linking monomers. The prepared sorbent was characterized using FT-IR spectroscopy, scanning electron microscopy, elemental analysis, and the adsorption-desorption selectivity, and the capacity characteristic of the polymer was investigated by a conventional batch adsorption test and Scatchard plot analysis. The results indicated that coated polymers had specific adsorption to PTL as compared with its co-occurring 5-hydroxymethyl-2-furaldehyde (hydroxymethylfurfural (HMF)), at the same bulk concentration for solution of PTL and HMF, the maximum absorbance in the solid-phase extraction (SPE) method to PTL were 93.97% or 0.654 μg/mg while to HMF they were 76.89% or 0.496 μg/mg. Scatchard analysis revealed that two classes of binding sites were formed in PTL-MIP with dissociation constants of 3.2 × 10(-2) and 5.0 × 10(-3) mg/mL and the affinity binding sites of 8.029 and 1.364 mg/g, respectively. The recoveries of PTL were more than 90% for the developed MISPE and around 75% for the traditional liquid-liquid extraction in spiked apple juice samples. It was concluded that the method is suitable for the scale-up synthesis of PTL-MIP grafted on silica, and the polymer can be effectively applied as SPE coupled with high-performance liquid chromatography (HPLC) for the determination of PTL in apple juice or other related products. PMID:21870071

  10. An X-ray absorption spectroscopy study of the inversion degree in zinc ferrite nanocrystals dispersed on a highly porous silica aerogel matrix.

    PubMed

    Carta, D; Marras, C; Loche, D; Mountjoy, G; Ahmed, S I; Corrias, A

    2013-02-01

    The structural properties of zinc ferrite nanoparticles with spinel structure dispersed in a highly porous SiO(2) aerogel matrix were compared with a bulk zinc ferrite sample. In particular, the details of the cation distribution between the octahedral (B) and tetrahedral (A) sites of the spinel structure were determined using X-ray absorption spectroscopy. The analysis of both the X-ray absorption near edge structure and the extended X-ray absorption fine structure indicates that the degree of inversion of the zinc ferrite spinel structures varies with particle size. In particular, in the bulk microcrystalline sample, Zn(2+) ions are at the tetrahedral sites and trivalent Fe(3+) ions occupy octahedral sites (normal spinel). When particle size decreases, Zn(2+) ions are transferred to octahedral sites and the degree of inversion is found to increase as the nanoparticle size decreases. This is the first time that a variation of the degree of inversion with particle size is observed in ferrite nanoparticles grown within an aerogel matrix. PMID:23406136

  11. Negative electrospray ionization on porous supporting tips for mass spectrometric analysis: electrostatic charging effect on detection sensitivity and its application to explosive detection.

    PubMed

    Wong, Melody Yee-Man; Man, Sin-Heng; Che, Chi-Ming; Lau, Kai-Chung; Ng, Kwan-Ming

    2014-03-21

    The simplicity and easy manipulation of a porous substrate-based ESI-MS technique have been widely applied to the direct analysis of different types of samples in positive ion mode. However, the study and application of this technique in negative ion mode are sparse. A key challenge could be due to the ease of electrical discharge on supporting tips upon the application of negative voltage. The aim of this study is to investigate the effect of supporting materials, including polyester, polyethylene and wood, on the detection sensitivity of a porous substrate-based negative ESI-MS technique. By using nitrobenzene derivatives and nitrophenol derivatives as the target analytes, it was found that the hydrophobic materials (i.e., polyethylene and polyester) with a higher tendency to accumulate negative charge could enhance the detection sensitivity towards nitrobenzene derivatives via electron-capture ionization; whereas, compounds with electron affinities lower than the cut-off value (1.13 eV) were not detected. Nitrophenol derivatives with pKa smaller than 9.0 could be detected in the form of deprotonated ions; whereas polar materials (i.e., wood), which might undergo competitive deprotonation with the analytes, could suppress the detection sensitivity. With the investigation of the material effects on the detection sensitivity, the porous substrate-based negative ESI-MS method was developed and applied to the direct detection of two commonly encountered explosives in complex samples. PMID:24492411

  12. The formation of silica, alumina and zirconia supported high surface area monometallic and bimetallic catalysts. Progress report

    SciTech Connect

    Gonzalez, R.D.

    1993-12-01

    During the current granting period, 12/01/92--11/30/93, studies have progressed along four fronts: (1) Preparation of high surface area Pt/SiO{sub 2} catalysts; (2) preparation of high surface area Pt/Al{sub 2}O{sub 3} catalysts; (3) preparation of high surface area promoted zirconia superacid catalysts and, (4) stabilization and sintering of porous Pt/SiO{sub 2} catalysts. In addition to these current studies a major review article on previously funded DOE research has been completed and will appear in Catalysis Reviews. Results of these studies are briefly described.

  13. Ultra-fast high-efficiency enantioseparations by means of a teicoplanin-based chiral stationary phase made on sub-2 μm totally porous silica particles of narrow size distribution.

    PubMed

    Ismail, Omar H; Ciogli, Alessia; Villani, Claudio; De Martino, Michela; Pierini, Marco; Cavazzini, Alberto; Bell, David S; Gasparrini, Francesco

    2016-01-01

    A new ultra-high performance teicoplanin-based stationary phase was prepared starting from sub-2 μm totally porous silica particles of narrow size distribution. Columns of different lengths were packed at high pressure and a deep and systematic evaluation of kinetic performance, in terms of van Deemter analysis, was performed under different elution conditions (HILIC, POM, RP and NP) by using both achiral and chiral probes. For the achiral probes, the efficiency of the columns at the minimum of the van Deemter curves were very high leading to some 278,000, 270,000, 262,000 and 232,000 plates/m in hydrophilic interaction liquid chromatography (HILIC), polar organic mode (POM), normal phase (NP) and reversed phase (RP) respectively. The lowest plate height, Hmin=3.59 μm (h(/)=1.89), was obtained under HILIC conditions at a flow rate of 1.4 mL/min. Efficiency as high as 200,000-250,000 plates/m (at the optimum flow rate) was obtained in the separation of the enantiomers of chiral probes under HILIC/POM conditions. N-protected amino acids, α-aryloxy acids, herbicides, anti-inflammatory agents were baseline separated on short (2-cm) and ultra-short (1-cm) columns, with analysis time in the order of 1 min. The enantiomers of N-BOC-d,l-methionine were successfully baseline separated in only 11s in HILIC mode. Several examples of fast and efficient resolutions in sub/supercritical fluid chromatography were also obtained for a range of chiral carboxylic acids. PMID:26687167

  14. Novel supports in chiral stationary phase development for liquid chromatography. Preparation, characterization and application of ordered mesoporous silica particles.

    PubMed

    Sierra, Isabel; Pérez-Quintanilla, Damián; Morante, Sonia; Gañán, Judith

    2014-10-10

    Recent advances in the development of new materials are having a major impact on analytical chemistry. For example, the unique properties of ordered mesoporous silicas (OMSs) have been shown to enhance the analytical performance of many existing techniques or allow new, exciting ones to be developed. Likewise, the introduction of organo-functional groups makes OMSs highly versatile and enables them to perform specialized tasks, such as the separation of chiral compounds. This review provides an overview with the most relevant achievements in the preparation of OMS particles functionalized with chiral selectors. In addition, some examples from the last fifteen years regarding the analytical applications of functionalized OMS for chiral separations by high-performance liquid chromatography, ultra-high pressure high-performance liquid chromatography and capillary electrochromatography have been reviewed. PMID:25015243

  15. Hydrogenation of arenes under mild conditions using rhodium pyridylphosphine and bipyridyl complexes tethered to a silica-supported palladium heterogeneous catalyst

    SciTech Connect

    Yang, H.; Gao, H.; Angelici, R.J.

    2000-02-21

    The rhodium complexes [Rh(COD)(1)]BF{sub 4} (RH(N-P)) and [Rh(COD)(2)]BF{sub 4} (Rh(N-N)), containing the new pyridylphosphine and bipyridyl ligands (1 and 2) with alkoxysilane groups, were tethered on the silica-supported palladium heterogeneous catalyst Pd-SiO{sub 2} to give the TCSM (tethered complex on supported metal) catalysts Rh(N-P)/Pd-SiO{sub 2} and Rh(N-N)/Pd-SiO{sub 2}. Under the mild conditions of 70 C and 4 atm of H{sub 2}, the two TCSM catalysts are very active for the hydrogenation of arenes (PhCO{sub 2}Me, PhOH, toluene, PhOCH{sub 3}, PhCO{sub 2}Et, 4-CH{sub 3}C{sub 6}H{sub 4}CO{sub 2}Et, dimethyl terephthalate) to cyclohexanes; the activities are higher than those of the separate homogeneous Rh(N-P) and Rh(N-N) complex catalysts, the silica-supported palladium catalyst Pd-SiO{sub 2}, or the rhodium complex catalysts tethered on just SiO{sub 2}. The catalysts are easily separated from the reaction mixtures and can be recycled several times without losing activity. Of the two TCSM catalysts, the higher activity for the hydrogenation of anisole to methyl cyclohexyl ether was observed for Rh(N-N)/Pd-SiO{sub 2}, which gives a TOF value of 3060 mol of substrate converted/((mol of Rh)h) and a TO value of 14500 mol of substrate converted/(mol of Rh) in 6 h. Reactions of acetophenone lead to hydrogenation of the arene ring, the carbonyl group, or both, depending on the catalyst (Rh(N-P)/Pd-SiO{sub 2} or Rh(N-N)/Pd-SiO{sub 2}) and the solvent (heptane or ethanol).

  16. Enhanced microcontact printing of proteins on nanoporous silica surface

    NASA Astrophysics Data System (ADS)

    Blinka, Ellen; Loeffler, Kathryn; Hu, Ye; Gopal, Ashwini; Hoshino, Kazunori; Lin, Kevin; Liu, Xuewu; Ferrari, Mauro; Zhang, John X. J.

    2010-10-01

    We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.

  17. Silica Precursors Derived From TEOS

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H.

    1993-01-01

    Two high-char-yield polysiloxane polymers developed. Designated as TEOS-A and TEOS-B with silica char yields of 55% and 22%, respectively. These free-flowing polymers are Newtonium liquids instead of thick gels. Easily synthesized by controlled hydrolysis of inexpensive tetraethoxysilane (TEOS). Adhesive properties of TEOS-A suggest its use as binder for fabrication of ceramic articles from oxide powders. Less-viscous and more-fluid lower-molecular-weight TEOS-B used to infiltrate already-formed porous ceramic compacts to increase densities without effecting shrinkage. Also used as paint to coat substrate with silica, and to make highly pure silicate powders.

  18. Synthesis, characterization and catalytic activity of carbon-silica hybrid catalyst from rice straw

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Safie, N. N.; Siambun, N. J.

    2016-07-01

    The hybrid-carbon catalyst has been studied because of its promising potential to have high porosity and surface area to be used in biodiesel production. Silica has been used as the support to produce hybrid carbon catalyst due to its mesoporous structure and high surface area properties. The chemical synthesis of silica-carbon hybrid is expensive and involves more complicated preparation steps. The presence of natural silica in rice plants especially rice husk has received much attention in research because of the potential as a source for solid acid catalyst synthesis. But study on rice straw, which is available abundantly as agricultural waste is limited. In this study, rice straw undergone pyrolysis and functionalized using fuming sulphuric acid to anchor -SO3H groups. The presence of silica and the physiochemical properties of the catalyst produced were studied before and after sulphonation. The catalytic activity of hybrid carbon silica acid catalyst, (H-CSAC) in esterification of oleic acid with methanol was also studied. The results showed the presence of silica-carbon which had amorphous structure and highly porous. The carbon surface consisted of higher silica composition, had lower S element detected as compared to the surface that had high carbon content but lower silica composition. This was likely due to the fact that Si element which was bonded to oxygen was highly stable and unlikely to break the bond and react with -SO3H ions. H-CSAC conversions were 23.04 %, 35.52 % and 34.2 7% at 333.15 K, 343.15 K and 353.15 K, respectively. From this research, rice straw can be used as carbon precursor to produce hybrid carbon-silica catalyst and has shown catalytic activity in biodiesel production. Rate equation obtained is also presented.

  19. Lactic acid conversion to 2,3-pentanedione and acrylic acid over silica-supported sodium nitrate: Reaction optimization and identification of sodium lactate as the active catalyst

    SciTech Connect

    Wadley, D.C.; Tam, M.S.; Miller, D.J.

    1997-01-15

    Lactic acid is converted to 2,3-pentanedione, acrylic acid, and other products in vapor-phase reactions over silica-supported sodium lactate formed from sodium nitrate. Multiparameter optimization of reaction conditions using a Box-Benkhen experimental design shows that the highest yield and selectivity to 2,3-pentanedione are achieved at low temperature, elevated pressure, and long contact time, while yield and selectivity to acrylic acid are most favorable at high temperature, low pressure, and short contact time. Post-reaction Fourier transform infrared spectroscopic analyses of the catalyst indicate that sodium nitrate as the initial catalyst material is transformed to sodium lactate at the onset of reaction via proton transfer from lactic acid to nitrate. The resultant nitric acid vaporizes as it is formed, leaving sodium lactate as the sole sodium-bearing species on the catalyst during reaction. 19 refs., 8 figs., 5 tabs.

  20. The Role of Silica in Precious Metal Supported Titania Hybrid Mesoporous Materials for Remediation and Energy Production

    NASA Astrophysics Data System (ADS)

    Kibombo, Harrison S.

    Semiconductor photocatalysis is an advanced oxidation process (AOP) that continues to show promise for the concomitant mineralization of non--biodegradable noxious and persistent organic pollutants (POPs) to environmentally benign products, and the splitting of water. This work examined the use of sol--gel chemistry as a viable approach for the incorporation of transparent silica (SiO2) matrix and/or platinum onto titania (TiO2) so as to optimize physico-chemical properties such as charge separation, crystallinity, surface area, and particle size. It was determined that crystallinity of anatase in the mixed oxide photocatalyst can be improved by the addition of simple non-polar aromatic co-solvents in the sol-gel route, and subsequently enhance the photocatalytic degradation of phenol under UV--light irradiation. The Pt of smaller particle sizes in Pt--TiO2--SiO 2 resulted in higher phenol degradation efficiencies under solar simulated conditions, irrespective of the synthesis method employed. The presence of Pt in the lowest oxidation state, Pt0, is crucial for enhanced phenol degradation whereas PtO2 (Pt4+) serves as a mild recombination center for photogenerated charge carriers rather than demonstrating total inactivity. The production of ·OH radicals was shown to be imperative for sustaining the degradation process. In the water splitting reaction for hydrogen production, the role of the crystallinity of anatase is reaffirmed when TiO2--SiO2 is used, as the surface defects present in the silica phase seem to serve as recombination centers. However, in Pt--TiO2 photocatalysts, the presence of Pt 0 or PtO2 in close contact with TiO2 (heterojunction) allows for more efficient electron propagation and facilitates minimization of electron--hole recombination, hence improved solar simulated photocatalytic hydrogen evolution. Extensive characterization of the photocatalysts were carried out by powder X--ray Diffraction (XRD), Nitrogen Physisorption Studies, Diffuse

  1. Functionalized mesoporous silica supported copper(II) and nickel(II) catalysts for liquid phase oxidation of olefins.

    PubMed

    Nandi, Mahasweta; Roy, Partha; Uyama, Hiroshi; Bhaumik, Asim

    2011-12-14

    Highly ordered 2D-hexagonal mesoporous silica has been functionalized with 3-aminopropyltriethoxysilane (3-APTES). This is followed by its condensation with a dialdehyde, 4-methyl-2,6-diformylphenol to produce an immobilized Schiff-base ligand (I). This material is separately treated with methanolic solution of copper(II) chloride and nickel(II) chloride to obtain copper and nickel anchored mesoporous materials, designated as Cu-AMM and Ni-AMM, respectively. The materials have been characterized by Fourier transform infrared (FT-IR) and UV-vis diffuse reflectance (DRS) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N(2) adsorption-desorption studies and (13)C CP MAS NMR spectroscopy. The metal-grafted mesoporous materials have been used as catalysts for the efficient and selective epoxidation of alkenes, viz. cyclohexene, trans-stilbene, styrene, α-methyl styrene, cyclooctene and norbornene to their corresponding epoxides in the presence of tert-butyl hydroperoxide (TBHP) as the oxidant under mild liquid phase conditions. PMID:21989952

  2. Preparation of silica or alumina pillared crystalline titanates

    SciTech Connect

    Udomsak, S.; Nge, R.; Dufner, D.C.; Anthony, R.G.; Lott, S.E.

    1994-05-01

    Layered crystalline titanates (CT) [Anthony and Dosch, US Patent 5 177 045 (1993)] are pillared with tetraethyl orthosilicate, 3-aminopropyltrimethoxysilane, and aluminum acetylacetonate to prepare porous and high surface area supports for sulfided NiMo catalyst. Tetra-ethyl orthosilicate or aluminum acetylacetonate intercalated CT are prepared by stepwise intercalation. First, the basal distance is increased by n-alkylammonium ions prior to intercalation with inorganic compounds. However, an aqueous solution of 3-aminopropyltrimethoxysilane could directly pillar CT without first swelling the titanate with n-alkylamine. The catalytic activities for hydrogenation of pyrene of sulfided NiMo supported silica or alumina pillared CT were higher than those of commercial catalysts (Shell324 and Amocat1C). The silicon and aluminum contents of the pillared CT, used as supports, have a considerable effect on the catalytic activities and physical properties of the supports.

  3. Highly porous PEM fuel cell cathodes based on low density carbon aerogels as Pt-support: Experimental study of the mass-transport losses

    NASA Astrophysics Data System (ADS)

    Marie, Julien; Chenitz, Regis; Chatenet, Marian; Berthon-Fabry, Sandrine; Cornet, Nathalie; Achard, Patrick

    Carbon aerogels exhibiting high porous volumes and high surface areas, differentiated by their pore-size distributions were used as Pt-supports in the cathode catalytic layer of H 2/air-fed PEM fuel cell. The cathodes were tested as 50 cm 2 membrane electrode assemblies (MEAs). The porous structure of the synthesized catalytic layers was impacted by the nanostructure of the Pt-doped carbon aerogels (Pt/CAs). In this paper thus we present an experimental study aiming at establishing links between the porous structure of the cathode catalytic layers and the MEAs performances. For that purpose, the polarization curves of the MEAs were decomposed in 3 contributions: the kinetic loss, the ohmic loss and the mass-transport loss. We showed that the MEAs made with the different carbon aerogels had similar kinetic activities (low current density performance) but very different mass-transport voltage losses. It was found that the higher the pore-size of the initial carbon aerogel, the higher the mass-transport voltage losses. Supported by our porosimetry (N 2-adsorption and Hg-porosimetry) measurement, we interpret this apparent contradiction as the consequence of the more important Nafion penetration into the carbon aeorogel with larger pore-size. Indeed, the catalytic layers made from the larger pore-size carbon aerogel had lower porosities. We thus show in this work that carbon aerogels are materials with tailored nanostructured structure which can be used as model materials for experimentally testing the optimization of the PEM fuel cell catalytic layers.

  4. In situ solvothermal growth of metal-organic framework-5 supported on porous copper foam for noninvasive sampling of plant volatile sulfides.

    PubMed

    Hu, Yuling; Lian, Haixian; Zhou, Langjun; Li, Gongke

    2015-01-01

    The present study reported on an in situ solvothermal growth method for immobilization of metal-organic framework MOF-5 on porous copper foam support for enrichment of plant volatile sulfides. The porous copper support impregnated with mother liquor of MOF-5 anchors the nucleation and growth of MOF crystallites at its surface, and its architecture of the three-dimensional channel enables accommodation of the MOF-5 crystallite seed. A continuous and well-intergrown MOF-5 layer, evidenced from scanning electron microscope imaging and X-ray diffraction, was successfully immobilized on the porous metal bar with good adhesion and high stability. Results show that the resultant MOF-5 coating was thermally stable up to 420 °C and robust enough for replicate extraction for at least 200 times. The MOF-5 bar was then applied to the headspace sorptive extraction of the volatile organic sulfur compounds in Chinese chive and garlic sprout in combination with thermal desorption-gas chromatography/mass spectrometry. It showed high extraction sensitivity and good selectivity to these plant volatile sulfides owing to the extraordinary porosity of the metal-organic framework as well as the interaction between the S-donor sites and the surface cations at the crystal edges. Several primary sulfur volatiles containing allyl methyl sulfide, dimethyl disulfide, diallyl sulfide, methyl allyl disulfide, and diallyl disulfide were quantified. Their limits of detection were found to be in the range of 0.2-1.7 μg/L. The organic sulfides were detected in the range of 6.0-23.8 μg/g with recoveries of 76.6-100.2% in Chinese chive and 11.4-54.6 μg/g with recoveries of 77.1-99.8% in garlic sprout. The results indicate the immobilization of MOF-5 on copper foam provides an efficient enrichment formats for noninvasive sampling of plant volatiles. PMID:25435245

  5. Optical shock waves in silica aerogel.

    PubMed

    Gentilini, S; Ghajeri, F; Ghofraniha, N; Di Falco, A; Conti, C

    2014-01-27

    Silica aerogels are materials well suited for high power nonlinear optical applications. In such regime, the non-trivial thermal properties may give rise to the generation of optical shock waves, which are also affected by the structural disorder due to the porous solid-state gel. Here we report on an experimental investigation in terms of beam waist and input power, and identify various regimes of the generation of wave-breaking phenomena in silica aerogels. PMID:24515173

  6. Organically Modified Silicas on Metal Nanowires

    PubMed Central

    2010-01-01

    Organically modified silica coatings were prepared on metal nanowires using a variety of silicon alkoxides with different functional groups (i.e., carboxyl groups, polyethylene oxide, cyano, dihydroimidazole, and hexyl linkers). Organically modified silicas were deposited onto the surface of 6-μm-long, ∼300-nm-wide, cylindrical metal nanowires in suspension by the hydrolysis and polycondensation of silicon alkoxides. Syntheses were performed at several ratios of tetraethoxysilane to an organically modified silicon alkoxide to incorporate desired functional groups into thin organosilica shells on the nanowires. These coatings were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy. All of the organically modified silicas prepared here were sufficiently porous to allow the removal of the metal nanowire cores by acid etching to form organically modified silica nanotubes. Additional functionality provided to the modified silicas as compared to unmodified silica prepared using only tetraethoxysilane precursors was demonstrated by chromate adsorption on imidazole-containing silicas and resistance to protein adsorption on polyethyleneoxide-containing silicas. Organically modified silica coatings on nanowires and other nano- and microparticles have potential application in fields such as biosensing or nanoscale therapeutics due to the enhanced properties of the silica coatings, for example, the prevention of biofouling. PMID:20715881

  7. Organorhenium surface and catalytic chemistry: silica-supported alkene metathesis catalysts derived from dodecacarbonyltetrakis(. mu. -hydrido)-tetrahedro-tetrarhenium and tetrakis(tricarbonyl(. mu. -hydroxo)rhenium)

    SciTech Connect

    Kirlin, P.S.; Gates, B.C.

