Science.gov

Sample records for porphyry cu-au deposit

  1. Porphyry Cu-Au and associated polymetallic Fe-Cu-Au deposits in the Beiya Area, western Yunnan Province, south China

    USGS Publications Warehouse

    Xu, X.-W.; Cai, X.-P.; Xiao, Q.-B.; Peters, S.G.

    2007-01-01

    The Alkaline porphyries in the Beiya area are located east of the Jinshajiang suture, as part of a Cenozoic alkali-rich porphyry belt in western Yunnan. The main rock types include quartz-albite porphyry, quartz-K-feldspar porphyry and biotite-K-feldspar porphyry. These porphyries are characterised by high alkalinity [(K2O + Na2O)% > 10%], high silica (SiO2% > 65%), high Sr (> 400??ppm) and 87Sr/86Sr (> 0.706)] ratio and were intruded at 65.5??Ma, between 25.5 to 32.5??Ma, and about 3.8??Ma, respectively. There are five main types of mineral deposits in the Beiya area: (1) porphyry Cu-Au deposits, (2) magmatic Fe-Au deposits, (3) sedimentary polymetallic deposits, (4) polymetallic skarn deposits, and (5) palaeoplacers associated with karsts. The porphyry Cu-Au and polymetallic skarn deposits are associated with quartz-albite porphyry bodies. The Fe-Au and polymetallic sedimentary deposits are part of an ore-forming system that produced considerable Au in the Beiya area, and are characterised by low concentrations of La, Ti, and Co, and high concentrations of Y, Yb, and Sc. The Cenozoic porphyries in western Yunnan display increased alkalinity away from the Triassic Jinshajiang suture. Distribution of both the porphyries and sedimentary deposits in the Beiya area are interpreted to be related to partial melting in a disjointed region between upper mantle lithosphere of the Yangtze Plate and Gondwana continent, and lie within a shear zone between buried Palaeo-Tethyan oceanic lithosphere and upper mantle lithosphere, caused by the subduction and collision of India and Asia. ?? 2006 Elsevier B.V. All rights reserved.

  2. An orientation soil survey at the Pebble Cu-Au-Mo porphyry deposit, Alaska

    USGS Publications Warehouse

    Smith, Steven M.; Eppinger, Robert G.; Fey, David L.; Kelley, Karen D., (Edited By); Giles, S.A.

    2009-01-01

    Soil samples were collected in 2007 and 2008 along three traverses across the giant Pebble Cu-Au-Mo porphyry deposit. Within each soil pit, four subsamples were collected following recommended protocols for each of ten commonly-used and proprietary leach/digestion techniques. The significance of geochemical patterns generated by these techniques was classified by visual inspection of plots showing individual element concentration by each analytical method along the 2007 traverse. A simple matrix by element versus method, populated with a value based on the significance classification, provides a method for ranking the utility of methods and elements at this deposit. The interpretation of a complex multi-element dataset derived from multiple analytical techniques is challenging. An example of vanadium results from a single leach technique is used to illustrate the several possible interpretations of the data.

  3. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran

    NASA Astrophysics Data System (ADS)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann; Lentz, David; Azimzadeh, Amir-Mortaza; Pourkaseb, Hooshang

    2015-11-01

    The Miocene Dalli porphyry Cu-Au deposit in the central part of Urumieh-Dokhtar magmatic arc is the first reported Au-rich porphyry Cu deposit in the Zagros orogenic belt. The Cu-Au mineralization is mainly hosted in diorite and quartz diorite intrusions, presenting as numerous veinlets in the altered wall rocks, with potassic, phyllic, and propylitic alteration developed. Based on the mineral assemblages and crosscutting relations of veinlets, hydrothermal mineralization-alteration occurred in at least three stages, characterized by veinlets of (1) Qtz + Kfs + Mag ± Ccp, (2) Qtz + Py + Ccp ± Bn ± Cv ± Cc and, (3) Qtz + Chl + Bt. The ore-bearing intrusions exhibit typical geochemical characteristics of subduction zone magmas, including LREE fractionated pattern, strong enrichment in LILE (Cs, Rb, Ba, Pb, and U), and depletion of HFSE, with marked negative Ti and Nb anomalies. The adakite-like ore-hosting porphyry intrusions are characterized by a systematic gradual decreasing and increasing of Y and Eu/Eu∗ with increasing SiO2 content, respectively. Moreover, they exhibit a significant increasing trend of Sr/Y with decreasing of Y, which indicates progressive hornblende fractionation and suppression of plagioclase fractionation during the evolution toward high water content of parental magma. A relatively flat HREE pattern with low Dyn/Ybn and Nb/Ta values may represent that amphibole played a more important role than garnet in the generation of the adakitic melts in the thickened lower crust. Based on the phase assemblages confirmed by detailed laser Raman spectroscopy analyses and proportion of solid, liquid, and gaseous components, five types of fluid inclusions were recognized, which are categorized as; (1) liquid-rich two phase (liquidH2O + vaporH2O) (IIA), (2) vapor-rich two phase (vaporH2O/CO2 + liquidH2O) (IIB), (3) high saline simple fluids (IIIA; liquidH2O + vaporH2O + Hl), (4) high saline opaque mineral-bearing fluids (IIIB; liquidH2O + vaporH2O

  4. USGS exploration geochemistry studies at the Pebble porphyry Cu-Au-Mo deposit, Alaska-pdf of presentation

    USGS Publications Warehouse

    Eppinger, Robert G.; Kelley, Karen D.; Fey, David L.; Giles, Stuart A.; Minsley, Burke J.; Smith, Steven M.

    2010-01-01

    From 2007 through 2010, scientists in the U.S. Geological Survey (USGS) have been conducting exploration-oriented geochemical and geophysical studies in the region surrounding the giant Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska. The Cretaceous Pebble deposit is concealed under tundra, glacial till, and Tertiary cover rocks, and is undisturbed except for numerous exploration drill holes. These USGS studies are part of a nation-wide research project on evaluating and detecting concealed mineral resources. This report focuses on exploration geochemistry and comprises illustrations and associated notes that were presented as a case study in a workshop on this topic. The workshop, organized by L.G. Closs and R. Glanzman, is called 'Geochemistry in Mineral Exploration and Development,' presented by the Society of Economic Geologists at a technical conference entitled 'The Challenge of Finding New Mineral Resources: Global Metallogeny, Integrative Exploration and New Discoveries,' held at Keystone, Colorado, October 2-5, 2010.

  5. The origin of Cu/Au ratios in porphyry-type ore deposits.

    PubMed

    Halter, Werner E; Pettke, Thomas; Heinrich, Christoph A

    2002-06-01

    Microanalysis of major and trace elements in sulfide and silicate melt inclusions by laser-ablation inductively coupled plasma mass spectrometry indicates a direct link between a magmatic sulfide liquid and the composition of porphyry-type ore deposits. Copper (Cu), gold (Au), and iron (Fe) are first concentrated in a sulfide melt during magmatic evolution and then released to an ore-forming hydrothermal fluid exsolved late in the history of a magma chamber. The composition of sulfide liquids depends on the initial composition and source of the magma, but it also changes during the evolution of the magma in the crust. Magmatic sulfide melts may exert the dominant direct control on the economic metal ratios of porphyry-type ore deposits. PMID:12052953

  6. The large Bystrinskoe Cu-Au-Fe deposit (Eastern Trans-Baikal Region): Russia's first example of a skarn-porphyry ore-forming system related to adakite

    NASA Astrophysics Data System (ADS)

    Kovalenker, V. A.; Abramov, S. S.; Kiseleva, G. D.; Krylova, T. L.; Yazykova, Yu. I.; Bortnikov, N. S.

    2016-06-01

    The Bystrinskoe skarn-porphyry Cu-Au-Fe deposit (Eastern Trans-Baikal Region) is confined to skarn zones, which were formed along the contact of granitoids referred to the Shakhtama intrusive complex (J2-3), with terrigenous-carbonate sedimentary rocks. Commercial (Cu-Au-Fe ± W, Mo) mineralization was formed due to the regional postcollision development involving the intrusion of porphyritic granitoids, the derivatives of oxidized adakite highly magnesian magmas enriched in water, sulfur, and metals, which could develop under melting of garnet-bearing amphibolite in the mafic lower crustal arc.

  7. 3D inversion of SPECTREM and ZTEM airborne electromagnetic data from the Pebble Cu-Au-Mo porphyry deposit, Alaska

    NASA Astrophysics Data System (ADS)

    Pare, Pascal; Gribenko, Alexander V.; Cox, Leif H.; Čuma, Martin; Wilson, Glenn A.; Zhdanov, Michael S.; Legault, Jean; Smit, Jaco; Polome, Louis

    2012-04-01

    Geological, geochemical, and geophysical surveys have been conducted in the area of the Pebble Cu-Au-Mo porphyry deposit in south-west Alaska since 1985. This case study compares three-dimensional (3D) inversion results from Anglo American's proprietary SPECTREM 2000 fixed-wing time-domain airborne electromagnetic (AEM) and Geotech's ZTEM airborne audio-frequency magnetics (AFMAG) systems flown over the Pebble deposit. Within the commonality of their physics, 3D inversions of both SPECTREM and ZTEM recover conductivity models consistent with each other and the known geology. Both 3D inversions recover conductors coincident with alteration associated with both Pebble East and Pebble West. The high grade CuEqn 0.6% ore shell is not consistently following the high conductive trend, suggesting that the SPECTREM and ZTEM responses correspond in part to the sulphide distribution, but not directly with the ore mineralization. As in any exploration project, interpretation of both surveys has yielded an improved understanding of the geology, alteration and mineralization of the Pebble system and this will serve well for on-going exploration activities. There are distinct practical advantages to the use of both SPECTREM and ZTEM, so we draw no recommendation for either system. We can conclude however, that 3D inversion of both AEM and ZTEM surveys is now a practical consideration and that it has added value to exploration at Pebble.

  8. Formation of a paleothermal anomaly and disseminated gold deposits associated with the Bingham Canyon porphyry Cu-Au-Mo system, Utah

    USGS Publications Warehouse

    Cunningham, C.G.; Austin, G.W.; Naeser, C.W.; Rye, R.O.; Ballantyne, G.H.; Stamm, R.G.; Barker, C.E.

    2004-01-01

    The thermal history of the Oquirrh Mountains, Utah, indicates that hydrothermal fluids associated with emplacement of the 37 Ma Bingham Canyon porphyry Cu-Au-Mo deposit extended at least 10 km north of the Bingham pit. An associated paleothermal anomaly enclosed the Barneys Canyon and Melco disseminated gold deposits and several smaller gold deposits between them. Previous studies have shown the Barneys Canyon deposit is near the outer limit of an irregular distal Au-As geochemical halo, about 3 km beyond an intermediate Pb-Zn halo, and 7 km beyond a proximal pyrite halo centered on the Bingham porphyry copper deposit. The Melco deposit also lies near the outer limit of the Au-As halo. Analysis of several geothermometers from samples collected tip to 22 km north of the Bingham Canyon porphyry Cu-Au-Mo deposit indicate that most sedimentary rocks of the Oquirrh Mountains, including those at the gold deposits, have not been regionally heated beyond the "oil window" (less than about 150??C). For geologically reasonable heating durations, the maximum sustained temperature at Melco, 6 km north of the Bingham pit, and at Barneys Canyon, 7.5 km north of the pit, was between 100??C and 140??C, as indicated by combinations of conodont color alteration indices of 1.5 to 2, mean random solid bitumen reflectance of about 1.0 percent, lack of annealing of zircon fission tracks, and partial to complete annealing of apatite fission tracks. The pattern of reset apatite fission-track ages indicates that the gold deposits are located approximately on the 120??C isotherm of the 37 Ma paleothermal anomaly assuming a heating duration of about 106 years. The conodont data further constrain the duration of heating to between 5 ?? 104 and 106 years at approximately 120??C. The ??18O of quartzite host rocks generally increases from about 12.6 per mil at the porphyry to about 15.8 per mil approximately 11 km from the Bingham deposit. This change reflects interaction of interstitial clays in

  9. Geological analysis of aeromagnetic data from southwestern Alaska: implications for exploration in the area of the Pebble porphyry Cu-Au-Mo deposit

    USGS Publications Warehouse

    Anderson, Eric D.; Hitzman, Murray W.; Monecke, Thomas; Bedrosian, Paul A.; Shah, Anjana K.; Kelley, Karen D.

    2013-01-01

    Aeromagnetic data are used to better understand the geology and mineral resources near the Late Cretaceous Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska. The reduced-to-pole (RTP) transformation of regional-scale aeromagnetic data shows that the Pebble deposit is within a cluster of magnetic anomaly highs. Similar to Pebble, the Iliamna, Kijik, and Neacola porphyry copper occurrences are in magnetic highs that trend northeast along the crustal-scale Lake Clark fault. A high-amplitude, short- to moderate-wavelength anomaly is centered over the Kemuk occurrence, an Alaska-type ultramafic complex. Similar anomalies are found west and north of Kemuk. A moderate-amplitude, moderate-wavelength magnetic low surrounded by a moderate-amplitude, short-wavelength magnetic high is associated with the gold-bearing Shotgun intrusive complex. The RTP transformation of the district-scale aeromagnetic data acquired over Pebble permits differentiation of a variety of Jurassic to Tertiary magmatic rock suites. Jurassic-Cretaceous basalt and gabbro units and Late Cretaceous biotite pyroxenite and granodiorite rocks produce magnetic highs. Tertiary basalt units also produce magnetic highs, but appear to be volumetrically minor. Eocene monzonite units have associated magnetic lows. The RTP data do not suggest a magnetite-rich hydrothermal system at the Pebble deposit. The 10-km upward continuation transformation of the regional-scale data shows a linear northeast trend of magnetic anomaly highs. These anomalies are spatially correlated with Late Cretaceous igneous rocks and in the Pebble district are centered over the granodiorite rocks genetically related to porphyry copper systems. The spacing of these anomalies is similar to patterns shown by the numerous porphyry copper deposits in northern Chile. These anomalies are interpreted to reflect a Late Cretaceous magmatic arc that is favorable for additional discoveries of Late Cretaceous porphyry copper systems in southwestern

  10. An exploration hydrogeochemical study at the giant Pebble porphyry Cu-Au-Mo deposit, Alaska, USA, using high-resolution ICP-MS

    USGS Publications Warehouse

    Eppinger, Robert G.; Fey, David L.; Giles, Stuart A.; Kelley, Karen D.; Smith, Steven M.

    2012-01-01

    A hydrogeochemical study using high resolution ICP-MS was undertaken at the giant Pebble porphyry Cu-Au-Mo deposit and surrounding mineral occurrences. Surface water and groundwater samples from regional background and the deposit area were collected at 168 sites. Rigorous quality control reveals impressive results at low nanogram per litre (ng/l) levels. Sites with pH values below 5.1 are from ponds in the Pebble West area, where sulphide-bearing rubble crop is thinly covered. Relative to other study area waters, anomalous concentrations of Cu, Cd, K, Ni, Re, the REE, Tl, SO42− and F− are present in water samples from Pebble West. Samples from circum-neutral waters at Pebble East and parts of Pebble West, where cover is much thicker, have anomalous concentrations of Ag, As, In, Mn, Mo, Sb, Th, U, V, and W. Low-level anomalous concentrations for most of these elements were also found in waters surrounding nearby porphyry and skarn mineral occurrences. Many of these elements are present in low ng/l concentration ranges and would not have been detected using traditional quadrupole ICP-MS. Hydrogeochemical exploration paired with high resolution ICP-MS is a powerful new tool in the search for concealed deposits.

  11. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc

    NASA Astrophysics Data System (ADS)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin

    2016-04-01

    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of ~ 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a ~ 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc

  12. Pb-Sr-Nd isotopes in surficial materials at the Pebble Porphyry Cu-Au-Mo Deposit, Southwestern Alaska: can the mineralizing fingerprint be detected through cover?

    USGS Publications Warehouse

    Ayuso, Robert A.; Kelley, Karen D.; Eppinger, Robert G.; Forni, Francesca

    2013-01-01

    The Cretaceous Pebble porphyry Cu-Au-Mo deposit is covered by tundra and glacigenic sediments. Pb-Sr-Nd measurements were done on sediments and soils to establish baseline conditions prior to the onset of mining operations and contribute to the development of exploration methods for concealed base metal deposits of this type. Pebble rocks have a moderate range for 206Pb/204Pb = 18.574 to 18.874, 207Pb/204Pb = 15.484 to 15.526, and 208,Pb/204Pb = 38.053 to 38.266. Mineralized granodiorite shows a modest spread in 87Sr/86Sr (0.704354–0.707621) and 143Nd/144Nd (0.512639–0.512750). Age-corrected (89 Ma) values for the granodiorite yield relatively unradiogenic Pb (e.g., 207Pb/204Pb 87Sr/86Sr, and positive values of ɛNd (1.00–4.52) that attest to a major contribution of mantle-derived source rocks. Pond sediments and soils have similar Pb isotope signatures and 87Sr/86Sr and 143Nd/144Nd values that resemble the mineralized granodiorites. Glacial events have obscured the recognition of isotope signatures of mineralized rocks in the sediments and soils. Baseline radiogenic isotope compositions, prior to the onset of mining operations, reflect natural erosion, transport and deposition of heterogeneous till sheets that included debris from barren rocks, mineralized granodiorite and sulfides from the Pebble deposit, and other country rocks that pre- and postdate the mineralization events. Isotopic variations suggest that natural weathering of the deposit is generally reflected in these surficial materials. The isotope data provide geochemical constraints to glimpse through the extensive cover and together with other geochemical observations provide a vector to concealed mineralized rocks genetically linked with the Pebble deposit.

  13. Microgranular enclaves in island-arc andesites: A possible link between known epithermal Au and potential porphyry Cu-Au deposits in the Tulasu ore cluster, western Tianshan, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaobo; Xue, Chunji; Symons, David T. A.; Zhang, Zhaochong; Wang, Honggang

    2014-05-01

    The successful exploration for porphyry copper deposit in western Tianshan, Xinjiang, faces great challenge. Tulasu basin is an important epithermal gold ore cluster in western Tianshan, which was formed in a southwest-Pacific-type island-arc setting during the late Paleozoic by the southward subduction of the North Tianshan ocean beneath the Yili plate. Porphyry Cu-Au deposits are possibly to be found at depth or adjacent to these epithermal gold deposits. Some sulfide-mineralized microgranular enclaves of monzonite porphyry and microdiorite were found in andesites of the Tawuerbieke gold district, Tulasu basin. The enclaves are randomly distributed, with generally round or subangular shape and commonly clearly defined within their host andesite, and have a chilled surrounding margin of andesite. The monzonite porphyry enclaves (MPE) exhibit porphyritic texture with the phenocrysts of plagioclase and K-feldspar. The microdiorite enclaves (MDE) are mainly composed of plagioclase and hornblende with an aplitic texture and massive structure. The host andesites show porphyritic texture, with the phenocrysts major of plagioclase, minor of hornblende and clinopyroxene. The groundmass consists of short-column plagioclase and minor clinopyroxene with a hyalopilitic texture. Zircon grains from a MPE sample yield a weighted 206Pb/238U age of 356.2 ± 4.3 Ma (n = 13, MSWD = 1.11), which is effectively coincident with the 360.5 ± 3.4 Ma (n = 20, MSWD = 0.61) of an andesite sample within analytical error, indicating that they were coeval. In addition, the MPE, MDE and the andesite samples share similar normalized incompatible element and rare earth element patterns that are characterized by a pronounced enrichment of large ion lithophile elements and a deficit of high field strength elements. Moreover, the samples show similar Nd isotope compositions to the contemporary andesites and basaltic andesites. Detailed petrology, geochronology and geochemistry studies suggest that

  14. U-Pb zircon, geochemical and Sr-Nd-Hf-O isotopic constraints on age and origin of the ore-bearing intrusions from the Nurkazgan porphyry Cu-Au deposit in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Pan, Hongdi; Seitmuratova, Eleonora; Jakupova, Sholpan

    2016-02-01

    Nurkazgan, located in northeastern Kazakhstan, is a super-large porphyry Cu-Au deposit with 3.9 Mt metal copper and 229 tonnage gold. We report in situ zircon U-Pb age and Hf-O isotope data, whole rock geochemical and Sr-Nd isotopic data for the ore-bearing intrusions from the Nurkazgan deposit. The ore-bearing intrusions include the granodiorite porphyry, quartz diorite porphyry, quartz diorite, and diorite. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating indicates that the granodiorite porphyry and quartz diorite porphyry emplaced at 440 ± 3 Ma and 437 ± 3 Ma, respectively. All host rocks have low initial 87Sr/86Sr ratios (0.70338-0.70439), high whole-rock εNd(t) values (+5.9 to +6.3) and very high zircon εHf(t) values (+13.4 to +16.5), young whole-rock Nd and zircon Hf model ages, and consistent and slightly high zircon O values (+5.7 to +6.7), indicating that the ore-bearing magmas derived from the mantle without old continental crust involvement and without marked sediment contamination during magma emplacement. The granodiorite porphyry and quartz diorite porphyry are enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE) and depleted in high-field strength elements (HFSE), Eu, Ba, Nb, Sr, P and Ti. The diorite and quartz diorite have also LILE and LREE enrichment and HFSE, Nb and Ti depletion, but have not negative Eu, Ba, Sr, and P anomalies. These features suggest that the parental magma of the granodiorite porphyry and quartz diorite porphyry originated from melting of a lithospheric mantle and experienced fractional crystallization, whereas the diorite and quartz diorite has a relatively deeper lithospheric mantle source region and has not experienced strong fractional crystallization. Based on these, together with the coeval ophiolites in the area, we propose that a subduction of the Balkhash-Junggar oceanic plate took place during the Early Silurian and the ore-bearing intrusions and associated Nurkazgan

  15. Three-dimensional distribution of igneous rocks near the Pebble porphyry Cu-Au-Mo deposit in southwestern Alaska: constraints from regional-scale aeromagnetic data

    USGS Publications Warehouse

    Anderson, Eric D.; Zhou, Wei; Li, Yaoguo; Hitzman, Murray W.; Monecke, Thomas; Lang, James R.; Kelley, Karen D.

    2014-01-01

    Aeromagnetic data helped us to understand the 3D distribution of plutonic rocks near the Pebble porphyry copper deposit in southwestern Alaska, USA. Magnetic susceptibility measurements showed that rocks in the Pebble district are more magnetic than rocks of comparable compositions in the Pike Creek–Stuyahok Hills volcano-plutonic complex. The reduced-to-pole transformation of the aeromagnetic data demonstrated that the older rocks in the Pebble district produce strong magnetic anomaly highs. The tilt derivative transformation highlighted northeast-trending lineaments attributed to Tertiary volcanic rocks. Multiscale edge detection delineated near-surface magnetic sources that are mostly outward dipping and coalesce at depth in the Pebble district. The total horizontal gradient of the 10-km upward-continued magnetic data showed an oval, deep magnetic contact along which porphyry deposits occur. Forward and inverse magnetic modeling showed that the magnetic rocks in the Pebble district extend to depths greater than 9 km. Magnetic inversion was constrained by a near-surface, 3D geologic model that is attributed with measured magnetic susceptibilities from various rock types in the region. The inversion results indicated that several near-surface magnetic sources with moderate susceptibilities converge with depth into magnetic bodies with higher susceptibilities. This deep magnetic source appeared to rise toward the surface in several areas. An isosurface value of 0.02 SI was used to depict the magnetic contact between outcropping granodiorite and nonmagnetic sedimentary host rocks. The contact was shown to be outward dipping. At depths around 5 km, nearly the entire model exceeded the isosurface value indicating the limits of nonmagnetic host material. The inversion results showed the presence of a relatively deep, northeast-trending magnetic low that parallels lineaments mapped by the tilt derivative. This deep low represents a strand of the Lake Clark fault.

  16. Devonian and carboniferous arcs of the oyu tolgoi porphyry Cu-Au district, South Gobi region, Mongolia

    USGS Publications Warehouse

    Wainwright, A.J.; Tosdal, R.M.; Forster, C.N.; Kirwin, D.J.; Lewis, P.D.; Wooden, J.L.

    2011-01-01

    The Central Asian orogenic belt consists of microcontinental blocks and mobile belts positioned between the Siberian craton and the Tarim and North China cratons. Extending across Asia for 5000 km, the belt consists of terranes that decrease in age southward away from the Siberian craton. A time-stratigraphic-structural sequence for the rocks is critical to defining the tectonic evolution of the belt. In the Oyu Tolgoi area of the South Gobi Desert (Mongolia), Devonian and Carboniferous rocks record the construction of multiple arcs, formation of a giant porphyry Cu-Au system, exhumation, and polyphase deformation. The oldest rocks are basaltic volcanic and subvolcanic rocks of the Devonian Alagbayan Group intruded by Late Devonian quartz monzodiorite stocks and dikes, which host giant porphyry Cu-Au deposits. The rocks were exhumed, overlain by pyroclastic rocks, and then tectonically buried by marine mafic supracrustal rocks prior to the youngest Devonian granodiorite intrusions. The postmineral Carboniferous Gurvankharaat Group unconformably overlying the deformed terrane consists of effusive, pyroclastic, subvolcanic and volcaniclastic rocks, as well as sedimentary units. The supracrustal rocks underwent polyphase shortening after 330 Ma and prior to 290 Ma. Variations in stratigraphic sequences suggest that the region is underlain by a submarine arc that became emergent during the Upper Devonian and remained subaerial to shallow subaqueous through much of the Carboniferous. Xenocrystic zircons in igneous rocks suggest that the offshore arcs were sufficiently close to ancient crust to have interacted with detritus shed into marine basins, most likely from the Siberian craton and fringing early Paleozoic terranes. ?? 2011 Geological Society of America.

  17. Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia

    USGS Publications Warehouse

    Khashgerel, B.-E.; Rye, R.O.; Hedenquist, J.W.; Kavalieris, I.

    2006-01-01

    The Oyu Tolgoi porphyry Cu-Au system in the South Gobi desert, Mongolia, comprises five deposits that extend over 6 km in a north-northeast-oriented zone. They occur in a middle to late Paleozoic are terrane and are related to Late Devonian quartz monzodiorite intrusions. The Hugo Dummett deposits are the northernmost and deepest, with up to 1,000 m of premineral sedimentary and volcanic cover rock remaining. They are the largest deposits discovered to date and characterized by high-grade copper (>2.5% Cu) and gold (0.5-2 g/t) mineralization associated with intense quartz veining and several phases of quartz monzodiorite intruded into basaltic volcanic host rocks. Sulfide minerals in these deposits are zoned outward from a bornite-dominated core to chalcopyrite, upward to pyrite ?? enargite and covellite at shallower depth. The latter high-sulfidation-state sulfides are hosted by advanced argillic alteration mineral associations. This alteration is restricted mainly to dacitic ash-flow tuff that overlies the basaltic volcanic rock and includes ubiquitous quartz and pyrophyllite, kaolinite, plus late dickite veins, as well as K alunite, Al phosphate-sulfate minerals, zunyite, diaspore, topaz, corundum, and andalusite. A reconnaissance oxygen-hydrogen and sulfur isotope study was undertaken to investigate the origin of several characteristic alteration minerals in the Oyu Tolgoi system, with particular emphasis on the Hugo Dummett deposits. Based on the isotopic composition of O, H, and S (??18O(SO4) = 8.8-20.1???, ??D = -73 to -43???, ??34S = 9.8-17.9???), the alunite formed from condensation of magmatic vapor that ascended to the upper parts of the porphyry hydrothermal system, without involvement of significant amounts of meteoric water. The isotopic data indicate that pyrophyllite (??18O = 6.5-10.9???, ??D = -90 to -106???) formed from a magmatic fluid with a component of meteoric water. Muscovite associated with quartz monzodiorite intrusions occurs in the core

  18. Cretaceous Cu-Au, pyrite, and Fe-oxide-apatite deposits in the Ningwu basin, Lower Yangtze Area, Eastern China

    NASA Astrophysics Data System (ADS)

    Yu, Jin-Jie; Lu, Bang-Cheng; Wang, Tie-Zhu; Che, Lin-Rui

    2015-05-01

    The Cretaceous Ningwu volcanic basin of the Middle and Lower Yangtze River Valley metallogenic belt of eastern China hosts numerous Fe-oxide-apatite, Cu-Au, and pyrite deposits. The mineralization in the Ningwu basin is associated with subvolcanic rocks, consisting of gabbro-diorite porphyry and/or pyroxene diorite. However, the mineralization is associated with subvolcanic and volcanic rock suite belonging to the Niangniangshan Formation in the Tongjing Cu-Au deposit, including nosean-bearing aegirine-augite syenites, quartz syenites, and quartz monzonites. The zoning displayed by the alteration and mineralization comprises: (1) an upper light-colored zone of argillic, carbonate, and pyrite alteration and silicification that is locally associated with pyrite and gold mineralization, (2) a central dark-colored zone of diopside, fluorapatite-magnetite, phlogopite, and garnet alteration associated with fluorapatite-magnetite mineralization, and (3) a lowermost light-colored zone of extensive albite alteration. The Cu-Au and pyrite orebodies are peripheral to the Fe-oxide-apatite deposits in this area and overlie the iron orebodies, including the Meishan Cu-Au deposit in the northern Ningwu basin and the pyrite deposits in the central Ningwu basin. The δ34S values of sulfides from the Fe-oxide-apatite, Cu-Au, and pyrite deposits in the Ningwu basin show large variation, with a mixed sulfur source, including magmatic sulfur and/or a mixture of sulfur derived from a magmatic component, country rock, and thermochemical reduction of sulfate at 200-300 °C. The ore-forming fluids associated with iron mineralization were derived mainly from magmatic fluids, and the late-stage ore-forming fluids related to Cu-Au and pyrite mineralization may have formed by the introduction of cooler meteoric water to the system. The Fe-oxide-apatite, Cu-Au, and pyrite deposits of the Ningwu basin formed in an extensional environment and are associated with a large-scale magmatic

  19. Descriptive and Grade-Tonnage Models and Database for Iron Oxide Cu-Au Deposits

    USGS Publications Warehouse

    Cox, Dennis P.; Singer, Donald A.

