Science.gov

Sample records for porphyrin dimer-faced self-assembled

  1. Intramolecular energy transfer with butadiyne-linked chlorophyll and porphyrin dimer-faced, self-assembled prisms.

    SciTech Connect

    Kelley, R. F.; Lee, S. J.; Wilson, T. M.; Nakamura, Y.; Tiede, D. M.; Osuka, A.; Hupp, J. T.; Wasielewski, M. R.; SUF-USR; Chemical Sciences and Engineering Division; Northwestern Univ.; Kyoto Univ.

    2008-01-01

    The synthesis and photophysical properties of butadiyne-linked chlorophyll and porphyrin dimers in toluene solution and in several self-assembled prismatic structures are described. The butadiyne linkage between the 20-positions of the macrocycles results in new electronic transitions polarized along the long axes of the dimers. These transitions greatly increase the ability of these dimers to absorb the solar spectrum over a broad wavelength range. Femtosecond transient absorption spectroscopy reveals the relative rate of rotation of the macrocycles around the butadiyne bond joining them. Following addition of 3-fold symmetric, metal-coordinating ligands, both macrocyclic dimers self-assemble into prismatic structures in which the dimers comprise the faces of the prisms. These structures were confirmed by small-angle X-ray scattering experiments in solution using a synchrotron source. Photoexcitation of the prismatic assemblies reveals that efficient, through-space energy transfer occurs between the macrocyclic dimers within the prisms. The distance dependence of energy transfer between the faces of the prisms was observed by varying the size of the prismatic assemblies through the use of 3-fold symmetric ligands having arms with different lengths. These results show that self-assembly of discrete macrocyclic prisms provides a useful new strategy for controlling singlet exciton flow in antenna systems for artificial photosynthesis and solar cell applications.

  2. Self-Assembly of Porphyrin J-Aggregates

    NASA Astrophysics Data System (ADS)

    Snitka, Valentinas; Rackaitis, Mindaugas; Navickaite, Gintare

    2006-03-01

    The porphyrin nanotubes were built by ionic self-assembly of two oppositely charged porphyrins in aqueous solution. The porphyrins in the acid aqueous solution self-assemble into J-aggregates, wheels or other structures. The electrostatic forces between these porphyrin blocks contribute to the formation of porphyrin aggregates in the form of nanotubes, enhance the structural stability of these nanostructures. The nanotubes were composed mixing aqueous solutions of the two porphyrins - anionic Meso-tetra(4- sulfonatophrnyl)porhine dihydrochloride (TPPS4) and cationic Meso-tetra(4-pyridyl)porphine (T4MPyP). The porphyrin nanotubes obtained are hollow structures with the length of 300 nm and diameter 50 nm. Photocatalytic porphyrins are used to reduce metal complexes from aqueous solution and to control the deposition of Au from AuHCl4 and Au nanoparticles colloid solutions onto porphyrin nanotubes. Porphyrin nanotubes are shown to reduce metal complexes and deposit the metal selectively onto the inner or outer surface of the tubes, leading to nanotube-metal composite structures.

  3. Self-Assembly of Russian Doll Concentric Porphyrin Nanorings.

    PubMed

    Rousseaux, Sophie A L; Gong, Juliane Q; Haver, Renée; Odell, Barbara; Claridge, Tim D W; Herz, Laura M; Anderson, Harry L

    2015-10-01

    Electronic communication between concentric macrocycles with wave functions that extend around their circumferences can lead to remarkable behavior, as illustrated by multiwalled carbon nanotubes and photosynthetic chlorophyll arrays. However, it is difficult to hold one π-conjugated molecular ring inside another. Here, we show that ring-in-ring complexes, consisting of a 6-porphyrin ring locked inside a 12-porphyrin ring, can be assembled by placing different metals in the two rings (zinc and aluminum). A bridging ligand with carboxylate and imidazole binding sites forms spokes between the two rings, resulting in a highly cooperative supramolecular self-assembly process. Excitation is transferred from the inner 6-ring to the outer 12-ring of this Russian doll complex within 40 ps. These complexes lead to a form of template-directed synthesis in which one nanoring promotes formation of a larger concentric homologous ring; here, the effective template is an eight-component noncovalent assembly. Russian doll templating provides a new approach to amplifying the size of a covalent nanostructure. PMID:26378660

  4. Self-Assembly of Russian Doll Concentric Porphyrin Nanorings

    PubMed Central

    2015-01-01

    Electronic communication between concentric macrocycles with wave functions that extend around their circumferences can lead to remarkable behavior, as illustrated by multiwalled carbon nanotubes and photosynthetic chlorophyll arrays. However, it is difficult to hold one π-conjugated molecular ring inside another. Here, we show that ring-in-ring complexes, consisting of a 6-porphyrin ring locked inside a 12-porphyrin ring, can be assembled by placing different metals in the two rings (zinc and aluminum). A bridging ligand with carboxylate and imidazole binding sites forms spokes between the two rings, resulting in a highly cooperative supramolecular self-assembly process. Excitation is transferred from the inner 6-ring to the outer 12-ring of this Russian doll complex within 40 ps. These complexes lead to a form of template-directed synthesis in which one nanoring promotes formation of a larger concentric homologous ring; here, the effective template is an eight-component noncovalent assembly. Russian doll templating provides a new approach to amplifying the size of a covalent nanostructure. PMID:26378660

  5. Self-assemblies of cationic porphyrins with functionalized water-soluble single-walled carbon nanotubes.

    PubMed

    Kubát, Pavel; Lang, Kamil; Jandal, Pavel; Frank, Ota; Matulková, Irena; Sýkora, Jan; Civis, Svatopluk; Hof, Martin; Kavan, Ladislav

    2009-10-01

    5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin, 5,10,15,20-tetrakis(2-N-methylpyridyl)porphyrin, and 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin form self-assemblies with single-walled carbon nanotubes (SWNT) functionalized by polyaminobenzene sulfonic acid. Both steady-state and time-resolved emission studies revealed efficient quenching of the excited singlet states of the porphyrins. Atomic force microscopy, fluorescence confocal microscopy, and fluorescence lifetime imaging allowed the visualization of individual bundles of SWNTs and the differentiation of porphyrin molecules at specific binding sites of SWNT. PMID:19908455

  6. Synthesis and photophysical studies of self-assembled multicomponent supramolecular coordination prisms bearing porphyrin faces

    PubMed Central

    Shi, Yanhui; Sánchez-Molina, Irene; Cao, Changsheng; Cook, Timothy R.; Stang, Peter J.

    2014-01-01

    Multicomponent self-assembly, wherein two unique donor precursors are combined with a single metal acceptor instead of the more common two-component assembly, can be achieved by selecting Lewis-basic sites and metal nodes that select for heteroligated coordination spheres. Platinum(II) ions show a thermodynamic preference for mixed pyridyl/carboxylate coordination environments and are thus suitable for such designs. The use of three or more unique building blocks increases the structural complexity of supramolecules. Herein, we describe the synthesis and characterization of rectangular prismatic supramolecular coordination complexes (SCCs) with two faces occupied by porphyrin molecules, motivated by the search for new multichromophore complexes with promising light-harvesting properties. These prisms are obtained from the self-assembly of a 90° Pt(II) acceptor with a meso-substituted tetrapyridylporphyrin (TPyP) and dicarboxylate ligands. The generality of this self-assembly reaction is demonstrated using five dicarboxylate ligands, two based on a rigid central phenyl ring and three alkyl-spaced variants, to form a total of five free-base and five Zn-metallated porphyrin prisms. All 10 SCCs are characterized by 31P and 1H multinuclear NMR spectroscopy and electrospray ionization mass spectrometry, confirming the structure of each self-assembly and the stoichiometry of formation. The photophysical properties of the resulting SCCs were investigated revealing that the absorption and emission properties of the free-base and metallated porphyrin prisms preserve the spectral features associated with free TPyP. PMID:24979805

  7. Synthesis and photophysical studies of self-assembled multicomponent supramolecular coordination prisms bearing porphyrin faces.

    PubMed

    Shi, Yanhui; Sánchez-Molina, Irene; Cao, Changsheng; Cook, Timothy R; Stang, Peter J

    2014-07-01

    Multicomponent self-assembly, wherein two unique donor precursors are combined with a single metal acceptor instead of the more common two-component assembly, can be achieved by selecting Lewis-basic sites and metal nodes that select for heteroligated coordination spheres. Platinum(II) ions show a thermodynamic preference for mixed pyridyl/carboxylate coordination environments and are thus suitable for such designs. The use of three or more unique building blocks increases the structural complexity of supramolecules. Herein, we describe the synthesis and characterization of rectangular prismatic supramolecular coordination complexes (SCCs) with two faces occupied by porphyrin molecules, motivated by the search for new multichromophore complexes with promising light-harvesting properties. These prisms are obtained from the self-assembly of a 90° Pt(II) acceptor with a meso-substituted tetrapyridylporphyrin (TPyP) and dicarboxylate ligands. The generality of this self-assembly reaction is demonstrated using five dicarboxylate ligands, two based on a rigid central phenyl ring and three alkyl-spaced variants, to form a total of five free-base and five Zn-metallated porphyrin prisms. All 10 SCCs are characterized by (31)P and (1)H multinuclear NMR spectroscopy and electrospray ionization mass spectrometry, confirming the structure of each self-assembly and the stoichiometry of formation. The photophysical properties of the resulting SCCs were investigated revealing that the absorption and emission properties of the free-base and metallated porphyrin prisms preserve the spectral features associated with free TPyP. PMID:24979805

  8. Proton-coupled self-assembly of a porphyrin-naphthalenediimide dyad.

    PubMed

    Tu, Siyu; Kim, Se Hye; Joseph, Jojo; Modarelli, David A; Parquette, Jon R

    2013-06-01

    The construction of an n-p heterojunction through the self-assembly of a dyad based on tetraphenylporphyrin (TPP) and 1,4,5,8-naphthalenedimide (NDI) (1) is described. Proton transfer from the lysine head group of 1 to the porphyrin ring occurs concomitantly with self-assembly into 1D nanorods in CHCl3. TEM and AFM studies showed that the nanorods are formed by the lateral and vertical fusion of multilameller vesicles into networks and hollow ribbons, respectively. These intermediate structures transitioned to nanorods over the course of 4-6 days. Time-resolved spectroscopy revealed that photoinduced charge separation occurs with rate constants that depend on the nature of the aggregation. PMID:23564748

  9. Hydrogen bonding mediated orthogonal and reversible self-assembly of porphyrin sensitizers onto TiO2 nanoparticles.

    PubMed

    Zeininger, Lukas; Lodermeyer, Fabian; Costa, Ruben D; Guldi, Dirk M; Hirsch, Andreas

    2016-07-01

    We report on the orthogonal, highly directional and reversible self-assembly of porphyrins onto TiO2 nanoparticles by means of hydrogen bonding interactions. Unifying the stable covalent surface attachment of tailored, synthesized Hamilton receptors with the advantages of a non-covalent supramolecular immobilization of porphyrin cyanurates resulted in a redox- and photo-active nanohybrid. The latter was successfully implemented into a new type of supramolecular dye-sensitized solar cells. PMID:27346702

  10. Metallochelate Coupling of Phosphorescent Pt-Porphyrins to Peptides, Proteins, and Self-Assembling Protein Nanoparticles.

    PubMed

    Dmitriev, Ruslan I; O'Donnell, Neil; Papkovsky, Dmitri B

    2016-02-17

    Specific and reversible metallochelate coupling via nitrilotriacetate (NTA) moiety is widely used for immobilization, purification, and labeling of oligo(histidine)-tagged proteins. Here, we evaluated this strategy to label various peptides and proteins with phosphorescent Pt-porphyrin derivatives bearing NTA group(s). Zn(2+) complexes were shown to have minimal effect on the photophysics of the porphyrin moiety, allowing quenched-phosphorescence sensing of O2. We complexed the PtTFPP-NTA conjugate with His-containing peptide that can facilitate intracellular loading, and observed efficient accumulation and phosphorescent staining of MEF cells. The more hydrophilic PtCP-NTA conjugate was also seen to form stable complexes with larger polypeptide constructs based on fluorescent proteins, and with subunits of protein nanoparticles, which retained their ability to self-assemble. Testing in phosphorescence lifetime based O2 sensing assays on a fluorescence reader and PLIM microscope revealed that phosphorescent metallochelate complexes perform similarly to the existing O2 probes. Thus, metallochelate coupling allows simple preparation of different types of biomaterials labeled with phosphorescent Pt-porphyrins. PMID:26704593

  11. Spin relaxation in graphene with self-assembled cobalt porphyrin molecules

    NASA Astrophysics Data System (ADS)

    Omar, S.; Gurram, M.; Vera-Marun, I. J.; Zhang, X.; Huisman, E. H.; Kaverzin, A.; Feringa, B. L.; van Wees, B. J.

    2015-09-01

    In graphene spintronics, interaction of localized magnetic moments with the electron spins paves a new way to explore the underlying spin-relaxation mechanism. A self-assembled layer of organic cobalt porphyrin (CoPP) molecules on graphene provides a desired platform for such studies via the magnetic moments of porphyrin-bound cobalt atoms. In this work a study of spin-transport properties of graphene spin-valve devices functionalized with such CoPP molecules as a function of temperature via nonlocal spin-valve and Hanle spin-precession measurements is reported. For the functionalized (molecular) devices, we observe a decrease in the spin-relaxation time τs even up to 50%, which could be an indication of enhanced spin-flip scattering of the electron spins in graphene in the presence of the molecular magnetic moments. The effect of the molecular layer is masked for low-quality samples (low mobility), possibly due to dominance of Elliot-Yafet-type spin relaxation mechanisms.

  12. Photoinduced processes in self-assembled porphyrin/perylene bisimide metallosupramolecular boxes.

    PubMed

    Indelli, M Teresa; Chiorboli, Claudio; Scandola, Franco; Iengo, Elisabetta; Osswald, Peter; Würthner, Frank

    2010-11-18

    Two new supramolecular boxes, (ZnMC)(2)(rPBI)(2) and (ZnMC)(2)(gPBI)(2), have been obtained by axial coordination of N,N'-dipyridyl-functionalized perylene bisimide (PBI) dyes to the zinc ion centers of two 2+2 porphyrin metallacycles (ZnMC = [trans,cis,cis-RuCl(2)(CO)(2)(Zn·4'-cis-DPyP)](2)). The two molecular boxes involve PBI pillars with different substituents at the bay area: the "red" PBI (rPBI = N,N'-di(4-pyridyl)-1,6,7,12-tetra(4-tert-butylphenoxy)perylene-3,4:9,10-tetracarboxylic acid bisimide) containing tert-butylphenoxy substituents and the "green" PBI (gPBI = N,N'-di(4-pyridyl)-1,7-bis(pyrrolidin-1-yl)perylene-3,4:9,10-tetracarboxylic acid bisimide) bearing pyrrolidinyl substituents. Due to the rigidity of the modules and the simultaneous formation of four pyridine-zinc bonds, these discrete adducts self-assemble quantitatively and are remarkably stable in dichloromethane solution. The photophysical behavior of the new supramolecular boxes has been studied in dichloromethane by emission spectroscopy and ultrafast absorption techniques. A different photophysical behavior is observed for the two systems. In (ZnMC)(2)(rPBI)(2), efficient electron transfer quenching of both perylene bisimide and zinc porphyrin chromophores is observed, leading to a charge separated state, PBI(-)-Zn(+), in which a perylene bisimide unit is reduced and zinc porphyrin is oxidized. In the deactivation of the perylene bisimide localized excited state, an intermediate zwitterionic charge transfer state of type PBI(-)-PBI(+) seems to play a relevant role. In (ZnMC)(2)(gPBI)(2), singlet energy transfer from the Zn porphyrin chromophores to the perylene bisimide units occurs with an efficiency of 0.7. This lower than unity value is due to a competing electron transfer quenching, leading to the charge separated state PBI(-)-Zn(+). The distinct photophysical behavior of these two supramolecular boxes is interpreted in terms of energy changes occurring upon replacement of the "red" r

  13. Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system.

    PubMed

    Liu, Kai; Kang, Yu; Ma, Guanghui; Möhwald, Helmuth; Yan, Xuehai

    2016-06-22

    A multi-scale theoretical investigation of dipeptide-porphyrin co-assembly systems has been carried out to establish such understanding, where two different types of the dipeptides, dilysine (KK(3+)) and diphenylalanine (FF(+)) are compared on tuning the porphyrin organization. Density functional theory results reveal that the electrostatic attraction between different functional groups has significantly strengthened the hydrogen bonds between them, which are considered as the driving force of the self-assembly at the molecular level. All-atom molecular dynamics (MD) simulation further indicates that the formation of the core-shell nanorods is driven and stabilized by the hydrophobic interaction between dipeptides and negatively charged porphyrin (H2TPPS(2-)), where the packed porphyrins stay inside as the core of the nanorods and the hydrophilic groups (amino- and carboxyl-groups) as the shell. With stronger hydrophobicity, FF(+) is more likely to insert into the porphyrin aggregates and build crosslinks than KK(3+). Moreover, dissipative particle dynamics (DPD) simulation suggests equilibrium morphologies with different dipeptides, where KK(3+)-H2TPPS(2-) assembled in fiber bundles, whereas FF(+)-H2TPPS(2-) assembled as microspheres, corresponding to the different packing behavior in MD simulations. The consistency of these results at different scales is discussed. The method used in this work could be extended for studying similar issues in hierarchical self-assembly of building blocks such biomaterials. PMID:27270974

  14. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications.

    PubMed

    Ng, Kenneth K; Lovell, Jonathan F; Vedadi, Ali; Hajian, Taraneh; Zheng, Gang

    2013-04-23

    The abilities to deliver and subsequently activate a therapeutic at the intended site of action are two important challenges in the synthesis of novel nanoparticles. Poor tumor permeability as a result of a dense microenvironment can impede the delivery of nanoparticles to the site of action. The design of a sub-40 nm activatable porphyrin nanodisc, based on protein-induced lipid constriction, is described. The biophotonic nanoparticle, self-assembled from aggregated porphyrin-lipid, is stabilized by an amphipathic alpha helical protein and becomes photoactive when its structure is perturbed. Enzymatic cleavage of the constricting protein leads to conversion of the particle from a disc- to a vesicle-shaped structure and provides further evidence that the apolipoprotein serves a functional role on the nanodisc. Fluorescence measurements of these nanodiscs in a detergent show that fluorescence is over 99% quenched in the intact state with a 12-fold increase in singlet oxygen generation upon disruption. Cellular fluorescence unquenching and dose-dependent phototoxicity demonstrate that these nanodiscs can be internalized and unquenched intracellularly. Finally, nanodiscs were found to display a 5-fold increase in diffusion coefficient when compared with the protein-free control ((3.5±0.1)×10(-7) vs (0.7±0.03)×10(-7) cm2 s(-1)). The ability to incorporate large amounts of photosensitizer drugs into its compact structure allows for phototherapeutic action, fluorescence diagnostic applications, and the potential to effectively deliver photosensitizers deep into poorly permeable tumors. PMID:23464857

  15. [60]Fullerene-porphyrin [n]pseudorotaxanes: self-assembly, photophysics and third-order NLO response.

    PubMed

    Đorđević, L; Marangoni, T; De Leo, F; Papagiannouli, I; Aloukos, P; Couris, S; Pavoni, E; Monti, F; Armaroli, N; Prato, M; Bonifazi, D

    2016-04-28

    By means of different spectroscopic techniques, we investigate a novel series of porphyrin derivatives (H2TPP), connected to dibenzo-24-crown-8 (DB24C8) moieties, which undergo self-assembly with different methano[60]fullerene units bearing dibenzylammonium (DBA) cations. The formation of both [2] and [3]pseudorotaxanes was proved by means of NMR, UV-Vis-NIR absorption and emission spectroscopies. With the support of molecular modelling studies, spectroscopic investigations showed the presence of a secondary interaction between the porphyrin and the C60 chromophores leading to the formation of different types of "face-to-face" assemblies. Remarkably, investigations of the non-linear optical response of these supramolecular systems showed that individual porphyrin and fullerene derivatives exhibit significantly lower second hyperpolarizability values when compared to their pseudorotaxanes functionalised counterparts. This proves that this class of supramolecular materials possesses relevant NLO response, which strongly depends on the structural arrangement of the chromophores in solution. PMID:26890806

  16. Mimics of the self-assembling chlorosomal bacteriochlorophylls: regio- and stereoselective synthesis and stereoanalysis of acyl(1-hydroxyalkyl)porphyrins.

    PubMed

    Balaban, Teodor Silviu; Bhise, Anil Dnyanoba; Bringmann, Gerhard; Bürck, Jochen; Chappaz-Gillot, Cyril; Eichhöfer, Andreas; Fenske, Dieter; Götz, Daniel C G; Knauer, Michael; Mizoguchi, Tadashi; Mössinger, Dennis; Rösner, Harald; Roussel, Christian; Schraut, Michaela; Tamiaki, Hitoshi; Vanthuyne, Nicolas

    2009-10-14

    Diacylation of copper 10,20-bis(3,5-di-tert-butylphenylporphyrin) using Friedel-Crafts conditions at short reaction times, high concentrations of catalyst, and 0-4 degrees C affords only the 3,17-diacyl-substituted porphyrins, out of the 12 possible regioisomers. At longer reaction times and higher temperatures, the 3,13-diacyl compounds are also formed, and the two isomers can be conveniently separated by normal chromatographic techniques. Monoreduction of these diketones affords in good yields the corresponding acyl(1-hydroxyalkyl)porphyrins, which after zinc metalation are mimics of the natural chlorosomal bacteriochlorophyll (BChl) d. Racemate resolution by HPLC on a variety of chiral columns was achieved and further optimized, thus permitting easy access to enantiopure porphyrins. Enantioselective reductions proved to be less effective in this respect, giving moderate yields and only 79% ee in the best case. The absolute configuration of the 3(1)-stereocenter was assigned by independent chemical and spectroscopic methods. Self-assembly of a variety of these zinc BChl d mimics proves that a collinear arrangement of the hydroxyalkyl substituent with the zinc atom and the carbonyl substituent is not a stringent requirement, since both the 3,13 and the 3,17 regioisomers self-assemble readily as the racemates. Interestingly, the separated enantiomers self-assemble less readily, as judged by absorption, fluorescence, and transmission electron microscopy studies. Circular dichroism spectra of the self-assemblies show intense Cotton effects, which are mirror-images for the two 3(1)-enantiomers, proving that the supramolecular chirality is dependent on the configuration at the 3(1)-stereocenter. Upon disruption of these self-assemblies with methanol, which competes with zinc ligation, only very weak monomeric Cotton effects are present. The favored heterochiral self-assembly process may also be encountered for the natural BChls. This touches upon the long

  17. Anisotropic organization and microscopic manipulation of self-assembling synthetic porphyrin microrods that mimic chlorosomes: bacterial light-harvesting systems.

    PubMed

    Chappaz-Gillot, Cyril; Marek, Peter L; Blaive, Bruno J; Canard, Gabriel; Bürck, Jochen; Garab, Gyozo; Hahn, Horst; Jávorfi, Tamás; Kelemen, Loránd; Krupke, Ralph; Mössinger, Dennis; Ormos, Pál; Reddy, Chilla Malla; Roussel, Christian; Steinbach, Gábor; Szabó, Milán; Ulrich, Anne S; Vanthuyne, Nicolas; Vijayaraghavan, Aravind; Zupcanova, Anita; Balaban, Teodor Silviu

    2012-01-18

    Being able to control in time and space the positioning, orientation, movement, and sense of rotation of nano- to microscale objects is currently an active research area in nanoscience, having diverse nanotechnological applications. In this paper, we demonstrate unprecedented control and maneuvering of rod-shaped or tubular nanostructures with high aspect ratios which are formed by self-assembling synthetic porphyrins. The self-assembly algorithm, encoded by appended chemical-recognition groups on the periphery of these porphyrins, is the same as the one operating for chlorosomal bacteriochlorophylls (BChl's). Chlorosomes, rod-shaped organelles with relatively long-range molecular order, are the most efficient naturally occurring light-harvesting systems. They are used by green photosynthetic bacteria to trap visible and infrared light of minute intensities even at great depths, e.g., 100 m below water surface or in volcanic vents in the absence of solar radiation. In contrast to most other natural light-harvesting systems, the chlorosomal antennae are devoid of a protein scaffold to orient the BChl's; thus, they are an attractive goal for mimicry by synthetic chemists, who are able to engineer more robust chromophores to self-assemble. Functional devices with environmentally friendly chromophores-which should be able to act as photosensitizers within hybrid solar cells, leading to high photon-to-current conversion efficiencies even under low illumination conditions-have yet to be fabricated. The orderly manner in which the BChl's and their synthetic counterparts self-assemble imparts strong diamagnetic and optical anisotropies and flow/shear characteristics to their nanostructured assemblies, allowing them to be manipulated by electrical, magnetic, or tribomechanical forces. PMID:22148684

  18. Shuttle-like supramolecular nanostructures formed by self-assembly of a porphyrin via an oil/water system

    PubMed Central

    2011-01-01

    In this paper, in terms of the concentration of an aqueous solution of a surfactant, we investigate the self-assembly behavior of a porphyrin, 5, 10, 15, 20-tetra(4-pyridyl)-21H, 23H-porphine [H2TPyP], by using an oil/water system as the medium. We find that when a chloroform solution of H2TPyP is dropwise added into an aqueous solution of cetyltrimethylammonium bromide [CTAB] with a lower concentration, a large amount of irregular nanoarchitectures, together with a small amount of well-defined shuttle-like nanostructures, hollow nanospheres, and nanotubes, could be produced. While a moderate amount of shuttle-like nanostructures accompanied by a few irregular nanoarchitectures, solid nanospheres, and nanorods are produced when a CTAB aqueous solution in moderate concentration is employed, in contrast, a great quantity of shuttle-like nanostructures together with a negligible amount of solid nanospheres, nanofibers, and irregular nanostructures are manufactured when a high-concentration CTAB aqueous solution is involved. An explanation on the basis of the molecular geometry of H2TPyP and in terms of the intermolecular π-π interactions between H2TPyP units, and hydrophobic interactions between CTAB and H2TPyP has been proposed. The investigation gives deep insights into the self-assembly behavior of porphyrins in an oil/water system and provides important clues concerning the design of appropriate porphyrins when related subjects are addressed. Our investigation suggests that an oil/aqueous system might be an efficient medium for producing unique organic-based nanostructures. PMID:21943330

  19. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif.

    PubMed

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K; Anson, Christopher E; Powell, Annie K; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N; Coles, Simon J; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G; Balaban, Teodor Silviu

    2016-01-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence. PMID:27582363

  20. Surfactant assisted self-assembly of zinc 5,10-bis (4-pyridyl)-15,20-bis (4-octadecyloxyphenyl) porphyrin into supramolecular nanoarchitectures.

    PubMed

    Gautam, Renu; Chauhan, S M S

    2014-10-01

    The surfactant assisted self-assembly (SAS) method has been used in the formation of nanocubes, nanorods and microrods from zinc 5,10-bis (4-pyridyl)-15,20-bis (4-octadecyloxyphenyl) porphyrin. By the dropwise addition of chloroform solution of the zinc porphyrin into an aqueous solution of cetyltrimethylammonium bromide (CTAB), cuboidal nanostructures are formed at the initial stage. The nanocubes are transformed into nanorods and microrods by aging under ambient conditions. The longer nanorods with well defined edges have been formed with lower concentration of porphyrin solution whereas the shorter nanorods have been formed with higher concentration of zinc porphyrin. The synergistic effect of hydrophobic interactions by the long alkyl chains substituted on the peripheral phenyl rings of porphyrin and axial coordination of pyridyl nitrogen atoms with central zinc is mainly responsible for the formation of different nanostructures. The nanostructures were characterized by UV-visible spectra, fluorescence spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), IR spectroscopy and X-ray diffraction (XRD) pattern. PMID:25175235

  1. Structural reconstruction and spontaneous formation of Fe polynuclears: a self-assembly of Fe-porphyrin coordination chains on Au(111) revealed by scanning tunneling microscopy.

    PubMed

    Wang, Yuxu; Zhou, Kun; Shi, Ziliang; Ma, Yu-Qiang

    2016-06-01

    A self-assembled Fe-porphyrin coordination chain structure on a Au(111) surface is investigated by scanning tunneling microscopy (STM), revealing structural reconstruction resulting from an alternative change of molecular orientations and spontaneous formation of uniformly sized Fe polynuclears. The alternation of the molecular orientations is ascribed to the cooperation of the attractive coordination and the intermolecular steric repulsion as elucidated by high-resolution STM observations. Furthermore, chemical control experiments are carried out to determine the number of atoms in an Fe polynuclear, suggesting a tentative Fe dinuclear-module that serves not only as a coordination center to link porphyrin units together but also as a "dangling" site for further functionalization by a guest terpyridine ligand. The chain structure and the Fe polynuclears are stable up to 320 K as revealed by real-time STM scanning. Annealing at higher temperatures converts the chain structure into a two-dimensional coordination structure. PMID:27167835

  2. A study on the interactions of cationic porphyrin with nano clay platelets in Layer-by-Layer (LbL) self assembled films

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, J.; Banik, Soma; Hussain, S. A.; Bhattacharjee, D.

    2015-07-01

    In the present communication, interaction of tetracationic porphyrin, 5,10,15,10-tetrakis (1-methyl-4-pyrindino) porphyrin tetra (p-toluenesulfonate) (TMPyP) with anionic nano clay platelets laponite has been studied in aqueous clay dispersion and Layer-by-Layer (LbL) self assembled film. Electrostatic adsorption of TMPyP molecules on clay platelets resulted in the flattenening of meso-substituent groups which led to the development of a new adsorbed band in the UV-vis absorption spectra. J-band was also formed due to overlapped organizations of organo-clay hybrid molecules in the LbL film leading to J-aggregates. Atomic force microscopic (AFM) studies gave visual evidence of this favoured organization in the monolayer LbL film.

  3. Integration of photothermal therapy and synergistic chemotherapy by a porphyrin self-assembled micelle confers chemosensitivity in triple-negative breast cancer.

    PubMed

    Su, Shishuai; Ding, Yanping; Li, Yiye; Wu, Yan; Nie, Guangjun

    2016-02-01

    Triple-negative breast cancer is a malignant cancer type with a high risk of early recurrence and distant metastasis. Unlike other breast cancers, triple-negative breast cancer is lack of targetable receptors and, therefore, patients largely receive systemic chemotherapy. However, inevitable adverse effects and acquired drug resistance severely constrain the therapeutic outcome. Here we tailor-designed a porphyrin-based micelle that was self-assembled from a hybrid amphiphilic polymer comprising polyethylene glycol, poly (d, l-lactide-co-glycolide) and porphyrin. The bilayer micelles can be simultaneously loaded with two chemotherapeutic drugs with synergistic cytotoxicity and distinct physiochemical properties, forming a uniform and spherical nanostructure. The drug-loaded micelles showed a tendency to accumulate in the tumor and can be internalized by tumor cells for drug release in acidic organelles. Under near-infrared laser irradiation, high density of self-quenched porphyrins in the hydrophobic layer absorbed light efficiently and converted into an excited state, leading to the release of sufficient heat for photothermal therapy. The integration of localized photothermal effect and synergistic chemotherapy conferred great chemosensitivity to cancer cells and achieved tumor regression using about 1/10 of traditional drug dosage. As a result, chemotherapy-associated adverse effects were successfully avoided. Our present study established a novel porphyrin-based nanoplatform with photothermal activity and expanded drug loading capacity, providing new opportunities for challenging conventional chemotherapy and fighting against stubborn triple-negative breast cancer. PMID:26708642

  4. Self-assembly into spheres of a hybrid diphenylalanine-porphyrin: increased fluorescence lifetime and conserved electronic properties.

    PubMed

    Charalambidis, Georgios; Kasotakis, Emmanouil; Lazarides, Theodore; Mitraki, Anna; Coutsolelos, Athanassios G

    2011-06-20

    A series of protected phenylalanine and diphenylalanine derivatives have been coupled through a peptide bond to a monoaminoporphyrin to form new materials. A comparative study in solution and in the solid state has been performed and confirmed new and interesting properties for the self-assembled hybrid materials while conserving the electronic properties of the chromophore. Thus, they are powerful candidates for use in dye-sensitized solar cells. PMID:21618629

  5. Hydrogen Bond-Assisted Supramolecular Self-Assembly of Doubly Discotic Supermolecules Based on Porphyrin and Triphenylene

    SciTech Connect

    Miao, J.; Zhu, L

    2010-01-01

    Hydrogen bonding is a powerful driving force for the supramolecular self-assembly of discotic mesogens, and molecular shape also plays an important role in such systems. To study these effects, doubly discotic supermolecules have been synthesized by linking a meso-tetraphenylporphine-4,4{prime},4{double_prime},4(triple prime)-tetracarboxylic acid (Py) core with four triphenylenes (Tp) arms via either amide or ester bonds. The spacer length between the Py core and Tp disks was C6 and C10, and the alkyl arm length in the Tp disks was C5 and C12, respectively. Compared to the ester-linked Py(Tp){sub 4} supermolecules, the amide-linked samples exhibited rich crystalline and liquid-crystalline phases, suggesting that the intracolumnar hydrogen-bonding among trans amide bonds was the primary driving force for the self-assembly. X-ray diffraction (XRD) was used to understand the supramolecular self-assembly of the amide-linked Py(Tp){sub 4} doubly discotic supermolecules. When the spacer length was no shorter than or similar to the triphenylene alkyl arm length, a rectangular boardlike molecular shape was adopted and thus lamellar structures were obtained. When the spacer length was much shorter than the triphenylene alkyl arms, an ellipsoidal overall molecular shape resulted, and thus a regular columnar phase was obtained. From this study, we speculated that hydrogen-bond-induced microphase separation between moieties with different electron affinities in doubly discotic supermolecules may be useful for the practical applications of organic electronics.

  6. Interfacial self-assembly of water-soluble cationic porphyrins for the reduction of oxygen to water.

    PubMed

    Olaya, Astrid J; Schaming, Delphine; Brevet, Pierre-Francois; Nagatani, Hirohisa; Xu, Hai-Jun; Meyer, Michel; Girault, Hubert H

    2012-06-25

    Meet at the border: Assembly of the water-soluble cobalt tetrakis(N-methylpyridinium-4-yl)porphyrin [CoTMPyP](4+) at soft interfaces is enhanced and stabilized by its interfacial interaction with the lipophilic anion (C(6)F(5))(4)B(-). The supramolecular structure thus formed provides excellent catalytic activity in the four-electron reduction of oxygen. PMID:22615211

  7. Honeycomb-patterned fluorescent films fabricated by self-assembly of surfactant-assisted porphyrin/polymer composites.

    PubMed

    Fan, Dawei; Xia, Xiulong; Ma, Hongmin; Du, Bin; Wei, Qin

    2013-07-15

    A novel honeycomb-patterned fluorescent film was fabricated by self-assembly of polystyrene (PS)/poly(ethylene glycol) (PEG)/meso-tetra (N-methy-4-pyridyl) porphinetetratosylate (TMPyP) blend system, at the assistance of diisooctyl sodium sulfosuccinate (AOT). Ordered microporous PS/PEG/TMPyP/AOT blend films were prepared by the breath figure method. The condensed water droplets acted as the sacrificial templates, which were stabilized by strong hygroscopic PEG and amphiphilic surfactant AOT. Relative humidity and evaporation conditions considered as critical factors were investigated to control the morphologies of the films. The introduction of surfactant AOT greatly promoted the dissolution of the TMPyP in PS/PEG polymer solution according to the UV-vis spectra data, which led to the fluorescence enhancement of ordered porous blend films. The unique "internal ring" structures were formed during phase separation and confirmed by scanning electron microscopy images and fluorescence micrographs. PMID:23660019

  8. Structure vs. excitonic transitions in self-assembled porphyrin nanotubes and their effect on light absorption and scattering.

    PubMed

    Arteaga, Oriol; Canillas, Adolf; El-Hachemi, Zoubir; Crusats, Joaquim; Ribó, Josep M

    2015-12-28

    The optical properties of diprotonated meso-tetrakis(4-sulphonatophenyl)porphyrin (TPPS(4)) J-aggregates of elongated thin particles (nanotubes in solution and ribbons when deposited on solid interfaces) are studied by different polarimetric techniques. The selective light extinction in these structures, which depends on the alignment of the nanoparticle with respect to the polarization of light, is contributed by excitonic absorption bands and by resonance light scattering. The optical response as a function of the polarization of light is complex because, although the quasi-one-dimensional structure confines the local fields along the nanotube axis, there are two orthogonal excitonic bands, of H- and J-character, that can work in favor of or against the field confinement. Results suggest that resonance light scattering is the dominant effect in solid state preparations, i.e. in collective groups (bundles) of ribbons but in diluted solutions, i.e. with isolated nanotubes, the absorption at the excitonic transitions remains dominant and linear dichroism spectra can be a direct probe of the exciton orientations. Therefore, by analyzing scattering and absorption data we can determine the alignment of the excitonic bands within the nanoparticle, i.e. of the orientation of the basic 2D porphyrin architecture in the nanoparticle. This is a necessary first step for understanding the directions of energy transport, charge polarization and non-linear optical properties in these materials. PMID:26584333

  9. Structure vs. excitonic transitions in self-assembled porphyrin nanotubes and their effect on light absorption and scattering

    NASA Astrophysics Data System (ADS)

    Arteaga, Oriol; Canillas, Adolf; El-Hachemi, Zoubir; Crusats, Joaquim; Ribó, Josep M.

    2015-12-01

    The optical properties of diprotonated meso-tetrakis(4-sulphonatophenyl)porphyrin (TPPS4) J-aggregates of elongated thin particles (nanotubes in solution and ribbons when deposited on solid interfaces) are studied by different polarimetric techniques. The selective light extinction in these structures, which depends on the alignment of the nanoparticle with respect to the polarization of light, is contributed by excitonic absorption bands and by resonance light scattering. The optical response as a function of the polarization of light is complex because, although the quasi-one-dimensional structure confines the local fields along the nanotube axis, there are two orthogonal excitonic bands, of H- and J-character, that can work in favor of or against the field confinement. Results suggest that resonance light scattering is the dominant effect in solid state preparations, i.e. in collective groups (bundles) of ribbons but in diluted solutions, i.e. with isolated nanotubes, the absorption at the excitonic transitions remains dominant and linear dichroism spectra can be a direct probe of the exciton orientations. Therefore, by analyzing scattering and absorption data we can determine the alignment of the excitonic bands within the nanoparticle, i.e. of the orientation of the basic 2D porphyrin architecture in the nanoparticle. This is a necessary first step for understanding the directions of energy transport, charge polarization and non-linear optical properties in these materials.The optical properties of diprotonated meso-tetrakis(4-sulphonatophenyl)porphyrin (TPPS4) J-aggregates of elongated thin particles (nanotubes in solution and ribbons when deposited on solid interfaces) are studied by different polarimetric techniques. The selective light extinction in these structures, which depends on the alignment of the nanoparticle with respect to the polarization of light, is contributed by excitonic absorption bands and by resonance light scattering. The optical

  10. Self-assembling of C60-imidazole and C60-pyridine adducts in the Langmuir and Langmuir-Blodgett films via complex formation with water-soluble zinc porphyrins

    NASA Astrophysics Data System (ADS)

    Marczak, Renata; Noworyta, Krzysztof; Kutner, Wlodzimierz; Gadde, Suresh; D'Souza, Francis

    2003-10-01

    The C60-pyridine, C60py, and C60-imidazole, C60im, adducts were found to self-assemble in films floating onto aqueous solutions of zinc tetrakis (N-methylpyridinium)porphyrin cation, Zn(TMPyP), or zinc tetrakis (4-sulfonatophenyl)porphyrin anion, Zn(TPPS). This self assembling was due to axial ligation of the C60 adducts (acceptors) by Zn porphyrins (donors), which lead to the formation of relatively stable donor-acceptor dyads in the water-air interfaces. The films were compressed in a Langmuir trough and characterized by isotherms of surface pressure vs. area per molecule as well as by the Brewster angle microscopy imaging. All systems formed stable aggregated Langmuir films of the "expanded liquid" type. Extensive compression of the films resulted in two-dimensional phase transitions. The area per molecule at infinite dilution of the adducts in films increased in the order: water<0.1 mM Zn(TPPS)<0.1 mM Zn(TPMyP). Comparison of the determined and calculated values of area per molecule indicated that orientation of porphyrins in the complexes was parallel with respect to the interface plane. The Langmuir films were transferred, by using the Langmuir-Blodgett technique, onto quartz slides. The UV-vis spectroscopic study of these films revealed that Zn porphyrins were transferred together with the C60 adducts and that the transfer efficiency increased in the order: C60py-Zn(TPPS)

  11. Study on a series of novel self-assembly supramolecular solar cells based on a double-layer structured chromophore of Zn-porphyrins.

    PubMed

    Han, Fa-Ming; Yang, Jiong-Yuan; Zhe, Ying; Chen, Ji-Wen; Liu, Jia-Cheng; Li, Ren-Zhi; Jin, Xiao-Jie; Zhao, Guo-Hui

    2016-06-01

    We prepared in this work an anchoring porphyrin and a series of hat-porphyrins. The zinc atom of the hat-porphyrins can be coordinated axially with the pyridine moiety of the anchoring porphyrin which is anchored on the titania surface by a carboxyl group. The structures of the assemblies were confirmed using computational calculations, transmission electron microscopy (TEM) and energy dispersive spectrometry (EDS). Solar cell devices of the monomer anchoring porphyrin and its assemblies were fabricated and the photovoltaic performances were measured under standard AM 1.5 sunlight irradiance. We found that the assembly devices showed higher JSC and lower VOC than that of the monomer anchoring porphyrin device. However, the comprehensive influence of JSC and VOC led to an enhancement in the solar-to-electric power-conversion efficiency (PCE) of the assemblies. We also studied the variation of JSC and VOC using electronic absorption and emission spectroscopy, charge extraction measurements, transient photovoltage decay measurements and electrochemical impedance spectroscopy. PMID:27151184

  12. Porphyrins

    NASA Astrophysics Data System (ADS)

    Gotelli, George R.; Wall, Jeffrey H.; Kabra, Pokar M.; Marton, Laurence J.

    Historically the term porphyria has been used since it was coined in 1871 to describe a purple colored material extracted from pathological feces (1). The first case of porphyria was reported in 1874, (2, 3), but until the 1930 Nobel Prize winning work of Hans Fischer on the synthesis of protoporphyrin, there was little more than academic interest in porphyrin analysis. During the forty years between 1930 and 1970, the biosynthetic pathways leading to the formation of heme, and the details of porphyrin metabolism, were elucidated. During this time quantitative methods for porphyrins in biological fluids used complex and laborious solvent extraction techniques, requiring large sample volumes and hours to complete. We now know that these methods only partially separated the complex mixture of porphyrins found in biological fluids. These solvent extraction procedures fractionated the porphyrins into two broad groups, uroporphyrins (octacarboxylic) and coproporphyrins (tetracarboxylic). However, intermediate carboxylated porphyrin containing 2, 3, 5, 6, and 7 carboxyl groups are now known to exist in normal and pathlogical excreta, which were not differentiated, but which were included in the two broad uroporphyrin and copropophyrin groups.

  13. Self-assembling of Zn porphyrins on a (110) face of rutile TiO2-The anchoring role of carboxyl groups

    NASA Astrophysics Data System (ADS)

    Zajac, Lukasz; Olszowski, Piotr; Godlewski, Szymon; Bodek, Lukasz; Such, Bartosz; Jöhr, Res; Pawlak, Remy; Hinaut, Antoine; Glatzel, Thilo; Meyer, Ernst; Szymonski, Marek

    2016-08-01

    The ordering of zinc containing porphyrin molecules on surface of rutile TiO2(110)-(1×1) has been investigated using scanning tunneling microscopy (STM) in ultra-high vacuum at room temperature. It is demonstrated that a carboxylic group (COOH) has a profound impact on the immobilization of the molecules. At coverages below 0.1 monolayer only molecules equipped with the group COOH could be anchored to the surface and imaged with STM. At higher coverage both species, with and without the carboxyl substituent, assemble into ordered structures, forming complete monolayers. It is found, however, that the rhomboid unit cells of these structures exhibit differences in size.

  14. Star-shaped poly(L-lactide)-b-poly(lactobionamidoethyl methacrylate) with porphyrin core: synthesis, self-assembly, singlet oxygen research and recognition properties.

    PubMed

    Dai, Xiao-Hui; Wang, Zhi-Ming; Pan, Jian-Ming; Yuan, Si-Song; Yan, Yong-sheng; Liu, Dong-Ming; Sun, Lin

    2014-01-01

    Star-shaped porphyrin-cored poly(L-lactide)-b-poly(lactobionamidoethyl methacrylate) block copolymers (SPPLA-b-PLAMA) were synthesized via RAFT of unprotected Lactobionamidoethyl methacrylate (LAMA) in 1-methyl-2-pyrrolidinone (NMP) solution at 70 °C. The structure of this as-synthesized SPPLA-b-PLAMA block copolymer was thoroughly studied by nuclear magnetic resonance spectroscopy, gel permeation chromatography (GPC), and Fourier transforms infrared. Moreover, under the irradiation, such SPPLA-b-PGAMA copolymer exhibits efficient singlet oxygen generation (0.17) and indicates high fluorescence quantum yields (0.20). Notably, with UV-vis investigation, SPPLA-b-PLAMA showed a very specific recognition with RCA120 lectin. This will not only provide potentially prophyrin-cored star-shaped SPPLA-b-PLAMA block copolymers for targeted photodynamic therapy, but also improve the physical, biodegradation, biocompatibility properties of PLA-based biomaterials. PMID:25138060

  15. Porphyrins

    DOEpatents

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.

    1996-11-05

    The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided. The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.

  16. Porphyrins

    DOEpatents

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.

    1996-01-01

    The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided. The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.

  17. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  18. Photovoltaic self-assembly.

    SciTech Connect

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  19. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  20. Synthesis of porphyrin nanostructures

    DOEpatents

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  1. Self-assembled molecular rafts at liquid|liquid interfaces for four-electron oxygen reduction.

    PubMed

    Olaya, Astrid J; Schaming, Delphine; Brevet, Pierre-Francois; Nagatani, Hirohisa; Zimmermann, Tomas; Vanicek, Jiri; Xu, Hai-Jun; Gros, Claude P; Barbe, Jean-Michel; Girault, Hubert H

    2012-01-11

    The self-assembly of the oppositely charged water-soluble porphyrins, cobalt tetramethylpyridinium porphyrin (CoTMPyP(4+)) and cobalt tetrasulphonatophenyl porphyrin (CoTPPS(4-)), at the interface with an organic solvent to form molecular "rafts", provides an excellent catalyst to perform the interfacial four-electron reduction of oxygen by lipophilic electron donors such as tetrathiafulvalene (TTF). The catalytic activity and selectivity of the self-assembled catalyst toward the four-electron pathway was found to be as good as that of the Pacman type cofacial cobalt porphyrins. The assembly has been characterized by UV-visible spectroscopy, Surface Second Harmonic Generation, and Scanning Electron Microscopy. Density functional theory calculations confirm the possibility of formation of the catalytic CoTMPyP(4+)/ CoTPPS(4-) complex and its capability to bind oxygen. PMID:22107335

  2. Onset of self-assembly

    SciTech Connect

    Chitanvis, S.M.

    1998-02-01

    We have formulated a theory of self-assembly based on the notion of local gauge invariance at the mesoscale. Local gauge invariance at the mesoscale generates the required long-range entropic forces responsible for self-assembly in binary systems. Our theory was applied to study the onset of mesostructure formation above a critical temperature in estane, a diblock copolymer. We used diagrammatic methods to transcend the Gaussian approximation and obtain a correlation length {xi}{approximately}(c{minus}c{sup {asterisk}}){sup {minus}{gamma}}, where c{sup {asterisk}} is the minimum concentration below which self-assembly is impossible, c is the current concentration, and {gamma} was found numerically to be fairly close to 2/3. The renormalized diffusion constant vanishes as the critical concentration is approached, indicating the occurrence of critical slowing down, while the correlation function remains finite at the transition point. {copyright} {ital 1998} {ital The American Physical Society}

  3. Self-assembly via microfluidics

    PubMed Central

    Wang, Lei

    2015-01-01

    The self-assembly of amphiphilic building blocks has attracted extensive interest in myriad fields in recent years, due to their great potential in the nanoscale design of functional hybrid materials. Microfluidic techniques provide an intriguing method to control kinetic aspects of the self-assembly of molecular amphiphiles by the facile adjustment of the hydrodynamics of the fluids. Up to now, there have been several reports about one-step direct self-assembly of different building blocks with versatile and multi-shape products without templates, which demonstrated the advantages of microfluidics. These assemblies with different morphologies have great applications in various areas such as cancer therapy, micromotor fabrication, and controlled drug delivery. PMID:26486277

  4. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    DOEpatents

    Lindsey, Jonathan S.; Chinnasamy, Muthiah; Fan, Dazhong

    2009-12-15

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  5. Self-assembling amphiphilic peptides†

    PubMed Central

    Dehsorkhi, Ashkan; Castelletto, Valeria; Hamley, Ian W

    2014-01-01

    The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined. © 2014 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons, Ltd. PMID:24729276

  6. Self-assembly-driven nematization.

    PubMed

    Nguyen, Khanh Thuy; Sciortino, Francesco; De Michele, Cristiano

    2014-04-29

    The anisotropy of attractive interactions between particles can favor, through a self-assembly process, the formation of linear semi-flexible chains. In the appropriate temperatures and concentration ranges, the growing aspect ratio of the aggregates can induce formation of a nematic phase, as recently experimentally observed in several biologically relevant systems. We present here a numerical study of the isotropic-nematic phase boundary for a model of bifunctional polymerizing hard cylinders, to provide an accurate benchmark for recent theoretical approaches and to assess their ability to capture the coupling between self-assembly and orientational ordering. The comparison indicates the importance of properly modeling excluded volume and orientational entropy and provides a quantitative confirmation of some theoretical predictions. PMID:24701976

  7. Multifunctional self-assembled monolayers

    SciTech Connect

    Zawodzinski, T.; Bar, G.; Rubin, S.; Uribe, F.; Ferrais, J.

    1996-06-01

    This is the final report of at three year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The specific goals of this research project were threefold: to develop multifunctional self-assembled monolayers, to understand the role of monolayer structure on the functioning of such systems, and to apply this knowledge to the development of electrochemical enzyme sensors. An array of molecules that can be used to attach electrochemically active biomolecules to gold surfaces has been synthesized. Several members of a class of electroactive compounds have been characterized and the factors controlling surface modification are beginning to be characterized. Enzymes have been attached to self-assembled molecules arranged on the gold surface, a critical step toward the ultimate goal of this project. Several alternative enzyme attachment strategies to achieve robust enzyme- modified surfaces have been explored. Several means of juxtaposing enzymes and mediators, electroactive compounds through which the enzyme can exchange electrons with the electrode surface, have also been investigated. Finally, the development of sensitive biosensors based on films loaded with nanoscale-supported gold particles that have surface modified with the self-assembled enzyme and mediator have been explored.

  8. Self-Organized Porphyrinic Materials

    PubMed Central

    Drain, Charles Michael; Varotto, Alessandro; Radivojevic, Ivana

    2009-01-01

    The self-assembly and self-organization of porphyrins and related macrocycles enables the bottom-up fabrication of photonic materials for fundamental studies of the photophysics of these materials and for diverse applications. This rapidly developing field encompasses a broad range of disciplines including molecular design and synthesis, materials formation and characterization, and the design and evaluation of devices. Since the self-assembly of porphyrins by electrostatic interactions in the late 1980s to the present, there has been an ever increasing degree of sophistication in the design of porphyrins that self-assemble into discrete arrays or self-organize into polymeric systems. These strategies exploit ionic interactions, hydrogen bonding, coordination chemistry, and dispersion forces to form supramolecular systems with varying degrees of hierarchical order. This review concentrates on the methods to form supramolecular porphyrinic systems by intermolecular interactions other than coordination chemistry, the characterization and properties of these photonic materials, and the prospects for using these in devices. The review is heuristically organized by the predominant intermolecular interactions used and emphasizes how the organization affects properties and potential performance in devices. PMID:19253946

  9. A self-assembled ionophore

    NASA Astrophysics Data System (ADS)

    Tirumala, Sampath K.

    1997-11-01

    Ionophores are compounds that bind and transport ions. Ion binding and transport are fundamental to many biological and chemical processes. In this thesis we detail the structural characterization and cation binding properties of a self-assembled ionophore built from an isoguanosine (isoG) derivative, 5sp'-t-butyldimethylsilyl-2sp',3sp'-isopropylidene isoG 30. We begin with a summary of the themes that facilitate ionophore design and the definitions of "self-assembly" and "self-assembled ionophore" in Chapter 1. In Chapter 2, we describe the structural characterization of the isoG 30 self-assembly. IsoG possesses complementary hydrogen bond donor and acceptor sites suitable to form a Csb4-symmetric tetramer, (isoG)sb4 51, that is stable even in high dielectric organic solvents such as CDsb3CN and dsb6-acetone. The isoG tetramer 51 has been characterized by vapor phase osmometry, UV spectroscopy, and by 1D and 2D NMR spectroscopy. The isoG tetramer 51 organizes by hydrogen bonding between the Watson-Crick face of one isoG base and the complementary bottom edge of another purine. The tetramer 51 is stabilized by an inner and outer ring of hydrogen bonds. The inner ring forms between the imino NH1 proton of one monomer and the C2 carbonyl oxygen of an adjacent monomer, while the outer ring is made up of four NH6-N3 hydrogen bonds. The isoG tetramer 51 is thermodynamically stable, with an equilibrium constant (Ksba) of ca. 10sp9-10sp{10} Msp{-3} at room temperature, and a DeltaGsp° of tetramer formation of -12.5 kcal molsp{-1} in dsb6-acetone at 25sp°C. The van't Hoff plots indicated that the thermodynamic parameters for tetramer formation were DeltaHsp° = -18.2 ± 0.87 kcal molsp{-1} and DeltaSsp°sb{298} = -19.1 ± 5.45 eu. In Chapter 3, we describe the cation binding properties of isoG tetramer 51. The isoG tetramer 51 has a central cavity, containing four oxygen atoms, that is suitable for cation coordination. Depending on the cation, the resulting iso

  10. Self-assembling magnetic "snakes"

    SciTech Connect

    2010-01-01

    Nickel particles float peacefully in a liquid medium until a giant snake seems to swim by and snatch several particles up, adding to its own mass. The self-assembled "snakes" act like biological systems, but they are not alive and are driven by a magnetic field. The research may someday offer some insight into the organization of life itself. Read more at Wired: http://www.wired.com/wiredscience/2009/03/snakes/ Research and video by Alex Snezhko and Igor Aronson, Argonne National Laboratory.

  11. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  12. Self-assembled controllable microswimmers

    NASA Astrophysics Data System (ADS)

    Grosjean, Galien; Lagubeau, Guillaume; Darras, Alexis; Lumay, Geoffroy; Hubert, Maxime; Vandewalle, Nicolas

    2015-11-01

    Because they cause a deformation of the interface, floating particles interact. In particular, identical particles attract each other. To counter this attraction, particles possessing a large magnetic moment m-> are used. When m-> is perpendicular to the surface, dipole-dipole interaction is repulsive. This competition of forces can lead to the spontaneous formation of organized structures. By using submillimetric steel spheres for which m-> ~ B-> , interdistances in the system can be precisely tuned. Here, we deform these self-assemblies by adding a horizontal contribution m-> to the magnetic moment. Time reversal symmetry is broken in the system, leading to locomotion at low Reynolds number. Moreover, swimming direction depends on the orientation of field, meaning that swimming trajectories can be finely controlled. A model allows to understand the breaking of symmetry, while a study of the vibration modes gives further informations on the dynamics of this sytem. Because this system forms by self-assembly, it allows miniaturization with applications such as cargo transport or solvent flows. It is highly versatile, being composed of simple passive particles and controlled by magnetic fields.

  13. Self-assembling RNA square

    SciTech Connect

    Dibrov, Sergey M.; McLean, Jaime; Parsons, Jerod; Hermann, Thomas

    2011-12-22

    The three-dimensional structures of noncoding RNA molecules reveal recurring architectural motifs that have been exploited for the design of artificial RNA nanomaterials. Programmed assembly of RNA nanoobjects from autonomously folding tetraloop-receptor complexes as well as junction motifs has been achieved previously through sequence-directed hybridization of complex sets of long oligonucleotides. Due to size and complexity, structural characterization of artificial RNA nanoobjects has been limited to low-resolution microscopy studies. Here we present the design, construction, and crystal structure determination at 2.2 {angstrom} of the smallest yet square-shaped nanoobject made entirely of double-stranded RNA. The RNA square is comprised of 100 residues and self-assembles from four copies each of two oligonucleotides of 10 and 15 bases length. Despite the high symmetry on the level of secondary structure, the three-dimensional architecture of the square is asymmetric, with all four corners adopting distinct folding patterns. We demonstrate the programmed self-assembly of RNA squares from complex mixtures of corner units and establish a concept to exploit the RNA square as a combinatorial nanoscale platform.