    1985-11-06

    Silica-supported (Re(CO)/sub 3/OH)/sub 4/ was formed by direct deposition from solution and, alternatively, by reaction of (H/sub 4/Re/sub 4/(CO)/sub 12/) with adsorbed water, as shown by comparisons of infrared, ultraviolet, and /sup 1/H NMR spectra of the surface and of the complex extracted into tetrahydrofuran. The supported (Re(CO)/sub 3/OH)/sub 4/ is inferred to be hydrogen bonded to surface -OH groups; its chemistry is similar to that of (Re(CO)/sub 3/OH)/sub 4/ in solution, but new reactivity is induced by the surface, with adsorbed (HRe/sub 3/(CO)/sub 14/) being formed from (Re(CO)/sub 3/OH)/sub 4/ (or (H/sub 3/Re/sub 3/(CO)/sub 12/)) in the presence of CO at 150/sup 0/C. The supported (Re(CO)/sub 3/OH)/sub 4/ is the precursor of a highly active and stable catalyst for the metathesis of propene: the activity is associated with a small fraction of the rhenium in a higher oxidation state. The oxidation to form the active species takes place under conditions so mild that more highly oxidized species, which are active for alkene polymerization and coke formation, are not formed, and the catalyst is consequently resistant to deactivation. 38 references, 10 figures, 2 tables.

  8. LPS inmobilization on porous and non-porous supports as an approach for the isolation of anti-LPS host-defense peptides

    PubMed Central

    López-Abarrategui, Carlos; del Monte-Martínez, Alberto; Reyes-Acosta, Osvaldo; Franco, Octavio L.; Otero-González, Anselmo J.

    2013-01-01

    Lipopolysaccharides (LPSs) are the major molecular component of the outer membrane of Gram-negative bacteria. This molecule is recognized as a sign of bacterial infection, responsible for the development of local inflammatory response and, in extreme cases, septic shock. Unfortunately, despite substantial advances in the pathophysiology of sepsis, there is no efficacious therapy against this syndrome yet. As a consequence, septic shock syndrome continues to increase, reaching mortality rates over 50% in some cases. Even though many preclinical studies and clinical trials have been conducted, there is no Food and Drug Administration-approved drug yet that interacts directly against LPS. Cationic host-defense peptides (HDPs) could be an alternative solution since they possess both antimicrobial and antiseptic properties. HDPs are small, positively charged peptides which are evolutionarily conserved components of the innate immune response. In fact, binding to diverse chemotypes of LPS and inhibition of LPS-induced pro-inflammatory cytokines from macrophages have been demonstrated for different HDPs. Curiously, none of them have been isolated by their affinity to LPS. A diversity of supports could be useful for such biological interaction and suitable for isolating HDPs that recognize LPS. This approach could expand the rational search for anti-LPS HDPs. PMID:24409171

  9. LPS inmobilization on porous and non-porous supports as an approach for the isolation of anti-LPS host-defense peptides.

    PubMed

    López-Abarrategui, Carlos; Del Monte-Martínez, Alberto; Reyes-Acosta, Osvaldo; Franco, Octavio L; Otero-González, Anselmo J

    2013-01-01

    Lipopolysaccharides (LPSs) are the major molecular component of the outer membrane of Gram-negative bacteria. This molecule is recognized as a sign of bacterial infection, responsible for the development of local inflammatory response and, in extreme cases, septic shock. Unfortunately, despite substantial advances in the pathophysiology of sepsis, there is no efficacious therapy against this syndrome yet. As a consequence, septic shock syndrome continues to increase, reaching mortality rates over 50% in some cases. Even though many preclinical studies and clinical trials have been conducted, there is no Food and Drug Administration-approved drug yet that interacts directly against LPS. Cationic host-defense peptides (HDPs) could be an alternative solution since they possess both antimicrobial and antiseptic properties. HDPs are small, positively charged peptides which are evolutionarily conserved components of the innate immune response. In fact, binding to diverse chemotypes of LPS and inhibition of LPS-induced pro-inflammatory cytokines from macrophages have been demonstrated for different HDPs. Curiously, none of them have been isolated by their affinity to LPS. A diversity of supports could be useful for such biological interaction and suitable for isolating HDPs that recognize LPS. This approach could expand the rational search for anti-LPS HDPs. PMID:24409171

  10. Silica nephropathy.

    PubMed

    Ghahramani, N

    2010-07-01

    Occupational exposure to heavy metals, organic solvents and silica is associated with a variety of renal manifestations. Improved understanding of occupational renal disease provides insight into environmental renal disease, improving knowledge of disease pathogenesis. Silica (SiO2) is an abundant mineral found in sand, rock, and soil. Workers exposed to silica include sandblasters, miners, quarry workers, masons, ceramic workers and glass manufacturers. New cases of silicosis per year have been estimated in the US to be 3600-7300. Exposure to silica has been associated with tubulointerstitial disease, immune-mediated multisystem disease, chronic kidney disease and end-stage renal disease. A rare syndrome of painful, nodular skin lesions has been described in dialysis patients with excessive levels of silicon. Balkan endemic nephropathy is postulated to be due to chronic intoxication with drinking water polluted by silicates released during soil erosion. The mechanism of silica nephrotoxicity is thought to be through direct nephrotoxicity, as well as silica-induced autoimmune diseases such as scleroderma and systemic lupus erythematosus. The renal histopathology varies from focal to crescentic and necrotizing glomerulonephritis with aneurysm formation suggestive of polyarteritis nodosa. The treatment for silica nephrotoxicity is non-specific and depends on the mechanism and stage of the disease. It is quite clear that further research is needed, particularly to elucidate the pathogenesis of silica nephropathy. Considering the importance of diagnosing exposure-related renal disease at early stages, it is imperative to obtain a thorough occupational history in all patients with renal disease, with particular emphasis on exposure to silica, heavy metals, and solvents. PMID:23022796

  11. PMo or PW heteropoly acids supported on MCM-41 silica nanoparticles: Characterisation and FT-IR study of the adsorption of 2-butanol

    SciTech Connect

    Carriazo, Daniel; Domingo, Concepcion; Martin, Cristina; Rives, Vicente

    2008-08-15

    Mesoporous silica, prepared in basic conditions, has been loaded (20% weight) with 12-molybdophosphoric (PMo) or 12-tungstophosphoric (PW) acid and calcined at different temperatures ranging between 250 and 550 deg. C. The samples have been characterised by N{sub 2} adsorption-desorption at -196 deg. C, transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), UV-visible diffuse reflectance, Raman spectroscopy and temperature programmed reduction (TPR). The acidity and catalytic activity have been, respectively, examined by monitoring the adsorption of pyridine and 2-butanol by FT-IR spectroscopy. The results indicate that PW and PMo acids are highly dispersed on mesoporous silica MCM-41 spherical nanoparticles. While PMo retains its Keggin structure up to 550 deg. C, PW decomposes at this temperature into crystalline WO{sub 3} and phosphorous oxides. In both cases, the morphology, hexagonal symmetry and long-range order observed for the support are preserved with calcination up to 450 deg. C. The Broensted-type acid sites found in all samples, whose surface concentration decreases as the calcination temperature increases, are responsible for the selective formation of cis-butene detected upon adsorption of 2-butanol. The sample containing PW calcined at 450 deg. C also shows selectivity to methyl ethyl ketone. - Graphical abstract: Samples based in MCM-41 nanoparticles loaded with tungstophosphoric and molybdophosphoric acids have been synthesised. The uncalcined solids and that derived upon their calcination in the temperature range 250-550 deg. C have been characterised and evaluated in the decomposition of 2-butanol monitored by FT-IR spectroscopy.

  12. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water

    NASA Astrophysics Data System (ADS)

    Liu, Di; Chen, Xiufang; Xu, Guoqiang; Guan, Jing; Cao, Quan; Dong, Bo; Qi, Yunfei; Li, Chunhu; Mu, Xindong

    2016-02-01

    Nitrogen-doped hierarchical porous carbons were synthesized successfully by a controllable one-pot method using glucose and dicyandiamide as carbon source and nitrogen source via hydrothermal carbonization process. The nitrogen-doped materials, possessing high nitrogen content (up to 7 wt%), large surface area (>320 m2 g-1) and excellent hierarchical nanostructure, were employed as catalyst supports for immobilization of iridium nanoparticles for bio-alcohol condensation in water. The introduction of nitrogen atoms into the carbon framework significantly improved iridium nanoparticles dispersion and stabilization. The novel iridium catalysts exhibited superior catalytic activity in the aqueous phase condensation of butanol, offering high butanol conversion of 45% with impressive 2-ethylhexanol selectivity of 97%. The heterogeneous catalysts had great advantages of easy recovery and high catalytic stability. The outstanding catalytic performance could be attributed to excellent dispersion of iridium nanoparticles, stronger iridium-support interactions and interaction of nitrogen species with alcohol substrates.

  13. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water

    PubMed Central

    Liu, Di; Chen, Xiufang; Xu, Guoqiang; Guan, Jing; Cao, Quan; Dong, Bo; Qi, Yunfei; Li, Chunhu; Mu, Xindong

    2016-01-01

    Nitrogen-doped hierarchical porous carbons were synthesized successfully by a controllable one-pot method using glucose and dicyandiamide as carbon source and nitrogen source via hydrothermal carbonization process. The nitrogen-doped materials, possessing high nitrogen content (up to 7 wt%), large surface area (>320 m2 g−1) and excellent hierarchical nanostructure, were employed as catalyst supports for immobilization of iridium nanoparticles for bio-alcohol condensation in water. The introduction of nitrogen atoms into the carbon framework significantly improved iridium nanoparticles dispersion and stabilization. The novel iridium catalysts exhibited superior catalytic activity in the aqueous phase condensation of butanol, offering high butanol conversion of 45% with impressive 2-ethylhexanol selectivity of 97%. The heterogeneous catalysts had great advantages of easy recovery and high catalytic stability. The outstanding catalytic performance could be attributed to excellent dispersion of iridium nanoparticles, stronger iridium-support interactions and interaction of nitrogen species with alcohol substrates. PMID:26912370

  14. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water.

    PubMed

    Liu, Di; Chen, Xiufang; Xu, Guoqiang; Guan, Jing; Cao, Quan; Dong, Bo; Qi, Yunfei; Li, Chunhu; Mu, Xindong

    2016-01-01

    Nitrogen-doped hierarchical porous carbons were synthesized successfully by a controllable one-pot method using glucose and dicyandiamide as carbon source and nitrogen source via hydrothermal carbonization process. The nitrogen-doped materials, possessing high nitrogen content (up to 7 wt%), large surface area (>320 m(2) g(-1)) and excellent hierarchical nanostructure, were employed as catalyst supports for immobilization of iridium nanoparticles for bio-alcohol condensation in water. The introduction of nitrogen atoms into the carbon framework significantly improved iridium nanoparticles dispersion and stabilization. The novel iridium catalysts exhibited superior catalytic activity in the aqueous phase condensation of butanol, offering high butanol conversion of 45% with impressive 2-ethylhexanol selectivity of 97%. The heterogeneous catalysts had great advantages of easy recovery and high catalytic stability. The outstanding catalytic performance could be attributed to excellent dispersion of iridium nanoparticles, stronger iridium-support interactions and interaction of nitrogen species with alcohol substrates. PMID:26912370

  15. Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction.

    PubMed

    Xia, Wei-Yan; Li, Nan; Li, Qing-Yu; Ye, Kai-Hang; Xu, Chang-Wei

    2016-01-01

    A three-dimensional hierarchical porous graphene-like (3D HPG) material was synthesized by a one-step ion-exchange/activation combination method using a cheap metal ion exchanged resin as carbon precursor. The 3D HPG material as support for Au-NiCo2O4 gives good activity and stability for oxygen evolution reaction (OER). The 3D HPG material is induced into NiCo2O4 as conductive support to increase the specific area and improve the poor conductivity of NiCo2O4. The activity of and stability of NiCo2O4 significantly are enhanced by a small amount of Au for OER. Au is a highly electronegative metal and acts as an electron adsorbate, which is believed to facilitate to generate and stabilize Co(4+) and Ni(3+) cations as the active centres for the OER. PMID:26996816

  16. Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction

    PubMed Central

    Xia, Wei-Yan; Li, Nan; Li, Qing-Yu; Ye, Kai-Hang; Xu, Chang-Wei

    2016-01-01

    A three-dimensional hierarchical porous graphene-like (3D HPG) material was synthesized by a one-step ion-exchange/activation combination method using a cheap metal ion exchanged resin as carbon precursor. The 3D HPG material as support for Au-NiCo2O4 gives good activity and stability for oxygen evolution reaction (OER). The 3D HPG material is induced into NiCo2O4 as conductive support to increase the specific area and improve the poor conductivity of NiCo2O4. The activity of and stability of NiCo2O4 significantly are enhanced by a small amount of Au for OER. Au is a highly electronegative metal and acts as an electron adsorbate, which is believed to facilitate to generate and stabilize Co4+ and Ni3+ cations as the active centres for the OER. PMID:26996816

  17. Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Xia, Wei-Yan; Li, Nan; Li, Qing-Yu; Ye, Kai-Hang; Xu, Chang-Wei

    2016-03-01

    A three-dimensional hierarchical porous graphene-like (3D HPG) material was synthesized by a one-step ion-exchange/activation combination method using a cheap metal ion exchanged resin as carbon precursor. The 3D HPG material as support for Au-NiCo2O4 gives good activity and stability for oxygen evolution reaction (OER). The 3D HPG material is induced into NiCo2O4 as conductive support to increase the specific area and improve the poor conductivity of NiCo2O4. The activity of and stability of NiCo2O4 significantly are enhanced by a small amount of Au for OER. Au is a highly electronegative metal and acts as an electron adsorbate, which is believed to facilitate to generate and stabilize Co4+ and Ni3+ cations as the active centres for the OER.

  18. Prefunctionalized Porous Organic Polymers: Effective Supports of Surface Palladium Nanoparticles for the Enhancement of Catalytic Performances in Dehalogenation.

    PubMed

    Zhong, Hong; Liu, Caiping; Zhou, Hanghui; Wang, Yangxin; Wang, Ruihu

    2016-08-22

    Three porous organic polymers (POPs) containing H, COOMe, and COO(-) groups at 2,6-bis(1,2,3-triazol-4-yl)pyridyl (BTP) units (i.e., POP-1, POP-2, and POP-3, respectively) were prepared for the immobilization of metal nanoparticles (NPs). The ultrafine palladium NPs are uniformly encapsulated in the interior pores of POP-1, whereas uniform- and dual-distributed palladium NPs are located on the external surface of POP-2 and POP-3, respectively. The presence of carboxylate groups not only endows POP-3 an outstanding dispersibility in H2 O/EtOH, but also enables the palladium NPs at the surface to show the highest catalytic activity, stability, and recyclability in dehalogenation reactions of chlorobenzene at 25 °C. The palladium NPs on the external surface are effectively stabilized by the functionalized POPs containing BTP units and carboxylate groups, which provides a new insight for highly efficient catalytic systems based on surface metal NPs of porous materials. PMID:27465930

  19. Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye.

    PubMed

    Shang, Yunling; Wang, Xiaobo; Xu, Erchao; Tong, Changlun; Wu, Jianmin

    2011-01-24

    An ammonia gas sensor chip was prepared by coating an electrochemically-etched porous Si rugate filter with a chitosan film that is crosslinked by glycidoxypropyltrimethoxysilane (GPTMS). The bromothylmol blue (BTB), a pH indicator, was loaded in the film as ammonia-sensing molecules. White light reflected from the porous Si has a narrow bandwidth spectrum with a peak at 610 nm. Monitoring reflective optical intensity at the peak position allows for direct, real-time observation of changes in the concentration of ammonia gas in air samples. The reflective optical intensity decreased linearly with increasing concentrations of ammonia gas over the range of 0-100 ppm. The lowest detection limit was 0.5 ppm for ammonia gas. At optimum conditions, the full response time of the ammonia gas sensor was less than 15s. The sensor chip also exhibited a good long-term stability over 1 year. Therefore, the simple sensor design has potential application in miniaturized optical measurement for online ammonia gas detection. PMID:21168552

  20. Nanoscale control of silica particle formation via silk-silica fusion proteins for bone regeneration.

    PubMed

    Mieszawska, Aneta J; Nadkarni, Lauren D; Perry, Carole C; Kaplan, David L

    2010-10-26

    The biomimetic design of silk/silica fusion proteins was carried out, combining the self assembling domains of spider dragline silk (Nephila clavipes) and silaffin derived R5 peptide of Cylindrotheca fusiformis that is responsible for silica mineralization. Genetic engineering was used to generate the protein-based biomaterials incorporating the physical properties of both components. With genetic control over the nanodomain sizes and chemistry, as well as modification of synthetic conditions for silica formation, controlled mineralized silk films with different silica morphologies and distributions were successfully generated; generating 3D porous networks, clustered silica nanoparticles (SNPs), or single SNPs. Silk serves as the organic scaffolding to control the material stability and multiprocessing makes silk/silica biomaterials suitable for different tissue regenerative applications. The influence of these new silk-silica composite systems on osteogenesis was evaluated with human mesenchymal stem cells (hMSCs) subjected to osteogenic differentiation. hMSCs adhered, proliferated, and differentiated towards osteogenic lineages on the silk/silica films. The presence of the silica in the silk films influenced osteogenic gene expression, with the upregulation of alkaline phosphatase (ALP), bone sialoprotein (BSP), and collagen type 1 (Col 1) markers. Evidence for early bone formation as calcium deposits was observed on silk films with silica. These results indicate the potential utility of these new silk/silica systems towards bone regeneration. PMID:20976116

  1. Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups

    NASA Astrophysics Data System (ADS)

    Roik, N. V.; Belyakova, L. A.

    2013-12-01

    Bifunctional mesoporous silicas with clearly distinguished localization of grafted groups on the surface of particles and inside their pores were obtained by means of sol-gel synthesis with postsynthetic vapor-phase treatment in vacuum. It was found that the synthesized materials have the hexagonally ordered porous structure typical of MCM-41 type silica.

  2. Characterization of platinum-iron catalysts supported on MCM-41 synthesized with rice husk silica and their performance for phenol hydroxylation

    NASA Astrophysics Data System (ADS)

    Chumee, Jitlada; Grisdanurak, Nurak; Neramittagapong, Arthit; Wittayakun, Jatuporn

    2009-01-01

    Mesoporous material RH-MCM-41 was synthesized with rice husk silica by a hydrothermal method. It was used as a support for bimetallic platinum-iron catalysts Pt-Fe/RH-MCM-41 for phenol hydroxylation. The catalysts were prepared by co-impregnation with Pt and Fe at amounts of 0.5 and 5.0 wt.%, respectively. The RH-MCM-41 structure in the catalysts was studied with x-ray diffraction, and their surface areas were determined by nitrogen adsorption. The oxidation number of Fe supported on RH-MCM-41 was + 3, as determined by x-ray absorption near edge structure (XANES) analysis. Transmission electron microscopy (TEM) images of all the catalysts displayed well-ordered structures, and metal nanoparticles were observed in some catalysts. All the catalysts were active for phenol hydroxylation using H2O2 as the oxidant at phenol : H2O2 mole ratios of 2 : 1, 2 : 2, 2 : 3 and 2 : 4. The first three ratios produced only catechol and hydroquinone, whereas the 2 : 4 ratio also produced benzoquinone. The 2 : 3 ratio gave the highest phenol conversion of 47% at 70 °C. The catalyst prepared by co-impregnation with Pt and Fe was more active than that prepared using a physical mixture of Pt/RH-MCM-41 and Fe/RH-MCM-41.

  3. Long-term maintenance of liver-specific functions in three-dimensional culture of adult rat hepatocytes with a porous gelatin sponge support.

    PubMed

    Lin, K H; Maeda, S; Saito, T

    1995-02-01

    The three-dimensional culture of adult rat hepatocytes with a porous gelatin sponge (gelfoam) support was investigated. Hepatocytes were immobilized on the surface as well as within the pores of the support. The morphology of the hepatocytes immobilized on the support was close to that observed in vivo. In some parts of the support the spheroids of hepatocytes could be observed. To examine the liver-specific functions of the hepatocytes in the culture, the levels of serum albumin and bile acids secreted into the medium were assessed. The secretion of albumin and bile acids was stable over the course of 12 days, longer than that in collagen-gel culture. To elucidate further the function of hepatocytes immobilized on gelfoam, the metabolic activities of the hepatocytes, as measured by the competency of removal of NH4+ and the synthesis of urea nitrogen, were determined. The rates of ammonium removal and urea nitrogen synthesis were comparable with those in conventional monolayer culture. Albumin secretion was enhanced by the treatment of gelfoam with either heparin or acidic fibroblast growth factor (aFGF), the gelfoam having a high affinity for these substances. DNA synthesis was also enhanced by aFGF. These results demonstrate that gelfoam is a suitable support for the in vitro culture of hepatocytes. Combined with its easy manipulation, it is suggested that the culture system described could be used for both basic and applied studies. PMID:7536008

  4. Novel porous gold-palladium nanoalloy network-supported graphene as an advanced catalyst for non-enzymatic hydrogen peroxide sensing.

    PubMed

    Thanh, Tran Duy; Balamurugan, Jayaraman; Lee, Seung Hee; Kim, Nam Hoon; Lee, Joong Hee

    2016-11-15

    In an effort to develop electrocatalysts associated with effective design, testing, and fabrication, novel porous gold-palladium nanoalloy network-supported graphene (AuPd@GR) nanohybrids were successfully synthesized via electroless deposition followed by a chemical vapor deposition (CVD) method for the first time. The AuPd@GR nanohybrids were obtained as a continuous, porous, transparent, bendable, and ultrathin film with good assembly of the AuPd nanoalloy particles (<10nm) within the GR. The AuPd@GR nanohybrids exhibited excellent catalytic activity towards H2O2 detection with a wide detection range (5μM-11.5mM), high sensitivity (186.86μAmM(-1)cm(-2)), low limit of detection (1μM), fast response (3s), and long-term working stability (2500s). Furthermore, the AuPd@GR nanohybrids demonstrated outstanding durability, along with negligible interference from ascorbic acid, dopamine, uric acid, urea, potassium ions, chloride ions, and glucose. These findings open a new pathway to fabricate electrocatalysts for application in high performance electrochemical sensors and bioelectronics. PMID:27254786

  5. Enhanced visible-light photocatalytic activities of porous olive-shaped sulfur-doped BiVO4-supported cobalt oxides

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenxuan; Dai, Hongxing; Deng, Jiguang; Liu, Yuxi; Au, Chak Tong

    2013-04-01

    Porous S-doped bismuth vanadate with an olive-like morphology and its supported cobalt oxide (y wt% CoOx/BiVO4-δS0.08, y = 0.1, 0.8, and 1.6) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt% CoOx/BiVO4-δS0.08 photocatalysts were single-phase with a monoclinic scheetlite structure, a porous olive-like morphology, a surface area of 8.8-9.2 m2/g, and a bandgap energy of 2.38-2.41 eV. There was the co-presence of surface Bi5+, Bi3+, V5+, V3+, Co3+, and Co2+ species in y wt% CoOx/BiVO4-δS0.08. The 0.8 wt% CoOx/BiVO4-δS0.08 sample performed the best for methylene blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and CoOx co-doping, higher oxygen adspecies concentration, and lower bandgap energy were responsible for the excellent visible-light-driven catalytic activity of 0.8 wt% CoOx/BiVO4-δS0.08.