    2007-01-01

    Iron oxide Cu-Au deposits are veins and breccia-hosted bodies of hematite and/or magnetite with disseminated Cu + Au ? Ag ? Pd ? Pt ? Ni ? U ? LREE minerals formed in sedimentary or volcano-sedimentary basins intruded by igneous rocks. Deposits are associated with broad redox boundaries and feature sodic alteration of source rocks and potassic alteration of host rocks.

  20. Magmatic and structural controls on porphyry-style Cu-Au-Mo mineralization at Kemess South, Toodoggone District of British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Duuring, Paul; Rowins, Stephen M.; McKinley, Bradley S. M.; Dickinson, Jenni M.; Diakow, Larry J.; Kim, Young-Seog; Creaser, Robert A.

    2009-05-01

    Kemess South is the only Cu-Au-Mo mine in the Toodoggone district and a major Cu and Au producer in British Columbia. Porphyry-style Cu-Au-Mo mineralization is mainly hosted by the tabular, SW-plunging, 199.6 ± 0.6-Ma Maple Leaf granodiorite, which intrudes tightly folded, SW-dipping, Permian Asitka Group siltstone and limestone and homogeneous Triassic Takla Group basalt. Southwest-dipping 194.0 ± 0.4-Ma Toodoggone Formation conglomerate, volcaniclastic, and epiclastic rocks overlie the granodiorite and Asitka Group rocks. Minor Cu-Au-Mo mineralization is hosted by the immediate Takla Group basalt country rock, whereas low-tonnage high-grade Cu zones occur beneath a 30-m-thick leached capping in supergene-altered granodiorite and in exotic positions in overlying Toodoggone Formation conglomerate. Granodiorite has an intrusive contact with mineralized and altered Takla Group basalt but displays a sheared contact with unmineralized and less altered Asitka Group siltstone. The North Block fault is a deposit-scale, E-striking, steeply S-dipping normal fault that juxtaposes the granodiorite/basalt ore body against unmineralized Asitka Group rocks. Younger NW- and NE-striking normal-dextral faults cut all rock types, orebodies, and the North Block fault with displacements of up to 100 m and result in the graben-and-horst-style block faulting of the stratigraphy and ore body. Both basalt and granodiorite host comparable vein sequence and alteration histories, with minor variations in hydrothermal mineral assemblages caused by differing protolith chemistry. Early potassic alteration (and associated early-stage Cu ± Au ± Mo mineralization) is partly replaced by phyllic and intermediate argillic alteration associated with main-stage Cu-Au-Mo mineralization. Two main-stage veins have Re-Os molybdenite ages of 201.3 ± 1.2 and 201.1 ± 1.2 Ma. These mineralization ages overlap the 199.6 ± 0.6-Ma U-Pb zircon crystallization age for the Maple Leaf granodiorite. Late

  1. Geological, fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit, South China: Implications for ore genesis and exploration

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Guang; Ni, Pei; Wang, Ru-Cheng; Zhao, Kui-Dong; Chen, Hui; Ding, Jun-Ying; Zhao, Chao; Cai, Yi-Tao

    2013-09-01

    The Yinshan Cu-Au-Pb-Zn-Ag deposit is located in Dexing, South China. Ore bodies are primarily hosted in low-grade phyllite of the Neoproterozoic Shuangqiaoshan Group along EW- and NNW-striking fault zones. Pb-Zn-Ag mineralization is dictated by Jurassic rhyolitic quartz porphyries (ca. 172 Ma), whereas Cu-Au mineralization is associated with Jurassic dacite porphyries (ca. 170 Ma). The main ore minerals are pyrite, chalcopyrite, galena, sphalerite, tetrahedrite-tennatite, gold, silver, and silver sulphosalt, and the principal gangue minerals are quartz, sericite, calcite, and chlorite. Two-phase liquid-rich (type I), two-phase vapor-rich (type II), and halite-bearing (type III) fluid inclusions can be observed in the hydrothermal quartz-sulfides veins. Type I inclusions are widespread and have homogenization temperatures of 187-303 °C and salinities of 4.2-9.5 wt.% NaCl equivalent in the Pb-Zn-Ag mineralization, and homogenization temperatures of 196-362 °C and salinities of 3.5-9.9 wt.% NaCl equivalent in the Cu-Au mineralization. The pervasive occurrence of type I fluid inclusions with low-moderate temperatures and salinities implies that the mineralizing fluids formed in epithermal environments. The type II and coexisting type III inclusions, from deeper levels below the Cu-Au ore bodies, share similar homogenization temperatures of 317-448 °C and contrasting salinities of 0.2-4.2 and 30.9-36.8 wt.% NaCl equivalent, respectively, which indicates that boiling processes occurred. The sulfur isotopic compositions of sulfides (δ34S = -1.7‰ to +3.2‰) suggest a homogeneous magmatic sulfur source. The lead isotopes of sulfides (206Pb/204Pb = 18.01-18.07; 207Pb/204Pb = 15.55-15.57; and 208Pb/204Pb = 38.03-38.12) are consistent with those of volcanic-subvolcanic rocks (206Pb/204Pb = 18.03-18.10; 207Pb/204Pb = 15.56-15.57; and 208Pb/204Pb = 38.02-38.21), indicating a magmatic origin for lead in the ore. The oxygen and hydrogen isotope compositions (δ18O = +7.8

  2. Preliminary Model of Porphyry Copper Deposits

    USGS Publications Warehouse

    Berger, Byron R.; Ayuso, Robert A.; Wynn, Jeffrey C.; Seal, Robert R., II

    2008-01-01

    The U.S. Geological Survey (USGS) Mineral Resources Program develops mineral-deposit models for application in USGS mineral-resource assessments and other mineral resource-related activities within the USGS as well as for nongovernmental applications. Periodic updates of models are published in order to incorporate new concepts and findings on the occurrence, nature, and origin of specific mineral deposit types. This update is a preliminary model of porphyry copper deposits that begins an update process of porphyry copper models published in USGS Bulletin 1693 in 1986. This update includes a greater variety of deposit attributes than were included in the 1986 model as well as more information about each attribute. It also includes an expanded discussion of geophysical and remote sensing attributes and tools useful in resource evaluations, a summary of current theoretical concepts of porphyry copper deposit genesis, and a summary of the environmental attributes of unmined and mined deposits.

  3. Silurian U-Pb zircon age (LA-ICP-MS) of granitoids from the Zelenodol Cu-porphyry deposit, Southern Urals

    NASA Astrophysics Data System (ADS)

    Grabezhev, A. I.; Ronkin, Yu. L.; Puchkov, V. N.; Shardakova, G. Yu.; Azovskova, O. B.; Gerdes, A.

    2016-01-01

    The Zelenodol porphyry Cu-(Au, Mo) deposit located about 65 km SSW of the city of Chelyabinsk is confined to the western part of the West Uralian Volcanogenic Megazone. The concordant U-Pb age of zircons from ore-bearing island-arc diorite porphyryis 418.3 Â ± 2.9 Ma.

  4. Descriptive and geoenvironmental model for Co-Cu-Au deposits in metasedimentary rocks: Chapter G in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Slack, John F.; Johnson, Craig A.; Causey, J. Douglas; Lund, Karen; Schulz, Klaus J.; Gray, John E.; Eppinger, Robert G.

    2013-01-01

    Additional geologically and compositionally similar deposits are known, but have average Co grades less than 0.1 percent. Most of these deposits contain cobalt-rich pyrite and lack appreciable amounts of distinct Co sulfide and (or) sulfarsenide minerals. Such deposits are not discussed in detail in the following sections, but these deposits may be revelant to the descriptive and genetic models presented below. Examples include the Scadding Au-Co-Cu deposit in Ontario, Canada; the Vähäjoki Co-Cu-Au deposit in Finland; the Tuolugou Co-Au deposit in Qinghai Province, China; the Lala Co-Cu-UREE deposit in Sichuan Province, China; the Guelb Moghrein Cu-Au-Co deposit in Mauritania; and the Great Australia Co-Cu, Greenmount Cu-Au-Co, and Monakoff Cu-Au-Co-UAg deposits in Queensland, Australia. Detailed information on these deposits is presented in appendix 2.

  5. The giant Pebble Cu-Au-Mo deposit and surrounding region, southwest Alaska: introduction

    USGS Publications Warehouse

    Kelley, Karen D.; Lang, James R.; Eppinger, Robert G.

    2013-01-01

    The Pebble deposit is located about 320 km southwest of and 27 km northwest of the village of Iliamna in Alaska (Fig. 1A). It is one of the largest porphyry deposits in terms of contained Cu (Fig. 2A) and it has the largest Au endowment of any porphyry deposit in the world (Fig. 2B). The deposit comprises the Pebble West and Pebble East zones that represent two coeval hydrothermal centers within a single system (Lang et al., 2013). Together the measured and indicated resources total 5,942 million metric tons (Mt) at 0.42% Cu, 0.35 g/t Au, and 250 ppm Mo with an inferred resource of 4,835 Mt at 0.24% Cu, 0.26 g/t Au, and 215 ppm Mo. In addition, the deposit contains significant concentrations of Ag, Pd, and Re (Northern Dynasty Minerals, 2011).

  6. Climax-Type Porphyry Molybdenum Deposits

    USGS Publications Warehouse

    Ludington, Steve; Plumlee, Geoffrey S.

    2009-01-01

    Climax-type porphyry molybdenum deposits, as defined here, are extremely rare; thirteen deposits are known, all in western North America and ranging in age from Late Cretaceous to mainly Tertiary. They are consistently found in a postsubduction, extensional tectonic setting and are invariably associated with A-type granites that formed after peak activity of a magmatic cycle. The deposits consist of ore shells of quartz-molybdenite stockwork veins that lie above and surrounding the apices of cupola-like, highly evolved, calc-alkaline granite and subvolcanic rhyolite-porphyry bodies. These plutons are invariably enriched in fluorine (commonly >1 percent), rubidium (commonly >500 parts per million), and niobium-tantalum (Nb commonly >50 parts per million). The deposits are relatively high grade (typically 0.1-0.3 percent Mo) and may be very large (typically 100-1,000 million tons). Molybdenum, as MoS2, is the primary commodity in all known deposits. The effect on surface-water quality owing to natural influx of water or sediment from a Climax-type mineralized area can extend many kilometers downstream from the mineralized area. Waste piles composed of quartz-silica-pyrite altered rocks will likely produce acidic drainage waters. The potential exists for concentrations of fluorine or rare metals in surface water and groundwater to exceed recommended limits for human consumption near both mined and unmined Climax-type deposits.

  7. Structural characteristics of chalcopyrite from a Cu(Au) ore deposit in the Carajás Mineral Province, Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro, Andreza Aparecida; Lima, Diana Quintão; Duarte, Hélio Anderson; Murad, Enver; Pereira, Márcio César; de Freitas Suita, Marcos Tadeu; Ardisson, José Domingos; Fabris, José Domingos

    2011-11-01

    Mössbauer spectra and X-ray diffraction data show a chalcopyrite from the Cristalino Cu(Au) deposit in the Carajás Mineral Province in northern Brazil to consist of a single, tetragonal phase. This is in stark contrast to a previously described chalcopyrite from the Camaquã copper mine in southern Brazil, obviously reflecting differences in mineral (and thus ore deposit) genesis.

  8. Abundances of platinum group elements in native sulfur condensates from the Niuatahi-Motutahi submarine volcano, Tonga rear arc: Implications for PGE mineralization in porphyry deposits

    NASA Astrophysics Data System (ADS)

    Park, Jung-Woo; Campbell, Ian H.; Kim, Jonguk

    2016-02-01

    Some porphyry Cu-Au deposits, which are enriched in Pd, are potentially an economic source of Pd. Magmatic volatile phases are thought to transport the platinum group elements (PGEs) from the porphyry source magma to the point of deposition. However, the compatibilities of the PGEs in magmatic volatile phases are poorly constrained. We report PGE and Re contents in native sulfur condensates and associated altered dacites from the Niuatahi-Motutahi submarine volcano, Tonga rear arc, in order to determine the compatibility of PGEs and Re in magmatic volatile phases, and their mobility during secondary hydrothermal alteration. The native sulfur we analyzed is the condensate of a magmatic volatile phase exsolved from the Niuatahi-Motutahi magma. The PGEs are moderately enriched in the sulfur condensates in comparison to the associated fresh dacite, with enrichment factors of 11-285, whereas Au, Cu and Re are strongly enriched with enrichment factors of ∼20,000, ∼5000 and ∼800 respectively. Although the PGEs are moderately compatible into magmatic volatile phases, their compatibility is significantly lower than that of Au, Cu and Re. Furthermore, the compatibility of PGEs decrease in the order: Ru > Pt > Ir > Pd. This trend is also observed in condensates and sublimates from other localities. PGE mineralization in porphyry Cu-Au deposits is characterized by substantially higher Pd/Pt (∼7-60) and Pd/Ir (∼100-10,500) than typical orthomagmatic sulfide deposits (e.g. Pd/Pt ∼0.6 and Pd/Ir ∼20 for the Bushveld). It has previously been suggested that the high mobility of Pd, relative to the other PGEs, may account for the preferential enrichment of Pd in porphyry Cu-Au deposits. However, the low compatibility of Pd in the volatile phase relative to the other PGEs, shown in this study, invalidates this explanation. We suggest that the PGE geochemistry of Pd-rich Cu-Au deposits is principally derived from the PGE characteristics of the magma from which the ore

  9. A Long-Lived Porphyry Ore Deposit and Associated Upper Crustal Silicic Magma Body, Bajo de la Alumbrera, Argentina

    NASA Astrophysics Data System (ADS)

    Harris, A. C.; Allen, C. M.; Reiners, P. W.; Dunlap, W. J.; Cooke, D. R.; Campbell, I. H.; White, N. C.

    2004-05-01

    Porphyry Cu deposits form within and adjacent to small porphyritic intrusions that are apophyses to larger silicic magma bodies that reside in the upper parts of the Earth's crusts. Centred on these intrusions are hydrothermal systems of exsolved magmatic fluid with a carapace of convectively circulating meteoric water. We have applied several different dating techniques to assess the longevity of the magmatic-hydrothermal system and to define the cooling history of porphyry intrusions at the Bajo de la Alumbrera porphyry Cu-Au deposit, Argentina. The closure temperatures of these techniques range from 800oC (zircon U-Pb) to ~70oC (apatite (U-Th)/He; Fig. 1). The resulting cooling history indicates that the magmatic-hydrothermal system cooled to ca. 200oC by ~1.5 m.y. after the last porphyry intrusion (i.e., 6.96±0.09 Ma; U-Pb zircon age). Based on (U-Th)/He apatite data (closure temperature ~60-70oC), exposure and cessation of the system occurred before 4 Ma. The longevity of the magmatic-hydrothermal system indicated by these results is inconsistent with accepted mechanisms for porphyry Cu deposit formation. Depending on wallrock permeability, depth and cooling method, a 2 km wide by 3 km high intrusion has been predicted to cool between 0.01 to 0.1 m.y. (marked as the grey interval; Cathles et al., 1997 Economic Geology). We have obtained numerous age determinations younger than the U-Pb zircon age of the last known intrusion at Bajo de la Alumbrera. These imply that simple cooling of the small, mineralized porphyries did not happen. For the magmatic-hydrothermal system to have been sustained for longer than 0.1 m.y., either 1) younger small intrusions have been episodically emplaced below the youngest known intrusions, thus prolonging heat flow, or 2) fluids derived from a deeper and larger parental intrusion have been episodically discharged through the ore deposit long after the porphyry intrusion had lost its available heat. In either case, the longevity of

  10. The Myszkow porphyry copper-molybdenum deposit, Poland

    USGS Publications Warehouse

    Chaffee, M.A.; Eppinger, R.G.; Lason, K.; Slosarz, J.; Podemski, M.

    1994-01-01

    The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age. -Authors

  11. Gold-rich sulfide melt inclusions in xenocrysts from a mid-crustal magma chamber, Mt. Milligan porphyry deposit, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Hanley, J. J.; Guillong, M.

    2009-05-01

    Very coarse-grained amphibole xenocrysts (potassian magnesiohastingsite) hosted in an early monzonite stock at the Mt Milligan Cu-Au porphyry deposit, British Columbia, Canada contain coeval sulfide and silicate melt inclusions of primary origin. The sulfide melt inclusions have a bulk composition comparable to Cu-rich ISS. Late growth zones in the amphibole are devoid of sulfide inclusions and contain only low salinity, chalcopyrite-bearing fluid inclusions(average 7.4 wt% NaCleq.). Thermobarometry constrains the minimum conditions of sulfide entrapment (amphibole crystallization) to ˜8 kbar and ˜700°C. LA-ICPMS analyses of 22 sulfide melt inclusions show that it was highly enriched in Au (50± 20 ppm, 1σ), Ag (140± 70 ppm, 1σ) and Ni (5000 ± 3000 ppm, 1σ). Ratios of Cu/Au (7500± 2500, 1σ) and Au/Ag (0.45± 0.24, 1σ) are identical to metal ratios in porphyry- stage veins, demonstrating that these metals were not fractionated from one another during suspected volatile exsolution, fluid-melt partitioning, and subsequent transport and precipitation of ore metals. The extremely Au- rich composition of the sulfide melt may reflect fractional crystallization of the sulfide liquid prior to entrapment in the amphibole. Both the xenocrysts and rare, high Mg, alkali basalt xenoliths hosted in the intrusions are depleted in Cr, Co, Ni and Cu, reflecting the sequestering of the base metals into a sulfide liquid in a mid- crustal magma chamber where amphibole and Cr-spinel were cumulus phases. The results of this study show that a Cu-Au-rich sulfide melt coexisted with a amphibole-saturated alkalic basaltic liquid in mid-crustal magma chamber prior to the emplacement of the main intrusions and associated porphyry stage mineralization at Mt. Milligan. This sulfide melt appears to have destabilized with the appearance (exsolution) of a single-phase low salinity aqueous fluid. Identification and analysis of ore metals in sulfide melt inclusions in relatively common

  12. Triggers for the formation of porphyry deposits in magmatic arcs

    NASA Astrophysics Data System (ADS)

    Wilkinson, Jamie

    2014-05-01

    Porphyry ore deposits source much of the copper, molybdenum, gold and silver utilized by humankind. They typically form in magmatic arcs above subduction zones via a series of linked processes, beginning with magma generation in the mantle and ending with the precipitation of metals from hydrous fluids in the shallow crust. In this review, a hierarchy of four key "triggers" involved in the formation of porphyry deposits is outlined. Trigger 1 (100-1000 km scale) is a process of cyclic refertilization and enrichment of magmas in metals and volatiles in deep crustal sills trapped for long time periods in compressional tectonic settings. Trigger 2 (10 to 100 km scale) is the process of sulphide saturation in magmas that can both enhance and destroy ore-forming potential by stripping chalcophile metals from silicate melts, but also, in this way, pre-concentrating them. Trigger 3 (1-10 km scale) relates to the efficient transfer of metals into hydrothermal fluids exsolving from porphyry magmas, in particular the potential role of melt reduction in enhancing melt-volatile partitioning. Trigger 4 (1-5 km scale) identifies processes that are currently thought to be critical for the efficient precipitation of ore minerals in the deposit environment. Although all processes are required to a greater or lesser degree, it is argued that trigger 2, as an over-riding mechanism, can best explain the restriction of large porphyry deposits, highly enriched in chalcophile metals and sulphur, to specific arc segments and time periods. Consequently, recognition of the fingerprint of sulphide saturation in igneous rocks may help mineral exploration companies to identify parts of magmatic arcs particularly predisposed to porphyry ore formation.

  13. Recognition of the geologic framework of porphyry deposits on ERTS-1 imagery. [copper/molybdenum porphyrys

    NASA Technical Reports Server (NTRS)

    Wilson, J. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Three major tectonic provinces have been mapped by geologic photointerpretation of ERTS-1 imagery over the Ok Tedi test site. These areas can be characterized as follows: (1) A broad area of low relief and mature topography suggesting a history of relative tectonic stability. (2) A narrow belt of moderate to high relief, broad open folds and prominent linear features. The Mount Fubilan-type porphyry copper deposits and recent volcanic effusive centers occur in this province. (3) A heterogeneous zone of high relief and high drainage density suggestive of relative structural complexity.

  14. Integrated geophysical imaging of a concealed mineral deposit: a case study of the world-class Pebble porphyry deposit in southwestern Alaska

    USGS Publications Warehouse

    Shah, Anjana K.; Bedrosian, Paul A.; Anderson, Eric D.; Kelley, Karen D.; Lang, James

    2013-01-01

    We combined aeromagnetic, induced polarization, magnetotelluric, and gravity surveys as well as drillhole geologic, alteration, magnetic susceptibility, and density data for exploration and characterization of the Cu-Au-Mo Pebble porphyry deposit. This undeveloped deposit is almost completely concealed by postmineralization sedimentary and volcanic rocks, presenting an exploration challenge. Individual geophysical methods primarily assist regional characterization. Positive chargeability and conductivity anomalies are observed over a broad region surrounding the deposit, likely representing sulfide minerals that accumulated during multiple stages of hydrothermal alteration. The mineralized area occupies only a small part of the chargeability anomaly because sulfide precipitation was not unique to the deposit, and mafic rocks also exhibit strong chargeability. Conductivity anomalies similarly reflect widespread sulfides as well as water-saturated glacial sediments. Mineralogical and magnetic susceptibility data indicate magnetite destruction primarily within the Cu-Au-Mo mineralized area. The magnetic field does not show a corresponding anomaly low but the analytic signal does in areas where the deposit is not covered by postmineralization igneous rocks. The analytic signal shows similar lows over sedimentary rocks outside of the mineralized area, however, and cannot uniquely distinguish the deposit. We find that the intersection of positive chargeability anomalies with analytic signal lows, indicating elevated sulfide concentrations but low magnetite at shallow depths, roughly delineates the deposit where it is covered only by glacial sediments. Neither chargeability highs nor analytic signal lows are present where the deposit is covered by several hundred meters of sedimentary and volcanic rocks, but a 3D resistivity model derived from magnetotelluric data shows a corresponding zone of higher conductivity. Gravity data highlight geologic features within the

  15. Melt inclusions in veins: linking magmas and porphyry Cu deposits.

    PubMed

    Harris, Anthony C; Kamenetsky, Vadim S; White, Noel C; van Achterbergh, Esmé; Ryan, Chris G

    2003-12-19

    At a porphyry copper-gold deposit in Bajo de la Alumbrera, Argentina, silicate-melt inclusions coexist with hypersaline liquid- and vapor-rich inclusions in the earliest magmatic-hydrothermal quartz veins. Copper concentrations of the hypersaline liquid and vapor inclusions reached maxima of 10.0 weight % (wt %) and 4.5 wt %, respectively. These unusually copper-rich inclusions are considered to be the most primitive ore fluid found thus far. Their preservation with coexisting melt allows for the direct quantification of important oreforming processes, including determination of bulk partition coefficients of metals from magma into ore-forming magmatic volatile phases. PMID:14684818

  16. Porphyry molybdenum deposits in the Tianshan-Xingmeng orogenic belt, northern China

    NASA Astrophysics Data System (ADS)

    Zeng, Qingdong; Qin, Kezhang; Liu, Jianming; Li, Guangming; Zhai, Mingguo; Chu, Shaoxiong; Guo, Yunpeng

    2015-06-01

    Molybdenum (Mo) exploration activity in China has increased tremendously over the past decade, and China is now known to have the largest Mo reserves in the world. The Tianshan-Xingmeng orogenic belt, the second largest Mo metallogenic belt, possesses over 8.2 Mt of Mo reserves. Porphyry Mo deposits contain 99 % of the Mo reserves in the Tianshan-Xingmeng orogenic belt; other Mo deposits contain 1 % of the Mo reserves. Five subtypes of the porphyry Mo deposits can be distinguished by deposit associations, such as Mo, Mo-Cu, Mo-W, Mo-Pb-Zn-Ag, and Cu-Mo deposits. These porphyry Mo deposits are formed at different stages: during the Ordovician, Devonian, Carboniferous, Late Permian, Triassic, Jurassic, and Cretaceous Periods. The polystage porphyry Mo mineralizations indicate that polystage tectonic-magmatic activity occurred in the orogenic belt. The Ordovician-Carboniferous porphyry Cu-Mo deposits are formed in an island-arc setting; the Late Permian porphyry Mo deposits are formed in a syn-collisional tectonic setting; and the Triassic porphyry Mo deposits are formed in a syn-collisional to post-collisional tectonic setting. The Ordovician-Triassic porphyry deposits are related to the Paleo-Asian Ocean tectonic system. The Jurassic porphyry Mo deposits are formed at the eastern margin of the Asian continent and are associated with a Paleo-Pacific plate-subduction tectonic setting. Cretaceous porphyry Mo deposits are formed in a lithospheric thinning setting and are related to the rollback of the Paleo-Pacific subduction plate.

  17. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (<10 vol.% vapor) and co-existing low-salinity aqueous vapor (<20 vol.% liquid) inclusions. Results indicate that vapor inclusions have higher concentrations of Cu (typically 1000's of ppm; max. 7277 ppm) compared to brine inclusions (typically 100's of ppm). Brine inclusions also are much higher in Cl (Na), K, Ca, Mn, Zn, and Fe. Only Pb concentrations approach those in the vapor. Metal ratios such as Cu/Fe and Cu/Zn are 2 to 167 times higher in the vapor compared with the brine inclusions. Cu/Pb ratios are 2 to 15 times higher in the vapor than in the brine. PIXE microanalysis for the ~617 Ma 17 Mile Hill deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (<10 vol.%) bubble of carbonic fluid, and adjacent "carbonic" inclusions, which have a thin rim of aqueous liquid (<10 vol.%) wetting the

  18. Petrogenesis and metallogenic setting of the Habo porphyry Cu-(Mo-Au) deposit, Yunnan, China

    NASA Astrophysics Data System (ADS)

    Zhu, Xiangping; Mo, Xuanxue; White, Noel C.; Zhang, Bo; Sun, Mingxiang; Wang, Shuxian; Zhao, Sili; Yang, Yong

    2013-04-01

    Although most porphyry-type deposits are associated with subduction-related magmas within magmatic arc settings, recent research has identified a number of porphyry-type deposits that formed in post-subduction tectonic settings. The newly discovered Habo porphyry Cu-(Mo-Au) deposit in Yunnan, China, formed in a post-subduction tectonic setting and is located in the southwest of the Cenozoic Ailao Shan-Red River continental collision zone. The deposit is associated with the Habo South granite pluton, which consists of three mineralization-related quartz monzonite porphyries and a post-mineralization diorite porphyry. Zircons from the Habo South granite and quartz monzonite porphyries were analyzed by in situ U-Pb LA-ICP-MS, yielding a similiar age of 36 Ma, with molybdenite Re-Os isotope dating indicating that the Habo porphyry deposit formed at 35.5 Ma. Both magmatism and the associated mineralization at Habo are coeval with porphyry copper deposits in the Yulong metallogenic belt of Eastern Tibet. The Habo South granite and porphyries have SiO2 concentrations of 67.28-73.44 wt.%, MgO concentrations of <1.5 wt.%, Al2O3 concentrations around 15 wt.%, Al2O3/(CaO + Na2O + K2O) (A/CNK) ratios of >1.1, K2O + Na2O concentrations generally between 7 and 9 wt.%, and K2O/Na2O ratios of >1.4, showing indicative of high-K magmas. The Habo South granite and quartz monzonite porphyries are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), and depleted in heavy rare earth elements (HREE) and high field strength elements (HFSE), with high Sr and low Y concentrations. They have initial 87Sr/86Sr values of 0.7071-0.7083, with ɛNd(t) values from -5.3 to -3.7. These features are indicative of lower-crust derived adakitic magmas, and are similar to those of mineralized porphyries in the Yulong copper belt in Eastern Tibet. This mineralogical, geochemical, and isotope evidence strongly suggests that the magmas that formed both porphyries and the

  19. Rhenium in porphyry copper deposits of the urals

    NASA Astrophysics Data System (ADS)

    Grabezhev, A. I.

    2013-02-01

    The overwhelming majority of porphyry Mo-Au-Cu deposits in the Urals are related to the low-K quartz diorite minor intrusions of the island-arc type, which were formed from Silurian Middle-Late Carboniferous. In the South Urals, the Cu/Mo ratio of ore decreases eastward along with enrichment in Re. At the same time, molybdenite is depleted in this metal in compliance with more sialic crust and potassium content in ore-bearing dioritic rocks. Quartz diorites at the highest-Re deposits contain 1-2 wt % K2O. At most Early-Middle Devonian deposits and occurrences of the western Tagil-Magnitogorsk-West Mugodzhary femic megazone, molybdenite is sporadic. The Re content in rocks was mainly determined using the kinetic method and to a lesser extent with ICP-MS. A Cameca SX-100 microprobe was also used for study of molybdenite. The Cu/Mo ratio of ore exceeds 600; the Mo content is commonly 1-15 ppm (occasionally up to 30 ppm and higher); the Re content is up to 0.01-0.04 ppm, sporadically increasing to 0.08-0.17 ppm. At the same time, the Re content in molybdenite often reaches 0.2-0.4 wt %. The highest Re concentration was established in the ore of the largest Mikheevsky deposit formed in the Late Devonian-Early Carboniferous and localized in the easternmost part of the East Ural sialic-femic megazone. The Re content in the orebodies of this deposit often reaches 0.2-0.5 ppm (up to 1.4-2.7 ppm) and 0.21 wt % in molybdenite. The average Mo grade of ore is 80 ppm and Cu/Mo ratio is 66. These data and Sr isotopic composition of ore-bearing granitoid and metasomatic rocks [(87Sr/86Sr)t = 0.7038-0.7051; (ɛNd)t = 3-7] testify to the mantle source of matter with insignificant admixture of crustal material. The same is apparently valid for Re and Cu in contrast to Mo. This statement is corroborated by the inverse correlation between Cu/Mo and Mo/Re ratios in the ore. Fluid-crystal fractionation of ore-bearing dioritic rocks is accompanied by enrichment of ore in Mo and by

  20. Investigation on the age of mineralization in the Sungun porphyry Cu-Mo deposit, NW Iran with a regional metallogenic perspective

    NASA Astrophysics Data System (ADS)

    Simmonds, Vartan; Moazzen, Mohssen; Mathur, Ryan

    2016-04-01

    , Masjed Daghi and Niaz deposits and prospects (20-22 Ma). In this regard and considering the available age data, this event can be considered as the third Cu-Mo metallogenic epoch in NW Iran. Meanwhile, mineralization in Sungun is older than all the porphyry Cu-Mo mineralization across the central and SE parts of UDMA (except for Bondar Hanza PCD in Kerman zone with the age of 28.71±0.46 to 28.06±0.47 Ma [2]). Therefore, these ages indicate that collision between the Arabian and Iranian plates was dischronous, being earlier in NW Iran and later in SE Iran, which can be resulted from the oblique convergence of the plates. References [1] Berberian, M. and King, GCP. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210-265. [2] Aghazadeh, M. et al. (2015). Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geology Reviews, 70, 385-406. [3] Moritz, R. et al. (2012). Diversity of geodynamic settings during Cu, Au and Mo ore formation in the Lesser Caucasus: New age Constraints. Proceedings of 1st Triennial EMC Meeting, Frankfurt, Germany.