  14. Improving Photocatalytic Activity through Electrostatic Self-Assembly: Polyelectrolytes as Tool for Solar Energy Conversion?

    NASA Astrophysics Data System (ADS)

    Groehn, Franziska

    2015-03-01

    With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.

  15. Self-assembled nanomaterials for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  16. Self-Assembly: How Nature Builds

    ERIC Educational Resources Information Center

    Jones, M. Gail; Falvo, Michael R.; Broadwell, Bethany; Dotger, Sharon

    2006-01-01

    Self-assembly or spontaneous assembly is a process in which materials build themselves without assistance. This process plays a central role in the construction of biological structures and materials such as cells, viruses, and bone, and also in abiotic processes like phase transitions and crystal formation. The principles of self-assembly help…

  17. Self-assembled nanomaterials for photoacoustic imaging.

    PubMed

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging. PMID:26757620

  18. Protein self-assembly via supramolecular strategies.

    PubMed

    Bai, Yushi; Luo, Quan; Liu, Junqiu

    2016-05-21

    Proteins, as the elemental basis of living organisms, mostly execute their biological tasks in the form of supramolecular self-assemblies with subtle architectures, dynamic interactions and versatile functionalities. Inspired by the structural harmony and functional beauty of natural protein self-assemblies to fabricate sophisticated yet highly ordered protein superstructures represents an adventure in the pursuit of nature's supreme wisdom. In this review, we focus on building protein self-assembly systems based on supramolecular strategies and classify recent progress by the types of utilized supramolecular driving forces. Especially, the design strategy, structure control and the thermodynamic/kinetic regulation of the self-assemblies, which will in turn provide insights into the natural biological self-assembly mechanism, are highlighted. In addition, recently, this research field is starting to extend its interest beyond constructing complex morphologies towards the potential applications of the self-assembly systems; several attempts to design functional protein complexes are also discussed. As such, we hope that this review will provide a panoramic sketch of the field and draw a roadmap towards the ultimate construction of advanced protein self-assemblies that even can serve as analogues of their natural counterparts. PMID:27080059

  19. Adaptive soft molecular self-assemblies.

    PubMed

    Wang, Andong; Shi, Wenyue; Huang, Jianbin; Yan, Yun

    2016-01-14

    Adaptive molecular self-assemblies provide possibility of constructing smart and functional materials in a non-covalent bottom-up manner. Exploiting the intrinsic properties of responsiveness of non-covalent interactions, a great number of fancy self-assemblies have been achieved. In this review, we try to highlight the recent advances in this field. The following contents are focused: (1) environmental adaptiveness, including smart self-assemblies adaptive to pH, temperature, pressure, and moisture; (2) special chemical adaptiveness, including nanostructures adaptive to important chemicals, such as enzymes, CO2, metal ions, redox agents, explosives, biomolecules; (3) field adaptiveness, including self-assembled materials that are capable of adapting to external fields such as magnetic field, electric field, light irradiation, and shear forces. PMID:26509717

  20. Directed Self-Assembly of Nanodispersions

    SciTech Connect

    Furst, Eric M

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  1. From Solvolysis to Self-Assembly*

    PubMed Central

    Stang, Peter J.

    2009-01-01

    My sojourn from classical physical-organic chemistry and solvolysis to self-assembly and supramolecular chemistry, over the last forty years, is described. My contributions to unsaturated reactive intermediates, namely vinyl cations and unsaturated carbenes, along with my decade long involvement with polyvalent iodine chemistry, especially alkynyliodonium salts, as well as my more recent research with metal-ligand, coordination driven and directed self-assembly of finite supramolecular ensembles are discussed. PMID:19111062

  2. Silk Reconstitution Disrupts Fibroin Self-Assembly.

    PubMed

    Koebley, Sean R; Thorpe, Daniel; Pang, Pei; Chrisochoides, Panos; Greving, Imke; Vollrath, Fritz; Schniepp, Hannes C

    2015-09-14

    Using atomic force microscopy, we present the first molecular-scale comparison of two of the most important silk dopes, native (NSF) and reconstituted (RSF) silkworm fibroin. We found that both systems depended on shear to show self-assembly. Significant differences in the nature of self-assembly between NSF and RSF were shown. In the highest studied concentration of 1000 mg/L, NSF exhibited assembly into 20-30 nm-wide nanofibrils closely resembling the surface structures found in natural silk fibers. RSF, in contrast, showed no self-assembly whatsoever at the same concentration, which suggests that the reconstitution process significantly disrupts silk's inherent self-assembly capability. At lower concentrations, both RSF and NSF formed fibrils under shear, apparently denatured by the substrate. Using image analysis, we quantified the properties of these self-assembled fibrils as a function of concentration and found low-concentration fibrils of NSF to form larger continuous structures than those of RSF, further supporting NSF's superior self-assembly capabilities. PMID:26284914

  3. Directed self-assembly of performance materials

    NASA Astrophysics Data System (ADS)

    Nealey, Paul

    Directed self-assembly (DSA) is a promising strategy for high-volume cost-effective manufacturing at the nanoscale. Over the past decades, manufacturing techniques have been developed with such remarkable efficiency that it is now possible to engineer complex systems of heterogeneous materials at the scale of a few tens of nanometers. Further evolution of these techniques, however, is faced with difficult challenges not only in feasibility of implementation at scales of 10 nm and below, but also in prohibitively high capital equipment costs. Materials that self-assemble, on the other hand, spontaneously form structures at the mesoscale, but the micrometer areas or volumes over which the materials self-assemble with adequate perfection in structure is incommensurate with the macroscopic dimensions of working devices and systems of devices of industrial relevance. Directed Self-Assembly (DSA) refers to the integration of self-assembling materials with traditional manufacturing processes. Here we will discuss DSA of block copolymers to revolutionize sub 10 nm lithography and the manufacture of integrated circuits and storage media, DSA of ex-situ synthesized nanoparticles for applications in nanophotonics, and DSA of liquid crystals for advanced optics.

  4. Clay induced aggregation of a tetra-cationic metalloporphyrin in Layer by Layer self assembled film

    NASA Astrophysics Data System (ADS)

    Banik, Soma; Bhattacharjee, J.; Hussain, S. A.; Bhattacharjee, D.

    2015-12-01

    Porphyrins have a general tendency to form aggregates in ultrathin films. Also electrostatic adsorption of cationic porphyrins onto anionic nano clay platelets results in the flattening of porphyrin moieties. The flattening is evidenced by the red-shifting of Soret band with respect to the aqueous solution. In the present communication, we have studied the clay induced aggregation behaviour of a tetra-cationic metalloporphyrin Manganese (III) 5, 10, 15, 20-tetra (4 pyridyl)-21 H, 23 H-porphine chloride tetrakis (methochloride) (MnTMPyP) in Layer-by-Layer (LbL) self assembled film. The adsorption of dye molecules onto nano clay platelets resulted in the flattening of the meso substituent groups of the dye chromophore. In Layer-by-Layer ultrathin film, the flattened porphyrin molecules tagged nano clay platelets were further associated to form porphyrin aggregates. This has been clearly demonstrated from the UV-vis absorption spectroscopic studies. Atomic Force Microscopic (AFM) studies gave visual evidence of the association of organo-clay hybrid molecules in the LbL film.

  5. Porous one-dimensional nanostructures through confined cooperative self-assembly.

    PubMed

    Bai, Feng; Sun, Zaicheng; Wu, Huimeng; Haddad, Raid E; Coker, Eric N; Huang, Jian Yu; Rodriguez, Mark A; Fan, Hongyou

    2011-12-14

    We report a simple confined self-assembly process to synthesize nanoporous one-dimensional photoactive nanostructures. Through surfactant-assisted cooperative interactions (e.g., π-π stacking, ligand coordination, and so forth) of the macrocyclic building block, zinc meso-tetra (4-pyridyl) porphyrin (ZnTPyP), self-assembled ZnTPyP nanowires and nanorods with controlled diameters and aspect ratios are prepared. Electron microscopy characterization in combination with X-ray diffraction and gas sorption experiments indicate that these materials exhibit stable single-crystalline and high surface area nanoporous frameworks with well-defined external morphology. Optical characterizations using UV-vis spectroscopy and fluorescence imaging and spectroscopy show enhanced collective optical properties over the individual chromophores (ZnTPyP), favorable for exciton formation and transport. PMID:22082076

  6. Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study

    NASA Astrophysics Data System (ADS)

    El Garah, M.; Santana Bonilla, A.; Ciesielski, A.; Gualandi, A.; Mengozzi, L.; Fiorani, A.; Iurlo, M.; Marcaccio, M.; Gutierrez, R.; Rapino, S.; Calvaresi, M.; Zerbetto, F.; Cuniberti, G.; Cozzi, P. G.; Paolucci, F.; Samorì, P.

    2016-07-01

    Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to control their organization at the supramolecular level. Such a tuning is particularly important when applied to sophisticated molecules combining functional units which possess specific electronic properties, such as electron/energy transfer, in order to develop multifunctional systems. Here we have synthesized two tetraferrocene-porphyrin derivatives that by design can selectively self-assemble at the graphite/liquid interface into either face-on or edge-on monolayer-thick architectures. The former supramolecular arrangement consists of two-dimensional planar networks based on hydrogen bonding among adjacent molecules whereas the latter relies on columnar assembly generated through intermolecular van der Waals interactions. Scanning Tunneling Microscopy (STM) at the solid-liquid interface has been corroborated by cyclic voltammetry measurements and assessed by theoretical calculations to gain multiscale insight into the arrangement of the molecule with respect to the basal plane of the surface. The STM analysis allowed the visualization of these assemblies with a sub-nanometer resolution, and cyclic voltammetry measurements provided direct evidence of the interactions of porphyrin and ferrocene with the graphite surface and offered also insight into the dynamics within the face-on and edge-on assemblies. The experimental findings were supported by theoretical calculations to shed light on the electronic and other physical properties of both assemblies. The capability to engineer the functional nanopatterns through self-assembly of porphyrins containing ferrocene units is a key step toward the bottom-up construction of multifunctional molecular nanostructures and nanodevices.Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to

  7. Self-Assembly of Peptides to Nanostructures

    PubMed Central

    Mandal, Dindyal; Shirazi, Amir Nasrolahi; Parang, Keykavous

    2014-01-01

    The formation of well-ordered nanostructures through self-assembly of diverse organic and inorganic building blocks has drawn much attention owing to their potential applications in biology and chemistry. Among all organic building blocks, peptides are one of the most promising platforms due to their biocompatibility, chemical diversity, and resemblance with proteins. Inspired from the protein assembly in biological systems, various self-assembled peptide structures have been constructed using several amino acids and sequences. This review focuses on this emerging area, the recent advances in peptide self-assembly, and formation of different nanostructures, such as tubular, fibers, vesicles, spherical, and rod coil structures. While different peptide nanostructures are discovered, potential applications will be explored in drug delivery, tissue engineering, wound healing, and surfactants. PMID:24756480

  8. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  9. Self-assembled gelators for organic electronics.

    PubMed

    Babu, Sukumaran Santhosh; Prasanthkumar, Seelam; Ajayaghosh, Ayyappanpillai

    2012-02-20

    Nature excels at engineering materials by using the principles of chemical synthesis and molecular self-assembly with the help of noncovalent forces. Learning from these phenomena, scientists have been able to create a variety of self-assembled artificial materials of different size, shapes, and properties for wide ranging applications. An area of great interest in this regard is solvent-assisted gel formation with functional organic molecules, thus leading to one-dimensional fibers. Such fibers have improved electronic properties and are potential soft materials for organic electronic devices, particularly in bulk heterojunction solar cells. Described herein is how molecular self-assembly, which was originally proposed as a simple laboratory curiosity, has helped the evolution of a variety of soft functional materials useful for advanced electronic devices such as organic field-effect transistors and organic solar cells. Highlights on some of the recent developments are discussed. PMID:22278754

  10. From self-assembled vesicles to protocells.

    PubMed

    Chen, Irene A; Walde, Peter

    2010-07-01

    Self-assembled vesicles are essential components of primitive cells. We review the importance of vesicles during the origins of life, fundamental thermodynamics and kinetics of self-assembly, and experimental models of simple vesicles, focusing on prebiotically plausible fatty acids and their derivatives. We review recent work on interactions of simple vesicles with RNA and other studies of the transition from vesicles to protocells. Finally we discuss current challenges in understanding the biophysics of protocells, as well as conceptual questions in information transmission and self-replication. PMID:20519344

  11. From Self-Assembled Vesicles to Protocells

    PubMed Central

    Chen, Irene A.; Walde, Peter

    2010-01-01

    Self-assembled vesicles are essential components of primitive cells. We review the importance of vesicles during the origins of life, fundamental thermodynamics and kinetics of self-assembly, and experimental models of simple vesicles, focusing on prebiotically plausible fatty acids and their derivatives. We review recent work on interactions of simple vesicles with RNA and other studies of the transition from vesicles to protocells. Finally we discuss current challenges in understanding the biophysics of protocells, as well as conceptual questions in information transmission and self-replication. PMID:20519344

  12. Remote control of self-assembled microswimmers

    NASA Astrophysics Data System (ADS)

    Grosjean, G.; Lagubeau, G.; Darras, A.; Hubert, M.; Lumay, G.; Vandewalle, N.

    2015-11-01

    Physics governing the locomotion of microorganisms and other microsystems is dominated by viscous damping. An effective swimming strategy involves the non-reciprocal and periodic deformations of the considered body. Here, we show that a magnetocapillary-driven self-assembly, composed of three soft ferromagnetic beads, is able to swim along a liquid-air interface when powered by an external magnetic field. More importantly, we demonstrate that trajectories can be fully controlled, opening ways to explore low Reynolds number swimming. This magnetocapillary system spontaneously forms by self-assembly, allowing miniaturization and other possible applications such as cargo transport or solvent flows.

  13. Computing by molecular self-assembly

    PubMed Central

    Jonoska, Nataša; Seeman, Nadrian C.

    2012-01-01

    The paper reviews two computing models by DNA self-assembly whose proof of principal have recently been experimentally confirmed. The first model incorporates DNA nano-devices and triple crossover DNA molecules to algorithmically arrange non-DNA species. This is achieved by simulating a finite-state automaton with output where golden nanoparticles are assembled to read-out the result. In the second model, a complex DNA molecule representing a graph emerges as a solution of a computational problem. This supports the idea that in molecular self-assembly computing, it may be necessary to develop the notion of shape processing besides the classical approach through symbol processing. PMID:23919130

  14. Self-assembly of chlorophenols in water

    PubMed Central

    Rogalska, Ewa; Rogalski, Marek; Gulik-Krzywicki, Tadeusz; Gulik, Annette; Chipot, Christophe

    1999-01-01

    In saturated solutions of some di- and trichlorophenols, structures with complex morphologies, consisting of thin, transparent sheets often coiling into helices and ultimately twisting into filaments, were observed under the optical microscope. Freeze-fracture electron microscopy, x-ray diffraction, phase diagrams, and molecular modeling were performed to elucidate the observed phenomena. Here, we present evidence that the chlorophenols studied, when interacting with water, self-assemble into bilayers. The fact that some chlorophenols form the same supramolecular structures as those described previously for structurally nonrelated surfactants sheds light on the mechanisms of self-assembly. PMID:10359753

  15. Remote control of self-assembled microswimmers

    PubMed Central

    Grosjean, G.; Lagubeau, G.; Darras, A.; Hubert, M.; Lumay, G.; Vandewalle, N.

    2015-01-01

    Physics governing the locomotion of microorganisms and other microsystems is dominated by viscous damping. An effective swimming strategy involves the non-reciprocal and periodic deformations of the considered body. Here, we show that a magnetocapillary-driven self-assembly, composed of three soft ferromagnetic beads, is able to swim along a liquid-air interface when powered by an external magnetic field. More importantly, we demonstrate that trajectories can be fully controlled, opening ways to explore low Reynolds number swimming. This magnetocapillary system spontaneously forms by self-assembly, allowing miniaturization and other possible applications such as cargo transport or solvent flows. PMID:26538006

  16. Nondeterministic self-assembly with asymmetric interactions.

    PubMed

    Tesoro, S; Göpfrich, K; Kartanas, T; Keyser, U F; Ahnert, S E

    2016-08-01

    We investigate general properties of nondeterministic self-assembly with asymmetric interactions, using a computational model and DNA tile assembly experiments. By contrasting symmetric and asymmetric interactions we show that the latter can lead to self-limiting cluster growth. Furthermore, by adjusting the relative abundance of self-assembly particles in a two-particle mixture, we are able to tune the final sizes of these clusters. We show that this is a fundamental property of asymmetric interactions, which has potential applications in bioengineering, and provides insights into the study of diseases caused by protein aggregation. PMID:27627332

  17. Nondeterministic self-assembly with asymmetric interactions

    NASA Astrophysics Data System (ADS)

    Tesoro, S.; Göpfrich, K.; Kartanas, T.; Keyser, U. F.; Ahnert, S. E.

    2016-08-01

    We investigate general properties of nondeterministic self-assembly with asymmetric interactions, using a computational model and DNA tile assembly experiments. By contrasting symmetric and asymmetric interactions we show that the latter can lead to self-limiting cluster growth. Furthermore, by adjusting the relative abundance of self-assembly particles in a two-particle mixture, we are able to tune the final sizes of these clusters. We show that this is a fundamental property of asymmetric interactions, which has potential applications in bioengineering, and provides insights into the study of diseases caused by protein aggregation.

  18. Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study.

    PubMed

    El Garah, M; Santana Bonilla, A; Ciesielski, A; Gualandi, A; Mengozzi, L; Fiorani, A; Iurlo, M; Marcaccio, M; Gutierrez, R; Rapino, S; Calvaresi, M; Zerbetto, F; Cuniberti, G; Cozzi, P G; Paolucci, F; Samorì, P

    2016-07-14

    Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to control their organization at the supramolecular level. Such a tuning is particularly important when applied to sophisticated molecules combining functional units which possess specific electronic properties, such as electron/energy transfer, in order to develop multifunctional systems. Here we have synthesized two tetraferrocene-porphyrin derivatives that by design can selectively self-assemble at the graphite/liquid interface into either face-on or edge-on monolayer-thick architectures. The former supramolecular arrangement consists of two-dimensional planar networks based on hydrogen bonding among adjacent molecules whereas the latter relies on columnar assembly generated through intermolecular van der Waals interactions. Scanning Tunneling Microscopy (STM) at the solid-liquid interface has been corroborated by cyclic voltammetry measurements and assessed by theoretical calculations to gain multiscale insight into the arrangement of the molecule with respect to the basal plane of the surface. The STM analysis allowed the visualization of these assemblies with a sub-nanometer resolution, and cyclic voltammetry measurements provided direct evidence of the interactions of porphyrin and ferrocene with the graphite surface and offered also insight into the dynamics within the face-on and edge-on assemblies. The experimental findings were supported by theoretical calculations to shed light on the electronic and other physical properties of both assemblies. The capability to engineer the functional nanopatterns through self-assembly of porphyrins containing ferrocene units is a key step toward the bottom-up construction of multifunctional molecular nanostructures and nanodevices. PMID:27376633

  19. Self-assembled supramolecular nanotube yarn.

    PubMed

    Liu, Yaqing; Wang, Tianyu; Huan, Yong; Li, Zhibo; He, Guowei; Liu, Minghua

    2013-11-01

    Metric length supramolecular nanotube yarns are fabricated though a spinning process from the diluted aqueous solution of self-assembled nanotubes, with bolaamphiphiles working as molecular building blocks. These non-covalent bonding based nanotube yarns show outstanding mechanical strength compared with some conventional polymers and could be operated under the macro conditions. PMID:23943418

  20. Nanopropulsion by biocatalytic self-assembly.

    PubMed

    Leckie, Joy; Hope, Alexander; Hughes, Meghan; Debnath, Sisir; Fleming, Scott; Wark, Alastair W; Ulijn, Rein V; Haw, Mark D

    2014-09-23

    A number of organisms and organelles are capable of self-propulsion at the micro- and nanoscales. Production of simple man-made mimics of biological transportation systems may prove relevant to achieving movement in artificial cells and nano/micronscale robotics that may be of biological and nanotechnological importance. We demonstrate the propulsion of particles based on catalytically controlled molecular self-assembly and fiber formation at the particle surface. Specifically, phosphatase enzymes (acting as the engine) are conjugated to a quantum dot (the vehicle), and are subsequently exposed to micellar aggregates (fuel) that upon biocatalytic dephosphorylation undergo fibrillar self-assembly, which in turn causes propulsion. The motion of individual enzyme/quantum dot conjugates is followed directly using fluorescence microscopy. While overall movement remains random, the enzyme-conjugates exhibit significantly faster transport in the presence of the fiber forming system, compared to controls without fuel, a non-self-assembling substrate, or a substrate which assembles into spherical, rather than fibrous structures upon enzymatic dephosphorylation. When increasing the concentration of the fiber-forming fuel, the speed of the conjugates increases compared to non-self-assembling substrate, although directionality remains random. PMID:25162764

  1. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  2. Self-assembling materials for therapeutic delivery✩

    PubMed Central

    Branco, Monica C.; Schneider, Joel P.

    2009-01-01

    A growing number of medications must be administered through parenteral delivery, i.e., intravenous, intramuscular, or subcutaneous injection, to ensure effectiveness of the therapeutic. For some therapeutics, the use of delivery vehicles in conjunction with this delivery mechanism can improve drug efficacy and patient compliance. Macromolecular self-assembly has been exploited recently to engineer materials for the encapsulation and controlled delivery of therapeutics. Self-assembled materials offer the advantages of conventional crosslinked materials normally used for release, but also provide the ability to tailor specific bulk material properties, such as release profiles, at the molecular level via monomer design. As a result, the design of materials from the “bottom up” approach has generated a variety of supramolecular devices for biomedical applications. This review provides an overview of self-assembling molecules, their resultant structures, and their use in therapeutic delivery. It highlights the current progress in the design of polymer- and peptide-based self-assembled materials. PMID:19010748

  3. [INVITED] Self-assembled optical metamaterials

    NASA Astrophysics Data System (ADS)

    Baron, Alexandre; Aradian, Ashod; Ponsinet, Virginie; Barois, Philippe

    2016-08-01

    Self-assembled metamaterials constitute a promising platform to achieving bulk and homogenous optical materials that exhibit unusual effective medium properties. For many years now, the research community has contemplated lithographically fabricated metasurfaces, with extraordinary optical features. However, achieving large volumes at low cost is still a challenge by top-down fabrication. Bottom-up fabrication, that relies both on nanochemistry and self-assembly, is capable of building such materials while greatly reducing the energy footprint in the formulation of the metamaterial. Self-assembled metamaterials have shown that they are capable of reaching unprecedented values of bulkiness and homogeneity figures of merit. This feat is achieved by synthesizing plasmonic nanoresonators (meta-atoms in the sense of artificial polarizable units) and assembling them into a fully three-dimensional matrix through a variety of methods. Furthermore it has been shown that a wide range of material parameters can be tailored by controlling the geometry and composition of the meta-atoms as well as the volume fraction of the nano-objects in the metamaterial. Here we conduct a non-comprehensive review of some of the recent trends in self-assembled optical metamaterials and illustrate these trends with our recent work.

  4. Self-assembled nanolaminate coatings (SV)

    SciTech Connect

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV, UCAV

  5. Self-assembly of azide containing dipeptides.

    PubMed

    Yuran, Sivan; Razvag, Yair; Das, Priyadip; Reches, Meital

    2014-07-01

    Functional structures and materials are formed spontaneously in nature through the process of self-assembly. Mimicking this process in vitro will lead to the formation of new substances that would impact many areas including energy production and storage, biomaterials and implants, and drug delivery. The considerable structural diversity of peptides makes them appealing building blocks for self-assembly in vitro. This paper describes the self-assembly of three aromatic dipeptides containing an azide moiety: H-Phe(4-azido)-Phe(4-azido)-OH, H-Phe(4-azido)-Phe-OH, and H-Phe-Phe(4-azido)-OH. The peptide H-Phe(4-azido)-Phe(4-azido)-OH self-assembled into porous spherical structures, whereas the peptides H-Phe(4-azido)-Phe-OH and H-Phe-Phe(4-azido)-OH did not form any ordered structures under the examined experimental conditions. The azido group of the peptide can serve as a photo cross-linking agent upon irradiation with UV light. To examine the effect of this group and its activity on the self-assembled structures, we irradiated the assemblies in solution for different time periods. Using electron microscopy, we determined that the porous spherical assemblies formed by the peptide H-Phe(4-azido)-Phe(4-azido)-OH underwent a structural change upon irradiation. In addition, using FT-IR, we detected the chemical change of the peptide azido group. Moreover, using indentation experiments with atomic force microscopy, we showed that the Young's modulus of the spherical assemblies increased after 20 min of irradiation with UV light. Overall, irradiating the solution of the peptide assemblies containing the azido group resulted in a change both in the morphology and mechanical properties of the peptide-based structures. These ordered assemblies or their peptide monomer building blocks can potentially be incorporated into other peptide assemblies to generate stiffer and more stable materials. PMID:24889029

  6. Corrole and Porphyrin Amino Acid Conjugates: Synthesis and Physicochemical Properties.

    PubMed

    Karikis, Kostas; Georgilis, Evangelos; Charalambidis, Georgios; Petrou, Athanasia; Vakuliuk, Olena; Chatziioannou, Theodore; Raptaki, Iliana; Tsovola, Sofia; Papakyriacou, Ioanna; Mitraki, Anna; Gryko, Daniel T; Coutsolelos, Athanassios G

    2016-08-01

    A series of conjugates of amino acids with porphyrins and corroles was synthesized. Their self-assembling ability under defined conditions was investigated by scanning electron microscopy. The morphology and photophysical properties of these molecules were studied by absorption and fluorescence spectroscopy in solid, liquid, and self-assembled forms. We observed that both corrole and porphyrin conjugated with the l-phenylalanine-l-phenylalanine peptide to form spherical nanostructures with bathochromic shifts in the emission spectra, indicating the formation of aggregates. These aggregates are characterized by the impressive absorption of light over nearly the whole visible range. The broadening of all bands was particularly strong in the case of corroles. The fluorescence lifetimes of self-assembled species were longer as compared to the solid-state form. PMID:27356185

  7. DNA triangles and self-assembled hexagonal tilings.

    PubMed

    Chelyapov, Nickolas; Brun, Yuriy; Gopalkrishnan, Manoj; Reishus, Dustin; Shaw, Bilal; Adleman, Leonard

    2004-11-01

    We have designed and constructed DNA complexes in the form of triangles. We have created hexagonal planar tilings from these triangles via self-assembly. Unlike previously reported structures self-assembled from DNA, our structures appear to involve bending of double helices. Bending helices may be a useful design option in the creation of self-assembled DNA structures. It has been suggested that DNA self-assembly may lead to novel materials and efficient computational devices. PMID:15506744

  8. Self-assembling membranes and related methods thereof

    DOEpatents

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  9. Dissipative self-assembly of vesicular nanoreactors.

    PubMed

    Maiti, Subhabrata; Fortunati, Ilaria; Ferrante, Camilla; Scrimin, Paolo; Prins, Leonard J

    2016-07-01

    Dissipative self-assembly is exploited by nature to control important biological functions, such as cell division, motility and signal transduction. The ability to construct synthetic supramolecular assemblies that require the continuous consumption of energy to remain in the functional state is an essential premise for the design of synthetic systems with lifelike properties. Here, we show a new strategy for the dissipative self-assembly of functional supramolecular structures with high structural complexity. It relies on the transient stabilization of vesicles through noncovalent interactions between the surfactants and adenosine triphosphate (ATP), which acts as the chemical fuel. It is shown that the lifetime of the vesicles can be regulated by controlling the hydrolysis rate of ATP. The vesicles sustain a chemical reaction but only as long as chemical fuel is present to keep the system in the out-of-equilibrium state. The lifetime of the vesicles determines the amount of reaction product produced by the system. PMID:27325101

  10. Controlling and imaging biomimetic self-assembly

    NASA Astrophysics Data System (ADS)

    Aliprandi, Alessandro; Mauro, Matteo; de Cola, Luisa

    2016-01-01

    The self-assembly of chemical entities represents a very attractive way to create a large variety of ordered functional structures and complex matter. Although much effort has been devoted to the preparation of supramolecular nanostructures based on different chemical building blocks, an understanding of the mechanisms at play and the ability to monitor assembly processes and, in turn, control them are often elusive, which precludes a deep and comprehensive control of the final structures. Here the complex supramolecular landscape of a platinum(II) compound is characterized fully and controlled successfully through a combination of supramolecular and photochemical approaches. The supramolecular assemblies comprise two kinetic assemblies and their thermodynamic counterpart. The monitoring of the different emission properties of the aggregates, used as a fingerprint for each species, allows the real-time visualization of the evolving self-assemblies. The control of multiple supramolecular pathways will help the design of complex systems in and out of their thermodynamic equilibrium.

  11. Self-assembled Oniontype Multiferroic Nanostructures

    NASA Astrophysics Data System (ADS)

    Ren, Shenqiang; Briber, Robert M.; Wuttig, Manfred

    2009-03-01

    Spontaneously self-assembled oniontype multiferroic nanostructures based on block copolymers as templating materials are reported. Diblock copolymer containing two different magnetoelectric precursors separately segregated to the two microdomains have been shown to form well-ordered templated lamellar structures. Onion-type multilamellar ordered multiferroic (PZT/CoFe2O4) nanostructures have been induced by room temperature solvent annealing in a magnetic field oriented perpendicular to the plane of the film. The evolution of the onion-like microstructure has been characterized by AFM, MFM, and TEM. The structure retains lamellar periodicity observed at zero field. The onion structure is superparamagnetic above and antiferromagnetic below the blocking temperature. This templating process opens a route for nanometer-scale patterning of magnetic toroids by means of self-assembly on length scales that are difficult to obtain by standard lithography techniques.

  12. Self Assembly of Complex Building Blocks

    NASA Astrophysics Data System (ADS)

    Stucke, David; Crespi, Vincent

    2004-03-01

    A genetic search algorithm for optimizing the packing density of self-assembled multicomponent crystals of nanoparticles applied to complex colloidal building blocks will be presented. The algorithm searches the complex multi-dimensional space to find preferred crystal structures where standard methods fail. Mixtures of colloidal molecules and the structures found to be preferred to phase separation for different species of coloidal molecule mixtures will be shown.

  13. Templated Self Assemble of Nano-Structures

    SciTech Connect

    Suo, Zhigang

    2013-04-29

    This project will identify and model mechanisms that template the self-assembly of nanostructures. We focus on a class of systems involving a two-phase monolayer of molecules adsorbed on a solid surface. At a suitably elevated temperature, the molecules diffuse on the surface to reduce the combined free energy of mixing, phase boundary, elastic field, and electrostatic field. With no template, the phases may form a pattern of stripes or disks. The feature size is on the order of 1-100 nm, selected to compromise the phase boundary energy and the long-range elastic or electrostatic interaction. Both experimental observations and our theoretical simulations have shown that the pattern resembles a periodic lattice, but has abundant imperfections. To form a perfect periodic pattern, or a designed aperiodic pattern, one must introduce a template to guide the assembly. For example, a coarse-scale pattern, lithographically defined on the substrate, will guide the assembly of the nanoscale pattern. As another example, if the molecules on the substrate surface carry strong electric dipoles, a charged object, placed in the space above the monolayer, will guide the assembly of the molecular dipoles. In particular, the charged object can be a mask with a designed nanoscale topographic pattern. A serial process (e.g., e-beam lithography) is necessary to make the mask, but the pattern transfer to the molecules on the substrate is a parallel process. The technique is potentially a high throughput, low cost process to pattern a monolayer. The monolayer pattern itself may serve as a template to fabricate a functional structure. This project will model fundamental aspects of these processes, including thermodynamics and kinetics of self-assembly, templated self-assembly, and self-assembly on unconventional substrates. It is envisioned that the theory will not only explain the available experimental observations, but also motivate new experiments.

  14. Single photon ionisation of self assembled monolayers

    NASA Astrophysics Data System (ADS)

    King, B. V.; Savina, M. R.; Tripa, C. E.; Calaway, W. F.; Veryovkin, I. V.; Moore, J. F.; Pellin, M. J.

    2002-05-01

    Self assembled monolayers formed from benzenethiol, diphenylsulphide and diphenyldisulphide have been analysed using secondary ion mass spectrometry (SIMS), sputter neutral mass spectrometry (SNMS) and laser desorption photoionisation mass spectrometry (LDPI). The peak corresponding to the parent ion was much stronger in LDPI than with SIMS or SNMS analysis and fragmentation was lower. A useful yield of order 0.5% was obtained for LDPI from diphenyldisulphide.

  15. The dynamics of nacre self-assembly

    PubMed Central

    Cartwright, Julyan H.E; Checa, Antonio G

    2006-01-01

    We show how nacre and pearl construction in bivalve and gastropod molluscs can be understood in terms of successive processes of controlled self-assembly from the molecular- to the macro-scale. This dynamics involves the physics of the formation of both solid and liquid crystals and of membranes and fluids to produce a nanostructured hierarchically constructed biological composite of polysaccharides, proteins and mineral, whose mechanical properties far surpass those of its component parts. PMID:17251136

  16. Self-assembled chromophores within mesoporous nanocrystalline TiO2: towards biomimetic solar cells.

    PubMed

    Marek, Peter L; Sieger, Hermann; Scherer, Torsten; Hahn, Horst; Balaban, Teodor Silviu

    2009-06-01

    Artificial light-harvesting antennas consisting of self-assembled chromophores that mimic the natural pigments of photosynthetic bacteria have been inserted into voids induced in porous titania (TiO2, anatase) in order to investigate their suitability for hybrid solar cells. Mesoporous nanocrystalline TiO2 with additional uniform macropores was treated with precursor solutions of the pigment which was then induced to self-assemble within the voids. The chromophores were tailored to combine the self-assembly characteristics of the natural bacteriochlorophylls with the robustness of artificial Zn-porphyrins being stable for prolonged periods even upon heating to over 200 degrees C. They assemble on the TiO2 surface to form nano- to micro-crystalline structures with lengths from tens of nm up to several microm and show a photosensitization effect which is supposed to be dependent on the assembly size. The natural examples of these antennas are found in green sulfur bacteria which are able to use photosynthesis in deep water regions with minute light intensities. The implementation of biomimetic antennas for light harvesting and a better photon management may lead to a rise in efficiency of dye-sensitized solar cells also under low light illumination conditions. PMID:19504907

  17. Interparticle Forces Underlying Nanoparticle Self-Assemblies.

    PubMed

    Luo, Dan; Yan, Cong; Wang, Tie

    2015-12-01

    Studies on the self-assembly of nanoparticles have been a hot topic in nanotechnology for decades and still remain relevant for the present and future due to their tunable collective properties as well as their remarkable applications to a wide range of fields. The novel properties of nanoparticle assemblies arise from their internal interactions and assemblies with the desired architecture key to constructing novel nanodevices. Therefore, a comprehensive understanding of the interparticle forces of nanoparticle self-assemblies is a pre-requisite to the design and control of the assembly processes, so as to fabricate the ideal nanomaterial and nanoproducts. Here, different categories of interparticle forces are classified and discussed according to their origins, behaviors and functions during the assembly processes, and the induced collective properties of the corresponding nanoparticle assemblies. Common interparticle forces, such as van der Waals forces, electrostatic interactions, electromagnetic dipole-dipole interactions, hydrogen bonds, solvophonic interactions, and depletion interactions are discussed in detail. In addition, new categories of assembly principles are summarized and introduced. These are termed template-mediated interactions and shape-complementary interactions. A deep understanding of the interactions inside self-assembled nanoparticles, and a broader perspective for the future synthesis and fabrication of these promising nanomaterials is provided. PMID:26436692

  18. Meniscus height controlled convective self-assembly

    NASA Astrophysics Data System (ADS)

    Choudhary, Satyan; Crosby, Alfred

    Convective self-assembly techniques based on the 'coffee-ring effect' allow for the fabrication of materials with structural hierarchy and multi-functionality across a wide range of length scales. The coffee-ring effect describes deposition of non-volatiles at the edge of droplet due to capillary flow and pattern formations due to pinning and de-pinning of meniscus with the solvent evaporation. We demonstrate a novel convective self-assembly method which uses a piezo-actuated bending motion for driving the de-pinning step. In this method, a dilute solution of nanoparticles or polymers is trapped by capillary forces between a blade and substrate. As the blade oscillates with a fixed frequency and amplitude and the substrate translates at a fixed velocity, the height of the capillary meniscus oscillates. The meniscus height controls the contact angle of three phase contact line and at a critical angle de-pinning occurs. The combination of convective flux and continuously changing contact angle drives the assembly of the solute and subsequent de-pinning step, providing a direct means for producing linear assemblies. We demonstrate a new method for convective self-assembly at an accelerated rate when compared to other techniques, with control over deposit dimensions. Army Research Office (W911NF-14-1-0185).

  19. Directed Self-assembly for Lithography Applications

    NASA Astrophysics Data System (ADS)

    Cheng, Joy

    2010-03-01

    Economics dictated that semiconductor devices need to be scaled approximately to 70 percent linearly in order to follow the pace of Moore's law and maintain cost effectiveness. Optical lithography has been the driving force for scaling; however, it approaches its physical limit to print patterns beyond 22nm node. Directed self-assembly (DSA), which combines ``bottom-up'' self-assembled polymers and ``top-down'' lithographically defined substrates, has been considered as a potential candidate to extend optical lithography. Benefit from nanometer-scale self-assembly features and the registration precision of advanced lithography, DSA provides precise and programmable nanopatterns beyond the resolution limit of conventional lithography. We have demonstrated DSA concepts including frequency multiplication and pattern rectification using guiding prepattern with proper chemical and topographical information generated by e-beam lithography. In addition, we seek to integrate DSA with 193 nm optical lithography in a straightforward manner in order to move DSA from the research stage to a viable manufacturing technology. Recently, we implemented various integration strategies using photolithography to produce guiding patterns for DSA. This new ability enables DSA to be applied to large areas with state-of-the-art lithography facilities.

  20. Symmetry, Equivalence and Self-Assembly

    NASA Astrophysics Data System (ADS)

    Douglas, Jack

    2006-03-01

    Molecular self-assembly at equilibrium is central to the formation of many biological structures and the emulation of this process through the creation of synthetic counterparts offers great promise for nanofabrication. The central problems in this field are an understanding of how the symmetry of the interacting particles encodes the geometrical structure of the organized structure and the nature of the thermodynamic transitions involved. Our approach is inspired by the self-assembly of actin, tubulin and icosahedral structures of plant and animal viruses. We observe chain, membrane,`nanotube' and hollow icosahedron structures using `equivalent' particles exhibiting an interplay between directional (dipolar and multi-polar) interactions and short-range (van der Waals) interactions. Specifically, a dipolar potential (continuous rotational symmetry) gives rise to chain formation, while potentials having discrete rotational symmetries (e.g., square quadrupole or triangular ring of dipoles) led to the self-organization of nanotube and icosahedral structures with some resemblance to tubulin and icosahedral viruses. The simulations are compared to theoretical models of molecular self-assembly, especially in the case of dipolar fluids where the corresponding analytic theory of equilibrium polymerization is well developed. These computations give insights into the design elements required for the development of synthetic systems exhibiting this type of organization.

  1. Self-Assembly of Nanoparticle Surfactants

    NASA Astrophysics Data System (ADS)

    Lombardo, Michael T.

    Self-assembly utilizes non-covalent forces to organize smaller building blocks into larger, organized structures. Nanoparticles are one type of building block and have gained interest recently due to their unique optical and electrical properties which have proved useful in fields such as energy, catalysis, and advanced materials. There are several techniques currently used to self-assemble nanoparticles, each with its own set of benefits and drawbacks. Here, we address the limited number of techniques in non-polar solvents by introducing a method utilizing amphiphilic gold nanoparticles. Grafted polymer chains provide steric stabilization while small hydrophilic molecules induce assembly through short range attractive forces. The properties of these self-assembled structures are found to be dependent on the polymer and small molecules surface concentrations and chemistries. These particles act as nanoparticle surfactants and can effectively stabilize oil-water interfaces, such as in an emulsion. In addition to the work in organic solvent, similar amphiphilic particles in aqueous media are shown to effectively stabilize oil-in-water emulsions that show promise as photoacoustic/ultrasound theranostic agents.

  2. Self-assembled plasmonic nanohole arrays.

    PubMed

    Lee, Si Hoon; Bantz, Kyle C; Lindquist, Nathan C; Oh, Sang-Hyun; Haynes, Christy L

    2009-12-01

    We present a simple and massively parallel nanofabrication technique to produce self-assembled periodic nanohole arrays over a millimeter-sized area of metallic film, with a tunable hole shape, diameter, and periodicity. Using this method, 30 x 30 microm(2) defect-free areas of 300 nm diameter or smaller holes were obtained in silver; this area threshold is critical because it is larger than the visible wavelength propagation length of surface plasmon waves ( approximately 27 microm) in the silver film. Measured optical transmission spectra show highly homogeneous characteristics across the millimeter-size patterned area, and they are in good agreement with FDTD simulations. The simulations also reveal intense electric fields concentrated near the air/silver interface, which was used for surface-enhanced Raman spectroscopy (SERS). Enhancement factors (EFs) measured with different hole shape and excitation wavelengths on the self-assembled nanohole arrays were 10(4)-10(6). With an additional Ag electroless plating step, the EF was further increased up to 3 x 10(6). The periodic nanohole arrays produced using this tunable self-assembly method show great promise as inexpensive SERS substrates as well as surface plasmon resonance biosensing platforms. PMID:19831350

  3. Engineered Self-Assembly of Plasmonic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Tao, Andrea

    2013-03-01

    A critical need in nanotechnology is the development of new tools and methods to organize, connect, and integrate solid-state nanocomponents. Self-assembly - where components spontaneously organize themselves - can be carried out on a massively parallel scale to construct large-scale architectures using solid-state nanocrystal building blocks. I will present our recent work on the synthesis and self-assembly of nanocrystals for plasmonics, where light is propagated, manipulated, and confined by solid-state components that are smaller than the wavelength of light itself. We show the organization of polymer-grafted metal nanocrystals into hierarchical nanojunction arrays that possess intense ``hot spots'' due to electromagnetic field localization. We also show that doped semiconductor nanocrystals can serve as a new class of plasmonic building blocks, where shape and carrier density can be actively tuned to engineer plasmon resonances. These examples demonstrate that nanocrystals possess unique electromagnetic properties that rival top-down structures, and the potential of self-assembly for fabricating designer plasmonic materials.

  4. Self-assembled biomimetic nanoreactors I: Polymeric template

    NASA Astrophysics Data System (ADS)

    McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish

    2015-09-01

    The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.

  5. Self-assembled lipid bilayer materials

    DOEpatents

    Sasaki, Darryl Y.; Waggoner, Tina A.; Last, Julie A.

    2005-11-08

    The present invention is a self-assembling material comprised of stacks of lipid bilayers formed in a columnar structure, where the assembly process is mediated and regulated by chemical recognition events. The material, through the chemical recognition interactions, has a self-regulating system that corrects the radial size of the assembly creating a uniform diameter throughout most of the structure. The materials form and are stable in aqueous solution. These materials are useful as structural elements for the architecture of materials and components in nanotechnology, efficient light harvesting systems for optical sensing, chemical processing centers, and drug delivery vehicles.

  6. Ionically self-assembled monolayers (ISAMs)

    NASA Astrophysics Data System (ADS)

    Janik, John

    2001-04-01

    Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub-nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS).

  7. Conceptual, self-assembling graphene nanocontainers

    NASA Astrophysics Data System (ADS)

    Boothroyd, Simon; Anwar, Jamshed

    2015-07-01

    We show that graphene nano-sheets, when appropriately functionalised, can form self-assembling nanocontainers which may be opened or closed using a chemical trigger such as pH or polarity of solvent. Conceptual design rules are presented for different container structures, whose ability to form and encapsulate guest molecules is verified by molecular dynamics simulations. The structural simplicity of the graphene nanocontainers offers considerable scope for scaling the capacity, modulating the nature of the internal environment, and defining the trigger for encapsulation or release of the guest molecule(s). This design study will serve to provide additional impetus to developing synthetic approaches for selective functionalisation of graphene.

  8. Self-assembly of Random Copolymers

    PubMed Central

    Li, Longyu; Raghupathi, Kishore; Song, Cunfeng; Prasad, Priyaa; Thayumanavan, S.

    2014-01-01

    Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles and their potential applications from random copolymers are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research. PMID:25036552

  9. Self-assembly of colloidal surfactants

    NASA Astrophysics Data System (ADS)

    Kegel, Willem

    2012-02-01

    We developed colloidal dumbbells with a rough and a smooth part, based on a method reported in Ref. [1]. Specific attraction between the smooth parts occurs upon addition of non-adsorbing polymers of appropriate size. We present the first results in terms of the assemblies that emerge in these systems. [4pt] [1] D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel, Self-assembly of colloids with liquid protrusions, J. Am. Chem. Soc. 131, 1182, (2009)

  10. Self-assembly of magnetic biofunctional nanoparticles

    SciTech Connect

    Sun Xiangcheng; Thode, C.J.; Mabry, J.K.; Harrell, J.W.; Nikles, D.E.; Sun, K.; Wang, L.M.

    2005-05-15

    Spherical, ferromagnetic FePt nanoparticles with a particle size of 3 nm were prepared by the simultaneous polyol reduction of Fe(acac){sub 3} and Pt(acac){sub 2} in phenyl ether in the presence of oleic acid and oleylamine. The oleic acid ligands can be replaced with 11-mercaptoundecanoic acid, giving particles that can be dispersed in water. Both x-ray diffraction and transmission electron microscopy indicated that FePt particles were not affected by ligands replacement. Dispersions of the FePt particles with 11-mercaptoundecanoic acid ligands and ammonium counter ions gave self-assembled films consisting of highly ordered hexagonal arrays of particles.

  11. Self-assembly of information in networks

    NASA Astrophysics Data System (ADS)

    Rosvall, M.; Sneppen, K.

    2006-06-01

    We model self-assembly of information in networks to investigate necessary conditions for building a global perception of a system by local communication. Our approach is to let agents chat in a model system to self-organize distant communication pathways. We demonstrate that simple local rules allow agents to build a perception of the system, that is robust to dynamical changes and mistakes. We find that messages are most effectively forwarded in the presence of hubs, while transmission in hub-free networks is more robust against misinformation and failures.

  12. Triggered self-assembly of magnetic nanoparticles.

    PubMed

    Ye, L; Pearson, T; Cordeau, Y; Mefford, O T; Crawford, T M

    2016-01-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufacturing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles. PMID:26975332

  13. Triggered self-assembly of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-03-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  14. Self-Assembly of Gemini Surfactants

    NASA Astrophysics Data System (ADS)

    Yethiraj, Arun; Mondal, Jagannath; Mahanthappa, Mahesh

    2013-03-01

    The self-assembly behavior of Gemini (dimeric or twin-tail) dicarboxylate disodium surfactants is studied using molecular dynamics simulations. This gemini architecture, in which two single tailed surfactants are joined through a flexible hydrophobic linker, has been shown to exhibit concentration-dependent aqueous self-assembly into lyotropic phases including hexagonal, gyroid, and lamellar morphologies. Our simulations reproduce the experimentally observed phases at similar amphiphile concentrations in water, including the unusual ability of these surfactants to form gyroid phases over unprecedentedly large amphiphile concentration windows. We demonstrate quanitative agreement between the predicted and experimentally observed domain spacings of these nanostructured materials. Through careful conformation analyses of the surfactant molecules, we show that the gyroid phase is electrostatically stabilized related to the lamellar phase. By starting with a lamellar phase, we show that decreasing the charge on the surfactant headgroups by carboxylate protonation or use of a bulkier tetramethyl ammonium counterion in place of sodium drives the formation of a gyroid phase.

  15. Self-assembled Nanofibrils for Immunomodulation

    NASA Astrophysics Data System (ADS)

    Zhao, Fan

    This thesis has been mainly focused on applying self-assembled nanofibrils as unique depots for controlled release to modulate immune system, with two major chapters on modulation of innate immunity in chapter 2 and adaptive immunity in chapter 3, respectively. There are 5 chapters in the thesis. Chapter 1 gives a detailed review on the discovery, synthesis and application of self-assembled nanofibrils of therapeutic agents (termed as "self-delivery drugs"), including bioactive molecules; Chapter 2 demonstrates the supramolecular hydrogel of chemotactic peptides as a prolonged inflammation model through proper molecular engineering; Chapter 3 reports a suppressive antibody response achieved by encapsulation of antigens by supramolecular hydrogel of glycopeptide; Chapter 4 illustrates an example of supramolecular hydrogel formation of molecules with extremely low solubility, based on the fact that many small organic drugs have poor solubility. Chapter 5 used beta-galatosidase as a model to study glycosidase-instructed supramolecular hydrogel formation, with potential to target cancer cells due to their distinct metabolic profile.

  16. Triggered self-assembly of magnetic nanoparticles

    PubMed Central

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-01-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles. PMID:26975332

  17. Chiral self-assembly of helical particles.

    PubMed

    Kolli, Hima Bindu; Cinacchi, Giorgio; Ferrarini, Alberta; Giacometti, Achille

    2016-04-12

    The shape of the building blocks plays a crucial role in directing self-assembly towards desired architectures. Out of the many different shapes, the helix has a unique position. Helical structures are ubiquitous in nature and a helical shape is exhibited by the most important biopolymers like polynucleotides, polypeptides and polysaccharides as well as by cellular organelles like flagella. Helical particles can self-assemble into chiral superstructures, which may have a variety of applications, e.g. as photonic (meta)materials. However, a clear and definite understanding of these structures has not been entirely achieved yet. We have recently undertaken an extensive investigation on the phase behaviour of hard helical particles, using numerical simulations and classical density functional theory. Here we present a detailed study of the phase diagram of hard helices as a function of their morphology. This includes a variety of liquid-crystal phases, with different degrees of orientational and positional ordering. We show how, by tuning the helix parameters, it is possible to control the organization of the system. Starting from slender helices, whose phase behaviour is similar to that of rodlike particles, an increase in curliness leads to the onset of azimuthal correlations between the particles and the formation of phases specific to helices. These phases feature a new kind of screw order, of which there is experimental evidence in colloidal suspensions of helical flagella. PMID:26767786

  18. Transmetalation of self-assembled, supramolecular complexes.

    PubMed

    Carnes, Matthew E; Collins, Mary S; Johnson, Darren W

    2014-03-21

    Substituting one metal for another in inorganic and organometallic systems is a proven strategy for synthesizing complex molecules, and in some cases, provides the only route to a particular system. The multivalent nature of the coordination in metal-ligand assemblies lends itself more readily to some types of transmetalation. For instance, a binding site can open up for exchange without greatly effecting the many other interactions holding the structure together. In addition to exchanging the metal and altering the local binding environment, transmetalation in supramolecular systems can also lead to substantial changes in the nature of the secondary and tertiary structure of a larger assembly. In this tutorial review we will cover discrete supramolecular assemblies in which metals are exchanged. First we will address fully formed structures where direct substitution replaces one type of metal for another without changing the overall supramolecular assembly. We will then address systems where the disruptive exchange of one metal for another leads to a larger change in the supramolecular assembly. When possible we have tried to highlight systems that use supramolecular self-assembly in tandem with transmetalation to synthesize new structures not accessible through a more direct approach. At the end of this review, we highlight the use of transmetalation in self-assembled aqueous inorganic clusters and discuss the consequences for material science applications. PMID:24346298

  19. Self-assembled virus-membrane complexes

    SciTech Connect

    Yang, Lihua; Liang, Hongjun; Angelini, Thomas; Butler, John; Coridan, Robert; Tang, Jay; Wong, Gerard

    2010-11-16

    Anionic polyelectrolytes and cationic lipid membranes can self-assemble into lamellar structures ranging from alternating layers of membranes and polyelectrolytes to 'missing layer' superlattice structures. We show that these structural differences can be understood in terms of the surface-charge-density mismatch between the polyelectrolyte and membrane components by examining complexes between cationic membranes and highly charged M13 viruses, a system that allowed us to vary the polyelectrolyte diameter independently of the charge density. Such virus-membrane complexes have pore sizes that are about ten times larger in area than DNA-membrane complexes, and can be used to package and organize large functional molecules; correlated arrays of Ru(bpy){sub 3}{sup 2+} macroionic dyes have been directly observed within the virus-membrane complexes using an electron-density reconstruction. These observations elucidate fundamental design rules for rational control of self-assembled polyelectrolyte-membrane structures, which have applications ranging from non-viral gene therapy to biomolecular templates for nanofabrication.

  20. Quantifying quality in DNA self-assembly

    NASA Astrophysics Data System (ADS)

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-04-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids.

  1. Directed Self-Assembly: Expectations and Achievements

    PubMed Central

    2010-01-01

    Nanotechnology has been a revolutionary thrust in recent years of development of science and technology for its broad appeal for employing a novel idea for relevant technological applications in particular and for mass-scale production and marketing as common man commodity in general. An interesting aspect of this emergent technology is that it involves scientific research community and relevant industries alike. Top–down and bottom–up approaches are two broad division of production of nanoscale materials in general. However, both the approaches have their own limits as far as large-scale production and cost involved are concerned. Therefore, novel new techniques are desired to be developed to optimize production and cost. Directed self-assembly seems to be a promising technique in this regard; which can work as a bridge between the top–down and bottom–up approaches. This article reviews how directed self-assembly as a technique has grown up and outlines its future prospects. PMID:20730077

  2. Self-Assemblies of novel molecules, VECAR

    NASA Astrophysics Data System (ADS)

    Shrestha, Bijay; Kim, Hye-Young; Lee, Soojin; Novak, Brian; Moldovan, Dorel

    2015-03-01

    VECAR is a newly synthesized molecule, which is an amphiphilic antioxidant molecule that consists of two molecular groups, vitamin-E and Carnosine, linked by a hydrocarbon chain. The hydrocarbon chain is hydrophobic and both vitamin-E and Carnosine ends are hydrophilic. In the synthesis process, the length of the hydrophobic chain of VECAR molecules can vary from the shortest (n =0) to the longest (n =18), where n indicates the number of carbon atoms in the chain. We conducted MD simulation studies of self-assembly of VECAR molecules in water using GROMACS on LONI HPC resources. Our study shows that there is a strong correlation between the shape and atomistic structure of the self-assembled nano-structures (SANs) and the chain-length (n) of VECAR molecules. We will report the results of data analyses including the atomistic structure of each SANs and the dynamic and energetic mechanisms of their formation as function of time. In summary, both VECAR molecules of chain-length n =18 and 9 form worm-like micelles, which may be used as a drug delivery system. This research is supported by the Louisiana Board of Regents-RCS Grant (LEQSF(2012-15)-RD-A-19).

  3. Stereochemistry in subcomponent self-assembly.

    PubMed

    Castilla, Ana M; Ramsay, William J; Nitschke, Jonathan R

    2014-07-15

    CONSPECTUS: As Pasteur noted more than 150 years ago, asymmetry exists in matter at all organization levels. Biopolymers such as proteins or DNA adopt one-handed conformations, as a result of the chirality of their constituent building blocks. Even at the level of elementary particles, asymmetry exists due to parity violation in the weak nuclear force. While the origin of homochirality in living systems remains obscure, as does the possibility of its connection with broken symmetries at larger or smaller length scales, its centrality to biomolecular structure is clear: the single-handed forms of bio(macro)molecules interlock in ways that depend upon their handednesses. Dynamic artificial systems, such as helical polymers and other supramolecular structures, have provided a means to study the mechanisms of transmission and amplification of stereochemical information, which are key processes to understand in the context of the origins and functions of biological homochirality. Control over stereochemical information transfer in self-assembled systems will also be crucial for the development of new applications in chiral recognition and separation, asymmetric catalysis, and molecular devices. In this Account, we explore different aspects of stereochemistry encountered during the use of subcomponent self-assembly, whereby complex structures are prepared through the simultaneous formation of dynamic coordinative (N → metal) and covalent (N═C) bonds. This technique provides a useful method to study stereochemical information transfer processes within metal-organic assemblies, which may contain different combinations of fixed (carbon) and labile (metal) stereocenters. We start by discussing how simple subcomponents with fixed stereogenic centers can be incorporated in the organic ligands of mononuclear coordination complexes and communicate stereochemical information to the metal center, resulting in diastereomeric enrichment. Enantiopure subcomponents were then

  4. Self-assembled software and method of overriding software execution

    DOEpatents

    Bouchard, Ann M.; Osbourn, Gordon C.

    2013-01-08

    A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.

  5. Magnetic self-assembly of small parts

    NASA Astrophysics Data System (ADS)

    Shetye, Sheetal B.