  6. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  7. Nanoporous Silica Templated HeteroEpitaxy: Final LDRD Report.

    SciTech Connect

    Burckel, David Bruce; Koleske, Daniel; Rowen, Adam M.; Williams, John Dalton; Fan, Hongyou; Arrington, Christian L.

    2006-11-01

    This one-year out-of-the-box LDRD was focused on exploring the use of porous growth masks as a method for defect reduction during heteroepitaxial crystal growth. Initially our goal was to investigate porous silica as a growth mask, however, we expanded the scope of the research to include several other porous growth masks on various size scales, including mesoporous carbon, and the UV curable epoxy, SU-8. Use of SU-8 as a growth mask represents a new direction, unique in the extensive literature of patterned epitaxial growth, and presents the possibility of providing a single step growth mask. Additional research included investigation of pore viability via electrochemical deposition into high aspect ratio photoresist patterns and pilot work on using SU-8 as a DUV negative resist, another significant potential result. While the late start nature of this project pushed some of the initial research goals out of the time table, significant progress was made. 3 Acknowledgements This work was performed in part at the Nanoscience %40 UNM facility, a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation (Grant ECS 03-35765). Sandia is multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United Stated Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This work was supported under the Sandia LDRD program (Project 99405). 4

  8. Silica membranes for hydrogen separation in coal gas processing

    SciTech Connect

    Gavalas, G.R.

    1993-01-01

    The general objective of this project was to synthesize permselective membranes suitable for hydrogen separation from coal gas. The specific objectives were: (i) to synthesize membranes by chemical vapor deposition (CVD) of SiO[sub 2] or other oxides on porous support tubes, (ii) characterize the membranes by permeation measurements of various gases and by electron microscopy, and (iii) obtain information about the mechanism and kinetics Of SiO[sub 2] deposition, and model the process of membrane formation. Silica glass and certain other glasses, in dense (nonporous) form, are highly selective to hydrogen permeation. Since this high selectivity is accompanied by low permeability, however, a practical membrane must have a composite structure consisting of a thin layer of the active oxide supported on a porous tube or plate providing mechanical support. In this project the membranes were synthesized by chemical vapor deposition (CVD) of SiO[sub 2], TiO[sub 2], Al[sub 2]O[sub 3] and B[sub 2]O[sub 3] layers inside the walls of porous Vycor tubes (5 mm ID, 7 mm OD, 40 [Angstrom] mean pore diameter). Deposition of the oxide layer was carried out using the reaction of SiCl[sub 4] (or TiCl[sub 4], AlCl[sub 3], BCl[sub 3]) and water vapor at elevated temperatures. The porous support tube was inserted concentrically into a larger quartz tube and fitted with flow lines and pressure gauges. The flow of the two reactant streams was regulated by mass flow controllers, while the temperature was controlled by placing the reactor into a split-tube electric furnace.

  9. Copper(0) nanoparticles supported on silica-coated cobalt ferrite magnetic particles: cost effective catalyst in the hydrolysis of ammonia-borane with an exceptional reusability performance.

    PubMed

    Kaya, Murat; Zahmakiran, Mehmet; Ozkar, Saim; Volkan, Mürvet

    2012-08-01

    Herein we report the development of a new and cost-effective nanocomposite catalyst for the hydrolysis of ammonia-borane (NH(3)BH(3)), which is considered to be one of the most promising solid hydrogen carriers because of its high gravimetric hydrogen storage capacity (19.6% wt) and low molecular weight. The new catalyst system consisting of copper nanoparticles supported on magnetic SiO(2)/CoFe(2)O(4) particles was reproducibly prepared by wet-impregnation of Cu(II) ions on SiO(2)/CoFe(2)O(4) followed by in situ reduction of the Cu(II) ions on the surface of magnetic support during the hydrolysis of NH(3)BH(3) and characterized by ICP-MS, XRD, XPS, TEM, HR-TEM and N(2) adsorption-desorption technique. Copper nanoparticles supported on silica coated cobalt(II) ferrite SiO(2)/CoFe(2)O(4) (CuNPs@SCF) act as highly active catalyst in the hydrolysis of ammonia-borane, providing an initial turnover frequency of TOF = 2400 h(-1) at room temperature, which is not only higher than all the non-noble metal catalysts but also higher than the majority of the noble metal based homogeneous and heterogeneous catalysts employed in the same reaction. More importantly, they were easily recovered by using a permanent magnet in the reactor wall and reused for up to 10 recycles without losing their inherent catalytic activity significantly, which demonstrates the exceptional reusability of the CuNPs@SCF catalyst. PMID:22856878

  10. Study of silica sol-gel materials for sensor development

    NASA Astrophysics Data System (ADS)

    Lei, Qiong

    Silica sol-gel is a transparent, highly porous silicon oxide glass made at room temperature by sol-gel process. The name of silica sol-gel comes from the observable physical phase transition from liquid sol to solid gel during its preparation. Silica sol-gel is chemically inert, thermally stable, and photostable, it can be fabricated into different desired shapes during or after gelation, and its porous structure allows encapsulation of guest molecules either before or after gelation while still retaining their functions and sensitivities to surrounding environments. All those distinctive features make silica sol-gel ideal for sensor development. Study of guest-host interactions in silica sol-gel is important for silica-based sensor development, because it helps to tailor local environments inside sol-gel matrix so that higher guest loading, longer shelf-life, higher sensitivity and faster response of silica gel based sensors could be achieved. We focused on pore surface modification of two different types of silica sol-gel by post-grafting method, and construction of stable silica hydrogel-like thin films for sensor development. By monitoring the mobility and photostability of rhodamine 6G (R6G) molecules in silica alcogel thin films through single molecule spectroscopy (SMS), the guest-host interactions altered by post-synthesis grafting were examined. While physical confinement remains the major factor that controls mobility in modified alcogels, both R6G mobility and photostability register discernable changes after surface charges are respectively reversed and neutralized by aminopropyltriethoxysilane (APTS) and methyltriethoxysilane (MTES) grafting. The change in R6G photostability was found to be more sensitive to surface grafting than that of mobility. In addition, silica film modification by 0.4% APTS is as efficient as that by pure MTES in lowering R6G photostability, which suggests that surface charge reversal is more effective than charge neutralization

  11. Beneficial role of ZnO photocatalyst supported with porous activated carbon for the mineralization of alizarin cyanin green dye in aqueous solution

    PubMed Central

    Muthirulan, P.; Meenakshisundararam, M.; Kannan, N.

    2012-01-01

    The present investigation depicts the development of a simple and low cost method for the removal of color from textile dyeing and printing wastewater using ZnO as photocatalyst supported with porous activated carbon (AC). Photocatalytic degradation studies were carried out for water soluble toxic alizarin cyanin green (ACG) dye in aqueous suspension along with activated carbon (AC) as co-adsorbent. Different parameters like concentration of ACG dye, irradiation time, catalyst concentration and pH have also been studied. The pseudo first order kinetic equation was found to be applicable in the present dye-catalyst systems. It was observed that photocatalytic degradation by ZnO along with AC was a more effective and faster mode of removing ACG from aqueous solutions than the ZnO alone. PMID:25685455

  12. Open-Pore Two-Dimensional MFI Zeolite Nanosheets for the Fabrication of Hydrocarbon-Isomer-Selective Membranes on Porous Polymer Supports.

    PubMed

    Zhang, Han; Xiao, Qiang; Guo, Xianghai; Li, Najun; Kumar, Prashant; Rangnekar, Neel; Jeon, Mi Young; Al-Thabaiti, Shaeel; Narasimharao, Katabathini; Basahel, Sulaiman Nasir; Topuz, Berna; Onorato, Frank J; Macosko, Christopher W; Mkhoyan, K Andre; Tsapatsis, Michael

    2016-06-13

    Two-dimensional zeolite nanosheets that do not contain any organic structure-directing agents were prepared from a multilamellar MFI (ML-MFI) zeolite. ML-MFI was first exfoliated by melt compounding and then detemplated by treatment with a mixture of H2 SO4 and H2 O2 (piranha solution). The obtained OSDA-free MFI nanosheets disperse well in water and can be used for coating applications. Deposits made on porous polybenzimidazole (PBI) supports by simple filtration of these suspensions exhibit an n-butane/isobutane selectivity of 5.4, with an n-butane permeance of 3.5×10(-7)  mol m(-2)  s(-1)  Pa(-1) (ca. 1000 GPU). PMID:27101318

  13. Magnetic Fluorescent Delivery Vehicle using Uniform Mesoporous Silica Spheres Embedded with Monodisperse Magnetic and Semiconductor Nanocrystals

    SciTech Connect

    Kim, Jaeyun; Lee, Ji Eun; Lee, Jinwoo; Yu, Jung Ho; Kim, Byoung Chan; An, Kwangjin; Hwang, Yosun; Shin, Chae-Ho; Park, Je-Geun; Kim, Jungbae; Hyeon, Taeghwan

    2006-01-25

    Uniform sized colloidal nanocrystals have attracted much attention, because of their unique magnetic and optical properties, as compared with those of their bulk counterparts. Especially magnetic nanocrystals and quantum dots have been intensively pursued for biomedical applications such as contrast enhancement agents in magnetic resonance imaging, magnetic carriers for drug delivery system, biological labeling and diagnostics. Due to their large pore sizes and high surface areas, mesoporous materials and its composites with nanocrystals have attracted considerable attention. In order to use the nanocrystals as functional delivery carriers and catalytic supports, nanocrystals coated with porous silica shells are desirable. Herein, we report a synthetic procedure for the fabrication of monodisperse nanocrystals embedded in uniform pore-sized mesoporous silica spheres. As a representative example, we synthesized monodisperse magnetite (Fe3O4) nanocrystals embedded in mesoporous silica spheres and both magnetite nanocrystals and CdSe/ZnS quantum dots embedded in mesoporous silica spheres. Furthermore, these mesoporous silica spheres were applied to the uptake and controlled release of drugs.

  14. Microwave assisted synthesis of naphthopyrans catalysed by silica supported fluoroboric acid as a new class of non purine xanthine oxidase inhibitors.

    PubMed

    Sharma, Sahil; Sharma, Kirti; Ojha, Ritu; Kumar, Dinesh; Singh, Gagandip; Nepali, Kunal; Bedi, P M S

    2014-01-15

    A series of naphthopyrans was synthesized employing silica supported fluoroboric acid under solvent free conditions in a microwave reactor. The catalytic influence of HBF4-SiO2 was investigated in detail to optimize the reaction conditions. The synthesised compounds were evaluated for in vitro xanthine oxidase inhibitory activity for the first time. Structure-activity relationship analyses have also been presented. Among the synthesised compounds, NP-17, NP-19, NP-20, NP-23, NP-24, NP-25 and NP-26 were the active inhibitors with an IC50 ranging from 4 to 17 μM. Compound NP-19 with a thiophenyl ring at position 1 emerged as the most potent xanthine oxidase inhibitor (IC50=4 μM) in comparison to allopurinol (IC50=11.10 μM) and febuxostat (IC50=0.025 μM). The basis of significant inhibition of xanthine oxidase by NP-19 was rationalized by its molecular docking at MTE binding site of xanthine oxidase. PMID:24388807

  15. Characterization of 12-molybdophosphoric acid supported on mesoporous silica MCM-41 and its catalytic performance in the synthesis of hydroquinone diacetate

    NASA Astrophysics Data System (ADS)

    Ahmed, Awad I.; Samra, S. E.; El-Hakam, S. A.; Khder, A. S.; El-Shenawy, H. Z.; El-Yazeed, W. S. Abo

    2013-10-01

    12-molybdophosphoric acid (PMA) was supported on mesoporous molecular sieves MCM-41 by impregnation of 12-molybdophosphoric acid followed by calcination. The nanochannels of MCM-41 provide a large surface area for the solid state dispersion of 12-molybdophosphoric acid. The samples have been characterized by N2 adsorption-desorption at -196 °C, transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), and FT-IR measurements. The acidity and catalytic activity have been, respectively, examined by nonaqueous titration of n-butylamine in acetonitrile and synthesis of hydroquinone diacetate. The results showed that ordered hexagonal pore structure was observed in the synthesized MCM-41. Also the results indicate that PMA are highly dispersed on mesoporous silica MCM-41 spherical nanoparticles while PMA retains its Keggin structure. On the other hand, with increasing the introduced PMA amount, the specific surface area decreases, and the mesoporous ordering of the samples become poor. Both the surface acidity and the catalytic activity sharply increase with the modification of MCM-41 by PMA but decrease by increasing the calcination temperature. The sample with 55 wt% PMA/MCM-41 calcined at 350 °C shows the highest acidity and catalytic activity.

  16. Understanding and Shaping the Morphology of the Barrier Layer of Supported Porous Anodized Alumina on Gold Underlayers.

    PubMed

    Berger, Nele; Es-Souni, Mohammed

    2016-07-12

    Large-area ordered nanorod (NR) arrays of various functional materials can be easily and cost-effectively processed using on-substrate anodized porous aluminum oxide (PAO) films as templates. However, reproducibility in the processing of PAO films is still an issue because they are prone to delamination, and control of fabrication parameters such as electrolyte type and concentration and anodizing time is critical for making robust templates and subsequently mechanically reliable NR arrays. In the present work, we systematically investigate the effects of the fabrication parameters on pore base morphology, devise a method to avoid delamination, and control void formation under the barrier layer of PAO films on gold underlayers. Via systematic control of the anodization parameters, particularly the anodization current density and time, we follow the different stages of void development and discuss their formation mechanisms. The practical aspect of this work demonstrates how void size can be controlled and how void formation can be utilized to control the shape of NR bases for improving the mechanical stability of the NRs. PMID:27315420

  17. Increased dissolution rate and oral bioavailability of hydrophobic drug glyburide tablets produced using supercritical CO₂ silica dispersion technology.

    PubMed

    Guan, Jibin; Han, Jihong; Zhang, Dong; Chu, Chunxia; Liu, Hongzhuo; Sun, Jin; He, Zhonggui; Zhang, Tianhong

    2014-04-01

    The aim of this study was to design a silica-supported solid dispersion of a water-insoluble drug, glyburide, to increase its dissolution rate and oral absorption using supercritical fluid (SCF) technology. DSC and PXRD results indicated that the encapsulated drug in the optimal solid dispersion was in an amorphous state and the product was stable for 6 months. Glyburide was adsorbed onto the porous silica, as confirmed by the SEM images and BET analysis. Furthermore, FT-IR spectroscopy confirmed that there was no change in the chemical structure of glyburide after the application of SCF. The glyburide silica-based dispersion could also be compressed into tablet form. In vitro drug release analysis of the silica solid dispersion tablets demonstrated faster release of glyburide compared with the commercial micronized tablet. In an in vivo test, the AUC of the tablets composed of the new glyburide silica-based solid dispersion was 2.01 times greater than that of the commercial micronized glyburide tablets. In conclusion, SCF technology presents a promising approach to prepare silica-based solid dispersions of hydrophobic drugs because of its ability to increase their release and oral bioavailability. PMID:24184803

  18. Formation and Stabilization of Combustion-Generated, Environmentally Persistent Radicals on Ni(II)O Supported on a Silica Surface

    PubMed Central

    Vejerano, Eric; Lomnicki, Slawomir M.; Dellinger, Barry

    2013-01-01

    Previous studies have indicated Environmentally Persistent Free Radicals (EPFRs) are formed when hydroxyl- and chlorine-substituted aromatics chemisorbed on Cu(II)O and Fe(III)2O3 surfaces and were stabilized through their interactions with the surface metal cation. The current study reports our laboratory investigation on the formation and stabilization of EPFRs on an Ni(II)O surface. The EPFRs were produced by the chemisorption of adsorbates on the supported metal oxide surface and transfer of an electron from the adsorbate to the metal center, resulting in reduction of the metal cation. Depending on the temperature and the nature of the adsorbate, more than one type of organic radical was formed. A phenoxyl-type radical, with g-value between 2.0029 and 2.0044, and a semiquinone-type radical, with g-value from 2.0050 to as high as 2.0081, were observed. The half-lives on Ni(II)O were long and ranged from 1.5 to 5.2 days, which were similar to what were observed on Fe(III)2O3,. The yields of the EPFRs formed on Ni(II)O was ~ 8x higher than on Cu(II)O and ~50x higher than on Fe(III)2O3. PMID:22831558

  19. Preparation of magnetite-loaded silica microspheres for solid-phase extraction of genomic DNA from soy-based foodstuffs.

    PubMed

    Shi, Ruobing; Wang, Yucong; Hu, Yunli; Chen, Lei; Wan, Qian-Hong

    2009-09-01

    Solid-phase extraction has been widely employed for the preparation of DNA templates for polymerase chain reaction (PCR)-based analytical methods. Among the variety of adsorbents studied, magnetically responsive silica particles are particularly attractive due to their potential to simplify, expedite, and automate the extraction process. Here we report a facile method for the preparation of such magnetic particles, which entails impregnation of porous silica microspheres with iron salts, followed by calcination and reduction treatments. The samples were characterized using powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, and vibrating sample magnetometry (VSM). XRD data show that magnetite nanocrystals of about 27.2 nm are produced within the pore channels of the silica support after reduction. SEM images show that the as-synthesized particles exhibit spherical shape and uniform particle size of about 3 microm as determined by the silica support. Nitrogen sorption data confirm that the magnetite-loaded silica particles possess typical mesopore structure with BET surface area of about 183 m(2)/g. VSM data show that the particles display paramagnetic behavior with saturation magnetization of 11.37 emu/g. The magnetic silica microspheres coated with silica shells were tested as adsorbents for rapid extraction of genomic DNA from soybean-derived products. The purified DNA templates were amplified by PCR for screening of genetically modified organisms (GMOs). The preliminary results confirm that the DNA extraction protocols using magnetite-loaded silica microspheres are capable of producing DNA templates which are inhibitor-free and ready for downstream analysis. PMID:19632684

  20. Silylation of low-density silica and bridged polysilsesquioxane aerogels

    SciTech Connect

    DeFriend, K. A.; Loy, D. A.; Salazar, K. V.; Wilson, K. V.

    2004-01-01

    Silica and bridged polysilsesquioxane aerogels are low-density materials that are attractive for applications such as thermal insulation, porous separation media or catalyst supports, adsorbents, and cometary dust capture agents. However, aerogels are notoriously weak and brittle making it difficult to handle and machine monoliths into desired forms. This complication prevents the development of many applications that would otherwise benefit from the use of the low-density materials. Here, we will describe our efforts to chemically modify and mechanically enhance silica-based aerogels using chemical vapor techniques without sacrificing their characteristic low densities. Monolithic silica and organic-bridged polysilsesquioxane aerogels were prepared by sol-gel polymerization of the respective methoxysilane monomers followed by supercritical carbon dioxide drying of the gels. Then the gels were reactively modified with silylating agents to demonstrate the viability of CVD modification of aerogels, and to determine the effects of silylation of surface silanols on the morphology, surface area, and mechanical properties of the resulting aerogels.

  1. Use of aqueous two-phase systems for in situ extraction of water soluble antibiotics during their synthesis by enzymes immobilized on porous supports.

    PubMed

    Hernandez-Justiz, O; Fernandez-Lafuente, R; Terreni, M; Guisan, J M

    1998-07-01

    Yields of kinetically controlled synthesis of antibiotics catalyzed by penicillin G acylase from Escherichia coli (PGA) have been greatly increased by continuous extraction of water soluble products (cephalexin) away from the surroundings of the enzyme. In this way its very rapid enzymatic hydrolysis has been avoided. Enzymes covalently immobilized inside porous supports acting in aqueous two-phase systems have been used to achieve such improvements of synthetic yields. Before the reaction is started, the porous structure of the biocatalyst can be washed and filled with one selected phase. In this way, when the pre-equilibrated biocatalyst is mixed with the second phase (where the reaction product will be extracted), the immobilized enzyme remains in the first selected phase in spite of its possibly different natural trend. Partition coefficients (K) of cephalexin in very different aqueous two-phase systems were firstly evaluated. High K values were obtained under drastic conditions. The best K value for cephalexin (23) was found in 100% PEG 600-3 M ammonium sulfate where cephalexin was extracted to the PEG phase. Pre-incubation of immobilized PGA derivatives in ammonium sulfate and further suspension with 100% PEG 600 allowed us to obtain a 90% synthetic yield of cephalexin from 150 mM phenylglycine methyl ester and 100 mM 7-amino desacetoxicephalosporanic acid (7-ADCA). In this reaction system, the immobilized enzyme remains in the ammonium sulfate phase and hydrolysis of the antibiotic becomes suppressed because of its continuous extraction to the PEG phase. On the contrary, synthetic yields of a similar process carried out in monophasic systems were much lower (55%) because of a rapid enzymatic hydrolysis of cephalexin. PMID:10099316

  2. Comparative Investigation on Thermal Insulation of Polyurethane Composites Filled with Silica Aerogel and Hollow Silica Microsphere.

    PubMed

    Liu, Chunyuan; Kim, Jin Seuk; Kwon, Younghwan

    2016-02-01

    This paper presents a comparative study on thermal conductivity of PU composites containing open-cell nano-porous silica aerogel and closed-cell hollow silica microsphere, respectively. The thermal conductivity of PU composites is measured at 30 degrees C with transient hot bridge method. The insertion of polymer in pores of silica aerogel creates mixed interfaces, increasing the thermal conductivity of resulting composites. The measured thermal conductivity of PU composites filled with hollow silica microspheres is estimated using theoretical models, and is in good agreement with Felske model. It appears that the thermal conductivity of composites decreases with increasing the volume fraction (phi) when hollow silica microsphere (eta = 0.916) is used. PMID:27433652

  3. Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica.