  1. Qian'echong low-F porphyry Mo deposits in the Dabie Mountains, central China

    NASA Astrophysics Data System (ADS)

    Mi, Mei; Li, Cong-ying; Sun, Wei-dong

    2015-12-01

    The Qian'echong Mo deposit is a large porphyry Mo deposit located in the northwest Dabie Mountains, central China, with proven Mo reserves of 741 Mt at 0.081%. Chondrite-normalized REE patterns of most zircon from samples QEC002, 003, 004 and 011 show HREE enrichment with distinctive positive Ce and moderately negative Eu anomalies, which are typical of magmatic zircon in porphyry deposits. Zircon grains from sample QEC001 are all hydrothermal in origin, whereas there are only several hydrothermal zircons in the other samples. The Ti-in-zircon thermometer yields temperatures of 700-740 °C for the magmatic zircon. The Ce4 +/Ce3 + calculated from the Ce anomaly is a sensitive and robust indicator of magmatic oxidation status. Magmatic zircon have Ce4 +/Ce3 + and (Eu/Eu*)N ratios ranging between 10-577 and 0.2-1.3, respectively. Compared to the Shapinggou deposit (Climax type) also in the Dabie Mountains, the Qian'echong zircon has systematically lower Ce4 +/Ce3 +. Apatite from the Qian'echong deposit belongs to the F-apatite variety, with fluorine concentrations varying between 2.13-4.50% and Cl concentrations between 0.01-0.28%. Whole rock samples of the porphyry from the Qian'echong deposit have F contents of 360-1230 ppm. The porphyry intrusion is consistently associated with calc-alkaline granitic to granodioritic porphyries, with lower F, Nb, and Ta concentrations, and systematically lower Mo contents than the Climax-type deposits. All these characteristics are similar to other low-F porphyry Mo deposits along the eastern Pacific margin. Fluorine is mainly hosted in phengite during plate subduction, which may decompose far beneath the surface of the subduction zone. Therefore, high F deposits may be interpreted as locating the farthermost position reached by the subducting slab. Nevertheless, the F contents of the Qian'echong deposit is much higher than in adjacent barren granites, and may have incorporated additional F from the subduction slab. Given that the

  2. El Salvador, Chile porphyry copper deposit revisited: Geologic and geochronologic framework

    USGS Publications Warehouse

    Cornejo, P.; Tosdal, R.M.; Mpodozis, C.; Tomlinson, A.J.; Rivera, O.; Fanning, C.M.

    1997-01-01

    The Eocene (42 to 41 Ma) El Salvador porphyry copper deposit in the Indio Muerto district, northern Chile (26?? 15??? S Lat.), formerly thought to have formed at the culmination of a 9-m.y. period of episodic magmatism, is shown by new mapping, U-Pb and K-Ar geochronology, and petrologic data to have formed during the younger of two distinct but superposed magmatic events - a Paleocene (???63 to 58 Ma) and an Eocene (44 to 41 Ma) event. In the district, high-K Paleocene volcano-plutonic activity was characterized by a variety of eruptive styles and magmatic compositions, including a collapse caldera associated with explosive rhyolitic magmatism (El Salvador trap-door caldera), a post-collapse rhyolite dome field (Cerro Indio Muerto), and andesitic-trachyandesitic stratovolcanos (Kilo??metro Catorce-Los Amarillos sequence). Precaldera basement faults were reactivated during Paleocene volcanism as part of the collapse margin of the caldera. Beneath Cerro Indio Muerto, where the porphyry Cu deposit subsequently formed, the intersection of two major basement faults and the NNE-striking rotational axis of tilted ignimbrites of the Paleocene El Salvador caldera localized emplacement of post-collapse rhyolite domes and peripheral dikes and sills. Subsequent Eocene rhyolitic and granodioritic-dacitic porphyries intruded ???14 m.y. after cessation of Paleocene magmatism along the same NNE-striking structural belt through Cerro Indio Muerto as did the post-collapse Paleocene rhyolite domes. Eocene plutonism over a 3-m.y. period was contemporaneous with NW-SE-directed shortening associated with regional sinistral transpression along the Sierra Castillo fault, lying ???10 km to the east. Older Eocene rhyolitic porphyries in the Indio Muerto district were emplaced between 44 and 43 Ma, and have a small uneconomic Cu center associated with a porphyry at Old Camp. The oldest granodioritic-dacitic porphyries also were emplaced at ???44 to 43 Ma, but their petrogenetic relation to

  3. Fluid Inclusion characteristics of syn-late orogenic Co-Ni-Cu-Au deposits in the Siegerland District of the Rhenish Massif, Germany

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, Christoph; Hellmann, André; Meyer, Franz Michael

    2013-04-01

    The Siegerland District is located in the fold-and-thrust-belt of the Rhenish Massif and hosts various syn- late orogenic vein-hosted hydrothermal mineralization types. Peak-metamorphism and deformation occurred at 312-316 ± 10 Ma (Ahrendt et al., 1978) at pT-conditions of 280 - 320 °C and 0.7 - 1.4 kbar (Hein, 1993). The district is known for synorogenic siderite-quartz mineralization formed during peak-metamorphic conditions. At least 4 syn-late orogenic mineralization types are distinguished: Co-Ni-Cu-Au, Pb-Zn-Cu, Sb-Au and hematite-digenite-bornite mineralization (Hellmann et al., 2012b). Co-Ni-Cu-Au mineralization of the Siegerland District belongs to the recently defined class of metasediment hosted synorogenic Co-Cu-Au deposits (i.e. Slack et al, 2010). Ore minerals are Fe-Co-Ni sulpharsenides, bearing invisible gold, chalcopyrite, and minor As-bearing pyrite. The gangue is quartz. The alteration mineralogy comprises chlorite, illite-muscovite and quartz. The epigenetic quartz veins are closely related to the formation of reverse faults (Hellmann et al., 2011a). Microthermometric studies of fluid inclusions concerning the relationship between mineralization and microstructures have not been done so far for this deposit-class and this will be addressed here. Fluid inclusions are investigated in hydrothermally formed vein-quartz, selected from Co-Ni-Cu-Au mineralization bearing veins showing only minor overprints by later mineralization types. Two quartz generations are distinguished: subhedral quartz-I showing growth zonation and fine grained, recrystallized- and newly formed quartz-II grains forming irregular masses and fracture fillings in quartz-I. Co-Ni-Fe sulpharsenides and chalcopyrite are closely intergrown with quartz-II, implying their contemperaneous formation. However, fluid inclusions in quartz-II are often small, therefore fluid inclusions in quartz-I have been mostly investigated. In total, 180 inclusions from 4 different deposits have been

  4. Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz

    USGS Publications Warehouse

    Mercer, Celestine N.; Reed, Mark H.; Mercer, Cameron M.

    2015-01-01

    Porphyry dikes and hydrothermal veins from the porphyry Cu-Mo deposit at Butte, Montana, contain multiple generations of quartz that are distinct in scanning electron microscope-cathodoluminescence (SEM-CL) images and in Ti concentrations. A comparison of microprobe trace element profiles and maps to SEM-CL images shows that the concentration of Ti in quartz correlates positively with CL brightness but Al, K, and Fe do not. After calibrating CL brightness in relation to Ti concentration, we use the brightness gradient between different quartz generations as a proxy for Ti gradients that we model to determine time scales of quartz formation and cooling. Model results indicate that time scales of porphyry magma residence are ~1,000s of years and time scales from porphyry quartz phenocryst rim formation to porphyry dike injection and cooling are ~10s of years. Time scales for the formation and cooling of various generations of hydrothermal vein quartz range from 10s to 10,000s of years. These time scales are considerably shorter than the ~0.6 m.y. overall time frame for each porphyry-style mineralization pulse determined from isotopic studies at Butte, Montana. Simple heat conduction models provide a temporal reference point to compare chemical diffusion time scales, and we find that they support short dike and vein formation time scales. We interpret these relatively short time scales to indicate that the Butte porphyry deposit formed by short-lived episodes of hydrofracturing, dike injection, and vein formation, each with discrete thermal pulses, which repeated over the ~3 m.y. generation of the deposit.

  5. New geologic, fluid inclusion and stable isotope studies on the controversial Igarapé Bahia Cu-Au deposit, Carajás Province, Brazil

    NASA Astrophysics Data System (ADS)

    Dreher, Ana M.; Xavier, Roberto P.; Taylor, Bruce E.; Martini, Sérgio L.

    2008-02-01

    The Igarapé Bahia Cu-Au deposit in the Carajás Province, Brazil, is hosted by steeply dipping metavolcano-sedimentary rocks of the Igarapé Bahia Group. This group consists of a low greenschist grade unit of the Archean (˜2,750 Ma) Itacaiúnas Supergroup, in which other important Cu-Au and iron ore deposits of the Carajás region are also hosted. The orebody at Igarapé Bahia is a fragmental rock unit situated between chloritized basalt, with associated hyaloclastite, banded iron formation (BIF), and chert in the footwall and mainly coarse- to fine-grained turbidites in the hanging wall. The fragmental rock unit is a nearly concordant, 2 km long and 30-250 m thick orebody made up of heterolithic, usually matrix-supported rocks composed mainly of coarse basalt, BIF, and chert clasts derived from the footwall unit. Mineralization is confined to the fine-grained matrix and comprises disseminated to massive chalcopyrite accompanied by magnetite, gold, U- and light rare earth element (LREE)-minerals, and minor other sulfides like bornite, molybdenite, cobaltite, digenite, and pyrite. Gangue minerals include siderite, chlorite, amphibole, tourmaline, quartz, stilpnomelane, epidote, and apatite. A less important mineralization style at Igarapé Bahia is represented by late quartz-chalcopyrite-calcite veins that crosscut all rocks in the deposit area. Fluid inclusions trapped in a quartz cavity in the ore unit indicate that saline aqueous fluids (5 to 45 wt% NaCl + CaCl2 equiv), together with carbonic (CO2 ± CH4) and low-salinity aqueous carbonic (6 wt% NaCl equiv) fluids, were involved in the mineralization process. Carbonates from the fragmental layer have δ13C values from -6.7 to -13.4 per mil that indicate their origin from organic and possibly also from magmatic carbon. The δ34S values for chalcopyrite range from -1.1 to 5.6 per mil with an outlier at -10.8 per mil, implying that most sulfur is magmatic or leached from magmatic rocks, whereas a limited

  6. Composition and source of salinity of ore-bearing fluids in Cu-Au systems of the Carajás Mineral Province, Brazil

    USGS Publications Warehouse

    Xavier, Roberto; Rusk, Brian; Emsbo, Poul; Monteiro, Lena

    2009-01-01

    The composition and Cl/Br – NaCl ratios of highly saline aqueous inclusions from large tonnage (> 100 t) IOCG deposits (Sossego, Alvo 118, and Igarapé Bahia) and a Paleoproterozoic intrusion-related Cu-Au-(Mo-W-Bi-Sn) deposit (Breves; < 50 Mt)) in the Carajás Mineral Province have been analysed by LA-ICP-MS and ion chromatography. In both Cu-Au systems, brine inclusions are Ca-dominated (5 to 10 times more than in porphyry Cu-Au fluids), and contain percent level concentrations of Na and K. IOCG inclusion fluids, however, contain higher Sr, Ba, Pb, and Zn concentrations, but significantly less Bi, than the intrusion-related Breves inclusion fluids. Cu is consistently below detection limits in brine inclusions from the IOCG and intrusion-related systems and Fe was not detected in the latter. Cl/Br and Na/Cl ratios of the IOCG inclusion fluids range from entirely evaporative brines (bittern fluids; e.g. Igarapé Bahia and Alvo 118) to values that indicate mixing with magma-derived brines. Cl/Br and Na/Cl ratios of the Breves inclusion fluids strongly suggest the involvement of magmatic brines, but that possibly also incorporated bittern fluids. Collectively, these data demonstrate that residual evaporative and magmatic brines were important components of the fluid regime involved in the formation of Cu-Au systems in the Carajás Mineral Province.

  7. Porphyry copper deposits of the world: database, map, and grade and tonnage models

    USGS Publications Warehouse

    Singer, Donald A.; Berger, Vladimir Iosifovich; Moring, Barry C.

    2005-01-01

    Mineral deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types are significantly different, and (2) many types occur in different geologic settings that can be identified from geologic maps. Mineral deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables or for robust estimation of undiscovered deposits-thus we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral deposit models play the central role in transforming geoscience information to a form useful to policy makers. The foundation of mineral deposit models is information about known deposits-the purpose of this publication is to make this kind of information available in digital form for porphyry copper deposits. This report is an update of an earlier publication about porphyry copper deposits. In this report we have added 84 new porphyry copper deposits and removed 12 deposits. In addition, some errors have been corrected and a number of deposits have had some information, such as grades, tonnages, locations, or ages revised. This publication contains a computer file of information on porphyry copper deposits from around the world. It also presents new grade and tonnage models for porphyry copper deposits and for three subtypes of porphyry copper

  8. A climate signal in exhumation patterns revealed by porphyry copper deposits

    NASA Astrophysics Data System (ADS)

    Yanites, Brian J.; Kesler, Stephen E.

    2015-06-01

    The processes that build and shape mountain landscapes expose important mineral resources. Mountain landscapes are widely thought to result from the interaction between tectonic uplift and exhumation by erosion. Both climate and tectonics affect rates of exhumation, but estimates of their relative importance vary. Porphyry copper deposits are emplaced at a depth of about 2 km in convergent tectonic settings; their exposure at the surface therefore can be used to track landscape exhumation. Here we analyse the distribution, ages and spatial density of exposed Cenozoic porphyry copper deposits using a global data set to quantify exhumation. We find that the deposits exhibit young ages and are sparsely distributed--both consistent with rapid exhumation--in regions with high precipitation, and deposits are older and more abundant in dry regions. This suggests that climate is driving erosion and mineral exposure in deposit-bearing mountain landscapes. Our findings show that the emplacement ages of porphyry copper deposits provide a means to estimate long-term exhumation rates in active orogens, and we conclude that climate-driven exhumation influences the age and abundance of exposed porphyry copper deposits around the world.

  9. The Jebel Ohier deposit—a newly discovered porphyry copper-gold system in the Neoproterozoic Arabian-Nubian Shield, Red Sea Hills, NE Sudan

    NASA Astrophysics Data System (ADS)

    Bierlein, F. P.; McKeag, S.; Reynolds, N.; Bargmann, C. J.; Bullen, W.; Murphy, F. C.; Al-Athbah, H.; Brauhart, C.; Potma, W.; Meffre, S.; McKnight, S.

    2015-12-01

    Ongoing exploration in the Red Sea Hills of NE Sudan has led to the identification of a large alteration-mineralization system within a relatively undeformed Neoproterozoic intrusive-extrusive succession centered on Jebel Ohier. The style of mineralization, presence of an extensive stockwork vein network within a zoned potassic-propylitic-argillic-advanced argillic-altered system, a mineralization assemblage comprising magnetite-pyrite-chalcopyrite-bornite (±gold, silver and tellurides), and the recurrence of fertile mafic to intermediate magmatism in a developing convergent plate setting all point to a porphyry copper-gold association, analogous to major porphyry Cu-Au-Mo deposits in Phanerozoic supra-subduction settings such as the SW Pacific. Preliminary U-Pb age dating yielded a maximum constraint of c. 730 Ma for the emplacement of the stockwork system into a significantly older (c. 800 Ma) volcanic edifice. The mineralization formed prior to regional deformation and accretion of the host terrane to a stable continental margin at by c. 700 Ma, thus ensuring preservation of the deposit. The Jebel Ohier deposit is interpreted as a relatively well-preserved, rare example of a Neoproterozoic porphyry Cu-Au system and the first porphyry Cu-Au deposit to be identified in the Arabian-Nubian Shield.

  10. The Jebel Ohier deposit—a newly discovered porphyry copper-gold system in the Neoproterozoic Arabian-Nubian Shield, Red Sea Hills, NE Sudan

    NASA Astrophysics Data System (ADS)

    Bierlein, F. P.; McKeag, S.; Reynolds, N.; Bargmann, C. J.; Bullen, W.; Murphy, F. C.; Al-Athbah, H.; Brauhart, C.; Potma, W.; Meffre, S.; McKnight, S.

    2016-08-01

    Ongoing exploration in the Red Sea Hills of NE Sudan has led to the identification of a large alteration-mineralization system within a relatively undeformed Neoproterozoic intrusive-extrusive succession centered on Jebel Ohier. The style of mineralization, presence of an extensive stockwork vein network within a zoned potassic-propylitic-argillic-advanced argillic-altered system, a mineralization assemblage comprising magnetite-pyrite-chalcopyrite-bornite (±gold, silver and tellurides), and the recurrence of fertile mafic to intermediate magmatism in a developing convergent plate setting all point to a porphyry copper-gold association, analogous to major porphyry Cu-Au-Mo deposits in Phanerozoic supra-subduction settings such as the SW Pacific. Preliminary U-Pb age dating yielded a maximum constraint of c. 730 Ma for the emplacement of the stockwork system into a significantly older ( c. 800 Ma) volcanic edifice. The mineralization formed prior to regional deformation and accretion of the host terrane to a stable continental margin at by c. 700 Ma, thus ensuring preservation of the deposit. The Jebel Ohier deposit is interpreted as a relatively well-preserved, rare example of a Neoproterozoic porphyry Cu-Au system and the first porphyry Cu-Au deposit to be identified in the Arabian-Nubian Shield.

  11. The giant Dexing porphyry Cu-Mo-Au deposit in east China: product of melting of juvenile lower crust in an intracontinental setting

    NASA Astrophysics Data System (ADS)

    Hou, Zengqian; Pan, Xiaofei; Li, Qiuyun; Yang, Zhiming; Song, Yucai

    2013-12-01

    Proterozoic slab-derived fluids, and supplied a part of Cu, Au, and S for the Dexing porphyry system during their injection into the felsic magmas. The 171 ± 1 Ma magmatic-hydrothermal event at Dexing is contemporaneous with the mid-Jurassic extension in the SCC, followed by 160-90 Ma arc-like magmatism in southeastern China. With respect to the tectono-magmatic evolution of the SCC, the emplacement of Cu-bearing porphyries and the associated Cu mineralization occurred in response to the transformation from a tensional regime, related to mid-Jurassic extension, to a transpressional regime, related to the subduction of the Paleo-Pacific oceanic lithosphere.

  12. Fluid-Inclusion Petrology - Data from Porphyry Copper Deposits and Applications to Exploration

    USGS Publications Warehouse

    Nash, J. Thomas

    1976-01-01

    Fluid-inclusion studies of 37 porphyry copper deposits, mainly in the United States, demonstrate that all but 3 evolved through a hydrothermal stage characterized by very high salinities, generally in excess of about 35 weight percent NaCI equivalent. Temperatures of these fluids ranged from about 250 deg to 700 deg C for various stages and deposits. Most systems boiled. High salinities, shown by halite-bearing inclusions, and boiling, suggested by coexisting gas and liquid-rich inclusions, are considered to be diagnostic of epizonal intrusions which are the most favorable parents for porphyry copper mineralization. Depth of emplacement of many copper-bearing stocks is deduced from fluid inclusions to have been about 6,000 to 10,000 feet (1,800 to 3,000 metres); fluid pressures during mineralization are interpreted generally to be less than 500 bars. Moderate-salinity (less than about 12 percent) and moderate-temperature <350 deg C) fluids are noted in all porphyry copper deposits and were responsible for the deposition of most copper and molybdenum in deposits, such as Bagdad, Esperanza, Mineral Park, Morenci, Ray, Sierrita, in the Southwestern United States and several in southern British Columbia. However, with only three exceptions, highly saline fluids apparently were present at an early stage and also deposited metals. The relative amounts and economic importance of copper and molybdenum deposited from high- and moderate-salinity fluids varies within the porphyry deposit class. There is compelling geologic and geochemical evidence that chloride is important for transport of metals, but the porphyry coppers stand out as a class associated with fluids of especially high salinity during at least one stage of their formation. Halite cubes in fluid inclusions are an effective, although rough, indicator of those salinities and can be conveniently monitored during petrographic study of thin sections. Thus, fluid inclusions can be used to characterize favorable

  13. Recognition of the geologic framework of porphyry deposits on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Wilson, J. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Photointerpretation methods have been most successfully applied in the less vegetated test sites where several previously unknown geologic features have been recognized and known ones extended. Northwest mid-Tertiary faults in the ELY, Nevada area are observed to offset north-trending ranges and abruptly terminate older Mesozoic structures. In the Ray, Arizona area the observed patterns of fault and fracture systems appear to be related to the locations of known porphyry copper deposits. In the Tanacross, Alaska area a number of regional circular features observed may represent near surface intrusions and, therefore, permissive environments for copper porphyries.

  14. Porphyry copper deposit model: Chapter B in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Ayuso, Robert A.; Barton, Mark D.; Blakely, Richard J.; Bodnar, Robert J.; Dilles, John H.; Gray, Floyd; Graybeal, Fred T.; Mars, John L.; McPhee, Darcy K.; Seal, Robert R., II; Taylor, Ryan D.; Vikre, Peter G.

    2010-01-01

    This report contains a revised descriptive model of porphyry copper deposits (PCDs), the world's largest source (about 60 percent) and resource (about 65 percent) of copper and a major source of molybdenum, gold and silver. Despite relatively low grades (average 0.44 percent copper in 2008), PCDs have significant economic and societal impacts due to their large size (commonly hundreds of millions to billions of metric tons), long mine lives (decades), and high production rates (billions of kilograms of copper per year). The revised model describes the geotectonic setting of PCDs, and provides extensive regional- to deposit-scale descriptions and illustrations of geological, geochemical, geophysical, and geoenvironmental characteristics. Current genetic theories are reviewed and evaluated, knowledge gaps are identified, and a variety of exploration and assessment guides are presented. A summary is included for users seeking overviews of specific topics.

  15. Uranium and Sm isotope studies of the supergiant Olympic Dam Cu-Au-U-Ag deposit, South Australia

    NASA Astrophysics Data System (ADS)

    Kirchenbaur, Maria; Maas, Roland; Ehrig, Kathy; Kamenetsky, Vadim S.; Strub, Erik; Ballhaus, Chris; Münker, Carsten

    2016-05-01

    The Olympic Dam Cu-U-Au-Ag deposit in the Archean-Proterozoic Gawler Craton (South Australia) is a type example of the iron oxide-copper-gold (IOCG) spectrum of deposits and one of the largest Cu-U-Au resources known. Mineralization is hosted in a lithologically and texturally diverse, hematite-rich breccia complex developed within a granite of the 1.59 Ga Gawler Silicic Province. Emerging evidence indicates that both the breccia complex and its metal content developed over ∼1000 Ma, responding to major tectonic events, e.g., at 1300-1100, 825 and 500 Ma. However, metal sources and exact mechanism/s of ore formation remain poorly known. New high-precision 238U/235U data for a set of 40 whole rock samples representing all major lithological facies of the breccia complex show a narrow range (δ238UCRM112a = -0.56‰ to +0.04‰). At the scale of sampling, there is no correlation of δ238U with lithology, degree of alteration or U mineralogy, although ores with U > 5 wt.% have subtly higher δ238U values (-0.20‰ to 0.00) than the majority of samples (<0.7 wt.% U, -0.56‰ to -0.23‰). The new U isotope data are consistent with published data for uraninites from Olympic Dam, and with published results from high-temperature U deposits. They overlap completely with the range of δ238U values in granitoids (including the host granite, -0.18‰ to -0.32‰) and with estimates of the upper continental crust in general. This similarity suggests that Olympic Dam δ238U values reflects the crustal sources of U, which probably include felsic volcanic rocks and granitoids. The isotopic homogeneity suggests depositional mechanisms that involve minimal isotopic fractionation of U; alternatively, primary fractionation signatures may have been erased during the long history of the U mineralization. High-grade U ores may record isotopic neutron-capture effects related to fissionogenic neutrons. High-precision Sm isotope data for five high-U (>5 wt.% U, U/Sm ≫ 500) Olympic Dam

  16. Mesozoic ash-flow caldera fragments in southeastern Arizona and their relation to porphyry copper deposits.

    USGS Publications Warehouse

    Lipman, P.W.; Sawyer, D.A.

    1985-01-01

    Jurassic and Upper Cretaceous volcanic and associated granitic rocks in SE Arizona are remnants of large composite silicic volcanic fields, characterized by voluminous ash-flow tuffs and associated calderas. Presence of 10-15 large caldera fragments is inferred primarily from 1) ash-flow deposits over 1 km thick, having features of inter-caldera ponding; 2) 'exotic-block' breccia within a tuff matrix, interpreted as caldera-collapse megabreccia; and 3) local granitic intrusion along arcuate structural boundaries of the thick volcanics. Several major porphyry copper deposits are associated with late granitic intrusions within the calderas or along their margins. Such close spatial and temporal association casts doubt on models that associate porphyry copper deposits exclusively with intermediate composition strato-volcanoes. -L.C.H.

  17. Porphyry copper deposits of the world: database, maps, and preliminary analysis

    USGS Publications Warehouse

    Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.

    2002-01-01

    Mineral deposit models are important in exploration planning and quantitative resource assessments for two reasons: (1) grades and tonnages among deposit types are significantly different, and (2) many types occur in different geologic settings that can be identified from geologic maps. Mineral deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Far too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables or for robust estimation of undiscovered deposits—thus we need mineral-deposit models. Globally based deposit models, such as those presented here, allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral deposit models play the central role in transforming geoscience information to a form useful to policy makers. The foundation of mineral deposit models is information about known deposits—the purpose of this publication is to make this kind of information available in digital form for a group of porphyry copper deposits. This publication contains a computer file of information on porphyry copper deposits around the world. It also presents new grade and tonnage models for three subtypes of porphyry copper deposits, maps showing locations and general ages of these deposits, and a preliminary analysis with a number of figures summarizing many of the properties of these porphyry-style deposits. These summaries can be considered a new, quantified, form of most parts of descriptive models such as those in Cox and

  18. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Nadoll, Patrick; Mauk, Jeffrey L.; Leveille, Richard A.; Koenig, Alan E.

    2015-04-01

    A combination of petrographic observations, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and statistical data exploration was used in this study to determine compositional variations in hydrothermal and igneous magnetite from five porphyry Cu-Mo and skarn deposits in the southwestern United States, and igneous magnetite from the unmineralized, granodioritic Inner Zone Batholith, Japan. The most important overall discriminators for the minor and trace element chemistry of magnetite from the investigated porphyry and skarn deposits are Mg, Al, Ti, V, Mn, Co, Zn, and Ga—of these the elements with the highest variance for (I) igneous magnetite are Mg, Al, Ti, V, Mn, Zn, for (II) hydrothermal porphyry magnetite are Mg, Ti, V, Mn, Co, Zn, and for (III) hydrothermal skarn magnetite are Mg, Ti, Mn, Zn, and Ga. Nickel could only be detected at levels above the limit of reporting (LOR) in two igneous magnetites. Equally, Cr could only be detected in one igneous occurrence. Copper, As, Mo, Ag, Au, and Pb have been reported in magnetite by other authors but could not be detected at levels greater than their respective LORs in our samples. Comparison with the chemical signature of igneous magnetite from the barren Inner Zone Batholith, Japan, suggests that V, Mn, Co, and Ga concentrations are relatively depleted in magnetite from the porphyry and skarn deposits. Higher formation conditions in combination with distinct differences between melt and hydrothermal fluid compositions are reflected in Al, Ti, V, and Ga concentrations that are, on average, higher in igneous magnetite than in hydrothermal magnetite (including porphyry and skarn magnetite). Low Ti and V concentrations in combination with high Mn concentrations are characteristic features of magnetite from skarn deposits. High Mg concentrations (<1,000 ppm) are characteristic for magnetite from magnesian skarn and likely reflect extensive fluid/rock interaction. In porphyry deposits

  19. Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States

    USGS Publications Warehouse

    Nadoll, Patrick; Mauk, Jeffrey L.; LeVeille, Richard A.; Koenig, Alan E.