    Modern society's propensity for miniaturized end-user products is compelling electronic manufacturers to assemble and package different micro-scale, multi-technology components in more efficient and cost-effective manners. As the size of the components gets smaller, issues such as part sticking and alignment precision create challenges that slow the throughput of conventional robotic pick-n-place systems. As an alternative, various self-assembly approaches have been proposed to manipulate micro to millimeter scale components in a parallel fashion without human or robotic intervention. In this dissertation, magnetic self-assembly (MSA) is demonstrated as a highly efficient, completely parallel process for assembly of millimeter scale components. MSA is achieved by integrating permanent micromagnets onto component bonding surfaces using wafer-level microfabrication processes. Embedded bonded powder methods are used for fabrication of the magnets. The magnets are then magnetized using pulse magnetization methods, and the wafers are then singulated to form individual components. When the components are randomly mixed together, self-assembly occurs when the intermagnetic forces overcome the mixing forces. Analytical and finite element methods (FEM) are used to study the force interactions between the micromagnets. The multifunctional aspects of MSA are presented through demonstration of part-to-part and part-to-substrate assembly of 1 mm x 1mm x 0.5 mm silicon components. Part-to-part assembly is demonstrated by batch assembly of free-floating parts in a liquid environment with the assembly yield of different magnetic patterns varying from 88% to 90% in 20 s. Part-to-substrate assembly is demonstrated by assembling an ordered array onto a fixed substrate in a dry environment with the assembly yield varying from 86% to 99%. In both cases, diverse magnetic shapes/patterns are used to control the alignment and angular orientation of the components. A mathematical model is

  6. Self-assembled magnetic surface swimmers.

    SciTech Connect

    Snezhko, A.; Belkin, M.; Aranson, I. S.; Kwok, W.-K.; Materials Science Division; Illinois Inst. of Tech.

    2009-03-20

    We report studies of novel self-assembled magnetic surface swimmers (magnetic snakes) formed from a dispersion of magnetic microparticles at a liquid-air interface and energized by an alternating magnetic field. We show that under certain conditions the snakes spontaneously break the symmetry of surface flows and turn into self-propelled objects. Parameters of the driving magnetic field tune the propulsion velocity of these snakelike swimmers. We find that the symmetry of the surface flows can also be broken in a controlled fashion by attaching a large bead to a magnetic snake (bead-snake hybrid), transforming it into a self-locomoting entity. The observed phenomena have been successfully described by a phenomenological model based on the amplitude equation for surface waves coupled to a large-scale hydrodynamic mean flow equation.

  7. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1996-01-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  8. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1999-10-12

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  9. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, C.R.; Niemeyer, C.M.; Smith, C.L.; Sano, Takeshi; Hnatowich, D.J.; Rusckowski, M.

    1996-10-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products. 5 figs.

  10. Capillary self-assembly of floating bodies

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan; Thompson, Paul; Bush, John

    2007-11-01

    We study the self-assembly of bodies supported on the water surface by surface tension. Attractive and repulsive capillary forces exist between menisci of, respectively, the same and opposite signs. In nature, floating objects (e.g. mosquito larvae) thus interact through capillary forces to form coherent packings on the water surface. We here present the results of an experimental investigation of such capillary pattern formation. Thin elliptical metal sheets were designed to have variable shape, flexibility and mass distribution. On the water surface, mono-, bi-, or tri-polar menisci could thus be achieved. The influence of the form of the menisci on the packings arising from the interaction of multiple floaters is explored. Biological applications are discussed.

  11. Self-assembled magnetic surface swimmers.

    PubMed

    Snezhko, A; Belkin, M; Aranson, I S; Kwok, W-K

    2009-03-20

    We report studies of novel self-assembled magnetic surface swimmers (magnetic snakes) formed from a dispersion of magnetic microparticles at a liquid-air interface and energized by an alternating magnetic field. We show that under certain conditions the snakes spontaneously break the symmetry of surface flows and turn into self-propelled objects. Parameters of the driving magnetic field tune the propulsion velocity of these snakelike swimmers. We find that the symmetry of the surface flows can also be broken in a controlled fashion by attaching a large bead to a magnetic snake (bead-snake hybrid), transforming it into a self-locomoting entity. The observed phenomena have been successfully described by a phenomenological model based on the amplitude equation for surface waves coupled to a large-scale hydrodynamic mean flow equation. PMID:19392241

  12. Pseudotannins self-assembled into antioxidant complexes.

    PubMed

    Cheng, H A; Drinnan, C T; Pleshko, N; Fisher, O Z

    2015-10-21

    Natural tannins are attractive as building blocks for biomaterials due to their antioxidant properties and ability to form interpolymer complexes (IPCs) with other macromolecules. One of the major challenges to tannin usage in biomedical applications is their instability at physiological conditions and a lack of control over the purity and reactivity. Herein, we report the synthesis and characterization of tannin-like polymers with controlled architecture, reactivity, and size. These pseudotannins were synthesized by substituting linear dextran chains with gallic, resorcylic, and protocatechuic pendant groups to mimic the structure of natural hydrolysable tannins. We demonstrate that these novel materials can self-assemble to form reductive and colloidally stable nanoscale and microscale particles. Specifically, the synthesis, turbidity, particle size, antioxidant power, and cell uptake of IPCs derived from pseudotannins and poly(ethylene glycol) was evaluated. PMID:26313262

  13. Self assembly properties of primitive organic compounds

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1991-01-01

    A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic

  14. Self-assembled levan nanoparticles for targeted breast cancer imaging.

    PubMed

    Kim, Sun-Jung; Bae, Pan Kee; Chung, Bong Hyun

    2015-01-01

    We report on the targeted imaging of breast cancer using self-assembled levan nanoparticles. Indocyanine green (ICG) was encapsulated in levan nanoparticles via self-assembly. Levan-ICG nanoparticles were found to be successfully accumulated in breast cancer via specific interaction between fructose moieties in levan and overexpressed glucose transporter 5 in breast cancer cells. PMID:25383444

  15. Structural and Chemical Control of Supramolecular Coordination Self-Assembly Confined on Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Shi, Ziliang

    This thesis is concerned with the structural and chemical control of two-dimensional (2D) supramolecular self-assemblies through judiciously manipulating bonding motifs at various intrinsic and external conditions. The self-selection and the self-recognition of the noncovalent interactions among organic and/or metallic building blocks govern the structural and chemical properties of the resultant self-assembled two-dimensional nanostructures, accompanying with the thermodynamic and kinetic process as well. In this thesis, we have investigated the supramolecular self-assembly achieved via coordination bonds assisted by transition metals and functional ligands on metal surfaces. The self-assembled nanostructures were studied by ultra-high vacuum scanning tunneling microscopy working at room temperatures. The structural transition processes were also inspected via the low energy electron diffraction. Further, artificial "quantum dots" represented by the cavities of the self-assembled networks were investigated. The modulation of surface electrons by these "quantum dots" was characterized by the local density of states detected by low-temperature scanning tunneling spectroscopy. The major contributions of this thesis are outlined as below: (1) Through modifying the chemical states of organic ligands, a unique coordination Kagome network structure was obtained for the first time by two distinct methods. TPyP (5, 10, 15, 20-tetra(4-pyridyl)porphyrin) species on Au(111) surfaces form the TPyP-Au coordination Kagome network achieved by a novel treatment that was suggested to modify the chemical state of the TPyP. In a condition that the TPyP coexists with Cu on a Au(111), Cu adatoms play two roles in the self-assembly---the coordination with pyridyl end-groups and the reaction with TPyP macrocycles, which control the chemical and structural phase of the self-assembly. Following a high temperature annealing, the same Kagome structure emerged from a precursor rhombus network

  16. Investigation of Supramolecular Coordination Self-Assembly and Polymerization Confined on Metal Surfaces Using Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Tao

    Organic molecules are envisioned as the building blocks for design and fabrication of functional devices in future, owing to their versatility, low cost and flexibility. Although some devices such as organic light-emitting diode (OLED) have been already applied in our daily lives, the field is still in its infancy and numerous challenges still remain. In particular, fundamental understanding of the process of organic material fabrication at a molecular level is highly desirable. This thesis focuses on the design and fabrication of supramolecular and macromolecular nanostructures on a Au(111) surface through self-assembly, polymerization and a combination of two. We used scanning tunneling microscopy (STM) as an experimental tool and Monte Carlo (MC) and kinetic Monte Carlo (KMC) simulations as theoretical tools to characterize the structures of these systems and to investigate the mechanisms of the self-assembly and polymerization processes at a single-molecular level. The results of this thesis consist of four parts as below: Part I addresses the mechanisms of two-dimensional multicomponent supramolecular self-assembly via pyridyl-Fe-terpyridyl coordination. Firstly, we studied four types of self-assembled metal-organic systems exhibiting different dimensionalities using specifically-designed molecular building blocks. We found that the two-dimensional system is under thermodynamic controls while the systems of lower dimension are under kinetic controls. Secondly, we studied the self-assembly of a series of cyclic supramolecular polygons. Our results indicate that the yield of on-surface cyclic polygon structures is very low independent of temperature and concentration and this phenomenon can be attributed to a subtle competition between kinetic and thermodynamic controls. These results shed light on thermodynamic and kinetic controls in on-surface coordination self-assembly. Part II addresses the two-dimensional supramolecular self-assembly of porphyrin

  17. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    PubMed

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces. PMID:26266818

  18. Designed self-assembly of molecular necklaces.

    PubMed

    Park, Ki-Min; Kim, Soo-Young; Heo, Jungseok; Whang, Dongmok; Sakamoto, Shigeru; Yamaguchi, Kentaro; Kim, Kimoon

    2002-03-13

    This paper reports an efficient strategy to synthesize molecular necklaces, in which a number of small rings are threaded onto a large ring, utilizing the principles of self-assembly and coordination chemistry. Our strategy involves (1) threading a molecular "bead" with a short "string" to make a pseudorotaxane and then (2) linking the pseudorotaxanes with a metal complex with two cis labile ligands acting as an "angle connector" to form a cyclic product (molecular necklace). A 4- or 3-pyridylmethyl group is attached to each end of 1,4-diaminobutane or 1,5-diaminopentane to produce the short "strings" (C4N4(2+), C4N3(2+), C5N4(2+), and C5N3(2+)), which then react with a cucurbituril (CB) "bead" to form stable pseudorotaxanes (PR44(2+), PR43(2+), PR54(2+), and PR53(2+), respectively). The reaction of the pseudorotaxanes with Pt(en)(NO(3))(2) (en = ethylenediamine) produces a molecular necklace [4]MN, in which three molecular "beads" are threaded on a triangular framework, and/or a molecular necklace [5]MN, in which four molecular "beads" are threaded on a square framework. Under refluxing conditions, the reaction with PR44(2+) or PR54(2+) yields exclusively [4]MN (MN44T or MN54T, respectively), whereas that with PR43(2+) or PR53(2+) produces exclusively [5]MN (MN43S or MN53S, respectively). The products have been characterized by various methods including X-ray crystallography. At lower temperatures, on the other hand, the reaction with PR44(2+) or PR54(2+) affords both [4]MN and [5]MN. The supermolecules reported here are the first series of molecular necklaces obtained as thermodynamic products. The overall structures of the molecular necklaces are strongly influenced by the structures of pseudorotaxane building blocks, which is discussed in detail on the basis of the X-ray crystal structures. The temperature dependence of the product distribution observed in this self-assembly process is also discussed. PMID:11878967

  19. Solvent mediated self-assembly of solids

    SciTech Connect

    De Yoreo, J.; Wilson, W.D.; Palmore, T.

    1997-12-12

    Solvent-mediated crystallization represents a robust approach to self-assembly of nanostructures and microstructures. In organic systems, the relative ease with which the structure of hydrogen- bonded molecules can be manipulated allows for generation of a wide variety of nanoscale crystal structures. In living organisms, control over the micron-to-millimeter form of inorganic crystals is achieved through introduction of bio-organic molecules. The purpose of this proposal is to understand the interplay between solution chemistry, molecular structure, surface chemistry, and the processes of nucleation and crystal growth in solvent-mediated systems, with the goal of developing the atomic and molecular basis of a solvent-mediated self-assembly technology. We will achieve this purpose by: (1) utilizing an atomic force microscopy (AFM) approach that provides in situ, real time imaging during growth from solutions, (2) by modifying kinetic Monte Carlo (KMC) models to include solution-surface kinetics, (3) by introducing quantum chemistry (QC) calculations of the potentials of the relevant chemical species and the near-surface structure of the solution, and (4) by utilizing molecular dynamics (MD) simulations to identify the minimum energy pathways to the solid state. Our work will focus on two systems chosen to address both the manometer and micron-to-millimeter length scales of assembly, the family of 2,5- diketopiperazines (X-DKPs) and the system of CaCO{sub 3} with amino acids. Using AFM, we will record the evolution of surface morphology, critical lengths, step speeds, and step-step interactions as a function of supersaturation and temperature. In the case of the X-DKPs, these measurements will be repeated as the molecular structure of the growth unit is varied. In the case of CaCO{sub 3}, they will be performed as a function of solution chemistry including pH, ionic strength, and amino acid content. In addition, we will measure nucleation rates and orientations of

  20. Surface chemistry of porphyrins and phthalocyanines

    NASA Astrophysics Data System (ADS)

    Gottfried, J. Michael

    2015-11-01

    This review covers the surface chemistry of porphyrins, phthalocyanines, their metal complexes, and related compounds, with particular focus on chemical reactions at solid/vacuum interfaces. Porphyrins are not only important biomolecules, they also find, together with the artificial phthalocyanines, numerous technological and scientific applications, which often involve surface and interface related aspects. After a brief summary of fundamental properties of these molecules in the context of surface science, the following topics will be discussed: (1) Aspects of geometric structure, including self-assembly, conformation, mobility and manipulation of the adsorbed molecules. (2) Surface-related changes of the electronic structure and the magnetic properties. (3) The role of the metal center in the surface chemical bond. (4) On-surface coordination reactions, such as direct metalation and coordination of axial ligands. (5) The influence of axial ligands on the surface chemical bond and the magnetic properties.

  1. Self-assembled single-crystal silicon circuits on plastic

    PubMed Central

    Stauth, Sean A.; Parviz, Babak A.

    2006-01-01

    We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-μm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. PMID:16968780

  2. Functional Self-Assembled Nanofibers by Electrospinning

    NASA Astrophysics Data System (ADS)

    Greiner, A.; Wendorff, J. H.

    Electrospinning constitutes a unique technique for the production of nanofibers with diameters down to the range of a few nanometers. In strong contrast to conventional fiber producing techniques, it relies on self-assembly processes driven by the Coulomb interactions between charged elements of the fluids to be spun to nanofibers. The transition from a macroscopic fluid object such as a droplet emerging from a die to solid nanofibers is controlled by a set of complex physical instability processes. They give rise to extremely high extensional deformations and strain rates during fiber formation causing among others a high orientational order in the nanofibers as well as enhanced mechanical properties. Electrospinning is predominantly applied to polymer based materials including natural and synthetic polymers, but, more recently, its use has been extended towards the production of metal, ceramic and glass nanofibers exploiting precursor routes. The nanofibers can be functionalized during electrospinning by introducing pores, fractal surfaces, by incorporating functional elements such as catalysts, quantum dots, drugs, enzymes or even bacteria. The production of individual fibers, random nonwovens, or orientationally highly ordered nonwovens is achieved by an appropriate selection of electrode configurations. Broad areas of application exist in Material and Life Sciences for such nanofibers, including not only optoelectronics, sensorics, catalysis, textiles, high efficiency filters, fiber reinforcement but also tissue engineering, drug delivery, and wound healing. The basic electrospinning process has more recently been extended towards compound co-electrospinning and precision deposition electrospinning to further broaden accessible fiber architectures and potential areas of application.

  3. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    PubMed

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. PMID:23786830

  4. Initial condition of stochastic self-assembly

    NASA Astrophysics Data System (ADS)

    Davis, Jason K.; Sindi, Suzanne S.

    2016-02-01

    The formation of a stable protein aggregate is regarded as the rate limiting step in the establishment of prion diseases. In these systems, once aggregates reach a critical size the growth process accelerates and thus the waiting time until the appearance of the first critically sized aggregate is a key determinant of disease onset. In addition to prion diseases, aggregation and nucleation is a central step of many physical, chemical, and biological process. Previous studies have examined the first-arrival time at a critical nucleus size during homogeneous self-assembly under the assumption that at time t =0 the system was in the all-monomer state. However, in order to compare to in vivo biological experiments where protein constituents inherited by a newly born cell likely contain intermediate aggregates, other possibilities must be considered. We consider one such possibility by conditioning the unique ergodic size distribution on subcritical aggregate sizes; this least-informed distribution is then used as an initial condition. We make the claim that this initial condition carries fewer assumptions than an all-monomer one and verify that it can yield significantly different averaged waiting times relative to the all-monomer condition under various models of assembly.

  5. Self-assembling holographic biosensors and biocomputers.

    SciTech Connect

    Light, Yooli Kim; Bachand, George David (Sandia National Laboratories, Albuquerque, NM); Schoeniger, Joseph S.; Trent, Amanda M. (Sandia National Laboratories, Albuquerque, NM)

    2006-05-01

    We present concepts for self-assembly of diffractive optics with potential uses in biosensors and biocomputers. The simplest such optics, diffraction gratings, can potentially be made from chemically-stabilized microtubules migrating on nanopatterned tracks of the motor protein kinesin. We discuss the fabrication challenges involved in patterning sub-micron-scale structures with proteins that must be maintained in aqueous buffers to preserve their activity. A novel strategy is presented that employs dry contact printing onto glass-supported amino-silane monolayers of heterobifunctional crosslinkers, followed by solid-state reactions of these cross-linkers, to graft patterns of reactive groups onto the surface. Successive solution-phase addition of cysteine-mutant proteins and amine-reactive polyethylene glycol allows assembly of features onto the printed patterns. We present data from initial experiments showing successful micro- and nanopatterning of lines of single-cysteine mutants of kinesin interleaved with lines of polyethylene, indicating that this strategy can be employed to arrays of features with resolutions suitable for gratings.

  6. Restricted meniscus convective self-assembly.

    PubMed

    Chen, Kai; Stoianov, Stefan V; Bangerter, Justin; Robinson, Hans D

    2010-04-15

    Convective (or evaporation-induced) self-assembly is a standard technique for depositing uniform, poly-crystalline coatings of nanospheres across multiple square centimeters on the timescale of minutes. In this paper, we present a variation of this technique, where the drying meniscus is restricted by a straight-edge located approximately 100 microm above the substrate adjacent to the drying zone. Surprisingly, we find this technique to yield films at roughly twice the growth rate compared to the standard technique. We attribute this to differing rates of diffusion of vapor from the drying crystal in the two cases. We also investigate the crystal growth rate dependence on ambient relative humidity and find, contrary to some previous reports, that the growth rate depends strongly on the humidity. We introduce a model which indicates that while the length of the drying zone may increase with humidity, this alone cannot compensate for the simultaneous reduction in evaporation rate, so a lower humidity must always lead to a higher growth speed. Comparing the model to our experimental results, we find that the length of the drying zone is constant and mostly independent of parameters such as humidity and surface tension. PMID:20132947

  7. Dissipative adaptation in driven self-assembly.

    PubMed

    England, Jeremy L

    2015-11-01

    In a collection of assembling particles that is allowed to reach thermal equilibrium, the energy of a given microscopic arrangement and the probability of observing the system in that arrangement obey a simple exponential relationship known as the Boltzmann distribution. Once the same thermally fluctuating particles are driven away from equilibrium by forces that do work on the system over time, however, it becomes significantly more challenging to relate the likelihood of a given outcome to familiar thermodynamic quantities. Nonetheless, it has long been appreciated that developing a sound and general understanding of the thermodynamics of such non-equilibrium scenarios could ultimately enable us to control and imitate the marvellous successes that living things achieve in driven self-assembly. Here, I suggest that such a theoretical understanding may at last be emerging, and trace its development from historic first steps to more recent discoveries. Focusing on these newer results, I propose that they imply a general thermodynamic mechanism for self-organization via dissipation of absorbed work that may be applicable in a broad class of driven many-body systems. PMID:26530021

  8. Polymer blends for directed self-assembly

    NASA Astrophysics Data System (ADS)

    Namie, Yuuji; Anno, Yusuke; Naruoka, Takehiko; Minegishi, Shinya; Nagai, Tomoki; Hishiro, Yoshi; Yamaguchi, Yoshikazu

    2013-03-01

    The advantage of blend DSA (Directed Self Assembly) is milder anneal condition than PS-b-PMMA BCP DSA materials and availability of conventional instruments. In this paper, blend type DSA was applied for hole patterning. Target patterns were contact hole and oval hole. Polymer phase separation behavior has been studied from the point of χN. In the case of polymer blend, χN needs to be more than 2 to give phase separation. At first the effect of polymer size was studied. When the polymer weight was low, the shrunk hole was not clean because of low χN. Furthermore, the correlation of shrink amount and χN was studied. Higher χN polymer blend system gave higher shrink amount. High χN polymer systems give clear interface, then the intermixing area would be reduced, then the attached polymer blend part became larger. The polymer blend ratio effect was also investigated. The blend ratio was varied for polymer A/ polymer B=70/30-50/50. The shrink amount of oval hole was reduced with increasing the ratio of polymer B. However, the shrink amount ratio of CDY/CDX was almost constant (~3).

  9. Surfactant mediated polyelectrolyte self-assembly

    SciTech Connect

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; Sumpter, Bobby G.

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain and surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.

  10. Surfactant mediated polyelectrolyte self-assembly

    DOE PAGESBeta

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; Sumpter, Bobby G.

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less

  11. Self-Assembled Epitaxical Nanostructure Arrays

    NASA Astrophysics Data System (ADS)

    Madhukar, Anupam

    2003-03-01

    The past decade has witnessed major strides in the realization of nanostructures with 3-dimensionally confined electronic states, dubbed quantum dots (QDs). Most notable classes are the solution grown colloidal nanocrystals, also called nanoparticles (NPs) and the strain-driven semiconductor epitaxical islands formed spontaneously beyond a critical deposition amount during growth of a film with a high lattice mismatch with the substrate. The latter, though spatially randomly positioned, by virtue of their epitaxical nature, are readily integrable in a variety of test and device structures. Consequently these have led the way in providing platforms for examining QD physics and QD based devices such as lasers, detectors, amplifiers, and transistors. The colloidal nanocrystals are in desperate need of being epitaxically integrated onto appropriate substrates and thus providing the platform for realizing more flexible and varied classes of quantum nanostructures for even wider range of applications. Epitaxy and spatially-selective self-assembly are thus two key features of wide classes of nanostructures essential for future advanced information sensing, processing, communication and computing technologies within the largely current paradigms of chip and system architectures. In this talk I will focus on some fundamental issues of epitaxical growth and ordering, structural and chemical template engineering approaches, and their implementation for realization of epitaxical QDs in regular 2D and 3D ultra-dense arrays.

  12. Self-assembly of smallest magnetic particles

    PubMed Central

    Mehdizadeh Taheri, Sara; Michaelis, Maria; Friedrich, Thomas; Förster, Beate; Drechsler, Markus; Römer, Florian M.; Bösecke, Peter; Narayanan, Theyencheri; Weber, Birgit; Rehberg, Ingo; Rosenfeldt, Sabine; Förster, Stephan

    2015-01-01

    The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole–dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained. PMID:26554000

  13. Self-Assembly of Tetraphenylalanine Peptides.

    PubMed

    Mayans, Enric; Ballano, Gema; Casanovas, Jordi; Díaz, Angélica; Pérez-Madrigal, Maria M; Estrany, Francesc; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos

    2015-11-16

    Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists of three FFFF molecules defining a ring through head-to-tail NH3(+)⋅⋅⋅(-)OOC interactions, which in turn stack to produce deformed channels with internal diameters between 12 and 16 Å. Depending on the experimental conditions used for the peptide incubation, N-fluorenylmethoxycarbonyl (Fmoc) protected FFFF self-assembles into a variety of polymorphs: ultra-thin nanoplates, fibrils, and star-like submicrometric aggregates. DFT calculations indicate that Fmoc-FFFF prefers a parallel rather than an antiparallel β-sheet assembly. Finally, coexisting multiple assemblies (up to three) were observed for Fmoc-FFFF-OBzl (OBzl = benzyl ester), which incorporates aromatic protecting groups at the two peptide terminals. This unusual and noticeable feature is attributed to the fact that the assemblies obtained by combining the Fmoc and OBzl groups contained in the peptide are isoenergetic. PMID:26419936

  14. Dissipative adaptation in driven self-assembly

    NASA Astrophysics Data System (ADS)

    England, Jeremy L.

    2015-11-01

    In a collection of assembling particles that is allowed to reach thermal equilibrium, the energy of a given microscopic arrangement and the probability of observing the system in that arrangement obey a simple exponential relationship known as the Boltzmann distribution. Once the same thermally fluctuating particles are driven away from equilibrium by forces that do work on the system over time, however, it becomes significantly more challenging to relate the likelihood of a given outcome to familiar thermodynamic quantities. Nonetheless, it has long been appreciated that developing a sound and general understanding of the thermodynamics of such non-equilibrium scenarios could ultimately enable us to control and imitate the marvellous successes that living things achieve in driven self-assembly. Here, I suggest that such a theoretical understanding may at last be emerging, and trace its development from historic first steps to more recent discoveries. Focusing on these newer results, I propose that they imply a general thermodynamic mechanism for self-organization via dissipation of absorbed work that may be applicable in a broad class of driven many-body systems.

  15. Initial condition of stochastic self-assembly.

    PubMed

    Davis, Jason K; Sindi, Suzanne S

    2016-02-01

    The formation of a stable protein aggregate is regarded as the rate limiting step in the establishment of prion diseases. In these systems, once aggregates reach a critical size the growth process accelerates and thus the waiting time until the appearance of the first critically sized aggregate is a key determinant of disease onset. In addition to prion diseases, aggregation and nucleation is a central step of many physical, chemical, and biological process. Previous studies have examined the first-arrival time at a critical nucleus size during homogeneous self-assembly under the assumption that at time t=0 the system was in the all-monomer state. However, in order to compare to in vivo biological experiments where protein constituents inherited by a newly born cell likely contain intermediate aggregates, other possibilities must be considered. We consider one such possibility by conditioning the unique ergodic size distribution on subcritical aggregate sizes; this least-informed distribution is then used as an initial condition. We make the claim that this initial condition carries fewer assumptions than an all-monomer one and verify that it can yield significantly different averaged waiting times relative to the all-monomer condition under various models of assembly. PMID:26986290

  16. Intrinsic defect formation in peptide self-assembly

    NASA Astrophysics Data System (ADS)

    Deng, Li; Zhao, Yurong; Xu, Hai; Wang, Yanting

    2015-07-01

    In contrast to extensively studied defects in traditional materials, we report here a systematic investigation of the formation mechanism of intrinsic defects in self-assembled peptide nanostructures. The Monte Carlo simulations with our simplified dynamic hierarchical model revealed that the symmetry breaking of layer bending mode at the two ends during morphological transformation is responsible for intrinsic defect formation, whose microscopic origin is the mismatch between layer stacking along the side-chain direction and layer growth along the hydrogen bond direction. Moreover, defect formation does not affect the chirality of the self-assembled structure, which is determined by the initial steps of the peptide self-assembly process.

  17. Colloidosome like structures: self-assembly of silica microrods

    DOE PAGESBeta

    Datskos, P.; Polizos, G.; Bhandari, M.; Cullen, D. A.; Sharma, J.

    2016-03-07

    Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. We demonstrate silica microrod self-assembly by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/ pentanol emulsion droplets. Moreover, rods self-assembled to make structures in the range of z10 40 mm. Smooth rods assembled better than segmented rods. Finally, the assembled structures were bonded by weak van der Waals forces.

  18. Examples of Molecular Self-Assembly at Surfaces.

    PubMed

    Whitelam, Stephen

    2015-10-14

    The self-assembly of molecules at surfaces can be caused by a range of physical mechanisms. Assembly can be driven by intermolecular forces, or molecule-surface forces, or both; it can result in structures that are in equilibrium or that are kinetically trapped. Here we review examples of self-assembly at surfaces focusing on a physical understanding of what causes patterns seen in experiment. Some apparently disparate systems can be described in similar physical terms, indicating that simple factors - such as the geometry and energy scale of intermolecular binding - are key to understanding the self-assembly of those systems. PMID:25873520

  19. Peptide-directed self-assembly of hydrogels

    PubMed Central

    Kopeček, Jindřich; Yang, Jiyuan

    2009-01-01

    This review focuses on the self-assembly of macromolecules mediated by the biorecognition of peptide/protein domains. Structures forming α-helices and β-sheets have been used to mediate self-assembly into hydrogels of peptides, reactive copolymers and peptide motifs, block copolymers, and graft copolymers. Structural factors governing the self-assembly of these molecules into precisely defined three-dimensional structures (hydrogels) are reviewed. The incorporation of peptide motifs into hybrid systems, composed of synthetic and natural macromolecules, enhances design opportunities for new biomaterials when compared to individual components. PMID:18952513

  20. Magnetic manipulation of self-assembled colloidal asters

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Aranson, Igor S.

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots.

  1. Magnetic manipulation of self-assembled colloidal asters.

    SciTech Connect

    Snezhko, A.; Aranson, I. S.

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots

  2. Bio-inspired supramolecular self-assembly towards soft nanomaterials

    PubMed Central

    LIN, Yiyang; MAO, Chuanbin

    2011-01-01

    Supramolecular self-assembly has proven to be a reliable approach towards versatile nanomaterials based on multiple weak intermolecular forces. In this review, the development of bio-inspired supramolecular self-assembly into soft materials and their applications are summarized. Molecular systems used in bio-inspired “bottom-up self-assembly” involve small organic molecules, peptides or proteins, nucleic acids, and viruses. Self-assembled soft nanomaterials have been exploited in various applications such as inorganic nanomaterial synthesis, drug or gene delivery, tissue engineering, and so on. PMID:21980594

  3. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    PubMed Central

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-01-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs. PMID:27404912

  4. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    NASA Astrophysics Data System (ADS)

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-07-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs.

  5. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages.

    PubMed

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J

    2016-01-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs. PMID:27404912

  6. Self assembly: An approach to terascale integration

    SciTech Connect

    Singer, S.

    1993-09-01

    Surely one of the most remarkable accomplishments of modern times has been the miniaturization of electronic components, starting with discrete transistors and leading to Very Large Scale Integrated (VLSI) Circuits which will soon contain almost 100 million components in a few square centimeters. It led to an information processing industry that fuels almost every aspect of industrial societies and that has brought manifold benefits to their citizens. Although continuation of the miniaturization process is likely to produce even greater benefits, many experts are concerned that extrapolation of traditional silicon VLSI techniques will meet with increasingly severe difficulties. Some of these are fundamental in nature, e. g., granularity and fluctuations in semiconductors and interconnects and proximity effects such as tunneling. The first major difficulty to be encountered will be a rising cost of products due to increased complexity and difficulty of manufacturing and assembly. Such difficulties are likely to be seen in about 10 years when minimum component sizes are expected to decrease below 0.15--0.2 {mu}m. If alternatives to present VLSI techniques are to be available when needed, work on them must start now. At Los Alamos, we are exploring the feasibility of ultrasmall wires and switches that self-assemble themselves into computing elements and circuits. Their operation is based on the quantum properties of nanometer scale molecular clusters. This paper will describe our efforts in the development of these components and will summarize our work in four areas: (1) the development of conducting molecular wires, (2) conducting nanoparticle wires and switches based on the Coulomb Blockade principle, (3) the development of advanced architectures that benefit from the use of such components and that significantly advance the art of high performance computing, and (4) the development of novel methods for attaining sub-Angstrom 3-D non-destructive imaging.

  7. Differentially photo-crosslinked polymers enable self-assembling microfluidics

    PubMed Central

    Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.

    2012-01-01

    An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594

  8. Activity-assisted self-assembly of colloidal particles.

    PubMed

    Mallory, S A; Cacciuto, A

    2016-08-01

    We outline a basic strategy of how self-propulsion can be used to improve the yield of a typical colloidal self-assembly process. The success of this approach is predicated on the thoughtful design of the colloidal building block as well as how self-propulsion is endowed to the particle. As long as a set of criteria are satisfied, it is possible to significantly increase the rate of self-assembly, and greatly expand the window in parameter space where self-assembly can occur. In addition, we show that by tuning the relative on-off time of the self-propelling force it is possible to modulate the effective speed of the colloids allowing for further optimization of the self-assembly process. PMID:27627360

  9. Directed self-assembly of proteins into discrete radial patterns

    PubMed Central

    Thakur, Garima; Prashanthi, Kovur; Thundat, Thomas

    2013-01-01

    Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns. PMID:23719678

  10. Urethane tetrathiafulvalene derivatives: synthesis, self-assembly and electrochemical properities

    PubMed Central

    Sun, Xiang; Lai, Guoqiao; Li, Zhifang; Ma, Yuwen; Yuan, Xiao; Shen, Yongjia

    2015-01-01

    Summary This paper reports the self-assembly of two new tetrathiafulvalene (TTF) derivatives that contain one or two urethane groups. The formation of nanoribbons was evidenced by scanning electron microscopy (SEM) and X-ray diffraction (XRD), which showed that the self-assembly ability of T 1 was better than that of T 2. The results revealed that more urethane groups in a molecule did not necessarily instigate self-assembly. UV–vis and FTIR spectra were measured to explore noncovalent interactions. The driving forces for self-assembly of TTF derivatives were mainly hydrogen bond interactions and π–π stacking interactions. The electronic conductivity of the T 1 and T 2 films was tested by a four-probe method. PMID:26734083

  11. Supramolecular chirality in self-assembled peptide amphiphile nanostructures.

    PubMed

    Garifullin, Ruslan; Guler, Mustafa O

    2015-08-11

    Induced supramolecular chirality was investigated in the self-assembled peptide amphiphile (PA) nanosystems. Having shown that peptide chirality can be transferred to the covalently-attached achiral pyrene moiety upon PA self-assembly, the chiral information is transferred to molecular pyrene via weak noncovalent interactions. In the first design of a supramolecular chiral system, the chromophore was covalently attached to a peptide sequence (VVAGH) via an ε-aminohexanoic acid spacer. Covalent attachment yielded a PA molecule self-assembling into nanofibers. In the second design, the chromophore was encapsulated within the hydrophobic core of self-assembled nanofibers of another PA consisting of the same peptide sequence attached to lauric acid. We observed that supramolecular chirality was induced in the chromophore by PA assembly into chiral nanostructures, whether it was covalently attached, or noncovalently bound. PMID:26146021

  12. Modeling the Kinetics of Open Self-Assembly.

    PubMed

    Verdier, Timothée; Foret, Lionel; Castelnovo, Martin

    2016-07-01

    In this work, we explore theoretically the kinetics of molecular self-assembly in the presence of constant monomer flux as an input, and a maximal size. The proposed model is supposed to reproduce the dynamics of viral self-assembly for enveloped virus. It turns out that the kinetics of open self-assembly is rather quantitatively different from the kinetics of similar closed assembly. In particular, our results show that the convergence toward the stationary state is reached through assembly waves. Interestingly, we show that the production of complete clusters is much more efficient in the presence of a constant input flux, rather than providing all monomers at the beginning of the self-assembly. PMID:27295398

  13. Vortical superlattices in a gold nanorods' self-assembled monolayer

    NASA Astrophysics Data System (ADS)

    Xie, Yong; Liang, Yujia; Chen, Dongxue; Wu, Xiaochun; Dai, Luru; Liu, Qian

    2014-02-01

    This paper describes the novel vortical self-assembly of CTAB-capped gold nanorods. Representative left-hand, radial, and right-hand vortices are shown. Micelles formed by CTAB molecules enhance the organized self-assembly process. The drag force of solvent flow and dynamic vortex flow in the thin solvent layer are thought to be responsible for the final vortical superlattices. FDTD simulation suggests these structures have potential applications in nanofocusing and polarized light response.

  14. Design strategies for self-assembly of discrete targets

    SciTech Connect

    Madge, Jim; Miller, Mark A.

    2015-07-28

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority.

  15. Synthetic Self-Assembled Materials in Biological Environments.

    PubMed

    Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2016-06-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA, proteins), until recently the self-assembly of synthetic molecules has mainly been investigated ex vivo. The past few years however, have witnessed the emergence of a research field in which synthetic, self-assembling systems are used that are capable of operating as bioactive materials in biological environments. Here, this up-and-coming field, which has the potential of becoming a key area in chemical biology and medicine, is reviewed. Two main categories of applications of self-assembly in biological environments are identified and discussed, namely therapeutic and imaging agents. Within these categories key concepts, such as triggers and molecular constraints for in vitro/in vivo self-assembly and the mode of interaction between the assemblies and the biological materials will be discussed. PMID:27042774

  16. Electric Field Controlled Self-Assembly of Hierarchically Ordered Membranes

    PubMed Central

    Velichko, Yuri S.; Mantei, Jason R.; Bitton, Ronit; Carvajal, Daniel; Shull, Kenneth R.; Stupp, Samuel I.

    2012-01-01

    Self-assembly in the presence of external forces is an adaptive, directed organization of molecular components under nonequilibrium conditions. While forces may be generated as a result of spontaneous interactions among components of a system, intervention with external forces can significantly alter the final outcome of self-assembly. Superimposing these intrinsic and extrinsic forces provides greater degrees of freedom to control the structure and function of self-assembling materials. In this work we investigate the role of electric fields during the dynamic self-assembly of a negatively charged polyelectrolyte and a positively charged peptide amphiphile in water leading to the formation of an ordered membrane. In the absence of electric fields, contact between the two solutions of oppositely charged molecules triggers the growth of closed membranes with vertically oriented fibrils that encapsulate the polyelectrolyte solution. This process of self-assembly is intrinsically driven by excess osmotic pressure of counterions, and the electric field is found to modify the kinetics of membrane formation, and also its morphology and properties. Depending on the strength and orientation of the field we observe a significant increase or decrease of up to nearly 100% in membrane thickness, as well as the controlled rotation of nanofiber growth direction by 90 degrees, resulting in a significant increase in mechanical stiffness. These results suggest the possibility of using electric fields to control structure in self-assembly processes involving diffusion of oppositely charged molecules. PMID:23166533

  17. Electric Field Controlled Self-Assembly of Hierarchically Ordered Membranes.

    PubMed

    Velichko, Yuri S; Mantei, Jason R; Bitton, Ronit; Carvajal, Daniel; Shull, Kenneth R; Stupp, Samuel I

    2012-01-25

    Self-assembly in the presence of external forces is an adaptive, directed organization of molecular components under nonequilibrium conditions. While forces may be generated as a result of spontaneous interactions among components of a system, intervention with external forces can significantly alter the final outcome of self-assembly. Superimposing these intrinsic and extrinsic forces provides greater degrees of freedom to control the structure and function of self-assembling materials. In this work we investigate the role of electric fields during the dynamic self-assembly of a negatively charged polyelectrolyte and a positively charged peptide amphiphile in water leading to the formation of an ordered membrane. In the absence of electric fields, contact between the two solutions of oppositely charged molecules triggers the growth of closed membranes with vertically oriented fibrils that encapsulate the polyelectrolyte solution. This process of self-assembly is intrinsically driven by excess osmotic pressure of counterions, and the electric field is found to modify the kinetics of membrane formation, and also its morphology and properties. Depending on the strength and orientation of the field we observe a significant increase or decrease of up to nearly 100% in membrane thickness, as well as the controlled rotation of nanofiber growth direction by 90 degrees, resulting in a significant increase in mechanical stiffness. These results suggest the possibility of using electric fields to control structure in self-assembly processes involving diffusion of oppositely charged molecules. PMID:23166533

  18. Design strategies for self-assembly of discrete targets

    NASA Astrophysics Data System (ADS)

    Madge, Jim; Miller, Mark A.

    2015-07-01

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority.

  19. Effect of polymerization on hierarchical self-assembly into nanosheets.

    PubMed

    Ikeda, Taichi

    2015-01-20

    The oligomers consisting of phenyl-capped bithiophene and tetra(ethylene glycol)s linked by azide-alkyne Huisgen cycloaddition were synthesized. The relationship between the degree of polymerization and self-assembling ability was investigated in o-dichlorobenzene and dimethyl sulfoxide. From the absorption spectrum, it was confirmed that the critical degree of polymerization (CDP) for thiophene unit aggregation was 4. The morphology of the aggregated product was observed by atomic force microscopy. The oligomers 4mer and 5mer could not self-assemble into well-defined structures due to the weak driving force for the self-assembly. In the cases of 6mer and 7mer, aggregates with nonwell-defined and nanosheet structures coexisted. In the cases of 8mer and 9mer, the nanosheet was the main product. The critical point between 7mer and 8mer could be confirmed by different aggregation behaviors in the cooling process of the solution (nonsigmoidal and sigmoidal). In the cases of 8mer and 9mer, polymer folding prior to intermolecular self-assembly, which was supported by sigmoidal aggregation behavior, leads to the nanosheet formation. On the contrary, shorter oligomers than 8mer experience intermolecular aggregation prior to intramolecular polymer folding, which was supported by the nonsigmoidal aggregation behavior. This is the first report to prove the existence of CDP for folded polymer nanosheet formation which requires hierarchical self-assembly, i.e., polymer folding followed by intermolecular self-assembly. PMID:25526560

  20. Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency

    PubMed Central

    Zhao, Qiang; Wang, Yao; Xu, Yanshuang; Yan, Yun; Huang, Jianbin

    2016-01-01

    A supramolecular porphyrin nanotube displaying J-aggregation feature was constructed by out-of-plane coordinated bismuth-porphyrin. Significantly, compared to traditional J-aggregated porphyrin suffering from fluorescence and singlet oxygen quenching, the nanotube exhibits excellent bio-imaging ability and enhanced production efficiency of singlet oxygen. The out-of-plane structure of bismuth to porphyrin makes the aggregation an appropriate material for theranostics. Furthermore, it is also a potential radio-therapeutic drug owing to the presence of radio-active bismuth. Thus, the self-assembly of out-of-plane coordinated porphyrin can be a facile approach toward effective therapy of tumors and other diseases. PMID:27527403

  1. Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency.

    PubMed

    Zhao, Qiang; Wang, Yao; Xu, Yanshuang; Yan, Yun; Huang, Jianbin

    2016-01-01

    A supramolecular porphyrin nanotube displaying J-aggregation feature was constructed by out-of-plane coordinated bismuth-porphyrin. Significantly, compared to traditional J-aggregated porphyrin suffering from fluorescence and singlet oxygen quenching, the nanotube exhibits excellent bio-imaging ability and enhanced production efficiency of singlet oxygen. The out-of-plane structure of bismuth to porphyrin makes the aggregation an appropriate material for theranostics. Furthermore, it is also a potential radio-therapeutic drug owing to the presence of radio-active bismuth. Thus, the self-assembly of out-of-plane coordinated porphyrin can be a facile approach toward effective therapy of tumors and other diseases. PMID:27527403

  2. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.

    PubMed

    Ensslen, Philipp; Wagenknecht, Hans-Achim

    2015-10-20

    modifications in a row. A logical alternative approach is to leave out the phosphodiester bridges between the chromophores and let chromophore-nucleoside conjugates self-assemble specifically along single stranded DNA as template. The self-organization of chromophores along the DNA template based on canonical base pairing would be advantageous because sequence selective base pairing could provide a structural basis for programmed complexity within the chromophore assembly. The self-assembly is governed by two interactions. The chromophore-nucleoside conjugates as guest molecules are recognized via hydrogen bonds to the corresponding counter bases in the single stranded DNA template. Moreover, the π-π interactions between the stacked chromophores stabilize these self-assembled constructs with increasing length. Longer DNA templates are more attractive for self-assembled antenna. The helicity in the stack of porphyrins as guest molecules assembled on the DNA template can be switched by environmental changes, such as pH variations. DNA-templated stacks of ethynyl pyrene and nile red exhibit left-handed chirality, which stands in contrast to similar covalent multichromophore-DNA conjugates with enforced right-handed helicity. With ethynyl nile red, it is possible to occupy every available binding site on the templates. Mixed assemblies of ethynyl pyrene and nile red show energy transfer and thereby provide a proof-of-principle that simple light-harvesting antennae can be obtained in a noncovalent and self-assembled fashion. With respect to the next important step, chemical storage of the absorbed light energy, future research has to focus on the coupling of sophisticated DNA-based light-harvesting antenna to reaction centers. PMID:26411920

  3. Structures Self-Assembled Through Directional Solidification

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2005-01-01

    dry plasma etch. The wet chemical etches the silicon away, exposing the TiSi2 rods, whereas plasma etching preferentially etches the Si-TiSi2 interface to form a crater. The porous architectures are applicable to fabricating microdevices or creating templates for part fabrication. The porous rod structure can serve as a platform for fabricating microplasma devices for propulsion or microheat exchangers and for fabricating microfilters for miniatured chemical reactors. Although more work is required, self-assembly from DSE can have a role in microdevice fabrication.

  4. A path to designing self-assembling surface patterns on particles for self-assembly of the particles themselves

    NASA Astrophysics Data System (ADS)

    Lindgren, Oskar; Edlund, Erik; Nilsson Jacobi, Martin

    2014-03-01

    Patchy colloids are promising candidates for self-assembly of metamaterials since directional attraction and high specificity reduces the ambiguity of the low energy state, this simplifies the design of self-assembling building blocks. However, the large scale fabrication of colloids with specific patterns becomes more difficult as the complexity of the surface pattern increases. Self-organiziation of the surface patterns themselves have been suggested as a promising fabrication method due to the new types of patterns it makes accessible. We present a method for designing self-assembling patterns in multiple components system on particle surfaces. The method is based on an analytical treatment of an effective interaction representation of real systems. As an example, we use a simplified model of Alkalethoils-on-gold to show how a limited amount of system parameters can be tuned in order to cause self-assembly of desired surface patterns. We perform in silico self-assembly of surface patterns on spherical colloids, the patterns then causes the colloids themselves to self-assemble into various geometric target structures like strings, membranes, cubic aggregates and lattices. OL and MNJ acknowledge support from the SuMo Biomaterials center of excellence.

  5. Ordered monolayers of free-standing porphyrins on gold.

    PubMed

    Otte, Franziska L; Lemke, Sonja; Schütt, Christian; Krekiehn, Nicolai R; Jung, Ulrich; Magnussen, Olaf M; Herges, Rainer

    2014-08-13

    The controlled attachment of chromophores to metal or semiconducting surfaces is a prerequisite for the construction of photonic devices and artificial surface-based light-harvesting systems. We present an approach to mount porphyrins in ordered monolayers on Au(111) by self-assembly and verify it, employing STM, absorption spectroscopy, and quantum chemical calculations. The usual adsorption geometry of planar chromophores, flat on the surface or densely packed edge-on, is prevented by mounting the porphyrins upright on a molecular platform. An ethynyl unit as spacer and pivot joint provides almost free azimuthal rotation of the unsubstituted porphin. However, rotation of the larger triphenylporphyrin unit is sterically restricted: because the diameter of the substituted porphyrin is larger than the distance to its next neighbors, the phenyl substituents of neigboring molecules interact by dispersion force, which leads to an alignment of the azimuthal rotators. PMID:25053445

  6. Dynamic, Directed Self-Assembly of Nanoparticles via Toggled Interactions.

    PubMed

    Sherman, Zachary M; Swan, James W

    2016-05-24

    Crystals self-assembled from nanoparticles have useful properties such as optical activity and sensing capability. During fabrication, however, gelation and glassification often leave these materials arrested in defective or disordered metastable states. This is a key difficulty preventing adoption of self-assembled nanoparticle materials at scale. Processes which suppress kinetic arrest and defect formation while accelerating growth of ordered materials are essential for bottom-up approaches to creating nanomaterials. Dynamic, directed self-assembly processes in which the interactions between self-assembling components are actuated temporally offer one promising methodology for accelerating and controlling bottom-up growth of nanostructures. In this article, we show through simulation and theory how time-dependent, periodically toggled interparticle attractions can avoid kinetic barriers and yield well-ordered crystalline domains for a dispersion of nanoparticles interacting via a short-ranged, isotropic potential. The growth mechanism and terminal structure of the dispersion are controlled by parameters of the toggling protocol. This control allows for selection of processes that yield rapid self-assembled, low defect crystals. Although self-assembly via periodically toggled attractions is inherently unsteady and out-of-equilibrium, its outcome is predicted by a first-principles theory of nonequilibrium thermodynamics. The theory necessitates equality of the time average of pressure and chemical potential in coexisting phases of the dispersion. These quantities are evaluated using well known equations of state. The phase behavior predicted by this theory agrees well with measurements made in Brownian dynamics simulations of sedimentation equilibrium and homogeneous nucleation. The theory can easily be extended to model dynamic self-assembly directed by other toggled conservative force fields. PMID:27096705

  7. Sequential programmable self-assembly: Role of cooperative interactions

    NASA Astrophysics Data System (ADS)

    Halverson, Jonathan D.; Tkachenko, Alexei V.

    2016-03-01

    We propose a general strategy of "sequential programmable self-assembly" that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenient platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call "DNA spider," that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a "GEOMAG" magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.

  8. Self-Assembly for the Synthesis of Functional Biomaterials

    PubMed Central

    Stephanopoulos, Nicholas; Ortony, Julia H.; Stupp, Samuel I.

    2012-01-01

    The use of self-assembly for the construction of functional biomaterials is a highly promising and exciting area of research, with great potential for the treatment of injury or disease. By using multiple noncovalent interactions, coded into the molecular design of the constituent components, self-assembly allows for the construction of complex, adaptable, and highly tunable materials with potent biological effects. This review describes some of the seminal advances in the use of self-assembly to make novel systems for regenerative medicine and biology. Materials based on peptides, proteins, DNA, or hybrids thereof have found application in the treatment of a wide range of injuries and diseases, and this review outlines the design principles and practical applications of these systems. Most of the examples covered focus on the synthesis of hydrogels for the scaffolding or transplantation of cells, with an emphasis on the biological, mechanical, and structural properties of the resulting materials. In addition, we will discuss the distinct advantages conferred by self-assembly (compared with traditional covalent materials), and present some of the challenges and opportunities for the next generation of self-assembled biomaterials. PMID:23457423

  9. Harnessing Surface Dislocation Networks for Molecular Self-Assembly

    NASA Astrophysics Data System (ADS)

    Pohl, Karsten

    2009-03-01

    The controlled fabrication of functional wafer-based nano-arrays is one of the ultimate quests in current nanotechnologies. Well-ordered misfit dislocation networks of ultrathin metal films are viable candidates for the growth of two- dimensional ordered cluster arrays in the nanometer regime. Such bottom-up processes can be very complex, involving collective effects from a large number of atoms. Unraveling the fundamental forces that drive these self-assembly processes requires detailed experimental information at the atomic level of large ensembles of hundreds to thousands of atoms. The combination of variable temperature measurements from our home-built STM correlated with 2D Frenkel-Kontorova models based on first-principle interaction parameters is used to explain how uniform arrays can form with the strain in the thin film as the driving force responsible for the surface self-assembly process. This process is generally applicable to assemble many molecular species thus opening avenues towards complex self-assembled structures based on a lock-and-key type approach. Moreover, when increasing the molecular coverage and/or decreasing the strain in the thin film the intermolecular interactions will eventually dominate the elastic effects and dictate the self-assembly process via molecular structure and functionality. We will show that controlling this delicate balance leads to a richness of structures, ranging from disperse ordered arrays of molecular clusters to patterned self-assembled monolayers (SAMs) of functionalized fullerenes and methanethiol.

  10. Semiconducting nanowires from hairpin-shaped self-assembling sexithiophenes.

    PubMed

    Tsai, Wei-Wen; Tevis, Ian D; Tayi, Alok S; Cui, Honggang; Stupp, Samuel I

    2010-11-18

    Conjugated organic molecules can be designed to self-assemble from solution into nanostructures for functions such as charge transport, light emission, or light harvesting. We report here the design and synthesis of a novel hairpin-shaped self-assembling molecule containing electronically active sexithiophene moieties. In several nonpolar organic solvents, such as toluene or chlorocyclohexane, this compound was found to form organogels composed of nanofibers with uniform diameters of 3.0 (±0.3) nm. NMR analysis and spectroscopic measurements revealed that the self-assembly is driven by π-π interactions of the sexithiophene moieties and hydrogen bonding among the amide groups at the head of the hairpin. Field effect transistors built with this molecule revealed p-type semiconducting behavior and higher hole mobilities when films were cast from solvents that promote self-assembly. We propose that hydrogen bonding and π-π stacking act synergistically to create ordered stacking of sexithiophene moieties, thus providing an efficient pathway for charge carriers within the nanowires. The nanostructures formed exhibit unusually broad absorbance in their UV-vis spectrum, which we attribute to the coexistence of both H and J aggregates from face-to-face π-π stacking of sexithiophene moieties and hierarchical bundling of the nanowires. The large absorption range associated with self-assembly of the hairpin molecules makes them potentially useful in light harvesting for energy applications. PMID:20698523

  11. Synthesis and characterization of porphyrin nanotubes/rods for solar radiation harvesting and solar cells

    NASA Astrophysics Data System (ADS)

    Mongwaketsi, N.; Khamlich, S.; Klumperman, B.; Sparrow, R.; Maaza, M.

    2012-05-01

    Energy transfer and electron transfer events as they occur between well arranged light harvesting antenna molecules, the reaction center and other factors determine the function of natural photosynthesis. The overall small reorganization energy and the well-balanced electronic coupling between each component bear key characters for the unique efficiency of natural photosynthesis. Such aspects permit the design and assembly of artificial systems that efficiently process solar energy, replicating the natural processes. The rich and extensive transitions seen in porphyrin-based materials hold great expectation as light harvesting building blocks in the construction of molecular architectures, allowing an efficient use of the solar spectrum. Hence in this study porphyrin nanorods are synthesized and characterized for future application in the construction of the artificial light harvesting system. Understanding the sizes and growth mechanism of porphyrins nanorods by self-assembly and molecular recognition is essential for their successful implementation in nanodevices. Spectroscopic and microscopic studies were carried out to investigate the effect that time, concentration and solvents have on the fabrication of porphyrin nanorods by ionic self-assembly of two oppositely charged porphyrins. We investigate in details the heteroaggregate behavior formation of [H4TPPS4]2- and [SnTPyP]2+ mixture by means of the UV-vis spectroscopy and aggregates structure and morphology by transmission electron microscopy (TEM). This study demonstrates the potential for using different concentrations and solvents to influence the physical and optical properties of porphyrin based nanorods.

  12. Functional self-assembled lipidic systems derived from renewable resources

    PubMed Central

    Silverman, Julian R.; Samateh, Malick; John, George

    2015-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure–function relationship and functional smart materials that research may remain safe, economic, and efficient. PMID:26766923

  13. Cell Environment-Differentiated Self-Assembly of Nanofibers.

    PubMed

    Zheng, Zhen; Chen, Peiyao; Xie, Maolin; Wu, Chengfan; Luo, Yufeng; Wang, Wentao; Jiang, Jun; Liang, Gaolin

    2016-09-01

    Employing cellular environment for the self-assembly of supramolecular nanofibers for biological applications has been widely explored. But using one precursor to differentiate the extra- and intracellular environments to self-assemble into two different nanofibers remains challenging. With the knowledge that the extracellualr environment of some cancer cells contains large amounts of alkaline phosphatase (ALP) while their intracellular environment is glutathione (GSH)-abundant in mind, we rationally designed a precursor Cys(SEt)-Glu-Tyr(H2PO3)-Phe-Phe-Gly-CBT (1) that can efficiently yield amphiphilic 2 and 2-D to self-assemble into two different nanofibers in hydrogels under the sequential treatment of ALP and GSH. We envision that, by employing a click condensation reaction, this work offers a platform for facilely postmodulation of supramolecular nanofibers, and the versatile precursor 1 could be used to kill two birds with one stone. PMID:27532322

  14. Self-assembly of tunable protein suprastructures from recombinant oleosin

    PubMed Central

    Vargo, Kevin B.; Parthasarathy, Ranganath; Hammer, Daniel A.