    PubMed

    Bansal, Vipul; Ahmad, Absar; Sastry, Murali

    2006-11-01

    Rice husk is a cheap agro-based waste material, which harbors a substantial amount of silica in the form of amorphous hydrated silica grains. However, there have been no attempts at harnessing the enormous amount of amorphous silica present in rice husk and its room-temperature biotransformation into crystalline silica nanoparticles. In this study, we address this issue and describe how naturally deposited amorphous biosilica in rice husk can be bioleached and simultaneously biotransformed into high value crystalline silica nanoparticles. We show here that the fungus Fusarium oxysporum rapidly biotransforms the naturally occurring amorphous plant biosilica into crystalline silica and leach out silica extracellularly at room temperature in the form of 2-6 nm quasi-spherical, highly crystalline silica nanoparticles capped by stabilizing proteins; that the nanoparticles are released into solution is an advantage of this process with significant application and commercial potential. Calcination of the silica nanoparticles leads to loss of occluded protein and to an apparently porous structure often of cubic morphology. The room-temperature synthesis of oxide nanomaterials using microorganisms starting from potential cheap agro-industrial waste materials is an exciting possibility and could lead to an energy-conserving and economically viable green approach toward the large-scale synthesis of oxide nanomaterials. PMID:17061888

  4. Lipase immobilized on hydrophobic porous polymer supports prepared by concentrated emulsion polymerization and their activity in the hydrolysis of triacylglycerides.

    PubMed

    Ruckenstein, E; Wang, X

    1993-09-20

    Microporous polymer supports for the immobilization of lipase have been prepared by the polymerization of a concentrated emulsion precursor. The concentrated emulsion consists of a mixture of styrene and divinyl-benzene containing a suitable surfactant and an initiator as the continuous phase and water as the dispersed phase. The volume fraction of the latter phase was greater than 0.74, which is the volume fraction of the dispersed phase for the most compact arrangement of spheres of equal radius. The lipase from Candida rugosa has been immobilized on the internal surface of the hydrophobic microporous poly(styrene-divinyl benzene) supports and used as biocatalysts for the hydrolysis of triacylglycerides. The effects of the amount of surfactant, of the molar ratio of divinylbenzene/styrene in the continuous phase, and of the aquaphilicity of the supports on the adsorption, activity, and stability of the immobilized lipase have been investigated. The microporous poly(styrene-divinylbenzene) adsorbents constitute excellent supports for lipase because both the amount adsorbed is large and the rate of enzymatic reaction per molecule of lipase is higher for the immobilized enzyme than for the free one. PMID:18613129

  5. Nanoparticle-doped radioluminescent silica optical fibers

    NASA Astrophysics Data System (ADS)

    Mrazek, J.; Nikl, M.; Kasik, I.; Podrazky, O.; Aubrecht, J.; Beitlerova, A.

    2014-05-01

    This contribution deals with the preparation and characterization of the silica optical fibers doped by nanocrystalline zinc silicate. The sol-gel approach was employed to prepare colloidal solution of zinc silicate precursors. Prepared sol was thermally treated to form nanocrystalline zinc silicate disperzed inside amorphous silica matrix or soaked inside the porous silica frit deposed inside the silica substrate tube which was collapsed into preform and drawn into optical fiber. Single mode optical fiber with the core diameter 15 μm and outer diamer 125 μm was prepared. Optical and waveguiding properties of the fiber were analyzed. Concentration of the zinc silicate in the fiber was 0.93 at. %. Radioluminescence properties of nanocrystalline zinc silicate powder and of the prepared optical fiber were investigated. The nanoparticle doped samples appear a emission maximum at 390 nm.

  6. Mesochanneled hierarchically porous aluminosiloxane aerogel microspheres as a stable support for pH-responsive controlled drug release.

    PubMed

    Vazhayal, Linsha; Talasila, Sindhoor; Abdul Azeez, Peer Mohamed; Solaiappan, Ananthakumar

    2014-09-10

    The molecular-scale self-assembly of a 3D aluminosiloxane (Al-O-Si) hybrid gel network was successfully performed via the cocondensation of hydrolyzed alumina (AlOOH) and (3-aminopropyl)trimethoxysilane (APS). It was transformed into a microspherical aerogel framework of Al-O-Si containing mesochannels with tunable hierarchically bimodal meso/macroporosities by a subcritical drying technique. Good homogeneity of AlOOH and APS brought during the synthesis guaranteed a uniform distribution of two metal oxides in a single body. A systematic characterization of the aerogel support was carried out using FTIR, SEM, TEM, nitrogen adsorption/desorption analysis, WAXS, SAXS, and ξ-potential measurement in order to explore the material for drug uptake and release. The drug loading and release capacity and chemical stability of an aluminosiloxane aerogel were studied using two nonsteroidal antiinflammatory drugs, ibuprofen and aspirin. A comprehensive evaluation of the aluminosiloxane aerogel with ordered mesoporous MCM-41 was also performed. Aerogel supports showed a high drug loading capacity and a pH-responsive controlled-release property compared to MCM-41. Meanwhile, kinetic modeling studies indicate that the drug releases with a zero-order profile following the Korsmeyer-Peppas model. The biocompatibility of aluminosiloxane aerogels was established via ex vivo and in vivo studies. We also outline the use of aluminosiloxane aerogel as a support for a possible 3D matrix for an osteoconductive structure for bone tissue engineering. PMID:25130541

  7. Method of making porous ceramic fluoride

    DOEpatents

    Reiner, Robert H.; Holcombe, Cressie E.

    1990-01-01

    A process for making a porous ceramic composite where fumed silica particles are coated with a nitrate, preferably aluminum nitrate. Next the nitrate is converted to an oxide and formed into a desired configuration. This configuration is heated to convert the oxide to an oxide silicate which is then react with HF, resulting in the fluoride ceramic, preferably aluminum fluoride.

  8. Absorption of ozone by porous particles

    SciTech Connect

    Afanas'ev, V.P.; Dorofeev, S.B.; Sinitsyn, V.I.; Smirnov, B.M.

    1981-11-01

    The absorption of ozone by porous zeolite, silica gel, and activated carbon particles has been studied experimentally. It was shown that in addition to absorption, dissociation of ozone on the surface plays an important and sometimes decisive role. The results obtained were used to analyze the nature of ball lightning.

  9. Interconnected porous epoxy monoliths prepared by concentrated emulsion templating.

    PubMed

    Wang, Jianli; Du, Zhongjie; Li, Hangquan; Xiang, Aimin; Zhang, Chen

    2009-10-01

    Porous epoxy monoliths were prepared via a step polymerization in a concentrated emulsion stabilized by non-ionic emulsifiers and colloidal silica. A solution in 4-methyl-2-pentanon was used as the continuous phase, which contained glycidyl amino epoxy monomer (GAE), curing agent, and an emulsifier. An aqueous suspension of colloidal silica was used as the dispersed phase of the concentrated emulsion. After the continuous phase was completely polymerized, the dispersed phase was removed and a porous epoxy was obtained. An optimal HLB value of emulsifier for the GAE concentrated emulsion was determined. In addition, the morphology of the porous epoxy was observed by SEM. The effect of the colloidal silica, the emulsifier, the curing of the epoxy, and the volume fraction of the dispersed phase on the morphology of porous epoxy are systematically discussed. PMID:19595357

  10. In situ synthesis of molecularly imprinted nanoparticles in porous support membranes using high-viscosity polymerization solvents.

    PubMed

    Renkecz, Tibor; László, Krisztina; Horváth, Viola

    2012-06-01

    There is a growing need in membrane separations for novel membrane materials providing selective retention. Molecularly imprinted polymers (MIPs) are promising candidates for membrane functionalization. In this work, a novel approach is described to prepare composite membrane adsorbers incorporating molecularly imprinted microparticles or nanoparticles into commercially available macroporous filtration membranes. The polymerization is carried out in highly viscous polymerization solvents, and the particles are formed in situ in the pores of the support membrane. MIP particle composite membranes selective for terbutylazine were prepared and characterized by scanning electron microscopy and N₂ porosimetry. By varying the polymerization solvent microparticles or nanoparticles with diameters ranging from several hundred nanometers to 1 µm could be embedded into the support. The permeability of the membranes was in the range of 1000 to 20,000 Lm⁻²  hr⁻¹  bar⁻¹. The imprinted composite membranes showed high MIP/NIP (nonimprinted polymer) selectivity for the template in organic media both in equilibrium-rebinding measurements and in filtration experiments. The solid phase extraction of a mixture of the template, its analogs, and a nonrelated compound demonstrated MIP/NIP selectivity and substance selectivity of the new molecularly imprinted membrane. The synthesis technique offers a potential for the cost-effective production of selective membrane adsorbers with high capacity and high throughput. PMID:22641529

  11. Applying a tapered electrode on a porous ceramic support tube by masking a band inside the tube and drawing in electrode material from the outside of the tube by suction

    DOEpatents

    Vasilow, T.R.; Zymboly, G.E.

    1991-12-17

    An electrode is deposited on a support by providing a porous ceramic support tube having an open end and closed end; masking at least one circumferential interior band inside the tube; evacuating air from the tube by an evacuation system, to provide a permeability gradient between the masked part and unmasked part of the tube; applying a liquid dispersion of solid electrode particles to the outside surface of the support tube, where liquid flows through the wall, forming a uniform coating over the unmasked support part and a tapered coating over the masked part. 2 figures.

  12. Applying a tapered electrode on a porous ceramic support tube by masking a band inside the tube and drawing in electrode material from the outside of the tube by suction

    DOEpatents

    Vasilow, Theodore R.; Zymboly, Gregory E.

    1991-01-01

    An electrode is deposited on a support by providing a porous ceramic support tube (10) having an open end (14) and closed end (16); masking at least one circumferential interior band (18 and 18') inside the tube; evacuating air from the tube by an evacuation system (30), to provide a permeability gradient between the masked part (18 and 18') and unmasked part (20) of the tube; applying a liquid dispersion of solid electrode particles to the outside surface of the support tube, where liquid flows through the wall, forming a uniform coating (42) over the unmasked support part (20) and a tapered coating over the masked part (18 and 18').

  13. Porous VO(x)N(y) nanoribbons supported on CNTs as efficient and stable non-noble electrocatalysts for the oxygen reduction reaction.

    PubMed

    Huang, K; Bi, K; Lu, Y K; Zhang, R; Liu, J; Wang, W J; Tang, H L; Wang, Y G; Lei, M

    2015-01-01

    Novel nanocomposites of carbon nanotubes supported porous VO(x)N(y) nonoribbons (VO(x)N(y)-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VO(x)N(y)-CNTs. Inspiringly, the results indicate that VO(x)N(y)-CNTs catalyst exhibits a 0.4 mA/cm(2) larger diffusion-limited current density, a 0.10  V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VO(x)N(y)-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells. PMID:26616719

  14. Porous VOxNy nanoribbons supported on CNTs as efficient and stable non-noble electrocatalysts for the oxygen reduction reaction

    PubMed Central

    Huang, K.; Bi, K.; Lu, Y. K.; Zhang, R.; Liu, J.; Wang, W. J.; Tang, H. L.; Wang, Y. G.; Lei, M.

    2015-01-01

    Novel nanocomposites of carbon nanotubes supported porous VOxNy nonoribbons (VOxNy-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VOxNy-CNTs. Inspiringly, the results indicate that VOxNy-CNTs catalyst exhibits a 0.4 mA/cm2 larger diffusion-limited current density, a 0.10  V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VOxNy-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells. PMID:26616719

  15. Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human embryonic stem cell-derived mesodermal progenitors.

    PubMed

    de Peppo, G M; Palmquist, A; Borchardt, P; Lennerås, M; Hyllner, J; Snis, A; Lausmaa, J; Thomsen, P; Karlsson, C

    2012-01-01

    Commercially-pure titanium (cp-Ti) and the titanium-aluminum-vanadium alloy (Ti6Al4V) are widely used as reconstructive implants for skeletal engineering applications, due to their good mechanical properties, biocompatibility and ability to integrate with the surrounding bone. Electron beam melting technology (EBM) allows the fabrication of customized implants with tailored mechanical properties and high potential in the clinical practice. In order to augment the interaction with the biological tissue, stem cells have recently been combined with metallic scaffolds for skeletal engineering applications. We previously demonstrated that human embryonic stem cell-derived mesodermal progenitors (hES-MPs) hold a great potential to provide a homogeneous and unlimited supply of cells for bone engineering applications. This study demonstrates the effect of EBM-fabricated cp-Ti and Ti6Al4V porous scaffolds on hES-MPs behavior, in terms of cell attachment, growth and osteogenic differentiation. Displaying different chemical composition but similar surface properties, EBM-fabricated cp-Ti and Ti6Al4V scaffolds supported cell attachment and growth, and did not seem to alter the expression of genes involved in osteogenic differentiation and affect the alkaline phosphatase activity. In conclusion, interfacing hES-MPs to EBM-fabricated scaffolds may represent an interesting strategy for design of third-generation biomaterials, with the potential to promote implant integration in clinical conditions characterized by poor bone quality. PMID:22262956

  16. Porous VOxNy nanoribbons supported on CNTs as efficient and stable non-noble electrocatalysts for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Huang, K.; Bi, K.; Lu, Y. K.; Zhang, R.; Liu, J.; Wang, W. J.; Tang, H. L.; Wang, Y. G.; Lei, M.

    2015-11-01

    Novel nanocomposites of carbon nanotubes supported porous VOxNy nonoribbons (VOxNy-CNTs) have been synthesized by the annealing of the sol-gel mixture of CNTs and V2O5 under NH3 atmosphere as well as the ageing process in air. Besides the morphological and structural characterizations revealed by TEM, SEAD, EDS, XRD and XPS measurements, typical electrochemical tests including cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry have been employed to determine the oxygen reduction reaction (ORR) performance of VOxNy-CNTs. Inspiringly, the results indicate that VOxNy-CNTs catalyst exhibits a 0.4 mA/cm2 larger diffusion-limited current density, a 0.10  V smaller onset potential value, a 10.73% less of ORR current decay and an excellent methanol-tolerance compared with commercial Pt/C catalyst. Therefore, we have reasonable grounds to believe that this new VOxNy-CNTs nanocomposites can be regarded as a promising non-precious methanol-tolerant ORR catalyst candidate for alkaline fuel cells.

  17. Modified silica-based heterogeneous catalysts for etherification of glycerol

    NASA Astrophysics Data System (ADS)

    Gholami, Zahra; Abdullah, Ahmad Zuhairi; Gholami, Fatemeh; Vakili, Mohammadtaghi

    2015-07-01

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca1.6La0.6/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.

  18. Modified silica-based heterogeneous catalysts for etherification of glycerol

    SciTech Connect

    Gholami, Zahra; Abdullah, Ahmad Zuhairi Gholami, Fatemeh; Vakili, Mohammadtaghi

    2015-07-22

    The advent of mesoporous silicas such as MCM-41 has provided new opportunities for research into supported metal catalysis. The loading of metals into framework structures and particularly into the pores of porous molecular sieves, has long been of interest because of their potential catalytic activity. Stable heterogeneous mesoporous basic catalysts were synthesized by wet impregnation of MCM-41 with calcium nitrate and lanthanum nitrate. The surface and structural properties of the prepared catalysts were characterized using BET surface analysis, SEM and TEM. MCM-41 and modified MCM-41 were used in the solventless etherification of glycerol to produce diglycerol as the desired product. The reaction was performed at 250 °C for 8 h, and catalyst activity was evaluated. Catalytic etherification over the 20%Ca{sub 1.6}La{sub 0.6}/MCM-41 catalyst resulted in the highest glycerol conversion of 91% and diglycerol yield of 43%.

  19. Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent

    NASA Astrophysics Data System (ADS)

    Zienkiewicz-Strzałka, M.; Pasieczna-Patkowska, S.; Kozak, M.; Pikus, S.

    2013-02-01

    Noble metal nanostructures supported on mesoporous silica are bridge between traditional silica adsorbents and modern catalysts. In this work the Ag/SBA-15 mesoporous materials were synthesized and characterized. Various forms of nanosilver supported on ordered mesoporous template have been successfully obtained via proposed procedures. In all synthesized materials, Tollen's reagent (diammine silver complex [Ag(NH3)2]+) was used as a silver source. Silver nanoparticles were prepared by reduction of ammoniacal silver complex by formaldehyde in the solution of stabilizer. After reduction, Ag nanoparticles could be deposited on SBA-15, or added during traditional synthesis of SBA-15 giving silver or silver chloride nanoparticles in the combination with porous silica. Silver nanostructures as nanoparticles or nanowires were also embedded onto the SBA-15 by incipient wetness impregnation of silver ions. Absorbed silver ions were next reduced under hydrogen at high temperature. There are many advantages of utilized ammoniacal silver complex as a silver source. Proposed method is capable to synthesis of various metal nanostructures with controlled composition and morphology. The silver ammonia complex is composed of two ions surrounding and protecting the central silver ion, so it is possible to obtain very small nanoparticles using simple approach without any functionalization of external and internal surface of SBA-15. This approach allows obtaining greatly small silver nanoparticles on SBA-15 (4 nm) or nanowires depending on the metal loading amount. Moreover, the colloidal silver solution prepared from Tollen's reagent, in the presence of triblock copolymer, remains stable for a long time. Reduction of Tollen's reagent to silver colloidal solution seems to be efficient, fast and interesting approach for the preparation of supported silver nanostructures Obtained samples were characterized by powder X-ray diffraction, small angle X-ray scattering (SAXS), UV

  20. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1996-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  1. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

    1996-01-02

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

  2. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1995-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  3. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1994-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  4. Increasing the oral bioavailability of poorly water-soluble carbamazepine using immediate-release pellets supported on SBA-15 mesoporous silica

    PubMed Central

    Wang, Zhouhua; Chen, Bao; Quan, Guilan; Li, Feng; Wu, Qiaoli; Dian, Linghui; Dong, Yixuan; Li, Ge; Wu, Chuanbin

    2012-01-01

    Background and methods: The aim of this study was to develop an immediate-release pellet formulation with improved drug dissolution and adsorption. Carbamazepine, a poorly water-soluble drug, was adsorbed into mesoporous silica (SBA-15-CBZ) via a wetness impregnation method and then processed by extrusion/spheronization into pellets. Physicochemical characterization of the preparation was carried out by scanning electron microscopy, transmission electron microscopy, nitrogen adsorption, small-angle and wide-angle x-ray diffraction, and differential scanning calorimetry. Flowability and wettability of the drug-loaded silica powder were evaluated by bulk and tapped density and by the angle of repose and contact angle, respectively. The drug-loaded silica powder was formulated into pellets to improve flowability. Results: With maximum drug loading in SBA-15 matrices determined to be 20% wt, in vitro release studies demonstrated that the carbamazepine dissolution rate was notably improved from both the SBA-15 powder and the corresponding pellets as compared with the bulk drug. Correspondingly, the oral bioavailability of SBA-15-CBZ pellets was increased considerably by 1.57-fold in dogs (P < 0.05) compared with fast-release commercial carbamazepine tablets. Conclusion: Immediate-release carbamazepine pellets prepared from drug-loaded silica provide a feasible approach for development of a rapidly acting oral formulation for this poorly water-soluble drug and with better absorption. PMID:23209366

  5. Synthesis and characterization of hierarchically porous metal, metal oxide, and carbon monoliths with highly ordered nanostructure

    NASA Astrophysics Data System (ADS)

    Grano, Amy Janine

    Hierarchically porous materials are of great interest in such applications as catalysis, separations, fuel cells, and advanced batteries. One such way of producing these materials is through the process of nanocasting, in which a sacrificial template is replicated and then removed to form a monolithic replica. This replica consists of mesopores, which can be ordered or disordered, and bicontinuous macropores, which allow flow throughout the length of the monolith. Hierarchically porous metal oxide and carbon monoliths with an ordered mesopores system are synthesized for the first time via nanocasting. These replicas were used as supports for the deposition of silver particles and the catalytic efficiency was evaluated. The ordered silica template used in producing these monoliths was also used for an in-situ TEM study involving metal nanocasting, and an observation of the destruction of the silica template during nanocasting made. Two new methods of removing the silica template were developed and applied to the synthesis of copper, nickel oxide, and zinc oxide monoliths. Finally, hollow fiber membrane monoliths were examined via x-ray tomography in an attempt to establish the presence of this structure throughout the monolith.

  6. Quantifying silica in filter-deposited mine dusts using infrared spectra and partial least squares regression.

    PubMed

    Weakley, Andrew Todd; Miller, Arthur L; Griffiths, Peter R; Bayman, Sean J

    2014-07-01

    The feasibility of measuring airborne crystalline silica (α-quartz) in noncoal mine dusts using a direct-on-filter method of analysis is demonstrated. Respirable α-quartz was quantified by applying a partial least squares (PLS) regression to the infrared transmission spectra of mine-dust samples deposited on porous polymeric filters. This direct-on-filter method deviates from the current regulatory determination of respirable α-quartz by refraining from ashing the sampling filter and redepositing the analyte prior to quantification using either infrared spectrometry for coal mines or x-ray diffraction (XRD) from noncoal mines. Since XRD is not field portable, this study evaluated the efficacy of Fourier transform infrared spectrometry for silica determination in noncoal mine dusts. PLS regressions were performed using select regions of the spectra from nonashed samples with important wavenumbers selected using a novel modification to the Monte Carlo unimportant variable elimination procedure. Wavenumber selection helped to improve PLS prediction, reduce the number of required PLS factors, and identify additional silica bands distinct from those currently used in regulatory enforcement. PLS regression appeared robust against the influence of residual filter and extraneous mineral absorptions while outperforming ordinary least squares calibration. These results support the quantification of respirable silica in noncoal mines using field-portable infrared spectrometers. PMID:24830397

  7. Adsorption of bacteriocins by ingestible silica compounds.

    PubMed

    Wan, J; Gordon, J; Hickey, M W; Mawson, R F; Coventry, M J

    1996-08-01

    Bacteriocins including nisin, pediocin PO2, brevicin 286 and piscicolin 126 were adsorbed from culture supernates by various food-grade porous silica anti-caking agents and the food colourant, titanium dioxide. All the porous silica (calcium silicate or silicon dioxide) materials showed substantial capacity in adsorbing bacteriocin activities from the culture supernate and biological activity was recovered in the adsorbents. In contrast, the food colourant titanium dioxide adsorbed most of the bacteriocin activity from the supernate, with minimal biological activity retained in the adsorbent. Experiments with piscicolin 126 showed that optimum adsorption could be achieved with Micro-Cel E within 30 min, independent of the supernate pH (2.0-10.0). Piscicolin activity of up to 5 x 10(7) AU g(-1) of Micro-Cel E was obtained after adsorption from culture supernates and the adsorbed piscicolin demonstrated substantial biological activity against Listeria monocytogenes in both broth and a milk growth medium. PMID:8926221

  8. Adsorption on Highly Ordered Porous Alumina

    NASA Astrophysics Data System (ADS)

    Mistura, Giampaolo; Bruschi, Lorenzo; Lee, Woo

    2016-04-01

    Porous anodic aluminum oxide (AAO) is characterized by a regular arrangement of the pores with a narrow pore size distribution over extended areas, uniform pore depth, and solid pore walls without micropores. Thanks to significant improvements in anodization techniques, structural engineering of AAO allows to accurately tailor the pore morphology. These features make porous AAO an excellent substrate to study adsorption phenomena. In this paper, we review recent experiments involving the adsorption in porous AAO. Particular attention will be devoted to adsorption in straight and structured pores with a closed end which shed new light on fundamental issues like the origin of hysteresis in closed end pores and the nature of evaporation from ink-bottle pores. The results will be compared to those obtained in other synthetic materials like porous silicon and silica.