    2015-01-01

    A combination of petrographic observations, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and statistical data exploration was used in this study to determine compositional variations in hydrothermal and igneous magnetite from five porphyry Cu–Mo and skarn deposits in the southwestern United States, and igneous magnetite from the unmineralized, granodioritic Inner Zone Batholith, Japan. The most important overall discriminators for the minor and trace element chemistry of magnetite from the investigated porphyry and skarn deposits are Mg, Al, Ti, V, Mn, Co, Zn, and Ga—of these the elements with the highest variance for (I) igneous magnetite are Mg, Al, Ti, V, Mn, Zn, for (II) hydrothermal porphyry magnetite are Mg, Ti, V, Mn, Co, Zn, and for (III) hydrothermal skarn magnetite are Mg, Ti, Mn, Zn, and Ga. Nickel could only be detected at levels above the limit of reporting (LOR) in two igneous magnetites. Equally, Cr could only be detected in one igneous occurrence. Copper, As, Mo, Ag, Au, and Pb have been reported in magnetite by other authors but could not be detected at levels greater than their respective LORs in our samples. Comparison with the chemical signature of igneous magnetite from the barren Inner Zone Batholith, Japan, suggests that V, Mn, Co, and Ga concentrations are relatively depleted in magnetite from the porphyry and skarn deposits. Higher formation conditions in combination with distinct differences between melt and hydrothermal fluid compositions are reflected in Al, Ti, V, and Ga concentrations that are, on average, higher in igneous magnetite than in hydrothermal magnetite (including porphyry and skarn magnetite). Low Ti and V concentrations in combination with high Mn concentrations are characteristic features of magnetite from skarn deposits. High Mg concentrations (<1,000 ppm) are characteristic for magnetite from magnesian skarn and likely reflect extensive fluid/rock interaction. In porphyry deposits

  20. Variations of sulphur isotope signatures in sulphides from the metamorphosed Ming Cu(-Au) volcanogenic massive sulphide deposit, Newfoundland Appalachians, Canada

    NASA Astrophysics Data System (ADS)

    Brueckner, Stefanie M.; Piercey, Stephen J.; Layne, Graham D.; Piercey, Glenn; Sylvester, Paul J.

    2015-06-01

    The Ming deposit is an early Ordovician, bimodal-mafic Cu-Au volcanogenic massive sulphide (VMS) deposit in the Newfoundland Appalachians that was metamorphosed to upper greenschist/lower amphibolite facies conditions and deformed in the Silurian and Devonian. The Ming deposit consists of several spatially proximal ore bodies of which the 1806 Zone, 1807 Zone, Ming South Up Plunge and Down Plunge and the Lower Footwall Zone are the focus of this paper. The ore bodies have similar stratigraphic sequences. The ore bodies can be divided into (1) a silicified horizon that caps the massive sulphides, (2) semi-massive to massive sulphides and (3) sulphide mineralization in a rhyodacitic footwall. Sulphide mineralization in a rhyodacitic footwall includes (a) sulphide stringers immediately below the semi-massive to massive sulphides and (b) chalcopyrite-pyrrhotite-pyrite stringers distally from semi-massive to massive sulphides in the Lower Footwall Zone. Pyrite, chalcopyrite, pyrrhotite, arsenopyrite and galena were analysed by in situ secondary ion mass spectrometry (SIMS) for sulphur isotope compositions. The isotopic signatures of pyrite, chalcopyrite, pyrrhotite and arsenopyrite fall within a limited range of 2.8 to 12.0 ‰ for semi-massive to massive sulphides and sulphide mineralization in the footwall. The silicified horizon capping the semi-massive to massive sulphides has higher δ 34S (5.8-19.6 ‰), especially for pyrrhotite (mean, 17.2 ± 2.2 ‰, n = 8). The sulphur isotope composition of galena is more heterogeneous, especially within semi-massive to massive sulphides and sulphide stringers, ranging from 0.8 to 17.3 ‰ (mean, 6.1 ± 4.3 ‰, n = 35) and 7.6 to 17.1 ‰ (mean, 13.7 ± 5.3 ‰, n = 3), respectively. Geothermometric calculations give insufficient formation and metamorphism temperatures for neighbouring mineral pairs, because sulphides were not in isotopic equilibrium while deposited in early Ordovician or re-equilibrated during Silurian

  1. Porphyry copper deposit tract definition - A global analysis comparing geologic map scales

    USGS Publications Warehouse

    Raines, G.L.; Connors, K.A.; Chorlton, L.B.

    2007-01-01

    Geologic maps are a fundamental data source used to define mineral-resource potential tracts for the first step of a mineral resource assessment. Further, it is generally believed that the scale of the geologic map is a critical consideration. Previously published research has demonstrated that the U.S. Geological Survey porphyry tracts identified for the United States, which are based on 1:500,000-scale geology and larger scale data and published at 1:1,000,000 scale, can be approximated using a more generalized 1:2,500,000-scale geologic map. Comparison of the USGS porphyry tracts for the United States with weights-of-evidence models made using a 1:10,000,000-scale geologic map, which was made for petroleum applications, and a 1:35,000,000-scale geologic map, which was created as context for the distribution of porphyry deposits, demonstrates that, again, the USGS US porphyry tracts identified are similar to tracts defined on features from these small scale maps. In fact, the results using the 1:35,000,000-scale map show a slightly higher correlation with the USGS US tract definition, probably because the conceptual context for this small-scale map is more appropriate for porphyry tract definition than either of the other maps. This finding demonstrates that geologic maps are conceptual maps. The map information shown in each map is selected and generalized for the map to display the concepts deemed important for the map maker's purpose. Some geologic maps of small scale prove to be useful for regional mineral-resource tract definition, despite the decrease in spatial accuracy with decreasing scale. The utility of a particular geologic map for a particular application is critically dependent on the alignment of the intention of the map maker with the application. ?? International Association for Mathematical Geology 2007.

  2. Stable isotope systematics and fluid inclusion studies in the Cu-Au Visconde deposit, Carajás Mineral Province, Brazil: implications for fluid source generation

    NASA Astrophysics Data System (ADS)

    da Costa Silva, Antonia Railine; Villas, Raimundo Netuno Nobre; Lafon, Jean-Michel; Craveiro, Gustavo Souza; Ferreira, Valderez Pinto

    2015-06-01

    The Cu-Au Visconde deposit is located in the Carajás Mineral Province (CMP), northern Brazil, near the contact between the ca. 2.76 Ga metavolcano-sedimentary rocks of the Itacaiunas Supergroup rocks and the ~3.0 Ga granitic-gneissic basement. It is hosted by mylonitized Archean rocks, mainly metadacites, the Serra Dourada granite, and gabbros/diorites, which have been successively altered by sodic, sodic-calcic-magnesian, potassic, and calcic-magnesian hydrothermal processes, producing diverse mineralogical associations (albite-scapolite; albite-actinolite-scapolite-epidote; K-feldspar-biotite; chlorite-actinolite-epidote-calcite, etc.). Chalcopyrite is the dominant ore mineral and occurs principally in breccias and veins/veinlets. The aqueous fluids responsible for the alteration/mineralization were initially hot (>460 °C) and very saline (up to 58 wt.% equivalent (equiv.) NaCl), but as the system evolved, they experienced successive dilution processes. Mineral oxygen and hydrogen isotope data show that 18O-rich ( to +9.4 ‰) fluids prevailed in the earlier alteration (including magnetitites) and reached temperatures as high as 410-355 °C. Metamorphic/formation waters, most likely derived from the Carajás Basin rocks, appear to have contributed a major component to the fluid composition, although some magmatic input cannot be discounted. In turn, the later alterations and the mineralization involved cooler (<230 °C), 18O-depleted ( to +3.7 ‰) and less saline (7-30 wt.% equiv. NaCl) fluids, indicating the influx of meteoric water. Fluid dilution and cooling might have caused abundant precipitation of sulfides, especially as breccia cement. Ore δ 34 S values (+0.5 to +3.4 ‰) suggest a magmatic source for sulfur (from sulfide dissolution in pre-existing igneous rocks). The chalcopyrite Pb-Pb ages (2.73 ± 0.15 and 2.74 ± 0.10 Ga) indicate that the Visconde mineralization is Neoarchean, rather than Paleoproterozoic as previously considered. If so, the

  3. Porphyry Copper Deposits of the World: Database and Grade and Tonnage Models, 2008

    USGS Publications Warehouse

    Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.

    2008-01-01

    This report is an update of earlier publications about porphyry copper deposits (Singer, Berger, and Moring, 2002; Singer, D.A., Berger, V.I., and Moring, B.C., 2005). The update was necessary because of new information about substantial increases in resources in some deposits and because we revised locations of some deposits so that they are consistent with images in GoogleEarth. In this report we have added new porphyry copper deposits and removed a few incorrectly classed deposits. In addition, some errors have been corrected and a number of deposits have had some information, such as grades, tonnages, locations, or ages revised. Colleagues have helped identify places where improvements were needed. Mineral deposit models are important in exploration planning and quantitative resource assessments for a number of reasons including: (1) grades and tonnages among deposit types are significantly different, and (2) many types occur in different geologic settings that can be identified from geologic maps. Mineral deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables or for robust estimation of undiscovered deposits?thus we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral deposit models play the central role in transforming geoscience information to a form useful to policy makers. The foundation of

  4. Spatial and temporal distribution of Cu-Au-Mo ore deposits along the western Tethyan convergent margin: a link with the 3D subduction dynamics

    NASA Astrophysics Data System (ADS)

    Menant, A.; Bertrand, G.; Loiselet, C.; Guillou-Frottier, L.; Jolivet, L.

    2012-12-01

    Emplacement conditions of mineralized systems in subduction and post-subduction environments and the sources of metals such as Cu, Mo and Au have been considered in the past. However, despite their importance in exploration strategies at the continental scale, interrelationships between distribution of ore systems and subduction dynamics are still partly unclear. Along the western Tethyan convergent margin, where Tertiary subduction history is well constrained, porphyry, epithermal and skarn ore deposits show a variable evolution of their spatial distribution. Using different and complementary database on European and Middle East ore deposits, three metallogenic episodes have been highlighted: (1) a late Cretaceous - Paleocene phase characterized by a copper mineralization within the Balkan chain and in the Kaçkar mountains (eastern Turkey), (2) an Eocene phase with a few copper ore deposits in eastern Turkey and small Caucasia and (3) an Oligocene - Neogene phase with a more southern distribution along the margin and mainly constituted by epithermal Au systems in the west (Carpathians, Rhodope, Aegean and western Turkey) and by porphyry copper deposits in the east (Zagros). These changes are suspected to be controlled by complex and evolving subduction dynamics. Using paleogeographic tools, it turned out that, in the eastern Mediterranean area, the late Cretaceous - Paleocene and Oligocene - Neogene metallogenic episodes are coeval with a significant decrease of the Africa - Eurasia convergence rate, from about 1.5 to 0.4 cm/yr. Indeed, compressional tectonics in the volcanic arc domain, associated with a high convergent rate, promote the storage of large volumes of metal-rich magma and the development of an extensive MASH (melting, assimilation, storage and homogenization) zone. When this convergence rate decreases, a stress relaxation occurs in the overriding crust, inducing the ascent of a sufficient flux of this fertile magma and allowing the formation of

  5. Why large porphyry Cu deposits like high Sr/Y magmas?

    PubMed Central

    Chiaradia, Massimo; Ulianov, Alexey; Kouzmanov, Kalin; Beate, Bernardo

    2012-01-01

    Porphyry systems supply most copper and significant gold to our economy. Recent studies indicate that they are frequently associated with high Sr/Y magmatic rocks, but the meaning of this association remains elusive. Understanding the association between high Sr/Y magmatic rocks and porphyry-type deposits is essential to develop genetic models that can be used for exploration purposes. Here we present results on a Pleistocene volcano of Ecuador that highlight the behaviour of copper in magmas with variable (but generally high) Sr/Y values. We provide indirect evidence for Cu partitioning into a fluid phase exsolved at depths of ~15 km from high Sr/Y (>70) andesitic magmas before sulphide saturation. This lends support to the hypothesis that large amounts of Cu- and S-bearing fluids can be accumulated into and released from a long-lived high Sr/Y deep andesitic reservoir to a shallower magmatic-hydrothermal system with the potential of generating large porphyry-type deposits. PMID:23008750

  6. Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China

    NASA Astrophysics Data System (ADS)

    Li, Q.; Zhang, B.; Lu, L.; Lin, Q.

    2014-03-01

    Remote sensing plays an important role in mineral exploration. One of its proven applications is extracting host-rock lithology and alteration zones that are related to porphyry copper deposits. An Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to map the Baogutu porphyry deposit alteration area. A circular alteration mineral zoning pattern was clearly observed in the classification result of potassic, phyllic, argillic, propylitic zones. The potassic is characterized by biotite and anhydrite with an absorption feature centered at 1.94 and 2.1um. The phyllic zone is characterized by illite and sericite that indicates an intense Al-OH absorption feature centered at 2.20um. The narrower argillic zone including kaolinite and alunite displays a secondary Al-OH absorption feature at 2.17 um. The mineral assemblages of the outer propylitic zone are epidote, chlorite and calcite that exhibit absorption features at 2.335um.The performance of Principal Component Analysis(PCA), Minimum Noise Fraction (MNF), band ratio(BR) and Constrained Energy Minimization(CEM) has been evaluated. These techniques identified new prospects of porphyry copper mineralization in the study areas. These results indicate that ASTER is a powerful tool in the initial steps of mineral exploration.

  7. A tectonic model for the spatial occurrence of porphyry copper and polymetallic vein deposits - applications to Central Europe

    USGS Publications Warehouse

    Drew, Lawrence J.

    2006-01-01

    A structural-tectonic model, which was developed to assess the occurrence of undiscovered porphyry copper deposits and associated polymetallic vein systems for the Matra Mountains, Hungary, has been expanded here and applied to other parts of central Europe. The model explains how granitoid stocks are emplaced and hydrothermal fluids flow within local strain features (duplexes) within strike-slip fault systems that develop in continental crust above subducting plates. Areas of extension that lack shear at the corners and along the edges of the fault duplexes are structural traps for the granitoid stocks associated with porphyry copper deposits. By contrast, polymetallic vein deposits are emplaced where shear and extension are prevalent in the interior of the duplexes. This model was applied to the Late Cretaceous-age porphyry copper and polymetallic vein deposits in the Banat-Timok-Srednogorie region of Romania-Serbia-Bulgaria and the middle Miocene-age deposits in Romania and Slovakia. In the first area, porphyry copper deposits are most commonly located at the corners, and occasionally along the edges, of strike-slip fault duplexes, and the few polymetallic vein deposits identified are located at interior sites of the duplexes. In the second area, the model accounts for the preferred sites of porphyry copper and polymetallic vein deposits in the Apuseni Mountains (Romania) and central Slovakian volcanic field (Slovakia).

  8. Porphyry copper deposit formation by sub-volcanic sulphur dioxide flux and chemisorption

    NASA Astrophysics Data System (ADS)

    Henley, Richard W.; King, Penelope L.; Wykes, Jeremy L.; Renggli, Christian J.; Brink, Frank J.; Clark, David A.; Troitzsch, Ulrike

    2015-03-01

    Porphyry copper deposits--the primary source of the world’s copper--are a consequence of the degassing of intrusion complexes in magmatic arcs associated with ancient subduction zones. They are characterized by copper and iron sulphides, commonly found with anhydrite (CaSO4), over scales of several kilometres through intensely altered and fractured rocks. The magmatic source of the metals is broadly understood, but the processes that transport and deposit the metals at the megaton scale are unclear. The hydrogen sulphide necessary for metal deposition is commonly assumed to form by a reaction between sulphur dioxide and water, but this reaction is inefficient and cannot explain the formation of economic-grade deposits. Here we use high-temperature laboratory experiments to show that a very rapid chemisorption reaction occurs between sulphur dioxide gas, a principal component of magmatic gas mixtures, and calcic feldspar, an abundant mineral in the arc crust. The chemisorption reaction generates the mineral anhydrite and hydrogen sulphide gas, and triggers deposition of metal sulphides. We use thermodynamic calculations to show that as magmatic gas cools and expands the concentration of hydrogen sulphide gas increases exponentially to drive efficient deposition of metal sulphides and consequent formation of economic-grade porphyry copper deposits.

  9. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet

    NASA Astrophysics Data System (ADS)

    Hou, Zengqian; Zheng, Yuanchuan; Yang, Zhiming; Rui, Zongyao; Zhao, Zhidan; Jiang, Sihong; Qu, Xiaoming; Sun, Qinzhong

    2013-02-01

    Most porphyry Cu-Mo-Au deposits are found in magmatic arcs worldwide, and are associated with hydrous, high- fO2, calc-alkaline magmas, derived from a mantle wedge that was metasomatized by the fluids from a subducted oceanic slab. Recently, such deposits have been documented as occurring widely in collisional settings, where they are associated with potassic magmas generated during the collisional process, but the genesis of the fertile magmas and the mechanism of metallic enrichment remain controversial. Here we present new geochemical and Sr-Nd-Hf isotopic data from the post-collisional fertile and barren porphyries of the Miocene Gangdese porphyry belt in the Tibetan orogen, an orogen formed by the collision of India and Asia in the early Cenozoic. Both types of porphyry are characterized by high K2O contents, and have geochemical affinities with adakite, but the fertile magmas were most likely derived from the melting of a thickened juvenile mafic lower-crust, formed by the underplating of earlier asthenospheric melts at the base of crust, whereas the derivation of the barren magmas involved variable amounts of old lower-crust in Tibet. The melting of sulfide-bearing phases in the juvenile mantle components of the Tibetan lower-crust probably provided Cu, Au, and S to the fertile magmas. The breakdown of amphibole during melting at the source released the fluids necessary for the formation of the porphyry Cu deposits in Tibet. The thickened crust (up to 70-80 km), due to collision, is thought to be responsible for a decrease in the fO2 of the fertile magmas during their ascent to the upper crust, thus preventing the generation of more porphyry Cu-Au and epithermal Au deposits in this collisional zone.

  10. Mineral exploration potential of ERTS-1 data. [porphyry copper deposits in Arizona

    NASA Technical Reports Server (NTRS)

    Brewer, W. A. (Principal Investigator); Erskine, M. C., Jr.; Prindle, R. O.; Haenggi, W. T.

    1974-01-01

    The author has identified the following significant results. ERTS-1 imagery of an area approximately 15,000 square miles in Arizona was interpreted for regional structure and tectonic units. Eight fault systems were identified by trend, of which two, northeast and northwest, are considered to be related to porphyry copper mineralization. Nine tectonic units can be identified on the imagery as distinct geological identities. The boundaries between these units can be correlated with theoretical shear directions related to the San Andreas stress system. Fourier analysis of the N 50 W fault trend indicates a fundamental spacing between Fourier energy maxima that can be related to distances between copper deposits.

  11. Determining the Magma Genesis of Mo Porphyry Deposits

    NASA Astrophysics Data System (ADS)

    Gaynor, S.; Coleman, D. S.; Rosera, J.

    2015-12-01

    The high flux of magma associated with super eruptions is hypothesized to rebuild the deep crust, altering the source(s) of subsequent magmatism. Climax-type Mo deposits are commonly generated immediately after eruption of large ignimbrites within a volcanic field, and provide an opportunity to understand the evolution of magma sources following high flux events. The Questa caldera of the Latir volcanic field, NM exposes a 10 Ma long record of pre-, syn- and post-ignimbrite intrusive and extrusive rocks, and hosts the Questa Climax-type Mo deposit. New detailed geochronology and geochemistry from Questa (including extensive sampling of subsurface rocks in the mine) permit detailed reconstruction of the temporal evolution of magma sources through the waxing and waning stages of super eruption magmatism. Comparison of chemical and isotopic data waxing, ignimbrite, Mo-mineralizing and waning stage magmas reveals several patterns. Waxing and waning magmas (waxing: 29-25.7 Ma; waning: 24.5-19 Ma) have intermediate trace elements and radiogenic isotopes relative to other magmatism (87Sr/86Sri=0.7050 to 0.7070, ɛNd=-5.2 to -7.2). Ignimbrite magmatism (25.5 Ma) is depleted in incompatible elements, enriched in MREE and HREE's and has more evolved radiogenic isotopes (87Sr/86Sri=0.7095, ɛNd=-8.0). Molybdenum mineralizing magmas (24.9-24.5 Ma), are enriched in incompatible elements, depleted in MREE and HREE's and have distinct radiogenic isotopes (87Sr/86Sri=0.7055 to 0.7075, ɛNd=-4.2 to -5.7). We suggest the lower crustal source of magmas changed during ignimbrite generation, and as a result, subsequent mineralizing magmas incorporated more juvenile, mafic components. This mantle influence is the metallogenesis for Climax-type deposits and indicates that deep crustal hybridization, rather than upper crustal differentiation, is pivotal in their generation. These results indicate that a lower crustal source of magmatism for a volcanic field is altered due to super

  12. Model of the porphyry copper and polymetallic vein family of deposits - Applications in Slovakia, Hungary, and Romania

    USGS Publications Warehouse

    Drew, L.J.

    2003-01-01

    A tectonic model useful in estimating the occurrence of undiscovered porphyry copper and polymetallic vein systems has been developed. This model is based on the manner in which magmatic and hydrothermal fluids flow and are trapped in fault systems as far-field stress is released in tectonic strain features above subducting plates (e.g. strike-slip fault systems). The structural traps include preferred locations for stock emplacement and tensional-shear fault meshes within the step-overs that localize porphyry- and vein-style deposits. The application of the model is illustrated for the porphyry copper and polymetallic vein deposits in the Central Slovakian Volcanic Field, Slovakia; the Ma??tra Mountains, Hungary; and the Apuseni Mountains, Romania.

  13. The formation of Qulong adakites and their relationship with porphyry copper deposit: Geochemical constraints

    NASA Astrophysics Data System (ADS)

    Hu, Yong-bin; Liu, Ji-qiang; Ling, Ming-xing; Ding, Wei; Liu, Yan; Zartman, Robert E.; Ma, Xiu-feng; Liu, Dun-yi; Zhang, Chan-chan; Sun, Sai-jun; Zhang, Li-peng; Wu, Kai; Sun, Wei-dong

    2015-04-01

    Qulong porphyry Cu deposit is the largest Cu deposit in China so far discovered, with total reserves of 10.6 Mt Cu@0.5% and 0.5 Mt Mo@0.03%. The petrogenesis of the Miocene intrusion and its genetic association with Cu mineralization have been debated. This study presents new results on whole rock major and trace elements, Sr-Nd isotopes, zircon U-Pb dating, Hf-O isotopic compositions of the Qulong ore-bearing and barren adakites. All the Qulong adakites studied here have low MgO (< 2 wt.%), high K2O (between 2 wt.% and 6 wt.%), with K2O/Na2O ratios ranging from 0.2-2.0. The SiO2 contents are mostly higher than 64 wt.%. These are dramatically different from ore-forming adakites in the circum-Pacific region and other places in general. Ore-bearing adakites have systematically higher SiO2 and K2O compared with barren ones, likely due to the addition of Si and K during alteration and mineralization. Magmatic zircons from these two series of intrusions have U-Pb ages of 16.6 ± 0.5-17.0 ± 0.6 Ma and 16.7 ± 0.3-17.4 ± 0.4 Ma, respectively, which are identical to each other within analytical errors but are systematically older than although marginally overlap with the Re-Os isochron ages of 15.36 ± 0.21-16.41 ± 0.48 Ma. The Qulong porphyries have geochemical characteristics of typical adakites, with Sr = 259-1195 ppm, Y = 1.91-9.12 ppm, Yb = 0.2-0.92 ppm, Sr/Y = 49-202 ppm, and (La/Yb)n = 13-49 for both ore-bearing and barren adakites. In a Sr/Y versus (La/Yb)n diagram, most of the samples plot in the low part of circum-Pacific field, close to the field defined by Dabie adakites. Some of the ore-bearing adakites even plot in the Dabie adakite field, indicating that both slab melts and lower continental crust melts have been involved. Zircons from the ore-bearing adakites have δ18O ranging from 5.1 to 7.3‰ (average 6.4‰) and εHf(t) from 1.9 to 10.4‰, which plot close to MORB. Similarly, zircons from the barren adakite have δ18O ranging from 4.0 to 7.4

  14. 160 Ma of magmatic/hydrothermal and metamorphic activity in the Gällivare area: Re-Os dating of molybdenite and U-Pb dating of titanite from the Aitik Cu-Au-Ag deposit, northern Sweden

    NASA Astrophysics Data System (ADS)

    Wanhainen, Christina; Billström, Kjell; Martinsson, Olof; Stein, Holly; Nordin, Roger

    2005-12-01

    Host rocks to the Aitik Cu-Au-Ag deposit in northern Sweden are strongly altered and deformed Early Proterozoic mica(-amphibole) schists and gneisses. The deposit is characterised by numerous mineralisation styles, vein and alteration types. Four samples were selected for Re-Os molybdenite dating and 12 samples for U-Pb titanite dating in order to elucidate the magmatic/hydrothermal and metamorphic history following primary ore deposition in the Aitik Cu-Au-Ag deposit. Samples represent dyke, vein and alteration assemblages from the ore zone, hanging wall and footwall to the deposit. Re-Os dating of molybdenite from deformed barite and quartz veins yielded ages of 1,876±10 Ma and 1,848±8 Ma, respectively. A deformed pegmatite dyke yielded a Re-Os age of 1,848±6 Ma, and an undeformed pegmatite dyke an age of 1,728±7 Ma. U-Pb dating of titanite from a diversity of alteration mineral associations defines a range in ages between 1,750 and 1,805 Ma with a peak at ca. 1,780 Ma. The ages obtained, together with previous data, bracket a 160-Ma (1,890-1,730 Ma) time span encompassing several generations of magmatism, prograde to peak metamorphism, and post-peak cooling; events resulting in the redistribution and addition of metals to the deposit. This multi-stage evolution of the Aitik ore body suggests that the deposit was affected by several thermal events that ultimately produced a complex ore body. The Re-Os and U-Pb ages correlate well with published regional Re-Os and U-Pb age clusters, which have been tied to major magmatic, hydrothermal, and metamorphic events. Primary ore deposition at ca. 1,890 Ma in connection with intrusion of Haparanda granitoids was followed by at least four subsequent episodes of metamorphism and magmatism. Early metamorphism at 1,888-1,872 Ma overlapping with Haparanda (1,890-1,880 Ma) and Perthite-monzonite (1,880-1,870 Ma) magmatism clearly affected the Aitik area, as well as late metamorphism and Lina magmatism at 1,810-1,774 Ma and

  15. Ore genesis and fluid evolution of the Daheishan giant porphyry molybdenum deposit, NE China

    NASA Astrophysics Data System (ADS)

    Zhou, Ling-li; Zeng, Qing-dong; Liu, Jian-ming; Friis, Henrik; Zhang, Zuo-lun; Duan, Xiao-xia; Chu, Shao-xiong

    2015-01-01

    The Daheishan giant porphyry Mo deposit is located at the eastern segment of the CAOB, NE China. The ore-bearing intrusion of Daheishan deposit is a Jurassic granitic complex that includes Changgangling biotite granodiorite, Qiancuoluo seriate granodiorite, and Qiancuoluo granodioritic porphyry. Mineralization consists of disseminated, breccia and veined types. The hydrothermal fluids show significant magmatic signatures, as evidenced by the hydrogen and oxygen isotopic compositions of quartz and sulfur isotopic characteristics of ores. Consistence of lead isotopic compositions of the sulfides and the Daheishan intrusive complex further indicate a close relationship between the mineralization and magma. The fluid inclusions in quartz comprise of predominant aqueous two-phase as well as gas-rich fluid inclusions and a small number of daughter mineral-bearing inclusions. The gas species in the fluid inclusions are H2O, CO2, N2, CH4, C2H6, Ar∗ and minor H2S; the liquid compositions are SO42-, Cl-, Na+, K+, Ca2+ and Mg2+. Raman spectroscopy on individual fluid inclusions reveals a main gaseous composition of H2O, minor H2S and CO2. The fluid system in Daheishan Mo deposit can be described as NaCl-KCl-H2O type. Fluid inclusion microthermometry reveals subsolidus homogenization temperatures for fluid inclusions in the magmatic quartz phenocrysts (Th = 400-450 °C, salinities = ∼21 eq. wt.%), suggesting an obliteration of higher temperature history of the porphyry system by the superimposed processes. Most of the mineralization occurred at temperature range of 220-360 °C, or higher. The temperature and salinity decreased to 100-170 °C and 0-15 eq. wt.%, respectively, when the hydrothermal fluid activities were gradually ending. No distinct evolution pattern based on the homogenization temperature or stable isotopic analyses is observed among the different mineralization stages. Mineralization was supposed to be related to the multi-phased boiling of fluids, instead

  16. The zonal distribution of selected elements above the Kalamazoo porphyry copper deposit, San Manuel district, Pinal County, Arizona

    USGS Publications Warehouse

    Chaffee, M.A.

    1976-01-01

    There may be many as-yet-undiscovered porphyry copper deposits that exist as blind deposits deep within exposed rock bodies. The Kalamazoo porphyry copper-molybdenum deposit is a blind deposit present at depths up to at least 1,000 m (about 3,200 ft) that contains zoning features common to many of the known porphyry copper deposits found in western North and South America. As the preliminary phase in a geochemical study of the Kalamazoo deposit, whole-rock samples of core and cuttings from two drill holes have been analyzed for 60 different elements. Each hole represents a different major rock unit and each has penetrated completely through all the existing alteration zones and the ore zone. Plots of concentration vs. depth for 17 selected elements show distinct high- or low-concentration zones that are spatially related to the ore zone. For most of the ore-related elements no significant correlation with the two lithologies is apparent. The spatial distribution and abundance of elements such as Co, Cu, S, Se, Mn, Tl, Rb, Zn, B, and Li may be useful in determining the direction for exploration to proceed to locate a blind deposit. Trace element studies should be valuable in evaluating areas containing extensive outcrops of rocks with disseminated pyrite. Elemental zoning should be at least as useful as alteration-mineralization zoning for evaluating rock bodies thought to contain blind deposits similar to the Kalamazoo deposit. ?? 1976.