    2012-01-01

    Using recombinant amphiphilic proteins to self-assemble suprastructures would allow precise control over surfactant chemistry and the facile incorporation of biological functionality. We used cryo-TEM to confirm self-assembled structures from recombinantly produced mutants of the naturally occurring sunflower protein, oleosin. We studied the phase behavior of protein self-assembly as a function of solution ionic strength and protein hydrophilic fraction, observing nanometric fibers, sheets, and vesicles. Vesicle membrane thickness correlated with increasing hydrophilic fraction for a fixed hydrophobic domain length. The existence of a bilayer membrane was corroborated in giant vesicles through the localized encapsulation of hydrophobic Nile red and hydrophilic calcein. Circular dichroism revealed that changes in nanostructural morphology in this family of mutants was unrelated to changes in secondary structure. Ultimately, we envision the use of recombinant techniques to introduce novel functionality into these materials for biological applications. PMID:22753512

  15. Actinide sequestration using self-assembled monolayers on mesoporous supports.

    PubMed

    Fryxell, Glen E; Lin, Yuehe; Fiskum, Sandy; Birnbaum, Jerome C; Wu, Hong; Kemner, Ken; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometalate anions, and radionuclides. Details addressing the design, synthesis, and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental cleanup necessary after 40 years of weapons-grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented. PMID:15787373

  16. Self-assembling peptides and their potential applications in biomedicine.

    PubMed

    Rymer, Sarah-Jane; Tendler, Saul J B; Bosquillon, Cynthia; Washington, Clive; Roberts, Clive J

    2011-08-01

    For many years, peptides have been known to self-assemble to form nano- and micro-scale structures. Their nature of assembly and assembled morphology has since been investigated as this area of research has important implications for the development of both drug delivery and tissue regeneration. In this article, we explore the process of peptide self-assembly in vivo, and experiments that exploit the structures formed. Particular focus is directed towards diphenylalanine, the simplest self-assembling peptide, which generally forms tube-like structures on assembly. In addition, different peptides that may assemble into a range of other morphologies are highlighted and potential applications in regenerative medicine and drug delivery discussed. PMID:22826867

  17. Self-assembly and application of diphenylalanine-based nanostructures.

    PubMed

    Yan, Xuehai; Zhu, Pengli; Li, Junbai

    2010-06-01

    Micro- and nanostructures fabricated from biological building blocks have attracted tremendous attention owing to their potential for application in biology and in nanotechnology. Many biomolecules, including peptides and proteins, can interact and self-assemble into highly ordered supramolecular architectures with functionality. By imitating the processes where biological peptides or proteins are assembled in nature, one can delicately design and synthesize various peptide building blocks composed of several to dozens of amino acids for the creation of biomimetic or bioinspired nanostructured materials. This tutorial review aims to introduce a new kind of peptide building block, the diphenylalanine motif, extracted with inspiration of a pathogenic process towards molecular self-assembly. We highlight recent and current advances in fabrication and application of diphenylalanine-based peptide nanomaterials. We also highlight the preparation of such peptide-based nanostructures as nanotubes, spherical vesicles, nanofibrils, nanowires and hybrids through self-assembly, the improvement of their properties and the extension of their applications. PMID:20502791

  18. Self-Assembly of DNA-coated colloids

    NASA Astrophysics Data System (ADS)

    Pine, David

    DNA-coated particles have emerged as a powerful tool for programming the self-assembly of colloids and nanoparticles. The power of this approach lies in the highly specific molecular recognition properties of DNA and in the thermal reversibility of the interactions between DNA strands attached to different particles. These two properties taken together can, in principle, direct the bottom-up self-assembly of different materials into almost any desired structure. Here we discuss the self-assembly of single and multi-component crystals of DNA-coated colloids. This work is supported by the Army Research Office under MURI Grant Award Number W911NF-10-1-0518 and the MRSEC Program of the NSF under Award Number DMR-1420073.

  19. Self-assembled liposomal nanoparticles in photodynamic therapy

    PubMed Central

    Sadasivam, Magesh; Avci, Pinar; Gupta, Gaurav K.; Lakshmanan, Shanmugamurthy; Chandran, Rakkiyappan; Huang, Ying-Ying; Kumar, Raj; Hamblin, Michael R.

    2013-01-01

    Photodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) together with harmless visible light of the appropriate wavelength to produce reactive oxygen species that kill unwanted cells. Because many PS are hydrophobic molecules prone to aggregation, numerous drug delivery vehicles have been tested to solubilize these molecules, render them biocompatible and enhance the ease of administration after intravenous injection. The recent rise in nanotechnology has markedly expanded the range of these nanoparticulate delivery vehicles beyond the well-established liposomes and micelles. Self-assembled nanoparticles are formed by judicious choice of monomer building blocks that spontaneously form a well-oriented 3-dimensional structure that incorporates the PS when subjected to the appropriate conditions. This self-assembly process is governed by a subtle interplay of forces on the molecular level. This review will cover the state of the art in the preparation and use of self-assembled liposomal nanoparticles within the context of PDT. PMID:24348377

  20. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks

    PubMed Central

    Petkau-Milroy, Katja; Sonntag, Michael H.; Colditz, Alexander; Brunsveld, Luc

    2013-01-01

    Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard to streptavidin. Next to tetravalent streptavidin, monovalent streptavidin was used to study the protein assembly along the supramolecular polymer in detail without the interference of cross-linking. Upon self-assembly of the monovalent biotinylated discotics, multivalent proteins can be assembled along the supramolecular polymer. The concentration of discotics, which influences the length of the final polymers at the same time dictates the amount of assembled proteins. PMID:24152447

  1. Guided and magnetic self-assembly of tunable magnetoceptive gels

    NASA Astrophysics Data System (ADS)

    Tasoglu, S.; Yu, C. H.; Gungordu, H. I.; Guven, S.; Vural, T.; Demirci, U.

    2014-09-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.

  2. Equation of State for Phospholipid Self-Assembly.

    PubMed

    Marsh, Derek

    2016-01-01

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle concentration at a single temperature suffices to define an effective heat capacity according to the model. Agreement with the experimental temperature dependence of the critical micelle concentration is then good. The predictive powers should extend also to amphiphile partitioning and the kinetics of lipid-monomer transfer. PMID:26745421

  3. Investigating collagen self-assembly with optical tweezers microrheology

    NASA Astrophysics Data System (ADS)

    Forde, Nancy; Shayegan, Marjan; Altindal, Tuba

    Collagen is the fundamental structural protein in vertebrates. Assembled from individual triple-helical proteins to make strong fibres, collagen is a beautiful example of a hierarchical self-assembling system. Using optical tweezers to perform microrheology measurements, we explore the dynamics of interactions between collagens responsible for their self-assembly and examine the development of heterogeneous mechanics during assembly into fibrillar gels. Telopeptides, short non-helical regions that flank the triple helix, have long been known to facilitate fibril self-assembly. We find that their removal not only slows down fibril nucleation but also results in a significant frequency-dependent reduction in the elastic modulus of collagens in solution. We interpret these results in terms of a model in which telopeptides facilitate transient intermolecular interactions, which enhance network connectivity in solution and lead to more rapid assembly in fibril-forming conditions. Current address: Department of Physics, McGill University.

  4. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications.

    PubMed

    Loo, Yihua; Hauser, Charlotte A E

    2016-02-01

    Three-dimensional (3D) bioprinting is a disruptive technology for creating organotypic constructs for high-throughput screening and regenerative medicine. One major challenge is the lack of suitable bioinks. Short synthetic self-assembling peptides are ideal candidates. Several classes of peptides self-assemble into nanofibrous hydrogels resembling the native extracellular matrix. This is a conducive microenvironment for maintaining cell survival and physiological function. Many peptides also demonstrate stimuli-responsive gelation and tuneable mechanical properties, which facilitates extrusion before dispensing and maintains the shape fidelity of the printed construct in aqueous media. The inherent biocompatibility and biodegradability bodes well for in vivo applications as implantable tissues and drug delivery matrices, while their short length and ease of functionalization facilitates synthesis and customization. By applying self-assembling peptide inks to bioprinting, the dynamic complexity of biological tissue can be recreated, thereby advancing current biomedical applications of peptide hydrogel scaffolds. PMID:26694103

  5. Coarse-grained simulation of amphiphilic self-assembly

    NASA Astrophysics Data System (ADS)

    Michel, David J.; Cleaver, Douglas J.

    2007-01-01

    The authors present a computer simulation study of amphiphilic self-assembly performed using a computationally efficient single-site model based on Gay-Berne [J. Chem. Phys. 74, 3316 (1981)] and Lennard-Jones particles. Molecular dynamics simulations of these systems show that free self-assembly of micellar, bilayer, and inverse micelle arrangements can be readily achieved for a single model parametrization. This self-assembly is predominantly driven by the anisotropy of the amphiphile-solvent interaction, amphiphile-amphiphile dispersive interactions being found to be of secondary importance. While amphiphile concentration is the main determinant of phase stability, molecular parameters such as head group size and interaction strength also have measurable affects on system properties.

  6. Coarse-grained simulation of amphiphilic self-assembly.

    PubMed

    Michel, David J; Cleaver, Douglas J

    2007-01-21

    The authors present a computer simulation study of amphiphilic self-assembly performed using a computationally efficient single-site model based on Gay-Berne [J. Chem. Phys. 74, 3316 (1981)] and Lennard-Jones particles. Molecular dynamics simulations of these systems show that free self-assembly of micellar, bilayer, and inverse micelle arrangements can be readily achieved for a single model parametrization. This self-assembly is predominantly driven by the anisotropy of the amphiphile-solvent interaction, amphiphile-amphiphile dispersive interactions being found to be of secondary importance. While amphiphile concentration is the main determinant of phase stability, molecular parameters such as head group size and interaction strength also have measurable affects on system properties. PMID:17249883

  7. Hierarchical self-assembly of chiral fibres from achiral particles

    PubMed Central

    Prybytak, P.; Frith, W. J.; Cleaver, D. J.

    2012-01-01

    We investigate, by molecular dynamics simulation, the behaviour of discotic particles in a solvent of Lennard-Jones spheres. When chromonic disc–sphere interactions are imposed on these systems, three regimes of self-assembly are observed. At moderate temperatures, numerous short threads of discs develop, but these threads remain isolated from one another. Quenching to low temperatures, alternatively, causes all of the discs to floc into a single extended aggregate which typically comprises several distinct sections and contains numerous packing defects. For a narrow temperature range between these regimes, however, defect-free chiral fibres are found to freely self-assemble. The spontaneous chirality of these fibres results from frustration between the hexagonal packing and interdigitation of neighbouring threads, the pitch being set by the particle shape. This demonstration of aggregate-wide chirality emerging owing to packing alone is pertinent to many biological and synthetic hierarchically self-assembling systems. PMID:24098850

  8. Bacteria Repellent Properties of Trichlorosilane Self-Assembled Graphene

    NASA Astrophysics Data System (ADS)

    Bong, Jihye; Kim, Dae Hwan; Kim, Hyunsook; Lee, Sang-Seob; Ju, Sanghyun

    2013-12-01

    The bacteria repellent property and thermal stability of pristine graphene and graphene chemically modified with a trichlorosilane (HDF-S) self-assembled monolayer (SAM) were investigated. The contact angles of HDF-S self-assembled graphene (105.8±0.5°) improved by ˜30% compared with those of pristine graphene (79.4±0.9°). In a bacterial atmosphere, while the bacteria were able to migrate to the pristine graphene surface, they were not able to migrate to the surface of the HDF-S self-assembled graphene. Moreover, the HDF-S SAM on graphene showed stable hydrophobic properties from -40 to 500 °C.

  9. Guided and magnetic self-assembly of tunable magnetoceptive gels

    PubMed Central

    Tasoglu, S.; Yu, C.H.; Gungordu, H.I.; Guven, S.; Vural, T.; Demirci, U.

    2014-01-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents. PMID:25175148

  10. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    SciTech Connect

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented.

  11. Self-Assembled DNA Templated Nano-wires and Circuits

    NASA Astrophysics Data System (ADS)

    Braun, Erez

    2000-03-01

    The realization that conventional microelectronics is approaching its miniaturization limits has motivated the search for an alternative route based on self-assembled nanometer-scale electronics. We have recently proposed a new approach based on the hybridization of biological and electronic materials (Braun E., Eichen Y., Sivan U. and Ben-Yoseph G., Nature 391, 775 (1998)). The concept relies on a two-step self-assembly process. The inherent molecular recognition capabilities of DNA molecules are first utilized to construct a network that serves as a template for the subsequent assembly of electronic materials into a circuit. The utilization of DNA and its associated enzymatic machinery enables: (a) self-assembly of complex substrates, (b) specific molecular addresses for the localization of electronic materials (e.g., gold colloids) by standard molecular biology techniques, (c) interdevice wiring and (d) bridging the microscopic structures to the macroscopic world. The self-assembly of nanometer scale electronics relies on two complementary developments. First, the ability to convert DNA molecules into thin conductive wires and second, the self-assembly of complex extended DNA templates. Our progress in these two directions will be presented. Regarding the first issue, a physical process resulting in condensation of gold colloids onto DNA molecules enables the assembly of thin gold wires (around 100-200 A wide) having, in principle, unlimited extensions. The second issue is developed in the context of recombinant DNA which allows the self-assembly of precise molecular junctions and networks. Specifically, we use RecA protein, which is the main protein responsible for genetic recombination in E. Coli bacteria, to construct DNA junctions at pre-designed addresses (sequences) on the molecules. The integration of these processes allows advancing nanometer-scale electronics. A realistic fabrication scheme for a room-temperature single-electron transistor

  12. Probing peptide amphiphile self-assembly in blood serum.

    PubMed

    Ghosh, Arijit; Buettner, Christian J; Manos, Aaron A; Wallace, Ashley J; Tweedle, Michael F; Goldberger, Joshua E

    2014-12-01

    There has been recent interest in designing smart diagnostic or therapeutic self-assembling peptide or polymeric materials that can selectively undergo morphological transitions to accumulate at a disease site in response to specific stimuli. Developing approaches to probe these self-assembly transitions in environments that accurately amalgamate the diverse plethora of proteins, biomolecules, and salts of blood is essential for creating systems that function in vivo. Here, we have developed a fluorescence anisotropy approach to probe the pH-dependent self-assembly transition of peptide amphiphile (PA) molecules that transform from spherical micelles at pH 7.4 to nanofibers under more acidic pH's in blood serum. By mixing small concentrations of a Ru(bipy)3(2+)-tagged PA with a Gd(DO3A)-tagged PA having the same lipid-peptide sequence, we showed that the pH dependence of self-assembly is minimally affected and can be monitored in mouse blood serum. These PA vehicles can be designed to transition from spherical micelles to nanofibers in the pH range 7.0-7.4 in pure serum. In contrast to the typical notion of serum albumin absorbing isolated surfactant molecules and disrupting self-assembly, our experiments showed that albumin does not bind these anionic PAs and instead promotes nanofibers due to a molecular crowding effect. Finally, we created a medium that replicates the transition pH in serum to within 0.08 pH units and allows probing self-assembly behavior using conventional spectroscopic techniques without conflicting protein signals, thus simplifying the development pathway from test tube to in vivo experimentation for stimuli-responsive materials. PMID:25347387

  13. Interfacial and mechanical properties of self-assembling systems

    NASA Astrophysics Data System (ADS)

    Carvajal, Daniel

    Self-assembly is a fascinating phenomena where interactions between small subunits allow them to aggregate and form complex structures that can span many length scales. These self-assembled structures are especially important in biology where they are necessary for life as we know it. This dissertation is a study of three very different self-assembling systems, all of which have important connections to biology and biological systems. Drop shape analysis was used to study the interfacial assembly of amphiphilic block copolymers at the oil/water interface. When biologically functionalyzed copolymers are used, this system can serve as a model for receptor-ligand interactions that are used by cells to perform many activities, such as interact with their surroundings. The physical properties of a self-assembling membrane system were quantified using membrane inflation and swelling experiments. These types of membranes may have important applications in medicine such as drug eluting (growth factor eluting) scaffolds to aid in wound healing. The factors affecting the properties of bis(leucine) oxalamide gels were also explored. We believe that this particular system will serve as an appropriate model for biological gels that are made up of fiber-like and/or rod-like structures. During the course of the research presented in this dissertation, many new techniques were developed specifically to allow/aid the study of these distinct self-assembling systems. For example, numerical methods were used to predict drop stability for drop shape analysis experiments and the methods used to create reproducibly create self-assembling membranes were developed specifically for this purpose. The development of these new techniques is an integral part of the thesis and should aid future students who work on these projects. A number ongoing projects and interesting research directions for each one of the projects is also presented.

  14. Nanotechnology and Quasicrystals: From Self-Assembly to Photonic Applications

    NASA Astrophysics Data System (ADS)

    Lifshitz, R.

    After providing a concise overview on quasicrystals and their discovery more than a quarter of a century ago, I consider the unexpected interplay between nano-technology and quasiperiodic crystals. Of particular relevance are efforts to fabricate artificial functional micro- or nanostructures, as well as efforts to control the self-assembly of nanostructures, where current knowledge about the possibility of having long-range order without periodicity can provide significant advantages. I discuss examples of systems ranging from artificial metamaterials for photonic applications, through self-assembled soft matter, to surface waves and optically-induced nonlinear photonic quasicrystals.

  15. Controlled self-assembly of biomolecular rods on structured substrates.

    PubMed

    Moghimian, Pouya; Harnau, Ludger; Srot, Vesna; de la Peña, Francisco; Farahmand Bafi, Nima; Facey, Sandra J; van Aken, Peter A

    2016-04-01

    We report on the evaporative self-assembly and orientational ordering of semi-flexible spherocylindrical M13 phages on asymmetric stranded webs of thin amorphous carbon films. Although the phages were dispersed with a low concentration in the isotropic phase, the substrate edges induced nematic ordering and bending of the phages. As revealed by transmission electron microscopy, phages were aligned parallel to the curved substrate edges. This two-dimensional self-assembly on structured substrates opens a new route to the design of structures of orientationally ordered semi-flexible biomacromolecules. PMID:26917247

  16. Backfilled, self-assembled monolayers and methods of making same

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Addleman, R. Shane; Aardahl, Christopher L.; Zheng, Feng; Busche, Brad; Egorov, Oleg B.

    2009-06-30

    Backfilled, self-assembled monolayers and methods of making the same are disclosed. The self-assembled monolayer comprises at least one functional organosilane species and a substantially random dispersion of at least one backfilling organosilane species among the functional organosilane species, wherein the functional and backfilling organosilane species have been sequentially deposited on a substrate. The method comprises depositing sequentially a first organosilane species followed by a backfilling organosilane species, and employing a relaxation agent before or during deposition of the backfilling organosilane species, wherein the first and backfilling organosilane species are substantially randomly dispersed on a substrate.

  17. Nano-engineering by optically directed self-assembly.

    SciTech Connect

    Furst, Eric; Dunn, Elissa; Park, Jin-Gyu; Brinker, C. Jeffrey; Sainis, Sunil; Merrill, Jason; Dufresne, Eric; Reichert, Matthew D.; Brotherton, Christopher M.; Bogart, Katherine Huderle Andersen; Molecke, Ryan A.; Koehler, Timothy P.; Bell, Nelson Simmons; Grillet, Anne Mary; Gorby, Allen D.; Singh, John; Lele, Pushkar; Mittal, Manish

    2009-09-01

    Lack of robust manufacturing capabilities have limited our ability to make tailored materials with useful optical and thermal properties. For example, traditional methods such as spontaneous self-assembly of spheres cannot generate the complex structures required to produce a full bandgap photonic crystals. The goal of this work was to develop and demonstrate novel methods of directed self-assembly of nanomaterials using optical and electric fields. To achieve this aim, our work employed laser tweezers, a technology that enables non-invasive optical manipulation of particles, from glass microspheres to gold nanoparticles. Laser tweezers were used to create ordered materials with either complex crystal structures or using aspherical building blocks.

  18. Structural simulations of nanomaterials self-assembled from ionic macrocycles.

    SciTech Connect

    van Swol, Frank B.; Medforth, Craig John

    2010-10-01

    Recent research at Sandia has discovered a new class of organic binary ionic solids with tunable optical, electronic, and photochemical properties. These nanomaterials, consisting of a novel class of organic binary ionic solids, are currently being developed at Sandia for applications in batteries, supercapacitors, and solar energy technologies. They are composed of self-assembled oligomeric arrays of very large anions and large cations, but their crucial internal arrangement is thus far unknown. This report describes (a) the development of a relevant model of nonconvex particles decorated with ions interacting through short-ranged Yukawa potentials, and (b) the results of initial Monte Carlo simulations of the self-assembly binary ionic solids.

  19. Self-assembly of flagellin on Au(111) surfaces.

    PubMed

    González Orive, Alejandro; Pissinis, Diego E; Diaz, Carolina; Miñán, Alejandro; Benítez, Guillermo A; Rubert, Aldo; Daza Millone, Antonieta; Rumbo, Martin; Hernández Creus, Alberto; Salvarezza, Roberto C; Schilardi, Patricia L

    2014-11-01

    The adsorption of flagellin monomers from Pseudomonas fluorescens on Au(111) has been studied by Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), X-ray Photoelectron Spectroscopy (XPS), Surface Plasmon Resonance (SPR), and electrochemical techniques. Results show that flagellin monomers spontaneously self-assemble forming a monolayer thick protein film bounded to the Au surface by the more hydrophobic subunit and exposed to the environment the hydrophilic subunit. The films are conductive and allow allocation of electrochemically active cytochrome C. The self-assembled films could be used as biological platforms to build 3D complex molecular structures on planar metal surfaces and to functionalize metal nanoparticles. PMID:25112916

  20. Peripherally Silylated Porphyrins.

    PubMed

    Kato, Kenichi; Fujimoto, Keisuke; Yorimitsu, Hideki; Osuka, Atsuhiro

    2015-09-21

    Silylation of peripherally lithiated porphyrins with silyl electrophiles has realized the first synthesis of a series of directly silyl-substituted porphyrins. The meso-silyl group underwent facile protodesilylation, whereas the β-silyl group was entirely compatible with standard work-up and purification on silica gel. The meso-silyl group caused larger substituent effects to the porphyrin compared with the β-silyl group. Silylation of β-lithiated porphyrins with 1,2-dichlorodisilane furnished β-to-β disilane-bridged porphyrin dimers. A doubly β-to-β disilane-bridged Ni(II)-porphyrin dimer was also synthesized from a β,β-dilithiated Ni(II)-porphyrin and characterized by X-ray crystallographic analysis to take a steplike structure favorable for interporphyrinic interaction. Denickelation of β-silylporphyrins was achieved upon treatment with a 4-tolylmagnesium bromide to yield the corresponding freebase porphyrins. PMID:26356498

  1. Self-assembly from milli- to nanoscales: methods and applications

    PubMed Central

    Mastrangeli, M; Abbasi, S; Varel, C; Van Hoof, C; Celis, J-P; Böhringer, K F

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. PMID:20209016

  2. Multistep hierarchical self-assembly of chiral nanopore arrays

    PubMed Central

    Kim, Hanim; Lee, Sunhee; Shin, Tae Joo; Korblova, Eva; Walba, David M.; Clark, Noel A.; Lee, Sang Bok; Yoon, Dong Ki

    2014-01-01

    A series of simple hierarchical self-assembly steps achieve self-organization from the centimeter to the subnanometer-length scales in the form of square-centimeter arrays of linear nanopores, each one having a single chiral helical nanofilament of large internal surface area and interfacial interactions based on chiral crystalline molecular arrangements. PMID:25246585

  3. Self-assembly of highly luminescent heteronuclear coordination cages.

    PubMed

    Schmidt, Andrea; Hollering, Manuela; Han, Jiaying; Casini, Angela; Kühn, Fritz E

    2016-08-01

    Exo-functionalized Pd2L4 cage compounds with attached Ru(ii) pyridine complexes were prepared via coordination-driven self-assembly. Unlike most of the previously reported palladium(ii) cages, one of these metallocages exhibits an exceptionally high quantum yield of 66%. The presented approach is promising to obtain luminescent coordination complexes for various applications. PMID:27436541

  4. Soft self-assembled nanoparticles with temperature-dependent properties.

    PubMed

    Rovigatti, Lorenzo; Capone, Barbara; Likos, Christos N

    2016-02-14

    The fabrication of versatile building blocks that reliably self-assemble into desired ordered and disordered phases is amongst the hottest topics in contemporary materials science. To this end, microscopic units of varying complexity, aimed at assembling the target phases, have been thought, designed, investigated and built. Such a path usually requires laborious fabrication techniques, especially when specific functionalisation of the building blocks is required. Telechelic star polymers, i.e., star polymers made of a number of f di-block copolymers consisting of solvophobic and solvophilic monomers grafted on a central anchoring point, spontaneously self-assemble into soft patchy particles featuring attractive spots (patches) on the surface. Here we show that the tunability of such a system can be widely extended by controlling the physical and chemical parameters of the solution. Indeed, under fixed external conditions the self-assembly behaviour depends only on the number of arms and on the ratio of solvophobic to solvophilic monomers. However, changes in temperature and/or solvent quality make it possible to reliably change the number and size of the attractive patches. This allows the steering of the mesoscopic self-assembly behaviour without modifying the microscopic constituents. Interestingly, we also demonstrate that diverse combinations of the parameters can generate stars with the same number of patches but different radial and angular stiffness. This mechanism could provide a neat way of further fine-tuning the elastic properties of the supramolecular network without changing its topology. PMID:26467391

  5. pH-directed self-assembling helical peptide conformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The beta-sheet and alpha-helix peptide conformation are two of the most fundamentally ordered secondary structures found in proteins and peptides. They also give rise to self-assembling motifs that form macromolecular channels and nanostructures. Through design these conformations can yield enhance...

  6. Surface dispersion and hardening of self-assembled diacetylene nanotubes.

    PubMed

    Lee, Sang Beom; Koepsel, Richard R; Russell, Alan J

    2005-11-01

    We describe here the first method for dispersion of individual self-assembled diacetylene nanotubes on surfaces. Complete polymerization by UV exposure was achieved as demonstrated by nanotubes that were resistant to aggressive organic solvents and temperatures well above the melting point of the monomer. The polymerized tubes displayed reversible thermochromic and mechanochromic properties. PMID:16277453

  7. An exactly solvable model of hierarchical self-assembly

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-06-01

    Many living and nonliving structures in the natural world form by hierarchical organization, but physical theories that describe this type of organization are scarce. To address this problem, a model of equilibrium self-assembly is formulated in which dynamically associating species organize into hierarchical structures that preserve their shape at each stage of assembly. In particular, we consider symmetric m-gons that associate at their vertices into Sierpinski gasket structures involving the hierarchical association of triangles, squares, hexagons, etc., at their corner vertices, thereby leading to fractal structures after many generations of assembly. This rather idealized model of hierarchical assembly yields an infinite sequence of self-assembly transitions as the morphology progressively organizes to higher levels of the hierarchy, and these structures coexists at dynamic equilibrium, as found in real hierarchically self-assembling systems such as amyloid fiber forming proteins. Moreover, the transition sharpness progressively grows with increasing m, corresponding to larger and larger loops in the assembled structures. Calculations are provided for several basic thermodynamic properties (including the order parameters for assembly for each stage of the hierarchy, average mass of clusters, specific heat, transition sharpness, etc.) that are required for characterizing the interaction parameters governing this type of self-assembly and for elucidating other basic qualitative aspects of these systems. Our idealized model of hierarchical assembly gives many insights into this ubiquitous type of self-organization process.

  8. Nano-imaging enabled via self-assembly

    PubMed Central

    McLeod, Euan; Ozcan, Aydogan

    2014-01-01

    SUMMARY Imaging object details with length scales below approximately 200 nm has been historically difficult for conventional microscope objective lenses because of their inability to resolve features smaller than one-half the optical wavelength. Here we review some of the recent approaches to surpass this limit by harnessing self-assembly as a fabrication mechanism. Self-assembly can be used to form individual nano- and micro-lenses, as well as to form extended arrays of such lenses. These lenses have been shown to enable imaging with resolutions as small as 50 nm half-pitch using visible light, which is well below the Abbe diffraction limit. Furthermore, self-assembled nano-lenses can be used to boost contrast and signal levels from small nano-particles, enabling them to be detected relative to background noise. Finally, alternative nano-imaging applications of self-assembly are discussed, including three-dimensional imaging, enhanced coupling from light-emitting diodes, and the fabrication of contrast agents such as quantum dots and nanoparticles. PMID:25506387

  9. Self-Assembly of Globular Protein-Polymer Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Thomas, C. S.; Olsen, B. D.

    2011-03-01

    The self-assembly of globular protein-polymer diblock copolymers into nanostructured phases is demonstrated as an elegant and simple method for structural control in biocatalysis or bioelectronics. In order to fundamentally investigate self-assembly in these complex block copolymer systems, a red fluorescent protein was expressed in E. coli and site-specifically conjugated to a low polydispersity poly(N-isopropyl acrylamide) (PNIPAM) block using thiol-maleimide coupling to form a well-defined model globular protein-polymer diblock. Functional protein materials are obtained by solvent evaporation and solvent annealing above and below the lower critical solution temperature of PNIPAM in order to access different pathways toward self-assembly. Small angle x-ray scattering and microscopy are used to show that the diblock forms lamellar nanostructures and to explore dependence of nanostructure formation on processing conditions. Circular dichroism and UV-vis show that a large fraction of the protein remains in its folded state after conjugation, and wide angle x-ray scattering demonstrates that diblock copolymer self-assembly changes the protein packing symmetry.

  10. Soft self-assembled nanoparticles with temperature-dependent properties

    NASA Astrophysics Data System (ADS)

    Rovigatti, Lorenzo; Capone, Barbara; Likos, Christos N.

    2016-02-01

    The fabrication of versatile building blocks that reliably self-assemble into desired ordered and disordered phases is amongst the hottest topics in contemporary materials science. To this end, microscopic units of varying complexity, aimed at assembling the target phases, have been thought, designed, investigated and built. Such a path usually requires laborious fabrication techniques, especially when specific functionalisation of the building blocks is required. Telechelic star polymers, i.e., star polymers made of a number of f di-block copolymers consisting of solvophobic and solvophilic monomers grafted on a central anchoring point, spontaneously self-assemble into soft patchy particles featuring attractive spots (patches) on the surface. Here we show that the tunability of such a system can be widely extended by controlling the physical and chemical parameters of the solution. Indeed, under fixed external conditions the self-assembly behaviour depends only on the number of arms and on the ratio of solvophobic to solvophilic monomers. However, changes in temperature and/or solvent quality make it possible to reliably change the number and size of the attractive patches. This allows the steering of the mesoscopic self-assembly behaviour without modifying the microscopic constituents. Interestingly, we also demonstrate that diverse combinations of the parameters can generate stars with the same number of patches but different radial and angular stiffness. This mechanism could provide a neat way of further fine-tuning the elastic properties of the supramolecular network without changing its topology.

  11. Self-assembly of supramolecular chiral insulated molecular wire.

    PubMed

    Li, Chun; Numata, Munenori; Bae, Ah-Hyun; Sakurai, Kazuo; Shinkai, Seiji

    2005-04-01

    Supramolecular chiral insulated molecular wire was constructed by self-assembly of a neutral one-dimensional schizophyllan host and a water-soluble polythiophene guest. The work presented here will not only open a door to a new application of polysaccharides but also provide an important clue to prepare stable supramolecular insulated molecular wires with one-handed helical structure. PMID:15796500

  12. Self-assembling biomolecular catalysts for hydrogen production

    NASA Astrophysics Data System (ADS)

    Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor

    2016-02-01

    The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.

  13. Hierarchical self-assembly of complex polyhedral microcontainers

    NASA Astrophysics Data System (ADS)

    Filipiak, David J.; Azam, Anum; Leong, Timothy G.; Gracias, David H.

    2009-07-01

    The concept of self-assembly of a two-dimensional (2D) template to a three-dimensional (3D) structure has been suggested as a strategy to enable highly parallel fabrication of complex, patterned microstructures. We have previously studied the surface-tension-based self-assembly of patterned, microscale polyhedral containers (cubes, square pyramids and tetrahedral frusta). In this paper, we describe the observed hierarchical self-assembly of more complex, patterned polyhedral containers in the form of regular dodecahedra and octahedra. The hierarchical design methodology, combined with the use of self-correction mechanisms, was found to greatly reduce the propagation of self-assembly error that occurs in these more complex systems. It is a highly effective way to mass-produce patterned, complex 3D structures on the microscale and could also facilitate encapsulation of cargo in a parallel and cost-effective manner. Furthermore, the behavior that we have observed may be useful in the assembly of complex systems with large numbers of components.

  14. Chemical reaction mediated self-assembly of PTCDA into nanofibers.

    PubMed

    Sayyad, Arshad S; Balakrishnan, Kaushik; Ajayan, Pulickel M

    2011-09-01

    Uniform and crystalline nanofibers of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), an insoluble organic semiconducting molecule, have been achieved by self-assembling the molecules using chemical reaction mediated conversion of an appropriately designed soluble precursor, perylene tetracarboxylic acid (PTCA) using carbodiimide chemistry. PMID:21814688

  15. Molecular gated transistors: Role of self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Shaya, O.; Halpern, E.; Khamaisi, B.; Shaked, M.; Usherenko, Y.; Shalev, G.; Doron, A.; Levy, I.; Rosenwaks, Y.

    2010-07-01

    In order to understand the biosensing mechanism of field-effect based biosensors and optimize their performance, the effect of each of its molecular building block must be understood. In this work the gating effect of self-assembled linker molecules on field-effect transistor was studied in detail. We have combined Kelvin probe force microscopy, current-voltage measurements, capacitance-voltage measurements, equivalent circuit modeling and device simulations in order to trace the mechanism of silicon-on-insulator biological field-effect transistors. The measurements were conducted on the widely used linker molecules (3-aminopropyl)-trimethoxysilane (APTMS) and 11-aminoundecyl-triethoxysilane (AUTES), which were self-assembled on ozone activated silicon oxide surface covering the transistor channel. In a dry environment, the work function of the modified silicon oxide decreased by more than 1.5 eV, and the transistor threshold voltage increased by about 30 V following the self-assembly. A detailed analysis indicates that these changes are due to negative induced charges on the top dielectric layer, and an effective dipole due to the polar monolayer. However, the self-assembly did not change the silicon flat-band voltage when in contact with an electrolyte. This is attributed to electrostatic screening by the electrolyte.

  16. Amphiphilic self-assembly of alkanols in protic ionic liquids.

    PubMed

    Jiang, Haihui Joy; FitzGerald, Paul A; Dolan, Andrew; Atkin, Rob; Warr, Gregory G

    2014-08-21

    Strong cohesive forces in protic ionic liquids (PILs) can induce a liquid nanostructure consisting of segregated polar and apolar domains. Small-angle X-ray scattering has shown that these forces can also induce medium chain length n-alkanols to self-assemble into micelle- and microemulsion-like structures in ethylammonium (EA(+)) and propylammonium (PA(+)) PILs, in contrast to their immiscibility with both water and ethanolammonium (EtA(+)) PILs. These binary mixtures are structured on two distinct length scales: one associated with the self-assembled n-alkanol aggregates and the other with the underlying liquid nanostructure. This suggests that EA(+) and PA(+) enable n-alkanol aggregation by acting as cosurfactants, which EtA(+) cannot do because its terminating hydroxyl renders the cation nonamphiphilic. The primary determining factor for miscibility and self-assembly is the ratio of alkyl chain lengths of the alkanol and PIL cation, modulated by the anion type. These results show how ILs can support the self-assembly of nontraditional amphiphiles and enable the creation of new forms of soft matter. PMID:25068766

  17. Computer simulations of block copolymer tethered nanoparticle self-assembly

    NASA Astrophysics Data System (ADS)

    Chan, Elaine R.; Ho, Lin C.; Glotzer, Sharon C.

    2006-08-01

    We perform molecular simulations to study the self-assembly of block copolymer tethered cubic nanoparticles. Minimal models of the tethered nanoscale building blocks (NBBs) are utilized to explore the structures arising from self-assembly. We demonstrate that attaching a rigid nanocube to a diblock copolymer affects the typical equilibrium morphologies exhibited by the pure copolymer. Lamellar and cylindrical phases are observed in both systems but not at the corresponding relative copolymer tether block fractions. The effect of nanoparticle geometry on phase behavior is investigated by comparing the self-assembled structures formed by the tethered NBBs with those of their linear ABC triblock copolymer counterparts. The tethered nanocubes exhibit the conventional triblock copolymer lamellar and cylindrical phases when the repulsive interactions between different blocks are symmetric. The rigid and bulky nature of the cube induces interfacial curvature in the tethered NBB phases compared to their linear ABC triblock copolymer counterparts. We compare our results with those structures obtained from ABC diblock copolymer tethered nanospheres to further elucidate the role of cubic nanoparticle geometry on self-assembly.

  18. Cooperative Self-Assembly of Peptide Gelators and Proteins

    PubMed Central

    2014-01-01

    Molecular self-assembly provides a versatile route for the production of nanoscale materials for medical and technological applications. Herein, we demonstrate that the cooperative self-assembly of amphiphilic small molecules and proteins can have drastic effects on supramolecular nanostructuring of resulting materials. We report that mesoscale, fractal-like clusters of proteins form at concentrations that are orders of magnitude lower compared to those usually associated with molecular crowding at room temperature. These protein clusters have pronounced effects on the molecular self-assembly of aromatic peptide amphiphiles (fluorenylmethoxycarbonyl- dipeptides), resulting in a reversal of chiral organization and enhanced order through templating and binding. Moreover, the morphological and mechanical properties of the resultant nanostructured gels can be controlled by the cooperative self-assembly of peptides and protein fractal clusters, having implications for biomedical applications where proteins and peptides are both present. In addition, fundamental insights into cooperative interplay of molecular interactions and confinement by clusters of chiral macromolecules is relevant to gaining understanding of the molecular mechanisms of relevance to the origin of life and development of synthetic mimics of living systems. PMID:24256076

  19. Real-time tracking of superparamagnetic nanoparticle self-assembly.

    PubMed

    Siffalovic, P; Majkova, E; Chitu, L; Jergel, M; Luby, S; Capek, I; Satka, A; Timmann, A; Roth, S V

    2008-12-01

    The spontaneous self-assembly process of superparamagnetic nanoparticles in a fast-drying colloidal drop is observed in real time. The grazing-incidence small-angle X-ray scattering (GISAXS) technique is employed for an in situ tracking of the reciprocal space, with a 3 ms delay time between subsequent frames delivered by a new generation of X-ray cameras. A focused synchrotron beam and sophisticated sample oscillations make it possible to relate the dynamic reciprocal to direct space features and to localize the self-assembly. In particular, no nanoparticle ordering is found inside the evaporating drop and near-surface region down to a drop thickness of 90 microm. Scanning through the shrinking drop-contact line indicates the start of self-assembly near the drop three-phase interface, in accord with theoretical predictions. The results obtained have direct implications for establishing the self-assembly process as a routine technological step in the preparation of new nanostructures. PMID:19003821

  20. Directed intermixing in multi-component self-assembling biomaterials

    PubMed Central

    Gasiorowski, Joshua Z.; Collier, Joel H.

    2011-01-01

    The non-covalent co-assembly of multiple different peptides can be a useful route for producing multifunctional biomaterials. However, to date such materials have almost exclusively been investigated as homogeneous self-assemblies, having functional components uniformly distributed throughout their supramolecular structures. Here we illustrate control over the intermixing of multiple different self-assembling peptides, in turn providing a simple but powerful means for modulating these materials’ mechanical and biological properties. In beta-sheet fibrillizing hydrogels, significant increases in stiffening could be achieved using heterobifunctional cross-linkers by sequestering peptides bearing different reactive groups into distinct populations of fibrils, thus favoring inter-fibril cross-linking. Further, by specifying the intermixing of RGD-bearing peptides in 2-D and 3-D self-assemblies, the growth of HUVECs and NIH 3T3 cells could be significantly modulated. This approach may be immediately applicable towards a wide variety of self-assembling systems that form stable supramolecular structures. PMID:21863894

  1. Self-assembly of Superparamagnetic Nanoparticles with Permanent Magnetization

    NASA Astrophysics Data System (ADS)

    Ghosh, Suvojit; Puri, Ishwar

    2012-02-01

    Magnetic nanoparticles (MNPs) exhibit superparamagnetism when thermal fluctuations overcome the potential barrier for spin reversal set by magnetocrystalline anisotropy. The magnetic moment in such a material oscillates between the easy axes leading to zero net magnetization. Stable colloidal dispersions of MNPs exploit this state to prevent agglomeration. Self-assembly of MNPs presents an excellent bottom up nanofabrication technique due to the wide range of structures that can be formed. A stable dispersion of MNPs is an essential starting point for good control of the process. In this study we explore the theoretical basis for a self-assembled MNP structure with permanent magnetization starting from a dispersion of superparamangetic MNPs. Magnetostatic coupling of dipole moments enhance the potential barrier for magnetization reversals. We use X-Ray microCT and TEM to visualize the self-assembled structures. We use a stochastic form of the Landau-Lifshitz-Gilbert equation to simulate the magnetization dynamics in each MNP. Permanent magnetization in self-assembled structures generated in situ promise several significant applications such as targeted drug delivery, tissue engineering and novel soft composites.

  2. Self-assembled peptide nanostructures for functional materials.

    PubMed

    Ekiz, Melis Sardan; Cinar, Goksu; Khalily, Mohammad Aref; Guler, Mustafa O

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies. PMID:27578525

  3. Towards lysozyme nanotube and 3D hybrid self-assembly

    NASA Astrophysics Data System (ADS)

    Lara, Cecile; Handschin, Stephan; Mezzenga, Raffaele

    2013-07-01

    We report lysozyme self-assembly into nanotubes, under the effect of hydrolysis at pH 2 and 90 °C. We resolve the final steps of the fibrillation pathway, entailing the closure of multi-stranded helical ribbons into nanotubes, and we provide evidence of β-sheet arrangement within the nanotubes, demonstrating amyloid-like aggregation. Addition of chloroauric acid to the self-assembled structures can lead to generation of either gold single crystal nanoplatelets or gold nanoparticles (when a reducing agent is added) decorating the nanotube and ribbon surfaces. The crystal-based organic-inorganic hybrids further assemble into 3D ``sandwiched'' structures.We report lysozyme self-assembly into nanotubes, under the effect of hydrolysis at pH 2 and 90 °C. We resolve the final steps of the fibrillation pathway, entailing the closure of multi-stranded helical ribbons into nanotubes, and we provide evidence of β-sheet arrangement within the nanotubes, demonstrating amyloid-like aggregation. Addition of chloroauric acid to the self-assembled structures can lead to generation of either gold single crystal nanoplatelets or gold nanoparticles (when a reducing agent is added) decorating the nanotube and ribbon surfaces. The crystal-based organic-inorganic hybrids further assemble into 3D ``sandwiched'' structures. Electronic supplementary information (ESI) available: Materials and methods, further images and FTIR data. See DOI: 10.1039/c3nr02194g

  4. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly

    PubMed Central

    Moore, Tyler G.; Garzon, Max H.; Deaton, Russell J.

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are “strong” assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly

  5. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly.

    PubMed

    Moore, Tyler G; Garzon, Max H; Deaton, Russell J

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are "strong" assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly systems

  6. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains

    NASA Astrophysics Data System (ADS)

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  7. A Case Study of the Likes and Dislikes of DNA and RNA in Self-Assembly.

    PubMed

    Zuo, Hua; Wu, Siyu; Li, Mo; Li, Yulin; Jiang, Wen; Mao, Chengde

    2015-12-01

    Programmed self-assembly of nucleic acids (DNA and RNA) is an active research area as it promises a general approach for nanoconstruction. Whereas DNA self-assembly has been extensively studied, RNA self-assembly lags much behind. One strategy to boost RNA self-assembly is to adapt the methods of DNA self-assembly for RNA self-assembly because of the chemical and structural similarities of DNA and RNA. However, these two types of molecules are still significantly different. To enable the rational design of RNA self-assembly, a thorough examination of their likes and dislikes in programmed self-assembly is needed. The current work begins to address this task. It was found that similar, two-stranded motifs of RNA and DNA lead to similar, but clearly different nanostructures. PMID:26457993

  8. Anion-dipole interactions make the homopolymers self-assemble into multiple nanostructures.

    PubMed

    Wang, Long-Hai; Zhang, Zi-Dan; Hong, Chun-Yan; He, Xue-Hao; You, Wei; You, Ye-Zi

    2015-05-27

    Anion-dipole interactions can make homopolymers self-assemble like an amphiphilic block copolymer. Generally, common homopolymers cannot self-assemble into multiple nanostructures. Here, it is reported that anion-dipole interactions can enable a number of homopolymers to achieve a variety of self-assembly behaviors in aqueous solution. Such interactions and self-assembly features have been exclusively reserved for amphiphilic (block) polymers until now. PMID:25873566

  9. Discrete multiporphyrin pseudorotaxane assemblies from di- and tetravalent porphyrin building blocks

    PubMed Central

    Lohse, Mirko; von Krbek, Larissa K S; Radunz, Sebastian; Moorthy, Suresh

    2015-01-01

    Summary Two pairs of divalent and tetravalent porphyrin building blocks carrying the complementary supramolecular crown ether/secondary ammonium ion binding motif have been synthesized and their derived pseudorotaxanes have been studied by a combination of NMR spectroscopy in solution and ESI mass spectrometry in the gas phase. By simple mixing of the components the formation of discrete dimeric and trimeric (metallo)porphyrin complexes predominates, in accordance to binding stoichiometry, while the amount of alternative structures can be neglected. Our results illustrate the power of multivalency to program the multicomponent self-assembly of specific entities into discrete functional nanostructures. PMID:26124877

  10. Self-assembly of hybrid structures on nano templates

    NASA Astrophysics Data System (ADS)

    Wang, Ruomiao

    This dissertation describes the investigation on the synthesis of hybrid structures on nano-templates. Fabrication of molecular nano-patterns of organic amphiphiles (e.g. fatty acids) by self-assembly has been discussed here, and their application as templates for two-dimensional in situ synthesis of metal soap molecular pattern has been demonstrated. The synthesis of nanoparticle---nanorod hybrid structure represents another effort to achieve hybrid materials. Therefore, methods to create complex inorganic---organic nano---hybrid are provided by this work. AFM disclosed the pattern structures of the self-assembled monolayers as designed nanoscaled patterns. It is observed two pattern periodicities reflecting the head-to-head and head-to-tail molecular assembly tendencies of the fatty acids and their dependence on the molecular structure and chain length, which exhibits a linear increase in the periodicity with an increasing molecular chain length. The investigation on molecular patterns of self-assembled monolayers of metal arachidates on graphite by AFM and FTIR is described. Metal arachidate self-assemblies show similar stripe pattern and periodicities as those of arachidic acid. The monolayer structure is mainly dictated by graphite, while the type of metal ions mainly affects the domain size, shape and regularity. The results of AFM and FTIR are correlated to the Irving-Williams Series, which predicts bond strength of the metal ions to ligands. The spin coated films from binary solutions of nanoparticles and fatty acids with different chain lengths (Even number of carbon, C18--C26), have been used to study the effect of nanoparticles on self-assemble pattern of fatty acids. C18--C22 acids formed uniform nanorods attached and induced by nanoparticles, while the self-assembled stripe patterns of C24 and C26 were unaffected by the presence of nanoparticles. The nanoparticles were aligned on C26 monolayer. The seeded nucleation mechanism has been studied by AFM

  11. Multidimensional hierarchical self-assembly of amphiphilic cylindrical block comicelles

    NASA Astrophysics Data System (ADS)

    Qiu, Huibin; Hudson, Zachary M.; Winnik, Mitchell A.; Manners, Ian

    2015-03-01

    Self-assembly of molecular and block copolymer amphiphiles represents a well-established route to micelles with a wide variety of shapes and gel-like phases. We demonstrate an analogous process, but on a longer length scale, in which amphiphilic P-H-P and H-P-H cylindrical triblock comicelles with hydrophobic (H) or polar (P) segments that are monodisperse in length are able to self-assemble side by side or end to end in nonsolvents for the central or terminal segments, respectively. This allows the formation of cylindrical supermicelles and one-dimensional (1D) or 3D superstructures that persist in both solution and the solid state. These assemblies possess multiple levels of structural hierarchy in combination with existence on a multimicrometer-length scale, features that are generally only found in natural materials.

  12. Artificial Photosynthesis at Dynamic Self-Assembled Interfaces in Water.

    PubMed

    Hansen, Malte; Troppmann, Stefan; König, Burkhard

    2016-01-01

    Artificial photosynthesis is one of the big scientific challenges of today. Self-assembled dynamic interfaces, such as vesicles or micelles, have been used as microreactors to mimic biological photosynthesis. These aggregates can help to overcome typical problems of homogeneous photocatalytic water splitting. Microheterogeneous environments organize catalyst-photosensitizer assemblies at the interface in close proximity and thus enhance intermolecular interactions. Thereby vesicles and micelles may promote photoinitiated charge separation and suppress back electron transfer. The dynamic self-assembled interfaces solubilize non-polar compounds and protect sensitive catalytic units and intermediates against degradation. In addition, vesicles provide compartmentation that was used to separate different redox environments needed for an overall water splitting system. This Minireview provides an overview of the applications of micellar and vesicular microheterogeneous systems for solar energy conversion by photosensitized water oxidation and hydrogen generation. PMID:26552728

  13. Charged diphenylalanine nanotubes and controlled hierarchical self-assembly.

    PubMed

    Wang, Minjie; Du, Lingjie; Wu, Xinglong; Xiong, Shijie; Chu, Paul K

    2011-06-28

    Hexagonal hierarchical microtubular structures are produced by diphenylalanine self-assembly and the ratio of the relative humidity in the growth chamber to the diphenylalanine concentration (defined as the RH-FF ratio) determines the microtubular morphology. The hexagonal arrangement of the diphenylalanine molecules first induces the hexagonal nanotubes with opposite charges on the two ends, and the dipolar electric field on the nanotubes serves as the driving force. Side-by-side hexagonal aggregation and end-to-end arrangement ensue finally producing a hexagonal hierarchical microtubular structure. Staining experiments and the external electric field-induced parallel arrangement provide evidence of the existence of opposite charges and dipolar electric field. In this self-assembly, the different RH-FF ratios induce different contents of crystalline phases. This leads to different initial nanotube numbers finally yielding different microtubular morphologies. Our calculation based on the dipole model supports the dipole-field mechanism that leads to the different microtubular morphologies. PMID:21591732

  14. Self-Assembly of Graphene on Carbon Nanotube Surfaces

    PubMed Central

    Li, Kaiyuan; Eres, Gyula; Howe, Jane; Chuang, Yen-Jun; Li, Xufan; Gu, Zhanjun; Zhang, Litong; Xie, Sishen; Pan, Zhengwei

    2013-01-01

    The rolling up of a graphene sheet into a tube is a standard visualization tool for illustrating carbon nanotube (CNT) formation. However, the actual processes of rolling up graphene sheets into CNTs in laboratory syntheses have never been demonstrated. Here we report conformal growth of graphene by carbon self-assembly on single-wall and multi-wall CNTs using chemical vapor deposition (CVD) of methane without the presence of metal catalysts. The new graphene layers roll up into seamless coaxial cylinders encapsulating the existing CNTs, but their adhesion to the primary CNTs is weak due to the existence of lattice misorientation. Our study shows that graphene nucleation and growth by self-assembly of carbon on the inactive carbon basal plane of CNTs occurs by a new mechanism that is markedly different from epitaxial growth on metal surfaces, opening up the possibility of graphene growth on many other non-metal substrates by simple methane CVD. PMID:23912638

  15. Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules

    PubMed Central

    Parker, Richard M; Zhang, Jing; Zheng, Yu; Coulston, Roger J; Smith, Clive A; Salmon, Andrew R; Yu, Ziyi; Scherman, Oren A; Abell, Chris

    2015-01-01

    Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules—where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core–shell microcapsules, gives access to a new generation of innovative self-assembled constructs. PMID:26213532

  16. DNA Self-assembly and Computer System Fabrication

    NASA Astrophysics Data System (ADS)

    Dwyer, Chris

    2006-11-01

    The migration of circuit fabrication technology from the microscale to the nanoscale has generated a great deal of interest in how the fundamental physical limitations of materials will change the way computer systems are engineered. The changing relationships between performance, defects, and cost have motivated research into so-called disruptive or exotic technologies and draws inspiration from systems found in biology. Advances in DNA self-assembly have demonstrated versatile and programmable methods for the synthesis of complex nanostructures suitable for logic circuitry. Several recent advances in programmable DNA self-assembly and the theory and design of DNA nanostructures for computing will be presented. The advantages of this technology go beyond the simple scaling of device feature sizes (sub-20nm) to enable new modes of computation that are otherwise impractical with conventional technologies. A brief survey of several computer architectures that take advantage of this new technology will also be presented.

  17. Biomolecular decision-making process for self assembly.

    SciTech Connect

    Osbourn, Gordon Cecil

    2005-01-01

    The brain is often identified with decision-making processes in the biological world. In fact, single cells, single macromolecules (proteins) and populations of molecules also make simple decisions. These decision processes are essential to survival and to the biological self-assembly and self-repair processes that we seek to emulate. How do these tiny systems make effective decisions? How do they make decisions in concert with a cooperative network of other molecules or cells? How can we emulate the decision-making behaviors of small-scale biological systems to program and self-assemble microsystems? This LDRD supported research to answer these questions. Our work included modeling and simulation of protein populations to help us understand, mimic, and categorize molecular decision-making mechanisms that nonequilibrium systems can exhibit. This work is an early step towards mimicking such nanoscale and microscale biomolecular decision-making processes in inorganic systems.

  18. Protein-directed self-assembly of a fullerene crystal

    NASA Astrophysics Data System (ADS)

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B.; Acharya, Rudresh; Degrado, William F.; Kim, Yong Ho; Grigoryan, Gevorg

    2016-04-01

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.

  19. Prospects for using self-assembled nucleic acid structures.

    PubMed

    Rudchenko, M N; Zamyatnin, A A

    2015-04-01

    According to the central dogma in molecular biology, nucleic acids are assigned with key functions on storing and executing genetic information in any living cell. However, features of nucleic acids are not limited only with properties providing template-dependent biosynthetic processes. Studies of DNA and RNA unveiled unique features of these polymers able to make various self-assembled three-dimensional structures that, among other things, use the complementarity principle. Here, we review various self-assembled nucleic acid structures as well as application of DNA and RNA to develop nanomaterials, molecular automata, and nanodevices. It can be expected that in the near future results of these developments will allow designing novel next-generation diagnostic systems and medicinal drugs. PMID:25869355

  20. Dynamic self-assembly of microscale rotors and swimmers

    NASA Astrophysics Data System (ADS)

    Davies Wykes, Megan S.; Palacci, Jérémie; Adachi, Takuji; Ristroph, Leif; Zhong, Xiao; Ward, Michael D.; Zhang, Jun; Shelley, Michael J.

    Biological systems often involve the self-assembly of basic components into complex and function- ing structures. Artificial systems that mimic such processes can provide a well-controlled setting to explore the principles involved and also synthesize useful micromachines. Our experiments show that immotile, but active, components self-assemble into two types of structure that exhibit the fundamental forms of motility: translation and rotation. Specifically, micron-scale metallic rods are designed to induce extensile surface flows in the presence of a chemical fuel; these rods interact with each other and pair up to form either a swimmer or a rotor. Such pairs can transition reversibly be- tween these two configurations, leading to kinetics reminiscent of bacterial run-and-tumble motion.

  1. Linker-Mediated Self-Assembly Dynamics of Charged Nanoparticles.

    PubMed

    Lin, Guanhua; Chee, See Wee; Raj, Sanoj; Král, Petr; Mirsaidov, Utkur

    2016-08-23

    Using in situ liquid cell transmission electron microscopy (TEM), we visualized a stepwise self-assembly of surfactant-coated and hydrated gold nanoparticles (NPs) into linear chains or branched networks. The NP binding is facilitated by linker molecules, ethylenediammonium, which form hydrogen bonds with surfactant molecules of neighboring NPs. The observed spacing between bound neighboring NPs, ∼15 Å, matches the combined length of two surfactants and one linker molecule. Molecular dynamics simulations reveal that for lower concentrations of linkers, NPs with charged surfactants cannot be fully neutralized by strongly binding divalent linkers, so that NPs carry higher effective charges and tend to form chains, due to poor screening. The highly polar NP surfaces polarize and partly immobilize nearby water molecules, which promotes NPs binding. The presented experimental and theoretical approach allows for detail observation and explanation of self-assembly processes in colloidal nanosystems. PMID:27494560

  2. Self-Assembly of Graphene on Carbon Nanotube Surfaces

    NASA Astrophysics Data System (ADS)

    Li, Kaiyuan; Eres, Gyula; Howe, Jane; Chuang, Yen-Jun; Li, Xufan; Gu, Zhanjun; Zhang, Litong; Xie, Sishen; Pan, Zhengwei

    2013-08-01

    The rolling up of a graphene sheet into a tube is a standard visualization tool for illustrating carbon nanotube (CNT) formation. However, the actual processes of rolling up graphene sheets into CNTs in laboratory syntheses have never been demonstrated. Here we report conformal growth of graphene by carbon self-assembly on single-wall and multi-wall CNTs using chemical vapor deposition (CVD) of methane without the presence of metal catalysts. The new graphene layers roll up into seamless coaxial cylinders encapsulating the existing CNTs, but their adhesion to the primary CNTs is weak due to the existence of lattice misorientation. Our study shows that graphene nucleation and growth by self-assembly of carbon on the inactive carbon basal plane of CNTs occurs by a new mechanism that is markedly different from epitaxial growth on metal surfaces, opening up the possibility of graphene growth on many other non-metal substrates by simple methane CVD.

  3. Stable doping of carbon nanotubes via molecular self assembly

    SciTech Connect

    Lee, B.; Chen, Y.; Podzorov, V.; Cook, A.; Zakhidov, A.

    2014-10-14

    We report a novel method for stable doping of carbon nanotubes (CNT) based on methods of molecular self assembly. A conformal growth of a self-assembled monolayer of fluoroalkyl trichloro-silane (FTS) at CNT surfaces results in a strong increase of the sheet conductivity of CNT electrodes by 60–300%, depending on the CNT chirality and composition. The charge carrier mobility of undoped partially aligned CNT films was independently estimated in a field-effect transistor geometry (~100 cm²V⁻¹s⁻¹). The hole density induced by the FTS monolayer in CNT sheets is estimated to be ~1.8 ×10¹⁴cm⁻². We also show that FTS doping of CNT anodes greatly improves the performance of organic solar cells. This large and stable doping effect, easily achieved in large-area samples, makes this approach very attractive for applications of CNTs in transparent and flexible electronics.