  9. Evidence for and mitigation of the encapsulation of gold nanoparticles within silica supports upon high-temperature treatment of Au/SiO(2) catalysts: Implication to catalyst deactivation

    SciTech Connect

    Dai, Sheng; Yin, Hongfeng; Ma, Zhen; Zhu, Haoguo; Chi, Miaofang

    2010-01-01

    Silica is one of the most widely used catalyst supports for metal nanocatalysts. Although the sintering of metal nanoparticles on various silicasupports has been extensively studied, the restructuring of silicasupports and its effect on supported metal nanoparticles have been seldom investigated. In this paper, silica-supported gold catalysts were used as a model system to probe the interplay of silicasupports and metal nanoparticles under high-temperature treatment conditions. Gold was loaded onto mesoporous SiO{sub 2} (SBA-15) using Au(en){sub 2}Cl{sub 3} as the precursor in the presence of aqueous NaOH (pH {approx} 10). The influence of high-temperature treatment on the textural and structural changes of SBA-15 and Au/SBA-15 was studied by X-ray diffraction (XRD), N{sub 2} adsorption-desorption, and transmission electron microscopy (TEM). Control experiments were conducted using an amorphous SiO{sub 2} (Cab-O-Sil) as the support. It was found that SBA-15 undergoes significant phase transformation to crystalline cristobalite upon high-temperaturetreatment, resulting in the dramatic decrease in surface area. More interestingly, the crystallization of SiO{sub 2} leads to the encapsulation of goldnanoparticles inside the SiO{sub 2} matrix. This conclusion was proven by aqua regia leaching, EDX, and SEM/TEM experiments. Goldnanoparticles can also be encapsulated into the SiO{sub 2} matrix when using Cab-O-Sil as the support, but the process takes place under much higher temperatures. The encapsulation of gold nanoparticles can be mitigated by coating Au/SBA-15 with amorphous Al{sub 2}O{sub 3} or by coating SBA-15 with Al{sub 2}O{sub 3} before loading gold. Our findings shed new light on the deactivation of supported gold catalysts under high-temperature conditions.

  10. Synthesis of ordered mesoporous silica and alumina with controlled macroscopic morphologies

    NASA Astrophysics Data System (ADS)

    Alsyouri, Hatem Mohammad Sadi

    The ability to synthesize nanostructured inorganic materials with controlled microstructural and morphological features will provide materials with unique characteristics in unprecedented ways. This thesis investigates the synthesis of porous silica and alumina materials with controlled microstructures and desirable shapes using novel approaches based on template-assisted synthesis and chemical vapor deposition (CVD) techniques. It primarily focuses on fabricating mesoporous materials with unique microstructures and different morphologies (particles and membranes) and exploring the potential of the particle morphology in a polymer reaction application. The template-assisted growth of mesoporous silica under acidic and quiescent conditions at an oil-water interface can generate mesostructured silica at the interface with fibrous, gyroidal, spherical, and film morphologies. Synthesis conditions can be used to alter the growth environment and control the product morphology. Fiber morphology is obtained at narrow range of experimental conditions due to slow and one-dimensional diffusion of silicon alkoxide through the interface. Variation in these conditions can alter the axial growth of silica and yield non-fibrous shapes. The fibers grow from their base attached to the interface and coalesce to form fibers with larger diameters. Gas transport in the mesoporous silica fibers is governed by combination of Knudsen and surface diffusion mechanisms. Surface diffusion contributes to 40% of the net flow reflecting a highly smooth pore surfaces. Real Knudsen and surface diffusivities are in the order of 10-3 and 10 -5 cm2/s respectively. The one-dimensional mesopores are 45 time longer than the macroscopic fiber length and align helically around the fiber axis, confirming the literature observations, with a pitch value of 1.05 micron. For preparation of mesoporous silica materials as membranes, a novel counter diffusion self assembly (CDSA) approach is demonstrated. This

  11. An ion-imprinted silica-supported organic-inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol-gel process for selective separation of cadmium(II) from aqueous solution.

    PubMed

    Li, Feng; Jiang, Hongquan; Zhang, Shusheng

    2007-03-15

    Ion-imprinting concept and polysaccharide incorporated sol-gel process were applied to the preparation of a new silica-supported organic-inorganic hybrid sorbent for selective separation of Cd(II) from aqueous solution. In the prepared shell/core composite sorbent, covalently surface coating on the supporting silica gel was achieved by using a Cd(II)-imprinting sol-gel process starting from an inorganic precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS), and a functional biopolymer, chitosan (CS). The sorbent was prepared through self-hydrolysis of GPTMS, self-condensation and co-condensation of silanol groups (Si-OH) from siloxane and silica gel surface, in combination with in situ covalent cross-linking of CS with partial amine shielded by Cd(II) complexation. Extraction of the imprinting molecules left a predetermined arrangement of ligands and tailored binding pockets for Cd(II). The prepared sorbent was characterized by using X-ray energy dispersion spectroscopy (EDX), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Batch experiments were conducted to study the sorption performance by removal of Cd(II) when present singly or in binary system, an aqueous Cd(II) and Zn(II) mixture. The ion-imprinted composite sorbent offered a fast kinetics for the sorption of Cd(II) and the maximum capacity was 1.14mmolg(-1). The uptake capacity of the imprinted sorbent and the selectivity coefficient were much higher than that of the non-imprinted sorbent. The imprinted sorbent exhibited high reusability. The prepared functional sorbent was shown to be promising for the preconcentration of cadmium in environmental and biological samples. PMID:19071480

  12. Unraveling the dynamics of aminopolymer/silica composites

    NASA Astrophysics Data System (ADS)

    Carrillo, Jan-Michael; Sakwa-Novak, Miles; Holewinski, Adam; Potter, Matthew; Rother, Gernot; Jones, Christopher; Sumpter, Bobby

    The structure and dynamics of a model branched polymer, representing poly(ethylenimine), was investigated through coarse-grained molecular dynamics simulations and neutron scattering experiments. The monomer concentration and solvent quality were varied in the simulations and detailed comparisons between the calculated structural and dynamical properties of the unconfined polymer and those confined within an adsorbing and non-adsorbing cylindrical pore, representing the silica based structural support of the composite, were made. The simulations show a direct relationship in the structure of the polymer and the non-monotonic dynamics of the polymers as a function of monomer concentration within an adsorbing cylindrical pore. However, the non-monotonic behavior disappears for the case of the branched polymer within a non-adsorbing cylindrical pore. Overall the simulation results are in good agreement with quasi-elastic neutron scattering (QENS) studies of branched poly(ethylenimine) in mesoporous silica (SBA-15) of comparable size, suggesting an approach that can be a useful guide for understanding how to tune porous polymer composites for enhancing desired dynamical and structural behavior targeting carbon dioxide adsorption.

  13. Unraveling the Dynamics of Aminopolymer/Silica Composites.

    PubMed

    Carrillo, Jan-Michael Y; Sakwa-Novak, Miles A; Holewinski, Adam; Potter, Matthew E; Rother, Gernot; Jones, Christopher W; Sumpter, Bobby G

    2016-03-22

    The structure and dynamics of a model branched polymer was investigated through molecular dynamics simulations and neutron scattering experiments. The polymer confinement, monomer concentration, and solvent quality were varied in the simulations and detailed comparisons between the calculated structural and dynamical properties of the unconfined polymer and those confined within an adsorbing and nonadsorbing cylindrical pore, representing the silica based structural support of the composite, were made. The simulations show a direct relationship in the structure of the polymer and the nonmonotonic dynamics as a function of monomer concentration within an adsorbing cylindrical pore. However, the nonmonotonic behavior disappears for the case of the branched polymer within a nonadsorbing cylindrical pore. Overall, the simulation results are in good agreement with quasi-elastic neutron scattering (QENS) studies of branched poly(ethylenimine) in mesoporous silica (SBA-15) of comparable size, suggesting an approach that can be a useful guide for understanding how to tune porous polymer composites for enhancing desired dynamical and structural behavior targeting carbon dioxide adsorption. PMID:26915732

  14. Plasma Spray Physical Vapor Deposition of La1- x Sr x Co y Fe1- y O3-δ Thin-Film Oxygen Transport Membrane on Porous Metallic Supports

    NASA Astrophysics Data System (ADS)

    Jarligo, Maria Ophelia; Mauer, Georg; Bram, Martin; Baumann, Stefan; Vaßen, Robert

    2014-01-01

    Plasma spray physical vapor deposition (PS-PVD) is a very promising route to manufacture ceramic coatings, combining the efficiency of thermal spray processes and characteristic features of thin PVD coatings. Recently, this technique has been investigated to effectively deposit dense thin films of perovskites particularly with the composition of La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) for application in gas separation membranes. Furthermore, asymmetric type of membranes with porous metallic supports has also attracted research attention due to the advantage of good mechanical properties suitable for use at high temperatures and high permeation rates. In this work, both approaches are combined to manufacture oxygen transport membranes made of gastight LSCF thin film by PS-PVD on porous NiCoCrAlY metallic supports. The deposition of homogenous dense thin film is challenged by the tendency of LSCF to decompose during thermal spray processes, irregular surface profile of the porous metallic substrate and crack and pore-formation in typical ceramic thermal spray coatings. Microstructure formation and coating build-up during PS-PVD as well as the annealing behavior at different temperatures of LSCF thin films were investigated. Finally, measurements of leak rates and oxygen permeation rates at elevated temperatures show promising results for the optimized membranes.

  15. Modeling heating curve for gas hydrate dissociation in porous media.

    PubMed

    Dicharry, Christophe; Gayet, Pascal; Marion, Gérard; Graciaa, Alain; Nesterov, Anatoliy N

    2005-09-15

    A method for modeling the heating curve for gas hydrate dissociation in porous media at isochoric conditions (constant cell volume) is presented. This method consists of using an equation of state of the gas, the cumulative volume distribution (CVD) of the porous medium, and a van der Waals-Platteeuw-type thermodynamic model that includes a capillary term. The proposed method was tested to predict the heating curves for methane hydrate dissociation in a mesoporous silica glass for saturated conditions (liquid volume = pore volume) and for a fractional conversion of water to hydrate of 1 (100% of the available water was converted to hydrate). The shape factor (F) of the hydrate-water interface was found equal to 1, supporting a cylindrical shape for the hydrate particles during hydrate dissociation. Using F = 1, it has been possible to predict the heating curve for different ranges of pressure and temperature. The excellent agreement between the calculated and experimental heating curves supports the validity of our approach. PMID:16853195

  16. Complete doping in solid-state by silica-supported perchloric acid as dopant solid acid: Synthesis and characterization of the novel chiral composite of poly [(±)-2-(sec-butyl) aniline

    NASA Astrophysics Data System (ADS)

    Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza

    2016-05-01

    Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersive X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant.

  17. Polymerization of ethylene by silica-supported dinuclear Cr(III) sites through an initiation step involving C-H bond activation.

    PubMed

    Conley, Matthew P; Delley, Murielle F; Siddiqi, Georges; Lapadula, Giuseppe; Norsic, Sébastien; Monteil, Vincent; Safonova, Olga V; Copéret, Christophe

    2014-02-10

    The insertion of an olefin into a preformed metal-carbon bond is a common mechanism for transition-metal-catalyzed olefin polymerization. However, in one important industrial catalyst, the Phillips catalyst, a metal-carbon bond is not present in the precatalyst. The Phillips catalyst, CrO3 dispersed on silica, polymerizes ethylene without an activator. Despite 60 years of intensive research, the active sites and the way the first CrC bond is formed remain unknown. We synthesized well-defined dinuclear Cr(II) and Cr(III) sites on silica. Whereas the Cr(II) material was a poor polymerization catalyst, the Cr(III) material was active. Poisoning studies showed that about 65 % of the Cr(III) sites were active, a far higher proportion than typically observed for the Phillips catalyst. Examination of the spent catalyst and isotope labeling experiments showed the formation of a Si-(μ-OH)-Cr(III) species, consistent with an initiation mechanism involving the heterolytic activation of ethylene at Cr(III) O bonds. PMID:24505006

  18. Silica membranes for hydrogen separation in coal gas processing. Final report, January 1993

    SciTech Connect

    Gavalas, G.R.

    1993-03-01

    The general objective of this project was to synthesize permselective membranes suitable for hydrogen separation from coal gas. The specific objectives were: (i) to synthesize membranes by chemical vapor deposition (CVD) of SiO{sub 2} or other oxides on porous support tubes, (ii) characterize the membranes by permeation measurements of various gases and by electron microscopy, and (iii) obtain information about the mechanism and kinetics Of SiO{sub 2} deposition, and model the process of membrane formation. Silica glass and certain other glasses, in dense (nonporous) form, are highly selective to hydrogen permeation. Since this high selectivity is accompanied by low permeability, however, a practical membrane must have a composite structure consisting of a thin layer of the active oxide supported on a porous tube or plate providing mechanical support. In this project the membranes were synthesized by chemical vapor deposition (CVD) of SiO{sub 2}, TiO{sub 2}, Al{sub 2}O{sub 3} and B{sub 2}O{sub 3} layers inside the walls of porous Vycor tubes (5 mm ID, 7 mm OD, 40 {Angstrom} mean pore diameter). Deposition of the oxide layer was carried out using the reaction of SiCl{sub 4} (or TiCl{sub 4}, AlCl{sub 3}, BCl{sub 3}) and water vapor at elevated temperatures. The porous support tube was inserted concentrically into a larger quartz tube and fitted with flow lines and pressure gauges. The flow of the two reactant streams was regulated by mass flow controllers, while the temperature was controlled by placing the reactor into a split-tube electric furnace.

  19. Sample Desorption/Onization From Mesoporous Silica

    DOEpatents

    Iyer, Srinivas; Dattelbaum, Andrew M.

    2005-10-25

    Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin film on the substrate. Samples having a molecular weight below 1000, such as C.sub.60 and tryptophan, were adsorbed onto and into the mesoporous silica thin film sample holder and analyzed using laser desorption/ionization mass spectrometry.

  20. Chemically-bound xenon in fibrous silica.

    PubMed

    Kalinowski, Jaroslaw; Räsänen, Markku; Gerber, R Benny

    2014-06-21

    High-level quantum chemical calculations reported here predict the existence and remarkable stability, of chemically-bound xenon atoms in fibrous silica. The results may support the suggestion of Sanloup and coworkers that chemically-bound xenon and silica account for the problem of "missing xenon" (by a factor of 20!) from the atmospheres of Earth and Mars. So far, the host silica was assumed to be quartz, which is in contradiction with theory. The xenon-fibrous silica molecule is computed to be stable well beyond room temperature. The calculated Raman spectra of the species agree well with the main features of the experiments by Sanloup et al. The results predict computationally the existence of a new family of noble-gas containing materials. The fibrous silica species are finite molecules, their laboratory preparation should be feasible, and potential applications are possible. PMID:24807740

  1. Surface modification of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Ranjan, Rajesh

    Surface modification of nanosized silica particles by polymer grafting is gaining attention. This can be attributed to the fact that it provides a unique opportunity to engineer the interfacial properties of these modified particles; at the same time the mechanical and thermal properties of the polymers can be improved. Controlled free radical polymerization is a versatile technique which affords control over molecular weight, molecular weight distribution, architecture and functionalities of the resulting polymer. Three commonly used controlled free radical polymerizations include nitroxide-mediated polymerization (NMP), atom transfer radical polymerization (ATRP) and reversible addition fragmentation transfer (RAFT) polymerization. ATRP and RAFT polymerization were explored in order to modify the silica surface with well-defined polymer brushes. A novel click-functionalized RAFT chain transfer agent (RAFT CTA) was synthesized which opened up the possibility of using RAFT polymerization and click chemistry together in surface modification. Using this RAFT CTA, the surface of silica nanoparticles was modified with polystyrene and polyacrylamide brushes via the "grafting to" approach. Both tethered polystyrene and polyacrylamide chains were found in the brush regime. The combination of ATRP and click chemistry was also explored for surface modification. A combination of RAFT polymerization and click chemistry was also studied to modify the surface via the "grafting from" approach. Our strategy included the (1) "grafting from" approach for brush formation (2) facile click reaction to immobilize the RAFT agent (3) synthesis of R-supported chain transfer agent and (4) use of the more active trithiocarbonate RAFT agent. Grafting density obtained by this method was significantly higher than reported values in the literature. Polystyrene (PS) grafted silica nanoparticles were also prepared by a tandem process that simultaneously employs reversible addition fragmentation

  2. Multifunctional mesoporous silica catalyst

    DOEpatents

    Lin, Victor Shang-Yi; Tsai, Chih-Hsiang; Chen, Hung-Ting; Pruski, Marek; Kobayashi, Takeshi

    2015-03-31

    The present invention provides bifunctional silica mesoporous materials, including mesoporous silica nanoparticles ("MSN"), having pores modified with diarylammonium triflate and perfluoroaryl moieties, that are useful for the acid-catalyzed esterification of organic acids with organic alcohols.

  3. What Is Crystalline Silica?

    MedlinePlus

    ... silica, and requires a repirator protection program until engineering controls are implemented. Additionally, OSHA has a National ... silica materials with safer substitutes, whenever possible. ■ Provide engineering or administrative controls, where feasible, such as local ...

  4. Bio-templated synthesis of highly ordered macro-mesoporous silica material for sustained drug delivery

    NASA Astrophysics Data System (ADS)

    Qu, Fengyu; Lin, Huiming; Wu, Xiang; Li, Xiaofeng; Qiu, Shilun; Zhu, Guangshan

    2010-05-01

    The bimodal porous structured silica materials consisting of macropores with the diameter of 5-20 μm and framework-like mesopores with the diameter of 4.7-6.0 nm were prepared using natural Manchurian ash and mango linin as macropored hard templates and P123 as mesopore soft templates, respectively. The macroporous structures of Manchurian ash and mango linin were replicated with the walls containing highly ordered mesoporous silica as well. As-synthesized dual porous silica was characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), transmission electron microscope (TEM) and nitrogen adsorption/desorption, fourier transform IR (FTIR) spectroscopy, and thermo-gravimetric analyzer (TGA). Ibuprofen (Ibu) was employed as a model drug and the release profiles showed that the dual porous material had a sustained drug delivery capability. And such highly ordered dual pore silica materials may have potential applications for bimolecular adsorption/separation and tissue repairing.

  5. Silica extraction from geothermal water

    SciTech Connect

    Bourcier, William L; Bruton, Carol J

    2014-09-23

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  6. Evaluation of stationary phases packed with superficially porous particles for the analysis of pharmaceutical compounds using supercritical fluid chromatography.

    PubMed

    Perrenoud, Alexandre Grand-Guillaume; Farrell, William P; Aurigemma, Christine M; Aurigemma, Nicole C; Fekete, Szabolcs; Guillarme, Davy

    2014-09-19

    Superficially porous particles (SPP), or core shell particles, which consist of a non-porous silica core surrounded by a thin shell of porous silica, have gained popularity as a solid support for chromatography over the last decade. In the present study, five unbonded silica, one diol, and two ethylpyridine (2-ethyl and 4-ethyl) SPP columns were evaluated under SFC conditions using two mixtures, one with 17 drug-like compounds and the other one with 7 drug-like basic compounds. Three of the SPP phases, SunShell™ 2-ethylpyridine (2-EP), Poroshell™ HILIC, and Ascentis(®) Express HILIC, exhibited superior performances relative to the others (reduced theoretical plate height (hmin) values of 1.9-2.5 for neutral compounds). When accounting for both achievable plate count and permeability of the support using kinetic plot evaluation, the Cortecs™ HILIC 1.6μm and Ascentis(®) Express HILIC 2.7μm phases were found to be the best choices among tested SPPs to reach efficiencies up to 30,000 plates in the minimum amount of time. For desired efficiencies ranging from 30,000 to 60,000 plates, the SunShell™ 2-EP 2.6μm column clearly outperformed all other SPPs. With the addition of a mobile phase additive such as 10mM ammonium formate, which was required to elute the basic components with sharp peaks, the Poroshell™ HILIC, SunShell™ Diol and SunShell™ 2-EP phases represent the most orthogonal SPP columns with the highest peak capacities. This study demonstrates the obvious benefits of using columns packed with SPP on current SFC instrumentation. PMID:25129391

  7. Binding behaviour of molecularly imprinted polymers prepared by a hierarchical approach in mesoporous silica beads of varying porosity.

    PubMed

    Baggiani, Claudio; Baravalle, Patrizia; Giovannoli, Cristina; Anfossi, Laura; Passini, Cinzia; Giraudi, Gianfranco

    2011-04-01

    One of the most interesting methods for preparing molecularly imprinted polymers with controlled morphology consists in filling the pores of silica beads with an imprinting mixture, polymerizing it and dissolving the support, leaving porous imprinted beads that are the "negative image" of the silica beads. The main advantage of such an approach consists in the easy preparation of spherical imprinted polymeric particles with narrow diameter and pore size distribution, particularly indicated for chromatographic applications. In this approach it has been shown that the resulting morphology of polymeric beads depends essentially on the porosity and surface properties of the silica beads that act as microreactors for the thermopolymerization process. Anyway, it is not yet clear if the porosity of the silica beads influences the binding properties of the resulting imprinted beads. In this paper, we report the effect of different porosities of the starting mesoporous silica beads on the resulting binding properties of imprinted polymers with molecular recognition properties towards the fungicide carbendazim. The morphological properties of the imprinted beads prepared through this hierarchical approach were measured by nitrogen adsorption porosimetry and compared with a reference imprinted material prepared by bulk polymerization. The chromatographic behaviour of HPLC columns packed with the imprinted materials were examined by eluting increasing amounts of carbendazim and extracting the binding parameters through a peak profiling approach. The experimental results obtained show that the resulting binding properties of the imprinted beads are strongly affected by the polymerization approach used but not by the initial porosity of the silica beads, with the sole exception of the binding site density, which appears to be inversely proportional to them. PMID:21349526

  8. Biotemplated diatom silica-titania materials for air purification.

    PubMed

    Van Eynde, Erik; Tytgat, Tom; Smits, Marianne; Verbruggen, Sammy W; Hauchecorne, Birger; Lenaerts, Silvia

    2013-04-01

    We present a novel manufacture route for silica-titania photocatalysts using the diatom microalga Pinnularia sp. Diatoms self-assemble into porous silica cell walls, called frustules, with periodic micro-, meso- and macroscale features. This unique hierarchical porous structure of the diatom frustule is used as a biotemplate to incorporate titania by a sol-gel methodology. Important material characteristics of the modified diatom frustules under study are morphology, crystallinity, surface area, pore size and optical properties. The produced biosilica-titania material is evaluated towards photocatalytic activity for NOx abatement under UV radiation. This research is the first step to obtain sustainable, well-immobilised silica-titania photocatalysts using diatoms. PMID:23128085

  9. Light emission from porous silicon

    NASA Astrophysics Data System (ADS)

    Penczek, John

    The continuous evolution of silicon microelectronics has produced significant gains in electronic information processing. However, greater improvements in performance are expected by utilizing optoelectronic techniques. But these techniques have been severely limited in silicon- based optoelectronics due to the lack of an efficient silicon light emitter. The recent observation of efficient light emission from porous silicon offer a promising opportunity to develop a suitable silicon light source that is compatible with silicon microelectronics. This dissertation examined the porous silicon emission mechanism via photoluminescence, and by a novel device structure for porous silicon emitters. The investigation first examined the correlation between porous silicon formation conditions (and subsequent morphology) with the resulting photoluminescence properties. The quantum confinement theory for porous silicon light emission contends that the morphology changes induced by the different formation conditions determine the optical properties of porous silicon. The photoluminescence spectral shifts measured in this study, in conjunction with TEM analysis and published morphological data, lend support to this theory. However, the photoluminescence spectral broadening was attributed to electronic wavefunction coupling between adjacent silicon nanocrystals. An novel device structure was also investigated in an effort to improve current injection into the porous silicon layer. The selective etching properties of porous silicon were used to create a p-i-n structure with crystalline silicon contacts to the porous silicon layer. The resulting device was found to have unique characteristics, with a negative differential resistance region and current-induced emission that spanned from 400 nm to 5500 nm. The negative differential resistance was correlated to resistive heating effects in the device. A numerical analysis of thermal emission spectra from silicon films, in addition to

  10. Nanoporous Silica Thermal Insulation for Space Shuttle Cryogenic Tanks: A Case Study

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1999-01-01

    Nanoporous silica (with typical 10-50 nm porous radii) has been benchmarked for thermal insulators capable of maintaining a 150 K/cm temperature gradient. For cryogenic use in aerospace applications, the combined features for low-density, high thermal insulation factors, and low temperature compatibility are demonstrated in a prototype sandwich structure between two propulsion tanks. Theoretical modelling based on a nanoscale fractal structure suggest that the thermal conductivity scales proportionally (exponent, 1.7) with the material density-lower density increases the thermal insulation rating. Computer simulations, however, support the optimization tradeoff between material strength (Young moduli, proportional to density with exponent, 3.7), the characteristic (colloidal silica, less than 5 nm) particle size, and the thermal rating. The results of these simulations indicate that as nanosized particles are incorporated into the silica backbone, the resulting physical properties will be tailored by the smallest characteristic length and their fractal interconnections (dimension and fractal size). The application specifies a prototype panel which takes advantage of the processing flexibility inherent in sol-gel chemistry.