  17. Lead isotopes in continental arc magmas and origin of porphyry Cu deposits in Arizona

    SciTech Connect

    Sawyer, D.A.; Zartman, R.E.

    1985-01-01

    Isotopic composition of Pb in feldspars and sulfides associated with the porphyry Cu-Mo deposit at Silver Bell, Arizona support the importance of crustal interaction in the origin of some porphyry copper ore deposits. Detailed sampling of late Cretaceous volcanic (8) and plutonic (10) units show an impressive range of Pb isotope composition from a single volcanic center (206Pb/204Pb=17.96-18.50; 207Pb/204Pb=15.54-15.59; 208Pb/204Pb=38.35-38.41). Ores (10 samples) include galena, chalcopyrite, pyrite, and supergene chalcocite range from: 206Pb/204Pb = 18.42 -18.74; 207Pb/204Pb=15.59-15.60; and 208Pb/204Pb=38.35-38.41. Ores most closely related to the major open-pit copper mines have a restricted range of composition (206Pb/204Pb=18.42-18.47). These ore Pbs are associated with the more radiogenic members of the igneous suite. Close correspondence of Pb in ores with that in related igneous rocks indicates a magmatic derivation of Pb disseminated in stockwork chalcopyrite ore and galena in copper skarn. Plots of 206Pb/204Pb against 207Pb/204Pb show a linear array of data just below crustal Pb evolution curves. This suggests derivation from a common source, and calculated 207Pb/206Pb ages for the line yield mid-Proterozoic ages from 1750-1450 Ma, in good agreement with isotopic ages of known Precambrian basement in the region. Most rocks show no evidence of interaction with LIL-element depleted granulitic lower crust, and have higher 207Pb/204Pb than available data from basalts characterizing the subcontinental mantle beneath southern Arizona.

  18. Use of ERTS-1 images in the search for porphyry copper deposits in Pakistani Baluchistan

    NASA Technical Reports Server (NTRS)

    Schmidt, R. G.

    1973-01-01

    Geomorphic features related to a known porphyry copper deposit at Saindak, western Chagai District, Pakistan, are easily distinguished on ERTS-1 images. New geologic information from the images was used in conjunction with known geology to evaluate one previously known prospect area and to suggest two additional ones, but no new prospects were recognized on the basis of the images alone. The study also showed that Saindak-type deposits are not likely to be present in some extensive areas of the Chagai District. The Saindak deposit is in an area of relatively easily eroded folded sedimentary and volcanic rocks. The deposit is characterized by an elongate zone of easily eroded sulfide-rich rock surrounded by this rim and the central sulfide-rich valley are conspicuous features on the images. Swarms of dikes are probably useful for distinguishing real rims from other resistant rock types, but there is no expression of them on the image, although they are easily seen on aerial photographs of the Saindak rim.

  19. Geochronology and Nd isotope geochemistry of the Gameleira Cu-Au deposit, Serra dos Carajás, Brazil: 1.8-1.7 Ga hydrothermal alteration and mineralization

    NASA Astrophysics Data System (ADS)

    Pimentel, Márcio M.; Lindenmayer, Zara G.; Laux, Jorge H.; Armstrong, Richard; de Araújo, Janice Caldas

    2003-01-01

    The Gameleira deposit is one of several important Cu-Au deposits associated with the late Archean (ca. 2.7 Ga) volcanic rocks of the Itacaiúnas supergroup in the Carajás mineral province, southeastern Pará. It comprises mainly biotite- and sulphide-rich veins and quartz-grunerite-biotite-gold hydrothermal veins that cut andesitic rocks. It is interpreted as representative of the Fe oxide Cu-Au class of deposit. Sm-Nd isotopic data indicate an age of 2719±80 Ma (MSWD=3.0) and ɛNd( T) of -1.4 for the host meta-andesites. Metavolcanic rocks and cogenetic gabbros give an age of 2757±81 Ma (1 σ) with ɛNd( T) of -0.8. This is considered the best estimate for the crystallization age of the Gameleira volcanic and subvolcanic rocks. Negative ɛNd( T) and Archean TDM model ages (mostly between 2.8 and 3.1 Ga) suggest some contamination with older crustal material. The andesitic/gabbroic rocks are cut by two generations of granite dykes. The older has striking petrographic and geochemical similarities to the ca. 1.87 Ga alkali-rich Pojuca granite, which is exposed a few kilometers to the northwest of the deposit. The younger is a leucogranite with a U-Pb SHRIMP age of 1583+9/-7 Ma. Neodymium isotopic analyses of the two generations of granites indicate a strong crustal affinity and possible derivation from reworking of the Archean crust. The quartz-grunerite-gold hydrothermal vein yields a Sm-Nd isochron (MSWD=.83) age of 1839±15 Ma (1 σ) with ɛNd( T) of -9.2. Pervasive potassic alteration, represented by the widespread formation of biotite in the country rocks, is dated by Ar-Ar at 1734±8 Ma, and a similar age of 1700±31 Ma (1 σ) is indicated by the Sm-Nd isochron for the biotite-sulphide veins. Similar to that for the quartz-grunerite vein, the ɛNd( T) value for the sulphide-rich veins is strongly negative (-8.2), thereby suggesting that the original fluids percolated through, leached, or were derived from igneous rocks with an Archaean Nd isotopic signature

  20. 3D modelling and sheath folding at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit and implications for exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden

    NASA Astrophysics Data System (ADS)

    Kampmann, Tobias C.; Stephens, Michael B.; Weihed, Pär

    2016-06-01

    Altered and mineralized rocks at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit, situated in the Palaeoproterozoic Bergslagen ore district in the south-western part of the Fennoscandian Shield, have been metamorphosed at low-pressure, amphibolite-facies conditions and affected by ductile deformation. Using combined surface mapping of lithology and structure, drill core logging and microstructural work, the polyphase (D1 and D2) ductile deformation is demonstrated and a 3D model for the deposit created. Mineral associations include quartz, biotite, cordierite, anthophyllite, and minor almandine, andalusite and chlorite in silicate-rich altered rock, calcite or dolomite in marble and tremolite-actinolite or diopside-hedenbergite in skarn. The silicate minerals show varying growth patterns during the different phases of the tectonothermal evolution, with considerable static grain growth occurring between D1 and D2, and even after D2. F2 sheath folding along axes that plunge steeply to the SSE, parallel to a mineral stretching lineation and the dip direction of the S2 foliation, is suggested as a key deformation mechanism forming steeply plunging, cone- to rod-shaped mineralized bodies. This contrasts with a previous structural model invoking fold interference. A major shear zone with talc-chlorite-(quartz-biotite) mineral association separates the northern and southern structural domains at the deposit and bounds the polymetallic massive sulphides to the north.

  1. 3D modelling and sheath folding at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit and implications for exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden

    NASA Astrophysics Data System (ADS)

    Kampmann, Tobias C.; Stephens, Michael B.; Weihed, Pär

    2016-01-01

    Altered and mineralized rocks at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit, situated in the Palaeoproterozoic Bergslagen ore district in the south-western part of the Fennoscandian Shield, have been metamorphosed at low-pressure, amphibolite-facies conditions and affected by ductile deformation. Using combined surface mapping of lithology and structure, drill core logging and microstructural work, the polyphase (D1 and D2) ductile deformation is demonstrated and a 3D model for the deposit created. Mineral associations include quartz, biotite, cordierite, anthophyllite, and minor almandine, andalusite and chlorite in silicate-rich altered rock, calcite or dolomite in marble and tremolite-actinolite or diopside-hedenbergite in skarn. The silicate minerals show varying growth patterns during the different phases of the tectonothermal evolution, with considerable static grain growth occurring between D1 and D2, and even after D2. F2 sheath folding along axes that plunge steeply to the SSE, parallel to a mineral stretching lineation and the dip direction of the S2 foliation, is suggested as a key deformation mechanism forming steeply plunging, cone- to rod-shaped mineralized bodies. This contrasts with a previous structural model invoking fold interference. A major shear zone with talc-chlorite-(quartz-biotite) mineral association separates the northern and southern structural domains at the deposit and bounds the polymetallic massive sulphides to the north.

  2. U-Pb and Ar-Ar geochronology of the Fujiawu porphyry Cu-Mo deposit, Dexing district, Southeast China: Implications for magmatism, hydrothermal alteration, and mineralization

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Hu, Ruizhong; Rusk, Brian; Xiao, Rong; Wang, Cuiyun; Yang, Feng

    2013-09-01

    The Fujiawu porphyry Cu-Mo deposit is one of several porphyry Cu-Mo deposits in the Dexing district, Jiangxi Province, Southeast China. New zircon SHRIMP U-Pb data yield a weighted mean 206Pb/238U age of 172.0 ± 2.1 and 168.5 ± 1.4 Ma from weakly altered granodiorite porphyry and quartz diorite porphyry, respectively. Two hydrothermal biotites from granodiorite porphyry give an Ar-Ar step-heating plateau age of 169.9 ± 1.8 and 168.7 ± 1.8 Ma. Hydrothermal apatite exsolved from altered biotite yields an isotope dilution thermal ionization mass spectrometry isochron age of 164.4 ± 0.9 Ma. The apatite age is similar to the ages obtained from hydrothermal rutile (165.0 ± 1.1 and 164.8 ± 1.6 Ma) and indicates that the magmatism and hydrothermal activity in the Fujiawu deposit occurred in the Middle Jurassic. Hydrothermal fluid circulation related to multiple stages of magma emplacement resulted in Cu-Mo mineralization in the Fujiawu porphyry deposit. The zircon SHRIMP U-Pb ages and the published molybdenite Re-Os age (170.9 ± 1.5 Ma) represent the timing of magma crystallization and Mo mineralization, whereas the rutile and apatite U-Pb ages reflect the timing of Cu mineralization following quartz diorite emplacement. The data suggest slow cooling after emplacement of the quartz diorite porphyry.

  3. Geological and geochemical studies of the Shujiadian porphyry Cu deposit, Anhui Province, Eastern China: Implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie

    2015-05-01

    Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.

  4. Uplift and submarine formation of some Melanesian porphyry copper deposits: Stable isotope evidence

    USGS Publications Warehouse

    Chivas, A.R.; O'Neil, J.R.; Katchan, G.

    1984-01-01

    Hydrogen and oxygen isotope analyses of sericites and kaolinites from four young porphyry copper deposits (Ok Tedi (1.2 Ma) and Yandera (6.5 Ma), Papua New Guinea; Koloula (1.5 Ma), Solomon Islands; and Waisoi (<5 Ma), Fiji) indicate that the fluids from which these minerals precipitated were of mixed magmatic and non-magmatic sources. The non-magmatic component of the fluid from the island arc deposits (Koloula, Waisoi) was ocean water. For Ok Tedi, the non-magmatic component was a meteoric water with an isotopic composition different from that of the present meteoric water in the region. The isotopic signature of the former meteoric water is consistent with a surface elevation of 200 m a.s.l. or less at the time of mineralization. The deposit was later exposed and supergene kaolinitization commenced at approximately 1200 m a.s.l. Uplift and erosion has continued to the present at which time the elevation of the exposed deposit is 1800 m a.s.l. This rate of uplift is consistent with that known from other geological evidence. If the rate of uplift were approximately constant during the last 1.2 Ma, the age of supergene enrichment can be dated at approximately 0.4 Ma B.P. Similarly, influx of meteoric water at Yandera occurred when the ground surface above the deposit was at an elevation of approximately 600 m a.s.l. The deposit's present elevation is 1600 m a.s.l. In this case a total uplift of approximately 2.2 km is indicated, with removal of 1.2 km of overburden by erosion. ?? 1984.

  5. Grade distribution in a porphyry copper deposit - modeling and predictive capability

    SciTech Connect

    Murdock, G.; Petersen, U.

    1985-01-01

    Thirty-two grade profiles across the high grade dome of a porphyry copper deposit are fit by six possible element distribution functions. All six functions have a single maximum, approach or achieve a zero value away from the maximum, and are never negative. Four of the six functions are symmetric and have three parameters - symmetric triangle (SYT), ellipse (EPS), second order reciprocal (SOR), and second order exponential (SOE). Both remaining functions are asymmetric and have four parameters - sliding power exponential (SPE) and asymmetric triangle (AST). All six functions achieve reasonable fits of the Kriged grades for the complete profiles. In general, the four-parameter functions yield somewhat lower average absolute errors than do the three-parameter functions. Among the three-parameter functions, considering all profiles, the SOE function yields the best fit, with the SYT function a close second. The EPS function regularly underestimates grade in the halos whereas the SOR function overestimates it. Both four-parameter functions are asymmetric forms of a three parameter function. The better fits for complete profiles of the asymmetric forms do not differ significantly from those for the corresponding symmetric ones. Predictive capabilities for exploration applications are tested by fitting partial profiles, then comparing the resulting distributions with the remaining data of the complete profile. These predictions are of questionable value if all the known data are located prior to the element maximum. However, from the maximum onward, useful predictions of eventual deposit size may be made.

  6. Geochronology and geochemistry of the Badaguan porphyry Cu-Mo deposit in Derbugan metallogenic belt of the NE China, and their geological significances

    NASA Astrophysics Data System (ADS)

    Gao, Bingyu; Zhang, Lianchang; Jin, Xindi; Li, Wenjun; Chen, Zhiguang; Zhu, Mingtian

    2016-03-01

    The Badaguan porphyry Cu-Mo deposit belongs to the Derbugan metallogenic belt, which is located in the Ergun block, NE China. In the mining area, the Cu-Mo mineralization mainly occurs in quartz diorite porphyry and is hosted within silicified-sericitized and sericite alteration zone. Geochemical results of the host porphyry is characterized by high SiO2, high Al2O3, low MgO, weak positive Eu anomalies and clearly HREE depletion, high Sr, low Y and low Yb, similar to those of adakite. The Sr-Nd isotopic composition of the host porphyry displays an initial (87Sr/86Sr)i ratio of 0.7036-0.7055 and positive Nd( t) values of +0.1 to +0.6, which are similar to the OIB, reflecting the source of the host porphyry may derive from subducted ocean slab, and the new lower crust also had some contribution to the magma sources. The SIMS zircon U-Pb age from the host porphyry is 229 ± 2 Ma. The Re-Os isochron age for the molybdenite in the deposit is 225 ± 2 Ma closed to zircon U-Pb age of the host porphyry, indicating that Cu-Mo mineralization event occurred in Triassic. Combining the geology-geochemistry of the host porphyry and the regional tectonic evolution, we infer that the subduction processes of Mongol-Okhotsk oceanic slab under the Ergun block led to the formation of the Badaguan porphyry Cu-Mo deposit during the Triassic.

  7. Hydrothermal alteration and its effects on the magnetic properties of Los Pelambres, a large multistage porphyry copper deposit

    NASA Astrophysics Data System (ADS)

    Tapia, Joseline; Townley, Brian; Córdova, Loreto; Poblete, Fernando; Arriagada, César

    2016-09-01

    The Los Pelambres porphyry copper deposit is located 190 km north of Santiago, Chile. A paleomagnetic and mineralogical study was conducted at this deposit to determine the effects of hydrothermal alteration on the magnetic properties and minerals of rocks within the deposit when compared to the surrounding country rock. In the Los Pelambres deposit, magnetic properties of rocks are carried by titano-hematite and titano-magnetite solid solution minerals, where the former commonly indicates the exsolution of rutile. Magnetic minerals of intrusive rocks from the greater Los Pelambres region show that magmatic titano-magnetites and magnetites are the main magnetization carriers. The hydrothermal fluid associated with rutile exsolution textures could have played an important role in the mineralization of Cu in this deposit. The paleomagnetic properties in the Los Pelambres deposit can be divided in three main groups: (i) HMRG (high magnetic remanence group), (ii) HMSG (high magnetic susceptibility group), and (iii) LMSG (low magnetic susceptibility/remanence group). In-situ magnetic properties of the HMSG and LMSG are similar to the formations and units present regionally, however HRMG samples clearly differ from the country rocks. The high variability of in-situ magnetic properties presented in the Los Pelambres deposit has also been characteristic of other porphyry copper deposits in Chile (e.g., Chuquicamata and El Teniente). Regarding the field of exploration geophysics and porphyry copper deposits, this study suggests that phyllic, chloritic, and potassic alterations are related to low, intermediate, and high in-situ NRM, respectively, suggesting that geophysical methods must target a noisy magnetic signal depending on the scale of the study. The knowledge and results obtained are especially meaningful because magnetic surveys conducted for exploration do not commonly allow for the detection of ore mineralization.

  8. Generation of porphyry copper deposits by gas-brine reaction in volcanic arcs

    NASA Astrophysics Data System (ADS)

    Blundy, Jon; Mavrogenes, John; Tattitch, Brian; Sparks, Steve; Gilmer, Amy

    2014-05-01

    Porphyry copper deposits (PCDs) are characterised by a close spatial and temporal association with small, hypabyssal intrusions of silicic magmas in volcanic arcs. PCD formation requires elevated chlorine and water to concentrate copper in magmatic hypersaline liquids (or brines), and elevated sulphur to precipitate copper-rich sulphides. These twin requirements are hard to reconcile with experimental and petrological evidence that voluminous chlorine-rich, hydrous silicic magmas, of the variety favourable to copper enrichment, lack sufficient sulphur to precipitate directly the requisite quantities of sulphides. These features are, however, consistent with observations of active volcanic arcs whereby PCDs can be viewed as roots of dome volcanoes above shallow reservoirs where silicic magmas accumulate over long time spans. During protracted periods of dormancy metal-enriched dense brines accumulate in and above the silicic reservoir through slow, low-pressure degassing. Meanwhile cogenetic volatile-rich mafic magmas and their exsolved, sulphur and CO2-rich fluids accumulate in deeper reservoirs. Periodic destabilisation of these reservoirs leads to short-lived bursts of volcanism liberating sulphurous gases, which react with the shallow-stored brines to form copper-rich sulphides and acidic vapours. We test this hypothesis with a novel set of 'porphyry in a capsule' experiments designed to simulate low-pressure (1-2 kbar) interaction of basalt-derived, sulphur-rich gases with brine-saturated, copper-bearing, but sulphur-free, granite. Experiments were run at 720-850 ° C in cold-seal apparatus with basaltic andesite, loaded with H2O and S, situated below dacite, loaded with H2O, Cl and Cu. At run conditions both compositions are substantially degassed and crystallized. S-rich gas from the basaltic andesite ascends to react with Cu-rich brines exsolved from the dacite, Our experiments reveal the direct precipitation of copper-sulphide minerals, in vugs and veins

  9. Landsat-4 thematic mapper and thematic mapper simulator data for a porphyry copper deposit

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.

    1984-01-01

    Aircraft thematic mapper (TM) data were analyzed to evaluate the potential utility of the Landsat-4 thematic mapper for geologic mapping and detection of hydrothermal alteration zones in the Silver Bell porphyry copper deposit in southern Arizona. The data allow a comparison between aircraft TV simulator data and the Landsat-4 TM satellite data which possess similar spectral bands. A color rationcomposite of 30-m pixels was resampled, in order to clearly define a number of hydroxyl bearing minerals, (kaolinite, sericite, white mica), pyrite and iron oxide/hydroxide minerals. The iron oxide minerals have diagnostic absorption bands in the 0.45 and 0.85 micron regions of the spectrum, and the hydrous minerals are characterized by an absorption in the 2.2 micron region. The position of the spectral bands allow the TM to identify regions of hydrothermal alteration without resorting to a data processing algorithm. The comparison of the aircraft and Landsat-4 TM data showed considerable agreement, and confirmed the utility of TM data for identifying hydrothermal alteration zones. Samples of some color TM images are provided.

  10. Hydrogeochemical prospecting for porphyry copper deposits in the tropical-marine climate of Puerto Rico

    USGS Publications Warehouse

    Miller, W.R.; Ficklin, W.H.; Learned, R.E.

    1982-01-01

    A hydrogeochemical survey utilizing waters from streams and springs was conducted in the area of two known porphyry copper deposits in the tropical-marine climate of westcentral Puerto Rico. The most important pathfinder for regional hydrogeochemical surveys is sulfate which reflects the associated pyrite mineralization. Because of increased mobility due to intense chemical weathering and the low pH environment, dissolved copper can also be used as a pathfinder for regional surveys and has the advantage of distinguishing barren pyrite from pyrite associated with copper mineralization. For follow-up surveys, the most important pathfinders are copper, sulfate, pH, zinc, and fluoride. High concentrations of dissolved copper and moderate concentrations of sulfate is a diagnostic indication of nearby sources of copper minerals. An understanding of the geochemical processes taking place in the streambeds and the weathering environment, such as the precipitation of secondary copper minerals, contributes to the interpretation of the geochemical data and the selection of the most favorable areas for further exploration. ?? 1982.

  11. Sequential extraction techniques applied to a porphyry copper deposit in the basin and range province

    USGS Publications Warehouse

    Filipek, L.H.; Theobald, P.K., Jr.

    1981-01-01

    Samples of minus-80-mesh (<180 ??m) stream sediment, rock containing exposed fracture coatings, and jarosite and chrysocolla were collected from an area surrounding the North Silver Bell porphyry Cu deposit near Tucson, Arizona. The samples were subjected to a series of extractions in a scheme originally designed for use on samples from humid or sub-humid environments, in which the following fractions can effectively be separated: (1) carbonates and exchangeable metals; (2) Mn oxides; (3) organic compounds and sulfides; (4) hydrous Fe oxides; and (5) residual crystalline minerals. Jarosite and chrysocolla, two major minerals of the North Silver Bell area, were found to dissolve over two or more steps of the extraction scheme. The results represent only a limited number of samples from one copper deposit. Nevertheless, they do suggest that in a semiarid to arid environment, where mechanical dispersion of such minerals predominates, uncritical assignment of unique phases, such as Mn oxides or organics to a given extraction would lead to false interpretations of weathering processes. However, the relative proportions of elements dissolved in each step of the jarosite and chrysocolla extractions could be used as a "fingerprint" for recognition of the presence of these two minerals in the stream-sediment and rock samples. The relative abundance of hydrous Fe oxide and jarosite and the alteration zoning could be mapped using data from jarosite and chrysocolla extractions. Manganese oxides were also found to have a greater influence on Zn than on Cu or Pb during supergene alteration. The rapid change in relative importance of the first (1M-acetic acid) extraction for Cu, Zn, and Pb near the mineralized zone suggested the occurrence of minor hydromorphic processes within the stream sediments. Thus, the acetic acid extraction proved the most effective for pinpointing mineralization in sediments. In contrast, the residual fraction had the longest dispersion train, suggesting

  12. Variation of molybdenum isotopes in molybdenite from porphyry and vein Mo deposits in the Gangdese metallogenic belt, Tibetan plateau and its implications

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Zhou, Lian; Gao, Shan; Li, Jian-Wei; Hu, Zhi-Fang; Yang, Lu; Hu, Zhao-Chu

    2016-02-01

    We present Mo isotopic ratios of molybdenite from five porphyry molybdenum deposits (Chagele, Sharang, Jiru, Qulong, and Zhuonuo) and one quartz-molybdenite vein-type deposit (Jigongcun) along the Gangdese metallogenic belt in the Tibetan Plateau. These deposits represent a sequence of consecutive events of the India-Asia collision at different periods. Additional molybdenite samples from the Henderson Mo deposit (USA), the oceanic subduction-related El Teniente (Chile), and Bingham (USA) porphyry Cu-(Mo) deposits were analyzed for better understanding the controls on the Mo isotope systematics of molybdenite. The results show that molybdenite from Sharang, Jiru, Qulong, and Zhuonuo deposits have similar δ97Mo (˜0 ‰), in agreement with the values of the Henderson Mo deposit (-0.10 ‰). In contrast, samples from the Changle and Jigongcun deposit have δ97Mo of 0.85 ‰ to 0.88 ‰ and -0.48 %, respectively. Molybdenite from the El Teniente and Bingham deposits yields intermediate δ97Mo of 0.27 and 0.46 ‰, respectively. The Mo isotopes, combined with Nd isotope data of the ore-bearing porphyries, indicate that source of the ore-related magmas has fundamental effects on the Mo isotopic compositions of molybdenite. Our study indicates that molybdenite related to crustal-, and mantle-derived magmas has positive or negative δ97Mo values, respectively, whereas molybdenite from porphyries formed by crust-mantle mixing has δ97Mo close to 0 ‰. It is concluded that the Mo isotope composition in the porphyry system is a huge source signature, without relation to the tectonic setting under which the porphyry deposits formed.

  13. Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece

    NASA Astrophysics Data System (ADS)

    Melfos, Vasilios; Vavelidis, Michael; Christofides, Georgios; Seidel, Eberhard

    2002-08-01

    The Maronia copper-molybdenum deposit is hosted by a porphyritic microgranite, located 30 km south-east of Komotini in Thrace (north-eastern Greece) in the Rhodope metallogenic province. The geology of the area is dominated by metamorphosed Mesozoic sedimentary and volcanic rocks, and Tertiary plutonic and subvolcanic intrusions. The metamorphic rocks belong to the Makri Unit of the Circum Rhodope Belt and consist mainly of marbles and calc-schists in the lower part and schists in the upper part. The marbles and schists of the Makri Unit are intruded by the Oligocene Maronia pluton of gabbroic-monzogabbroic-monzonitic composition and a younger porphyry microgranite, which is the host of the copper-molybdenum mineralisation. Three hydrothermal alteration zones have been recognised in the porphyritic microgranite: an argillic zone, a phyllic zone, and a propylitic zone which extends into the surrounding rocks. Additionally, three highly silicified zones crop out at the north-eastern, south-eastern and southern parts of the microgranite. Chalcopyrite-pyrite-molybdenite mineralisation, concentrated mainly in the silicified zones and associated with areas of phyllic and propylitic alteration, occurs as disseminations, veinlets and segregations. Surface samples of altered rock contain as much as 7,600 ppm Mo, 5,460 ppm Cu and 1 ppm Au. Geochemical data from a drill core revealed a 10-m-thick horizon containing as much as 12 ppm Au, 17 ppm Ag and 2.00% Cu. Argillic and phyllic alteration zones are characterised by relatively low REE abundances (average total: 88 and 95 ppm respectively) and negative Eu anomalies, compared to rocks in the propylitic alteration zone where REE contents are higher (average total: 177 ppm) and there is a positive Eu anomaly. The ore-related mineral assemblage consists of sulphides (pyrite, chalcopyrite, cubanite, pyrrhotite, pentlandite, molybdenite, sphalerite, galena and bismuthinite), sulphosalts (tetrahedrite, tennantite, zinkenite

  14. Geochemical element mobility during the hydrothermal alteration in the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Abdelnasser, Amr; Kiran Yildirim, Demet; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au deposit represents one of the important copper source and mineral deposits in the Anatolian tectonic belt at Balikesir province, NW Turkey. It considered as a vein-type deposit locally associated with intense hydrothermal alteration within the brecciation, quartz stockwork veining, and brittle fracture zones in the main host rock that represented by hornfels, as well as generally related to the shallow intermediate to silicic intrusive Eybek pluton. Based on the field and geologic relationships and types of ore mineral assemblages and the accompanied alteration types, there are two mineralization zones; hypogene (primary) and oxidation/supergene zones are observed associated with three alteration zones; potassic, phyllic, and propylitic zones related to this porphyry deposit. The phyllic and propylitic alterations locally surrounded the potassic alteration. The ore minerals related to the hypogene zone represented by mostly chalcopyrite, Molybdenite, and pyrite with subordinate amount of marcasite, enargite, and gold. On the other hand they include mainly cuprite with chalcopyrite, pyrite and gold as well as hematite and goethite at the oxidation/supergene zone. This study deals with the quantitative calculations of the mass/volume changes (gains and losses) of the major and trace elements during the different episodes of alteration in this porphyry deposit. These mass balance data reveal that the potassic alteration zone that the main Cu- and Mo-enriched zone, has enrichment of K, Si, Fe, and Mg, and depletion of Na referring to replacement of plagioclase and amphibole by K-feldspar, sericite and biotite. While the propylitic alteration that is the main Mo- and Au-enriched zone is accompanied with K and Na depletion with enrichment of Si, Fe, Mg, and Ca forming chlorite, epidote, carbonate and pyrite. On the other hand the phyllic alteration that occurred in the outer part around the potassic alteration, characterized by less amount

  15. Ore formation in porphyry-type deposits during incrementally built magma chamber and fluid sparging

    NASA Astrophysics Data System (ADS)

    Vigneresse, J. L.; Bachmann, O.; Huber, C.; Parmigiani, A.; Dufek, J.; Campos, E.

    2012-04-01

    Porphyry-type mineralizations are commonly associated with an underlying magma chamber from which a volatile phase exsolves from the crystallizing magma. We suggest a model of fluid sparging during multiple successive intrusions yielding metals concentration within the gas phase. Metals enrichment by 3-4 orders of magnitude takes place during the magmatic stage prior to hydrothermal effects, resulting from a competition between diffusion and advection of the volatile phase. The model explains why a single intrusion is not efficient enough to lead to economically viable ore deposit, though it also involves a gas phase percolating within a crystalline mush. During multiple intrusions, metals segregate from the new melt to the gas phase by diffusion, as long as the gas has not overcome a critical saturation level (about 20 % gas). Adding gas exsolved, about 4 % at each new magma recharge, overcomes this level. Then, the diffusion process switches toward advection, since the bubbles get interconnected, enhancing the transport of a gas phase enriched in metals. Once advected, the enriched gas phase turns into hydrothermal circulation during which metals condensate. Two non-dimensional numbers, Péclet and Stefan numbers, respectively rule diffusion and advection of elements while heat is lost through cooling. The model also examines the total duration of the process that re-establishes after 4-6 recharges in magma. It also provides an explanation why intrusions are barren or enriched, although they result from similar conditions of magma genesis. Development of a zoned alteration pattern may serve as a guide for prospection.