  4. Calixarene-encapsulated nanoparticles: self-assembly into functional nanomaterials†

    PubMed Central

    Wei, Alexander

    2007-01-01

    Calixarenes are excellent surfactants for enhancing the dispersion and self-assembly of metal nanoparticles into well-defined structures, particularly those with unit length scales in the 10–100 nm size range. Particles within these ensembles are strongly coupled, giving rise to unique collective optical or magnetic properties. The self-assembled nanostructures described in this feature article include 2D arrays of colloidal Au nanoparticles with size-dependent plasmonic responses, and sub-100 nm Co nanoparticle rings with chiral magnetic states. These nanoparticle assemblies may be further developed for applications in chemical sensing based on surface-enhanced Raman scattering (SERS) and as binary elements for nonvolatile memory, respectively. PMID:16582988

  5. Self Assembled Structures by Directional Solidification of Eutectics

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  6. Dynamic self-assembly of microscale rotors and swimmers.

    PubMed

    Davies Wykes, Megan S; Palacci, Jérémie; Adachi, Takuji; Ristroph, Leif; Zhong, Xiao; Ward, Michael D; Zhang, Jun; Shelley, Michael J

    2016-05-18

    Biological systems often involve the self-assembly of basic components into complex and functioning structures. Artificial systems that mimic such processes can provide a well-controlled setting to explore the principles involved and also synthesize useful micromachines. Our experiments show that immotile, but active, components self-assemble into two types of structure that exhibit the fundamental forms of motility: translation and rotation. Specifically, micron-scale metallic rods are designed to induce extensile surface flows in the presence of a chemical fuel; these rods interact with each other and pair up to form either a swimmer or a rotor. Such pairs can transition reversibly between these two configurations, leading to kinetics reminiscent of bacterial run-and-tumble motion. PMID:27121100

  7. Self-assembly of nanomaterials at fluid interfaces.

    PubMed

    Toor, Anju; Feng, Tao; Russell, Thomas P

    2016-05-01

    Recent developments in the field of the self-assembly of nanoscale materials such as nanoparticles, nanorods and nanosheets at liquid/liquid interfaces are reviewed. Self-assembly behavior of both biological and synthetic particles is discussed. For biological nanoparticles, the nanoparticle assembly at fluid interfaces provides a simple route for directing nanoparticles into 2D or 3D constructs with hierarchical ordering. The interfacial assembly of single-walled carbon nanotubes (SWCNTs) at liquid interfaces would play a key role in applications such as nanotube fractionation, flexible electronic thin-film fabrication and synthesis of porous SWCNT/polymer composites foams. Liquids can be structured by the jamming of nanoparticle surfactants at fluid interfaces. By controlling the interfacial packing of nanoparticle surfactants using external triggers, a new class of materials can be generated that combines the desirable characteristics of fluids such as rapid transport of energy carriers with the structural stability of a solid. PMID:27233643

  8. Self-assembly of graphene on carbon nanotube surfaces.

    PubMed

    Li, Kaiyuan; Eres, Gyula; Howe, Jane; Chuang, Yen-Jun; Li, Xufan; Gu, Zhanjun; Zhang, Litong; Xie, Sishen; Pan, Zhengwei

    2013-01-01

    The rolling up of a graphene sheet into a tube is a standard visualization tool for illustrating carbon nanotube (CNT) formation. However, the actual processes of rolling up graphene sheets into CNTs in laboratory syntheses have never been demonstrated. Here we report conformal growth of graphene by carbon self-assembly on single-wall and multi-wall CNTs using chemical vapor deposition (CVD) of methane without the presence of metal catalysts. The new graphene layers roll up into seamless coaxial cylinders encapsulating the existing CNTs, but their adhesion to the primary CNTs is weak due to the existence of lattice misorientation. Our study shows that graphene nucleation and growth by self-assembly of carbon on the inactive carbon basal plane of CNTs occurs by a new mechanism that is markedly different from epitaxial growth on metal surfaces, opening up the possibility of graphene growth on many other non-metal substrates by simple methane CVD. PMID:23912638

  9. Intrinsic universality and the computational power of self-assembly.

    PubMed

    Woods, Damien

    2015-07-28

    Molecular self-assembly, the formation of large structures by small pieces of matter sticking together according to simple local interactions, is a ubiquitous phenomenon. A challenging engineering goal is to design a few molecules so that large numbers of them can self-assemble into desired complicated target objects. Indeed, we would like to understand the ultimate capabilities and limitations of this bottom-up fabrication process. We look to theoretical models of algorithmic self-assembly, where small square tiles stick together according to simple local rules in order to carry out a crystal growth process. In this survey, we focus on the use of simulation between such models to classify and separate their computational and expressive powers. Roughly speaking, one model simulates another if they grow the same structures, via the same dynamical growth processes. Our journey begins with the result that there is a single intrinsically universal tile set that, with appropriate initialization and spatial scaling, simulates any instance of Winfree's abstract Tile Assembly Model. This universal tile set exhibits something stronger than Turing universality: it captures the geometry and dynamics of any simulated system in a very direct way. From there we find that there is no such tile set in the more restrictive non-cooperative model, proving it weaker than the full Tile Assembly Model. In the two-handed model, where large structures can bind together in one step, we encounter an infinite set of infinite hierarchies of strictly increasing simulation power. Towards the end of our trip, we find one tile to rule them all: a single rotatable flipable polygonal tile that simulates any tile assembly system. We find another tile that aperiodically tiles the plane (but with small gaps). These and other recent results show that simulation is giving rise to a kind of computational complexity theory for self-assembly. It seems this could be the beginning of a much longer journey

  10. Self-assembly of phenylalanine-based molecules.

    PubMed

    German, Helen W; Uyaver, Sahin; Hansmann, Ulrich H E

    2015-03-01

    Using molecular dynamics, we study the self-assembly of phenylalanine with charged end-groups at various temperatures and concentrations. As in the case of diphenylalanine, we observe the formation of nanotubes; however, phenylalanine aggregates in layers of four, not six, molecules. The observed aggregates are consistent with recent experimental measurements of fibrils obtained from mice with phenylketonuria. We investigate the stability and the mechanism by which these tubular structures form and discuss potential toxicity mechanisms. PMID:25347763

  11. Propagating Waves of Self-assembly in Organosilane Monolayers

    SciTech Connect

    Douglas,J.; Efimenko, K.; Fischer, D.; Phelan, F.; Genzer, J.

    2007-01-01

    Wavefronts associated with reaction-diffusion and self-assembly processes are ubiquitous in the natural world. For example, propagating fronts arise in crystallization and diverse other thermodynamic ordering processes, in polymerization fronts involved in cell movement and division, as well as in the competitive social interactions and population dynamics of animals at much larger scales. Although it is often claimed that self-sustaining or autocatalytic front propagation is well described by mean-field 'reaction-diffusion' or 'phase field' ordering models, it has recently become appreciated from simulations and theoretical arguments that fluctuation effects in lower spatial dimensions can lead to appreciable deviations from the classical mean-field theory (MFT) of this type of front propagation. The present work explores these fluctuation effects in a real physical system. In particular, we consider a high-resolution near-edge x-ray absorption fine structure spectroscopy (NEXAFS) study of the spontaneous frontal self-assembly of organosilane (OS) molecules into self-assembled monolayer (SAM) surface-energy gradients on oxidized silicon wafers. We find that these layers organize from the wafer edge as propagating wavefronts having well defined velocities. In accordance with two-dimensional simulations of this type of front propagation that take fluctuation effects into account, we find that the interfacial widths w(t) of these SAM self-assembly fronts exhibit a power-law broadening in time, w(t) {approx} t{sup {beta}}, rather than the constant width predicted by MFT. Moreover, the observed exponent values accord rather well with previous simulation and theoretical estimates. These observations have significant implications for diverse types of ordering fronts that occur under confinement conditions in biological or materials-processing contexts.

  12. Self-Assembly Protein Nanogels for Safer Cancer Immunotherapy.

    PubMed

    Purwada, Alberto; Tian, Ye F; Huang, Weishan; Rohrbach, Kathleen M; Deol, Simrita; August, Avery; Singh, Ankur

    2016-06-01

    Soluble antigen-based cancer vaccines have poor retention in tissues along with suboptimal antigen processing by dendritic cells. Multiple booster doses are often needed, leading to dose-limiting systemic toxicity. A versatile, immunomodulatory, self-assembly protein nanogel vaccine is reported that induces robust immune cell response at lower antigen doses than soluble antigens, an important step towards biomaterials-based safer immunotherapy approaches. PMID:27100566

  13. Self-assembled containers based on extended tetrathiafulvalene.

    PubMed

    Bivaud, Sébastien; Goeb, Sébastien; Croué, Vincent; Dron, Paul I; Allain, Magali; Sallé, Marc

    2013-07-10

    Two original self-assembled containers constituted each by six electroactive subunits are described. They are synthesized from a concave tetratopic π-extended tetrathiafulvalene ligand bearing four pyridyl units and cis-M(dppf)(OTf)2 (M = Pd or Pt; dppf = 1,1'-bis(diphenylphosphino)ferrocene; OTf = trifluoromethane-sulfonate) complexes. Both fully characterized assemblies present an oblate spheroidal cavity that can incorporate one perylene molecule. PMID:23795694

  14. The self-assembly of a camptothecin-lysine nanotube.

    PubMed

    Sun, Yuan; Shieh, Aileen; Kim, Se Hye; King, Samantha; Kim, Anne; Sun, Hui-Lung; Croce, Carlo M; Parquette, Jon R

    2016-06-15

    A simple, low molecular weight camptothecin-lysine conjugate is reported to self-assemble into nanotubes with diameters of 70-100nm and a drug loading level of 60.5%. The nanotubes exhibited promising in vitro cytotoxicity against cancer cell lines A549, NCI-H460 and NCI-H23. The release of active camptothecin was highly dependent on conjugate concentration, temperature and pH of the solution. PMID:27156772

  15. Self-assembly of a 5-fluorouracil-dipeptide hydrogel.

    PubMed

    Sun, Yuan; Kaplan, Jonah A; Shieh, Aileen; Sun, Hui-Lung; Croce, Carlo M; Grinstaff, Mark W; Parquette, Jon R

    2016-04-18

    The self-assembly of 5-fluorouracil dilysine conjugates into self-supporting hydrogels, comprised of entangled nanofibers or rigid nanotubes with diameters of 10 and 16 nm, respectively, is reported. The rate of release of 5-Fu from the conjugates was highly dependent on concentration in solution, whereas, release from the fully formed hydrogels was significantly slower. The 5-Fu conjugate also exhibited promising in vitro cytotoxicity against human tumor cell lines A549, H460 and H23. PMID:26996124

  16. Lighting up cells with lanthanide self-assembled helicates

    PubMed Central

    Bünzli, Jean-Claude G.

    2013-01-01

    Lanthanide bioprobes and bioconjugates are ideal luminescent stains in view of their low propensity to photobleaching, sharp emission lines and long excited state lifetimes permitting time-resolved detection for enhanced sensitivity. We show here how the interplay between physical, chemical and biochemical properties allied to microfluidics engineering leads to self-assembled dinuclear lanthanide luminescent probes illuminating live cells and selectively detecting biomarkers expressed by cancerous human breast cells. PMID:24511387

  17. Next generation high density self assembling functional protein arrays

    PubMed Central

    Ramachandran, Niroshan; Raphael, Jacob V.; Hainsworth, Eugenie; Demirkan, Gokhan; Fuentes, Manuel G.; Rolfs, Andreas; Hu, Yanhui; LaBaer, Joshua

    2009-01-01

    We report a high-density self assembling protein microarray that displays thousands of proteins, produced and captured in situ from immobilized cDNA templates. Over 1500 unique cDNAs were tested with > 90% success with nearly all proteins displaying yields within 2 fold of the mean, minimal sample variation and good day to day reproducibility. The displayed proteins revealed selective protein interactions. This method will enable various experimental approaches to study protein function in high throughput. PMID:18469824

  18. Sequential programmable self-assembly: Role of cooperative interactions

    DOE PAGESBeta

    Jonathan D. Halverson; Tkachenko, Alexei V.

    2016-03-04

    Here, we propose a general strategy of “sequential programmable self-assembly” that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenientmore » platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call “DNA spider,” that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a “GEOMAG” magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.« less

  19. The position of hydrophobic residues tunes peptide self-assembly.

    PubMed

    Bortolini, Christian; Liu, Lei; Gronewold, Thomas M A; Wang, Chen; Besenbacher, Flemming; Dong, Mingdong

    2014-08-21

    The final structure and properties of synthetic peptides mainly depend on their sequence composition and experimental conditions. This work demonstrates that a variation in the positions of hydrophobic residues within a peptide sequence can tune the self-assembly. Techniques employed are atomic force microscopy, transmission electron microscopy and an innovative method based on surface acoustic waves. In addition, a systematic investigation on pH dependence was carried out by utilizing constant experimental parameters. PMID:24995505

  20. Self-assembled magnetic filter for highly efficient immunomagnetic separation.

    PubMed

    Issadore, David; Shao, Huilin; Chung, Jaehoon; Newton, Andita; Pittet, Mikael; Weissleder, Ralph; Lee, Hakho

    2011-01-01

    We have developed a compact and inexpensive microfluidic chip, the self-assembled magnetic filter, to efficiently remove magnetically tagged cells from suspension. The self-assembled magnetic filter consists of a microfluidic channel built directly above a self-assembled NdFeB magnet. Micrometre-sized grains of NdFeB assemble to form alternating magnetic dipoles, creating a magnetic field with a very strong magnitude B (from the material) and field gradient ▽B (from the configuration) in the microfluidic channel. The magnetic force imparted on magnetic beads is measured to be comparable to state-of-the-art microfabricated magnets, allowing for efficient separations to be performed in a compact, simple device. The efficiency of the magnetic filter is characterized by sorting non-magnetic (polystyrene) beads from magnetic beads (iron oxide). The filter enriches the population of non-magnetic beads to magnetic beads by a factor of >10(5) with a recovery rate of 90% at 1 mL h(-1). The utility of the magnetic filter is demonstrated with a microfluidic device that sorts tumor cells from leukocytes using negative immunomagnetic selection, and concentrates the tumor cells on an integrated membrane filter for optical detection. PMID:20949198

  1. Self-assembled amyloid fibrils with controllable conformational heterogeneity.

    PubMed

    Lee, Gyudo; Lee, Wonseok; Lee, Hyungbeen; Lee, Chang Young; Eom, Kilho; Kwon, Taeyun

    2015-01-01

    Amyloid fibrils are a hallmark of neurodegenerative diseases and exhibit a conformational diversity that governs their pathological functions. Despite recent findings concerning the pathological role of their conformational diversity, the way in which the heterogeneous conformations of amyloid fibrils can be formed has remained elusive. Here, we show that microwave-assisted chemistry affects the self-assembly process of amyloid fibril formation, which results in their conformational heterogeneity. In particular, microwave-assisted chemistry allows for delicate control of the thermodynamics of the self-assembly process, which enabled us to tune the molecular structure of β-lactoglobulin amyloid fibrils. The heterogeneous conformations of amyloid fibrils, which can be tuned with microwave-assisted chemistry, are attributed to the microwave-driven thermal energy affecting the electrostatic interaction during the self-assembly process. Our study demonstrates how microwave-assisted chemistry can be used to gain insight into the origin of conformational heterogeneity of amyloid fibrils as well as the design principles showing how the molecular structures of amyloid fibrils can be controlled. PMID:26592772

  2. Modeling the self-assembly of nanoparticle and nanorod superlattices

    NASA Astrophysics Data System (ADS)

    Titov, Alexey; Kral, Petr

    2008-03-01

    Coloidal semiconductor PbSe/CdSE nanoparticles (NP) of the sizes of 3-10 nm can self-assemble in fcc, hcp and single-hexagonal (sh) superlattices [1]. We model the Coulombic, van der Waals and steric interactions between these NPs to understand the exact conditions under which they can self-assemble in these lattice structures. Our simulations show that non-local dipoles of the NPs and their screening by the conducting substrate are both crucial for the sh lattice formation. We model analogously the self-assembly of semiconducting CdSe nanorods (NRs), realized also in the presence of electric fields [2], and the binary semiconducting-metallic nanoparticle superlattices [3]. [1] D. Talapin, E. Shevchenko, C. B. Murray, A. Titov and P. Kr'al, Nano Letters 7, 1213 (2007). [2] A. Titov and P. Kr'al, submitted. [3] E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray, Nature 439, 55-59 (2006).

  3. Multilayer block copolymer meshes by orthogonal self-assembly

    PubMed Central

    Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.

    2016-01-01

    Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218

  4. Self-assembled amyloid fibrils with controllable conformational heterogeneity

    NASA Astrophysics Data System (ADS)

    Lee, Gyudo; Lee, Wonseok; Lee, Hyungbeen; Lee, Chang Young; Eom, Kilho; Kwon, Taeyun

    2015-11-01

    Amyloid fibrils are a hallmark of neurodegenerative diseases and exhibit a conformational diversity that governs their pathological functions. Despite recent findings concerning the pathological role of their conformational diversity, the way in which the heterogeneous conformations of amyloid fibrils can be formed has remained elusive. Here, we show that microwave-assisted chemistry affects the self-assembly process of amyloid fibril formation, which results in their conformational heterogeneity. In particular, microwave-assisted chemistry allows for delicate control of the thermodynamics of the self-assembly process, which enabled us to tune the molecular structure of β-lactoglobulin amyloid fibrils. The heterogeneous conformations of amyloid fibrils, which can be tuned with microwave-assisted chemistry, are attributed to the microwave-driven thermal energy affecting the electrostatic interaction during the self-assembly process. Our study demonstrates how microwave-assisted chemistry can be used to gain insight into the origin of conformational heterogeneity of amyloid fibrils as well as the design principles showing how the molecular structures of amyloid fibrils can be controlled.

  5. Dynamic self-assembly and control of microfluidic particle crystals

    PubMed Central

    Lee, Wonhee; Amini, Hamed; Stone, Howard A.; Di Carlo, Dino

    2010-01-01

    Engineered two-phase microfluidic systems have recently shown promise for computation, encryption, and biological processing. For many of these systems, complex control of dispersed-phase frequency and switching is enabled by nonlinearities associated with interfacial stresses. Introducing nonlinearity associated with fluid inertia has recently been identified as an easy to implement strategy to control two-phase (solid-liquid) microscale flows. By taking advantage of inertial effects we demonstrate controllable self-assembling particle systems, uncover dynamics suggesting a unique mechanism of dynamic self-assembly, and establish a framework for engineering microfluidic structures with the possibility of spatial frequency filtering. Focusing on the dynamics of the particle–particle interactions reveals a mechanism for the dynamic self-assembly process; inertial lift forces and a parabolic flow field act together to stabilize interparticle spacings that otherwise would diverge to infinity due to viscous disturbance flows. The interplay of the repulsive viscous interaction and inertial lift also allow us to design and implement microfluidic structures that irreversibly change interparticle spacing, similar to a low-pass filter. Although often not considered at the microscale, nonlinearity due to inertia can provide a platform for high-throughput passive control of particle positions in all directions, which will be useful for applications in flow cytometry, tissue engineering, and metamaterial synthesis. PMID:21149674

  6. Fractal intermediates in the self-assembly of silicatein filaments

    PubMed Central

    Murr, Meredith M.; Morse, Daniel E.

    2005-01-01

    Silicateins are proteins with catalytic, structure-directing activity that are responsible for silica biosynthesis in certain sponges; they are the constituents of macroscopic protein filaments that are found occluded within the silica needles made by Tethya aurantia. Self-assembly of the silicatein monomers and oligomers is shown to form fibrous structures by a mechanism that is fundamentally different from any previously described filament-assembly process. This assembly proceeds through the formation of diffusion-limited, fractally patterned aggregates on the path to filament formation. The driving force for this self-assembly is suggested to be entropic, mediated by the interaction of hydrophobic patches on the surfaces of the silicatein subunits that are not found on highly homologous congeners that do not form filaments. Our results are consistent with a model in which silicatein monomers associate into oligomers that are stabilized by intermolecular disulfide bonds. These oligomeric units assemble into a fractal network that subsequently condenses and organizes into a filamentous structure. These results represent a potentially general mechanism for protein fiber self-assembly. PMID:16091468

  7. Molecular pathways for defect annihilation in directed self-assembly.

    PubMed

    Hur, Su-Mi; Thapar, Vikram; Ramírez-Hernández, Abelardo; Khaira, Gurdaman; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A; Li, Weihua; Müller, Marcus; Nealey, Paul F; de Pablo, Juan J

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm(2). In this work, we identify the key pathways and the corresponding free energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers and how they depend on material characteristics, and we propose strategies designed to overcome them. The validity of our conclusions for industrially relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities, and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales-a handful of nanometers-and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail. PMID:26515095

  8. Evolutionary dynamics in a simple model of self-assembly

    NASA Astrophysics Data System (ADS)

    Johnston, Iain G.; Ahnert, Sebastian E.; Doye, Jonathan P. K.; Louis, Ard A.

    2011-06-01

    We investigate the evolutionary dynamics of an idealized model for the robust self-assembly of two-dimensional structures called polyominoes. The model includes rules that encode interactions between sets of square tiles that drive the self-assembly process. The relationship between the model’s rule set and its resulting self-assembled structure can be viewed as a genotype-phenotype map and incorporated into a genetic algorithm. The rule sets evolve under selection for specified target structures. The corresponding complex fitness landscape generates rich evolutionary dynamics as a function of parameters such as the population size, search space size, mutation rate, and method of recombination. Furthermore, these systems are simple enough that in some cases the associated model genome space can be completely characterized, shedding light on how the evolutionary dynamics depends on the detailed structure of the fitness landscape. Finally, we apply the model to study the emergence of the preference for dihedral over cyclic symmetry observed for homomeric protein tetramers.

  9. Simulation Methods for Self-Assembled Polymers and Rings

    NASA Astrophysics Data System (ADS)

    Kindt, James T.

    2003-11-01

    New off-lattice grand canonical Monte Carlo simulation methods have been developed and used to model the equilibrium structure and phase diagrams of equilibrium polymers and rings. A scheme called Polydisperse Insertion, Removal, and Resizing (PDIRR) is used to accelerate the equilibration of the size distribution of self-assembled aggregates. This method allows the insertion or removal of aggregates (e.g., chains) containing an arbitrary number of monomers in a single Monte Carlo move, or the re-sizing of an existing aggregate. For the equilibrium polymer model under semi-dilute conditions, a several-fold increase in equilibration rate compared with single-monomer moves is observed, facilitating the study of the isotropic-nematic transition of semiflexible, self-assembled chains. Combined with the pivot-coupled GCMC method for ring simulation, the PDIRR approach also allows the phenomenological simulation of a polydisperse equilibrium phase of rings, 2-dimensional fluid domains, or flat self-assembled disks in three dimensions.

  10. Self-assembled amyloid fibrils with controllable conformational heterogeneity

    PubMed Central

    Lee, Gyudo; Lee, Wonseok; Lee, Hyungbeen; Lee, Chang Young; Eom, Kilho; Kwon, Taeyun

    2015-01-01

    Amyloid fibrils are a hallmark of neurodegenerative diseases and exhibit a conformational diversity that governs their pathological functions. Despite recent findings concerning the pathological role of their conformational diversity, the way in which the heterogeneous conformations of amyloid fibrils can be formed has remained elusive. Here, we show that microwave-assisted chemistry affects the self-assembly process of amyloid fibril formation, which results in their conformational heterogeneity. In particular, microwave-assisted chemistry allows for delicate control of the thermodynamics of the self-assembly process, which enabled us to tune the molecular structure of β-lactoglobulin amyloid fibrils. The heterogeneous conformations of amyloid fibrils, which can be tuned with microwave-assisted chemistry, are attributed to the microwave-driven thermal energy affecting the electrostatic interaction during the self-assembly process. Our study demonstrates how microwave-assisted chemistry can be used to gain insight into the origin of conformational heterogeneity of amyloid fibrils as well as the design principles showing how the molecular structures of amyloid fibrils can be controlled. PMID:26592772

  11. Multilayer block copolymer meshes by orthogonal self-assembly

    NASA Astrophysics Data System (ADS)

    Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.

    2016-01-01

    Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders.

  12. Materials self-assembly and fabrication in confined spaces

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Kilbey, II, S Michael; Ji, Dr. Qingmin; Hill, Dr. Jonathan P; Ariga, Katsuhiko

    2012-01-01

    Molecular assemblies have been mainly researched in open spaces for long time. However, recent researches have revealed that there are many interesting aspects remained in self-assemblies in confined spaces. Molecular association within nanospaces such as mesoporous materials provide unusual phenomena based on highly restricted molecular motions. Current research endeavors in materials science and technology are focused on developing either new class of materials or materials with novel/multiple functionalities which is often achived via molecular assembly in confined spaces. Template synthesis and guided assemblies are distinguishable examples for molecular assembly in confined spaces. So far, different aspects of molecular confinements are discussed separately. In this review, the focus is specifically to bring some potential developments in various aspects of confined spaces for molecular self-assembly under one roof. We arrange the sections in this review based on the nature of the confinements; accordingly the topological/geometrical confinements, chemical and biological confinements, and confinements within thin film, respectively. Following these sections, molecular confinements for practical applications are shortly described in order to show connections of these scientific aspects with possible practical uses. One of the most important facts is that the self-assembly in confined spaces stands at meeting points of top-down and bottom-up fabrications, which would be an ultimate key to push the limits of nanotechnology and nanoscience.

  13. Chiral Perylene Materials by Ionic Self-Assembly.

    PubMed

    Echue, Geraldine; Hamley, Ian; Lloyd Jones, Guy C; Faul, Charl F J

    2016-09-01

    Two chiral complexes (1-SDS and 1-SDBS) were prepared via the ionic self-assembly of a chiral perylene diimide tecton with oppositely charged surfactants. The effect of surfactant tail architecture on the self-assembly properties and supramolecular structure was investigated in detail using UV-vis, IR, circular dichroism, light microscopy, X-ray diffraction studies, and electron microscopy. The results obtained revealed the molecular chirality of the parent perylene tecton could be translated into supramolecular helical chirality of the resulting complexes via primary ionic interactions through careful choice of solvent and concentration. Differing solvent-dependent aggregation behavior was observed for these complexes as a result of the different possible noncovalent interactions via the surfactant alkyl tails. The results presented in this study demonstrate that ionic self-assembly (ISA) is a facile strategy for the production of chiral supramolecular materials based on perylene diimides. The structure-function relationship is easily explored here due to the wide selection and easy availability of common surfactants. PMID:27486788

  14. Quantitative Characterization of Surface Self-Assembly Imaging Using Shapelets

    NASA Astrophysics Data System (ADS)

    Abukhdeir, Nasser Mohieddin; Suderman, Robert; Lizotte, Daniel J.

    Microscopy and imaging of surface self-assembly phenomena have advanced significantly over the past decade. In order to determine structure/property relationships robust automated analysis of the resulting images is required, but has not advanced at an equally rapid pace. Recently, quantitative characterization techniques have been developed and applied, such as using bond-orientational order (BOO) theory. BOO-based methods have significant limitations in that they do not provide pixel-level resolution and are not robust in the presence of measurement noise. In this work, a fundamentally different method for automated quantitative characterization of surface self-assembly imaging is presented which uses a family of localized functions called ``shapelets''. The method is presented and applied to quantitative characterization of stripe and hexagonal patterns which are frequently observed in surface self-assembly. The shapelet-based method is shown to be general, highly accurate, and robust in the presence of measurement noise. It is able to efficiently determine local pattern characteristics such as pattern strength and orientation for the determination of structure/property relationships. This work was made possible by the Natural Sciences and Engineering Research Council of Canada and Compute Ontario.

  15. Molecular pathways for defect annihilation in directed self-assembly

    PubMed Central

    Hur, Su-Mi; Thapar, Vikram; Ramírez-Hernández, Abelardo; Khaira, Gurdaman; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Müller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-01-01

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers and how they depend on material characteristics, and we propose strategies designed to overcome them. The validity of our conclusions for industrially relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities, and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales—a handful of nanometers—and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail. PMID:26515095

  16. Polymer adsorption-driven self-assembly of nanostructures.

    PubMed

    Chakraborty, A K; Golumbfskie, A J

    2001-01-01

    Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context. PMID:11326074

  17. Molecular pathways for defect annihilation in directed self-assembly.

    DOE PAGESBeta

    Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; Khaira, Gurdaman S.; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Muller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energymore » barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.« less

  18. Engineering hierarchical nanostructures by elastocapillary self-assembly.

    PubMed

    De Volder, Michaël; Hart, A John

    2013-02-25

    Surfaces coated with nanoscale filaments such as silicon nanowires and carbon nanotubes are potentially compelling for high-performance battery and capacitor electrodes, photovoltaics, electrical interconnects, substrates for engineered cell growth, dry adhesives, and other smart materials. However, many of these applications require a wet environment or involve wet processing during their synthesis. The capillary forces introduced by these wet environments can lead to undesirable aggregation of nanoscale filaments, but control of capillary forces can enable manipulation of the filaments into discrete aggregates and novel hierarchical structures. Recent studies suggest that the elastocapillary self-assembly of nanofilaments can be a versatile and scalable means to build complex and robust surface architectures. To enable a wider understanding and use of elastocapillary self-assembly as a fabrication technology, we give an overview of the underlying fundamentals and classify typical implementations and surface designs for nanowires, nanotubes, and nanopillars made from a wide variety of materials. Finally, we discuss exemplary applications and future opportunities to realize new engineered surfaces by the elastocapillary self-assembly of nanofilaments. PMID:23339106

  19. Equilibrium self-assembly of small RNA viruses

    NASA Astrophysics Data System (ADS)

    Bruinsma, R. F.; Comas-Garcia, M.; Garmann, R. F.; Grosberg, A. Y.

    2016-03-01

    We propose a description for the quasiequilibrium self-assembly of small, single-stranded (ss) RNA viruses whose capsid proteins (CPs) have flexible, positively charged, disordered tails that associate with the negatively charged RNA genome molecules. We describe the assembly of such viruses as the interplay between two coupled phase-transition-like events: the formation of the protein shell (the capsid) by CPs and the condensation of a large ss viral RNA molecule. Electrostatic repulsion between the CPs competes with attractive hydrophobic interactions and attractive interaction between neutralized RNA segments mediated by the tail groups. An assembly diagram is derived in terms of the strength of attractive interactions between CPs and between CPs and the RNA molecules. It is compared with the results of recent studies of viral assembly. We demonstrate that the conventional theory of self-assembly, which does describe the assembly of empty capsids, is in general not applicable to the self-assembly of RNA-encapsidating virions.

  20. Self-assembled elastin-like polypeptide particles.

    PubMed

    Osborne, Jill L; Farmer, Robin; Woodhouse, Kimberly A

    2008-01-01

    In this work, the self-assembly of a recombinant elastin-based block copolymer containing both hydrophobic and cross-linking domains from the human elastin protein was investigated. The particle formation and dynamic behavior were characterized using inverted microscopy and dynamic light scattering. The morphology and stability were evaluated using scanning and transmission electron microscopy. Above a critical temperature the molecules self-assembled into a bimodal distribution of nano- and micron-sized particles. The larger particles increased in size through coalescence. Micron-sized particle formation appeared largely reversible, although a self-assembly/disassembly hysteresis was observed. At high polyethylene glycol (PEG) concentrations particle coalescence and settling were reduced, particle stability seemed enhanced and PEG coated the particles. Particle stabilization was also achieved through covalent cross-linking using glutaraldehyde. This study laid the foundation for optimization of particle size and stability through modification of the solvent system and has shown that this family of elastin-based polypeptides holds potential for use as particulate drug carriers. PMID:17881311

  1. Molecular Motions in Functional Self-Assembled Nanostructures

    PubMed Central

    Dhotel, Alexandre; Chen, Ziguang; Delbreilh, Laurent; Youssef, Boulos; Saiter, Jean-Marc; Tan, Li

    2013-01-01

    The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted. PMID:23348927

  2. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins

    PubMed Central

    Knowles, Tuomas P. J.; Oppenheim, Tomas W.; Buell, Alexander K.; Chirgadze, Dimitri Y.; Welland, Mark E.

    2015-01-01

    In nature, sophisticated functional materials are created through hierarchical self-assembly of simple nanoscale motifs1–4. In the laboratory, much progress has been made in the controlled assembly of molecules into one-5–7, two-6,8,9 and three-dimensional10 artificial nanostructures, but bridging from the nanoscale to the macroscale to create useful macroscopic materials remains a challenge. Here we show a scalable self-assembly approach to making free-standing films from amyloid protein fibrils. The films were well ordered and highly rigid, with a Young’s modulus of up to 5–7 GPa, which is comparable to the highest values for proteinaceous materials found in nature. We show that the self-organizing protein scaffolds can align otherwise unstructured components (such as fluorophores) within the macroscopic films. Multiscale self-assembly that relies on highly specific biomolecular interactions is an attractive path for realizing new multifunctional materials built from the bottom up. PMID:20190750

  3. Algorithmic Self-Assembly of DNA Sierpinski Triangles

    PubMed Central

    2004-01-01

    Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal pattern—a Sierpinski triangle—as it grows. To achieve this, abstract tiles were translated into DNA tiles based on double-crossover motifs. Serving as input for the computation, long single-stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. For both of two independent molecular realizations, atomic force microscopy revealed recognizable Sierpinski triangles containing 100–200 correct tiles. Error rates during assembly appear to range from 1% to 10%. Although imperfect, the growth of Sierpinski triangles demonstrates all the necessary mechanisms for the molecular implementation of arbitrary cellular automata. This shows that engineered DNA self-assembly can be treated as a Turing-universal biomolecular system, capable of implementing any desired algorithm for computation or construction tasks. PMID:15583715

  4. Molecular pathways for defect annihilation in directed self-assembly.

    SciTech Connect

    Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; Khaira, Gurdaman S.; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Muller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.

  5. Three dimensional self-assembly at the nanoscale

    NASA Astrophysics Data System (ADS)

    Gracias, D. H.

    2013-05-01

    At the nanoscale, three dimensional manipulation and assembly becomes extremely challenging and also cost prohibitive. Self-assembly provides an attractive and possibly the only highly parallel methodology to structure truly three dimensional patterned materials and devices at this size scale for applications in electronics, optics, robotics and medicine. This is a concise review along with a perspective of an important and exciting field in nanotechnology and is related to a Nanoengineering Pioneer Award that I received at this SPIE symposium for my contributions to the 3D selfassembly of nanostructures. I detail a historical account of 3D self-assembly and outline important developments in this area which is put into context with the larger research areas of 3D nanofabrication, assembly and nanomanufacturing. A focus in this review is on our work as it relates to the self-assembly with lithographically patterned units; this approach provides a means for heterogeneous integration of periodic, curved and angled nanostructures with precisely defined three dimensional patterns.

  6. Self-assembly, redox activity, and charge transport of functional surface nano-architectures by molecular design

    NASA Astrophysics Data System (ADS)

    Skomski, Daniel

    Surface-assisted molecular self-assembly is a promising strategy to program the structure and chemical state of atoms and molecules in nano-architectures to achieve a specific function. The experiments described in this thesis demonstrate that the design and programming of basic organic components leads to desired characteristics by self-assembly. The fabrication of uniform single-site metal centers at surfaces, important for high selectivity in next-generation catalysts, was accomplished by coordination to redox non-innocent phenanthroline and tetrazine-based ligands. These examples were the first demonstrating tuning of the metal oxidation state in surface coordination architectures through rational ligand design. The molecular-scale coordination architectures were the first formed from chromium and vanadium, and the first from platinum in a non-porphyrin system. The first mixed valence metal-ligand surface structure was fabricated that attained the same ligand coordination number for all metal sites. A new surface reaction method was demonstrated between an inexpensive sodium chloride reagent and carboxylate ligands. High-temperature, molecular-resolution microscopy and spectroscopy of the ordered metal-organic structures demonstrated thermal stability up to 300 °C, the highest molecular-level thermal stability in organic surface nanostructures yet achieved, making such systems potential candidates for moderate-temperature catalytic reactions. Molecular self-assembly was expanded into organic semiconductor thin films. In a two-component, bi-layered system, hydrogen bonding between carboxylates and carboxylic acid-substituted thiophenes was utilized, yielding the first real-space images of phenyl-thiophene stacking. In a one-component system, multiple donor-acceptor pi-pi contacts between phenyltriazole building blocks accomplished assembly of flat-lying molecules from a surface with molecular-scale precision through more than twenty molecular layers. Sufficient

  7. Large-scale dissipative particle dynamics simulations of self-assembly amphiphilic systems†

    PubMed Central

    Li, Xuejin; Tang, Yu-Hang

    2014-01-01

    We present large-scale simulation results on the self-assembly of amphiphilic systems in bulk solution and under soft confinement. Self-assembled unilamellar and multilamellar vesicles are formed from amphiphilic molecules in bulk solution. The system is simulated by placing amphiphilic molecules inside large unilamellar vesicles (LUVs) and the dynamic soft confinement-induced self-assembled vesicles are investigated. Moreover, the self-assembly of sickle hemoglobin (HbS) is simulated in a crowded and fluctuating intracellular space and our results demonstrate that the HbS self-assemble into polymer fibers causing the LUV shape to be distorted. PMID:24938634

  8. Molecular Self-Assembly into One-Dimensional Nanostructures

    PubMed Central

    PALMER, LIAM C.; STUPP, SAMUEL I.

    2008-01-01

    CONSPECTUS Self-assembly of small molecules into one-dimensional nanostructures offers many potential applications in electronically and biologically active materials. The recent advances discussed in this Account demonstrate how researchers can use the fundamental principles of supramolecular chemistry to craft the size, shape, and internal structure of nanoscale objects. In each system described here, we used atomic force microscopy (AFM) and transmission electron microscopy (TEM) to study the assembly morphology. Circular dichroism, nuclear magnetic resonance, infrared, and optical spectroscopy provided additional information about the self-assembly behavior in solution at the molecular level. Dendron rod–coil molecules self-assemble into flat or helical ribbons. They can incorporate electronically conductive groups and can be mineralized with inorganic semiconductors. To understand the relative importance of each segment in forming the supramolecular structure, we synthetically modified the dendron, rod, and coil portions. The self-assembly depended on the generation number of the dendron, the number of hydrogen-bonding functions, and the length of the rod and coil segments. We formed chiral helices using a dendron–rod–coil molecule prepared from an enantiomerically enriched coil. Because helical nanostructures are important targets for use in biomaterials, nonlinear optics, and stereoselective catalysis, researchers would like to precisely control their shape and size. Tripeptide-containing peptide lipid molecules assemble into straight or twisted nanofibers in organic solvents. As seen by AFM, the sterics of bulky end groups can tune the helical pitch of these peptide lipid nanofibers in organic solvents. Furthermore, we demonstrated the potential for pitch control using trans-to-cis photoisomerization of a terminal azobenzene group. Other molecules called peptide amphiphiles (PAs) are known to assemble in water into cylindrical nanostructures that

  9. Nanoscale templating and self-assembly of organic semiconductors

    NASA Astrophysics Data System (ADS)

    Hulvat, James Francis

    Improvements in organic electronic materials could lead to novel device applications, ranging from large-area, flexible displays to light weight, plastic electronics. Progress on these applications would benefit from development of low-cost, aqueous, solution-based fabrication techniques for organic semiconductors. Supramolecular self-assembly enables molecules to organize in complex structures through non-covalent interactions. The nanoscale structure and aggregation of organic semiconductors influence conductivity, charge mobility and luminescence. We developed three approaches to enhance the performance of organic semiconductors through molecular self-assembly. The first uses a liquid crystalline (LC) template to mediate electrochemical polymerization of poly(3,4-ethyldioxythiophene) (PEDOT), a conducting polymer used for hole injection in organic light emitting diodes (OLED). Monomers were polymerized in the cylindrical, hydrophobic cores of a hexagonal, lyotropic LC formed by a non-ionic amphiphile in water, The templated, conducting polymer films exhibited anisotropic optical properties and increased conductivity as a direct result of the nanoscale, self-organized structure of the template. Another approach was used to control molecular order by preparing organic semiconductors that are themselves liquid crystalline. We developed a novel series of triblock oligo(phenylene vinylene) (OPV) amphiphiles that form thermotropic and lyotropic LC mesophases. The self-organized, layered structure of these mesophases influences aggregation of OPV, enhancing fluorescence in the liquid crystalline state compared with disordered films. These OPV-amphiphiles are the first example of a water-soluble oligo(phenylene vinylene) that can self-organize into aligned, well-ordered, highly fluorescent films. In a third system, a triblock, dendron rod-coil (DRC) molecule containing a quaterthiophene segment was prepared and its self-assembly and electronic properties investigated

  10. Self-Assembly of Plasmonic Nanoclusters for Optical Metauids

    NASA Astrophysics Data System (ADS)

    Schade, Nicholas Benjamin

    I discuss experimental progress towards developing a material with an isotropic, negative index of refraction at optical frequencies. The simplest way to make such a material is to create a metafluid, or a disordered collection of subwavelength, isotropic electromagnetic resonators. Small clusters of metal particles, such as tetrahedra, serve as these constituents. What is needed are methods for manufacturing these structures with high precision and in sufficient yield that their resonances are identical. Jonathan Fan et al. [Science, 328 (5982), 1135-1138, 2010] demonstrated that colloidal self-assembly is a means of preparing electromagnetic resonators from metal nanoparticles. However, the resonances are sensitive to the separation gaps between particles. Standard synthesis routes for metal nanoparticles yield crystals or nanoshells that are inadequate for metafluids due to polydispersity, faceting, and thermal instabilities. To ensure that the separation gaps and resonances are uniform, more monodisperse spherical particles are needed. An additional challenge is the self-assembly of tetrahedral clusters in high yield from these particles. In self-assembly approaches that others have examined previously, the yield of any particular type of cluster is low. In this dissertation I present solutions to several of these problems, developed in collaboration with my research group and others. We demonstrate that slow chemical etching can transform octahedral gold crystals into ultrasmooth, monodisperse nanospheres. The particles can serve as seeds for the growth of larger octahedra which can in turn be etched. The size of the gold nanospheres can therefore be adjusted as desired. We further show that in colloidal mixtures of two sphere species that strongly bind to one another, the sphere size ratio determines the size distribution of self-assembled clusters. At a critical size ratio, tetrahedral clusters assemble in high yield. We explain the experimentally observed

  11. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies

    NASA Astrophysics Data System (ADS)

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  12. Masked imidazolyl-dipyrromethanes in the synthesis of imidazole-substituted porphyrins.

    PubMed

    Bhaumik, Jayeeta; Yao, Zhen; Borbas, K Eszter; Taniguchi, Masahiko; Lindsey, Jonathan S

    2006-11-10

    Imidazole-substituted metalloporphyrins are valuable for studies of self-assembly and for applications where water solubility is required. Rational syntheses of porphyrins bearing one or two imidazol-2-yl or imidazol-4-yl groups at the meso positions have been developed. The syntheses employ dipyrromethanes, 1-acyldipyrromethanes, and 1,9-diacyldipyrromethanes bearing an imidazole group at the 5-position. The polar, reactive imidazole unit was successfully masked by use of (1) the 2-(trimethylsilyl)ethoxymethyl (SEM) group at the imidazole pyrrolic nitrogen, and (2) a dialkylboron motif bound to the pyrrole of the dipyrromethane and coordinated to the imidazole imino nitrogen. The nonpolar nature of such doubly masked imidazolyl-dipyrromethanes facilitated handling. Selected masked dipyrromethanes were characterized by 11B and 15N NMR spectroscopy. Five distinct methods were examined to obtain trans-A2B2-, trans-AB2C-, and trans-AB-porphyrins. Each porphyrin contained one or two SEM-protected imidazole units. The SEM group could be removed with TBAF or HCl. Two zinc(II) porphyrins and a palladium(II) porphyrin bearing a single imidazole moiety were prepared and subjected to alkylation (with ethyl iodide, 1,3-propane sultone, or 1,4-butane sultone) to give water-soluble imidazolium- porphyrins. This work establishes the foundation for the rational synthesis of a variety of porphyrins containing imidazole units. PMID:17081010

  13. Logical computation using algorithmic self-assembly of DNA triple-crossover molecules

    NASA Astrophysics Data System (ADS)

    Mao, Chengde; LaBean, Thomas H.; Reif, John H.; Seeman, Nadrian C.

    2000-09-01

    Recent work has demonstrated the self-assembly of designed periodic two-dimensional arrays composed of DNA tiles, in which the intermolecular contacts are directed by `sticky' ends. In a mathematical context, aperiodic mosaics may be formed by the self-assembly of `Wang' tiles, a process that emulates the operation of a Turing machine. Macroscopic self-assembly has been used to perform computations; there is also a logical equivalence between DNA sticky ends and Wang tile edges. This suggests that the self-assembly of DNA-based tiles could be used to perform DNA-based computation. Algorithmic aperiodic self-assembly requires greater fidelity than periodic self-assembly, because correct tiles must compete with partially correct tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute four steps of a logical (cumulative XOR) operation on a string of binary bits.

  14. A Theoretical and Experimental Study of DNA Self-assembly

    NASA Astrophysics Data System (ADS)

    Chandran, Harish

    The control of matter and phenomena at the nanoscale is fast becoming one of the most important challenges of the 21st century with wide-ranging applications from energy and health care to computing and material science. Conventional top-down approaches to nanotechnology, having served us well for long, are reaching their inherent limitations. Meanwhile, bottom-up methods such as self-assembly are emerging as viable alternatives for nanoscale fabrication and manipulation. A particularly successful bottom up technique is DNA self-assembly where a set of carefully designed DNA strands form a nanoscale object as a consequence of specific, local interactions among the different components, without external direction. The final product of the self-assembly process might be a static nanostructure or a dynamic nanodevice that performs a specific function. Over the past two decades, DNA self-assembly has produced stunning nanoscale objects such as 2D and 3D lattices, polyhedra and addressable arbitrary shaped substrates, and a myriad of nanoscale devices such as molecular tweezers, computational circuits, biosensors and molecular assembly lines. In this dissertation we study multiple problems in the theory, simulations and experiments of DNA self-assembly. We extend the Turing-universal mathematical framework of self-assembly known as the Tile Assembly Model by incorporating randomization during the assembly process. This allows us to reduce the tile complexity of linear assemblies. We develop multiple techniques to build linear assemblies of expected length N using far fewer tile types than previously possible. We abstract the fundamental properties of DNA and develop a biochemical system, which we call meta-DNA, based entirely on strands of DNA as the only component molecule. We further develop various enzyme-free protocols to manipulate meta-DNA systems and provide strand level details along with abstract notations for these mechanisms. We simulate DNA circuits by

  15. Self-assembly triggered by self-assembly: optically active, paramagnetic micelles encapsulated in protein cage nanoparticles.

    PubMed

    Millán, Jealemy Galindo; Brasch, Melanie; Anaya-Plaza, Eduardo; de la Escosura, Andrés; Velders, Aldrik H; Reinhoudt, David N; Torres, Tomás; Koay, Melissa S T; Cornelissen, Jeroen J L M

    2014-07-01

    In this contribution, optically active and paramagnetic micelles of the ligand 1,4,7,10-tetraaza-1-(1-carboxymethylundecane)-4,7,10-triacetic acid cyclododecane (DOTAC10) have been incorporated inside capsids of the cowpea chlorotic mottle virus (CCMV) protein through a hierarchical process of self-assembly triggered by self-assembly. The DOTAC10 ligand was used to complex Gd(III), in order to form paramagnetic micelles, as well as to encapsulate an amphiphilic Zn(II) phthalocyanine (ZnPc) dye that optically confirmed the encapsulation of the micelles. The incorporation of ZnPc molecules in the paramagnetic micelles led to high capsid loading of both Gd(III) and ZnPc, as the micelles were stabilized by the amphiphilic dye encapsulation. The resulting protein cage nanoparticles (PCNs) show an improved r1 relaxivity, suggesting the possible use of these nanostructures as contrast agents (CAs) for magnetic resonance imaging (MRI). Since the encapsulated ZnPc dye also has a potential therapeutic value, the present results represent a first step towards the consecution of fully self-assembled PCNs for multimodal imaging and therapy. PMID:24513535

  16. Combustion and self-assembly of nanoenergetic materials

    NASA Astrophysics Data System (ADS)

    Malchi, Jonathan Yaniv

    The recent worldwide interest in nanotechnology spans a wide variety of scientific fields such as electronics, biology, materials science and medicine. Because of their extremely small dimensions, nanoparticles demonstrate properties different from matter at larger scales. Understanding these unusual properties and utilizing them for macroscale devices is an overall goal for nanotechnology. Moreover, manipulating these small particles into organized structures is crucial for taking full advantage of what nanotechnology has to offer, however it has proven to be a difficult task. Recent work utilizing electrostatic forces shows great potential for the self-assembly of nanoparticles into organized two-dimensional and three-dimensional structures. Overall, this work examines how nanotechnology and self-assembly can benefit the field of energetic materials. Because of aluminum's high energy density and low cost, it has been used in the field of energetic materials for several decades. In order to achieve sufficient energy release rates, aluminum is typically manufactured as a powder having spherical particles with diameters on the micron scale. It is well-known that decreasing the original particle diameter of a fuel particle will increase the burning time and, thus, energy release rate. Therefore, aluminum particles have recently been made to have diameters on the nanoscale, and shown to be advantageous for several applications. The combustion of nanoaluminum (nAl) in various systems is the primary focus of this study. A progression of experiments is used to analyze the combustion of nAl: (1) a fully heterogeneous flame spread system, (2) a semi-homogeneous sonicated thermite system and (3) a quasi-homogeneous self-assembled thermite system. The flame spread experiment physically separates the nAl from the gaseous oxidizer allowing for a well-understood convective, diffusive, reactive system to be analyzed. Because of the simplicity of the experimental setup, variables

  17. Investigation of Porphyrin and Lipid Supramolecular Assemblies for Cancer Imaging and Therapy

    NASA Astrophysics Data System (ADS)

    Ng, Kenneth Ka-Seng

    Aerobic life on earth is made possible through the functions of the porphyrin. These colorful and ubiquitous chromophores are efficient at concentrating and converting sunlight into chemical energetic potential which sustain biological life. Humans have had a longstanding fascination with these molecules, especially for their applications in photodynamic therapy. The photophysical properties of porphyrins are highly influenced by their surrounding environment. Intermolecular interactions between these pigments can lead to excited state quenching, energy transfer and large changes to their absorption and fluorescence spectra. This thesis is focused on utilizing molecular self-assembly strategies to develop nanoscale porphyrin and phospholipid structures. The rationale being that intermolecular interactions between porphyrins in these nanostructures can induce changes which can be exploited in novel biomedical imaging and therapeutic applications. Four lipid-based structural platforms are studied including: nanoemulsions, bilayer discs and nanovesicles. In Chapter 1, I provide a background on the photophysics of porphyrins and the effect of intermolecular porphyrin interactions on photophysical properties. I also discuss phospholipids and their self-assembly process. Lastly I review current biomedical photonics techniques and discuss how these strategies can be used in conjugation with porphyrin and lipid supramolecular assemblies. In Chapter 2, I investigate the influence that loading a novel bacteriochlorin photosensitizer into a protein-stabilized lipid emulsion has on its spectral properties. I discovered that while the dye can be incorporated into the lipid emulsion, no changes were observed in its spectral properties. In Chapter 3, an amphipathic alpha-helical protein is used to stabilize and organize porphyrin-lipid molecules into bilayer discs. Close packing between porphyrin molecules causes quenching, which can be reversed by structural degradation of the

  18. Self-assembly of amorphous biophotonic nanostructures by phase separation

    SciTech Connect

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Cao, Hui; Prum, Richard O.

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important roles in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.

  19. Self-assembly of cyclo-diphenylalanine peptides in vacuum.

    PubMed

    Jeon, Joohyun; Shell, M Scott

    2014-06-19

    The diphenylalanine (FF) peptide self-assembles into a variety of nanostructures, including hollow nanotubes that form in aqueous solution with an unusually high degree of hydrophilic surface area. In contrast, diphenylalanine can also be vapor-deposited in vacuum to produce rodlike assemblies that are extremely hydrophobic; in this process FF has been found to dehydrate and cyclize to cyclo-diphenylalanine (cyclo-FF). An earlier study used all-atom molecular dynamics (MD) simulations to understand the early stages of the self-assembly of linear-FF peptides in solution. Here, we examine the self-assembly of cyclo-FF peptides in vacuum and compare it to these previous results to understand the differences underlying the two cases. Using all-atom replica exchange MD simulations, we consider systems of 50 cyclo-FF peptides and examine free energies along various structural association coordinates. We find that cyclo-FF peptides form ladder-like structures connected by double hydrogen bonds, and that multiple such ladders linearly align in a cooperative manner to form larger-scale, elongated assemblies. Unlike linear-FFs which mainly assemble through the interplay between hydrophobic and hydrophilic interactions, the assembly of cyclo-FFs in vacuum is primarily driven by electrostatic interactions along the backbone that induce alignment at long-range, followed by van der Waals interactions between side chains that become important for close-range packing. While both solution and vacuum phase driving forces result in ladder-like structures, the clustering of ladders is opposite: linear-FF peptide ladders form assemblies with side-chains buried inward, while cyclo-FF ladders point outward. PMID:24877752

  20. Bottlebrush Polymers: Synthesis, Rheology, and Self-Assembly

    NASA Astrophysics Data System (ADS)

    Dalsin, Samuel J.

    Bottlebrush polymers are comb-like molecules with a high density of side chains grafted along a central backbone. Due to their unique conformational properties, bottlebrush polymers have become attractive candidates for developing new photonic bandgap materials, nanotubes and nanowires, or drug delivery vehicles, to name a few. This dissertation primarily investigates the rheological properties and self-assembly behavior of bottlebrush polymer molecules made using a variety of different polymerization routes. A considerable portion of the work is directed towards the linear rheology of model, polyolefin-based bottlebrush polymers with independently varied branch and backbone lengths. These studies demonstrate how the tight spacing between branch points effectively precludes backbone entanglement in the polymer melts, but it does not inhibit the formation of entanglements among the branched side chains. Furthermore, the relaxation profiles reveal transient scaling behavior in which the dynamics transition from Zimm-like to Rouse-like at increasing relaxation times. These results highlight the distinct conformational character of bottlebrushes at different length scales. The latter parts of this work report on the self-assembly behavior of bottlebrush diblock polymers composed of atactic polypropylene and polystyrene side chains. The diblock samples are analyzed using small-angle X-ray scattering and atomic force microscopy. Nearly all of the samples display strong segregation between the two blocks, owing to the large molar mass of typical bottlebrush polymers. Consequently, only one experimental sample displays an accessible order-disorder transition temperature. The strong segregation is also shown to affect the ability of large bottlebrush diblocks to readily achieve well-ordered nanostructures by self-assembly. Finally, results of the most symmetric (by volume fraction) diblock samples are compared with predictions of a newly developed self-consistent field

  1. Chemical solution route to self-assembled epitaxial oxide nanostructures.

    PubMed

    Obradors, X; Puig, T; Gibert, M; Queraltó, A; Zabaleta, J; Mestres, N

    2014-04-01

    Self-assembly of oxides as a bottom-up approach to functional nanostructures goes beyond the conventional nanostructure formation based on lithographic techniques. Particularly, chemical solution deposition (CSD) is an ex situ growth approach very promising for high throughput nanofabrication at low cost. Whereas strain engineering as a strategy to define nanostructures with tight control of size, shape and orientation has been widely used in metals and semiconductors, it has been rarely explored in the emergent field of functional complex oxides. Here we will show that thermodynamic modeling can be very useful to understand the principles controlling the growth of oxide nanostructures by CSD, and some attractive kinetic features will also be presented. The methodology of strain engineering is applied in a high degree of detail to form different sorts of nanostructures (nanodots, nanowires) of the oxide CeO2 with fluorite structure which then is used as a model system to identify the principles controlling self-assembly and self-organization in CSD grown oxides. We also present, more briefly, the application of these ideas to other oxides such as manganites or BaZrO3. We will show that the nucleation and growth steps are essentially understood and manipulated while the kinetic phenomena underlying the evolution of the self-organized networks are still less widely explored, even if very appealing effects have been already observed. Overall, our investigation based on a CSD approach has opened a new strategy towards a general use of self-assembly and self-organization which can now be widely spread to many functional oxide materials. PMID:24418962

  2. Bacterial expression of self-assembling peptide hydrogelators

    NASA Astrophysics Data System (ADS)

    Sonmez, Cem

    For tissue regeneration and drug delivery applications, various architectures are explored to serve as biomaterial tools. Via de novo design, functional peptide hydrogel materials have been developed as scaffolds for biomedical applications. The objective of this study is to investigate bacterial expression as an alternative method to chemical synthesis for the recombinant production of self-assembling peptides that can form rigid hydrogels under physiological conditions. The Schneider and Pochan Labs have designed and characterized a 20 amino acid beta-hairpin forming amphiphilic peptide containing a D-residue in its turn region (MAX1). As a result, this peptide must be prepared chemically. Peptide engineering, using the sequence of MAX1 as a template, afforded a small family of peptides for expression (EX peptides) that have different turn sequences consisting of natural amino acids and amenable to bacterial expression. Each sequence was initially chemically synthesized to quickly assess the material properties of its corresponding gel. One model peptide EX1, was chosen to start the bacterial expression studies. DNA constructs facilitating the expression of EX1 were designed in such that the peptide could be expressed with different fusion partners and subsequently cleaved by enzymatic or chemical means to afford the free peptide. Optimization studies were performed to increase the yield of pure peptide that ultimately allowed 50 mg of pure peptide to be harvested from one liter of culture, providing an alternate means to produce this hydrogel-forming peptide. Recombinant production of other self-assembling hairpins with different turn sequences was also successful using this optimized protocol. The studies demonstrate that new beta-hairpin self-assembling peptides that are amenable to bacterial production and form rigid hydrogels at physiological conditions can be designed and produced by fermentation in good yield at significantly reduced cost when compared to

  3. A Programmable Transducer Self-Assembled from DNA

    PubMed Central

    Chakraborty, Banani; Jonoska, Natasha; Seeman, Nadrian C.