  11. Charge transfer mechanism in titanium-doped microporous silica for photocatalytic water-splitting applications

    DOE PAGESBeta

    Sapp, Wendi; Koodali, Ranjit; Kilin, Dmitri

    2016-02-29

    Solar energy conversion into chemical form is possible using artificial means. One example of a highly-efficient fuel is solar energy used to split water into oxygen and hydrogen. Efficient photocatalytic water-splitting remains an open challenge for researchers across the globe. Despite significant progress, several aspects of the reaction, including the charge transfer mechanism, are not fully clear. Density functional theory combined with density matrix equations of motion were used to identify and characterize the charge transfer mechanism involved in the dissociation of water. A simulated porous silica substrate, using periodic boundary conditions, with Ti4+ ions embedded on the inner poremore » wall was found to contain electron and hole trap states that could facilitate a chemical reaction. A trap state was located within the silica substrate that lengthened relaxation time, which may favor a chemical reaction. A chemical reaction would have to occur within the window of photoexcitation; therefore, the existence of a trapping state may encourage a chemical reaction. Furthermore, this provides evidence that the silica substrate plays an integral part in the electron/hole dynamics of the system, leading to the conclusion that both components (photoactive materials and support) of heterogeneous catalytic systems are important in optimization of catalytic efficiency.« less

  12. Porous media heat transfer for injection molding

    DOEpatents

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  13. Immobilization of enzymes on fumed silica nanoparticles for applications in nonaqueous media.

    PubMed

    Cruz, Juan C; Würges, Kerstin; Kramer, Martin; Pfromm, Peter H; Rezac, Mary E; Czermak, Peter

    2011-01-01

    Enzymatic catalysis in nonaqueous media is considered as an attractive tool for the preparation of a variety of organic compounds of commercial interest. This approach is advantageous for numerous reasons including the enhanced stability of some substrates and products in solvents, sometimes improved selectivity of the enzyme, and reduction of unwanted water-dependent side reactions since little water is present. Due to the poor solubility of enzymes in these media, mass transfer limitations are sometimes present, leading to low apparent catalytic activity. Immobilization on solid supports has been successfully applied to overcome enzyme solubility issues by increasing the accessibility of substrates to the enzymes' active sites. We have developed a simple immobilization protocol that uses fumed silica as support. Fumed silica is an inexpensive nanostructured material with unique properties including large surface area and exceptional adsorptive affinity for organic macromolecules. Our protocol is performed in two main steps. First, the enzyme molecules are physically adsorbed on the surface of the non-porous fumed silica nanoparticles with the participation of silanol groups (Si-OH) and second, water is removed by lyophilization. The protocol has been successfully applied to both s. Carlsberg and Candida antarctica lipase B (CALB). The resulting fumed silica-based nanobiocatalysts of these two enzymes were tested for catalytic activity in hexane. The transesterification of N-acetyl-L: -phenylalanine ethyl ester was the model reaction for s. Carlsberg nanobiocatalysts. The simple esterification of geraniol and the enantioselective transesterification of (RS)-1-phenylethanol were the model reactions for CALB nanobiocatalysts. The observed catalytic activities were remarkably high and even exceeded those of commercially available preparations. PMID:21553189

  14. Methanol Decomposition over Palladium Particles Supported on Silica: Role of Particle Size and Co-Feeding Carbon Dioxide on the Catalytic Properties

    SciTech Connect

    Hokenek, Selma; Kuhn, John N.

    2012-10-23

    Monodisperse palladium particles of six distinct and controlled sizes between 4-16 nm were synthesized in a one-pot polyol process by varying the molar ratios of the two palladium precursors used, which contained palladium in different oxidation states. This difference permitted size control by regulation of the nucleation rate because low oxidation state metals ions nucleate quickly relative to high oxidation state ions. After immobilization of the Pd particles on silica by mild sonication, the catalysts were characterized by X-ray absorption spectroscopy and applied toward catalytic methanol decomposition. This reaction was determined as structure sensitive with the intrinsic activity (turnover frequency) increasing with increasing particle size. Moreover, observed catalytic deactivation was linked to product (carbon monoxide) poisoning. Co-feeding carbon dioxide caused the activity and the amount of deactivation to decrease substantially. A reaction mechanism based on the formation of the {pi}-bond between carbon and oxygen as the rate-limiting step is in agreement with antipathetic structure sensitivity and product poisoning by carbon monoxide.

  15. Densification of porous refractory substrates. [space shuttle orbiter tiles

    NASA Technical Reports Server (NTRS)

    Ecord, G. M.; Schomburg, C. (Inventor)

    1982-01-01

    A hydrolyzed tetraethyl orthosilicate is applied to the surface of a porous refractory substrate following which the substrate is heated to a temperature and for a period of time sufficient to bond the silica released from the tetraethyl orthosilicate to the substrate. The surface is thus densified and strengthened.

  16. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation

    NASA Astrophysics Data System (ADS)

    González-Castillo, Jr.; Rodriguez, E.; Jimenez-Villar, E.; Rodríguez, D.; Salomon-García, I.; de Sá, Gilberto F.; García-Fernández, T.; Almeida, DB; Cesar, CL; Johnes, R.; Ibarra, Juana C.

    2015-10-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag+ concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM).

  17. Synthesis of Ag@Silica Nanoparticles by Assisted Laser Ablation.

    PubMed

    González-Castillo, J R; Rodriguez, E; Jimenez-Villar, E; Rodríguez, D; Salomon-García, I; de Sá, Gilberto F; García-Fernández, T; Almeida, D B; Cesar, C L; Johnes, R; Ibarra, Juana C

    2015-12-01

    This paper reports the synthesis of silver nanoparticles coated with porous silica (Ag@Silica NPs) using an assisted laser ablation method. This method is a chemical synthesis where one of the reagents (the reducer agent) is introduced in nanometer form by laser ablation of a solid target submerged in an aqueous solution. In a first step, a silicon wafer immersed in water solution was laser ablated for several minutes. Subsequently, an AgNO3 aliquot was added to the aqueous solution. The redox reaction between the silver ions and ablation products leads to a colloidal suspension of core-shell Ag@Silica NPs. The influence of the laser pulse energy, laser wavelength, ablation time, and Ag(+) concentration on the size and optical properties of the Ag@Silica NPs was investigated. Furthermore, the colloidal suspensions were studied by UV-VIS-NIR spectroscopy, X-Ray diffraction, and high-resolution transmission electron microscopy (HRTEM). PMID:26464175

  18. Fabrication of keratin-silica hydrogel for biomedical applications.

    PubMed

    Kakkar, Prachi; Madhan, Balaraman

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. PMID:27207052

  19. Health hazards due to the inhalation of amorphous silica.

    PubMed

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study

  20. Magnetic hydrophobic nanocomposites: Silica aerogel/maghemite

    NASA Astrophysics Data System (ADS)

    Mendoza Zélis, P.; Fernández van Raap, M. B.; Socolovsky, L. M.; Leyva, A. G.; Sánchez, F. H.

    2012-08-01

    Magnetic hydrophobic aerogels (MHA) in the form of nanocomposites of silica and maghemite (γ-Fe2O3) were prepared by one step sol-gel procedure followed by supercritical solvent extraction. Silica alcogels were obtained from TEOS, MTMS, methanol and H2O, and Fe(III) nitrate as magnetic precursor. The hydrophobic property was achieved using the methytrimethoxysilane (MTMS) as co-precursor for surface modification. The so produced nanocomposite aerogels are monolithic, hydrophobic and magnetic. The interconnected porous structure hosts ∼6 nm size γ-Fe2O3 particles, has a mean pore diameter of 5 nm, and a specific surface area (SSA) of 698 m²/g. Medium range structure of MHA is determined by SAXS, which displays the typical fractal power law behavior with primary particle radius of ∼1 nm. Magnetic properties of the nanoparticle ensembles hosted in them are studied by means of dc-magnetometry.

  1. Fabrication of superhydrophilic and antireflective silica coatings on poly(methyl methacrylate) substrates

    SciTech Connect

    Geng, Zhi; He, Junhui; Xu, Ligang

    2012-06-15

    Graphical abstract: Self-cleaning and antireflection properties were successfully achieved by assembling (PDDA/S-20){sub n} coatings on PMMA substrates followed by oxygen plasma treatment. Highlights: ► Porous silica coatings were created by layer-by-layer assembly on PMMA substrates. ► Silica coatings were treated by oxygen plasma. ► Porous silica coatings were highly antireflective and superhydrophilic on PMMA substrates. -- Abstract: Silica nanoparticles of ca. 20 nm in size were synthesized, from which hierarchically porous silica coatings were fabricated on poly(methyl methacrylate) (PMMA) substrates via layer-by-layer (LbL) assembly followed by oxygen plasma treatment. These porous silica coatings were highly transparent and superhydrophilic. The maximum transmittance reached as high as 99%, whereas that of the PMMA substrate is only 92%. After oxygen plasma treatment, the time for a water droplet to spread to a contact angle of lower than 5° decreased to as short as 0.5 s. Scanning and transmission electron microscopy were used to observe the morphology and structure of nanoparticles and coating surfaces. Transmission and reflection spectra were recorded on UV–vis spectrophotometer. Surface wettability was studied by a contact angle/interface system. The influence of mesopores on the transmittance and wetting properties of coatings was discussed on the basis of experimental observations.

  2. Incorporation of anti-inflammatory agent into mesoporous silica.

    PubMed

    Braz, Wilson Rodrigues; Rocha, Natállia Lamec; de Faria, Emerson H; Silva, Márcio L A E; Ciuffi, Katia J; Tavares, Denise C; Furtado, Ricardo Andrade; Rocha, Lucas A; Nassar, Eduardo J

    2016-09-23

    The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol-gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol-gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug. PMID:27533108

  3. Mesoporous silica nanoparticles for active corrosion protection.

    PubMed

    Borisova, Dimitriya; Möhwald, Helmuth; Shchukin, Dmitry G

    2011-03-22

    This work presents the synthesis of monodisperse, mesoporous silica nanoparticles and their application as nanocontainers loaded with corrosion inhibitor (1H-benzotriazole (BTA)) and embedded in hybrid SiOx/ZrOx sol-gel coating for the corrosion protection of aluminum alloy. The developed porous system of mechanically stable silica nanoparticles exhibits high surface area (∼1000 m2·g(-1)), narrow pore size distribution (d∼3 nm), and large pore volume (∼1 mL·g(-1)). As a result, a sufficiently high uptake and storage of the corrosion inhibitor in the mesoporous nanocontainers was achieved. The successful embedding and homogeneous distribution of the BTA-loaded monodisperse silica nanocontainers in the passive anticorrosive SiOx/ZrOx film improve the wet corrosion resistance of the aluminum alloy AA2024 in 0.1 M sodium chloride solution. The enhanced corrosion protection of this newly developed active system in comparison to the passive sol-gel coating was observed during a simulated corrosion process by the scanning vibrating electrode technique (SVET). These results, as well as the controlled pH-dependent release of BTA from the mesoporous silica nanocontainers without additional polyelectrolyte shell, suggest an inhibitor release triggered by the corrosion process leading to a self-healing effect. PMID:21344888

  4. Silica-Ceria Hybrid Nanostructures

    SciTech Connect

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Baer, Donald R.; Thevuthasan, Suntharampillai

    2012-04-25

    A new hybrid material system that consists of ceria attached silica nanoparticles has been developed. Because of the versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and antioxidant properties of ceria nanoparticles, this material system is ideally suited for biomedical applications. The silica particles of size ~50nm were synthesized by the Stöber synthesis method and ceria nanoparticles of size ~2-3nm was attached to the silica surface using a hetrocoagulation method. The presence of silanol groups on the surface of silica particles mediated homogenous nucleation of ceria which were attached to silica surface by Si-O-Ce bonding. The formations of silica-ceria hybrid nanostructures were characterized by X-photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). The HRTEM image confirms the formation of individual crystallites of ceria nanoparticles attached to the silica surface. The XPS analysis indicates that ceria nanoparticles are chemically bonded to surface of silica and possess mixture of +3 and +4 chemical states.

  5. Fluorescence properties of dye doped mesoporous silica

    NASA Astrophysics Data System (ADS)

    Carbonaro, Carlo M.; Corpino, Riccardo; Ricci, Pier Carlo; Chiriu, Daniele; Cannas, Carla

    2014-10-01

    In this paper we present a review of the main results we obtained studying the emission properties of organic-inorganic hybrids obtained combining mesoporous silica and Xantene dyes, in particular the standard referenc Rhodamine 6G. The purpose of the review is to show the possibility to efficiently "dope" the transparent inorganic porous matrix to obtain promising systems for photonic and biomedical applications. The strategies to solve the concentration effect and the leaching phenomenon are discussed within the framework of the single exciton theory.

  6. Fluorescence properties of dye doped mesoporous silica

    SciTech Connect

    Carbonaro, Carlo M. Corpino, Riccardo Ricci, Pier Carlo Chiriu, Daniele; Cannas, Carla

    2014-10-21

    In this paper we present a review of the main results we obtained studying the emission properties of organic-inorganic hybrids obtained combining mesoporous silica and Xantene dyes, in particular the standard reference Rhodamine 6G. The purpose of the review is to show the possibility to efficiently 'dope' the transparent inorganic porous matrix to obtain promising systems for photonic and biomedical applications. The strategies to solve the concentration effect and the leaching phenomenon are discussed within the framework of the single exciton theory.

  7. Silazane to silica

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1992-01-01

    Thin film silica and/or methyl silicone were detected on most external surfaces of the retrieved LDEF. Known sources of silicone in or on the LDEF appear inadequate to explain the ubiquitous presence of the silica and silicone films. Hexamethyldisilazane (HMDS) was used as the Challenger tile waterproofing compound for the Challenger/LDEF deployment mission. HMDS releases NH3 which depolymerizes silicone RTV's. Polyurethanes were also attacked. Much of the silica/silicone contamination of LDEF resulted from HMDS.

  8. Multiscale porous fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Wen, Hao

    Porous electrodes are widely used in fuel cells to enhance electrode performance due to their high surface area. Increasingly, such electrodes are designed with both micro-scale and nano-scale features. In the current work, carbon based porous materials have been synthesized and utilized as bioelectrode support for biofuel cells, analysis of such porous electrodes via rotating disk electrode has been enhanced by a numerical model that considers diffusion and convection within porous media. Finally, porous perovskite metal oxide cathodes for solid oxide fuel cell have been modeled to simulate impedance response data obtained from symmetric cells. Carbon fiber microelectrodes (CFME) were fabricated to mimic the microenvironment of carbon fiber paper based porous electrodes. They were also miniature electrodes for small-scale applications. As observed by scanning electron microscopy (SEM), carbon nanotubes (CNTs) formed a homogeneously intertwined matrix. Biocatalysts can fully infiltrate this matrix to form a composite, with a significantly enhanced glucose oxidation current---that is 6.4 fold higher than the bare carbon fiber electrodes. Based on the CNT based porous matrix, polystyrene beads of uniform diameter at 500 nm were used as template to tune the porous structure and enhance biomolecule transport. Focused ion beam (FIB) was used to observe the morphology both at the surface and the cross-section. It has been shown that the template macro-pores enhanced the fuel transport and the current density has been doubled due to the improvement. Like commonly used rotating disk electrode, the porous rotating disk electrode is a system with analytically solved flow field. Although models were proposed previously with first order kinetics and convection as the only mass transport at high rotations, some recent findings indicated that diffusion could play an important role at all disk rotation rates. In the current proposed model, enzymatic kinetics that follow a Ping

  9. Silazine to silica

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1993-01-01

    Thin film silica and/or methyl silicone were detected on most external surfaces of the retrieved LDEF. Both solar ultraviolet radiation and atomic oxygen can convert silicones to silica. Known sources of silicone in or on the LDEF appear inadequate to explain the ubiquitous presence of the silica and silicone films. Hexamethyldisilazane (HMDS) was used as the Challenger tile waterproofing compound for the Challenger/LDEF deployment mission. HMDS is both volatile and chemically reactive at STP. In addition, HMDS releases NH3 which depolymerizes silicone RTV's. Polyurethanes are also depolymerized. Experiments are reported that indicate much of the silicone and silica contamination of LDEF resulted directly or indirectly from HMDS.

  10. The effect of the nano-silica support on the catalytic reduction of water by gold, silver and platinum nanoparticles--nanocomposite reactivity.

    PubMed

    Zidki, T; Bar-Ziv, R; Green, U; Cohen, H; Meisel, D; Meyerstein, D

    2014-08-01

    Pt°-NPs, prepared by the reduction of Pt(IV) salts with borohydride, do not catalyse the reduction of water in the presence of the strongly-reducing ˙C(CH3)2OH radicals. However, supporting the same metal nanoparticles (M°-NPs) with SiO2 alters the catalytic properties enabling the reaction. This effect depends both on the nature of M° and concentration of the composite nanoparticles. At low nanocomposite concentration: for M = Au nearly no effect is observed; for M = Ag the support decreases the catalytic reduction of water and for M = Pt the support initiates the catalytic process. At high nanocomposite concentration: for M = Au the reactivity is considerably lower and for M = Ag or Pt no catalysis is observed. Furthermore, for M = Ag or Pt H2 reduces the ˙C(CH3)2OH radicals. PMID:24947417

  11. Aerosol-assisted controlled packing of silica nanocolloids: templateless synthesis of mesoporous silicates with structural tunability and complexity.

    PubMed

    Min, Kyungmin; Choi, Chang Hyuck; Kim, Myoung Yeob; Choi, Minkee

    2015-01-01

    A template-free synthesis method for mesoporous and macro-/mesoporous hierarchically porous silicates with remarkable structural tunability and complexity is presented. SiO2 nanocolloids having diameters of 3.0-29 nm were prepared as a primary building block by using extended Stöber synthesis, and they were subsequently assembled by an aerosol-assisted drying. The silica pore structure can be rationally controlled depending on the initial diameter of SiO2 colloids and the aerosol-assembly temperature that determines the packing density of SiO2 colloids (i.e., amounts of packing defects) in the resultant materials. The present method could produce mesoporous silica spheres with remarkable pore-structural tunability (291 < BET surface area <807 m(2) g(-1), 0.42 < pore volume <0.92 cm(3) g(-1), 3.1 < pore size <26 nm). Hierarchically porous materials can also be synthesized by the evaporation-induced phase separation of solvent medium during the aerosol-assisted assembly of SiO2 colloids. By adding aluminum and Pt precursors into the SiO2 colloid suspensions before the aerosol-assisted assembly, mesoporous aluminosilicates supporting uniform Pt nanoclusters (∼2 nm) can also be synthesized. This indicates that the synthesis strategy can be used for the direct synthesis of functional silicate materials. PMID:25517201

  12. The design of a bipodal bis(pentafluorophenoxy)aluminate supported on silica as an activator for ethylene polymerization using surface organometallic chemistry.

    PubMed

    Sauter, Dominique W; Popoff, Nicolas; Bashir, Muhammad Ahsan; Szeto, Kai C; Gauvin, Régis M; Delevoye, Laurent; Taoufik, Mostafa; Boisson, Christophe

    2016-04-01

    A new class of well-defined activating supports for olefin polymerization was obtained via the surface organometallic chemistry approach. High activities in slurry polymerization of ethylene along with industrial-grade physical properties of the resulting polyethylene were obtained when these activators were combined with metallocene complexes in the presence of triisobutylaluminium. PMID:26899986

  13. Effect of chromia doping of thermal stability of silica fibers

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1974-01-01

    Commercial silica fibers of the type being evaluated for reusable surface insulation for reentry vehicles were found to be porous and composed of subfibers. The effect on shrinkage and devitrification of soaking such silica fibers in water, acetic acid, chromium acetate, and chromium nitrate solutions was studied. Felted specimens made of chromia-doped fibers shrunk only about one-half as much as those made of untreated fibers after exposure in air for 4 hours at 1300 C. The devitrification rate of fibers given prolonged soaks in chromium nitrate was as low as that of as-received fibers.