  16. Early Paleozoic magmatism and metallogeny in Northeast China: a record from the Tongshan porphyry Cu deposit

    NASA Astrophysics Data System (ADS)

    Hu, Xinlu; Yao, Shuzhen; Ding, Zhenju; He, Mouchun

    2016-04-01

    The Tongshan Cu deposit is located in the northern segment of the Great Xing'an Range and represents one of the few early Paleozoic porphyry Cu deposits in northeastern China. The granitic rocks in the Tongshan Cu deposit include concealed granodiorite and exposed tonalite, which yield LA-ICP-MS zircon U-Pb ages of 478 ± 3 Ma and 214 ± 3 Ma, respectively. The granodiorite has relatively high SiO2 (60.5-63.5 wt%) and Sr (596-786 ppm) contents, low Yb (1.21-1.53 ppm) and Y (9.81-13.0 ppm) contents, and initial 87Sr/86Sr ratios (0.7038-0.7040), suggesting adakitic affinity. Combined with its positive ɛNd(t) values (3.5-5.4), low Mg# values (41-50), and low contents of Cr (18.6-29.0 ppm) and Ni (7.3-9.1 ppm), we propose an origin by partial melting of a juvenile mafic lower crust in a post-collisional setting after the amalgamation of the Erguna and Xing'an Blocks. The tonalite is characterized by high SiO2 (63.1-65.9 wt%) and Al2O3 (16.0-16.3 wt%) contents, low (87Sr/86Sr) i ratios (0.7041-0.7042), positive ɛNd(t) values (2.6-3.0), along with LILE and LREE enrichments and Nb-Ta-Ti depletions, suggesting an origin by partial melting of juvenile mafic lower crust, coupled with fractional crystallization, in a post-orogenic setting after the collision between the Xing'an and Songnen Blocks. The δD values of ore-forming fluids range from -100 to -93 ‰, and the δ18O values calculated from hydrothermal quartz are between -3 and 10 ‰. The δ34S values of sulfides vary from -2.6 to -1.1 ‰. Field observations, as well as the geochronological and H-O-S isotopic data, suggest that the Cu mineralization at Tongshan was genetically linked with the granodiorite.

  17. Hydrothermal evolution of the Sar-Cheshmeh porphyry Cu Mo deposit, Iran: Evidence from fluid inclusions

    NASA Astrophysics Data System (ADS)

    Hezarkhani, Ardeshir

    2006-12-01

    The Sar-Cheshmeh porphyry Cu-Mo deposit is located in Southwestern Iran (˜65 km southwest of Kerman City) and is associated with a composite Miocene stock, ranging in composition from diorite through granodiorite to quartz-monzonite. Field observations and petrographic studies demonstrate that the emplacement of the Sar-Cheshmeh stock took place in several pulses, each with associated hydrothermal activity. Molybdenum was concentrated at a very early stage in the evolution of the hydrothermal system and copper was concentrated later. Four main vein Groups have been identified: (I) quartz+molybdenite+anhydrite±K-feldspar with minor pyrite, chalcopyrite and bornite; (II) quartz+chalcopyrite+pyrite±molybdenite±calcite; (III) quartz+pyrite+calcite±chalcopyrite±anhydrite (gypsum)±molybdenite; (IV) quartz±calcite±gypsum±pyrite±dolomite. Early hydrothermal alteration produced a potassic assemblage (orthoclase-biotite) in the central part of the stock, propylitic alteration occurred in the peripheral parts of the stock, contemporaneously with potassic alteration, and phyllic alteration occurred later, overprinting earlier alteration. The early hydrothermal fluids are represented by high temperature (350-520 °C), high salinity (up to 61 wt% NaCl equivalent) liquid-rich fluid inclusions, and high temperature (340-570 °C), low-salinity, vapor-rich inclusions. These fluids are interpreted to represent an orthomagmatic fluid, which cooled episodically; the brines are interpreted to have caused potassic alteration and deposition of Group I and II quartz veins containing molybdenite and chalcopyrite. Propylitic alteration is attributed to a liquid-rich, lower temperature (220-310 °C), Ca-rich, evolved meteoric fluid. Influx of meteoric water into the central part of the system and mixing with magmatic fluid produced albitization at depth and shallow phyllic alteration. This influx also caused the dissolution of early-formed copper sulphides and the remobilization of

  18. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper–molybdenum deposit, Western Qinling Orogenic Belt, China

    USGS Publications Warehouse

    Kun-Feng Qiu; Taylor, Ryan D.; Yao-Hui Song; Hao-Cheng Yu; Kai-Rui Song; Nan Li

    2016-01-01

    Taiyangshan is a poorly studied copper–molybdenum deposit located in the Triassic Western Qinling collisional belt of northwest China. The intrusions exposed in the vicinity of the Taiyangshan deposit record episodic magmatism over 20–30 million years. Pre-mineralization quartz diorite porphyries, which host some of the deposit, were emplaced at 226.6 ± 6.2 Ma. Syn-collisional monzonite and quartz monzonite porphyries, which also host mineralization, were emplaced at 218.0 ± 6.1 Ma and 215.0 ± 5.8 Ma, respectively. Mineralization occurred during the transition from a syn-collisional to a post-collisional setting at ca. 208 Ma. A barren post-mineralization granite porphyry marked the end of post-collisional magmatism at 200.7 ± 5.1 Ma. The ore-bearing monzonite and quartz monzonite porphyries have a εHf(t) range from − 2.0 to + 12.5, which is much more variable than that of the slightly older quartz diorite porphyries, with TDM2 of 1.15–1.23 Ga corresponding to the positive εHf(t) values and TDM1 of 0.62–0.90 Ga corresponding to the negative εHf(t) values. Molybdenite in the Taiyangshan deposit with 27.70 to 38.43 ppm Re suggests metal sourced from a mantle–crust mixture or from mafic and ultramafic rocks in the lower crust. The δ34S values obtained for pyrite, chalcopyrite, and molybdenite from the deposit range from + 1.3‰ to + 4.0‰, + 0.2‰ to + 1.1‰, and + 5.3‰ to + 5.9‰, respectively, suggesting a magmatic source for the sulfur. Calculated δ18Ofluid values for magmatic K-feldspar from porphyries (+ 13.3‰), hydrothermal K-feldspar from stockwork veins related to potassic alteration (+ 11.6‰), and hydrothermal sericite from quartz–pyrite veins (+ 8.6 to + 10.6‰) indicate the Taiyangshan deposit formed dominantly from magmatic water. Hydrogen isotope values for hydrothermal sericite ranging from − 85 to − 50‰ may indicate that magma degassing progressively depleted residual liquid in

  19. Controls on supergene enrichment of porphyry copper deposits in the Central Andes: A review and discussion

    NASA Astrophysics Data System (ADS)

    Hartley, Adrian J.; Rice, Clive M.

    2005-12-01

    The Central Andes host some of the world’s largest porphyry copper deposits. The economic viability of these deposits is dependent on the size and quality of their supergene enrichment blanket. Published models that have strongly influenced exploration policy suggest that supergene enrichment ceased at 14 Ma due to an increase in aridity. Here we discuss these models using published geochronological, geomorphological and geological data. Geochronological data indicate that supergene oxidation and enrichment has been active between 17 and 27°S across the forearc of northern Chile and southern Peru from 44 to 6 Ma, and on the Bolivian Altiplano and Eastern Cordillera of Argentina from 11 Ma to present. There is evidence for cessation at 20, 14 and 6 Ma. However, a major problem is that as more geochronological data become available the age ranges and periods of enrichment increase. This suggests that the full spectrum of enrichment ages may not have been sampled. The relationship between supergene enrichment and the age of regional pediplain surface development is not well constrained. Only in two areas have surfaces related to enrichment been directly dated (southern Peru and south of 26°S in Chile) and suggest formation post 14 Ma. Sedimentological data indicate that a fluctuating arid/semi-arid climate prevailed across the Atacama Desert until between 4 and 3 Ma, climatic conditions that are thought to be favourable for supergene enrichment. The balance between uplift, erosion, burial and sufficient water supply to promote enrichment is complex. This suggests that a simple model for controlling supergene enrichment is unlikely to be widely applicable in northern Chile. General models that involve climatic desiccation at 14 Ma related to rainshadow development and/or the presence of an ancestral cold-upwelling Humboldt Current are not supported by the available geological evidence. The integration of disparate sedimentological, geomorphological and supergene

  20. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and

  1. Systematics of hydrothermal alteration at the volcanic-hosted Falun Zn-Pb-Cu-(Au-Ag) deposit - implications for ore genesis, structure and exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden

    NASA Astrophysics Data System (ADS)

    Kampmann, Tobias C.; Jansson, Nils J.; Stephens, Michael B.; Majka, Jarosław

    2016-04-01

    The Palaeoproterozoic, volcanic-hosted Falun Zn-Pb-Cu-(Au-Ag) sulphide deposit was mined for base and precious metals during several centuries, until its closure in 1992. The deposit is located in a 1.9 Ga ore district in the Bergslagen lithotectonic unit, Fennoscandian Shield, south-central Sweden. Both the ores and their host rock underwent polyphase ductile deformation, and metamorphism under amphibolite facies and later retrograde conditions at 1.9-1.8 Ga (Svecokarelian orogenic system). This study has the following aims: (i) Classify styles and intensities of alteration in the hydrothermally altered zone at Falun; (ii) identify precursor rocks to hydrothermally altered rocks and their spatial distribution at the deposit; (iii) evaluate the chemical changes resulting from hydrothermal alteration using mass change calculations; and (iv) assess the pre-metamorphic alteration assemblages accounting for the observed metamorphic mineral associations in the altered rocks at Falun. Results will have implications for both the ore-genetic and structural understanding of the deposit, as well as for local and regional exploration. Metamorphic mineral associations in the altered rocks include biotite-quartz-cordierite-(anthophyllite) and, more proximally, quartz-anthophyllite-(biotite-cordierite/almandine), biotite-cordierite-(anthophyllite) and biotite-almandine-(anthophyllite). The proximal hydrothermally altered zone corresponds to intense chlorite-style alteration. Subordinate dolomite or calcite marble, as well as calc-silicate (tremolite, diopside) rocks are also present at the deposit. Metavolcanic rocks around the deposit are unaltered, weakly sericitized or sodic-altered. Immobile-element (e.g. Zr, TiO2, Al2O3, REE) systematics of the silicate-rich samples at and around the deposit suggest that the precursors to the hydrothermally altered rocks at Falun were predominantly rhyolitic in composition, dacitic rocks being subordinate and mafic-intermediate rocks

  2. Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet

    NASA Astrophysics Data System (ADS)

    Li, Yang; Selby, David; Feely, Martin; Costanzo, Alessandra; Li, Xian-Hua

    2016-04-01

    The Qulong porphyry copper and molybdenum deposit is located at the southwest margin of the Lhasa Terrane and in the eastern region of the Gangdese magmatic belt. It represents China's largest porphyry copper system, with ˜2200 million tonnes of ore comprising 0.5 % Cu and 0.03 % Mo. The mineralization is associated with Miocene granodiorite, monzogranite and quartz-diorite units, which intruded into Jurassic volcanic units in a post-collisional (Indian-Asian) tectonic setting. Field observations and core logging demonstrate the alteration and mineralization at Qulong are akin to typical porphyry copper systems in subduction settings, which comprise similar magmatic-hydrothermal, potassic, propylitic and phyllic alteration assemblages. Molybdenite Re-Os geochronology confirms the relative timeframe defined by field observations and core logging and indicates that the bulk copper and molybdenum at Qulong were deposited within 350,000 years: between 16.10 ± 0.06 [0.08] (without and with decay constant uncertainty) and 15.88 ± 0.06 [0.08] Ma. This duration for mineralization is in direct contrast to a long-lived intrusive episode associated with mineralization based on previous zircon U-Pb data. Our fluid inclusion study indicates that the ore-forming fluid was oxidized and contained Na, K, Ca, Fe, Cu, Mo, Cl and S. The magmatic-hydrothermal transition occurred at ˜425 °C under lithostatic pressure, while potassic, propylitic and phyllic alteration occurred at hydrostatic pressure with temperature progressively decreasing from 425 to 280 °C. The fluid inclusion data presented here suggests that there has been ˜2.3 km of erosion at Qulong after its formation, and this erosion may be related to regional uplift of the Lhasa Terrane.

  3. Methane origin and oxygen-fugacity evolution of the Baogutu reduced porphyry Cu deposit in the West Junggar terrain, China

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Pan, HongDi

    2015-12-01

    Most porphyry copper deposits worldwide contain magnetite, hematite, and anhydrite in equilibrium with hypogene copper-iron sulfides (chalcopyrite, bornite) and have fluid inclusions with CO2 >> CH4 that are indicative of high fO2. In contrast, the Baogutu porphyry Cu deposit in the West Junggar terrain (Xinjiang, China) lacks hematite and anhydrite, contains abundant pyrrhotite and ilmenite in equilibrium with copper-iron sulfides (chalcopyrite), and has fluid inclusions with CH4 >> CO2 that are indicative of low fO2. The mineralized intrusive phases at Baogutu include the main-stage diorite stock and minor late-stage diorite porphyry dikes. The main-stage stock underwent fractional crystallization and country-rock assimilation-contamination, and consists of dominant diorite and minor gabbro and tonalite porphyry. The country rocks contain organic carbons (0.21-0.79 wt.%). The δ13CvPDB values of the whole rocks (-23.1 to -25.8 ‰) in the wall rocks suggest a sedimentary organic carbon source. The δ13CvPDB values of CH4 (-28.2 to -36.0 ‰) and CO2 (-6.8 to -20.0 ‰) in fluid inclusions require an organic source of external carbon and equilibration of their Δ13CCO2-CH4 values (8.2-25.0 ‰) at elevated temperatures (294-830 °C) suggesting a significant contribution of thermogenic CH4. Mineral composition data on the main-stage intrusions, such as clinopyroxene, hornblende, biotite, magnetite, ilmenite, sphene, apatite, and pyrrhotite, suggest that the primary magma at Baogutu was oxidized and became reduced after emplacement by contamination with country rocks. Mineral compositions and fluid inclusion gas compositions suggest that the redox state of the system evolved from log fO2 > FMQ + 1 in the magma stage, to log fO2 < FMQ as a consequence of country rocks assimilation-contamination, to log fO2 > FMQ in the hydrothermal stage. Though oxidized magma was emplaced initially, assimilation-contamination of carbonaceous country rocks decreased its fO2 such that

  4. Re-Os molybdenite ages and zircon Hf isotopes of the Gangjiang porphyry Cu-Mo deposit in the Tibetan Orogen

    NASA Astrophysics Data System (ADS)

    Leng, Cheng-Biao; Zhang, Xing-Chun; Zhong, Hong; Hu, Rui-Zhong; Zhou, Wei-De; Li, Chao

    2013-06-01

    The Miocene porphyry Cu-(Mo) deposits in the Gangdese orogenic belt in southern Tibet were formed in a post-subduction collisional setting. They are closely related to the Miocene adakite-like porphyries which were probably derived from a thickened basaltic lower crust. Furthermore, mantle components have been considered to have played a crucial role in formation of these porphyry deposits (Hou et al. Ore Geol Rev 36: 25-51, 2009; Miner Deposita doi:10.1007/s00126-012-0415-6, 2012). In this study, we present zircon Hf isotopes and molybdenite Re-Os ages on the newly discovered Gangjiang porphyry Cu-Mo deposit in southern Tibet to constrain the magma source of the intrusions and the timing of mineralization. The Gangjiang porphyry Cu-Mo deposit is located in the Nimu ore field in the central Gangdese porphyry deposits belt, southern Tibet. The copper and molybdenum mineralization occur mainly as disseminations and veins in the overlapped part of the potassic and phyllic alteration zones, and are predominantly hosted in the quartz monzonite stock and in contact with the rhyodacite porphyry stock. SIMS zircon U-Pb dating of the pre-mineral quartz monzonite stock and late intra-mineral rhyodacite porphyry yielded ages of 14.73 ± 0.13 Ma (2 σ) and 12.01 ± 0.29 Ma (2 σ), respectively. These results indicate that the magmatism could have lasted as long as about 2.7 Ma for the Gangjiang deposit. The newly obtained Re-Os model ages vary from 12.51 ± 0.19 Ma (2 σ) to 12.85 ± 0.18 Ma (2 σ) for four molybdenite samples. These Re-Os ages are roughly coincident with the rhyodacite porphyry U-Pb zircon age, and indicate a relatively short-lived episode of ore deposition (ca. 0.3 Ma). In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS indicate that the ɛ Hf( t) values of zircons from a quartz monzonite sample vary from +2.25 to +4.57 with an average of +3.33, while zircons from a rhyodacite porphyry sample vary from +5.53 to +7.81 with an average of +6.64. The

  5. Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Taylor, Ryan D.; Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R., II

    2012-01-01

    Geoenvironmental concerns are generally low because of low volumes of sulfide minerals. Most deposits are marginally acid-generating to non-acid-generating with drainage waters being near-neutral pH because of the acid generating potential of pyrite being partially buffered by late-stage calcite-bearing veins. The low ore content results in a waste:ore ratio of nearly 1:1 and large tailings piles from the open-pit method of mining.

  6. Origin of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, NE China: Constraints from geology, geochronology, geochemistry, and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Zhang, Fang-Fang; Wang, Yin-Hong; Liu, Jia-Jun; Wang, Jian-Ping; Zhao, Chun-Bo; Song, Zhi-Wei

    2016-03-01

    The Wunugetushan porphyry Cu-Mo deposit is located in the southeastern margin of the Mongol-Okhotsk Orogenic Belt and in the northwestern segment of the Great Xing'an Range, NE China. The orebodies of this deposit are mainly hosted in the monzogranitic porphyry stock and in contact with the granitic porphyry dyke and biotite granite batholith. The SHRIMP zircon U-Pb dating of the granitic porphyry dyke yielded ages of 201.4 ± 3.1 Ma (2σ, MSWD = 1.5). These results indicate that the magmatism in the Wunugetushan area might have occurred at ca. 201 Ma in the early Jurassic, and that the mineralization age (ca. 181 Ma) of this deposit is later than the age of intrusive granitic porphyry in the area. Geochemically, the Wunugetushan granitoids belong to high-K calc-alkaline and shoshonitic series, enriched in K, Rb, Nd, and Pb, and depleted in Sr, Nb, Ti and P, with negative Eu anomalies. In situ Hf isotopic analyses of zircons using LA-MC-ICP-MS indicate that the εHf(t) values for zircons from a granitic porphyry sample vary from +2.4 to +11.8 and that the corresponding crustal model ages (TDMC) vary from 483 to 1088 Ma. The least-altered monzogranitic porphyry, granitic porphyry and biotite granite yielded relatively uniform εNd(t) values from -1.0 to +0.6 and low (87Sr/86Sr)i ratios ranging from 0.704387 to 0.708385. The geochemical and Sr-Nd-Hf isotopic data for the granitoids indicate that the source magma for these rocks could be derived from a juvenile lower crust. The δ34S values of sulfides show a narrow range (+0.76‰ to +3.20‰) similar to those of magmatic sulfur, further implying a lower crust origin. Based on the results of this study and the regional geodynamic evolution, it is proposed that the formation of the Wunugetushan deposit and associated granitoids should be linked to the southeastward subduction of the Mongol-Okhotsk oceanic plate beneath the Erguna Massif during the early Jurassic, and that the monzogranitic porphyry intrusions in

  7. Geochemical, microtextural and petrological studies of the Samba prospect in the Zambian Copperbelt basement: a metamorphosed Palaeoproterozoic porphyry Cu deposit.

    NASA Astrophysics Data System (ADS)

    Master, Sharad; Mirrander Ndhlovu, N.

    2015-04-01

    Ever since Wakefield (1978, IMM Trans., B87, 43-52) described a porphyry-type meta-morphosed Cu prospect, the ca 50 Mt, 0.5% Cu Samba deposit (12.717°S, 27.833°E), hosted by porphyry-associated quartz-sericite-biotite schists in northern Zambia, there has been controversy about its origin and significance. This is because it is situated in the basement to the world's largest stratabound sediment-hosted copper province, the Central African Copperbelt, which is hosted by rocks of the Neoproterozoic Katanga Supergroup. Mineralization in the pre-Katangan basement has long played a prominent role in ore genetic models, with some authors suggesting that basement Cu mineralization may have been recycled into the Katangan basin through erosion and redeposition, while others have suggested that the circulation of fluids through Cu-rich basement may have leached out the metals which are found concentrated in the Katangan orebodies. On the basis of ca 490-460 Ma Ar-Ar ages, Hitzman et al. (2012, Sillitoe Vol., SEG Spec. Publ., 16, 487-514) suggested that Samba represents late-stage impregnation of copper mineralization into the basement, and that it was one of the youngest copper deposits known in the Central African Copperbelt. If the Samba deposit really is that young, then it would have post-dated regional deformation and metamorphism (560-510 Ma), and it ought to be undeformed and unmetamorphosed. The Samba mineralization consists of chalcopyrite and bornite, occurring as disseminations, stringers and veinlets, found in a zone >1 km along strike, in steeply-dipping lenses up to 10m thick and >150m deep. Our new major and trace element XRF geochemical data (14 samples) show that the host rocks are mainly calc-alkaline metadacites. Cu is correlated with Ag (Cu/Ag ~10,000:1) with no Au or Mo. Our study focused on the microtextures and petrology of the Samba ores. We confirm that there is alteration of similar style to that accompanying classical porphyry Cu mineralization

  8. Quantitative Mineral Resource Assessment of Copper, Molybdenum, Gold, and Silver in Undiscovered Porphyry Copper Deposits in the Andes Mountains of South America

    USGS Publications Warehouse

    Cunningham, Charles G.; Zappettini, Eduardo O.; Vivallo S., Waldo; Celada, Carlos Mario; Quispe, Jorge; Singer, Donald A.; Briskey, Joseph A.; Sutphin, David M.; Gajardo M., Mariano; Diaz, Alejandro; Portigliati, Carlos; Berger, Vladimir I.; Carrasco, Rodrigo; Schulz, Klaus J.

    2008-01-01

    Quantitative information on the general locations and amounts of undiscovered porphyry copper resources of the world is important to exploration managers, land-use and environmental planners, economists, and policy makers. This publication contains the results of probabilistic estimates of the amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) in undiscovered porphyry copper deposits in the Andes Mountains of South America. The methodology used to make these estimates is called the 'Three-Part Form'. It was developed to explicitly express estimates of undiscovered resources and associated uncertainty in a form that allows economic analysis and is useful to decisionmakers. The three-part form of assessment includes: (1) delineation of tracts of land where the geology is permissive for porphyry copper deposits to form; (2) selection of grade and tonnage models appropriate for estimating grades and tonnages of the undiscovered porphyry copper deposits in each tract; and (3) estimation of the number of undiscovered porphyry copper deposits in each tract consistent with the grade and tonnage model. A Monte Carlo simulation computer program (EMINERS) was used to combine the probability distributions of the estimated number of undiscovered deposits, the grades, and the tonnages of the selected model to obtain the probability distributions for undiscovered metals in each tract. These distributions of grades and tonnages then can be used to conduct economic evaluations of undiscovered resources in a format usable by decisionmakers. Economic evaluations are not part of this report. The results of this assessment are presented in two principal parts. The first part identifies 26 regional tracts of land where the geology is permissive for the occurrence of undiscovered porphyry copper deposits of Phanerozoic age to a depth of 1 km below the Earth's surface. These tracts are believed to contain most of South America's undiscovered resources of copper. The

  9. Volatile History of the Mount Emmons Porphyry Molybdenum Deposit, Colorado Inferred From O-H-S-C-Pb Isotope Systematics

    NASA Astrophysics Data System (ADS)

    Taylor, B. E.; Hannah, J. L.; Stein, H. J.

    2001-05-01

    The 17 Ma-old granitic Mount Emmons porphyry intrusion is concentrically zoned and comprised of several texturally distinct phases of varying relative age. From oldest to youngest, the three principal phases, all porphyritic, are: Red Lady (RP), Keystone (KP), and Union (UP). The RP phase is dominantly aplitic to very fine-grained porphyritic, whereas the KP and UP phases are coarser-grained porphyries. RP and KP are credited with having produced most of the molybdenum mineralization. The degassing of this intrusion and its relationship with the mineralizing process were investigated via stable and radiogenic isotope systematics. Whole-rock water contents and δ D values correlate with depth in the Union Porphyry, varying from -134 to -110 ‰ , and from 0.24 and 0.67 wt.% H2O deeper in the stock, consistent with magmatic degassing. Similar ranges of isotopic ratios and water content are found at topographically higher levels (0.15 to 0.63 wt.% H2O and -149 to -127 ‰ δ D in KP and 0.13 to 0.51 wt.% H2O and -146 to -127 % δ D in RP), but alteration of the Mount Emmons porphyry during its cooling history by low δ D meteoric waters obscured any correlation of δ D with wt.% H2O. The overall effect of meteoric alteration was limited, however; most whole-rock values of δ 18O are 7.0 +/- 1.0 ‰ (range: 5.0 to 9.5 ‰ ), and secondary K-feldspar from molybdenite-bearing veins exhibits a "magmatic" range of δ 18O values (6.0 to 8.0 ‰ ). Pb isotope systematics, also a sensitive tracer for wall-rock derived fluid, suggest little, if any, contamination of the magma by wall-rock sources of Pb. S-isotope systematics are supportive of a deep crustal source for sulfur, without the isotopic effects of degassing. C isotope data for groundmass calcite in the intrusion are consistent with precipitation and re-equilibration with a magmatic CO2-charged hydrothermal fluid at ca. 200-300 oC. Incorporation of organic carbon from the Mancos Shale wall rocks is not indicated

  10. Prospectivity modeling of porphyry-Cu deposits by identification and integration of efficient mono-elemental geochemical signatures

    NASA Astrophysics Data System (ADS)

    Parsa, Mohammad; Maghsoudi, Abbas; Yousefi, Mahyar; Sadeghi, Martiya

    2016-02-01

    Dispersion pattern of geochemical elements in stream sediment data of a study area is affected by several factors, e.g., geological and geomorphological characteristics of the area. In this paper, we demonstrated recognition of efficient and inefficient mono-elemental geochemical signatures in a study area and exclusion of inefficient elements is worthwhile for increasing the probability of exploration success. For this, we adapted prediction-area (P-A) plot, normalized density and success-rate curve as tools that evaluate the ability of geochemical signatures in prediction of undiscovered mineral deposits and in delimiting exploration targets. After identification of efficient and inefficient elements, we combined efficient indicator elements to generate an effective prospectivity model. To illustrate the procedure we used a stream sediment data set for prospecting porphyry-Cu deposits in the Noghdouz area, Iran.

  11. Immiscibility of magmatic fluids and their relation to Mo and Cu mineralization at the Bangpu porphyry deposit, Tibet, China

    NASA Astrophysics Data System (ADS)

    Luo, Maocheng; Tang, Juxing; Mao, Jingwen; Wang, Liqiang; Chen, Wei; Leng, Qiufeng

    2015-05-01

    The coexistence of aqueous fluid inclusions and silicate melt inclusions in quartz phenocrysts from porphyrites at the Bangpu porphyry Mo-Cu deposit, Tibet, China were examined to characterize the immiscibility processes during the magmatic to hydrothermal transition. The physical and chemical environment during crystallization of the magmas has been reconstructed on the basis of microthermometric experiments and trace element microanalysis. Compositions of melt and brine fluid phases are determined using Synchrotron radiation X-ray fluorescence analysis, SEM-EDS and Laser Raman spectroscopy analyses. Brine fluids were directly exsolved by a crystallizing melt, and the simultaneous entrapment of volatile-rich (brine fluid) and volatile-poor immiscible phases (silicate melt) occurred at 670-700 °C and 1.6-1.95 kbar when the magma had H2O contents between 5 and 6 wt% and crystal contents of 60-80%. A later low-density fluid with a higher Mo concentration exsolved after about 80-90% crystallization had occurred. This fluid contained significant concentrations of Cl, Na, K, Ca, Fe, Cu, Zn, Rb, and small amounts of Mn, Br and Pb. Immiscibility of magmatic fluids can lead to different metal partitioning behaviors between residual melt and volatile phases, which generate variable metal ratios. Copper was partitioned preferentially into the brine phase, in contrast to the behavior observed in other porphyry Cu deposits. Ore deposition by a dense brine could explain the partially deep Cu mineralization. Condensation of brine from a later low-density parental fluid could be an efficient mechanism to concentrate shallow Cu mineralization and broadly distributed Mo mineralization. The source of the Mo mineralizing fluids probably was a particularly large magma chamber that crystallized and fractionated at depth greater than upper continental crust level.