    2012-01-01

    A transducer consists of an input/output alphabet, a finite set of states, and a transition function. From an input symbol applied to a given state, the transition function determines the next state, and an output symbol. Using DNA, we have constructed a transducer that divides a number by 3. The input consists of a series of individually addressable 2-state DNA nanomechanical devices that control the orientations of a group of flat 6-helix DNA motifs; these motifs have edge domains tailed in sticky ends corresponding to the numbers 0 and 1. Three-domain DNA molecules (TX tiles) act as computational tiles that correspond to the transitions that the transducer can undergo. The output domain of these TX tiles contains sticky ends that also correspond to 0 or 1. Two different DNA tiles can chelate these output domains: A 5 nm gold nanoparticle is attached to the chelating tile that binds to 0-domains and a 10 nm gold nanoparticle is attached to the chelating tile that binds to 1-domains. The answer to the division is represented by the series of gold nanoparticles, which can be interpreted as a binary number. The answers of the computation are read out by examination of the transducer complexes under a transmission electron microscope. The start or end points of the output sequence can be indicated by the presence of a 15 nm gold nanoparticle. This work demonstrates two previously unreported features integrated in a single framework: [1] a system that combines DNA algorithmic self-assembly with DNA nanomechanical devices that control that input, and [2] the arrangement of non-DNA species, here metallic nanoparticles, through DNA algorithmic self-assembly. The nanomechanical devices are controlled by single-stranded DNA strands, allowing multiple input sequences to be applied to the rest of the system, thus guiding the algorithmic self-assembly to a variety of outputs. PMID:23139854

  4. Platelets self-assemble into porous nacre during freeze casting.

    PubMed

    Hunger, Philipp M; Donius, Amalie E; Wegst, Ulrike G K

    2013-03-01

    Nacre possesses a remarkable combination of mechanical properties. Its high stiffness, strength and toughness are attributed to a highly aligned structure of aragonite platelets "glued" together by a small fraction (∼5vol%) of polymer; theoretically it can be described by a shear-lag model of staggered tensile elements between which loads are transferred via shear. Despite extensive research, it has not been possible yet to manufacture this aligned structure as a bulk material of considerable volume with a fast and easy production process. Particularly porous materials would benefit from enhanced wall material properties to compensate for performance loss due to their high porosity. An important application for such porous materials are tissue scaffolds for bone substitution. Bone, like nacre, exhibits excellent mechanical properties, particularly an exceptionally high toughness, because of its composite structure of hydroxyapatite platelets aligned in a ∼35vol% polymer matrix. Through the freeze casting process, which results in a fast and straightforward self-assembly of platelet-shaped particles during directional solidification, highly porous bulk materials with nacre-like cell walls can now be created. This porous nacre outperforms by a factor of 1.5-4 in terms of stiffness, strength and toughness materials that have the same amount of porosity but do not exhibit the nacre-like microarchitecture. The self-assembly process presented in this study thus has tremendous potential for the creation of highly porous, yet mechanically strong tissue scaffolds for low or medium load bearing bone substitute materials. Due to the versatility of the freeze casting process, materials with a self-assembled cell wall structure can be created from high-aspect ratio particles of all material classes. This enables material optimization for a great variety of applications such as impact protection, filtration, catalysis, energy generation and storage, in addition to those with

  5. Self-assembly of 33-mer gliadin peptide oligomers.

    PubMed

    Herrera, M G; Benedini, L A; Lonez, C; Schilardi, P L; Hellweg, T; Ruysschaert, J-M; Dodero, V I

    2015-11-28

    The 33-mer gliadin peptide, LQLQPF(PQPQLPY)3PQPQPF, is a highly immunogenic peptide involved in celiac disease and probably in other immunopathologies associated with gliadin. Herein, dynamic light scattering measurements showed that 33-mer, in the micromolar concentration range, forms polydisperse nano- and micrometer range particles in aqueous media. This behaviour is reminiscent of classical association of colloids and we hypothesized that the 33-mer peptide self-assembles into micelles that could be the precursors of 33-mer oligomers in water. Deposition of 33-mer peptide aqueous solution on bare mica generated nano- and microstructures with different morphologies as revealed by atomic force microscopy. At 6 μM, the 33-mer is organised in isolated and clusters of spherical nanostructures. In the 60 to 250 μM concentration range, the spherical oligomers associated mainly in linear and annular arrangements and structures adopting a "sheet" type morphology appeared. At higher concentrations (610 μM), mainly filaments and plaques immersed in a background of nanospherical structures were detected. The occurrence of different morphologies of oligomers and finally the filaments suggests that the unique specific geometry of the 33-mer oligomers has a crucial role in the subsequent condensation and organization of their fractal structures into the final filaments. The self-assembly process on mica is described qualitatively and quantitatively by a fractal diffusion limited aggregation (DLA) behaviour with the fractal dimension in the range of 1.62 ± 0.02 to 1.73 ± 0.03. Secondary structure evaluation of the oligomers by Attenuated Total Reflection FTIR spectroscopy (ATR-FTIR) revealed the existence of a conformational equilibrium of self-assembled structures, from an extended conformation to a more folded parallel beta elongated structures. Altogether, these findings provide structural and morphological information about supramolecular organization of the 33-mer

  6. Buckling instability of self-assembled colloidal columns.

    PubMed

    Swan, James W; Vasquez, Paula A; Furst, Eric M

    2014-09-26

    Suspended, slender self-assembled domains of magnetically responsive colloids are observed to buckle in microgravity. Upon cessation of the magnetic field that drives their assembly, these columns expand axially and buckle laterally. This phenomenon resembles the buckling of long beams due to thermal expansion; however, linear stability analysis predicts that the colloidal columns are inherently susceptible to buckling because they are freely suspended in a Newtonian fluid. The dominant buckling wavelength increases linearly with column thickness and is quantitatively described using an elastohydrodynamic model and the suspension thermodynamic equation of state. PMID:25302919

  7. Buckling Instability of Self-Assembled Colloidal Columns

    NASA Astrophysics Data System (ADS)

    Swan, James W.; Vasquez, Paula A.; Furst, Eric M.

    2014-09-01

    Suspended, slender self-assembled domains of magnetically responsive colloids are observed to buckle in microgravity. Upon cessation of the magnetic field that drives their assembly, these columns expand axially and buckle laterally. This phenomenon resembles the buckling of long beams due to thermal expansion; however, linear stability analysis predicts that the colloidal columns are inherently susceptible to buckling because they are freely suspended in a Newtonian fluid. The dominant buckling wavelength increases linearly with column thickness and is quantitatively described using an elastohydrodynamic model and the suspension thermodynamic equation of state.

  8. Energy levels in self-assembled quantum arbitrarily shaped dots.

    PubMed

    Tablero, C

    2005-02-01

    A model to determine the electronic structure of self-assembled quantum arbitrarily shaped dots is applied. This model is based principally on constant effective mass and constant potentials of the barrier and quantum dot material. An analysis of the different parameters of this model is done and compared with those which take into account the variation of confining potentials, bands, and effective masses due to strain. The results are compared with several spectra reported in literature. By considering the symmetry, the computational cost is reduced with respect to other methods in literature. In addition, this model is not limited by the geometry of the quantum dot. PMID:15740390

  9. Self-assembling peptide amphiphile nanostructures for cancer therapy

    NASA Astrophysics Data System (ADS)

    Soukasene, Stephen

    The application of nanotechnology to cancer therapy shows great promise for reducing the burden of the disease. By virtue of their size, nanoscale objects preferentially accumulate in tumor tissue through an enhanced permeability and retention (EPR) effect. However, to fully overcome the issues that limit current cancer treatments, viable nanostructures must also impart multifunctionality and be fully compatible with their biological surrounds. The self-assembling peptide amphiphile (PA) materials studied extensively in the Stupp Research Group form very biocompatible high aspect ratio nanostructures that meet these criteria. This thesis investigates the development of PA nanostructures designed to treat cancer. We first look to use the PA as a drug delivery vehicle by entrapping a small hydrophobic anti-cancer drug, camptothecin, in the core of the nanostructures. Using a solvent evaporation technique to load the drug into the PA nanofibers, we are able to improve the aqueous solubility of the molecule by nearly 30-fold. TEM and AFM studies show that entrapment of drug molecules does not disrupt the self-assembled morphology of the nanofiber. In vitro and in vivo studies are also conducted to demonstrate the bioactivity of the drug after its entrapment. As a potential platform for novel therapeutics, we next develop techniques for using light irradiation to trigger self-assembly inside the confined space of liposomes. We encapsulate PA monomers that assemble under acidic conditions along with a photoacid generator inside liposomes. Upon exposure to 254 nm light, the PA monomers self assemble inside the liposome to form nanostructures, which we observe through a quick freeze/deep etch technique that allows us to look inside the liposomes by SEM and TEM. Last of all, the development and discovery of epitopes for targeting PA nanostructures to tumors are explored. Using phage display technology we generate two groups of peptide sequences, one of which can potentially

  10. Model for dynamic self-assembled magnetic surface structures.

    SciTech Connect

    Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.; Materials Science Division; Northwestern Univ.

    2010-07-07

    We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.

  11. Guided Self-Assembly of Nano-Precipitates into Mesocrystals

    NASA Astrophysics Data System (ADS)

    Liu, H.; Gao, Y.; Xu, Z.; Zhu, Y. M.; Wang, Y.; Nie, J. F.

    2015-11-01

    We show by a combination of computer simulation and experimental characterization guided self-assembly of coherent nano-precipitates into a mesocrystal having a honeycomb structure in bulk materials. The structure consists of different orientation variants of a product phase precipitated out of the parent phase by heterogeneous nucleation on a hexagonal dislocation network. The predicted honeycomb mesocrystal has been confirmed by experimental observations in an Mg-Y-Nd alloy. The structure and lattice parameters of the mesocrystal and the size of the nano-precipitates are readily tuneable, offering ample opportunities to tailor its properties for a wide range of technological applications.

  12. Casting metal nanowires within discrete self-assembled peptide nanotubes.

    PubMed

    Reches, Meital; Gazit, Ehud

    2003-04-25

    Tubular nanostructures are suggested to have a wide range of applications in nanotechnology. We report our observation of the self-assembly of a very short peptide, the Alzheimer's beta-amyloid diphenylalanine structural motif, into discrete and stiff nanotubes. Reduction of ionic silver within the nanotubes, followed by enzymatic degradation of the peptide backbone, resulted in the production of discrete nanowires with a long persistence length. The same dipeptide building block, made of D-phenylalanine, resulted in the production of enzymatically stable nanotubes. PMID:12714741

  13. Casting Metal Nanowires Within Discrete Self-Assembled Peptide Nanotubes

    NASA Astrophysics Data System (ADS)

    Reches, Meital; Gazit, Ehud

    2003-04-01

    Tubular nanostructures are suggested to have a wide range of applications in nanotechnology. We report our observation of the self-assembly of a very short peptide, the Alzheimer's β-amyloid diphenylalanine structural motif, into discrete and stiff nanotubes. Reduction of ionic silver within the nanotubes, followed by enzymatic degradation of the peptide backbone, resulted in the production of discrete nanowires with a long persistence length. The same dipeptide building block, made of D-phenylalanine, resulted in the production of enzymatically stable nanotubes.

  14. Manipulation of self-assembly amyloid peptide nanotubes by dielectrophoresis.

    PubMed

    Castillo, Jaime; Tanzi, Simone; Dimaki, Maria; Svendsen, Winnie

    2008-12-01

    Self-assembled amyloid peptide nanotubes (SAPNT) were manipulated and immobilized using dielectrophoresis. Micro-patterned electrodes of Au were fabricated by photolithography and lifted off on a silicon dioxide layer. SAPNT were manipulated by adjusting the amplitude and frequency of the applied voltage. The immobilized SAPNT were evaluated by SEM and atomic force microscopy. The conductivity of the immobilized SAPNT was studied by I-V characterization, for both single SAPNT and bundles. This work illustrates a way to manipulate and integrate biological nanostructures into novel bio-nanoassemblies with concrete applications, such as field-effect transistors, microprobes, microarrays, and biosensing devices. PMID:19130587

  15. Self-assembly of Epitaxial Monolayers for Vacuum Wafer Bonding.

    NASA Astrophysics Data System (ADS)

    Altfeder, Igor; Huang, Biqin; Appelbaum, Ian; Walker, Barry

    2007-03-01

    Self-assembled epitaxial metal monolayers can be used for hetero-integration of mismatched semiconductors, leading to simultaneously low interfacial resistance and high optical transparency. Lattice-mismatched wafers of Si(100) and Si(111) were bonded at room temperature in situ after vacuum deposition of a single atomic layer of Ag on them. The interfacial resistance was measured to be 3.9x 10-4 ohm. cm^ 2 and the optical transmission of the interface at 2500 nm is approximately 98%. We discuss the important role of electron confinement in ultrathin Ag layers as a possible contributor to the bonding energy.

  16. Self-assembly of epitaxial monolayers for vacuum wafer bonding

    NASA Astrophysics Data System (ADS)

    Altfeder, Igor; Huang, Biqin; Appelbaum, Ian; Walker, B. C.

    2006-11-01

    Self-assembled epitaxial metal monolayers can be used for heterointegration of mismatched semiconductors, leading to simultaneously low interfacial resistance and high optical transparency. Lattice-mismatched wafers of Si(100) and Si(111) were bonded at room temperature in situ after vacuum deposition of a single atomic layer of Ag. The interfacial resistance was measured to be 3.9×10-4Ωcm2 and the optical transmission of the interface at 2500nm is approximately 98%. Electron confinement in ultrathin Ag layers as a possible contributor to the bonding energy.

  17. Self-assembly of silk fibroin under osmotic stress

    NASA Astrophysics Data System (ADS)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  18. Water in nanoconfinement between hydrophilic self-assembled monolayers.

    PubMed

    Lane, J Matthew D; Chandross, Michael; Stevens, Mark J; Grest, Gary S

    2008-05-20

    Molecular dynamics (MD) simulations of water confined to subnanometer thicknesses between carboxyl-terminated alkanethiol self-assembled monolayers (SAMs) on gold were performed to address conflicts in the literature on the structure and response of water in confinement. The amount of water was varied to yield submonolayer to bilayer structures. The orientation of the water is affected by the confinement, especially in the submonolayer case. We find that the diffusion coefficient decreases as the film becomes thinner and at higher pressures. However, in all cases studied, liquid diffusion is always found. At maximal suppression, the diffusion constant is 2 orders of magnitude smaller than the bulk value. PMID:18412381

  19. Electrochromic Behavior of Ionically Self-Assembled Thin Films

    NASA Astrophysics Data System (ADS)

    Janik, J. A.; Heflin, J. R.; Marciu, D.; Miller, M. B.; Davis, R. M.

    2001-03-01

    Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub-nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS).

  20. The art and science of self-assembling molecular machines

    NASA Astrophysics Data System (ADS)

    Gómez-López, Marcos; Preece, Jon A.; Fraser Stoddart, J.

    1996-09-01

    In this review, we show how noncovalent bonding interactions between 0957-4484/7/3/004/img1-electron rich aromatic ring systems (e.g. hydroquinone) and the 0957-4484/7/3/004/img1-electron deficient tetracationic cyclophane, cyclobis(paraquat-p-phenylene) can be used to self-assemble novel molecular architectures which are not only interesting to us, because of their fascinating topologies, but also because they have the potential to be developed into molecular structures with switchable properties on the nanometre scale. The high efficiency observed in the self-assembly of a [2]catenane, and its dynamic properties in solution, represent the first step in the design and self-assembly of other molecular assemblies better suited for the study of molecular switching processes. Therefore, a series of [2]rotaxanes, mechanically-interlocked molecular compounds, consisting of a linear 0957-4484/7/3/004/img1-electron rich dumbbell-shaped component and the 0957-4484/7/3/004/img1-electron deficient tetracationic cyclophane as the cyclic component, have been self-assembled and evaluated. All of the so-called molecular shuttles show translational isomerism and one of them, comprising benzidine and biphenol recognition sites as the non-degenerate 0957-4484/7/3/004/img1-electron rich sites, shows molecular switching properties when it is perturbed by external stimuli, such as electrons and protons. The versatility of our approach to nanoscale molecular switches is proven by the description of a series of molecular assemblies and supramolecular arrays, consisting of 0957-4484/7/3/004/img1-electron rich and 0957-4484/7/3/004/img1-electron deficient components, which display molecular switching properties when they are influenced by external stimuli that are photochemical, electrochemical and/or chemical in nature. However, the molecular switching phenomena take place in the solution state. Therefore, finally we describe how simple molecular structures can be ordered on to a solid

  1. Programmed self-assembly of complex DNA nanostructures

    NASA Astrophysics Data System (ADS)

    Tian, Cheng

    DNA has served as an excellent building block to self-assemble into a wide range of one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) structures with the bottom-up method. Due to the specificity of base pairing, the DNA assembly system is predictable and robust. These DNA structures with higher diversity and complexity have potential applications as templates to organize guest molecules or nanoparticles for the nanofabrication, as biosensors for the genetic diagnosis and environmental detection, and as nanocarriers to deliver and release drugs for the therapy. My major researches focus on designing a novel building block and assembly strategies to self-assemble DNA into complex nanostructures to increase the diversity and complexity. A novel building block was first constructed, which is a parallel, left-handed DNA helix containing multiple domains of half-turn-long standard B-DNA. Such a structure can be used to introduce left-handed crossings in order to increase the diversity and complexity of DNA nanostructures, and can be taken into consideration when predicting the secondary structure of DNA/RNA molecules in cells. In addition, a tile-based directed self-assembly strategy was developed to construct DNA nanocages. In this strategy, directing building blocks were employed to control the self-assembly process of assembly building blocks. This strategy greatly expands the scope of accessible DNA nanostructures and would facilitate technological applications such as nano-guest encapsulation, drug delivery, and nanoparticle organization. As the complexity of DNA nanostructures increases, more errors might be involved in the assembly process. Therefore, a simplified design system based on T-junction was designed to build DNA arrays and minimize the assembly errors. In such system, due to the sequence symmetry, only one DNA single strand is employed and assembled into predesigned 1D and 2D arrays. This design system can be applied to assemble a

  2. Preface: Special Topic on Supramolecular Self-Assembly at Surfaces

    SciTech Connect

    Bartels, Ludwig; Ernst, Karl-Heinz; Gao, Hong-Jun; Thiel, Patricia A.

    2015-03-14

    Supramolecular self-assembly at surfaces is one of the most exciting and active fields in Surface Science today. Applications can take advantage of two key properties: (i) versatile pattern formation over a broad length scale and (ii) tunability of electronic structure and transport properties, as well as frontier orbital alignment. It provides a new frontier for Chemical Physics as it uniquely combines the versatility of Organic Synthesis and the Physics of Interfaces. The Journal of Chemical Physics is pleased to publish this Special Topic Issue, showcasing recent advances and new directions.

  3. Directed self-assembly defectivity assessment. Part II

    NASA Astrophysics Data System (ADS)

    Bencher, Chris; Yi, He; Zhou, Jessica; Cai, Manping; Smith, Jeffrey; Miao, Liyan; Montal, Ofir; Blitshtein, Shiran; Lavi, Alon; Dotan, Kfir; Dai, Huixiong; Cheng, Joy Y.; Sanders, Daniel P.; Tjio, Melia; Holmes, Steven

    2012-03-01

    The main concern for the commercialization of directed self-assembly (DSA) for semiconductor manufacturing continues to be the uncertainty in capability and control of defect density. Our research investigates the defect densities of various DSA process applications in the context of a 300mm wafer fab cleanroom environment; this paper expands substantially on the previously published DSA defectivity study by reporting a defect density process window relative to chemical epitaxial pre-pattern registration lines; as well as investigated DSA based contact hole shrinking and report critical dimension statistics for the phase separated polymers before and after etch, along with positional accuracy measurements and missing via defect density.

  4. Passivation effects in B doped self-assembled Si nanocrystals

    SciTech Connect

    Puthen Veettil, B. Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Zhang, Tian; Yang, Terry; Johnson, Craig; Conibeer, Gavin; Perez-Würfl, Ivan; McCamey, Dane

    2014-12-01

    Doping of semiconductor nanocrystals has enabled their widespread technological application in optoelectronics and micro/nano-electronics. In this work, boron-doped self-assembled silicon nanocrystal samples have been grown and characterised using Electron Spin Resonance and photoluminescence spectroscopy. The passivation effects of boron on the interface dangling bonds have been investigated. Addition of boron dopants is found to compensate the active dangling bonds at the interface, and this is confirmed by an increase in photoluminescence intensity. Further addition of dopants is found to reduce the photoluminescence intensity by decreasing the minority carrier lifetime as a result of the increased number of non-radiative processes.

  5. Dithienophosphole-Based Phosphinamides with Intriguing Self-Assembly Behavior.

    PubMed

    Wang, Zisu; Gelfand, Benjamin S; Baumgartner, Thomas

    2016-03-01

    A new, highly adaptable type of phosphinamide-based hydrogen bonding is representatively demonstrated in π-conjugated phosphole materials. The rotational flexibility of these intermolecular P=O-H-N hydrogen bonds is demonstrated by X-ray crystallography and variable-concentration NMR spectroscopy. In addition to crystalline compounds, phosphinamide hydrogen bonding was successfully introduced into the self-assembly of soft crystals, liquid crystals, and organogels, thus highlighting the high general value of this type of interaction for the formation of organic soft materials. PMID:26833592

  6. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  7. Development of self-assembling nanowires containing electronically active oligothiophenes

    NASA Astrophysics Data System (ADS)

    Tsai, Wei-Wen

    This dissertation discusses the development of conductive one-dimensional nanowires from self-assembling oligothiophene molecules. Self-assembly has been demonstrated to be a promising alternative approach towards high performance, solution processable, and low-cost organic electronics. One of the many challenges in this field is the control of supramolecular morphologies of ordered structures containing pi-conjugated moieties. This research demonstrated several successful strategies to achieve self assembly of conductive nanowires using synergistic interactions combining pi stacking and hydrogen bonding. The first approach used was to develop a hairpin-shaped sexithiophene molecule, which features two arms of the conjugated structure. The diamidocyclohexyl headgroup of this molecule successfully directs the self-assembly from hydrogen bonding among the amides, forming high-aspect-ratio one-dimensional nanowires with well-defined diameters of 3.0 +/- 0.3 nm. The molecular orientation in the nanostructures promotes formation of sexithiophene H and J aggregates that facilitate efficient charge transport. Organic field-effect transistors were fabricated to reveal improved intrinsic hole mobility from films of the nanostructures, 3.46 x 10-6 cm2V-1s-1, which is one order of magnitude higher than films cast from unassembled molecules. Bulk heterojunction solar cells were developed from this molecule and fullerenes utilizing solution-phase fabrication methods. Intimate mix of the molecule and phenyl-C61-butyric acid methyl ester creates structured interfaces for efficient exciton splitting. The charge carrier mobilities of each material are improved by self-assembly in solution and thermal-energy assisted phase separation.The photovoltaic devices achieved the highest open-circuit voltage of 0.62 V, short-circuit current of 1.79 mA/cm2, fill factor of 35%, and power conversion efficiency of 0.48%. Another strategy to one-dimensional nanowires studied here involved the

  8. Purification of ethanol for highly sensitive self-assembly experiments

    PubMed Central

    Barbe, Kathrin; Kind, Martin; Pfeiffer, Christian

    2014-01-01

    Summary Ethanol is the preferred solvent for the formation of self-assembled monolayers (SAMs) of thiolates on gold. By applying a thin film sensor system, we could demonstrate that even the best commercial qualities of ethanol contain surface-active contaminants, which can compete with the desired thiolates for surface sites. Here we present that gold nanoparticles deposited onto zeolite X can be used to remove these contaminants by chemisorption. This nanoparticle-impregnated zeolite does not only show high capacities for surface-active contaminants, such as thiols, but can be fully regenerated via a simple pyrolysis protocol. PMID:25161861

  9. Formation and Characterization of Silicon Self-assembled Nanodots

    SciTech Connect

    Idrees, Fatima Aldaw; Sakrani, Samsudi; Othaman, Zulkafli

    2011-05-25

    Silicon self-assembled quantum dots have been successfully prepared on corning glass (7059) substrate. The samples were fabricated using the common technique RF magnetron sputtering system depend on plasma excitation at varying growth parameters and high temperature of more than 500 deg. C. The measurements of average dots size estimated to be 36 nm is confirmed by using AFM. The PL peak located at 570 nm, informed band gap energy = 2.10 eV larger than bulk material band gap, that confirmed the miniaturized of the dots. To measure the Silicon atomic% deposit on corning glass (7059) substrate EDX has been used.

  10. Electronic instabilities in self-assembled atom wires

    SciTech Connect

    Snijders, Paul C; Weitering, Harm H

    2010-01-01

    Low dimensional systems have fascinated physicists for a long time due to their unusual properties such as charge fractionalization, semionic statistics, and Luttinger liquid behavior among others. In nature, however, low dimensional systems often suffer from thermal fluctuations that can make these systems structurally unstable. Human beings, however, can trick nature by producing artificial structures which are not naturally produced. This Colloquium reviews the problem of self-assembled atomic wires on solid surfaces from an experimental and theoretical point of view. These materials represent a class of one-dimensional systems with very unusual properties that can open doors to the study of exotic physics that cannot be studied otherwise.

  11. Exploiting non-equilibrium phase separation for self-assembly.

    PubMed

    Grünwald, Michael; Tricard, Simon; Whitesides, George M; Geissler, Phillip L

    2016-02-01

    Demixing can occur in systems of two or more particle species that experience different driving forces, e.g., mixtures of self-propelled active particles or of oppositely charged colloids subject to an electric field. Here we show with macroscopic experiments and computer simulations that the forces underlying such non-equilibrium segregation can be used to control the self-assembly of particles that lack attractive interactions. We demonstrate that, depending on the direction, amplitude and frequency of a periodic external force acting on one particle species, the structures formed by a second, undriven species can range from compact clusters to elongated, string-like patterns. PMID:26658789

  12. Rapid Self-Assembly of Uranyl Polyhedra into Crown Clusters

    SciTech Connect

    Sigmon, Ginger E.; Burns, Peter C.

    2011-06-22

    Clusters built from 32 uranyl peroxide polyhedra self-assemble and crystallize within 15 min after combining uranyl nitrate, ammonium hydroxide, and hydrogen peroxide in aqueous solution under ambient conditions. These novel crown-shaped clusters are remarkable in that they form so quickly, have extraordinarily low aqueous solubility, form with at least two distinct peroxide to hydroxyl ratios, and form in very high yield. The clusters, which have outer diameters of 23 Å, topologically consist of eight pentagons and four hexagons. Their rapid formation and low solubility in aqueous systems may be useful properties at various stages in an advanced nuclear energy system.

  13. Metal nanowires from self-assembled protein fibers

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Raghuveer; Lin, Xiao-Min; Jaeger, Heinrich M.; Sawicki, George; Scheibel, Thomas; Lindquist, Susan L.

    2002-03-01

    We present gold and silver nanowires formed by metallization of self-assembled yeast prion proteins. The proteins form 10nm wide, microns long fibers, which we metallize by growth of gold or silver crystals from specific nucleation sites on the genetically engineered fiber surface. This site-specific metal decoration is the first step toward more elaborate functionalization of these biological nanostructures. Deposition of fibers onto substrates with in-plane electrodes will allow electronic transport measurements, correlated with images (TEM and AFM) of the nanowire structure.

  14. Spin State As a Probe of Vesicle Self-Assembly.

    PubMed

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-03-01

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution of surfactants between the bilayers and the aqueous bulk. PMID:26859700

  15. Selective electroless copper deposition on self-assembled dithiol monolayers.

    PubMed

    Aldakov, Dmitry; Bonnassieux, Yvan; Geffroy, Bernard; Palacin, Serge

    2009-03-01

    The paper reports the use of self-assembled monolayers (SAMs) of dithiols to induce electroless copper deposition on a gold substrate. The metallization catalyst, palladium nanoparticles, is bound on the dithiol SAM. The assembly process is followed by IR and X-ray photoelectron spectroscopies to confirm the formation of a monolayer with bound catalyst. Electroless metallization is then carried out with a steady deposition rate of 130 nm/min. Additionally, microcontact printing of the catalyst on the SAM by poly(dimethylsiloxane) stamps is used to localize copper deposits. Resulting metallization is selective and allows for a high resolution. PMID:20355979

  16. Guided Self-Assembly of Nano-Precipitates into Mesocrystals

    PubMed Central

    Liu, H.; Gao, Y.; Xu, Z.; Zhu, Y.M.; Wang, Y.; Nie, J.F.

    2015-01-01

    We show by a combination of computer simulation and experimental characterization guided self-assembly of coherent nano-precipitates into a mesocrystal having a honeycomb structure in bulk materials. The structure consists of different orientation variants of a product phase precipitated out of the parent phase by heterogeneous nucleation on a hexagonal dislocation network. The predicted honeycomb mesocrystal has been confirmed by experimental observations in an Mg-Y-Nd alloy. The structure and lattice parameters of the mesocrystal and the size of the nano-precipitates are readily tuneable, offering ample opportunities to tailor its properties for a wide range of technological applications. PMID:26559002

  17. A self-assembling fluorescent dipeptide conjugate for cell labelling.

    PubMed

    Kirkham, Steven; Hamley, Ian W; Smith, Andrew M; Gouveia, Ricardo M; Connon, Che J; Reza, Mehedi; Ruokolainen, Janne

    2016-01-01

    Derivatives of fluorophore FITC (fluorescein isothiocyanate) are widely used in bioassays to label proteins and cells. An N-terminal leucine dipeptide is attached to FITC, and we show that this simple conjugate molecule is cytocompatible and is uptaken by cells (human dermal and corneal fibroblasts) in contrast to FITC itself. Co-localisation shows that FITC-LL segregates in peri-nuclear and intracellular vesicle regions. Above a critical aggregation concentration, the conjugate is shown to self-assemble into beta-sheet nanostructures comprising molecular bilayers. PMID:25990811

  18. Unifying Interfacial Self-Assembly and Surface Freezing

    SciTech Connect

    Ocko, B.M.; Hlaing, H.; Jepsen, P.N.; Kewalramani, S.; Tkachenko, A.; Pontoni, D.; Reichert, H.; Deutsch, M.

    2011-03-30

    X-ray investigations reveal that the monolayers formed at the bulk alkanol-sapphire interface are densely packed with the surface-normal molecules hydrogen bound to the sapphire. About 30-35 C above the bulk, these monolayers both melt reversibly and partially desorb. This system exhibits balanced intermolecular and molecule-substrate interactions which are intermediate between self-assembled and surface-frozen monolayers, each dominated by one interaction. The phase behavior is rationalized within a thermodynamic model comprising interfacial interactions, elasticity, and entropic effects. Separating the substrate from the melt leaves the monolayer structurally intact.

  19. Unifying Interfacial Self-Assembly and Surface Freezing

    SciTech Connect

    B Ocko; H Hlaing; P Jepsen; S Kewalramani; A Tkachenko; D Pontoni; H Reichert; M Deutsch

    2011-12-31

    X-ray investigations reveal that the monolayers formed at the bulk alkanol-sapphire interface are densely packed with the surface-normal molecules hydrogen bound to the sapphire. About 30-35 C above the bulk, these monolayers both melt reversibly and partially desorb. This system exhibits balanced intermolecular and molecule-substrate interactions which are intermediate between self-assembled and surface-frozen monolayers, each dominated by one interaction. The phase behavior is rationalized within a thermodynamic model comprising interfacial interactions, elasticity, and entropic effects. Separating the substrate from the melt leaves the monolayer structurally intact.

  20. De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls

    SciTech Connect

    Mass, Olga; Pandithavidana, Dinesh R.; Ptaszek, Marcin; Santiago, Koraliz; Springer, Joseph W.; Jiao, Jieying; Tang, Qun; Kirmaier, Christine; Bocian, David F.; Holten, Dewey; Lindsey, Jonathan S.

    2011-01-01

    Natural photosynthetic pigments bacteriochlorophyllsc, d and e in green bacteria undergo self-assembly to create an organized antenna system known as the chlorosome, which collects photons and funnels the resulting excitation energy toward the reaction centers. Mimicry of chlorosome function is a central problem in supramolecular chemistry and artificial photosynthesis, and may have relevance for the design of photosynthesis-inspired solar cells. The main challenge in preparing artificial chlorosomes remains the synthesis of the appropriate pigment (chlorin) equipped with a set of functional groups suitable to direct the assembly and assure efficient energy transfer. Prior approaches have entailed derivatization of porphyrins or semisynthesis beginning with chlorophylls. This paper reports a third approach, the de novo synthesis of macrocycles that contain the same hydrocarbon skeleton as chlorosomal bacteriochlorophylls. The synthesis here of Zn(II) 3-(1-hydroxyethyl)-10-aryl-13¹-oxophorbines (the aryl group consists of phenyl, mesityl, or pentafluorophenyl) entails selective bromination of a 3,13-diacetyl-10-arylchlorin, palladium-catalyzed 13¹-oxophorbine formation, and selective reduction of the 3-acetyl group using BH₃·tBuNH₂. Each macrocycle contains a geminal dimethyl group in the pyrroline ring to provide stability toward adventitious dehydrogenation. A Zn(II) 7-(1-hydroxyethyl)-10-phenyl-17-oxochlorin also has been prepared. Altogether, 30 new hydroporphyrins were synthesized. The UV-Vis absorption spectra of the new chlorosomal bacteriochlorophyll mimics reveal a bathochromic shift of [similar]1800 cm-1 of the Qy band in nonpolar solvent, indicating extensive assembly in solution. The Zn(II) 3-(1-hydroxyethyl)-10-aryl-13¹-oxophorbines differ in the propensity to form assemblies based on the 10-substituent in the following order: mesityl

  1. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.

    PubMed

    Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K

    2016-01-26

    Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures. PMID:26654935

  2. Self-Assembly of Channel Type β-CD Dimers Induced by Dodecane

    NASA Astrophysics Data System (ADS)

    Zhou, Chengcheng; Cheng, Xinhao; Zhao, Qiang; Yan, Yun; Wang, Jide; Huang, Jianbin

    2014-12-01

    Cyclodextrins (CDs) can hardly self-assemble into well-defined structures. Here we report if they preassemble into channel type dimers assisted by dodecane, well-defined vesicles and bricks can be formed. Unlike the traditional self-assembly of amphiphilic molecules driven by hydrophobic effect, the self-assembly of the channel type dodecane@2β-CD supramolecular building block is predoninantly driven by hydrogen-bonds. More water molecules are found in the lyophilized vesicles than in the bricks, suggesting water molecules play an important role in the self-assembly of the channel-type dimers of β-CD. The amount of structural water in the self-assembly is closely related to the curvature of the final self-assembled structures. Our work reveals that the channel-type dimer of β-CD may represent a new sort of building block for advanced structures.

  3. Self-assembly of channel type β-CD dimers induced by dodecane.

    PubMed

    Zhou, Chengcheng; Cheng, Xinhao; Zhao, Qiang; Yan, Yun; Wang, Jide; Huang, Jianbin

    2014-01-01

    Cyclodextrins (CDs) can hardly self-assemble into well-defined structures. Here we report if they preassemble into channel type dimers assisted by dodecane, well-defined vesicles and bricks can be formed. Unlike the traditional self-assembly of amphiphilic molecules driven by hydrophobic effect, the self-assembly of the channel type dodecane@2β-CD supramolecular building block is predoninantly driven by hydrogen-bonds. More water molecules are found in the lyophilized vesicles than in the bricks, suggesting water molecules play an important role in the self-assembly of the channel-type dimers of β-CD. The amount of structural water in the self-assembly is closely related to the curvature of the final self-assembled structures. Our work reveals that the channel-type dimer of β-CD may represent a new sort of building block for advanced structures. PMID:25532046

  4. Molecular self-assembly routes to optically functional thin films: Electroluminescent multilayer structures

    SciTech Connect

    Li, W.; Malinsky, J.E.; Chou, H.

    1998-07-01

    This contribution describes the use of layer-by-layer self-limiting siloxane chemisorption processes to self-assemble structurally regular multilayer organic LED (OLED) devices. Topics discussed include: (1) the synthesis of silyl-functionalized precursor molecules for hole transport layer (HTL), emissive layer (EML), and electron transport layer (ETL) self-assembly, (2) the use of layer-by-layer self-assembly for ITO electrode modification/passivation/hole-electron balancing in a vapor-deposited device, (3) the microstructure/chemical characterization of HTL self-assembly using a prototype triarylamine precursor, (4) fabrication and properties of a hybrid self-assembled + vapor deposited two-layer LED, and (5) fabrication and properties of a fully self-assembled two-layer OLED.

  5. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    Catalytically active colloids maintain non-equilibrium conditions in which they produce and deplete chemicals at their surface. While individual colloids that are symmetrically coated do not exhibit dynamical activity, the concentration fields resulting from their chemical activity decay as 1/r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a non-equilibrium analogue of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. In dilute conditions these active colloids join up to form molecules via generalized ionic bonds. Colloids are found to join up to form self-assembled molecules that could be inert or have spontaneous activity in the form of net translational velocity and spin depending on their symmetry properties and their constituents. As the interactions do not satisfy detailed-balance, it is possible to achieve structures with time dependent functionality. We study a molecule that adopts spontaneous oscillations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that posses dynamical functionalities.

  6. Precise hierarchical self-assembly of multicompartment micelles

    PubMed Central

    Gröschel, André H.; Schacher, Felix H.; Schmalz, Holger; Borisov, Oleg V.; Zhulina, Ekaterina B.; Walther, Andreas; Müller, Axel H.E.

    2012-01-01

    Hierarchical self-assembly offers elegant and energy-efficient bottom-up strategies for the structuring of complex materials. For block copolymers, the last decade witnessed great progress in diversifying the structural complexity of solution-based assemblies into multicompartment micelles. However, a general understanding of what governs multicompartment micelle morphologies and polydispersity, and how to manipulate their hierarchical superstructures using straightforward concepts and readily accessible polymers remains unreached. Here we demonstrate how to create homogeneous multicompartment micelles with unprecedented structural control via the intermediate pre-assembly of subunits. This directed self-assembly leads to a step-wise reduction of the degree of conformational freedom and dynamics and avoids undesirable kinetic obstacles during the structure build-up. It yields a general concept for homogeneous populations of well-defined multicompartment micelles with precisely tunable patchiness, while using simple linear ABC triblock terpolymers. We further demonstrate control over the hierarchical step-growth polymerization of multicompartment micelles into micron-scale segmented supracolloidal polymers as an example of programmable mesoscale colloidal hierarchies via well-defined patchy nanoobjects. PMID:22426231

  7. Stochastic lag time in nucleated linear self-assembly.

    PubMed

    Tiwari, Nitin S; van der Schoot, Paul

    2016-06-21

    Protein aggregation is of great importance in biology, e.g., in amyloid fibrillation. The aggregation processes that occur at the cellular scale must be highly stochastic in nature because of the statistical number fluctuations that arise on account of the small system size at the cellular scale. We study the nucleated reversible self-assembly of monomeric building blocks into polymer-like aggregates using the method of kinetic Monte Carlo. Kinetic Monte Carlo, being inherently stochastic, allows us to study the impact of fluctuations on the polymerization reactions. One of the most important characteristic features in this kind of problem is the existence of a lag phase before self-assembly takes off, which is what we focus attention on. We study the associated lag time as a function of system size and kinetic pathway. We find that the leading order stochastic contribution to the lag time before polymerization commences is inversely proportional to the system volume for large-enough system size for all nine reaction pathways tested. Finite-size corrections to this do depend on the kinetic pathway. PMID:27334194

  8. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  9. Structure of self - assembled two-dimensional spherical crystals

    NASA Astrophysics Data System (ADS)

    Bausch, Andreas R.

    2004-03-01

    Dense spherical particles on a flat surface usually pack into a simple triangular lattice, similar to billiard balls at the start of a game. The minimum energy configuration for interacting particles on the curved surface of a sphere, however, presents special difficulties, as recognized already by J.J. Thomson. We describe experimental investigations of the structure of two-dimensional spherical crystals. The crystals, formed by beads self-assembled on water droplets in oil, serve as model systems for exploring very general theories about the minimum energy configurations of particles with arbitrary repulsive interactions on curved surfaces. Above a critical system size we find that crystals develop distinctive high-angle grain boundaries or "scars" not found in planar crystals. The number of excess defects in a scar is shown to grow linearly with the dimensionless system size. First experiments where the melting of the crystal structure was observable will be discussed. Dynamic triangulation methods allow the analysis of the dynamics of the defects. Possible modifications towards mechanically stabilized self assembly structures result in so called Colloidosomes, which are promising for many different encapsulation purposes.

  10. Control of crystal nucleation by patterned self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Aizenberg, Joanna; Black, Andrew J.; Whitesides, George M.

    1999-04-01

    An important requirement in the fabrication of advanced inorganic materials, such as ceramics and semiconductors, is control over crystallization. In principle, the synthetic growth of crystals can be guided by molecular recognition at interfaces. But it remains a practical challenge to control simultaneously the density and pattern of nucleation events, and the sizes and orientations of the growing crystals. Here we report a route to crystal formation, using micropatterned self-assembled monolayers,, which affords control over all these parameters. We begin with a metal substrate patterned with a self-assembled monolayer having areas of different nucleating activity-in this case, an array of acid-terminated regions separated by methyl-terminated regions. By immersing the patterned substrates in a calcium chloride solution and exposing them to carbon dioxide, we achieve ordered crystallization of calcite in the polar regions, where the rate of nucleation is fastest; crystallization can be completely suppressed elsewhere by a suitable choice of array spacing, which ensures that the solution is undersaturated in the methyl-terminated regions. The nucleation density (the number of crystals formed per active site) may be controlled by varying the area and distribution of the polar regions, and we can manipulate the crystallographic orientation by using different functional groups and substrates.

  11. Free surface BCP self-assembly process characterization with CDSEM

    NASA Astrophysics Data System (ADS)

    Levi, Shimon; Weinberg, Yakov; Adan, Ofer; Klinov, Michael; Argoud, Maxime; Claveau, Guillaume; Tiron, Raluca

    2016-03-01

    A simple and common practice to evaluate Block copolymers (BCP) self-assembly performances, is on a free surface wafer. With no guiding pattern the BCP designed to form line space pattern for example, spontaneously rearranges to form a random fingerprint type of a pattern. The nature of the rearrangement is dictated by the physical properties of the BCP moieties, wafer surface treatment and the self-assembly process parameters. Traditional CDSEM metrology algorithms are designed to measure pattern with predefined structure, like linespace or oval via holes. Measurement of pattern with expected geometry can reduce measurement uncertainty. Fingerprint type of structure explored in this dissertation, poses a challenge for CD-SEM measurement uncertainty and offers an opportunity to explore 2D metrology capabilities. To measure this fingerprints we developed a new metrology approach that combines image segmentation and edge detection to measure 2D pattern with arbitrary rearrangement. The segmentation approach enabled to quantify the quality of the BCP material and process, detecting 2D attributes such as: CD and CDU at one axis, and number of intersections, length and number of PS fragments, etched PMMA spaces and donut shapes numbers on the second axis. In this paper we propose a 2D metrology to measure arbitrary BCP pattern on a free surface wafer. We demonstrate experimental results demonstrating precision data, and characterization of PS-b-PMMA BCP, intrinsic period L0 = 38nm (Arkema), processed at different bake time and temperatures.

  12. Simulation of self-assembly of polyzwitterions into vesicles

    DOE PAGESBeta

    Mahalik, Jyoti P.; Muthukumar, Murugappan

    2016-08-19

    Using the Langevin dynamics method and a coarse-grained model, we have researched the formation of vesicles by hydrophobic polymers consisting of periodically placed zwitterion side groups in dilute salt-free aqueous solutions. The zwitterions, being permanent charge dipoles, provide long-range electrostatic correlations which are interfered by the conformational entropy of the polymer. Our simulations are geared towards gaining conceptual understanding in these correlated dipolar systems, where theoretical calculations are at present formidable. A competition between hydrophobic interactions and dipole-dipole interactions leads to a series of self-assembled structures. As the spacing d between the successive zwitterion side groups decreases, single chains undergomore » globule → disk → worm-like structures. We have calculated the Flory-Huggins χ parameter for these systems in terms of d and monitored the radius of gyration, hydrodynamic radius, spatial correlations among hydrophobic and dipole monomers, and dipole-dipole orientational correlation functions. During the subsequent stages of self-assembly, these structures lead to larger globules and vesicles as d is decreased up to a threshold value, below which no large scale morphology forms. Finally the vesicles form via a polynucleation mechanism whereby disk-like structures form first, followed by their subsequent merger.« less

  13. Molecular mobility in self-assembled dendritic chromophore glasses.

    PubMed

    Knorr, Daniel B; Zhou, Xing-Hua; Shi, Zhengwei; Luo, Jingdong; Jang, Sei-Hum; Jen, Alex K-Y; Overney, René M

    2009-10-29

    Increasing complexity in bottom-up molecular designs of amorphous structures with multiple relaxation modes demands an integrated and cognitive design approach, where chemical synthesis is guided by both analytical tools and theoretical simulations. In particular, this is apparent for novel organic second-order nonlinear optical materials of self-assembling molecular glasses involving dendritic arene stabilization moieties (phenyl, naphthyl, and anthryl) with electro-optical activities above 300 pm/V. In this study, nanoscale thermo-mechanical analyses yield direct insight into the molecular enthalpic and entropic relaxation modes. Arene-perfluoroarene interactions for coarse self-assembly are found to impose three phase relaxation regimes, with intermediate regimes of 8-15 degrees C in width and apparent activation energies between 40 and 60 kcal/mol to be the most effective for poling. Energetic analyses based on intrinsic friction microscopy (IFA) identify increasing temporal stability with increasing arene size for the low-temperature regime. Electric field poling efficiency is found to be inversely proportional to entropic cooperative contributions that can make up 80% of the overall apparent relaxation energy for the high-temperature regime. The origin for the activation energies below the incipient glass transition temperature, based on complementary molecular dynamic simulations, is tied primarily to noncovalent interactions between chromophore (dipole), dendritic (quadrupole) moieties, and combinations thereof. PMID:19780549

  14. Self-Assembly into Strands in Amphiphilic Polymer Brushes.

    PubMed

    Larin, Daniil E; Lazutin, Alexei A; Govorun, Elena N; Vasilevskaya, Valentina V

    2016-07-12

    The self-assembly of amphiphilic macromolecules end-grafted to a plane surface is studied using mean-field theory and computer simulations. Chain backbones are built from hydrophobic groups, whereas side groups are hydrophilic. The brush is immersed in a solvent, which can be good or poor, but on average is not far from θ conditions. It is demonstrated that the strong amphiphilicity of macromolecules at a monomer unit level leads to their self-assembly into a system of strands with a 2D hexagonal order in a cross-section parallel to the grafting plane. The structure period is determined by the length of side groups. In theory, this effect is explained by the orientation of strongly amphiphilic monomer units at a strand/solvent boundary that leads to an effective negative contribution to the surface tension. Computer simulations with molecular dynamics (MD) are used for a detailed study of the local brush structure. The aggregation number of strands grows with the increase of the grafting density and side group length. PMID:27267357

  15. A coarse-grained model of microtubule self-assembly

    NASA Astrophysics Data System (ADS)

    Regmi, Chola; Cheng, Shengfeng

    Microtubules play critical roles in cell structures and functions. They also serve as a model system to stimulate the next-generation smart, dynamic materials. A deep understanding of their self-assembly process and biomechanical properties will not only help elucidate how microtubules perform biological functions, but also lead to exciting insight on how microtubule dynamics can be altered or even controlled for specific purposes such as suppressing the division of cancer cells. Combining all-atom molecular dynamics (MD) simulations and the essential dynamics coarse-graining method, we construct a coarse-grained (CG) model of the tubulin protein, which is the building block of microtubules. In the CG model a tubulin dimer is represented as an elastic network of CG sites, the locations of which are determined by examining the protein dynamics of the tubulin and identifying the essential dynamic domains. Atomistic MD modeling is employed to directly compute the tubulin bond energies in the surface lattice of a microtubule, which are used to parameterize the interactions between CG building blocks. The CG model is then used to study the self-assembly pathways, kinetics, dynamics, and nanomechanics of microtubules.

  16. Molecular Self-Assembly Driven by London Dispersion Forces

    SciTech Connect

    Li, Guo; Cooper, Valentino R; Cho, Jun-Hyung; Du, Shixuan; Gao, Hongjun; Zhang, Zhenyu

    2011-01-01

    The nature and strength of intermolecular interactions are crucial to a variety of kinetic and dynamic processes at surfaces. Whereas strong chemisorption bonds are known to facilitate molecular binding, the importance of the weaker yet ubiquitous van der Waals (vdW) interactions remains elusive in most cases. Here we use first-principles calculations combined with kinetic Monte Carlo simulations to unambiguously demonstrate the vital role that vdW interactions play in molecular self-assembly, using styrene nanowire growth on silicon as a prototypical example. We find that, only when the London dispersion forces are included, accounting for the attractive parts of vdW interactions, can the effective intermolecular interaction be reversed from being repulsive to attractive. Such attractive interactions, in turn, ensure the preferred growth of long wires under physically realistic conditions as observed experimentally. We further propose a cooperative scheme, invoking the application of an electric field and the selective creation of Si dangling bonds, to drastically improve the ordered arrangement of the molecular structures. The present study represents a significant step forward in the fundamental understanding and precise control of molecular self-assembly guided by London dispersion forces.

  17. Self assembled monolayers on silicon for molecular electronics.

    PubMed

    Aswal, D K; Lenfant, S; Guerin, D; Yakhmi, J V; Vuillaume, D

    2006-05-24

    We present an overview of various aspects of the self-assembly of organic monolayers on silicon substrates for molecular electronics applications. Different chemical strategies employed for grafting the self-assembled monolayers (SAMs) of alkanes having different chain lengths on native oxide of Si or on bare Si have been reviewed. The utility of different characterization techniques in determination of the thickness, molecular ordering and orientation, surface coverage, growth kinetics and chemical composition of the SAMs has been discussed by choosing appropriate examples. The metal counterelectrodes are an integral part of SAMs for measuring their electrical properties as well as using them for molecular electronic devices. A brief discussion on the variety of options available for the deposition of metal counterelectrodes, that is, soft metal contacts, vapor deposition and soft lithography, has been presented. Various theoretical models, namely, tunneling (direct and Fowler-Nordheim), thermionic emission, Poole-Frenkel emission and hopping conduction, used for explaining the electronic transport in dielectric SAMs have been outlined and, some experimental data on alkane SAMs have been analyzed using these models. It has been found that short alkyl chains show excellent agreement with tunneling models; while more experimental data on long alkyl chains are required to understand their transport mechanism(s). Finally, the concepts and realization of various molecular electronic components, that is, diodes, resonant tunnel diodes, memories and transistors, based on appropriate architecture of SAMs comprising of alkyl chains (sigma- molecule) and conjugated molecules (pi-molecule) have been presented. PMID:17761249

  18. Compositional Inheritance: Comparison of Self-assembly and Catalysis

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Higgs, Paul G.

    2008-10-01

    Genetic inheritance in modern cells is due to template-directed replication of nucleic acids. However, the difficulty of prebiotic synthesis of long information-carrying polymers like RNA raises the question of whether some other form of heredity is possible without polymers. As an alternative, the lipid world theory has been proposed, which considers non-covalent assemblies of lipids, such as micelles and vesicles. Assemblies store information in the form of a non-random molecular composition, and this information is passed on when the assemblies divide, i.e . the assemblies show compositional inheritance. Here, we vary several important assumptions of previous lipid world models and show that compositional inheritance is relevant more generally than the context in which it was originally proposed. Our models assume that interaction occurs between nearest neighbour molecules only, and account for spatial segregation of molecules of different types within the assembly. We also draw a distinction between a self-assembly model, in which the composition is determined by mutually favourable interaction energies between the molecules, and a catalytic model, in which the composition is determined by mutually favourable catalysis. We show that compositional inheritance occurs in both models, although the self-assembly case seems more relevant if the molecules are simple lipids. In the case where the assemblies are composed of just two types of molecules, there is a strong analogy with the classic two-allele Moran model from population genetics. This highlights the parallel between compositional inheritance and genetic inheritance.

  19. Protein-directed self-assembly of a fullerene crystal

    PubMed Central

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B.; Acharya, Rudresh; DeGrado, William F.; Kim, Yong Ho; Grigoryan, Gevorg

    2016-01-01

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design. PMID:27113637

  20. Designing self-assembling 3D structures of microcapsules

    NASA Astrophysics Data System (ADS)

    Li, Like; Shum, Henry; Shklyaev, Oleg; Yashin, Victor; Balazs, Anna

    Self-assembly of complex, three-dimensional structures is commonly achieved by biological cells but difficult to realize in synthetic systems with micron-scale or larger components. Some previous modeling studies have considered only the planar self-assembly of microcapsules on a substrate. In this work, nanoparticles released from the capsules bind to the substrate and to the shells of nearby capsules. The non-uniform nanoparticle deposition on a capsule's surface leads to adhesion gradients, which drive the capsules to effectively ``climb'' on top of one another and self-organize in the vertical direction. We determine conditions that favor this structural organization. In particular, we study how the vertical structuring depends on the background fluid flow, the topography of the microcapsules and the underlying surface, the capsule-capsule interaction and that between the capsules and the substrate. The findings can provide design rules for the autonomous creation of novel nanocomposites, where the layers are formed from nanoparticle-containing and nanoparticle-decorated microcapsules.

  1. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles.

    PubMed

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-01-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations. PMID:27279329

  2. Self-assembly processes in the prebiotic environment

    PubMed Central

    Deamer, David; Singaram, Sara; Rajamani, Sudha; Kompanichenko, Vladimir; Guggenheim, Stephen

    2006-01-01

    An important question guiding research on the origin of life concerns the environmental conditions where molecular systems with the properties of life first appeared on the early Earth. An appropriate site would require liquid water, a source of organic compounds, a source of energy to drive polymerization reactions and a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. One such site is a geothermal setting, in which organic compounds interact with mineral surfaces to promote self-assembly and polymerization reactions. Here, we report an initial study of two geothermal sites where mixtures of representative organic solutes (amino acids, nucleobases, a fatty acid and glycerol) and phosphate were mixed with high-temperature water in clay-lined pools. Most of the added organics and phosphate were removed from solution with half-times measured in minutes to a few hours. Analysis of the clay, primarily smectite and kaolin, showed that the organics were adsorbed to the mineral surfaces at the acidic pH of the pools, but could subsequently be released in basic solutions. These results help to constrain the range of possible environments for the origin of life. A site conducive to self-assembly of organic solutes would be an aqueous environment relatively low in ionic solutes, at an intermediate temperature range and neutral pH ranges, in which cyclic concentration of the solutes can occur by transient dry intervals. PMID:17008220

  3. Aerosol-Assisted Self-Assembly of Mesostructured Spherical Nanoparticles

    SciTech Connect

    Brinker, C.J.; Fan,; H.; Lu, Y.; Rieker, T.; Stump, A.; Ward, T.L.

    1999-03-23

    Nanostructured particles exhibiting well-defined pore sizes and pore connectivities (1-, 2-, or 3-dimensional) are of interest for catalysis, chromatography, controlled release, low dielectric constant fillers, and custom-designed pigments and optical hosts. During the last several years considerable progress has been made on controlling the macroscopic forms of mesoporous silicas prepared by surfactant and block copolymer liquid crystalline templating procedures. Typically interfacial phenomena are used to control the macroscopic form (particles, fibers, or films), while self-assembly of amphiphilic surfactants or polymers is used to control the mesostructure. To date, although a variety of spherical or nearly-spherical particles have been prepared, their extent of order is limited as is the range of attainable mesostructures. They report a rapid, aerosol process that results in solid, completely ordered spherical particles with stable hexagonal, cubic, or vesicular mesostructures. The process relies on evaporation-induced interfacial self-assembly (EISA) confined to a spherical aerosol droplet. The process is simple and generalizable to a variety of materials combinations. Additionally, it can be modified to provide the first aerosol route to the formation of ordered mesostructured films.