  14. Mesoporous silica nanoparticles for biomedical and catalytical applications

    SciTech Connect

    Sun, Xiaoxing

    2011-01-01

    Mesoporous silica materials, discovered in 1992 by the Mobile Oil Corporation, have received considerable attention in the chemical industry due to their superior textual properties such as high surface area, large pore volume, tunable pore diameter, and narrow pore size distribution. Among those materials, MCM-41, referred to Mobile Composition of Matter NO. 41, contains honeycomb liked porous structure that is the most common mesoporous molecular sieve studied. Applications of MCM-41 type mesoporous silica material in biomedical field as well as catalytical field have been developed and discussed in this thesis. The unique features of mesoporous silica nanoparticles were utilized for the design of delivery system for multiple biomolecules as described in chapter 2. We loaded luciferin into the hexagonal channels of MSN and capped the pore ends with gold nanoparticles to prevent premature release. Luciferase was adsorbed onto the outer surface of the MSN. Both the MSN and the gold nanoparticles were protected by poly-ethylene glycol to minimize nonspecific interaction of luciferase and keep it from denaturating. Controlled release of luciferin was triggered within the cells and the enzymatic reaction was detected by a luminometer. Further developments by varying enzyme/substrate pairs may provide opportunities to control cell behavior and manipulate intracellular reactions. MSN was also served as a noble metal catalyst support due to its large surface area and its stability with active metals. We prepared MSN with pore diameter of 10 nm (LP10-MSN) which can facilitate mass transfer. And we successfully synthesized an organo silane, 2,2'-Bipyridine-amide-triethoxylsilane (Bpy-amide-TES). Then we were able to functionalize LP10-MSN with bipyridinyl group by both post-grafting method and co-condensation method. Future research of this material would be platinum complexation. This Pt (II) complex catalyst has been reported for a C-H bond activation reaction as an

  15. Protein-directed assembly of arbitrary three-dimensional nanoporous silica architectures.

    PubMed

    Khripin, Constantine Y; Pristinski, Denis; Dunphy, Darren R; Brinker, C Jeffrey; Kaehr, Bryan

    2011-02-22

    Through precise control of nanoscale building blocks, such as proteins and polyamines, silica condensing microorganisms are able to create intricate mineral structures displaying hierarchical features from nano- to millimeter-length scales. The creation of artificial structures of similar characteristics is facilitated through biomimetic approaches, for instance, by first creating a bioscaffold comprised of silica condensing moieties which, in turn, govern silica deposition into three-dimensional (3D) structures. In this work, we demonstrate a protein-directed approach to template silica into true arbitrary 3D architectures by employing cross-linked protein hydrogels to controllably direct silica condensation. Protein hydrogels are fabricated using multiphoton lithography, which enables user-defined control over template features in three dimensions. Silica deposition, under acidic conditions, proceeds throughout protein hydrogel templates via flocculation of silica nanoparticles by protein molecules, as indicated by dynamic light scattering (DLS) and time-dependent measurements of elastic modulus. Following silica deposition, the protein template can be removed using mild thermal processing yielding high surface area (625 m(2)/g) porous silica replicas that do not undergo significant volume change compared to the starting template. We demonstrate the capabilities of this approach to create bioinspired silica microstructures displaying hierarchical features over broad length scales and the infiltration/functionalization capabilities of the nanoporous silica matrix by laser printing a 3D gold image within a 3D silica matrix. This work provides a foundation to potentially understand and mimic biogenic silica condensation under the constraints of user-defined biotemplates and further should enable a wide range of complex inorganic architectures to be explored using silica transformational chemistries, for instance silica to silicon, as demonstrated herein. PMID

  16. Effect of support on metathesis of n-decane: drastic improvement in alkane metathesis with WMe5 linked to silica-alumina.

    PubMed

    Samantaray, Manoja K; Dey, Raju; Abou-Hamad, Edy; Hamieh, Ali; Basset, Jean-Marie

    2015-04-13

    [WMe6 ] (1) supported on the surface of SiO2 -Al2 O3(500) (2) has been extensively characterized by solid-state NMR spectroscopy, elemental analysis, and gas quantification, which clearly reveal the formation of a mixture of monopodal and bipodal species with the migration of methyl from W to Al. The supported species SiO2 -Al2 O3(500) (2) transformed at 120 °C into two types of carbynic centers, one of which is cationic and the other neutral. These species are very efficient for the metathesis of n-decane. Comparison with already-synthesized neutral bipodal tungsten indicates that the high increase in activity is due to the cationic character of the grafted tungsten. PMID:25760771

  17. Chromatographic evaluation of a newly designed peptide-silica stationary phase in reverse phase liquid chromatography and hydrophilic interaction liquid chromatography: mixed mode behavior.

    PubMed

    Ray, Sudipta; Takafuji, Makoto; Ihara, Hirotaka

    2012-11-30

    The short peptide Boc-Phe-Aib-Phe-OH was synthesized and immobilized onto porous silica using grafting methodology. The resulting peptide-bonded silica was characterized using DRIFT-mode FT-IR, elemental analysis, thermogravimetric analysis, solid state C(13) NMR spectroscopy and the successful immobilization of the peptide on the silica support was confirmed. This grafted phase was packed into a stainless steel column and used for mixed-mode chromatography such as reversed-phase high-performance liquid chromatography and hydrophilic interaction liquid chromatography for the efficient separation of hydrophobic compounds, small polar molecules, and drug molecules. Compared with ODS and phenyl columns, this new stationary phase shows considerably higher molecular-planarity selectivity towards polyaromatic hydrocarbons and also available for separation of nucleo-analytes and sulfa-drug molecules in a hydrophilic interaction liquid chromatography mode. The multiple interactions induced by polar carbonyl group and hydrophobic phenyl group allow this peptide-modified silica to serve as a multi-mode stationary phase in high performance liquid chromatography. PMID:23116801

  18. Solvent responsive silica composite nanofiltration membrane with controlled pores and improved ion selectivity for vanadium flow battery application

    NASA Astrophysics Data System (ADS)

    Xi, Xiaoli; Ding, Cong; Zhang, Hongzhang; Li, Xianfeng; Cheng, Yuanhui; Zhang, Huamin

    2015-01-01

    A solvent responsive sol-gel method is adopted to fabricate poly (ether sulfone) (PES)/silica composite porous membranes for vanadium flow battery (VFB) application. The pore size and pore size distribution of the composite membrane can be easily adjusted by controlling the quantity of silica gels inside the pores of pristine membranes. Fourier transform infrared spectroscopy (FT-IR) and energy dispersive spectrometer (EDS) are carried out to confirm the structure of resulted membranes. VFBs assembled with the silica modified membranes display much higher coulomb efficiency (97%) and energy efficiency (83%) than that of pristine porous membrane (CE 86%, EE 76%). Furthermore,the modified PES membranes demonstrate high oxidation stability through the long-term battery operation. The PES/silica composite porous membranes show great prospects in VFB applications.

  19. PDMS-based porous particles as support beds for cell immobilization: bacterial biofilm formation as a function of porosity and polymer composition.

    PubMed

    Fernández, M R; Casabona, M G; Anupama, V N; Krishnakumar, B; Curutchet, G A; Bernik, D L

    2010-11-01

    The objective of this work is to test the performance of new synthetic polydimethylsiloxane (PDMS)-based bed particles acting as carriers for bacteria biofilms. The particles obtained have a highly interconnected porous structure which offers a large surface adsorption area to the bacteria. In addition, PDMS materials can be cross-linked by copolymerization with other polymers. In the present work we have chosen two hydrophilic polymers: xanthan gum polysaccharide and tetraethoxysilane (TEOS). This versatile composition helps to modulate the interfacial hydrophobic/hydrophilic balance at the particle surface level and the roughness topology and pore size distribution, as revealed by scanning electron microscopy. Biofilm formation of a consortium isolated from a tannery effluent enriched in Sulphate Reducing Bacteria (SRB), and pure Acidithiobacillus ferrooxidans (AF) strains were assayed in three different bed particles synthesized with pure PDMS, PDMS-xanthan gum and PDMS-TEOS hybrids. Bacterial viability assays using confocal laser scanning fluorescence microscopy indicate that inclusion of hydrophilic groups on particle's surface significantly improves both cell adhesion and viability. PMID:20702072

  20. Adhesion of yeast cells to different porous supports, stability of cell-carrier systems and formation of volatile by-products.

    PubMed

    Kregiel, Dorota; Berlowska, Joanna; Ambroziak, Wojciech

    2012-12-01

    The aim of our research was to study how the conditions of immobilization influence cell attachment to two different ceramic surfaces: hydroxylapatite and chamotte tablets. Three fermentative yeast strains, namely brewery TT, B4 (ale, lager) and distillery Bc15a strains belonging to Saccharomyces spp., and one strain of Debaryomyces occidentalis Y500/5 of weak fermentative nature, but with high amylolytic activity due to extracellular α-amylase and glucoamylase, were used in this study. Different media, including cell starvation, were applied for immobilization of yeast strains as well as different phases of cell growth. Immobilization of selected yeasts on a hydroxylapatite carrier was rather weak. However, when incubation of starved yeast cells was conducted in the minimal medium supplemented by calcium carbonate, the scale of immobilization after 24 h was higher, especially for the D. occidentalis strain. Adhesion to hydroxylapatite carriers in wort broth was of reversible character and better results of adhesion were observed in the case of another ceramic carrier-chamotte. The number of immobilized cells was about 10(6)-10(7) per tablet and cell adhesion was stable during the whole fermentation process. The comparison of the volatile products that were formed during fermentation did not show any significant qualitative and quantitative differences between the free and the immobilized cells. This is the first time when a cheap, porous chamotte surface has been applied to yeast adhesion and fermentation processes. PMID:22903785

  1. Silica, Silicosis, and Autoimmunity

    PubMed Central

    Pollard, Kenneth Michael

    2016-01-01

    Inhalation of dust containing crystalline silica is associated with a number of acute and chronic diseases including systemic autoimmune diseases. Evidence for the link with autoimmune disease comes from epidemiological studies linking occupational exposure to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regarding the mechanism by which silica exposure leads to systemic autoimmune disease, there is a voluminous literature on silica exposure and silicosis that may help identify immune processes that precede development of autoimmunity. The pathophysiology of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of these particles by macrophages initiates an inflammatory response, which stimulates fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen leading to fibrosis and the nodular lesions characteristic of the disease. The steps in the development of silicosis, including acute and chronic inflammation and fibrosis, have different molecular and cellular requirements, suggesting that silica-induced inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear whether silica-induced inflammation and fibrosis contribute similarly to the development of autoimmunity. Nonetheless, the findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage. The variable frequency of these immunological features following silica exposure suggests substantial genetic involvement and gene/environment interaction in silica-induced autoimmunity. However, numerous questions remain unanswered. PMID:27014276

  2. Silica, Silicosis, and Autoimmunity.

    PubMed

    Pollard, Kenneth Michael

    2016-01-01

    Inhalation of dust containing crystalline silica is associated with a number of acute and chronic diseases including systemic autoimmune diseases. Evidence for the link with autoimmune disease comes from epidemiological studies linking occupational exposure to crystalline silica dust with the systemic autoimmune diseases systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Although little is known regarding the mechanism by which silica exposure leads to systemic autoimmune disease, there is a voluminous literature on silica exposure and silicosis that may help identify immune processes that precede development of autoimmunity. The pathophysiology of silicosis consists of deposition of silica particles in the alveoli of the lung. Ingestion of these particles by macrophages initiates an inflammatory response, which stimulates fibroblasts to proliferate and produce collagen. Silica particles are encased by collagen leading to fibrosis and the nodular lesions characteristic of the disease. The steps in the development of silicosis, including acute and chronic inflammation and fibrosis, have different molecular and cellular requirements, suggesting that silica-induced inflammation and fibrosis may be mechanistically separate. Significantly, it is unclear whether silica-induced inflammation and fibrosis contribute similarly to the development of autoimmunity. Nonetheless, the findings from human and animal model studies are consistent with an autoimmune pathogenesis that begins with activation of the innate immune system leading to proinflammatory cytokine production, pulmonary inflammation leading to activation of adaptive immunity, breaking of tolerance, and autoantibodies and tissue damage. The variable frequency of these immunological features following silica exposure suggests substantial genetic involvement and gene/environment interaction in silica-induced autoimmunity. However, numerous questions remain unanswered. PMID:27014276

  3. Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation.

    SciTech Connect

    Huang, Wenyu; Kuhn, John N.; Tsung, Chia-Kuang; Zhang, Yawen; Habas, Susan E.; Yang, Peidong; Somorjai, Gabor A.

    2008-05-09

    Monodisperse rhodium (Rh) and platinum (Pt) nanoparticles as small as {approx}1 nm were synthesized within a fourth generation polyaminoamide (PAMAM) dendrimer, a hyperbranched polymer, in aqueous solution and immobilized by depositing onto a high-surface-area SBA-15 mesoporous support. X-ray photoelectron spectroscopy indicated that the as-synthesized Rh and Pt nanoparticles were mostly oxidized. Catalytic activity of the SBA-15 supported Rh and Pt nanoparticles was studied with ethylene hydrogenation at 273 and 293 K in 10 torr of ethylene and 100 torr of H{sub 2} after reduction (76 torr of H{sub 2} mixed with 690 torr of He) at different temperatures. Catalysts were active without removing the dendrimer capping but reached their highest activity after hydrogen reduction at a moderate temperature (423 K). When treated at a higher temperature (473, 573, and 673 K) in hydrogen, catalytic activity decreased. By using the same treatment that led to maximum ethylene hydrogenation activity, catalytic activity was also evaluated for pyrrole hydrogenation.

  4. Supported microporous ceramic membranes

    DOEpatents

    Webster, E.; Anderson, M.

    1993-12-14

    A method for the formation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms. 4 figures.

  5. Supported microporous ceramic membranes

    DOEpatents

    Webster, Elizabeth; Anderson, Marc

    1993-01-01

    A method for permformation of microporous ceramic membranes onto a porous support includes placing a colloidal suspension of metal or metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane useful for ultrafiltration, reverse osmosis, or molecular sieving having mean pore sizes less than 100 Angstroms.

  6. A novel green approach for the chemical modification of silica particles based on deep eutectic solvents.

    PubMed

    Gu, Tongnian; Zhang, Mingliang; Chen, Jia; Qiu, Hongdeng

    2015-06-18

    Deep eutectic solvents (DESs), as a novel class of green solvents, were successfully applied as eco-friendly and sustainable reaction media for fast surface modification of spherical porous silica, resulting in stationary phases for high-performance liquid chromatography. The new reaction media were advantageous over organic solvents in many aspects, such as the high dispersibility of silica spheres and their non-volatility. PMID:25985926

  7. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    DOEpatents

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  8. Catalyst Of A Metal Heteropoly Acid Salt That Is Insoluble In A Polar Solvent On A Non-Metallic Porous Support And Method Of Making

    DOEpatents

    Wang. Yong; Peden. Charles H. F.; Choi. Saemin

    2004-11-09

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  9. Surfactant removal and silica condensation during the photochemical calcination of thin film silica mesophases.

    PubMed

    Dattelbaum, Andrew M; Amweg, Meri L; Ruiz, Julia D; Ecke, Laurel E; Shreve, Andrew P; Parikh, Atul N

    2005-08-01

    The evolution of photochemical surfactant removal and silica condensation from organically templated thin film silica nanocomposites with mesoscopic ordering has been probed using a combined application of Fourier transform infrared (FT-IR) spectroscopy and single wavelength ellipsometry. Thin films of silica nanocomposites were prepared by a previously reported evaporation-induced self-assembly process. Specifically, oxidized silicon and gold substrates were withdrawn at 25 mm/min from a subcritical micelle concentration solution containing an ethylene oxide surfactant as a structure-directing agent and tetraethyl orthosilicate as a silica precursor. Real-time grazing incidence difference FT-IR spectra of the nanocomposite films on gold taken during exposure to short-wavelength ultraviolet light (184-257 nm) show that surfactant removal and silica condensation occur gradually and concomitantly. Surfactant removal and silica reconstructions were found to be nearly complete after 90 min of exposure. Further, a transient feature was observed in the FT-IR spectra around 1713 cm(-1) during the UV exposure process and was assigned to a carbonyl (C=O) stretching mode absorption, reflecting the transient formation of a partially oxidized surfactant intermediate. From these data we propose a stepwise model for surfactant removal from the nanocomposite films. Ellipsometrically determined index of refraction values collected as a function of UV exposure are also shown to support such a stepwise mechanism of surfactant removal from the ordered nanocomposite silica thin film mesophases studied here. PMID:16852834

  10. Application of silica nanoparticles for increased silica availability in maize

    NASA Astrophysics Data System (ADS)

    Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N.

    2013-02-01

    Silica nanoparticles were extracted from rice husk and characterised comprehensively. The synthesised silica powders were amorphous in size with 99.7% purity (20-40 nm). Nanosilica was amended with red soil at 15 kg ha-1 along with micron silica. The influence of nanoscale on silica uptake, accumulation and nutritional variations in maize roots were evaluated through the studies such as root sectioning, elemental analysis and physiological parameters (root length and silica content) and compared with micron silica and control. Nanosilica treated soil reveals enhanced silica uptake and elongated roots which make the plant to resist in stress conditions like drought.

  11. Red-luminescent europium (III) doped silica nanoshells: synthesis, characterization, and their interaction with HeLa cells

    PubMed Central

    Yang, Jian; Sandoval, Sergio; Alfaro, Jesus G.; Aschemeyer, Sharraya; Liberman, Alex; Martin, David T.; Makale, Milan; Kummel, Andrew C.; Trogler, William C.

    2011-01-01

    A simple method to fabricate Eu3+ doped silica nanoshells particles with 100 and 200 nm diameters is reported. Amino polystyrene beads were used as templates, and an 8 to 10 nm thick silica gel coating was formed by the sol-gel reaction. After removing the template by calcination, porous dehydrated silica gel nanoshells of uniform size were obtained. The Eu3+ doped silica nanoshells exhibited a red emission at 615 nm on UV excitation. The porous structure of the silica shell wall was characterized by transmission electron microscopy measurements, while particle size and zeta potentials of the particles suspended in aqueous solution were characterized by dynamic light scattering. Two-photon microscopy was used to image the nanoshells after assimilation by HeLa cancer cells. PMID:21721813

  12. Red-luminescent europium (III) doped silica nanoshells: synthesis, characterization, and their interaction with HeLa cells

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Sandoval, Sergio; Alfaro, Jesus G.; Aschemeyer, Sharraya; Liberman, Alex; Martin, David T.; Makale, Milan; Kummel, Andrew C.; Trogler, William C.

    2011-06-01

    A simple method to fabricate Eu3+ doped silica nanoshells particles with 100 and 200 nm diameters is reported. Amino polystyrene beads were used as templates, and an 8 to 10 nm thick silica gel coating was formed by the sol-gel reaction. After removing the template by calcination, porous dehydrated silica gel nanoshells of uniform size were obtained. The Eu3+ doped silica nanoshells exhibited a red emission at 615 nm on UV excitation. The porous structure of the silica shell wall was characterized by transmission electron microscopy measurements, while particle size and zeta potentials of the particles suspended in aqueous solution were characterized by dynamic light scattering. Two-photon microscopy was used to image the nanoshells after assimilation by HeLa cancer cells.

  13. Experimental Simulation of Evaporation-Driven Silica Sinter Formation and Microbial Silicification in Hot Spring Systems

    PubMed Central

    Lalonde, Stefan V.; Konhauser, Kurt O.

    2013-01-01

    Abstract Evaporation of silica-rich geothermal waters is one of the main abiotic drivers of the formation of silica sinters around hot springs. An important role in sinter structural development is also played by the indigenous microbial communities, which are fossilized and eventually encased in the silica matrix. The combination of these two factors results in a wide variety of sinter structures and fabrics. Despite this, no previous experimental fossilization studies have focused on evaporative-driven silica precipitation. We present here the results of several experiments aimed at simulating the formation of sinters through evaporation. Silica solutions at different concentrations were repeatedly allowed to evaporate in both the presence and absence of the cyanobacterium Synechococcus elongatus. Without microorganisms, consecutive silica additions led to the formation of well-laminated deposits. By contrast, when microorganisms were present, they acted as reactive surfaces for heterogeneous silica particle nucleation; depending on the initial silica concentration, the deposits were then either porous with a mixture of silicified and unmineralized cells, or they formed a denser structure with a complete entombment of the cells by a thick silica crust. The deposits obtained experimentally showed numerous similarities in terms of their fabric to those previously reported for natural hot springs, demonstrating the complex interplay between abiotic and biotic processes during silica sinter growth. Key Words: Silica—Cyanobacteria—Fossilization—Hot springs—Stromatolites. Astrobiology 13, 163–176. PMID:23384170

  14. New antifouling silica hydrogel.

    PubMed

    Beltrán-Osuna, Ángela A; Cao, Bin; Cheng, Gang; Jana, Sadhan C; Espe, Matthew P; Lama, Bimala

    2012-06-26

    In this work, a new antifouling silica hydrogel was developed for potential biomedical applications. A zwitterionic polymer, poly(carboxybetaine methacrylate) (pCBMA), was produced via atom-transfer radical polymerization and was appended to the hydrogel network in a two-step acid-base-catalyzed sol-gel process. The pCBMA silica aerogels were obtained by drying the hydrogels under supercritical conditions using CO(2). To understand the effect of pCBMA on the gel structure, pCBMA silica aerogels with different pCBMA contents were characterized using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR) spectroscopy, and the surface area from Brauner-Emmet-Teller (BET) measurements. The antifouling property of pCBMA silica hydrogel to resist protein (fibrinogen) adsorption was measured using enzyme-linked immunosorbent assay (ELISA). SEM images revealed that the particle size and porosity of the silica network decreased at low pCBMA content and increased at above 33 wt % of the polymer. The presence of pCBMA increased the surface area of the material by 91% at a polymer content of 25 wt %. NMR results confirmed that pCBMA was incorporated completely into the silica structure at a polymer content below 20 wt %. A protein adsorption test revealed a reduction in fibrinogen adsorption by 83% at 25 wt % pCBMA content in the hydrogel compared to the fibrinogen adsorption in the unmodified silica hydrogel. PMID:22607091

  15. Fluorescent silica nanoparticles containing covalently bound dyes for reporter, marker, and sensor applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Chapman, Gala; Emer, Kyle; Crow, Sidney

    2016-03-01

    Silica nanoparticles have proven to be useful in many bioanalytical and medical applications and have been used in numerous applications during the last decade. Combining the properties of silica nanoparticles and fluorescent dyes that may be used as chemical probes or labels can be relatively easy by simply soaking porous silica nanoparticles in a solution of the dye of interest. Under proper conditions the entrapped dye can stay inside the silica nanoparticle for several hours resulting in a useful probe. In spite of the relative durability of these probes, leaching can still occur. A much better approach is to synthesize silica nanoparticles that have the fluorescent dye covalently attached to the backbone structure of the silica nanoparticle. This can be achieved by using appropriately modified tetraethyl orthosilicate (TEOS) analogues during the silica nanoparticle synthesis. The molar ratio of TEOS and modified TEOS will determine the fluorescent dye load in the silica nanoparticle. Dependent on the chemical stability of the reporting dye either reverse micellar (RM) or Stöber method can be used for silica nanoparticle synthesis. If dye stability allows RM procedure is preferred as it results in a much easier control of the silica nanoparticle reaction itself. Also controlling the size and uniformity of the silica nanoparticles are much easier using RM method. Dependent on the functional groups present in the reporting dye used in preparation of the modified TEOS, the silica nanoparticles can be utilized in many applications such as pH sensor, metal ion sensors, labels, etc. In addition surface activated silica nanoparticles with reactive moieties are also excellent reporters or they can be used as bright fluorescent labels. Many different fluorescent dyes can be used to synthesize silica nanoparticles including visible and NIR dyes. Several bioanalytical applications are discussed including studying amoeba phagocytosis.