  12. Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru)

    NASA Astrophysics Data System (ADS)

    Chelle-Michou, Cyril; Chiaradia, Massimo; Ovtcharova, Maria; Ulianov, Alexey; Wotzlaw, Jörn-Frederik

    2014-06-01

    We present zircon geochronologic (LA-ICPMS and ID-TIMS), trace element and Hf isotopic evidence for a complex evolution of the plutonic roots of the Eocene Coroccohuayco porphyry system, southern Peru. LA-ICPMS U-Pb dating has initially been carried out to optimize grain selection for subsequent high-precision ID-TIMS dating and to characterize crustal assimilation (xenocrystic cores). This combined in-situ and whole-grain U-Pb dating of the same grains has been further exploited to derive a robust temporal interpretation of the complex magmatic system associated with the Coroccohuayco porphyry-skarn deposit. Our data reveal that a heterogeneous gabbrodioritic complex was emplaced at ca. 40.4 Ma and was followed by a nearly 5 Ma-long magmatic lull until the emplacement of dacitic porphyry stocks and dykes associated with the mineralizing event at ca. 35.6 Ma. However, at the sample scale, zircons from the porphyries provide insight into a 2 Ma-long lived “hidden” magmatism (probably at 4-9 km paleodepth) prior to porphyry intrusion and mineralization for which no other evidence can be found on the surface today. These dates together with zircon trace element analysis and Hf isotopes argue for the development of a long-lived magmatic system dominated by amphibole fractionation with an increasing amount of crustal assimilation and the development of a large and sustained thermal anomaly. The system was probably rejuvenated at an increasing rate from 37.5 to 35.6 Ma with injection of fresh and oxidized magma from the lower crust, which caused cannibalism and remelting of proto-plutons. The porphyry intrusions at Coroccohuayco were emplaced at the peak thermal conditions of this upper crustal magma chamber, which subsequently cooled and expelled ore fluids. Zircon xenocrysts and Hf isotopes in the porphyritic rocks suggest that this large upper crustal system evolved at stratigraphic levels corresponding to Triassic sediments similar to the Mitu group that may be

  13. Multiple mineralization events at the Jiru porphyry copper deposit, southern Tibet: Implications for Eocene and Miocene magma sources and resource potential

    NASA Astrophysics Data System (ADS)

    Zheng, Youye; Sun, Xiang; Gao, Shunbao; Zhao, Zhidan; Zhang, Gangyang; Wu, Song; You, Zhiming; Li, Jiandong

    2014-01-01

    The Jiru porphyry copper deposit in the Gangdese Porphyry Copper Belt (GPCB) is hosted by monzogranite and monzogranite porphyry with SHRIMP U-Pb ages of 48.6 ± 0.8 Ma and 16.0 ± 0.4 Ma, respectively. Rhenium-Os ages of molybdenite from the monzogranite and monzogranite porphyry are 44.9 ± 2.6 Ma and 15.2 ± 0.4 Ma, slightly younger than ages of the host rocks, respectively. These geochronological data indicate that there are two mineralization events at the Jiru deposit, in contrast to other porphyry deposits in the eastern part of the GPCB that are only Miocene in age. The Eocene monzogranite is characterized by high SiO2 (63.0-71.4%) and K2O (3.7-5.9%), enrichment in LILEs, depletion in Nb, Ta, and Ti, moderate negative Eu anomalies (δEu = 0.55-0.94), and relatively low Sr/Y (14-39) and (La/Yb)n (9-20) ratios. It also has young ɛNd(t) values (-0.43 to -0.25), low initial 87Sr/86Sr ratios (0.7044-0.7048), and young depleted-mantle model ages TDM (742-821 Ma), compared to Eocene melts derived from mature continental crust in the central Lhasa subterrane. These geochemical features suggest that the Jiru monzogranite was most likely derived from the hydrated asthenospheric mantle wedge with involvement of subducted sediments related to the Neo-Tethyan oceanic slab breakoff. The Miocene monzogranite porphyry contains hydrous phenocryst phases (hornblende and biotite) and displays LREE-enrichment patterns, with high Sr/Y (131-183) and (La/Yb)n (22-72) ratios, and weak or absent Eu anomalies. The porphyry has slightly negative ɛNd(t) values (-3.8 to -3.5), low initial 87Sr/86Sr ratios (0.7057-0.7058), and young TDM (952-974 Ma). The Miocene porphyry is likely the product of remelting of the stalled Neo-Tethyan oceanic slab, with input from the lower crust during the convective removal of thickened lithosphere below southern Tibet. Recognition of the Eocene magmatic-hydrothermal ore-forming event indicates a newly recognized potential for copper resources of that

  14. Inverse solution for crystal fractionation in a periodically tapped magma chamber, Sierrita porphyry copper deposit, Arizona

    SciTech Connect

    Anthony, E.Y.; Titley, S.R.

    1985-01-01

    Inversion techniques have been used to simultaneously solve for the initial concentrations, distribution coefficients, and degrees of crystallization for a suite of Laramide rocks related to subduction and porphyry copper mineralization. The suite includes diorite, andesite, and granodiorite. The granodiorite has differentiated in place to a granite core and it is this granite which immediately precedes mineralization. To perform the inversion one must verify that the rocks are genetically related by crystallization or melting. Their comagmatic nature is suggested by the similarity throughout the suite in the ratios of incompatible elements and in the few available isotopic determinations. The geochemical path of crystallization is indicated by the decrease in compatible elements and increase in incompatible elements. Inversion of the trace element data yields high initial concentrations for elements such as Ba and Ce and low concentrations for the transition metals, which is consistent with crustal melting. Thus, there was s substantial magma chamber at depth from which the more felsic liquids the authors sample have separated. The residence time of this chamber was not less than 6 million years. Such a prolonged history has been observed in other porphyry systems for which 10 million years of igneous activity and 2 million years of intermittent mineralization are recorded.

  15. Geophysical model of the Cu-Mo porphyry ore deposit at Copper Flat Mine, Hillsboro, Sierra County, New Mexico

    NASA Astrophysics Data System (ADS)

    Gutierrez, Adrian Emmanuel Gutierrez

    A 3D gravity model of the Copper Flat Mine was performed as part of the exploration of new resources in at the mine. The project is located in the Las Animas Mining District in Sierra County, New Mexico. The mine has been producing ore since 1877 and is currently owned by the New Mexico Copper Corporation, which plans o bringing the closed copper mine back into production with innovation and a sustainable approach to mining development. The Project is located on the Eastern side of the Arizona-Sonora-New Mexico porphyry copper Belt of Cretaceous age. Copper Flat is predominantly a Cretaceous age stratovolcano composed mostly of quartz monzonite. The quartz monzonite was intruded by a block of andesite alter which a series of latite dikes creating veining along the topography where the majority of the deposit. The Copper Flat deposit is mineralized along a breccia pipe where the breccia is the result of auto-brecciation due to the pore pressure. There have been a number of geophysical studies conducted at the site. The most recent survey was a gravity profile on the area. The purpose of the new study is the reinterpretation of the IP Survey and emphasizes the practical use of the gravity geophysical method in evaluating the validity of the previous survey results. The primary method used to identify the deposit is gravity in which four Talwani models were created in order to created a 3D model of the ore body. The Talwani models have numerical integration approaches that were used to divide every model into polygons. The profiles were sectioned into polygons; each polygon was assigning a specific density depending on the body being drawn. Three different gridding techniques with three different filtering methods were used producing ten maps prior to the modeling, these maps were created to establish the best map to fit the models. The calculation of the polygons used an exact formula instead of the numerical integration of the profile made with a Talwani approach. A

  16. Hydrothermal Evolution of the Giant Cenozoic Kadjaran porphyry Cu-Mo deposit, Tethyan metallogenic belt, Armenia, Lesser Caucasus: mineral paragenetic, cathodoluminescence and fluid inclusion constraints

    NASA Astrophysics Data System (ADS)

    Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik; Rezeau, Hervé

    2016-04-01

    The Lesser Caucasus belongs to the Central segment of the Tethyan metallogenic belt and it is a key area to understand the metallogenic evolution between the Western & Central parts of the Tethyan belt and its extension into Iran. Zangezur is the most important mineral district in the southernmost Lesser Caucasus. It is a component of the South Armenian block, and it was generated during the convergence and collision of the southern margin of the Eurasian plate and the northern margin of the Arabian plate, and terranes of Gondwana origin (Moritz et al., in press). The Zangezur ore district consists of the Tertiary Meghri-Ordubad composite pluton, which is characterized by a long-lasting Eocene to Pliocene magmatic, tectonic and metallogenic evolution. It hosts major porphyries Cu-Mo and epithermal Au - polymetallic deposits and occurrences, including the giant world class Kadjaran porphyry Cu-Mo deposit (2244 Mt reserves, 0.3% Cu, 0.05% Mo and 0.02 g/t Au). The Kadjaran deposit is hosted by a monzonite intrusion (31.83±0.02Ma; Moritz et al., in press). Detailed field studies of the porphyry stockwork and veins of the different mineralization stages, their crosscutting and displacement relationships and the age relationship between different paragenetic mineral associations were the criteria for distinction of the main stages of porphyry mineralization at the Kadjaran deposit. The economic stages being: quartz- molybdenite, quartz-molybdenite-chalcopyrite, and quartz-chalcopyrite. The main paragenetic association of the Kadjaran porphyry deposit includes pyrite, molybdenite, chalcopyrite, bornite, chalcocite, pyrrhotite, covellite, sphalerite, and galena. Recent field observations in the Kadjaran open pit revealed the presence of epithermal veins with late vuggy silica and advanced argillic alteration in the north-eastern and eastern parts of the deposit. They are distributed as separate veins and have also been recognized in re-opened porphyry veins and in

  17. Geochronology and geochemistry constraints of the Early Cretaceous Taibudai porphyry Cu deposit, northeast China, and its tectonic significance

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Wu, Xin-Li; Ouyang, Hen-Gen

    2015-05-01

    The southern Great Xing'an Range (SGXR), located in the southeastern part of Inner Mongolia, China, shows intense Mesozoic tectono-magmatic activity and hosts economically important polymetallic (Cu-Pb-Zn-Sn-Fe-Ag-Au-Mo) mineralization. Here, we present new zircon U-Pb ages, whole-rock geochemical data, Nd-Sr-Hf isotopic data and Re-Os ages for the Taibudai deposit in the SGXR. The Taibudai granitoids show high SiO2 (70.62-72.13 wt.%) and alkali (Na2O + K2O = 7.04-8.60 wt.%) concentrations, low MgO (0.89-1.37 wt.%) and Al2O3 (∼14 wt.%), ASI ratios <1.1 (0.94-0.97), LILEs (e.g., Rb) enriched, HFSEs (e.g., Nb, Ta, Ti, and P) depleted, and have low Sr and Yb concentrations, classifying these rocks as fractionated I-type granites. The Taibudai granitoids have negative εNd (t) values ranging from -2.2 to -1.6 and relatively low initial 87Sr/86Sr ratios from 0.70536 to 0.70581. In situ Hf isotopic analyses on zircons using LA-MC-ICP-MS show variable positive εHf (t) values ranging from +0.80 to +13.55, corresponding to relatively young two-stage Hf model ages from 801 to 942 Ma (excluding one spot). These mineralogical, geochemical, and isotopic features strongly suggest that the primary magmas of the Taibudai granitoids were derived mainly from the partial remelting of Neoproterozoic juvenile crustal material, with no remarkable modification through incorporation of continental or subduction-related material. Re-Os isotope analyses of molybdenite from the deposit yield an ore-forming age of 137.1 ± 1.4 Ma. Re contents range from 4.37 to 41.77 ppm, implying ore material components have a mixed crust-mantle origin. SHRIMP analysis of zircons show that the monzogranitic porphyry and biotite granite in the Taibudai deposit were formed at 137.0 ± 0.9 Ma and 138.3 ± 0.9 Ma, respectively, indicating a temporal link between granitic magmatism and Cu mineralization. This result, combined with the regional geology, tectonic evolution, and age data from the literature

  18. Double-layer mode of acid intrusive rocks from Xiuwacu Porphyry Mo deposit, Northwestern Yunnan SW China: U-Pb geochronology evidence

    NASA Astrophysics Data System (ADS)

    Yu, Haijun; Li, Wenchang

    2016-04-01

    Recent research infer that, the south-north extension of the Xiuwacu-Tongchanggou acidic intrusive belt along the Geza island arc have been developed of intense molybdenum-mutimetallic mineralization(Li et al., 2012, 2013; Yu et al., 2015). The northern section of this intrusive belt exposed widly and occur much monzonitic granite, biotite-granite, granodiorite, biotite-monzogranite; while in southern section, intrusions are cocealed. The Tongchanggou district in south section have been obtained large breakthrough of porphyry-skarn type molybdenum-multimetallic deposits exploration recent years(Yu et al., 2014), the Mo-W mineral resources also increased year after year in north section of the belt. The Mo-mineral resouree potential of porphyry-skarn type Mo-mutimetallic deposits in whole area are tremendous. Xiuwacu Porphyry molybdenum deposit was explored in Geza island arc, and widespread Biotite granite and monzonitic granite that is closely related to mineralization. We have understood poorly about this ore deposit for the harsh geographical circumstance, through, some referential result in chronology have accumulated, it still lack of systematic lithogeochemical study and reliable chronology data about intrusions. We yield biotite granite and monzonitic zircons U-Pb ages(200.93±0.65Ma, 83.57±0.32Ma, respectively) of Xiuwacu. There are two periods of intermediate-acid intrusive rocks of Xiuwacu area. Indosinian Biotite granite and Yanshanian monzonitic granite were formed as superposition phenomenon.

  19. Exploration for porphyry copper deposits in Pakistan using digital processing of Landsat-1 data

    NASA Technical Reports Server (NTRS)

    Schmidt, R. G.

    1976-01-01

    Rock-type classification by digital-computer processing of Landsat-1 multispectral scanner data has been used to select 23 prospecting targets in the Chagai District, Pakistan, five of which have proved to be large areas of hydrothermally altered porphyry containing pyrite. Empirical maximum and minimum apparent reflectance limits were selected for each multispectral scanner band in each rock type classified, and a relatively unrefined classification table was prepared. Where the values for all four bands fitted within the limits designated for a particular class, a symbol for the presumed rock type was printed by the computer at the appropriate location. Drainage channels, areas of mineralized quartz diorite, areas of pyrite-rich rock, and the approximate limit of propylitic alteration were very well delineated on the computer-generated map of the test area. The classification method was used to evaluate 2,100 sq km in the Mashki Chah region. The results of the experiment show that outcrops of hydrothermally altered and mineralized rock can be identified from Landsat-1 data under favorable conditions.

  20. Mapping hydrothermal alteration using aircraft VNIR scanners at the Rosemont porphyry copper deposit. [Visible-Near Infrared

    NASA Technical Reports Server (NTRS)

    Sadowski, R. M.; Abrams, M. J.

    1983-01-01

    Two Visible-Near Infrared (VNIR) scanners, the NS-001 and the M2S, were flown over the Rosemont porphyry copper deposit as part of the NASA/JPL/GEOSAT test site program. This program was established to determine the feasibility and limitations of mapping hydrothermal alteration with multispectral scanners. Data from the NS-001 at 0.83 and 2.2 microns were used to identify Fe(3+) and OH enriched outcrops. These areas were then correlated with three alteration assemblages. The first correlation, hematite-epidote, was the most obvious and appeared as a strong ferric iron signature associated with hematite stained Cretaceous arkoses and andesites. The second correlation, qtz-sericite, showed a combined ferric-hydroxyl signature for a phyllicly altered quartz monzonite. The third correlation, skarn, was identified only after a review of calc-silicate mineral VNIR spectra. Altered limestones that outcrop west of the deposit have a similar ferric iron-hydroxyl signature as the quartz-sericite altered quartz monzonite. This skarn signature has been interpreted to indicate the presence of andradite, hydro-grossularite and idocrase. Data from the second scanner, M2S, was used to search for variation in ferric iron mineral type. Resulting imagery data indicated that hematite was the dominant ferric iron mineral present in the Rosemont area.

  1. Geological, geochronological, geochemical, and Sr-Nd-O-Hf isotopic constraints on origins of intrusions associated with the Baishan porphyry Mo deposit in eastern Tianshan, NW China

    NASA Astrophysics Data System (ADS)

    Wang, Yinhong; Xue, Chunji; Liu, Jiajun; Zhang, Fangfang

    2016-03-01

    The Baishan porphyry Mo deposit (0.72 Mt; 0.06 % Mo) is located in the interior of the eastern Tianshan orogenic belt in Xinjiang, NW China. The deposit comprises 15 orebodies that are associated with monzogranite and granite porphyry stocks and are structurally controlled by roughly EW-trending faults. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating of the monzogranite and granite porphyry yielded the Middle Triassic age (228 ± 2 to 227 ± 2 Ma), which coincide with the molybdenite Re-Os model ages ranging from 226 ± 3 to 228 ± 3 Ma. The Triassic monzogranite and granite porphyry belong to high-K calc-alkaline series and are characterized by high SiO2 and Al2O3 and low MgO, TiO2, and P2O5 concentrations, with negative Eu anomalies (δEu = 0.55-0.91). The least-altered monzogranite and granite porphyry yield uniform ɛ Nd(t) values from +1.6 to +3.6, and wide (87Sr/86Sr) i ratios ranging between 0.7035 and 0.7071, indicating that they were derived from the lower crust. In situ O-Hf isotopic analyses on zircon using SIMS and laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) indicate that the δ18O and ɛ Hf(t) values of zircon from a monzogranite sample vary from 6.1 to 7.3 ‰ and +8.0 to +11.7, respectively, whereas zircon from a granite porphyry sample vary from 6.2 to 6.9 ‰ and +7.3 to +11.2, respectively. The geochemical and isotopic data imply that the primary magmas of the Baishan granite were likely derived from partial melts from the lower crust involving some mantle components. The Baishan Mo deposit and granitic emplacement were proposed to be most likely related to post-orogenic lithospheric extension and magmatic underplating. An extensional event coupled with the rising of hot mantle-derived melts triggered partial melting of the lower crust, as well as provided metals (Mo).

  2. Abiogenic Fischer-Tropsch synthesis of methane at the Baogutu reduced porphyry copper deposit, western Junggar, NW-China

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; Jin, LuYing

    2014-09-01

    Methane is widely developed in hydrothermal fluids from reduced porphyry copper deposits, but its origin remains enigmatic. The occurrence of methane in fluid inclusions at the Late Carboniferous Baogutu reduced porphyry copper deposit in western Junggar, Xinjiang, NW-China, presents an excellent opportunity to address this problem. A systematic study including fluid inclusion Laser-Raman and CO2-CH4 carbon isotope analyses, igneous and hydrothermal mineral H-O isotope analyses, and in situ major, trace element and Sr isotopic analyses of hydrothermal epidote was conducted to constrain the origin of CH4 and CH4-rich fluids. The δ2H and δ18O of water in equilibrium with igneous biotite ranges from -65.0‰ to -66.0‰ and +7.2‰ to +7.4‰, respectively, indicating notable degassing of probably supercritical fluids in the magma chamber. The wide range of δ2H (-58.0‰ to -107.0‰, n = 23) for water within quartz suggests the existence of significant hydrothermal fluid boiling. Water-rock interaction is the most likely mechanism leading to the wide range of δ18O values for water in vein quartz with water/rock ratios (wt.% in O) of 0.15 to 0.75 and 0.13 to 0.46 for a closed and open system, respectively. Detailed Laser-Raman analyses indicate CO2 in apatite included in granodiorite porphyry phenocrystic biotite that records the carbon species of the early stage magmatic stage, whereas later hydrothermal fluids containing CH4 with trace or without CO2 are found in inclusions of vein quartz. We propose that CH4 is probably transformed from CO2 by Fischer-Tropsch type reactions at 500 °C, assumed from CO2-CH4 C isotope equilibrium. The (87Sr/86Sr)i of hydrothermal epidote yields values of 0.70369-0.70404, consistent with that reported for the whole rocks. The δ13CCH4 (-28.6‰ to -22.6‰) and δ2HCH4 (-108.0‰ to -59.5‰) are characteristic of abiogenic methane. The measured δ13CCO2 shows a slightly depleted 13C (-13.5‰ to -7.2‰) relative to upper mantle

  3. Enhanced selectivity for the electrochemical reduction of CO2 to alcohols in aqueous solution with nanostructured Cu-Au alloy as catalyst

    NASA Astrophysics Data System (ADS)

    Jia, Falong; Yu, Xinxing; Zhang, Lizhi

    2014-04-01

    Electrochemical reduction of CO2 in an aqueous 0.5 M KHCO3 solution is studied by use of novel nanostructured Cu-Au alloys, which are prepared through electrochemical deposition with a nanoporous Cu film (NCF) as template. Linear voltammetry results show that the as-synthesized Cu-Au alloys exhibit obvious catalysis towards electrochemical reduction of CO2. Further analysis of products reveals that faradic efficiencies of alcohols (methanol and ethanol) are greatly dependent on the nanostructures and compositions of Cu-Au alloys. It is expected that this work could provide new insight into the development of powerful electrocatalysts for reduction of CO2 to alcohols.

  4. Genesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit, western Junggar, NW-China

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; Hollings, Pete; Jin, LuYing

    2016-03-01

    The Baogutu porphyry Cu deposit is a typical reduced porphyry Cu deposit, likely related to ilmenite-series I-type granitoids. However, the nature of the granitoids (ilmenite-series or magnetite-series) and the genesis of the Baogutu deposit are still under debate. In order to resolve these issues, whole-rock magnetic susceptibility, geochemistry and Sr-Nd-Pb isotopic, zircon U-Pb dating and Hf-O isotopic compositions were carried out. Three different intrusive phases are recognized within the deposit, from oldest to youngest, they are diorite with trace gabbro, diorite-granodiorite porphyry, and hornblende diorite porphyry, all of which were emplaced in the Late Carboniferous (320-306 Ma) and show a metaluminous, calc-alkaline I-type granitoid character with typical supra-subduction zone geochemical affinities. The intrusions are characterized by widespread primary pyrrhotite without anhydrite and hematite, dominant ilmenite over magnetite, low whole rock magnetic susceptibility (< 1 × 10- 4 emu g- 1 oe- 1 or < 3 × 10- 3 SI unit) and low whole rock Fe2O3/FeO ratios (< 0.4), indicating that the granitoids are ilmenite- rather than magnetite-series I-type granitoids. Whole rock Sr-Nd-Pb isotopic compositions show limited variation but slightly enriched characteristics with (87Sr/86Sr)i values of 0.70357-0.70404, εNd (t) of + 6.3 to + 7.8, 206Pb/204Pb of 18.20-19.54 and 208Pb/204Pb of 37.97-39.55. Zircon Hf-O isotopic compositions show εHf (t) values of + 10.7 to + 15.8 and δ18O of 5.3-7.4‰. Zircon and apatite saturation thermometries yield temperatures of 720 to 920 °C with relatively higher temperatures for the porphyries than for the diorite. Limited variations in Sr-Nd-Pb-Hf-O isotopic compositions and extremely young whole rock T2DM (Nd) (430 to 570 Ma) and zircon TDMC (Hf) (310 to 640 Ma) do not indicate significant crustal contamination during magma ascent or emplacement. Rather the Baogutu ilmenite-series I-type granitoids were probably formed by

  5. Re-Os geochronology of the El Salvador porphyry Cu-Mo deposit, Chile: Tracking analytical improvements in accuracy and precision over the past decade

    NASA Astrophysics Data System (ADS)

    Zimmerman, Aaron; Stein, Holly J.; Morgan, John W.; Markey, Richard J.; Watanabe, Yasushi

    2014-04-01

    Sulfide minerals from the El Salvador porphyry Cu-Mo deposit, Chile, were dated by Re-Os geochronology to clarify the timing and duration of mineralization. As these data are collected over the past 10 years, they chronicle the evolution of Re-Os analytical procedures and improvements in spike-sample equilibration, mass spectrometry and data reduction. Included in the data is the first tennantite-pyrite Re-Os isochron along with tennantite-enargite-pyrite Os tracing of ore metals based on initial osmium systematics (187Os/188Osi). Porphyry-associated mineralization follows the traditional early (A), transitional (B), and late (D) stage classification of relative timing of vein formation. Most Cu- and Mo-bearing sulfides were deposited during stages A and B. Field relationships clearly show the B-stage veins are older than the D-stage veins. Samples analyzed with Carius tube digestion and mixed-double spike indicate B-stage molybdenite mineralization between 41.8 and 41.2 Ma. These ages best represent the timing of main-stage mineralization at El Salvador. A five-point 187Re-187Os isochron for pyrite-tennantite from the latest D-stage veins yields an age of 42.37 ± 0.45 Ma. The isochron age, while older, is within error of early analyses of molybdenite by alkaline fusion digestion using single Re and Os spikes (42.4-42.0 Ma). A separate pyrite and tennantite-enargite pair containing significant common Os yields an initial 187Os/188Os ratio of 0.134 ± 0.042, compatible with a predominantly mantle origin. We appreciate the early analyses for their historical significance while emphasize the geological implications of the 41.8-41.2 Ma molybdenite ages. Temperature estimates by sulfur thermometry and fluid inclusions are 390-510 °C for the B-stage molybdenites and 230-240 °C for the latest D-stage pyrite and tennantite. Analyses based on Carius tube digestion and updated spike calibrations suggest a ∼0.6 m.y. duration (∼41.8 to 41.2 Ma) in-line with published

  6. Cenozoic geologic evolution of the northernmost Chile and implications on the exploration of Paleogene porphyry-copper deposits

    NASA Astrophysics Data System (ADS)

    Garcia, M.

    2013-05-01

    Exploration of porphyry copper deposits in highly-prospective terrenes, but partially covered by post-mineral deposits, need to be successful strongly of integrated geo-scientific knowledge… In the Precordillera and Western Cordillera of the Central Andes, at southern Peru and northern Chile, the largest copper concentration in the world is present and linked to Paleogene calc-alkaline intrusive complexes. The copper is distributed in two metallogenic belts, which are exposed at different erosion levels... In the northernmost Chile, in the last decade, considerable advances have been in stratigraphy, magmatism, structural geology, sedimentology and geomorphology. There, east of the Arica town, the Paleocene belt is located in the Precordillera whereas the Middle Eocene-Early Oligocene is in the Western Cordillera. Those belts are part of a Paleogene basement which is partially covered by Late Oligocene-Neogene post-mineral volcanic and sedimentary deposits. The thickness of this cover is highly variable, from 0 to >1,000 m. The sedimentary deposits are abundant in the west and are fluvial and alluvial in environment, have their source in the east and therefore the grain size decrease to the west. Their thickness is strongly controlled by tectonics and geomorphologic evolution. The volcanic deposits are abundant in the east and consist of stratified successions, volcanic complexes and volcanoes. Their thickness is controlled by tectonics and location of the volcanism In the western border of the Precordillera, by approximately 100 km along the orogen, the Paleogene basement is cut by a subvertical east-dipping reverse fault. The lower part of the cover is cut by this fault whereas the upper part is only folded or flexured, indicating a blind geometry and a thick-skinned tectonic style. The fault provoked successive uplift of the Precordillera during the Late Oligocene-Miocene. In the hangingwall of this fault the basement is much more elevated than to the west (in

  7. Re-Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wu, Guang; Li, Yuan; Zhu, Mingtian; Zhong, Wei

    2012-04-01

    The Duobaoshan porphyry deposit, located in the northwestern part of the Lesser Hinggan Range, is one of the biggest porphyry Cu (Mo) deposits in the Central Asian orogenic belt in China. The Duobaoshan porphyry deposit occurs in granodiorite and volcanic rocks of the Middle Ordovician Duobaoshan Formation. Six types of veins have been identified in three ore-forming stages as follows: a quartz-potassic feldspar vein in the early ore-forming stage, an early stage quartz-molybdenite vein, late stage quartz-molybdenite and quartz-chalcopyrite-pyrite veins in the middle ore-forming stage, and quartz-pyrite and calcite-quartz veins in the late ore-forming stage. The following four types of fluid inclusions are distinguished from various quartz veins: two-phase aqueous, pure gas phase, CO2-bearing and daughter mineral-bearing inclusions. The ore-forming fluid for the early ore-forming stage belongs to the H2O-CO2-NaCl system, which is characterized by high temperatures (>550 °C), intermediate salinities (16.2-18.1 wt% NaCl eqv.) and high CO2 content. The ore-forming fluid from the middle ore-forming stage evolved to the H2O-CO2-NaCl system, which is characterized by intermediate to high temperatures (230-450 °C) and high/low salinities (0.8 to >65.3 wt% NaCl eqv.) and is also rich in CO2 and metals. The ore-forming fluid finally reached cool temperatures (110-200 °C), low salinities (3.9-8.4 wt% NaCl eqv.) and was CO2-poor. Intensive fluid immiscibility or boiling occurred when the ore-forming fluid with temperatures of 230-450 °C and pressures of 10-41 MPa ascended to 4.1 km, inducing the escape of CO2, depressing the solubility of fluid, and depositing abundant metal sulfides. The total Re and Os concentrations of chalcopyrite and pyrite range from 0.15 to 2.95 μg/g and 0.74 to 15.01 ng/g, respectively. Analyses of seven chalcopyrite and pyrite samples yielded isochron ages of 482-486 Ma, and the model age of one molybdenite sample is 485.6 ± 3.7 Ma. The

  8. Formation of the giant Chalukou porphyry Mo deposit in northern Great Xing'an Range, NE China: Partial melting of the juvenile lower crust in intra-plate extensional environment

    NASA Astrophysics Data System (ADS)

    Li, Zhen-Zhen; Qin, Ke-Zhang; Li, Guang-Ming; Ishihara, Shunso; Jin, Lu-Ying; Song, Guo-Xue; Meng, Zhao-Jun

    2014-08-01

    The Chalukou porphyry Mo deposit (2.46 Mt @ 0.087% Mo), located in the northern Great Xing'an Range, NE China, is the largest Mo deposit discovered in China so far. The host rocks consist of aplite porphyry, granite porphyry and quartz porphyry, and are intruded into Lower Ordovician intermediate-felsic volcanic-sedimentary rocks and pre-ore monzogranite and are cut by post-ore feldspar porphyry, diorite porphyry and quartz monzonite porphyry. Here, we present the zircon U-Pb ages, whole-rock geochemistry, Sr-Nd isotopic and zircon Hf isotopic data for the pre-ore, syn-ore and post-ore intrusive rocks. The Chalukou ore-forming porphyries intruded during 147-148 Ma and have high-silica, alkali-rich, metaluminous to slightly peraluminous compositions and are oxidized. They are enriched in large ion lithophile elements (e.g. K, Rb, U and Th), light REE and depleted in high-field strength elements (e.g. Nb, P and Ti). Depletions in Eu, Ba, Sr, Nb, Ta, P and Ti suggest that they have experienced strong fractional crystallization of plagioclase, biotite, hornblende and accessory minerals. The pre-ore monzogranite (~ 172 Ma) also belongs to the high-K calc-alkaline series. Highly fractionated REE patterns ((La/Yb) N = 19.6-21.7), high values of Sr/Y (54-69) and La/Yb (29-32), are adakite-like geochemical features. The post-ore rocks (~ 141-128 Ma) have similar geochemical characteristics with ore-forming porphyries except that quartz monzonite porphyry shows no Ba-Sr negative anomaly. All intrusive rocks have relative low initial 87Sr/86Sr (0.705413-0.707889) and εNd (t) values (- 1.28 to + 0.92), positive εHf (t) values (+ 2.4 to + 10.1) and young two-stage Nd and Hf model ages (TDM2 (Nd) = 863-977 Ma, TDM2 (Hf) = 552-976 Ma). These geochemical and isotopic data are interpreted to demonstrate that the ore-forming porphyries formed by partial melting of the juvenile lower crust caused by underplating of mafic magmas in an intra-plate extensional setting. The pre