  4. Self-assembly of FKE8 peptides using CHARMM

    NASA Astrophysics Data System (ADS)

    Ouazzani, Abdelillah; Kara, Abdelkader; Bhattacharya, Aniket

    2009-03-01

    We investigate the molecular self-assembly of FKE8 peptides (with a sequence FKFEFKFE) using CHARMM. Previous studies^1,2 of the FKE8 peptides have shown helical ribbon structures during the formation of β-sheets. In order to understand this supra-molecular structure,first we investigate the stable configuration of two FKE8 molecules as a function of the orientation of the long axis of the molecules. We find that stable configuration of these two molecules (based on energy minimization) occurs when the long axes of the two molecules are orientated at an angle ˜51.5^0 with respect to each other. This angle may be relevant to understand the pitch of the helical structure. Next we study the self-assembly of several FKE8 molecules starting with an initial configuration where two successive FKE8 molecules are oriented at an angle ˜51.5^0 with respect to each other. ^1 W. Hwang, D. Marini, R. D. Kamm, and S. Zhang, J. Chem. Phys. 118, 389 (2003).^2 S. Vauthey, S. Santoso, H. Gong, N. Watson, and S. Zhang, Proc. Natl. Acad. Sci. U.S.A. 99, 5355 (2002).

  5. Stochastic lag time in nucleated linear self-assembly

    NASA Astrophysics Data System (ADS)

    Tiwari, Nitin S.; van der Schoot, Paul

    2016-06-01

    Protein aggregation is of great importance in biology, e.g., in amyloid fibrillation. The aggregation processes that occur at the cellular scale must be highly stochastic in nature because of the statistical number fluctuations that arise on account of the small system size at the cellular scale. We study the nucleated reversible self-assembly of monomeric building blocks into polymer-like aggregates using the method of kinetic Monte Carlo. Kinetic Monte Carlo, being inherently stochastic, allows us to study the impact of fluctuations on the polymerization reactions. One of the most important characteristic features in this kind of problem is the existence of a lag phase before self-assembly takes off, which is what we focus attention on. We study the associated lag time as a function of system size and kinetic pathway. We find that the leading order stochastic contribution to the lag time before polymerization commences is inversely proportional to the system volume for large-enough system size for all nine reaction pathways tested. Finite-size corrections to this do depend on the kinetic pathway.

  6. Self-assembled mannan nanogel: cytocompatibility and cell localization.

    PubMed

    Ferreira, Sílvia A; Carvalho, Vera; Costa, Carla; Teixeira, João Paulo; Vilanova, Manuel; Gama, Francisco M

    2012-06-01

    Amphiphilic mannan, produced by the Michael addition of hydrophobic 1-hexadecanethiol to vinyl methacrylated mannan, self-assembles in aqueous medium through hydrophobic interactions among alkyl chains. Resultant nanogel is stable, spherical, polydisperse, with 50-140 nm mean hydrodynamic diameter depending on the polymer degree of substitution, and nearly neutral negative surface charge. No cytotoxicity of mannan nanogel is detected up to about 0.4 mg/mL in mouse embryo fibroblast cell line 3T3 and mouse bone marrow-derived macrophages (BMDM) using cell proliferation, lactate dehydrogenase and Live/Dead assays. Comet assay, under the tested conditions, reveals no DNA damage in fibroblasts but possible in BMDM. BMDM internalize the mannan nanogel, which is observed in vesicles in the cytoplasm by confocal laser scanning microscopy. Confocal colocalization image analysis denotes that the entrance and exit of nanogel and FM 4-64 might occur by the same processes--endocytosis and exocytosis--in BMDM. Physicochemical characteristics, in vitro cytocompatibility and uptake of self-assembled mannan nanogel by mouse BMDM are great signals of the potential applicability of this nanosystem for macrophages targeted delivery of vaccines or drugs, acting as potential nanomedicines, always with the key goal of preventing and/or treating diseases. PMID:22764417

  7. Self assembly of highly-ordered nanoparticle monolayers.

    SciTech Connect

    Bigioni, T. P.; Lin, X.-M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M.; Univ. of Chicago

    2006-01-01

    When a drop of a colloidal solution of nanoparticles dries on a surface, it leaves behind coffee-stain-like rings of material with lace-like patterns or clumps of particles in the interior. These non-uniform mass distributions are manifestations of far-from-equilibrium effects, such as fluid flows and solvent fluctuations during late-stage drying. However, recently a strikingly different drying regime promising highly uniform, long-range-ordered nanocrystal monolayers has been found. Here we make direct, real-time and real-space observations of nanocrystal self-assembly to reveal the mechanism. We show how the morphology of drop-deposited nanoparticle films is controlled by evaporation kinetics and particle interactions with the liquid-air interface. In the presence of an attractive particle-interface interaction, rapid early-stage evaporation dynamically produces a two-dimensional solution of nanoparticles at the liquid-air interface, from which nanoparticle islands nucleate and grow. This self-assembly mechanism produces monolayers with exceptional long-range ordering that are compact over macroscopic areas, despite the far-from-equilibrium evaporation process. This new drop-drying regime is simple, robust and scalable, is insensitive to the substrate material and topography, and has a strong preference for forming monolayer films. As such, it stands out as an excellent candidate for the fabrication of technologically important ultra thin film materials for sensors, optical devices and magnetic storage media.

  8. Simulation of self-assembly of polyzwitterions into vesicles.

    PubMed

    Mahalik, J P; Muthukumar, M

    2016-08-21

    Using the Langevin dynamics method and a coarse-grained model, we have studied the formation of vesicles by hydrophobic polymers consisting of periodically placed zwitterion side groups in dilute salt-free aqueous solutions. The zwitterions, being permanent charge dipoles, provide long-range electrostatic correlations which are interfered by the conformational entropy of the polymer. Our simulations are geared towards gaining conceptual understanding in these correlated dipolar systems, where theoretical calculations are at present formidable. A competition between hydrophobic interactions and dipole-dipole interactions leads to a series of self-assembled structures. As the spacing d between the successive zwitterion side groups decreases, single chains undergo globule → disk → worm-like structures. We have calculated the Flory-Huggins χ parameter for these systems in terms of d and monitored the radius of gyration, hydrodynamic radius, spatial correlations among hydrophobic and dipole monomers, and dipole-dipole orientational correlation functions. During the subsequent stages of self-assembly, these structures lead to larger globules and vesicles as d is decreased up to a threshold value, below which no large scale morphology forms. The vesicles form via a polynucleation mechanism whereby disk-like structures form first, followed by their subsequent merger. PMID:27544126

  9. Self-assembly mechanism in colloids: perspectives from statistical physics

    NASA Astrophysics Data System (ADS)

    Giacometti, Achille

    2012-06-01

    Motivated by recent experimental findings in chemical synthesis of colloidal particles, we draw an analogy between self-assembly processes occurring in biological systems (e.g. protein folding) and a new exciting possibility in the field of material science. We consider a self-assembly process whose elementary building blocks are decorated patchy colloids of various types, that spontaneously drive the system toward a unique and predetermined targeted macroscopic structure. To this aim, we discuss a simple theoretical model — the Kern-Frenkel model — describing a fluid of colloidal spherical particles with a pre-defined number and distribution of solvophobic and solvophilic regions on their surface. The solvophobic and solvophilic regions are described via a short-range square-well and a hard-sphere potentials, respectively. Integral equation and perturbation theories are presented to discuss structural and thermodynamical properties, with particular emphasis on the computation of the fluid-fluid (or gas-liquid) transition in the temperaturedensity plane. The model allows the description of both one and two attractive caps, as a function of the fraction of covered attractive surface, thus interpolating between a square-well and a hard-sphere fluid, upon changing the coverage. By comparison with Monte Carlo simulations, we assess the pros and the cons of both integral equation and perturbation theories in the present context of patchy colloids, where the computational effort for numerical simulations is rather demanding.

  10. Transport and photodetection in self-assembled semiconductor quantum dots.

    PubMed

    Razeghi, M; Lim, H; Tsao, S; Szafraniec, J; Zhang, W; Mi, K; Movaghar, B

    2005-02-01

    A great step forward in science and technology was made when it was discovered that lattice mismatch can be used to grow highly ordered, artificial atom-like structures called self-assembled quantum dots. Several groups have in the meantime successfully demonstrated useful infrared photodetection devices which are based on this technology. The new physics is fascinating, and there is no doubt that many new applications will be found when we have developed a better understanding of the underlying physical processes, and in particular when we have learned how to integrate the exciting new developments made in nanoscopic addressing and molecular self-assembly methods with semiconducting dots. In this paper we examine the scientific and technical questions encountered in current state of the art infrared detector technology and suggest ways of overcoming these difficulties. Promoting simple physical pictures, we focus in particular on the problem of high temperature detector operation and discuss the origin of dark current, noise, and photoresponse. PMID:21727426

  11. Chiral plasmonics of self-assembled nanorod dimers.

    PubMed

    Ma, Wei; Kuang, Hua; Wang, Libing; Xu, Liguang; Chang, Wei-Shun; Zhang, Huanan; Sun, Maozhong; Zhu, Yinyue; Zhao, Yuan; Liu, Liqiang; Xu, Chuanlai; Link, Stephan; Kotov, Nicholas A

    2013-01-01

    Chiral nanoscale photonic systems typically follow either tetrahedral or helical geometries that require four or more different constituent nanoparticles. Smaller number of particles and different chiral geometries taking advantage of the self-organization capabilities of nanomaterials will advance understanding of chiral plasmonic effects, facilitate development of their theory, and stimulate practical applications of chiroplasmonics. Here we show that gold nanorods self-assemble into side-by-side orientated pairs and "ladders" in which chiral properties originate from the small dihedral angle between them. Spontaneous twisting of one nanorod versus the other one breaks the centrosymmetric nature of the parallel assemblies. Two possible enantiomeric conformations with positive and negative dihedral angles were obtained with different assembly triggers. The chiral nature of the angled nanorod pairs was confirmed by 4π full space simulations and the first example of single-particle CD spectroscopy. Self-assembled nanorod pairs and "ladders" enable the development of chiral metamaterials, (bio)sensors, and new catalytic processes. PMID:23752317

  12. Using lateral capillary forces to compute by self-assembly

    PubMed Central

    Rothemund, Paul W. K.

    2000-01-01

    Investigations of DNA computing have highlighted a fundamental connection between self-assembly (SA) and computation: in principle, any computation can be performed by a suitable self-assembling system. In practice, exploration of this connection is limited by our ability to control the geometry and specificity of binding interactions. Recently, a system has been developed that uses surface tension to assemble plastic tiles according to shape complementarity and likeness of wetting [Bowden, N., Terfort, A., Carbeck, J. & Whitesides, G. M. (1997) Science 276, 233–235]. Here the capacity of this system to compute by SA is explored. Tiles were prepared to test the system's ability to generate three structures of increasing complexity: a periodic checkerboard tiling, an aperiodic Penrose tiling, and a computational tiling that simulates a one-dimensional cellular automaton. Matching rules for these tilings were enforced by coating tiles with patterns of hydrophobic and hydrophilic patches or wetting codes. Energetic, kinetic, and mechanistic details of SA explain differences between experimental structures and mathematically ideal ones. In particular, the growth mechanism observed appears incompatible with computations that make use of a chosen input. PMID:10655471

  13. Synthesis and simultaneous self-assembly of novel antibacterial polyurethanes

    NASA Astrophysics Data System (ADS)

    Duan, J. H.; Yin, F.; Jiang, G. C.

    2016-07-01

    Novel physically crosslinked polyurethane (PUII) based on isophorone diisocyanates (IPDI) was prepared by a conventional two step method. The chemical structures of the PUII were characterized by fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC) and scanning electron microscopy (SEM). The PUII hydrogels were subjected to solvent-induced self-assembly in THF + water to construct a variety of morphologies. The self-assembly morphology of the PUII was observed by scanning electron microscopy (SEM). Different amounts (0.2%, 0.4%, 0.6%, 0.8%, 1.0%) of 1,3,5-Tris(2-hydroxyethyl)hexahydro-1,3,5-triazine (TNO) was added as antibacterial agent to the polyurethane prepolymers. The inhibiting capacity of the antibacterial films to the Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Gray mold has been studied. The inhibiting capacity of films for each strain effect became obvious with the increase of content of antibacterial agent and the sensitive degree to all kind of bacterial species was different.

  14. Protein-directed self-assembly of a fullerene crystal.

    PubMed

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B; Acharya, Rudresh; DeGrado, William F; Kim, Yong Ho; Grigoryan, Gevorg

    2016-01-01

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design. PMID:27113637

  15. Structural Diversity of Self-Assembled Iridescent Arthropod Biophotonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Saranathan, Vinod Kumar; Prum, Richard O.

    2015-03-01

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, we lack precise structural knowledge of many biophotonic nanostructures and mechanisms controlling their development, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multi-functional materials. Here, we use synchrotron small angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 iridescent integumentary scales and setae from 127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply-periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered sponge-like morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.

  16. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    PubMed Central

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-01-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations. PMID:27279329

  17. Ionic self-assembly for functional hierarchical nanostructured materials.

    PubMed

    Faul, Charl F J

    2014-12-16

    CONSPECTUS: The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons

  18. Anisotropic nanocolloids: self-assembly, interfacial adsorption, and electrostatic screening

    NASA Astrophysics Data System (ADS)

    de Graaf, J.

    2012-06-01

    In this thesis we consider the influence of anisotropy on the behaviour of colloids using theory and simulations. The recent increase in the ability to synthesize anisotropic particles (cubes, caps, octapods, etc.) has led to samples of sufficient quality to perform self-assembly experiments. Our investigation is therefore particularly relevant to current and future experimental studies of colloids. We examine several topics for which shape anisotropy plays an important role: (1.) - Interfacial adsorption. We introduced the triangular-tessellation technique to approximate the surface areas and line length which are associated with a plane-particle intersection. Our method allowed us to determine the free energy of adsorption for a single irregular colloid with heterogeneous surface properties adsorbed at a flat liquid-liquid interface in the Pieranski approximation. Ellipsoids only adsorbed at the interface perpendicular to the interfacial normal. However, for cylinders we could find a metastable adsorption minimum corresponding to parallel adsorption. We also considered the possible time dependence of the adsorption process using simple dynamics. Finally, we studied the adsorption of truncated nanocubes with a contact-angle surface pattern and we observed that there are three prototypical equilibrium adsorption configurations for these particles. (2.) - Crystal-structure prediction. We extended an existing crystal-structure-prediction algorithm to predict structures for systems comprised of irregular hard particles. Using this technique we examined the high-density crystal structures for 17 irregular nonconvex shapes and we confirmed several mathematical conjectures for the packings of a large set of 142 convex polyhedra. We also proved that we have obtained the densest configurations for rhombicuboctahedra and rhombic enneacontrahedra, respectively. Moreover, we considered a family of truncated cubes, which interpolates between a cube and an octahedron, for which

  19. Real time monitoring of superparamagnetic nanoparticle self-assembly on surfaces of magnetic recording media

    SciTech Connect

    Ye, L.; Pearson, T.; Crawford, T. M.; Qi, B.; Cordeau, Y.; Mefford, O. T.

    2014-05-07

    Nanoparticle self-assembly dynamics are monitored in real-time by detecting optical diffraction from an all-nanoparticle grating as it self-assembles on a grating pattern recorded on a magnetic medium. The diffraction efficiency strongly depends on concentration, pH, and colloidal stability of nanoparticle suspensions, demonstrating the nanoparticle self-assembly process is highly tunable. This metrology could provide an alternative for detecting nanoparticle properties such as colloidal stability.

  20. Self-assembly of PEGylated gold nanoparticles with satellite structures as seeds.

    PubMed

    Bachelet, Marie; Chen, Rongjun

    2016-07-21

    We report a very simple method for the self-assembly of spherical gold nanoparticles (AuNPs), coated with poly(ethylene glycol) (PEG), through a slow evaporation process at room temperature. Clusters of particles forming satellite structures may act as seeds for the self-assembly in a crystallization-like process. Based on the transmission electron microscopy (TEM) images obtained a mechanism for the self-assembly was suggested. PMID:27384086

  1. Protein-Framed Multi-Porphyrin Micelles for a Hybrid Natural-Artificial Light-Harvesting Nanosystem.

    PubMed

    Liu, Yannan; Jin, Jiyang; Deng, Hongping; Li, Ke; Zheng, Yongli; Yu, Chunyang; Zhou, Yongfeng

    2016-07-01

    A micelle-like hybrid natural-artificial light-harvesting nanosystem was prepared through protein-framed electrostatic self-assembly of phycocyanin and a four-armed porphyrin star polymer. The nanosystem has a special structure of pomegranate-like unimolecular micelle aggregate with one phycocyanin acceptor in the center and multiple porphyrin donors in the shell. It can inhibit donor self-quenching effectively and display efficient transfer of excitation energy (about 80.1 %) in water. Furthermore, the number of donors contributing to a single acceptor could reach as high as about 179 in this nanosystem. PMID:27187799

  2. Peptide self-assembly for nanomaterials: the old new kid on the block.

    PubMed

    De Santis, Emiliana; Ryadnov, Maxim G

    2015-11-21

    Peptide self-assembly is an increasingly attractive tool for nanomaterials. Perfected in biology peptide self-assembling systems have impacted on nearly any conceivable nanomaterial type. However, with all the information available to us commercialisation of peptide materials remains in its infancy. In an attempt to better understand the reasons behind this shortcoming we categorise peptide self-assembled materials in relation to their non-peptide counterparts. A particular emphasis is placed on the versatility of peptide self-assembly in terms of modularity, responsiveness and functional diversity, which enables direct comparisons with more traditional material chemistries. PMID:26272066

  3. Charge Effects on the Self-Assembly of Protein Block Copolymer Nanostructures

    NASA Astrophysics Data System (ADS)

    Olsen, Bradley

    Self-assembly of globular protein-polymer block copolymers into nanostructured phases provides a simple method for structural control in biomaterials. Electrostatics play a major role in the self-assembly of these structures from aqueous solutions. While the specific distribution of charge on the protein plays a relatively minor role in self-assembly, large changes in the total charge have a large impact on the concentration at which the proteins self-assemble. While for near-neutral proteins salt screening promotes disassembly and suggests that electrostatic interactions are attractive, proteins with a highly asymmetric charge have repulsive interactions that suppress self-assembly. Using a zwitterionic block in the bioconjugate was also explored as a means to promote self-assembly; however, zwitterionic fusions self-assemble over a narrower range of composition than fusions of any of the nonionic polymers explored. This suggests that dipolar attractions in charge-asymmetric protein-polymer materials play a significant role in the driving force for self-assembly. However, the sensitivity of zwitterionic materials to salt conditions in the buffer also provides a powerful handle for tuning polymer solubility, enabling salt to be used as a method to induce self-assembly.

  4. From self-assembly fundamental knowledge to nanomedicine developments.

    PubMed

    Monduzzi, Maura; Lampis, Sandrina; Murgia, Sergio; Salis, Andrea

    2014-03-01

    This review highlights the key role of NMR techniques in demonstrating the molecular aspects of the self-assembly of surfactant molecules that nowadays constitute the basic knowledge which modern nanoscience relies on. The aim is to provide a tutorial overview. The story of a rigorous scientific approach to understand self-assembly in surfactant systems and biological membranes starts in the early seventies when the progresses of SAXRD and NMR technological facilities allowed to demonstrate the existence of ordered soft matter, and the validity of Tanford approach concerning self-assembly at a molecular level. Particularly, NMR quadrupolar splittings, NMR chemical shift anisotropy, and NMR relaxation of dipolar and quadrupolar nuclei in micellar solutions, microemulsions, and liquid crystals proved the existence of an ordered polar-apolar interface, on the NMR time scale. NMR data, rationalized in terms of the two-step model of relaxation, allowed to quantify the dynamic aspects of the supramolecular aggregates in different soft matter systems. In addition, NMR techniques allowed to obtain important information on counterion binding as well as on size of the aggregate through molecular self-diffusion. Indeed NMR self-diffusion proved without any doubt the existence of bicontinuous microemulsions and bicontinuous cubic liquid crystals, suggested by pioneering and brilliant interpretation of SAXRD investigations. Moreover, NMR self-diffusion played a fundamental role in the understanding of microemulsion and emulsion nanostructures, phase transitions in phase diagrams, and particularly percolation phenomena in microemulsions. Since the nineties, globalization of the knowledge along with many other technical facilities such as electron microscopy, particularly cryo-EM, produced huge progresses in surfactant and colloid science. Actually we refer to nanoscience: bottom up/top down strategies allow to build nanodevices with applications spanning from ICT to food

  5. Electrochemical Properties of Organosilane Self Assembled Monolayers on Aluminum 2024

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz Marina

    2004-01-01

    Self assembled monolayers are commonly used to modify surfaces. Within the last 15 years, self assembled monolayers have been investigated as a way to protect from corrosion[1,2] or biofouling.[3] In this study, self assembled monolayers of decitriethoxysilane (C10H21Si(OC2H5)3) and octadecyltriethoxysilane (C18H37Si(OC2H5)3) were formed on aluminum 2024-T3. The modified surfaces and bare Al 2024 were characterized by dynamic water contact angle measurements, x-ray photoelectron spectroscopy (XIPS) and infrared spectroscopy. Electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl was used to characterize the monolayers and evaluate their corrosion protection properties. The advancing water contact angle and infrared measurements show that the mono layers form a surface where the hydrocarbon chains are packed and oriented away from the surface, consistent with what is found in similar systems. The contact angle hysteresis measured in these systems is relatively large, perhaps indicating that the hydrocarbon chains are not as well packed as monolayers formed on other substrates. The results of the EIS measurements were modeled using a Randle's circuit modified by changing the capacitor to a constant phase element. The constant phase element values were found to characterize the monolayer. The capacitance of the monolayer modified surface starts lower than the bare Al 2024, but approaches values similar to the bare Al 2024 within 24 hours as the monolayer is degraded. The n values found for bare Al 2024 quickly approach the value of a true capacitor and are greater than 0.9 within hours after the start of exposure. For the monolayer modified structure, n can stay lower than 0.9 for a longer period of time. In fact, n for the monolayer modified surfaces is different from the bare surface even after the capacitance values have converged. This indicates that the deviation from ideal capacitance is the most sensitive indicator of the presence of the monolayer.

  6. Molecular engineering and characterization of self-assembled biorecognition surfaces

    NASA Astrophysics Data System (ADS)

    Pan, Sheng

    The development of molecular engineering techniques for the fabrication of biomaterial surfaces is of importance in the field of biomaterials. It offers opportunities for better understanding of biological processes on material surfaces and rational design of contemporary biomaterials. Our work in this area aims to develop novel engineering strategies to design biorecognition surfaces via self-assembly and surface derivatization. Fundamental issues regarding self-assembled monolayer (SAM) structure, formation kinetics, and chemical derivatization were investigated systematically using electron spectroscopy for chemical analysis (ESCA), time-of-flight secondary ion mass spectrometry (TOF-SIMS), infrared reflection absorption spectroscopy (IRAS), atomic force microscopy (AFM), and contact angle measurements. Novel engineering concepts based on multifunctionality and statistical pattern matching were introduced and applied to develop biomimetic surfaces. Our study illustrated that molecules underwent structural transition and orientation development during self-assembly formation, from a disordered, low-density, more liquid-like structure to a highly ordered, closed-packed crystalline-like structure. Surface properties, such as wettability and the reactivity of outermost functional groups can be related to film structure, packing density, as well as molecular orientation. Given the order and organization of SAMs, the accessibility and reactivity of the outermost functional groups, reaction kinetics, stoichiometry, and SAMs stability were studied systematically by surface derivatization of trifluoroacetic anhydride (TFAA). The TFAA derivatization reactions exhibited rapid kinetics on the hydroxyl-terminated SAMs. The data from complementary surface analytical techniques consistently indicated a nearly complete surface reaction. Biomimetic surfaces were made by random immobilization of amino acid of arginine (R), glycine (G), and aspartic acid (D) on well-defined SAMs

  7. Applications of molecular self-assembly in tissue engineering

    NASA Astrophysics Data System (ADS)

    Harrington, Daniel Anton

    This thesis studied the application of three self-assembling molecular systems, as potential biomaterials for tissue engineering applications. Cholesteryl-(L-lactic acid)n molecules form thermotropic liquid crystals, which could be coated onto the inner and outer pores of biodegradable PLLA scaffolds, while retaining the lamellar order of the neat material. Primary bovine chondrocytes were cultured on these structures, demonstrating improved attachment and extended retention of phenotype on the C-LA-coated scaffolds. No difference in fibronectin adsorption to C-LA and PLLA surfaces was observed, suggesting a strong role for cholesterol in influencing cell phenotype. A family of peptide-amphiphiles, bearing the "RGD" adhesion sequence from fibronectin, was also assessed in the contexts of cartilage and bladder repair. These molecules self-assemble into one-dimensional fibers, with diameters of 6--8 nm, and lengths of 500 nm or greater. Chondrocytes were seeded and cultured on covalently-crosslinked PA gels and embedded within calcium-triggered PA gels. Cells became dormant over time, but remained viable, suggesting an inappropriate display of the adhesion sequence to cells. A family of "branched" PA molecules with lysine dendron headgroups was designed, in an effort to increase the spatial separation between molecules in the assembled state, and to theoretically improve epitope accessibility. These molecules coated reliably onto PGA fiber scaffolds, and dramatically increased the attachment of human bladder smooth muscle cells, possibly through better epitope display or electrostatic attraction. They also formed strong gels with several negatively-charged biologically-relevant macromolecules. In a third system, amphiphilic segmented dendrimers based on phenylene vinylene and L-lysine entered cells through an endocytic pathway with no discernible toxic effect on cell proliferation or morphology. These amphiphiles formed complex aggregates in aqueous solution, likely

  8. Self-assembling triblock proteins for biofunctional surface modification

    NASA Astrophysics Data System (ADS)

    Fischer, Stephen E.

    Despite the tremendous promise of cell/tissue engineering, significant challenges remain in engineering functional scaffolds to precisely regulate the complex processes of tissue growth and development. As the point of contact between the cells and the scaffold, the scaffold surface plays a major role in mediating cellular behaviors. In this dissertation, the development and utility of self-assembling, artificial protein hydrogels as biofunctional surface modifiers is described. The design of these recombinant proteins is based on a telechelic triblock motif, in which a disordered polyelectrolyte central domain containing embedded bioactive ligands is flanked by two leucine zipper domains. Under moderate conditions of temperature and pH, the leucine zipper end domains form amphiphilic alpha-helices that reversibly associate into homo-trimeric aggregates, driving hydrogel formation. Moreover, the amphiphilic nature of these helical domains enables surface adsorption to a variety of scaffold materials to form biofunctional protein coatings. The nature and stability of these coatings in various solution conditions, and their interaction with mammalian cells is the primary focus of this dissertation. In particular, triblock protein coatings functionalized with cell recognition sequences are shown to produce well-defined surfaces with precise control over ligand density. The impact of this is demonstrated in multiple cell types through ligand density-dependent cell-substrate interactions. To improve the stability of these physically self-assembled coatings, two covalent crosslinking strategies are described---one in which a zero-length chemical crosslinker (EDC) is utilized and a second in which disulfide bonds are engineered into the recombinant proteins. These targeted crosslinking approaches are shown to increase the stability of surface adsorbed protein layers with minimal effect on the presentation of many bioactive ligands. Finally, to demonstrate the versatility

  9. Principles Governing the Self Assembly of Polypeptide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wahome, Newton

    Self assembling systems on the nanometer scale afford the advantage of being able to control submicron level events. In this study, we focus on the self-assembling polypeptide nanoparticles (SAPN). The SAPN scaffold is made up of oligomerizing domains that align along the principle rotational axes of icosahedral symmetry. By aligning them along these axes, a particle with spherical geometry can be achieved. This particle can be utilized as a vaccine, as a drug delivery vehicle, or as a biomedical imaging device. This research will try to answer why the SAPN self-assembles into distinct molecular weight ranges while mostly maintaining a spherical morphology. The first means will be theoretical and computational, where we will utilize a mathematical formalism to find out how the packing of SAPN's monomeric units can occur within symmetric space. Then molecular dynamics will be run within this symmetric space to test the per amino acid residue susceptibility of SAPN towards becoming polymorphic in nature. Means for examining the aggregation propensity of SAPN will be also be tested. Specifically, the relationship of different sequences of SAPN with pH will be elucidated. Co-assembly of SAPN to reduce the surface density of an aggregation prone epitope will be tested. Also, aggregation reduction consisting of the exchange of an anionic denaturant with a positively charged suppressor in order to mitigate a priori peptide association and misfolding, will also be attempted. SAPN has been shown to be an immunogenic platform for the presentation of pathogen derived antigens. We will attempt to show the efficacy of presenting an antigen from HIV-1 which is structurally restrained to best match the native conformation on the virus. Immunological studies will be performed to test the effect of this approach, as well testing the antigenicity of the nanoparticle in the absence of adjuvant. Finally, the antigen presenting nanoparticles will undergo formulation testing, to measure

  10. A srikaya-like light-harvesting antenna based on graphene quantum dots and porphyrin unimolecular micelles.

    PubMed

    Liu, Yannan; Li, Shanlong; Li, Ke; Zheng, Yongli; Zhang, Meng; Cai, Caiyun; Yu, Chunyang; Zhou, Yongfeng; Yan, Deyue

    2016-07-19

    A novel hybrid light-harvesting antenna with a srikaya-like structure of multi-graphene quantum dots (GQDs) as donors and one porphyrin unimolecular micelle as the acceptor was constructed through electrostatic self-assembly. The constructed antenna showed a high energy transfer efficiency of up to 93.6% and an antenna effect of 7.3 in an aqueous solution. PMID:27374891

  11. Functionalized expanded porphyrins

    DOEpatents

    Sessler, Jonathan L; Pantos, Patricia J

    2013-11-12

    Disclosed are functionalized expanded porphyrins that can be used as spectrometric sensors for high-valent actinide cations. The disclosed functionalized expanded porphyrins have the advantage over unfunctionalized systems in that they can be immobilized via covalent attachment to a solid support comprising an inorganic or organic polymer or other common substrates. Substrates comprising the disclosed functionalized expanded porphyrins are also disclosed. Further, disclosed are methods of making the disclosed compounds (immobilized and free), methods of using them as sensors to detect high valent actinides, devices that comprise the disclosed compounds, and kits.

  12. Soluble porphyrin polymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  13. Initiation of Chondrocyte Self-Assembly Requires an Intact Cytoskeletal Network.

    PubMed

    Lee, Jennifer K; Hu, Jerry C Y; Yamada, Soichiro; Athanasiou, Kyriacos A

    2016-02-01

    Self-assembly and self-organization have recently emerged as robust scaffold-free tissue engineering methodologies that can be used to generate various tissues, including cartilage, vessel, and liver. Self-assembly, in particular, is a scaffold-free platform for tissue engineering that does not require the input of exogenous energy to the system. Although self-assembly can generate functional tissues, most notably neocartilage, the mechanisms of self-assembly remain unclear. To study the self-assembling process, we used articular chondrocytes as a model to identify parameters that can affect this process. Specifically, the roles of cell-cell and cell-matrix adhesion molecules, surface-bound collagen, and the actin cytoskeletal network were investigated. Using time-lapse imaging, we analyzed the early stages of chondrocyte self-assembly. Within hours, chondrocytes rapidly coalesced into cell clusters before compacting to form tight cellular structures. Chondrocyte self-assembly was found to depend primarily on integrin function and secondarily on cadherin function. In addition, actin or myosin II inhibitors prevented chondrocyte self-assembly, suggesting that cell adhesion alone is not sufficient, but rather the active contractile actin cytoskeleton is essential for proper chondrocyte self-assembly and the formation of neocartilage. Better understanding of the self-assembly mechanisms allows for the rational modulation of this process toward generating neocartilages with improved properties. These findings are germane to understanding self-assembly, an emerging platform for tissue engineering of a plethora of tissues, especially as these neotissues are poised for translation. PMID:26729374

  14. Directed Self-Assembly Pathways of Active Colloidal Clusters.

    PubMed

    Zhang, Jie; Yan, Jing; Granick, Steve

    2016-04-18

    Despite the mounting interest in synthetic active particles, too little is known about their assembly into higher-order clusters. Here, mixing bare silica particles with Janus particles that are self-propelled in electric fields, we assemble rotating chiral clusters of various sorts, their structures consisting of active particles wrapped around central "hub" particles. These clusters self-assemble from the competition between standard energetic interactions and the need to be stable as the clusters rotate when the energy source is turned on, and fall apart when the energy input is off. This allows one to guide the formation of intended clusters, as the final structure depends notably on the sequence of steps in which the clusters form. PMID:27010594

  15. Supramolecular amplification of amyloid self-assembly by iodination

    PubMed Central

    Bertolani, Arianna; Pirrie, Lisa; Stefan, Loic; Houbenov, Nikolay; Haataja, Johannes S.; Catalano, Luca; Terraneo, Giancarlo; Giancane, Gabriele; Valli, Ludovico; Milani, Roberto; Ikkala, Olli; Resnati, Giuseppe; Metrangolo, Pierangelo

    2015-01-01

    Amyloid supramolecular assemblies have found widespread exploitation as ordered nanomaterials in a range of applications from materials science to biotechnology. New strategies are, however, required for understanding and promoting mature fibril formation from simple monomer motifs through easy and scalable processes. Noncovalent interactions are key to forming and holding the amyloid structure together. On the other hand, the halogen bond has never been used purposefully to achieve control over amyloid self-assembly. Here we show that single atom replacement of hydrogen with iodine, a halogen-bond donor, in the human calcitonin-derived amyloidogenic fragment DFNKF results in a super-gelator peptide, which forms a strong and shape-persistent hydrogel at 30-fold lower concentration than the wild-type pentapeptide. This is remarkable for such a modest perturbation in structure. Iodination of aromatic amino acids may thus develop as a general strategy for the design of new hydrogels from unprotected peptides and without using organic solvents. PMID:26123690

  16. Supramolecular amplification of amyloid self-assembly by iodination

    NASA Astrophysics Data System (ADS)

    Bertolani, Arianna; Pirrie, Lisa; Stefan, Loic; Houbenov, Nikolay; Haataja, Johannes S.; Catalano, Luca; Terraneo, Giancarlo; Giancane, Gabriele; Valli, Ludovico; Milani, Roberto; Ikkala, Olli; Resnati, Giuseppe; Metrangolo, Pierangelo

    2015-06-01

    Amyloid supramolecular assemblies have found widespread exploitation as ordered nanomaterials in a range of applications from materials science to biotechnology. New strategies are, however, required for understanding and promoting mature fibril formation from simple monomer motifs through easy and scalable processes. Noncovalent interactions are key to forming and holding the amyloid structure together. On the other hand, the halogen bond has never been used purposefully to achieve control over amyloid self-assembly. Here we show that single atom replacement of hydrogen with iodine, a halogen-bond donor, in the human calcitonin-derived amyloidogenic fragment DFNKF results in a super-gelator peptide, which forms a strong and shape-persistent hydrogel at 30-fold lower concentration than the wild-type pentapeptide. This is remarkable for such a modest perturbation in structure. Iodination of aromatic amino acids may thus develop as a general strategy for the design of new hydrogels from unprotected peptides and without using organic solvents.

  17. Self-Assembled Biomolecular Materials Confined on Lithographic Surfaces

    NASA Astrophysics Data System (ADS)

    Pfohl, Thomas; Kim, Joon Heon; Case, Ryan; Li, Youli; Safinya, Cyrus R.

    2000-03-01

    Lithographically patterned Si-surfaces with different geometries (linear and circular channels) are used for confining and orienting assemblies of biomacromolecules. In order to direct the self assembly, the surfaces are coated with thin organic layers to change the hydrophobicity and surface charge. Droplet casting, spin coating and microinjection are used to fill the channels with biomaterials. In particular, the use of the microinjection technique allows us to control the formation of biomolecular assemblies for highly oriented x-ray samples as well as to fill single channels (width < 5μm) with dilute solutions for single molecule investigations. Biomaterials based on tubulin are our primary interest. We use fluorescence, confocal, and polarization microscopy to observe the polymerization of microtubules from tubulin and the formation of tubulin-cationic lipid complexes. Supported by NSF DMR-9972246, University of California Biotech Research, and Education Program Training Grant 99-14, DFG Pf 375/1-1.

  18. Three-Dimensional Structures Self-Assembled from DNA Bricks

    PubMed Central

    Ke, Yonggang; Ong, Luvena L.; Shih, William M.; Yin, Peng

    2013-01-01

    We describe a simple and robust method to construct complex three-dimensional (3D) structures using short synthetic DNA strands that we call “DNA bricks”. In one-step annealing reactions, bricks with hundreds of distinct sequences self-assemble into prescribed 3D shapes. Each 32-nucleotide brick is a modular component; it binds to four local neighbors and can be removed or added independently. Each 8-base-pair interaction between bricks defines a voxel with dimensions 2.5 nanometers by 2.5 nanometers by 2.7 nanometers, and a master brick collection defines a “molecular canvas” with dimensions of 10 by 10 by 10 voxels. By selecting subsets of bricks from this canvas, we constructed a panel of 102 distinct shapes exhibiting sophisticated surface features as well as intricate interior cavities and tunnels. PMID:23197527

  19. A self-assembly pathway to aligned monodomain gels

    SciTech Connect

    Zhang, Shuming; Greenfield, Megan A.; Mata, Alvaro; Palmer, Liam C.; Bitton, Ronit; Mantei, Jason R.; Aparicio, Conrado; Olvera de la Cruz, Monica; Stupp, Samuel I.

    2010-09-27

    Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications.

  20. A self-assembly pathway to aligned monodomain gels

    SciTech Connect

    Zhang, Shuming; Greenfield, Megan A.; Mata, Alvaro; Palmer, Liam C.; Bitton, Ronit; Mantei, Jason R.; Aparicio, Conrado; Olvera de la Cruz, Monica; Stupp, Samuel I.

    2010-06-13

    Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications.

  1. Supramolecular self-assembly of conjugated diblock copolymers.

    PubMed

    Wang, Hengbin; You, Wei; Jiang, Ping; Yu, Luping; Wang, H Hau

    2004-02-20

    This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles. PMID:14978825

  2. A self-assembling lanthanide molecular nanoparticle for optical imaging†

    PubMed Central

    Brown, Katherine A.; Yang, Xiaoping; Schipper, Desmond; Hall, Justin W.; DePue, Lauren J.; Gnanam, Annie J.; Arambula, Jonathan F.; Jones, Jessica N.; Swaminathan, Jagannath; Dieye, Yakhya; Vadivelu, Jamuna; Chandler, Don J.; Marcotte, Edward M.; Sessler, Jonathan L.; Ehrlich, Lauren I. R.; Jones, Richard A.

    2015-01-01

    Chromophores that incorporate f-block elements have considerable potential for use in bioimaging applications because of their advantageous photophysical properties compared to organic dye, which are currently widely used. We are developing new classes of lanthanide-based self-assembling molecular nanoparticles as reporters for imaging and as multi-functional nanoprobes or nanosensors for use with biological samples. One class of these materials, which we call lanthanide “nano-drums”, are homogeneous 4d–4f clusters approximately 25 to 30 Å in diameter. These are capable of emitting from the visible to near-infrared wavelengths. Here, we present the synthesis, crystal structure, photophysical properties and comparative cytotoxicity data for a 32 metal Eu-Cd nano-drum [Eu8Cd24L12(OAc)48] (1). We also explored the imaging capabilities of this nano-drum using epifluorescence, TIRF, and two-photon microscopy platforms. PMID:25512085

  3. Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture.

    PubMed

    Shanbhag, Bhuvana Kamath; Liu, Boyin; Fu, Jing; Haritos, Victoria S; He, Lizhong

    2016-05-11

    Enzyme-based processes have shown promise as a sustainable alternative to amine-based processes for carbon dioxide capture. In this work, we have engineered carbonic anhydrase nanoparticles that retain 98% of hydratase activity in comparison to their free counterparts. Carbonic anhydrase was fused with a self-assembling peptide that facilitates the noncovalent assembly of the particle and together were recombinantly expressed from a single gene construct in Escherichia coli. The purified enzymes, when subjected to a reduced pH, form 50-200 nm nanoparticles. The CO2 capture capability of enzyme nanoparticles was demonstrated at ambient (22 ± 2 °C) and higher (50 °C) temperatures, under which the nanoparticles maintain their assembled state. The carrier-free enzymatic nanoparticles demonstrated here offer a new approach to stabilize and reuse enzymes in a simple and cost-effective manner. PMID:27109255

  4. Self-assembly of 2-aminopyrimidines in nonpolar solvents

    NASA Astrophysics Data System (ADS)

    Rospenk, Maria; Koll, Aleksander

    2007-11-01

    A combined experimental and theoretical study on self-assembly of 2-aminopyrimidine (ampm), 2-amino-4-chloro-6-methyl-pyrimidine (ampm1), 2-amino-4,6-dimethyl-pyrimidine (ampm2) and 2-amino-4,6-dichloro-pyrimidine (ampm3) was performed. The effects of concentration increase in low polar solvents C 6H 6 and CCl 4 on average molecular weight, dipole moments and IR spectra of these compounds were investigated. Strong association of all these molecules was found, through N-H⋯N hydrogen bonding. The association leads to formation of less polar species. DFT B3LYP/6-31G** calculations for monomers and dimers of these molecules were performed to model the structure of possible aggregates.

  5. Multiple interfaces in self-assembled breath figures.

    PubMed

    Wan, Ling-Shu; Zhu, Liang-Wei; Ou, Yang; Xu, Zhi-Kang

    2014-04-21

    This feature article describes the multiple interfaces in the breath figure (BF) method toward functional honeycomb films with ordered pores. If a drop of polymer solution in a volatile solvent such as carbon disulphide is placed in a humid environment, evaporative cooling leads to self-assembled arrays of condensed water droplets. After evaporation of the solvent and water, patterned pores can be formed. During this BF process, the interfaces between the solution and the substrate, the solution and water droplets, and the film surface and air play extremely important roles in determining both the structures and functions of the honeycomb films. Progress in the BF method is reviewed by emphasizing the roles of the interfacial interactions. The applications of hierarchical and functional honeycomb films in separation, biocatalysis, biosensing, templating, stimuli-responsive surfaces and adhesive surfaces are also discussed. PMID:24589741

  6. Directed Self-Assembly of Colloidal Janus Matchsticks

    NASA Astrophysics Data System (ADS)

    Chaudhary, Kundan; Chen, Qian; Juarez, Jaime; Granick, Steve; Lewis, Jennifer

    2013-03-01

    The ability to assemble anisotropic colloidal building blocks into ordered configurations is scientifically and technologically important for developing new classes of soft materials. We are studying the fabrication and electric field driven assembly of end- and side-coated Janus rods. Specifically, we fabricate silica rods (L/D = 2-4) functionalized with hydrophobic gold (Au) patches using a multistep process involving electric field alignment and crystallization, microcontact printing, and selective metallization. In the absence of an applied electric filed, the Janus matchsticks (end-coated rods) self-assemble into multi pods (e.g., bi-, tri- and tetrapods) of varying coordination number and patch angle in aqueous solution. By contrast, both Janus matchsticks and side-coated Janus rods form complex chains in applied AC electric fields of varying magnitude and frequency, whose configurations vary significantly from those formed by pure silica rods.

  7. Protein machines and self assembly in muscle organization

    NASA Technical Reports Server (NTRS)

    Barral, J. M.; Epstein, H. F.

    1999-01-01

    The remarkable order of striated muscle is the result of a complex series of protein interactions at different levels of organization. Within muscle, the thick filament and its major protein myosin are classical examples of functioning protein machines. Our understanding of the structure and assembly of thick filaments and their organization into the regular arrays of the A-band has recently been enhanced by the application of biochemical, genetic, and structural approaches. Detailed studies of the thick filament backbone have shown that the myosins are organized into a tubular structure. Additional protein machines and specific myosin rod sequences have been identified that play significant roles in thick filament structure, assembly, and organization. These include intrinsic filament components, cross-linking molecules of the M-band and constituents of the membrane-cytoskeleton system. Muscle organization is directed by the multistep actions of protein machines that take advantage of well-established self-assembly relationships. Copyright 1999 John Wiley & Sons, Inc.

  8. Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters.

    PubMed

    Ďorďovič, Vladimír; Tošner, Zdeněk; Uchman, Mariusz; Zhigunov, Alexander; Reza, Mehedi; Ruokolainen, Janne; Pramanik, Goutam; Cígler, Petr; Kalíková, Květa; Gradzielski, Michael; Matějíček, Pavel

    2016-07-01

    This is the first experimental evidence that both self-assembly and surface activity are common features of all water-soluble boron cluster compounds. The solution behavior of anionic polyhedral boranes (sodium decaborate, sodium dodecaborate, and sodium mercaptododecaborate), carboranes (potassium 1-carba-dodecaborate), and metallacarboranes {sodium [cobalt bis(1,2-dicarbollide)]} was extensively studied, and it is evident that all the anionic boron clusters form multimolecular aggregates in water. However, the mechanism of aggregation is dependent on size and polarity. The series of studied clusters spans from a small hydrophilic decaborate-resembling hydrotrope to a bulky hydrophobic cobalt bis(dicarbollide) behaving like a classical surfactant. Despite their pristine structure resembling Platonic solids, the nature of anionic boron cluster compounds is inherently amphiphilic-they are stealth amphiphiles. PMID:27287067

  9. DNA directed self-assembly of shape-controlled hydrogels

    PubMed Central

    Qi, Hao; Ghodousi, Majid; Du, Yanan; Grun, Casey; Bae, Hojae; Yin, Peng; Khademhosseini, Ali

    2013-01-01

    Using DNA as programmable, sequence specific ‘glues’, shape-controlled hydrogel units are self-assembled into prescribed structures. Here we report that aggregates are produced using hydrogel cubes with edge length ranging from 30 micrometers to 1 millimeter, demonstrating assembly across scales. In a simple one-pot agitation reaction, 25 dimers are constructed in parallel from 50 distinct hydrogel cube species, demonstrating highly multiplexed assembly. Using hydrogel cuboids displaying face-specific DNA glues, diverse structures are achieved in aqueous and in interfacial agitation systems. These include dimers, extended chains, and open network structures in an aqueous system; and dimers, chains of fixed length, T-junctions, and square shapes in the interfacial system, demonstrating the versatility of the assembly system. PMID:24013352

  10. Low-temperature photoluminescence in self-assembled diphenylalanine microtubes

    NASA Astrophysics Data System (ADS)

    Nikitin, T.; Kopyl, S.; Shur, V. Ya.; Kopelevich, Y. V.; Kholkin, A. L.

    2016-04-01

    Bioinspired self-assembled structures are increasingly important for a variety of applications ranging from drug delivery to electronic and energy harvesting devices. An important class of these structures is diphenylalanine microtubes which are potentially important for optical applications including light emitting diodes and optical biomarkers. In this work we present the data on their photoluminescent properties at low temperatures (down to 12 K) and discuss the origin of the emission in the near ultraviolet (UV) range seen earlier in a number of reports. UV luminescence increases with decreasing temperature and exhibits several equidistant lines that are assigned to zero-phonon exciton emission line and its phonon replicas. We infer that the exciton is localized on the defect sites and significant luminescence decay is due to thermal quenching arising from the carrier excitation from these defects and non-radiative recombination.

  11. Self-assembly of Fmoc-diphenylalanine inside liquid marbles.

    PubMed

    Braun, Hans-Georg; Cardoso, André Zamith

    2012-09-01

    Liquid marbles made from Lycopodium clavatum spores are used to encapsulate aqueous solutions of 9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF). Acidification of the Fmoc-FF solution at the liquid/air interface of the liquid marble triggers the self-assembly of ribbon-like peptide fibrils into an ultrathin peptide membrane (50-500 nm). The membrane incorporates the lycopodium microparticles and as a result stabilizes the liquid marble against collapse, that could otherwise occur through particle disintegration at the floating interphase. Ultrathin nanostructured peptide membrane formation at the liquid/air interface is also observed within artificial microstructured floating objects. Thus, peptide membranes formed were inspected by SEM and TEM. Electron diffraction data reveal information about the molecular organization inside the oligopeptide membranes. PMID:22584262

  12. Piezoelectric resonators based on self-assembled diphenylalanine microtubes

    NASA Astrophysics Data System (ADS)

    Bosne, E. D.; Heredia, A.; Kopyl, S.; Karpinsky, D. V.; Pinto, A. G.; Kholkin, A. L.

    2013-02-01

    Piezoelectric actuation has been widely used in microelectromechanical devices including resonance-based biosensors, mass detectors, resonators, etc. These were mainly produced by micromachining of Si and deposited inorganic piezoelectrics based on metal oxides or perovskite-type materials which have to be further functionalized in order to be used in biological applications. In this work, we demonstrate piezoelectrically driven micromechanical resonators based on individual self-assembled diphenylalanine microtubes with strong intrinsic piezoelectric effect. Tubes of different diameters and lengths were grown from the solution and assembled on a rigid support. The conducting tip of the commercial atomic force microscope was then used to both excite vibrations and study resonance behavior. Efficient piezoelectric actuation at the fundamental resonance frequency ≈2.7 MHz was achieved with a quality factor of 114 for a microtube of 277 μm long. A possibility of using piezoelectric dipeptides for biosensor applications is discussed.

  13. Self-assembled polyoxometalates nanoparticles as pickering emulsion stabilizers.

    PubMed

    Leclercq, Loïc; Mouret, Adrien; Renaudineau, Séverine; Schmitt, Véronique; Proust, Anna; Nardello-Rataj, Véronique

    2015-05-21

    We easily produced a series of polyoxometalate (POM) nanoparticles by taking benefit from electrostatic attractions between various POMs and alkylammonium cations. These self-assembled supramolecular nanoparticles are fully characterized in terms of shape, nanostructure, and physicochemical properties. The nanoparticle differences are discussed on the basis of the chemical composition of the initial POM. Moreover, such particles have the ability to stabilize water-in-oil Pickering emulsions. Using a gel-trapping technique coupled to atomic force microscopy (AFM) observations, we determined their affinity toward oil by the contact angle of adsorbed nanoparticles. We show that the emulsion droplet size and stability can be directly linked to the nanoparticle hydrophobicity, which is tuned by the charge localization and molecular packing of POMs with the ammonium cations. Such particles are of special interest as they open large possibilities for Pickering interfacial catalysis. PMID:25937090

  14. Antifouling self-assembled monolayers on microelectrodes for patterning biomolecules.

    PubMed

    Noel, John; Teizer, Winfried; Hwang, Wonmuk

    2009-01-01

    We present a procedure for forming a poly(ethylene glycol) (PEG) trimethoxysilane self-assembled monolayer (SAM) on a silicon substrate with gold microelectrodes. The PEG-SAM is formed in a single assembly step and prevents biofouling on silicon and gold surfaces. The SAM is used to coat microelectrodes patterned with standard, positive-tone lithography. Using the microtubule as an example, we apply a DC voltage to induce electrophoretic migration to the SAM-coated electrode in a reversible manner. A flow chamber is used for imaging the electrophoretic migration and microtubule patterning in situ using epifluorescence microscopy. This method is generally applicable to biomolecule patterning, as it employs electrophoresis to immobilize target molecules and thus does not require specific molecular interactions. Further, it avoids problems encountered when attempting to pattern the SAM molecules directly using lithographic techniques. The compatibility with electron beam lithography allows this method to be used to pattern biomolecules at the nanoscale. PMID:19707178

  15. Self-assembly of nanoscale lateral segregation profiles

    NASA Astrophysics Data System (ADS)

    Stania, R.; Heckel, W.; Kalichava, I.; Bernard, C.; Kerscher, T. C.; Cun, H. Y.; Willmott, P. R.; Schönfeld, B.; Osterwalder, J.; Müller, S.; Greber, T.

    2016-04-01

    The surface segregation profile of an intermetallic compound becomes vertically and laterally modulated upon epitaxial growth of a single-layer hexagonal boron nitride (h -BN) nanomesh. h -BN on PtRh(111) forms an 11-on-10 superhoneycomb, such as that on Rh(111) [Corso et al., Science 303, 217 (2004), 10.1126/science.1091979], though with a smaller lattice constant of 2.73 nm. X-ray photoelectron diffraction shows that the h -BN layer reduces the Pt enrichment of the first layer by promoting site swapping of about 10 Pt-Rh pairs within the 10 ×10 unit cell between the first and second layers. This segregation profile is confirmed by density-functional-theory-based cluster-expansion calculations. Generally, a strong modulation of the h -BN bonding strength and a higher affinity to one of the constituents leads to self-assembly of top layer patches underneath the nanomesh pores.

  16. Crossbar nanoarchitectonics of the crosslinked self-assembled monolayer

    PubMed Central

    2014-01-01

    A bottom-up approach was devised to build a crossbar device using the crosslinked SAM of the 5,5′-bis (mercaptomethyl)-2,2′-bipyridine-Ni2+ (BPD- Ni2+) on a gold surface. To avoid metal diffusion through the organic film, the author used (i) nanoscale bottom electrodes to reduce the probability of defects on the bottom electrodes and (ii) molecular crosslinked technology to avoid metal diffusion through the SAMs. The properties of the crosslinked self-assembled monolayer were determined by XPS. I-V characteristics of the device show thermally activated hopping transport. The implementation of this type of architecture will open up new vistas for a new class of devices for transport, storage, and computing. PMID:24994952

  17. Electrochromic switching in ionically self-assembled nanostructures

    NASA Astrophysics Data System (ADS)

    Janik, Jerzy A.; Heflin, James R.; Marciu, Daniela; Miller, Michael B.; Wang, Hong; Gibson, Harry W.; Davis, Rick M.

    2001-11-01

    Ionically self-assembled monolayers (ISAMs), fabricated by alternate adsorption of cationic and anionic components, yield exceptionally homogeneous thin films with sub- nanometer control of the thickness and relative special location of the component materials. Using organic electrochromic materials such as polyaniline, we report studies of electrochromic responses in ISAM films. Reversible changes in the absorption spectrum are observed with the application of voltages on the order of 1.0 V. Measurements are made using both liquid electrolytes and in all-solid state devices incorporating solid polyelectrolytes such as poly(2-acylamido 2-methyl propane sulfonic acid) (PAMPS). Due to the precise nanometer scale control of thickness and composition of the electrochromic composite system, switching times faster than 50 ms have been demonstrated.

  18. A visible metamaterial fabricated by self-assembly method

    PubMed Central

    Gong, Boyi; Zhao, Xiaopeng; Pan, Zhenzhen; Li, Sa; Wang, Xiaonong; Zhao, Yan; Luo, Chunrong

    2014-01-01

    A visible negative-index metamaterial was fabricated by adopting a template-assisted and self-assembled electrochemical deposition method. Originating from the inherent characteristic of bottom-up fabrication, it has been demonstrated by the effective medium theory that the metamaterial resonance could realize a negative index at visible wavelengths if the degree of asymmetry is kept in a moderate range. This was experimentally substantiated by fabricating an asymmetric Ag–polyvinyl alcohol (PVA)–Ag multilayer nanostructure with two apertured silver films on the opposite sides of PVA film. The extraction of constitutive parameters shows negative index in the wavelength range from 535 to 565 nm, with a minimum value close to −0.5. Simultaneously, an optically active medium Rhodamine B was incorporated into the PVA layer, which readily changed the transmission peak through control experiments. Finally, the enhanced transmission was realized through a flat sample. PMID:24736692

  19. Self-assembled nanoparticle patterns on carbon nanowall surfaces.

    PubMed

    Suetin, N V; Evlashin, S A; Egorov, A V; Mironovich, K V; Dagesyan, S A; Yashina, L V; Goodilin, E A; Krivchenko, V A

    2016-04-28

    We observed that thermally treated carbon nanowalls serve efficiently as templates governing the formation of quasiperiodic patterns for nanoparticles deposited. Here we report self-assembled quasi-regular structures of diverse nanoparticles on a freestanding multilayer graphene-like material, i.e. carbon nanowalls. Metallic (Ag, Al, Co, Mo, Ni, and Ta) and semiconductor (Si) nanoparticles form coaxial polygonal closed loop structures or parallel equidistant rows, which evolve upon further deposition into bead-like structures and, finally, into nanowires. Weakly bonded nanoparticles decorate atomic steps, wrinkles and other extended defects on the carbon nanowalls as a result of anisotropic diffusion of atoms or clusters along the hexagonal sp(2)-carbon network followed by their aggregation and agglomeration. The decorated carbon nanowalls are found to be promising materials for surface enhanced Raman scattering (SERS) analysis. PMID:27086716

  20. Synergistic self-assembly of RNA and DNA molecules

    NASA Astrophysics Data System (ADS)

    Ko, Seung Hyeon; Su, Min; Zhang, Chuan; Ribbe, Alexander E.; Jiang, Wen; Mao, Chengde

    2010-12-01

    DNA has recently been used as a programmable 'smart' building block for the assembly of a wide range of nanostructures. It remains difficult, however, to construct DNA assemblies that are also functional. Incorporating RNA is a promising strategy to circumvent this issue as RNA is structurally related to DNA but exhibits rich chemical, structural and functional diversities. However, only a few examples of rationally designed RNA structures have been reported. Herein, we describe a simple, general strategy for the de novo design of nanostructures in which the self-assembly of RNA strands is programmed by DNA strands. To demonstrate the versatility of this approach, we have designed and constructed three different RNA-DNA hybrid branched nanomotifs (tiles), which readily assemble into one-dimensional nanofibres, extended two-dimensional arrays and a discrete three-dimensional object. The current strategy could enable the integration of the precise programmability of DNA with the rich functionality of RNA.