  16. The Nature of Secondary Interactions at Electrophilic Metal Sites of Molecular and Silica-Supported Organolutetium Complexes from Solid-State NMR Spectroscopy.

    PubMed

    Conley, Matthew P; Lapadula, Giuseppe; Sanders, Kevin; Gajan, David; Lesage, Anne; del Rosal, Iker; Maron, Laurent; Lukens, Wayne W; Copéret, Christophe; Andersen, Richard A

    2016-03-23

    Lu[CH(SiMe3)2]3 reacts with [SiO2-700] to give [(≡SiO)Lu[CH(SiMe3)2]2] and CH2(SiMe3)2. [(≡SiO)Lu[CH(SiMe3)2]2] is characterized by solid-state NMR and EXAFS spectroscopy, which show that secondary Lu···C and Lu···O interactions, involving a γ-CH3 and a siloxane bridge, are present. From X-ray crystallographic analysis, the molecular analogues Lu[CH(SiMe3)2]3-x[O-2,6-tBu-C6H3]x (x = 0-2) also have secondary Lu···C interactions. The (1)H NMR spectrum of Lu[CH(SiMe3)2]3 shows that the -SiMe3 groups are equivalent to -125 °C and inequivalent below that temperature, ΔG(⧧)(Tc = 148 K) = 7.1 kcal mol(-1). Both -SiMe3 groups in Lu[CH(SiMe3)2]3 have (1)JCH = 117 ± 1 Hz at -140 °C. The solid-state (13)C CPMAS NMR spectrum at 20 °C shows three chemically inequivalent resonances in the area ratio of 4:1:1 (12:3:3); the J-resolved spectra for each resonance give (1)JCH = 117 ± 2 Hz. The (29)Si CPMAS NMR spectrum shows two chemically inequivalent resonances with different values of chemical shift anisotropy. Similar observations are obtained for Lu[CH(SiMe3)2]3-x[O-2,6-tBu-C6H3]x (x = 1 and 2). The spectroscopic data point to short Lu···Cγ contacts corresponding to 3c-2e Lu···Cγ-Siβ interactions, which are supported by DFT calculations. Calculated natural bond orbital (NBO) charges show that Cγ carries a negative charge, while Lu, Hγ, and Siβ carry positive charges; as the number of O-based ligands increases so does the positive charge at Lu, which in turns shortens the Lu···Cγ distance. The change in NBO charges and the resulting changes in the spectroscopic and crystallographic properties show how ligands and surface-support sites rearrange to accommodate these changes, consistent with Pauling's electroneutrality concept. PMID:26887899

  17. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    SciTech Connect

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  18. Unraveling the Dynamics of Aminopolymer/Silica Composites

    DOE PAGESBeta

    Carrillo, Jan-Michael Y.; Sakwa-Novak, Miles A.; Holewinski, Adam; Potter, Matthew E.; Rother, Gernot; Jones, Christopher W.; Sumpter, Bobby G.

    2016-02-25

    Branched poly(ethylenimine) (PEI) encapsulated within mesoporous silica (SBA-15), has proven to be an eective sorbent for developing carbon capture technologies. However, the structure-property correlations which govern their adsorptive properties is not well understood. By combining coarse-grained molecular dynamics simulations and neutron scattering experiments we are able to construct, and validate, a detailed model of the dynamics and morphology of the conned polymer within the mesoporous support. By varying the simulation properties we are able to probe, for the rst time, the direct relationship between the structure of the polymer and the non-monotonic dynamics of the polymer as a function ofmore » monomer concentration within an adsorbing cylindrical pore. Overall the simulation results are in good agreement with quasi-elastic neutron scattering (QENS) studies, suggesting an approach that can be a useful guide for understanding how to tune porous polymer composites for enhancing desired dynamical and structural behavior targeting enhanced carbon dioxide adsorption.« less

  19. Accelerated colorimetric immunosensing using surface-modified porous monoliths and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Chuag, Shao-Hsuan; Chen, Guan-Hua; Chou, Hsin-Hao; Shen, Shu-Wei; Chen, Chien-Fu

    2013-08-01

    A rapid and sensitive immunoassay platform integrating polymerized monoliths and gold nanoparticles (AuNPs) has been developed. The porous monoliths are photopolymerized in situ within a silica capillary and serve as solid support for high-mass transport and high-density capture antibody immobilization to create a shorter diffusion length for antibody-antigen interactions, resulting in a rapid assay and low reagent consumption. AuNPs are modified with detection antibodies and are utilized as signals for colorimetric immunoassays without the need for enzyme, substrate and sophisticated equipment for quantitative measurements. This platform has been verified by performing a human IgG sandwich immunoassay with a detection limit of 0.1 ng ml-1. In addition, a single assay can be completed in 1 h, which is more efficient than traditional immunoassays that require several hours to complete.

  20. Poisoning of a Silica-Supported Cobalt Catalyst due to Presence of Sulfur Impurities in Syngas during Fischer–Tropsch Synthesis: Effects of Chelating Agent

    SciTech Connect

    Bambal, Ashish S.; Guggilla, Vidya S.; Kugler, Edwin L.; Gardner, Todd H.; Dadyburjor, Dady B.

    2014-04-09

    The effects of sulfur impurities on the performance of cobalt-based Fischer–Tropsch catalysts are evaluated under industrially relevant operating conditions of temperature, pressure, and impurity levels. Chelating agents (CAs) were used to modify the SiO2 support, and the performances of the CA-modified catalysts are compared with conventional Co/SiO2 catalysts. For both the Co/SiO2 and CA-modified catalysts, the presence of sulfur in the inlet syngas results in a notable drop in the CO conversion, an undesired shift in the hydrocarbon selectivity toward short-chain hydrocarbons, more olefins in the products, and lower product yields. In the post-poisoning stage, i.e., after termination of sulfur introduction in the inlet syngas, the CA-modified catalysts recover activity and selectivity (to some extent at least), whereas such trends are not observed for the base-case, i.e., unmodified Co/SiO2 catalyst. Finally, the improved performance of the CA-modified catalysts in the presence of sulfur is attributed to higher densities of active sites.

  1. Oxygen configurations in silica

    SciTech Connect

    Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.

    2000-07-15

    We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O{sub 2} bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society.

  2. The influence of mixed activators on ethylene polymerization and ethylene/1-hexene copolymerization with silica-supported Ziegler-Natta catalyst.

    PubMed

    Senso, Nichapat; Khaubunsongserm, Supaporn; Jongsomjit, Bunjerd; Praserthdam, Piyasan

    2010-01-01

    This article reveals the effects of mixed activators on ethylene polymerization and ethylene/1-hexene copolymerization over MgCl₂/SiO₂-supported Ziegler-Natta (ZN) catalysts. First, the conventional ZN catalyst was prepared with SiO₂ addition. Then, the catalyst was tested for ethylene polymerization and ethylene/1-hexene (E/H) co-polymerization using different activators. Triethylaluminum (TEA), tri-n-hexyl aluminum (TnHA) and diethyl aluminum chloride (DEAC), TEA+DEAC, TEA+TnHA, TnHA+ DEAC, TEA+DEAC+TnHA mixtures, were used as activators in this study. It was found that in the case of ethylene polymerization with a sole activator, TnHA exhibited the highest activity among other activators due to increased size of the alkyl group. Further investigation was focused on the use of mixed activators. The activity can be enhanced by a factor of three when the mixed activators were employed and the activity of ethylene polymerization apparently increased in the order of TEA+ DEAC+TnHA > TEA+DEAC > TEA+TnHA. Both the copolymerization activity and crystallinity of the synthesized copolymers were strongly changed when the activators were changed from TEA to TEA+DEAC+TnHA mixtures or pure TnHA and pure DEAC. As for ethylene/1-hexene copolymerization the activity apparently increased in the order of TEA+DEAC+TnHA > TEA+TnHA > TEA+DEAC > TnHA+DEAC > TEA > TnHA > DEAC. Considering the properties of the copolymer obtained with the mixed TEA+DEAC+TnHA, its crystallinity decreased due to the presence of TnHA in the mixed activator. The activators thus exerted a strong influence on copolymer structure. An increased molecular weight distribution (MWD) was observed, without significant change in polymer morphology. PMID:21169883

  3. Poisoning of a silica supported cobalt catalyst due to the presence of sulfur impurities in syngas during Fischer-Tropsch synthesis: Effect of chelating agent

    SciTech Connect

    Bambal, A.S.; Gardner, T.H.; Kugler, E.L.; Dadyburjor, D.B.

    2012-01-01

    crystallite sizes and higher dispersions of cobalt on the support. Finally, the sulfur deactivation data is modeled by a simple kinetic expression to determine the deactivation constant, deactivation rates and half-life of the FT catalyst.

  4. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  5. Tailored Porous Materials

    SciTech Connect

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  6. Positron annihilation characteristics in mesostructural silica films with various porosities

    SciTech Connect

    Xiong, Bangyun; Mao, Wenfeng; Tang, Xiuqin; He, Chunqing

    2014-03-07

    Porous silica films with various porosities were prepared via a sol-gel method using a nonionic amphiphilic triblock copolymer F127 as the structure-directing agent. Doppler broadening of positron annihilation radiation (DBAR) spectra were collected for the prepared films using a variable energy slow positron beam. Different linear relationships between positron annihilation line shape parameters S and W are found for the as-deposited films and calcined ones, indicative of the decomposition of the copolymer porogen in the as-deposited films upon calcination. This also reveals the variation of positron annihilation sites as a function of F127 loading or porosity. Strong correlations between positronium 3γ annihilation fraction, S parameter and porosity of the mesoporous silica films with isolated pores are obtained, which may provide a complementary method to determine closed porosities of mesoporous silica films by DBAR.

  7. Evaluating Dimethyldiethoxysilane for use in Polyurethane Crosslinked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Randall, Jason P.; Meador, Mary Ann B.; Jana, Sadhan C.

    2008-01-01

    Silica aerogels are highly porous materials which exhibit exceptionally low density and thermal conductivity. Their "pearl necklace" nanostructure, however, is inherently weak; most silica aerogels are brittle and fragile. The strength of aerogels can be improved by employing an additional crosslinking step using isocyanates. In this work, dimethyldiethoxysilane (DMDES) is evaluated for use in the silane backbone of polyurethane crosslinked aerogels. Approximately half of the resulting aerogels exhibited a core/shell morphology of hard crosslinked aerogel surrounding a softer, uncrosslinked center. Solid state NMR and scanning electron microscopy results indicate the DMDES incorporated itself as a conformal coating around the outside of the secondary silica particles, in much the same manner as isocyanate crosslinking. Response surface curves were generated from compression data, indicating levels of reinforcement comparable to that in previous literature, despite the core/shell morphology.

  8. A High Temperature Capacitive Humidity Sensor Based on Mesoporous Silica

    PubMed Central

    Wagner, Thorsten; Krotzky, Sören; Weiß, Alexander; Sauerwald, Tilman; Kohl, Claus-Dieter; Roggenbuck, Jan; Tiemann, Michael

    2011-01-01

    Capacitive sensors are the most commonly used devices for the detection of humidity because they are inexpensive and the detection mechanism is very specific for humidity. However, especially for industrial processes, there is a lack of dielectrics that are stable at high temperature (>200 °C) and under harsh conditions. We present a capacitive sensor based on mesoporous silica as the dielectric in a simple sensor design based on pressed silica pellets. Investigation of the structural stability of the porous silica under simulated operating conditions as well as the influence of the pellet production will be shown. Impedance measurements demonstrate the utility of the sensor at both low (90 °C) and high (up to 210 °C) operating temperatures. PMID:22163790

  9. Investigation of drug-porous adsorbent interactions in drug mixtures with selected porous adsorbents.

    PubMed

    Madieh, Shadi; Simone, Michael; Wilson, Wendy; Mehra, Dev; Augsburger, Larry

    2007-04-01

    The adsorption of drugs onto porous substrates may prove to be a convenient method by which to enhance the dissolution rate of certain poorly water-soluble drugs in body fluids. The purpose of this research is to provide a better understanding of the type of interactions occurring between drugs and certain pharmaceutically acceptable porous adsorbents that leads to enhanced drug dissolution rates. The interactions between ibuprofen (acidic drug), acetaminophen (acidic drug), dipyridamole (basic drug), and the porous adsorbents used (calcium silicate and silica gel) were investigated using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier Transform infrared spectroscopy (FTIR). DSC and PXRD results indicated a significant loss of crystallinity of both ibuprofen and acetaminophen but not dipyridamole. In the case of ibuprofen, FTIR results indicated the ionization of the carboxylic group based on the shift in the FTIR carboxylic band. Dissolution of ibuprofen from its mixtures with porous adsorbents was found to be significantly higher compared to the neat drug, whereas dipyridamole dissolution from its mixtures with porous adsorbents was not significantly different from that of the neat drug. PMID:17221849

  10. Cellulose-silica aerogels.

    PubMed

    Demilecamps, Arnaud; Beauger, Christian; Hildenbrand, Claudia; Rigacci, Arnaud; Budtova, Tatiana

    2015-05-20

    Aerogels based on interpenetrated cellulose-silica networks were prepared and characterised. Wet coagulated cellulose was impregnated with silica phase, polyethoxydisiloxane, using two methods: (i) molecular diffusion and (ii) forced flow induced by pressure difference. The latter allowed an enormous decrease in the impregnation times, by almost three orders of magnitude, for a sample with the same geometry. In both cases, nanostructured silica gel was in situ formed inside cellulose matrix. Nitrogen adsorption analysis revealed an almost threefold increase in pores specific surface area, from cellulose aerogel alone to organic-inorganic composite. Morphology, thermal conductivity and mechanical properties under uniaxial compression were investigated. Thermal conductivity of composite aerogels was lower than that of cellulose aerogel due to the formation of superinsulating mesoporous silica inside cellulose pores. Furthermore, composite aerogels were stiffer than each of reference aerogels. PMID:25817671

  11. Crystalline Silica Primer

    USGS Publications Warehouse

    Staff- Branch of Industrial Minerals

    1992-01-01

    substance and will present a nontechnical overview of the techniques used to measure crystalline silica. Because this primer is meant to be a starting point for anyone interested in learning more about crystalline silica, a list of selected readings and other resources is included. The detailed glossary, which defines many terms that are beyond the scope of this publication, is designed to help the reader move from this presentation to a more technical one, the inevitable next step.

  12. Study of silica templates in the rice husk and the carbon-silica nanocomposites produced from rice husk

    NASA Astrophysics Data System (ADS)

    Larichev, Yu. V.; Yeletsky, P. M.; Yakovlev, V. A.

    2015-12-01

    Carbon-silica nanocomposites obtained by rice husk carbonization in a fluidized-bed reactor using a deep oxidation copper-chromium catalyst were studied. Dispersion characteristics of the silica phase in these systems were determined by small-angle X-ray scattering (SAXS) using the full contrast technique. SiO2 was found in the initial rice husk as compact nanoparticles having a wide size distribution. This distribution consists of a narrow fraction with particle sizes from 1 to 7 nm and a wider fraction with particle sizes from 8 to 22 nm. Oxidative heat treatment of rice husk in a fluidized bed in the presence of the catalyst decreased the fraction of small SiO2 particles and increased the fraction of large ones. It was demonstrated that the particle size of silica in the carbon matrix can be determined selectively for deliberate design of porous carbon materials with desired properties.

  13. Synthesis of robust hierarchical silica monoliths by surface-mediated solution/precipitation reactions over different scales: designing capillary microreactors for environmental applications.

    PubMed

    García-Aguilar, J; Miguel-García, I; Berenguer-Murcia, Á; Cazorla-Amorós, D

    2014-12-24

    A synthetic procedure to prepare novel materials (surface-mediated fillings) based on robust hierarchical monoliths is reported. The methodology includes the deposition of a (micro- or mesoporous) silica thin film on the support followed by growth of a porous monolithic SiO2 structure. It has been demonstrated that this synthesis is viable for supports of different chemical nature with different inner diameters without shrinkage of the silica filling. The formation mechanism of the surface-mediated fillings is based on a solution/precipitation process and the anchoring of the silica filling to the deposited thin film. The interaction between the two SiO2 structures (monolith and thin film) depends on the porosity of the thin film and yields composite materials with different mechanical stability. By this procedure, capillary microreactors have been prepared and have been proved to be highly active and selective in the total and preferential oxidation of carbon monoxide (TOxCO and PrOxCO). PMID:25419612

  14. Energy Landscape of Water and Ethanol on Silica Surfaces

    SciTech Connect

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.

  15. Energy Landscape of Water and Ethanol on Silica Surfaces

    DOE PAGESBeta

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δhads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually until reachingmore » its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less

  16. Fused silica windows for solar receiver applications

    NASA Astrophysics Data System (ADS)

    Hertel, Johannes; Uhlig, Ralf; Söhn, Matthias; Schenk, Christian; Helsch, Gundula; Bornhöft, Hansjörg

    2016-05-01

    A comprehensive study of optical and mechanical properties of quartz glass (fused silica) with regard to application in high temperature solar receivers is presented. The dependence of rupture strength on different surface conditions as well as high temperature is analyzed, focussing particularly on damage by devitrification and sandblasting. The influence of typical types of contamination in combination with thermal cycling on the optical properties of fused silica is determined. Cleaning methods are compared regarding effectiveness on contamination-induced degradation for samples with and without antireflective coating. The FEM-aided design of different types of receiver windows and their support structure is presented. A large-scale production process has been developed for producing fused silica dome shaped windows (pressurized window) up to a diameter of 816 mm. Prototypes were successfully pressure-tested in a test bench and certified according to the European Pressure Vessel Directive.

  17. Synthesis of Silicon Nitride and Silicon Carbide Nanocomposites through High Energy Milling of Waste Silica Fume for Structural Applications

    NASA Astrophysics Data System (ADS)

    Suri, Jyothi

    Nanocomposites have been widely used in a multitude of applications in electronics and structural components because of their improved mechanical, electrical, and magnetic properties. Silicon nitride/Silicon carbide (Si 3N4/SiC) nanocomposites have been studied intensively for low and high temperature structural applications, such as turbine and automobile engine components, ball bearings, turbochargers, as well as energy applications due to their superior wear resistance, high temperature strength, high oxidation resistance and good creep resistance. Silica fume is the waste material produced during the manufacture of silicon and ferro-silicon alloys, and contains 94 to 97 wt.% SiO2. In the present dissertation, the feasibility of using waste silica fume as the raw material was investigated to synthesize (I) advanced nanocomposites of Si3N4/SiC, and (2) porous silicon carbide (SiC) for membrane applications. The processing approach used to convert the waste material to advanced ceramic materials was based on a novel process called, integrated mechanical and thermal activation process (IMTA) process. In the first part of the dissertation, the effect of parameters such as carbothermic nitridation and reduction temperature and the graphite concentration in the starting silica fume plus graphite mixture, were explored to synthesize nanocomposite powders with tailored amounts of Si3N4 and SiC phases. An effective way to synthesize carbon-free Si3N 4/SiC composite powders was studied to provide a clear pathway and fundamental understanding of the reaction mechanisms. Si3N4/SiC nanocomposite powders were then sintered using two different approaches, based on liquid phase sintering and spark plasma sintering processes, with Al 2O3 and Y2O3 as the sintering aids. The nanocomposites were investigated for their densification behavior, microstructure, and mechanical properties. Si3N4/SiC nanocomposites thus obtained were found to possess superior mechanical properties at much

  18. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Patel, Binay S.

    and modeled fracture energy results. Furthermore, the contribution of microcracking was most prevalent at lower filler contents which suggests that the presence of microcracking may account for the previously unexplained improvements in fracture behavior attained in silica-filled epoxy nanocomposites at low filler contents. Secondly, surface modification through the application of three different propriety surface treatments ("A", "B" and "C") was found to greatly influence the processibility and fracture behavior of silica-filled epoxy nanocomposites. B-treated silica nanoparticles were found to readily form micron-scale agglomerates, settled during nanocomposite curing and showed no improvement in fracture toughness with increasing filler content. In contrast, the nanocomposites consisting of A-treated and C-treated silica nanoparticles yielded morphologies primarily containing well-dispersed nanoparticles. Therefore, fracture toughness improved with increasing filler content. Finally, particle porosity was found to have no significant effect on fracture behavior for the range of silica-filled epoxy nanocomposites investigated. Lower density porous silica nanoparticles were just as effective toughening agents as higher density non-porous silica nanoparticles. Consequently, the potential exists for the use of toughened-epoxies in lightweight structural applications.

  19. Formation of porous epoxy monolith via concentrated emulsion polymerization.

    PubMed

    Wang, Jianli; Zhang, Chen; Du, Zhongjie; Xiang, Aiming; Li, Hangquan

    2008-09-15

    Step polymerization was introduced into the concentrated emulsion templating method and was illustrated with the preparation of porous epoxy monolith. A solution of diglycidyl ether of bisphenol-A (DGEBA), its curing agent low molecular weight polyamide resin, and surfactant nonyl phenol polyoxyethylene ether in 4-methyl-2-pentanon as a solvent was used as the continuous phase, an aqueous suspension of colloidal silica as the dispersed phase of the concentrated emulsion. After the continuous phase polymerized and the dispersed phase removed, a porous material is obtained. The key point in this work is to find a compromise between the rates of curing and phase separating and thus achieve a kinetic stability of the concentrated emulsion. The effects of loading of colloidal silica, the pre-curing of the epoxy precursors, and the volume fraction of the dispersed phase were systematically investigated. PMID:18571192

  20. Entrapping Enzyme in a Functionalized Nanoporous Support

    SciTech Connect

    Lei, Chenghong; Shin, Yongsoon; Liu, Jun; Ackerman, Eric J.

    2002-09-25

    The enzyme organophosphorus hydrolase (OPH) was spontaneously entrapped in carboxylethyl- or aminopropyl-functionalized mesoporous silica with rigid, uniform open-pore geometry (30 nm). This approach yielded larger amounts of protein loading and much higher specific activity of the enzyme when compared to the unfunctionalized mesoporous silica and normal porous silica with the same pore size. When OPH was incubated with the functionalized mesoporous silica, protein molecules were sequestered in or excluded from the porous material, depending on electrostatic interaction with the charged functional groups. OPH entrapped in the organically functionalized nanopores showed an exceptional high immobilization efficiency of more than 200% and enhanced stability far exceeding that of the free enzyme in solution. The combination of high protein loading, high immobilization efficiency and stability is attributed to the large and uniform pore structure, and to the optimum environment introduced by the functional groups.