  1. Hierarchical Self-Assembly of Supramolecular Muscle-Like Fibers.

    PubMed

    Goujon, Antoine; Du, Guangyan; Moulin, Emilie; Fuks, Gad; Maaloum, Mounir; Buhler, Eric; Giuseppone, Nicolas

    2016-01-11

    An acid-base switchable [c2]daisy chain rotaxane terminated with two 2,6-diacetylamino pyridine units has been self-assembled with a bis(uracil) linker. The complementary hydrogen-bond recognition patterns, together with lateral van der Waals aggregations, result in the hierarchical formation of unidimensional supramolecular polymers associated in bundles of muscle-like fibers. Microscopic and scattering techniques reveal that the mesoscopic structure of these bundles depends on the extended or contracted states that the rotaxanes show within individual polymer chains. The observed local dynamics span over several length scales because of a combination of supramolecular and mechanical bonds. This work illustrates the possibility to modify the hierarchical mesoscopic structuring of large polymeric systems by the integrated actuation of individual molecular machines. PMID:26582752

  2. Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides

    DOE PAGESBeta

    Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; Spoerke, Erik D.

    2014-06-19

    Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the designmore » and utility of functional materials based on peptides.« less

  3. Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides

    SciTech Connect

    Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; Spoerke, Erik D.

    2014-06-19

    Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the design and utility of functional materials based on peptides.

  4. Using Markov state models to study self-assembly.

    PubMed

    Perkett, Matthew R; Hagan, Michael F

    2014-06-01

    Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude. PMID:24907984

  5. A self assembled monolayer based microfluidic sensor for urea detection

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Solanki, Pratima R.; Kaushik, Ajeet; Ali, Md. Azahar; Srivastava, Anchal; Malhotra, B. D.

    2011-07-01

    Urease (Urs) and glutamate dehydrogenase (GLDH) have been covalently co-immobilized onto a self-assembled monolayer (SAM) comprising of 10-carboxy-1-decanthiol (CDT) via EDC-NHS chemistry deposited onto one of the two patterned gold (Au) electrodes for estimation of urea using poly(dimethylsiloxane) based microfluidic channels (2 cm × 200 μm × 200 μm). The CDT/Au and Urs-GLDH/CDT/Au electrodes have been characterized using Fourier transform infrared (FTIR) spectroscopy, contact angle (CA), atomic force microscopy (AFM) and electrochemical cyclic voltammetry (CV) techniques. The electrochemical response measurement of a Urs-GLDH/CDT/Au bioelectrode obtained as a function of urea concentration using CV yield linearity as 10 to 100 mg dl-1, detection limit as 9 mg dl-1 and high sensitivity as 7.5 μA mM-1 cm-2.

  6. The Relationship between Self-Assembly and Conformal Mappings

    NASA Astrophysics Data System (ADS)

    Duque, Carlos; Santangelo, Christian

    The isotropic growth of a thin sheet has been used as a way to generate programmed shapes through controlled buckling. We discuss how conformal mappings, which are transformations that locally preserve angles, provide a way to quantify the area growth needed to produce a particular shape. A discrete version of the conformal map can be constructed from circle packings, which are maps between packings of circles whose contact network is preserved. This provides a link to the self-assembly of particles on curved surfaces. We performed simulations of attractive particles on a curved surface using molecular dynamics. The resulting particle configurations were used to generate the corresponding discrete conformal map, allowing us to quantify the degree of area distortion required to produce a particular shape by finding particle configurations that minimize the area distortion.

  7. Phase Diagrams of Electrostatically Self-Assembled Amphiplexes

    SciTech Connect

    V Stanic; M Mancuso; W Wong; E DiMasi; H Strey

    2011-12-31

    We present the phase diagrams of electrostatically self-assembled amphiplexes (ESA) comprised of poly(acrylic acid) (PAA), cetyltrimethylammonium chloride (CTACl), dodecane, pentanol, and water at three different NaCl salt concentrations: 100, 300, and 500 mM. This is the first report of phase diagrams for these quinary complexes. Adding a cosurfactant, we were able to swell the unit cell size of all long-range ordered phases (lamellar, hexagonal, Pm3n, Ia3d) by almost a factor of 2. The added advantage of tuning the unit cell size makes such complexes (especially the bicontinuous phases) attractive for applications in bioseparation, drug delivery, and possibly in oil recovery.

  8. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher

  9. Sodium chloride's effect on self-assembly of diphenylalanine bilayer.

    PubMed

    Kwon, Junpyo; Lee, Myeongsang; Na, Sungsoo

    2016-07-15

    Understanding self-assembling peptides becomes essential in nanotechnology, thereby providing a bottom-up method for fabrication of nanostructures. Diphenylalanine constitutes an outstanding building block that can be assembled into various nanostructures, including two-dimensional bilayers or nanotubes, exhibiting superb mechanical properties. It is known that the effect of the ions is critical in conformational and chemical interactions of bilayers or membranes. In this study, we analyzed the effect of sodium chloride on diphenylalanine bilayer using coarse-grained molecular dynamics simulations, and calculated the bending Young's modulus and the torsional modulus by applying normal modal analysis using an elastic network model. The results showed that sodium chloride dramatically increases the assembling efficiency and stability, thereby promising to allow the precise design and control of the fabrication process and properties of bio-inspired materials. © 2016 Wiley Periodicals, Inc. PMID:27241039

  10. Novel biosensing platform based on self-assembled supramolecular hydrogel.

    PubMed

    Ma, Dong; Zhang, Li-Ming

    2013-07-01

    The supramolecular hydrogel self-assembled from α-cyclodextrin (α-CD) and an amphiphilic triblock copolymer was used for the first time as a biosensing platform by the in-situ incorporation of horseradish peroxidase and polyaniline (PANI) nanoparticles. It was found that the used triblock copolymer could disperse well PANI nanoparticles in aqueous system and then interact with α-CD in the presence of horseradish peroxidase for the formation of supramolecular hydrogel composite. The content of PANI nanoparticles was found to affect the gelation time and gel strength. The circular dichroism analyses showed that the entrapped horseradish peroxidase could retain its native conformation. By electrochemical experiments, the incorporated PANI nanoparticles were confirmed to improve the current response and enzymatic activity, and the fabricated biosensor was found to provide a fast amperometric response to hydrogen peroxide. PMID:23623078

  11. Modelling the self-assembly of virus capsids

    NASA Astrophysics Data System (ADS)

    Johnston, Iain G.; Louis, Ard A.; Doye, Jonathan P. K.

    2010-03-01

    We use computer simulations to study a model, first proposed by Wales (2005 Phil. Trans. R. Soc. A 363 357), for the reversible and monodisperse self-assembly of simple icosahedral virus capsid structures. The success and efficiency of assembly as a function of thermodynamic and geometric factors can be qualitatively related to the potential energy landscape structure of the assembling system. Even though the model is strongly coarse-grained, it exhibits a number of features also observed in experiments, such as sigmoidal assembly dynamics, hysteresis in capsid formation and numerous kinetic traps. We also investigate the effect of macromolecular crowding on the assembly dynamics. Crowding agents generally reduce capsid yields at optimal conditions for non-crowded assembly, but may increase yields for parameter regimes away from the optimum. Finally, we generalize the model to a larger triangulation number T = 3, and observe assembly dynamics more complex than that seen for the original T = 1 model.

  12. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Weingarten, Adam S.; Kazantsev, Roman V.; Palmer, Liam C.; McClendon, Mark; Koltonow, Andrew R.; Samuel, Amanda P. S.; Kiebala, Derek J.; Wasielewski, Michael R.; Stupp, Samuel I.

    2014-11-01

    Integration into a soft material of all the molecular components necessary to generate storable fuels is an interesting target in supramolecular chemistry. The concept is inspired by the internal structure of photosynthetic organelles, such as plant chloroplasts, which colocalize molecules involved in light absorption, charge transport and catalysis to create chemical bonds using light energy. We report here on the light-driven production of hydrogen inside a hydrogel scaffold built by the supramolecular self-assembly of a perylene monoimide amphiphile. The charged ribbons formed can electrostatically attract a nickel-based catalyst, and electrolyte screening promotes gelation. We found the emergent phenomenon that screening by the catalyst or the electrolytes led to two-dimensional crystallization of the chromophore assemblies and enhanced the electronic coupling among the molecules. Photocatalytic production of hydrogen is observed in the three-dimensional environment of the hydrogel scaffold and the material is easily placed on surfaces or in the pores of solid supports.

  13. Self-assembled phases of block copolymer blend thin films.

    PubMed

    Yager, Kevin G; Lai, Erica; Black, Charles T

    2014-10-28

    The patterns formed by self-assembled thin films of blended cylindrical and lamellar polystyrene-b-poly(methyl methacrylate) block copolymers can be either a spatially uniform, single type of nanostructure or separate, coexisting regions of cylinders and lamellae, depending on fractional composition and molecular weight ratio of the blend constituents. In blends of block copolymers with different molecular weights, the morphology of the smaller molecular weight component more strongly dictates the resulting pattern. Although molecular scale chain mixing distorts microdomain characteristic length scales from those of the pure components, even coexisting morphologies exhibit the same domain spacing. We quantitatively account for the phase behavior of thin-film blends of cylinders and lamellae using a physical, thermodynamic model balancing the energy of chain distortions with the entropy of mixing. PMID:25285733

  14. Nanostructuring of diamond films using self-assembled nanoparticles

    NASA Astrophysics Data System (ADS)

    Babchenko, Oleg; Kromka, Alexander; Hruska, Karel; Michalka, Miroslav; Potmesil, Jiri; Vanecek, Milan

    2009-06-01

    We report the use of gold, nickel and diamond nanoparticles as a masking material for realization of diamond nano-structures by applying the dry plasma etching process. Applying low power plasma (100 W) in a gas mixture of CF4/O2 for 5 minutes results in a formation of three different types of diamond nanostructures, depending on the mask type material and particle size. Using of the Ni mask results in realization of diamond nano-rods, applying of the Au mask brings cauliflower-like structures, and using the diamond powder allows the production of irregular nano-structures. The main advance of the presented etching procedure is use of a self-assembly strategy where no lithographic steps are implemented.

  15. Lithographically-directed self-assembly of nanostructures

    SciTech Connect

    Liddle, J. Alexander; Cui, Yi; Alivisatos, Paul

    2004-09-21

    The combination of lithography and self-assembly provides apowerful means of organizing solution-synthesized nanostructures for awide variety of applications. We have developed a fluidic assembly methodthat relies on the local pinning of a moving liquid contact line bylithographically produced topographic features to concentratenanoparticles at those features. The final stages of the assembly processare controlled first by long-range immersion capillary forces and then bythe short-range electrostatic and Van der Waal's interactions. We havesuccessfully assembled nanoparticles from 50 nm to 2 nm in size usingthis technique and have also demonstrated the controlled positioning ofmore complex nanotetrapod structures. We have used this process toassemble Au nanoparticles into pre-patterned electrode structures andhave performed preliminary electrical characterization of the devices soformed. The fluidic assembly method is capable of very high yield, interms of positioning nanostructures at each lithographically-definedlocation, and of excellent specificity, with essentially no particledeposition between features.

  16. Using Markov state models to study self-assembly

    PubMed Central

    Perkett, Matthew R.; Hagan, Michael F.

    2014-01-01

    Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude. PMID:24907984

  17. Self-assembling DNA dendrimers: a numerical study.

    PubMed

    Largo, Julio; Starr, Francis W; Sciortino, Francesco

    2007-05-22

    DNA is increasingly used as a specific linker to template nanostructured materials. We present a molecular dynamics simulation study of a simple DNA-dendrimer model designed to capture the basic characteristics of the biological interactions, where selectivity and strong cooperativity play an important role. Exploring a large set of densities and temperatures, we follow the progressive formation of a percolating large-scale network whose connectivity can be described by random percolation theory. We identify the relative regions of network formation and kinetic arrest versus phase separation and show that the location of the two-phase region can be interpreted in the same framework as reduced valency models. This correspondence provides guidelines for designing stable, equilibrium self-assembled low-density networks. Finally, we demonstrate a relation between bonding and dynamics, by showing that the temperature dependence of the diffusion constant is controlled by the number of fully unbonded dendrimers. PMID:17439252

  18. Controlling the photoconductivity: Graphene oxide and polyaniline self assembled intercalation

    SciTech Connect

    Vempati, Sesha; Ozcan, Sefika; Uyar, Tamer

    2015-02-02

    We report on controlling the optoelectronic properties of self-assembled intercalating compound of graphene oxide (GO) and HCl doped polyaniline (PANI). Optical emission and X-ray diffraction studies revealed a secondary doping phenomenon of PANI with –OH and –COOH groups of GO, which essentially arbitrate the intercalation. A control on the polarity and the magnitude of the photoresponse (PR) is harnessed by manipulating the weight ratios of PANI to GO (viz., 1:1.5 and 1:2.2 are abbreviated as PG1.5 and PG2.2, respectively), where ±PR = 100(R{sub Dark} – R{sub UV-Vis})/R{sub Dark} and R corresponds to the resistance of the device in dark or UV-Vis illumination. To be precise, the PR from GO, PANI, PG1.5, and PG2.2 are +34%, −111%, −51%, and +58%, respectively.

  19. Electrostatic Interactions and Self-Assembly in Polymeric Systems

    NASA Astrophysics Data System (ADS)

    Dobrynin, Andrey

    Electrostatic interactions between macroions play an important role in different areas ranging from materials science to biophysics. They are main driving forces behind layer-by-layer assembly technique that allows self-assembly of multilayer films from synthetic polyelectrolytes, DNA, proteins and nanoparticles. They are responsible for complexation and reversible gelation between polyelectrolytes and proteins. In this talk, using results of the molecular dynamics simulations and analytical calculations, I will demonstrate what effect electrostatic interactions, counterion condensation and polymer solvent affinity have on a collapse of polyelectrolyte chain in a poor solvent conditions for the polymer backbone, on complexations and reversible gelation between polyelectrolytes and polyamholytes (unstructured proteins), on microphase separation transitions in spherical and planar charged brushes, and on a layer-by-layer assembly of charged nanoparticles and linear polyelectrolytes on charged surfaces. NSF DMR-1004576 DMR-1409710.

  20. Composition maps in self-assembled alloy quantum dots.

    PubMed

    Medhekar, N V; Hegadekatte, V; Shenoy, V B

    2008-03-14

    Nanoscale variations in composition arising from the competition between chemical mixing effects and elastic relaxation can substantially influence the electronic and optical properties of self-assembled alloy quantum dots. Using a combination of finite element and quadratic programming optimization methods, we have developed an efficient technique to compute the equilibrium composition profiles in strained quantum dots. We find that the composition profiles depend strongly on the morphological features such as the slopes and curvatures of their surfaces and the presence of corners and edges as well as the ratio of the strain and chemical mixing energy densities. More generally, our approach provides a means to quantitatively model the interplay among the composition variations, the temperature, the strain, and the shapes of small-scale lattice-mismatched structures. PMID:18352213

  1. Guided self-assembly of integrated hollow Bragg waveguides.

    PubMed

    Decorby, R G; Ponnampalam, N; Nguyen, H T; Pai, M M; Clement, T J

    2007-04-01

    We describe the fabrication of integrated hollow waveguides through guided self-assembly of straight-sided, thin film delamination buckles within a multilayer system of chalcogenide glass and polymer. The process is based on silver photodoping, which was used to control both the stress and adhesion of the chalcogenide glass films. Straight, curved, crossing, and tapered microchannels were realized in parallel. The channels are cladded by omnidirectional dielectric reflectors designed for low-loss, air-core guiding of light in the 1550-1700 nm wavelength range. Loss as low as ~15 dB/cm was measured for channels of height ~2.5 mum, in good agreement with both an analytical ray optics model and finite difference numerical simulations. The loss is determined mainly by the reflectivity of the cladding mirrors, which is ~0.995 for the as-fabricated devices. PMID:19532632

  2. Self-Assembled Antibody Multimers through Peptide Nucleic Acid Conjugation

    PubMed Central

    Kazane, Stephanie A.; Axup, Jun Y; Kim, Chan Hyuk; Ciobanu, Mihai; Wold, Erik D.; Barluenga, Sofia; Hutchins, Benjamin A.; Schultz, Peter G.; Winssinger, Nicolas; Smider, Vaughn V.

    2013-01-01

    With the recent clinical success of bispecific antibodies, a strategy to rapidly synthesize and evaluate bispecific or higher order multispecific molecules could facilitate the discovery of new therapeutic agents. Here we show that unnatural amino acids (UAAs) with orthogonal chemical reactivity can be used to generate site-specific antibody-oligonucleotide conjugates. These constructs can then be self-assembled into multimeric complexes with defined composition, valency and geometry. Using this approach, we generated potent bispecific antibodies that recruit cytotoxic T lymphocytes to Her2 and CD20 positive cancer cells, as well as multimeric antibody fragments with enhanced activity. This strategy should accelerate the synthesis and in vitro characterization of antibody constructs with unique specificities and molecular architectures. PMID:23210862

  3. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    PubMed Central

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-01-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10−15 cm2 s−1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value. PMID:26227342

  4. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers.

    PubMed

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-01-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10(-15) cm(2) s(-1), 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value. PMID:26227342

  5. AFM of self-assembled lambda DNA-histone networks.

    PubMed

    Liu, YuYing; Guthold, Martin; Snyder, Matthew J; Lu, HongFeng

    2015-10-01

    Atomic force microscopy (AFM) was used to investigate the self-assembly behavior of λ-DNA and histones at varying histone:DNA ratios. Without histones and at the lowest histone:DNA ratio (less than one histone per 1000 base pairs of DNA), the DNA appeared as individual (uncomplexed), double-stranded DNA molecules. At increasing histone concentrations (one histone per 500, 250 and 167 base pairs of DNA), the DNA molecules started to form extensive polygonal networks of mostly pentagons and hexagons. The observed networks might be one of the naturally occurring, stable DNA-histone structures. The condensing effects of the divalent cations Mg(2+) and Ca(2+) on the DNA-histone complexes were also investigated. The networks persisted at high Mg(2+) concentration (20mM) and the highest histone concentration. At high Ca(2+) concentration and the highest histone concentration, the polygonal network disappeared and, instead, individual, tightly condensed aggregates were formed. PMID:26141439

  6. Self-Assembly of Amyloid Fibrils That Display Active Enzymes

    PubMed Central

    Zhou, Xiao-Ming; Entwistle, Aiman; Zhang, Hong; Jackson, Antony P; Mason, Thomas O; Shimanovich, Ulyana; Knowles, Tuomas P J; Smith, Andrew T; Sawyer, Elizabeth B; Perrett, Sarah

    2014-01-01

    Enzyme immobilization is an important strategy to enhance the stability and recoverability of enzymes and to facilitate the separation of enzymes from reaction products. However, enzyme purification followed by separate chemical steps to allow immobilization on a solid support reduces the efficiency and yield of the active enzyme. Here we describe polypeptide constructs that self-assemble spontaneously into nanofibrils with fused active enzyme subunits displayed on the amyloid fibril surface. We measured the steady-state kinetic parameters for the appended enzymes in situ within fibrils and compare these with the identical protein constructs in solution. Finally, we demonstrated that the fibrils can be recycled and reused in functional assays both in conventional batch processes and in a continuous-flow microreactor. PMID:25937845

  7. Self-assembly of magnetite nanocubes into helical superstructures.

    PubMed

    Singh, Gurvinder; Chan, Henry; Baskin, Artem; Gelman, Elijah; Repnin, Nikita; Král, Petr; Klajn, Rafal

    2014-09-01

    Organizing inorganic nanocrystals into complex architectures is challenging and typically relies on preexisting templates, such as properly folded DNA or polypeptide chains. We found that under carefully controlled conditions, cubic nanocrystals of magnetite self-assemble into arrays of helical superstructures in a template-free manner with >99% yield. Computer simulations revealed that the formation of helices is determined by the interplay of van der Waals and magnetic dipole-dipole interactions, Zeeman coupling, and entropic forces and can be attributed to spontaneous formation of chiral nanocube clusters. Neighboring helices within their densely packed ensembles tended to adopt the same handedness in order to maximize packing, thus revealing a novel mechanism of symmetry breaking and chirality amplification. PMID:25061133

  8. Paramagnetic self-assembled nanoparticles as supramolecular MRI contrast agents.

    PubMed

    Besenius, Pol; Heynens, Joeri L M; Straathof, Roel; Nieuwenhuizen, Marko M L; Bomans, Paul H H; Terreno, Enzo; Aime, Silvio; Strijkers, Gustav J; Nicolay, Klaas; Meijer, E W

    2012-01-01

    Nanometer-sized materials offer a wide range of applications in biomedical technologies, particularly imaging and diagnostics. Current scaffolds in the nanometer range predominantly make use of inorganic particles, organic polymers or natural peptide-based macromolecules. In contrast we hereby report a supramolecular approach for the preparation of self-assembled dendritic-like nanoparticles for applications as MRI contrast agents. This strategy combines the benefits from low molecular weight imaging agents with the ones of high molecular weight. Their in vitro properties are confirmed by in vivo measurements: post injection of well-defined and meta-stable nanoparticles allows for high-resolution blood-pool imaging, even at very low Gd(III) doses. These dynamic and modular imaging agents are an important addition to the young field of supramolecular medicine using well-defined nanometer-sized assemblies. PMID:22539406

  9. Self-assembled tunable photonic hyper-crystals

    PubMed Central

    Smolyaninova, Vera N.; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E.; Smolyaninov, Igor I.

    2014-01-01

    We demonstrate a novel artificial optical material, the “photonic hyper-crystal”, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947

  10. Self-assembled hydrogels utilizing polymer-nanoparticle interactions

    NASA Astrophysics Data System (ADS)

    Appel, Eric A.; Tibbitt, Mark W.; Webber, Matthew J.; Mattix, Bradley A.; Veiseh, Omid; Langer, Robert

    2015-02-01

    Mouldable hydrogels that flow on applied stress and rapidly self-heal are increasingly utilized as they afford minimally invasive delivery and conformal application. Here we report a new paradigm for the fabrication of self-assembled hydrogels with shear-thinning and self-healing properties employing rationally engineered polymer-nanoparticle (NP) interactions. Biopolymer derivatives are linked together by selective adsorption to NPs. The transient and reversible interactions between biopolymers and NPs enable flow under applied shear stress, followed by rapid self-healing when the stress is relaxed. We develop a physical description of polymer-NP gel formation that is utilized to design biocompatible gels for drug delivery. Owing to the hierarchical structure of the gel, both hydrophilic and hydrophobic drugs can be entrapped and delivered with differential release profiles, both in vitro and in vivo. The work introduces a facile and generalizable class of mouldable hydrogels amenable to a range of biomedical and industrial applications.

  11. Self-assembled molecular corrals on a semiconductor surface

    NASA Astrophysics Data System (ADS)

    Dobrin, S.; Harikumar, K. R.; Jones, R. V.; Li, N.; McNab, I. R.; Polanyi, J. C.; Sloan, P. A.; Waqar, Z.; Yang, J.(S. Y.); Ayissi, S.; Hofer, W. A.

    2006-03-01

    Nano-corrals for capturing surface electrons are of interest in molecular electronics. Here we show that haloalkane molecules, e.g., 1-chlorododecane, physisorbed on Si(1 1 1)-(7 × 7) self-assemble to form dimers stable to 100 °C which corral silicon adatoms. Corral size is shown to be governed by the haloalkane chain-length. Spectroscopic and theoretical evidence shows that the haloalkane dimer induces electron transfer to the corralled adatom, shifting its energy levels by ˜1 eV. Isolation of a labile pre-cursor points to a model for corral formation which combines mobility with immobility; monomers diffusing in a mobile vertical state meet and convert to the immobile horizontal dimers constituting the corrals.

  12. Self-assembly of ABA triblock copolymers under soft confinement

    NASA Astrophysics Data System (ADS)

    Sheng, Yuping; An, Jian; Zhu, Yutian

    2015-05-01

    Using Monte Carlo method, the self-assembly of ABA triblock copolymers under soft confinement is investigated in this study. The soft confinement is achieved by a poor solvent environment for the polymer, which makes the polymer aggregate into a droplet. Various effects, including the block length ratio, the solvent quality for the blocks B, and the incompatibility between blocks A and B, on the micellar structures induced by soft confinement are examined. By increasing the solvent quality of B blocks, the micellar structure transforms from stacked lamella to bud-like structure, and then to onion-like structure for A5B8A5 triblock copolymers, while the inner micellar structure changes from spherical phase to various cylindrical phase, such as inner single helix, double helixes, stacked rings and cage-like structures, for A7B4A7 triblock copolymers. Moreover, the formation pathways of some typical aggregates are examined to illustrate their growth mechanisms.

  13. Supramolecular self-assembly of conjugated diblock copolymers.

    SciTech Connect

    Wang, H.; You, W.; Jiang, P.; Yu, L.; Wang, H. H.; Univ. of Chicago

    2004-02-20

    This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles.

  14. Managing Complex Self-Assembly of Multicomponent Polymers

    NASA Astrophysics Data System (ADS)

    Fredrickson, Glenn H.

    2000-03-01

    Polymer blends, composites, and solutions of commercial significance are often characterized by high-dimensional compositional and architectural parameter spaces. Optimizing the properties of these formulations is largely empirical and is frequently limited by restrictions on the number of experiments that can be performed. A new approach is described for implementing self-consistent field theory of multicomponent polymers that facilitates massively parallel screening of large parameter spaces for novel types of self-assembly. This combinatorial-theoretical screening approach is demonstrated on a class of tetrablock copolymers motivated by a collaboration with the Dow Chemical Company. Extensions of the formalism are described that allow for the inclusion of chemical reactions, realistic treatment of diffusion processes, and flow effects. Collaborators: F. Drolet, E. J. Kramer, S. F. Hahn, C. Y. Ryu, E. Flewelling, F. S. Bates

  15. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-07-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10-15 cm2 s-1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.

  16. Advantages of Catalysis in Self-Assembled Molecular Capsules.

    PubMed

    Catti, Lorenzo; Zhang, Qi; Tiefenbacher, Konrad

    2016-06-27

    Control over the local chemical environment of a molecule can be achieved by encapsulation in supramolecular host systems. In supramolecular catalysis, this control is used to gain advantages over classical homogeneous catalysis in bulk solution. Two of the main advantages concern influencing reactions in terms of substrate and product selectivity. Due to size and/or shape recognition, substrate selective conversion can be realized. Additionally, noncovalent interactions with the host environment facilitate alternative reaction pathways and can yield unusual products. This Concept article discusses and highlights literature examples utilizing self-assembled molecular capsules to achieve catalytic transformations displaying a high degree of substrate and/or product selectivity. Furthermore, the advantage of supramolecular hosts in multicatalyst tandem reactions is covered. PMID:27150251

  17. Self assembled monolayers of octadecyltrichlorosilane for dielectric materials

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Puri, Paridhi; Nain, Shivani; Bhat, K. N.; Sharma, N. N.

    2016-04-01

    Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Selective modification of inorganic materials such as Si, SiO2 and Si3N4 is of great interest in research and technology. We evaluated the chemical formation of OTS self-assembled monolayers on silicon substrates with different dielectric materials. Our investigations were focused on surface modification of formerly used common dielectric materials SiO2, Si3N4 and a-poly. The improvement of wetting behaviour and quality of monolayer films were characterized using Atomic force microscope, Scanning electron microscope, Contact angle goniometer, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) monolayer deposited oxide surface.

  18. Three-dimensional structures self-assembled from DNA bricks.

    PubMed

    Ke, Yonggang; Ong, Luvena L; Shih, William M; Yin, Peng

    2012-11-30

    We describe a simple and robust method to construct complex three-dimensional (3D) structures by using short synthetic DNA strands that we call "DNA bricks." In one-step annealing reactions, bricks with hundreds of distinct sequences self-assemble into prescribed 3D shapes. Each 32-nucleotide brick is a modular component; it binds to four local neighbors and can be removed or added independently. Each 8-base pair interaction between bricks defines a voxel with dimensions of 2.5 by 2.5 by 2.7 nanometers, and a master brick collection defines a "molecular canvas" with dimensions of 10 by 10 by 10 voxels. By selecting subsets of bricks from this canvas, we constructed a panel of 102 distinct shapes exhibiting sophisticated surface features, as well as intricate interior cavities and tunnels. PMID:23197527

  19. Self-assembled ultrathin nanotubes on diamond (100) surface

    NASA Astrophysics Data System (ADS)

    Lu, Shaohua; Wang, Yanchao; Liu, Hanyu; Miao, Mao-Sheng; Ma, Yanming

    2014-04-01

    Surfaces of semiconductors are crucially important for electronics, especially when the devices are reduced to the nanoscale. However, surface structures are often elusive, impeding greatly the engineering of devices. Here we develop an efficient method that can automatically explore the surface structures using structure swarm intelligence. Its application to a simple diamond (100) surface reveals an unexpected surface reconstruction featuring self-assembled carbon nanotubes arrays. Such a surface is energetically competitive with the known dimer structure under normal conditions, but it becomes more favourable under a small compressive strain or at high temperatures. The intriguing covalent bonding between neighbouring tubes creates a unique feature of carrier kinetics (that is, one dimensionality of hole states, while two dimensionality of electron states) that could lead to novel design of superior electronics. Our findings highlight that the surface plays vital roles in the fabrication of nanodevices by being a functional part of them.

  20. Characterization of electroosmotic flow through nanoporous self-assembled arrays.

    PubMed

    Bell, Kevan; Gomes, Mikel; Nazemifard, Neda

    2015-08-01

    Characterization of EOF mobility for Tris and TBE buffer solutions is performed in nanoporous arrays using the fluorescent marker method to examine the magnitude of EOFs through nanopores with mean diameters close to electric double layer thickness (Debye length). Structures made from solid silica nanospheres with effective pore sizes from 104 nm down to 8 nm are produced within the microchannel using an evaporation self-assembly method. EOF results in nanoporous matrices show higher EOF mobilities for stronger electrolyte solutions, which are drastically different compared to microchannel EOF. The effects of scaling are also examined by comparing the EOF mobility for varying ratios of pore diameters to the Debye length, which shows a surprising consistency across all particle sizes examined. This work demonstrates various factors which must be considered when designing nanofluidic devices, and discusses the causes of these small scale effects. PMID:25964193

  1. Aqueous Gemini Surfactant Self-Assembly into Complex Lyotropic Phases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Sorenson, Gregory

    2012-02-01

    In spite of the potentially wide-ranging applications of aqueous bicontinuous lyotropic liquid crystals (LLCs), the discovery of amphiphiles that reliably form these non-constant mean curvature morphologies over large phase windows remains largely serendipitous. Recent work has established that cationic gemini surfactants exhibit a pronounced tendency to form bicontinuous cubic (e.g. gyroid) phases as compared to their parent single-tail amphiphiles. The universality of this phenomenon in other surfactant systems remains untested. In this paper, we will report the aqueous LLC phase behavior of a new class of anionic gemini surfactants derived from long chain carboxylic acids. Our studies show that these new surfactants favor the formation of non-constant mean curvature gyroid and primitive (``Plumber's Nightmare'') structures over amphiphile concentration windows up to 20 wt% wide. Based on these observations, we will discuss insights gained into the delicate force balance governing the self-assembly of these surfactants into aqueous bicontinuous LLCs.

  2. Self-assembly vesicles made from a cyclodextrin supramolecular complex.

    PubMed

    Jing, Bo; Chen, Xiao; Wang, Xudong; Yang, Chunjie; Xie, Yizhou; Qiu, Huayu

    2007-01-01

    Self-assembly vesicles have been made from a cyclodextrin (CD) supramolecular complex, which is cooperatively formed with natural beta-CD, 1-naphthylammonium chloride (NA), and sodium bis(2-ethyl-1-hexyl)sulfosuccinate (AOT) by weak noncovalent interactions. In the complex structure, a NA molecule is included inside a beta-CD molecule while it is coupled with an AOT molecule on one side. The supramolecular structure and morphology of the vesicles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), respectively. The mechanism of vesicle formation and transition is discussed along with the data obtained from induced circular dichroism (ICD) and UV/visible spectroscopy, polarized optical microscopy (POM), and (1)H NMR spectroscopy. Both the fabrication and the transition of vesicles are controlled by the inclusion equilibria and the cooperative binding of noncovalent interactions, which include the "key-lock" principle, electrostatic interactions, pi-pi stacking, and amphiphilic hydrophobic association. PMID:17663495

  3. Self-assembled tunable photonic hyper-crystals.

    PubMed

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-01-01

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947

  4. Entropic control of particle sizes during viral self-assembly

    NASA Astrophysics Data System (ADS)

    Castelnovo, M.; Muriaux, D.; Faivre-Moskalenko, C.

    2013-03-01

    Morphologic diversity is observed across all families of viruses. However, these supra-molecular assemblies are produced most of the time in a spontaneous way through complex molecular self-assembly scenarios. The modeling of these phenomena remains a challenging problem within the emerging field of physical virology. We present in this work a theoretical analysis aiming at highlighting the particular role of configuration entropy in the control of viral particle size distribution. Specializing this model to retroviruses such as HIV-1, we predict a new mechanism of entropic control of both RNA uptake into the viral particle and of the particle's size distribution. Evidence of this peculiar behavior has recently been reported experimentally.

  5. Controlling the photoconductivity: Graphene oxide and polyaniline self assembled intercalation

    NASA Astrophysics Data System (ADS)

    Vempati, Sesha; Ozcan, Sefika; Uyar, Tamer

    2015-02-01

    We report on controlling the optoelectronic properties of self-assembled intercalating compound of graphene oxide (GO) and HCl doped polyaniline (PANI). Optical emission and X-ray diffraction studies revealed a secondary doping phenomenon of PANI with -OH and -COOH groups of GO, which essentially arbitrate the intercalation. A control on the polarity and the magnitude of the photoresponse (PR) is harnessed by manipulating the weight ratios of PANI to GO (viz., 1:1.5 and 1:2.2 are abbreviated as PG1.5 and PG2.2, respectively), where ±PR = 100(RDark - RUV-Vis)/RDark and R corresponds to the resistance of the device in dark or UV-Vis illumination. To be precise, the PR from GO, PANI, PG1.5, and PG2.2 are +34%, -111%, -51%, and +58%, respectively.

  6. Control of Nanomaterial Self-Assembly in Ultrasonically Levitated Droplets.

    PubMed

    Seddon, Annela M; Richardson, Sam J; Rastogi, Kunal; Plivelic, Tomás S; Squires, Adam M; Pfrang, Christian

    2016-04-01

    We demonstrate that acoustic trapping can be used to levitate and manipulate droplets of soft matter, in particular, lyotropic mesophases formed from self-assembly of different surfactants and lipids, which can be analyzed in a contact-less manner by X-ray scattering in a controlled gas-phase environment. On the macroscopic length scale, the dimensions and the orientation of the particle are shaped by the ultrasonic field, while on the microscopic length scale the nanostructure can be controlled by varying the humidity of the atmosphere around the droplet. We demonstrate levitation and in situ phase transitions of micellar, hexagonal, bicontinuous cubic, and lamellar phases. The technique opens up a wide range of new experimental approaches of fundamental importance for environmental, biological, and chemical research. PMID:26979408

  7. Sequence dependent proton conduction in self-assembled peptide nanostructures

    NASA Astrophysics Data System (ADS)

    Lerner Yardeni, Jenny; Amit, Moran; Ashkenasy, Gonen; Ashkenasy, Nurit

    2016-01-01

    The advancement of diverse electrochemistry technologies depends on the development of novel proton conducting polymers. Inspired by the efficacy of proton transport through proteins, we show in this work that self-assembling peptide nanostructures may be a promising alternative for such organic proton conducting materials. We demonstrate that aromatic amino acids, which participate in charge transport in nature, unprecedentedly promote proton conduction under both high and low relative humidity conditions for d,l α-cyclic peptide nanotubes. For dehydrated networks long-range order of the assemblies, induced by the aromatic side chains, is shown to be a dominating factor for promoting conductivity. However, for hydrated networks this order of effect is less significant and conductivity can be improved by the introduction of proton donating carboxylic acid peptide side chains in addition to the aromatic side chains despite the lower order of the assemblies. Based on these observations, a novel cyclic peptide that incorporates non-natural naphthyl side chains was designed. Self-assembled nanotubes of this peptide show greatly improved dehydrated conductivity, while maintaining high conductivity under hydrated conditions. We envision that the demonstrated modularity and versatility of these bio inspired nanostructures will make them extremely attractive building blocks for the fabrication of devices for energy conversion and storage applications, as well as other applications that involve proton transport, whether dry or wet conductivity is desired.The advancement of diverse electrochemistry technologies depends on the development of novel proton conducting polymers. Inspired by the efficacy of proton transport through proteins, we show in this work that self-assembling peptide nanostructures may be a promising alternative for such organic proton conducting materials. We demonstrate that aromatic amino acids, which participate in charge transport in nature

  8. Self-assembled tunable photonic hyper-crystals

    NASA Astrophysics Data System (ADS)

    Smolyaninov, Igor; Smolyaninova, Vera; Yost, Bradley; Lahneman, David; Gresock, Thomas; Narimanov, Evgenii

    2015-03-01

    We demonstrate a novel artificial optical material, the photonic hyper-crystal, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. This work was supported in part by NSF Grant DMR-1104676, NSF Center for Photonic and Multiscale Nanomaterials, ARO MURI and Gordon and Berry Moore Foundation.

  9. Programmed DNA Self-Assembly and Logic Circuits

    NASA Astrophysics Data System (ADS)

    Li, Wei

    DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the massive parallelism that is inherent in natural systems to solve computational problems. This dissertation focuses on building novel types of computational DNA systems based on both DNA reaction networks and DNA nanotechnology. A series of related research projects are presented here. First, a novel, three-input majority logic gate based on DNA strand displacement reactions was constructed. Here, the three inputs in the majority gate have equal priority, and the output will be true if any two of the inputs are true. We subsequently designed and realized a complex, 5-input majority logic gate. By controlling two of the five inputs, the complex gate is capable of realizing every combination of OR and AND gates of the other 3 inputs. Next, we constructed a half adder, which is a basic arithmetic unit, from DNA strand operated XOR and AND gates. The aim of these two projects was to develop novel types of DNA logic gates to enrich the DNA computation toolbox, and to examine plausible ways to implement large scale DNA logic circuits. The third project utilized a two dimensional DNA origami frame shaped structure with a hollow interior where DNA hybridization seeds were selectively positioned to control the assembly of small DNA tile building blocks. The small DNA tiles were directed to fill the hollow interior of the DNA origami frame, guided through sticky end interactions at prescribed positions. This research shed light on the fundamental behavior of DNA based self-assembling systems, and provided the information necessary to build programmed nanodisplays based on the self-assembly of DNA.

  10. Computationally designed peptides for self-assembly of nanostructured lattices.

    PubMed

    Zhang, Huixi Violet; Polzer, Frank; Haider, Michael J; Tian, Yu; Villegas, Jose A; Kiick, Kristi L; Pochan, Darrin J; Saven, Jeffery G

    2016-09-01

    Folded peptides present complex exterior surfaces specified by their amino acid sequences, and the control of these surfaces offers high-precision routes to self-assembling materials. The complexity of peptide structure and the subtlety of noncovalent interactions make the design of predetermined nanostructures difficult. Computational methods can facilitate this design and are used here to determine 29-residue peptides that form tetrahelical bundles that, in turn, serve as building blocks for lattice-forming materials. Four distinct assemblies were engineered. Peptide bundle exterior amino acids were designed in the context of three different interbundle lattices in addition to one design to produce bundles isolated in solution. Solution assembly produced three different types of lattice-forming materials that exhibited varying degrees of agreement with the chosen lattices used in the design of each sequence. Transmission electron microscopy revealed the nanostructure of the sheetlike nanomaterials. In contrast, the peptide sequence designed to form isolated, soluble, tetrameric bundles remained dispersed and did not form any higher-order assembled nanostructure. Small-angle neutron scattering confirmed the formation of soluble bundles with the designed size. In the lattice-forming nanostructures, the solution assembly process is robust with respect to variation of solution conditions (pH and temperature) and covalent modification of the computationally designed peptides. Solution conditions can be used to control micrometer-scale morphology of the assemblies. The findings illustrate that, with careful control of molecular structure and solution conditions, a single peptide motif can be versatile enough to yield a wide range of self-assembled lattice morphologies across many length scales (1 to 1000 nm). PMID:27626071

  11. Soft materials design via self assembly of functionalized icosahedral particles

    NASA Astrophysics Data System (ADS)

    Muthukumar, Vidyalakshmi Chockalingam

    In this work we simulate self assembly of icosahedral building blocks using a coarse grained model of the icosahedral capsid of virus 1m1c. With significant advancements in site-directed functionalization of these macromolecules [1], we propose possible application of such self-assembled materials for drug delivery. While there have been some reports on organization of viral particles in solution through functionalization, exploiting this behaviour for obtaining well-ordered stoichiometric structures has not yet been explored. Our work is in well agreement with the earlier simulation studies of icosahedral gold nanocrystals, giving chain like patterns [5] and also broadly in agreement with the wet lab works of Finn, M.G. et al., who have shown small predominantly chain-like aggregates with mannose-decorated Cowpea Mosaic Virus (CPMV) [22] and small two dimensional aggregates with oligonucleotide functionalization on the CPMV capsid [1]. To quantify the results of our Coarse Grained Molecular Dynamics Simulations I developed analysis routines in MATLAB using which we found the most preferable nearest neighbour distances (from the radial distribution function (RDF) calculations) for different lengths of the functional groups and under different implicit solvent conditions, and the most frequent coordination number for a virus particle (histogram plots further using the information from RDF). Visual inspection suggests that our results most likely span the low temperature limits explored in the works of Finn, M.G. et al., and show a good degree of agreement with the experimental results in [1] at an annealing temperature of 4°C. Our work also reveals the possibility of novel stoichiometric N-mer type aggregates which could be synthesized using these capsids with appropriate functionalization and solvent conditions.

  12. Adsorption of Amelogenin onto Self-Assembled and Fluoroapatite Surfaces

    SciTech Connect

    Tarasevich, Barbara J.; Lea, Alan S.; Bernt, William; Engelhard, Mark H.; Shaw, Wendy J.

    2009-02-19

    Abstract. The interactions of proteins at surfaces are of great importance to biomineralizaton processes and to the development and function of biomaterials. Amelogenin is a unique biomineralization protein because it self-assembles to form supramolecular structures called “nanospheres,” spherical aggregates of monomers that are 20-60 nm in diameter. Although the nanosphere quaternary structure has been observed in solution, the quaternary structure of amelogenin adsorbed onto surfaces is also of great interest because the surface structure is critical to its function. We report studies of the adsorption of the amelogenin onto self-assembled monolayers (SAMs) with COOH and CH3 end group functionality and single crystal fluoroapatite (FAP). Dynamic light scattering (DLS) experiments showed that the solutions contained nanospheres and aggregates of nanospheres. Protein adsorption onto the various substrates was evidenced by null ellipsometry, x-ray photoelectron spectroscopy (XPS), and external reflectance Fourier transform infrared spectroscopy (ERFTIR). Although only nanospheres were observed in solution, ellipsometry and atomic force microscopy (AFM) indicated that the protein adsorbates were much smaller structures than the original nanospheres, from monomers to small oligomers in size. Monomer adsorption was promoted onto the CH3 surfaces and small oligomer adsorption was promoted onto the COOH and FAP substrates. In some cases, remnants of the original nanospheres adsorbed as multilayers on top of the underlying subnanosphere layers. This work suggests that amelogenin can adsorb by the “shedding” or disassembling of substructures from the nanospheres onto substrates and indicates that amelogenin may have a range of possible quaternary structures depending on whether it is in solution or interacting with surfaces.

  13. Nanostructured donor-acceptor self assembly with improved photoconductivity.

    PubMed

    Saibal, B; Ashar, A Z; Devi, R Nandini; Narayan, K S; Asha, S K

    2014-11-12

    Nanostructured supramolecular donor-acceptor assemblies were formed when an unsymmetrical N-substituted pyridine functionalized perylenebisimide (UPBI-Py) was complexed with oligo(p-phenylenevinylene) (OPVM-OH) complementarily functionalized with hydroxyl unit and polymerizable methacrylamide unit at the two termini. The resulting supramolecular complex [UPBI-Py (OPVM-OH)]1.0 upon polymerization by irradiation in the presence of photoinitiator formed well-defined supramolecular polymeric nanostructures. Self-assembly studies using fluorescence emission from thin film samples showed that subtle structural changes occurred on the OPV donor moiety following polymerization. The 1:1 supramolecular complex showed red-shifted aggregate emission from both OPV (∼500 nm) and PBI (∼640 nm) units, whereas the OPV aggregate emission was replaced by intense monomeric emission (∼430 nm) upon polymerizing the methacrylamide units on the OPVM-OH. The bulk structure was studied using wide-angle X-ray diffraction (WXRD). Complex formation resulted in distinct changes in the cell parameters of OPVM-OH. In contrast, a physical mixture of 1 mol each of OPVM-OH and UPBI-Py prepared by mixing the powdered solid samples together showed only a combination of reflections from both parent molecules. Thin film morphology of the 1:1 molecular complex as well as the supramolecular polymer complex showed uniform lamellar structures in the domain range <10 nm. The donor-acceptor supramolecular complex [UPBI-Py (OPVM-OH)]1.0 exhibited space charge limited current (SCLC) with a bulk mobility estimate of an order of magnitude higher accompanied by a higher photoconductivity yield compared to the pristine UPBI-Py. This is a very versatile method to obtain spatially defined organization of n and p-type semiconductor materials based on suitably functionalized donor and acceptor molecules resulting in improved photocurrent response using self-assembly. PMID:25283356

  14. Self-assembly protocol design for periodic multicomponent structures.

    PubMed

    Jacobs, William M; Frenkel, Daan

    2015-12-14

    Assembling molecular superstructures with many distinct components will allow unprecedented control over morphology at the nanoscale. Recently, this approach has been used to assemble periodic structures with precisely defined features, such as repeating arrays of pores and channels, using a large number of building blocks. Here we propose a predictive tool that allows us to optimize the nucleation and growth of unbounded, ordered structures. In what follows, we call these structures 'crystals', even though they may only be periodic in one or two dimensions. We find that the nucleation barriers and growth pathways for crystals consisting of many components exhibit generic features that are very different from those of simple crystals. To illustrate the very non-classical nature of the nucleation and growth of such structures, we study the formation of one and two-dimensional crystals with multicomponent unit cells. We find that, whilst the boundaries in the non-periodic dimensions significantly affect the stabilities of these crystals, the nucleation barriers are largely determined by the local connectivity of the associated bulk crystal and are independent of the number of distinct components in the unit cell. We predict that the self-assembly of crystals with complex morphologies can be made to follow specific pathways toward the target structure that successively incorporate key features of the three-dimensional target structure. In contrast with simple crystals, it is possible to tune the kinetics of nucleation and growth separately, thus minimizing defect formation. We show how control over self-assembly pathways can be used to optimize the kinetics of formation of extended structures with arbitrary nanoscale patterns. PMID:26404794

  15. Self-assembly of cyclic rod-coil diblock copolymers.

    PubMed

    He, Linli; Chen, Zenglei; Zhang, Ruifen; Zhang, Linxi; Jiang, Zhouting

    2013-03-01

    The phase behavior of cyclic rod-coil diblock copolymer melts is investigated by the dissipative particle dynamics simulation. In order to understand the effect of chain topological architecture better, we also study the linear rod-coil system. The comparison of the calculated phase diagrams between the two rod-coil copolymers reveals that the order-disorder transition point (χN)ODT for cyclic rod-coil diblock copolymers is always higher than that of equivalent linear rod-coil diblocks. In addition, the phase diagram for cyclic system is more "symmetrical," due to the topological constraint. Moreover, there are significant differences in the self-assembled overall morphologies and the local molecular arrangements. For example, frod = 0.5, both lamellar structures are formed while rod packing is different greatly in cyclic and linear cases. The lamellae with rods arranged coplanarly into bilayers occurs in cyclic rod-coil diblocks, while the lamellar structure with rods arranged end by end into interdigitated bilayers appears in linear counterpart. In both the lamellar phases, the domain size ratio of cyclic to linear diblocks is ranged from 0.63 to 0.70. This is attributed to that the cyclic architecture with the additional junction increases the contacts between incompatible blocks and prevents the coil chains from expanding as much as the linear cases. As frod = 0.7, the hexagonally packed cylinder is observed for cyclic rod-coil diblocks, while liquid-crystalline smectic A lamellar phase is formed in linear system. As a result, the cyclization of a linear rod-coil block copolymer can induce remarkable differences in the self-assembly behavior and also diversify its physical properties and applications greatly. PMID:23485326

  16. Computationally designed peptides for self-assembly of nanostructured lattices

    PubMed Central

    Zhang, Huixi Violet; Polzer, Frank; Haider, Michael J.; Tian, Yu; Villegas, Jose A.; Kiick, Kristi L.; Pochan, Darrin J.; Saven, Jeffery G.

    2016-01-01

    Folded peptides present complex exterior surfaces specified by their amino acid sequences, and the control of these surfaces offers high-precision routes to self-assembling materials. The complexity of peptide structure and the subtlety of noncovalent interactions make the design of predetermined nanostructures difficult. Computational methods can facilitate this design and are used here to determine 29-residue peptides that form tetrahelical bundles that, in turn, serve as building blocks for lattice-forming materials. Four distinct assemblies were engineered. Peptide bundle exterior amino acids were designed in the context of three different interbundle lattices in addition to one design to produce bundles isolated in solution. Solution assembly produced three different types of lattice-forming materials that exhibited varying degrees of agreement with the chosen lattices used in the design of each sequence. Transmission electron microscopy revealed the nanostructure of the sheetlike nanomaterials. In contrast, the peptide sequence designed to form isolated, soluble, tetrameric bundles remained dispersed and did not form any higher-order assembled nanostructure. Small-angle neutron scattering confirmed the formation of soluble bundles with the designed size. In the lattice-forming nanostructures, the solution assembly process is robust with respect to variation of solution conditions (pH and temperature) and covalent modification of the computationally designed peptides. Solution conditions can be used to control micrometer-scale morphology of the assemblies. The findings illustrate that, with careful control of molecular structure and solution conditions, a single peptide motif can be versatile enough to yield a wide range of self-assembled lattice morphologies across many length scales (1 to 1000 nm). PMID:27626071

  17. Self-assembling Functionalized Single-walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Gao, Yan

    Single-walled carbon nanotubes (SWCNTs) are promising bottom-up building materials due to their superior properties. However, the lack of an effective method to arrange large quantities of SWCNTs poses an obstacle toward their applications. Existing studies to functionalize, disperse, position, and assemble SWCNTs provide a broad understandings regarding SWCNTs behavior, especially in aqueous electrolyte solution. Inspired by ionic polymer metal composite (IPMC) materials, this dissertation envisions fabrication of orderly SWCNTs network structure via their ionic clustering-mediated self-assembly. SWCNTs tend to bundle together due to inter-nanotube VDW attractions, which increase with nanotube length. The author seeks short SWCNTs with long chain molecules bearing ionic termini to facilitate debundling and self-assembly in aqueous electrolyte solution through end-clustering. First, a simple model was applied based on essential physical factors. The results indicated that SWCNTs must be shorter than ˜100 nm to achieve stable network structures. Experiments were then carried out based upon the results. Short SWCNTs (50-100 nm) were end-functionalized with hexaethylene glycol (HEG) linkers bearing terminal carboxylate anions. Both 2D and 3D network structures were observed after placing the functionalized SWCNTs in aqueous electrolyte (sodium ion). The network structures were characterized by microscopic and spectroscopic methods. A novel approach was applied via electron tomography to study the 3D structures of SWCNTs structure in aqueous electrolyte. Free energy analysis of the SWCNTs network structure was implemented with the assistance of both analytical tools and molecular simulations. The results indicate that, when a cluster is formed by three functionalized SWCNTs ends, the resulting network structure is most stable. Indeed, 72% of the clusters/joints were formed by three nanotubes, as observed in experiments. Finally, Monte Carlo simulations of coarse

  18. Origami inspired self-assembly of patterned and reconfigurable particles.

    PubMed

    Pandey, Shivendra; Gultepe, Evin; Gracias, David H

    2013-01-01

    There are numerous techniques such as photolithography, electron-beam lithography and soft-lithography that can be used to precisely pattern two dimensional (2D) structures. These technologies are mature, offer high precision and many of them can be implemented in a high-throughput manner. We leverage the advantages of planar lithography and combine them with self-folding methods(1-20) wherein physical forces derived from surface tension or residual stress, are used to curve or fold planar structures into three dimensional (3D) structures. In doing so, we make it possible to mass produce precisely patterned static and reconfigurable particles that are challenging to synthesize. In this paper, we detail visualized experimental protocols to create patterned particles, notably, (a) permanently bonded, hollow, polyhedra that self-assemble and self-seal due to the minimization of surface energy of liquefied hinges(21-23) and (b) grippers that self-fold due to residual stress powered hinges(24,25). The specific protocol described can be used to create particles with overall sizes ranging from the micrometer to the centimeter length scales. Further, arbitrary patterns can be defined on the surfaces of the particles of importance in colloidal science, electronics, optics and medicine. More generally, the concept of self-assembling mechanically rigid particles with self-sealing hinges is applicable, with some process modifications, to the creation of particles at even smaller, 100 nm length scales(22, 26) and with a range of materials including metals(21), semiconductors(9) and polymers(27). With respect to residual stress powered actuation of reconfigurable grasping devices, our specific protocol utilizes chromium hinges of relevance to devices with sizes ranging from 100 μm to 2.5 mm. However, more generally, the concept of such tether-free residual stress powered actuation can be used with alternate high-stress materials such as heteroepitaxially deposited semiconductor

  19. Self-assembled ordered carbon-nanotube arrays and membranes.

    SciTech Connect

    Overmyer, Donald L.; Siegal, Michael P.; Yelton, William Graham

    2004-11-01

    Imagine free-standing flexible membranes with highly-aligned arrays of carbon nanotubes (CNTs) running through their thickness. Perhaps with both ends of the CNTs open for highly controlled nanofiltration? Or CNTs at heights uniformly above a polymer membrane for a flexible array of nanoelectrodes or field-emitters? How about CNT films with incredible amounts of accessible surface area for analyte adsorption? These self-assembled crystalline nanotubes consist of multiple layers of graphene sheets rolled into concentric cylinders. Tube diameters (3-300 nm), inner-bore diameters (2-15 nm), and lengths (nanometers - microns) are controlled to tailor physical, mechanical, and chemical properties. We proposed to explore growth and characterize nanotube arrays to help determine their exciting functionality for Sandia applications. Thermal chemical vapor deposition growth in a furnace nucleates from a metal catalyst. Ordered arrays grow using templates from self-assembled hexagonal arrays of nanopores in anodized-aluminum oxide. Polymeric-binders can mechanically hold the CNTs in place for polishing, lift-off, and membrane formation. The stiffness, electrical and thermal conductivities of CNTs make them ideally suited for a wide-variety of possible applications. Large-area, highly-accessible gas-adsorbing carbon surfaces, superb cold-cathode field-emission, and unique nanoscale geometries can lead to advanced microsensors using analyte adsorption, arrays of functionalized nanoelectrodes for enhanced electrochemical detection of biological/explosive compounds, or mass-ionizers for gas-phase detection. Materials studies involving membrane formation may lead to exciting breakthroughs in nanofiltration/nanochromatography for the separation of chemical and biological agents. With controlled nanofilter sizes, ultrafiltration will be viable to separate and preconcentrate viruses and many strains of bacteria for 'down-stream' analysis.

  20. Monolithically self-assembled organic active materials integrated with thermoelectric for large spectrum solar harvesting system (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Busani, Tito L.; Lavrova, Olga; Erdman, Matthew; Martinez, Julio; Dawson, Noel M.

    2015-10-01

    We designed and studied a radial junction composed by a photovoltaic and thermoelectric array based on ZnO and CdTe nanowires surrounded by an absorbing organic self assembled in order to efficiently convert UV-visible and IR energy into electricity. The hot anode of n-type ZnO nanowires was fabricated using a thermal process on pre-seeded layer and results to be crystalline with a transmittance up to 92 % and a bandgap of ~ 3.32 eV. Conductivity measurements reveal diode-like behavior for the ZnO nanowires. The organic layer was deposited between the anode and cathode at room temperature The organic layer is composed of oppositely charged porphyrin metal (Zn(II) and Sn(IV)(OH)2) derivatives that are separately water soluble, but when combined form a virtually insoluble solid. The electron donor/acceptor properties (energy levels, band gaps) of the solid can be controlled by the choice of metals and the nature of the peripheral substituent groups of the porphyrin ring. A defect free sub nanometer deposition was achieved using a layer-by-layer deposition onto both ZnO and Bi2Te3 nanowires. The highly thermoelectric structure, which acts as a cold cathode, is composed of p-type Bi2Te3 nanowires with a thermoelectric efficiency (ZT) between ~0.7 to 1, values that are twice that expected for bulk Bi2Te3. Optoelectronic and structural properties shows that with 6 nm of organic layer it is possible to form a 3% efficient solar device with an enhanced thermo electric effected with a temperature gradient of 300 C.