  9. The Mesozoic Caosiyao giant porphyry Mo deposit in Inner Mongolia, North China and Paleo-Pacific subduction-related magmatism in the northern North China Craton

    NASA Astrophysics Data System (ADS)

    Wu, Huaying; Zhang, Lianchang; Pirajno, Franco; Shu, Qihai; Zhang, Min; Zhu, Mingtian; Xiang, Peng

    2016-09-01

    The Caosiyao giant porphyry Mo deposit is located in the Wulanchabu area of Inner Mongolia, within the northern North China Craton (NCC). It contains more than 2385 Mt of ore with an average grade of 0.075% Mo. In the Caosiyao mining district, Mo mineralization occurs mainly in a Mesozoic granite porphyry as disseminations and stockworks, with some Mo distributed in Archean metamorphic rocks and diabase as stockworks and veins. The host granite porphyry is composed of two different phases that can be distinguished based on mineral assemblages and textures: one phase contains large and abundant phenocrysts (coarse-grained), while the other phase is characterized by fewer and smaller phenocrysts (medium-grained). Zircon U-Pb-Hf analyses of the former phase yielded a concordant 206Pb/238U age of 149.8 ± 2.4 Ma with a 206Pb/238U weighted mean age of 149.9 ± 2.4 Ma and εHf(t) values ranging from -12.2 to 18.3, while the latter phase gave a concordant 206Pb/238U age of 149.0 ± 2.2 Ma with a 206Pb/238U weighted mean age of 149.0 ± 2.1 Ma and εHf(t) values ranging from -13.1 to 17.7. Five samples of disseminated molybdenite have a 187Re-187Os isochron age of 149.5 ± 5.3 Ma with a weighted average age of 149.0 ± 1.8 Ma, whereas six veinlet-type molybdenite samples have a well-constrained 187Re-187Os isochron age of 146.9 ± 3.1 Ma and a weighted average age of 146.5 ± 0.8 Ma. Thus, it is suggested that the Mo mineralization of the Caosiyao deposit occurred during the Late Jurassic (ca. 147-149 Ma), almost coeval with the emplacement of the host granite porphyry (ca. 149-150 Ma). The host granite porphyry is characterized by high silica (SiO2 = 71.52-74.10 wt%), relatively high levels of oxidation (Fe2O3/FeO = 0.32-0.94 wt%) and high alkali element concentrations (Na2O + K2O = 8.21-8.76 wt%). The host granite porphyry also shows enrichments in U and K, and depletion in Ba, Sr, P, Eu, and Ti, suggesting strong fractional crystallization of plagioclase, biotite, and

  10. Geochemical behavior of rare earth elements of the hydrothermal alterations within the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Doner, Zeynep; Abdelnasser, Amr; Kiran Yildirim, Demet; Kumral, Mustafa

    2016-04-01

    This work reports the geochemical characteristics and behavior of the rare earth elements (REE) of the hydrothermal alteration of the Tepeoba porphyry Cu-Mo-Au deposit located in the Anatolian tectonic belt at Biga peninsula (Locally Balikesir province), NW Turkey. The Cu-Mo-Au mineralization at this deposit hosted in the hornfels rocks and related to the silicic to intermediate intrusion of Eybek pluton. It locally formed with brecciated zones and quartz vein stockworks, as well as the brittle fracture zones associated with intense hydrothermal alteration. Three main alteration zones with gradual boundaries formed in the mine area in the hornfels rock that represents the host rock, along that contact the Eybek pluton; potassic, propylitic and phyllic alteration zones. The potassic alteration zone that formed at the center having high amount of Cu-sulfide minerals contains biotite, muscovite, and sericite with less amount of K-feldspar and associated with tourmalinization alteration. The propylitic alteration surrounds the potassic alteration having high amount of Mo and Au and contains chlorite, albite, epidote, calcite and pyrite. The phyllic alteration zone also surrounds the potassic alteration containing quartz, sericite and pyrite minerals. Based on the REE characteristics and content and when we correlate the Alteration index (AI) with the light REEs and heavy REEs of each alteration zone, it concluded that the light REEs decrease and heavy REEs increase during the alteration processes. The relationships between K2O index with Eu/Eu* and Sr/Sr* reveals a positive correlation in the potassic and phyllic alteration zones and a negative correlation in the propylitic alteration zone. This refers to the hydrothermal solution which is responsible for the studied porphyry deposits and associated potassic and phyllic alterations has a positive Eu and Sr anomaly as well as these elements were added to the altered rock from the hydrothermal solution. Keywords: Rare

  11. Geologic and environmental characteristics of porphyry copper deposits with emphasis on potential future development in the Bristol Bay Watershed, Alaska

    USGS Publications Warehouse

    Seal, Robert R., II

    2012-01-01

    Pebble; Big Chunk is approximately 30 miles (48 km) north-northwest of Pebble; and Shotgun is approximately 110 miles (177 km) northwest of Pebble. The H and D Block prospects, west of Pebble, represent additional porphyry copper exploration targets in the watershed.

  12. Cathodoluminescence investigation and fluid inclusion analyses of hydrothermal quartz in the Erdenetiin Ovoo porphyry Cu-Mo deposit in Northern Mongolia

    NASA Astrophysics Data System (ADS)

    Cha, B.; Lee, I.; Seo, J.; Moon, I.

    2012-12-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) reveals textures in quartz that are not apparent with other methods such as optical microscopy or backscattered electron images. Hydrothermal quartz from quartz-sulfide veins in the Erdenetiin Ovoo porphyry Cu-Mo deposit, Mongolia was analyzed by SEM-CL. They reveal euhedral growth zones with CL-bright and gray, wide CL-dull bands that cut across multiple quartz grains, CL-dark splatters of quartz connected by networks of cobweb-shaped CL-dark quartz with decreasing in luminescence along splatters and grain boundaries, and recrystallization of CL-bright quartz to CL-gray quartz. These cryptic textures indicate that a single vein of molybdenite-quartz vein has undergone at least 4 events: (1) precipitation of CL-bright and CL-gray quartz with euhedral quartz, (2) fracturing and following growth of CL-dull quartz, (3) dissolution along microfractures and following CL-dark precipitation with decreasing in luminescence intensity along microfractures and grain boundaries, and (4) precipitation of pyrite-quartz vein cutting the molybdenite-quartz vein. Fluid inclusions in molybdenite-quartz veins are presented by liquid type, liquid-vapor type (vapor occupies 20 volume %), and liquid-vapor type bearing a solid phase. The liquid-vapor type inclusions within CL-gray quartz of the first event show their homogenization temperatures ranging from 204 to 312°C. Typical homogenization temperatures of porphyry deposits range from 250 to 800°C. Molybdenite-quartz vein in the Erdenetiin Ovoo porphyry system formed through the low temperature hydrothermal processes. Keywords: Erdenetiin Ovoo, hydrothermal, quartz, veins, cathodoluminescence, fluid inclusions

  13. Rhenium in ores of the Mikheevskoe porphyry Cu-Mo deposit, South Urals

    NASA Astrophysics Data System (ADS)

    Plotinskaya, O. Yu.; Grabezhev, A. I.; Seltmann, R.

    2015-03-01

    The distribution of Re in ores of the Mikheevskoe Mo-Cu deposit in the South Urals is studied. It is established that the grade of Re in the ores usually does not exceed 0.5 g/t. A positive correlation between concentrations of Re and Mo (correlation coefficient 0.94), and Re and Cu (correlation coefficient 0.52) is found. EMPA of individual flakes of molybdenite showed that a Re content higher than the detection limit has been measured in most flakes studied, as a rule as high as 0.4-0.5 wt %, but occasionally reaching 1.34 wt %. Re within flakes of molybdenite is irregularly distributed. Patchy, linear, and concentric-zoned patterns of zones with elevated Re content (usually 0.5-1 wt % Re, sometimes higher) are found against the lower content (up to 0.2 wt % Re) that is regularly distributed within the flake. Later hydrothermal processes and mechanical deformation of flakes result in epigenetic Re redistribution in molybdenite that leads to homogenization of molybdenite composition and smoothing of primary pattern, or removal of Re from molybdenite.

  14. Cospatial Eocene and Miocene granitoids from the Jiru Cu deposit in Tibet: Petrogenesis and implications for the formation of collisional and postcollisional porphyry Cu systems in continental collision zones

    NASA Astrophysics Data System (ADS)

    Yang, Zhiming; Hou, Zengqian; Chang, Zhaoshan; Li, Qiuyun; Liu, Yunfei; Qu, Huanchun; Sun, Maoyu; Xu, Bo

    2016-02-01

    Jiru is a poorly studied Cu deposit located in the west segment of the Gangdese porphyry Cu belt (GPCB), 200 km west of Lhasa. The deposit consists of both collisional- and postcollisional-stage porphyry-type Cu systems, which are genetically associated with the early Eocene granitoid batholith and the Miocene Jiru porphyry stock, respectively. In this study, we present zircon U-Pb LA-ICP-MS dates and Hf isotopes, whole rock geochemical and Pb isotope geochemical data for the main intrusions in the Jiru deposit. The early Eocene granitoid samples (~ 49 Ma) are characterized by magmatic arc geochemical features, slightly concave REE patterns and well-developed negative Eu anomalies. These geochemical characteristics suggest that the granitoid melts were generated by partial melting of a metasomatized mantle, and that the melt had undergone fractional crystallization of amphibole and plagioclase. In contrast, the Miocene porphyry intrusions (16.4-15.5 Ma) at Jiru are characterized by high K contents, adakitic affinities (e.g., high Sr/Y and La/Yb ratios), subduction signatures (e.g., enriched Cs, Rb, Ba and depleted Nb, Ta, Ti), positive zircon εHf(t) values (1-6) and variable 208Pb/204Pb ratios (38.5-39.0), similar to other post-collisional porphyry intrusions in the Gangdese belt. Based on the above features, we propose that the Miocene porphyry intrusions at Jiru were generated by partial melting of subduction-modified lower crust. Well-developed negative Eu anomalies and low Sr/Y ratios (generally < 20) of the least fractionated samples of the Early Eocene granitoids indicate that water content of the primitive collision-related magma was < 4 wt.%, but increased to over 4 wt.% with fractional crystallization, as evidenced by very weak negative Eu anomalies and relatively high Sr/Y ratios (~ 40) for some samples with SiO2 contents of ~ 67 wt.%. Upper crustal differentiation, which would increase water content of residual magma, is thought to be a key step in the

  15. Stable isotope (S, O, H and C) studies of the phyllic and potassic phyllic alteration zones of the porphyry copper deposit at Sungun, East Azarbaidjan, Iran

    NASA Astrophysics Data System (ADS)

    Calagari, Ali Asghar

    2003-05-01

    The porphyry copper deposit (PCD) at Sungun is located in East Azarbaidjan, NW of Iran. The magmatic suites in the Sungun area are a part of the NW-SE trending Cenozoic magmatic belt of Iran. The Sungun porphyries occur as stocks and dikes. The stocks are divided into two groups, I and II. Porphyry Stock II, ranging in composition from quartz monzonite through granodiorite to granite, hosts the Sungun PCD. Four distinct types of hypogene alterations were recognized at Sungun: (1) potassic; (2) potassic-phyllic; (3) phyllic; and (4) propylitic. Stable isotope (S, O, H, and C) studies were restricted to within the phyllic and potassic-phyllic alteration zones, where numerous cross-cutting quartz, sulfides, carbonates, and sulfate veinlets are present. The objective of these studies was to determine the origin of the ore-forming solutions, and their important components (e.g. sulfur and carbon). Twenty sulfide and four sulfate samples were taken from sulfide and gypsum veinlets within Porphyry Stock II and the associated skarn zone for sulfur isotopic analyses. The δ34S values of sulfides (pyrite, chalcopyrite, molybdenite, galena, sphalerite) and sulfate (gypsum) range from -4.6 to -0.2‰ (mean of -1.5‰) and from 10.9 to 14.4‰ (mean of 12.9‰), respectively. These values are almost analogous to those from El Salvador (Chile) and Ajo (Arizona), and Twin Buttes (Arizona), and strongly suggest a magmatic source for the sulfur at Sungun. Twenty-eight fluid inclusion-rich quartz samples from quartz veinlets beneath the supergene zones of the Porphyry Stock II were chosen for O and H isotopic analyses. The δ18O (of quartz) and δD (of fluid inclusions in quartz) values range from 8.3 to 10.2‰ (mean of 9.2‰) and -58 to -75‰ (mean of -66‰) relative to Standard Mean Ocean Water (SMOW), respectively. The calculated δ18O values of the fluids range from 4.4‰ (T=375 ° C) to 7.6‰ (T=570 ° C) with a mean of 6.4‰. The δ18O and δD values of the fluids lie

  16. Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana

    USGS Publications Warehouse

    Rusk, B.G.; Reed, M.H.; Dilles, J.H.; Kent, A.J.R.

    2006-01-01

    Textures of hydrothermal quartz revealed by cathodoluminescence using a scanning electron microscope (SEM-CL) reflect the physical and chemical environment of quartz formation. Variations in intensity of SEM-CL can be used to distinguish among quartz from superimposed mineralization events in a single vein. In this study, we present a technique to quantify the cathodoluminescent intensity of quartz within individual and among multiple samples to relate luminescence intensity to specific mineralizing events. This technique has been applied to plutonic quartz and three generations of hydrothermal veins at the porphyry copper deposit in Butte, Montana. Analyzed veins include early quartz-molybdenite veins with potassic alteration, pyrite-quartz veins with sericitic alteration, and Main Stage veins with intense sericitic alteration. CL intensity of quartz is diagnostic of each mineralizing event and can be used to fingerprint quartz and its fluid inclusions, isotopes, trace elements, etc., from specific mineralizing episodes. Furthermore, CL intensity increases proportional to temperature of quartz formation, such that plutonic quartz from the Butte quartz monzonite (BQM) that crystallized at temperatures near 750 ??C luminesces with the highest intensity, whereas quartz that precipitated at ???250 ??C in Main Stage veins luminesces with the least intensity. Trace-element analyses via electron microprobe and laser ablation-ICP-MS indicate that plutonic quartz and each generation of hydrothermal quartz from Butte is dominated by characteristic trace amounts of Al, P, Ti, and Fe. Thus, in addition to CL intensity, each generation of quartz can be distinguished based on its unique trace-element content. Aluminum is generally the most abundant element in all generations of quartz, typically between 50 and 200 ppm, but low-temperature, Main Stage quartz containing 400 to 3600 ppm Al is enriched by an order of magnitude relative to all other quartz generations. Phosphorous

  17. Porphyry-Cu-Mo Stockwork Formation by Dynamic, Transient Hydrothermal Pulses: Mineralogic Insights From the Deposit at Butte, Montana

    NASA Astrophysics Data System (ADS)

    Mercer, C. N.; Reed, M. H.

    2011-12-01

    The temperature profile in magmatic-hydrothermal systems directly affects the chemical behavior and pressure regime of hydrothermal fluids and the resulting diversity of mineralization. We combine textural observations of igneous and hydrothermal minerals using SEM-CL and -BSE images with three independent mineral thermobarometers to better understand the thermal profile at the porphyry-Cu-Mo deposit in Butte, Montana. We apply the two most recent (and controversial) forms of the Ti-in-quartz thermobarometer from Thomas et al. (2010) and Huang and Audétat (2011), the Zr-in-rutile thermobarometer of Tomkins et al. (2007), and the XMg-Ti-in-biotite thermometer of Henry et al. (2005) to estimate the formation temperatures of these magmatic and hydrothermal minerals. In a comparison of isobaric temperature distributions from Ti-in-quartz (Thomas et al., 2010) and Zr-in-rutile we find that the Thomas et al. calibration consistently yields temperatures that are 50 to 200°C lower than those from Zr-in-rutile. These quartz temperatures are unreasonably low for quartz phenocrysts and are considerably lower than previous estimates for vein quartz. Temperature estimates from the Zr-in-rutile and XMg-Ti-in-biotite thermobarometers agree well with each other and with previous temperature estimates. We conclude that application of the Ti-in-quartz thermobarometer of Thomas et al. is not appropriate for this natural system. Quartz temperatures calculated using the calibration of Huang and Audétat (2011) are closer to those from rutile and biotite. Application of the Ti-in-quartz thermobarometer of Huang and Audétat to hydrothermal samples yields maximum temperature estimates, however, and requires evaluation of trace element abundances (e.g., Ti, Al) and other crystal lattice impurities (e.g., fluid inclusions) in growth zones as a means to determine whether growth zones represent slow or fast-growing quartz. Using thermobarometry from rutile, biotite, and quartz (Huang and

  18. Cyclic development of igneous features and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenum deposit, Colorado

    USGS Publications Warehouse

    Carten, R.B.; Geraghty, E.P.; Walker, B.M.

    1988-01-01

    The Henderson porphyry molybdenum deposit was formed by the superposition of coupled alteration and mineralization events, of varying intensity and size, that were associated with each of at least 11 intrusions. Deposition of molybdenite was accompanied by time-equivalent silicic and potassic alteration. High-temperature alteration and mineralization are spatially and temporally linked to the crystallization of compositionally zoned magma in the apex of stocks. Differences in hydrothermal features associated with each intrusion (e.g., mass of ore, orientation and type of veins, density of veins, and intensity of alteration) correlate with differences in primary igneous features (e.g., composition, texture, morphology, and size). The systematic relations between hydrothermal and magmatic features suggest that primary magma compositions, including volatile contents, largely control the geometry, volume, level of emplacement, and mechanisms of crystallization of stocks. These elements in turn govern the orientations and densities of fractures, which ultimately determine the distribution patterns of hydrothermal alteration and mineralization. -from Authors

  19. Electric fields and chiral magnetic effect in Cu + Au collisions

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Tian; Huang, Xu-Guang

    2015-03-01

    The non-central Cu + Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu + Au collisions at 200 GeV and their impacts on the charge-dependent two-particle correlator γq1q2 = < cos ⁡ (ϕ1 +ϕ2 - 2ψRP) > (see main text for definition) which was used for the detection of the chiral magnetic effect (CME). Compared with Au + Au collisions, we find that the in-plane electric fields in Cu + Au collisions can strongly suppress the two-particle correlator or even reverse its sign if the lifetime of the electric fields is long. Combining with the expectation that if γq1q2 is induced by elliptic-flow driven effects we would not see such strong suppression or reversion, our results suggest to use Cu + Au collisions to test CME and understand the mechanisms that underlie γq1q2.

  20. U+U and Cu+Au results from PHENIX

    NASA Astrophysics Data System (ADS)

    Iordanova, Aneta; PHENIX Collaboration

    2013-08-01

    The flexibility of RHIC to collide different nuclei provides experiments with a rich set of data to systematically test models and scaling behaviors in various collision systems. The latest RHIC run collided U+U and Cu+Au nuclei. These collisions promise an array of unique initial geometrical configurations. For example, in U+U collisions the slightly elongated nuclei overlap in a variety of different ways such that, even at zero impact parameter, distinct configurations exist. In central Cu+Au collisions the Cu nucleus is completely embedded within the Au. Such geometries present an opportunity to measure the wide range of initial energy densities of these systems. They also allow the study of some unique features arising from these configurations. In particular, the odd harmonics from the Cu+Au system offer sensitivity to v3 generated from the collision geometry as opposed to fluctuations in a symmetric system. In these proceedings the analysis status of the recently taken U+U and Cu+Au data in PHENIX is presented. The results from the global particle production and the challenges in analyzing these asymmetric systems is discussed.

  1. Geochronology and fluid inclusion studies of the Lailisigaoer and Lamasu porphyry-skarn Cu-Mo deposits in Northwestern Tianshan, China

    NASA Astrophysics Data System (ADS)

    Zhu, Mingtian; Wu, Guang; Xie, Hongjing; Liu, Jun; Mei, Mei

    2012-04-01

    The Lailisigaoer porphyry Mo (Cu) and Lamasu porphyry-skarn Cu deposits are located in the Northwestern Tianshan Orogenic Belt, which is in the northwestern China. According to Re-Os analysis of molybdenite, the time of mineralization of the Lailisigaoer deposit is 377 Ma, and SHRIMP zircon U-Pb analysis dates the ore-hosted intrusion of the Lamasu deposit to 378 Ma. Five types of fluid inclusions (FIs) have been identified in both deposits: H2O-rich inclusions, CO2-bearing inclusions, halite-bearing inclusions, methane-rich inclusions and pure CO2 inclusions. In the Lailisigaoer deposit, the early-stage fluid of the quartz phenocryst belongs to a NaCl-H2O system with total homogenization temperatures (Th) ranging from 300 to 395 °C with a mean salinity of 9.0 wt.% NaCl. In the ore-forming stage, the fluid develops into a H2O-NaCl-CO2 system due to boiling and decarbonation. The Th values and salinities cluster between 220 and 370 °C and between 0 and 33.0 wt.% NaCl, respectively. The hydrothermal characteristics of the late quartz-calcite stage are similar to those of the meteoric fluid. In the Lamasu deposit, the early-stage fluid of the quartz phenocryst belongs to a NaCl-H2O system with Th values ranging from 245 to 459 °C and a mean salinity of 6.0 wt.% NaCl. In the ore-forming stage, due to the contact metamorphism between the hydrothermal fluid and wall rock, the fluid evolves to a NaCl-H2O-CH4 system. The Th values and salinities cluster between 220 and 360 °C and between 0 and 17.3 wt.% NaCl, respectively. The fluid of the late quartz-sulfide stage coincides with the meteoric fluid. In the mineralizing fluid of the Lailisigaoer deposit, the captured temperatures and pressures are between 210 and 350 °C and between 170 and 600 bars, respectively, which are consistent with fluctuation between hydrostatic and lithostatic pressure corresponding to the estimated paleodepths of 1.7-2.2 km. Boiling is the dominant mineralizing mechanism in the Lailisigaoer

  2. Distribution of trace elements in soils surrounding the El Teniente porphyry copper deposit, Chile: the influence of smelter emissions and a tailings deposit

    NASA Astrophysics Data System (ADS)

    Kelm, U.; Helle, S.; Matthies, R.; Morales, A.

    2009-03-01

    In the area surrounding the El Teniente giant porphyry copper deposit, eight soil sites were sampled at three depth levels in the summer 2004. The sites were selected for their theoretical potential of being influenced by past SO2 emissions from the smelter and/or seepage from a now idle tailings impoundment. The soil mineralogy, grain size distribution, total organic matter contents, major element composition, cation exchange capacity, and Cu, Mo, Pb, Zn, As and SO4 2- concentrations were determined for all samples after nitric acid extraction and separate leaches by ammonium acetate (pH 7) and sodium acetate (pH 5). For water rinses, only Cu could be determined with the analytical set-up used. Cu and SO4 2- enrichment in topsoils was found at six sites either downwind from the smelter or within the combined influence of the smelter and the tailings impoundment. Both elements were released partially by ammonium and sodium acetate extractions. Due to the scarce background trace element concentrations of soil and rock outside the immediate mine area, assessment of trace element mobility for Mo, Zn, Pb and As was difficult. Arsenic was found to be concentrated in soil horizons with high smectite and/or organic matter contents. Mo appears to be linked to the presence of windblown tailings sediment in the soils. Mobilization of Mo, Zn, and As for the acetate extractions was minimal or below the detection limits for the AAS technique used. The presence of windblown tailings is considered to be an additional impact on the soils in the foothills of the El Teniente compound, together with the potential of acidity surges and Cu mobilization in topsoils after rainfalls. Two sites located at the western limit of the former SO2 saturated zone with strongly zeolitized soils and underlying rock did not show any Cu or SO4 2- enrichment in the topsoils, and remaining total trace element concentrations were below the known regional background levels.

  3. Hydrothermal modification of host rock geochemistry within Mo-Cu porphyry deposits in the Galway Granite, western Ireland

    NASA Astrophysics Data System (ADS)

    Tolometti, Gavin; McCarthy, Will

    2016-04-01

    Hydrothermal alteration of host rock is a process inherent to the formation of porphyry deposits and the required geochemical modification of these rocks is regularly used to indicate proximity to an economic target. The study involves examining the changes in major, minor and trace elements to understand how the quartz vein structures have influenced the chemistry within the Murvey Granite that forms part of the 380-425Ma Galway Granite Complex in western Ireland. Molybdenite mineralisation within the Galway Granite Complex occurred in close association with protracted magmatism at 423Ma, 410Ma, 407Ma, 397Ma and 383Ma and this continues to be of interest to active exploration. The aim of the project is to characterize hydrothermal alteration associated with Mo-Cu mineralisation and identify geochemical indicators that can guide future exploration work. The Murvey Granite intrudes metagabbros and gneiss that form part of the Connemara Metamorphic complex. The intrusion is composed of albite-rich pink granite, garnetiferous granite and phenocrytic orthoclase granite. Minor doleritic dykes post-date the Murvey Granite, found commonly along its margins. Field mapping shows that the granite is truncated to the east by a regional NW-SE fault and that several small subparallel structures host Mo-Cu bearing quartz veins. Petrographic observations show heavily sericitized feldspars and plagioclase and biotite which have undergone kaolinization and chloritisation. Chalcopyrite minerals are fine grained, heavily fractured found crystallized along the margins of the feldspars and 2mm pyrite crystals. Molybdenite are also seen along the margins of the feldspars, crystallized whilst the Murvey Granite cooled. Field and petrographic observations indicate that mineralisation is structurally controlled by NW-SE faults from the selected mineralization zones and conjugate NE-SW cross cutting the Murvey Granite. Both fault orientations exhibit quartz and disseminated molybdenite

  4. Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

    USGS Publications Warehouse

    Hinkle, M.E.; Ryder, J.L.; Sutley, S.J.; Botinelly, T.

    1990-01-01

    Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions. ?? 1990.

  5. A mixture of mantle and crustal derived He-Ar-C-S ore-forming fluids at the Baogutu reduced porphyry Cu deposit, western Junggar

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; He, HuaiYu; Jin, LuYing

    2015-02-01

    Most large to huge porphyry Cu deposits (PCDs) are oxidized, making the Baogutu reduced porphyry Cu deposit (RPCD) a relative rarity. CH4-bearing ore-forming fluids formed at several hydrothermal stages, however, their source is still unclear. To address this issue, isotopic investigations of sulfide He-Ar-S and calcite C were conducted. Fluid inclusions hosted in sulfides (arsenopyrite, chalcopyrite and pyrite) showed 3He/4He ratios of 0.06-0.30 Ra (Ra is the 3He/4He ratio of air = 1.39 × 10-6), 40Ar/36Ar of 311-405, 40Ar∗/4He of 0.06-1.01, and F4He ratios of 902-11,074 (sample BGT-Py 2 yielded a ratio of 100), indicating a predominantly crustal source for the fluids with minor mantle input (less than 5%). The δ13C values of carbonate yielded a value of -7.8‰ (n = 3), implying that CO2 was probably sourced from mantle or juvenile lower crust. According to the restricted sulfide δ34S values, the total S isotopic composition of the hydrothermal system was estimated to be 0.0-0.5‰, suggesting that the sulfur was derived from mantle or lower crust magmatic source. According to the published granitoids Nd isotopic compositions at the Baogutu RPCD, fairly young TDM model ages (450-650 Ma) suggest that the granitoids were derived from partial melting of a juvenile basaltic lower crust. Thus, we propose that small proportion of mantle-derived fluids (less than 5%), probably rise up and then mix with the fluids of juvenile lower crust under an extensional tectonic setting, forming the mantle-derived Sr-Nd-Pb-S-C but crustal He-Ar isotopic compositions.

  6. Geochronology and fluid inclusion study of the Yinjiagou porphyry-skarn Mo-Cu-pyrite deposit in the East Qinling orogenic belt, China

    NASA Astrophysics Data System (ADS)

    Wu, Guang; Chen, Yuchuan; Li, Zongyan; Liu, Jun; Yang, Xinsheng; Qiao, Cuijie

    2014-01-01

    The Yinjiagou Mo-Cu-pyrite deposit of Henan Province is located in the Huaxiong block on the southern margin of the North China craton. It differs from other Mo deposits in the East Qingling area because of its large pyrite resource and complex associated elements. The deposit's mineralization process can be divided into skarn, sulfide, and supergene episodes with five stages, marking formation of magnetite in the skarn episode, quartz-molybdenite, quartz-calcite-pyrite-chalcopyrite-bornite-sphalerite, and calcite-galena-sphalerite in the sulfide episode, and chalcedony-limonite in the supergene episode. Re-Os and 40Ar-39Ar dating indicates that both the skarn-type and porphyry-type orebodies of the Yinjiagou deposit formed approximately 143 Ma ago during the Early Cretaceous. Four types of fluid inclusions (FIs) have been distinguished in quartz phenocryst, various quartz veins, and calcite vein. Based on petrographic observations and microthermometric criteria the FIs include liquid-rich, gas-rich, H2O-CO2, and daughter mineral-bearing inclusions. The homogenization temperature of FIs in quartz phenocrysts of K-feldspar granite porphyry ranges from 341 °C to >550 °C, and the salinity is 0.4-44.0 wt% NaCl eqv. The homogenization temperature of FIs in quartz-molybdenite veins is 382-416 °C, and the salinity is 3.6-40.8 wt% NaCl eqv. The homogenization temperature of FIs in quartz-calcite-pyrite-chalcopyrite-bornite-sphalerite ranges from 318 °C to 436 °C, and the salinity is 5.6-42.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz-molybdenite stockworks is in a range of 321-411 °C, and the salinity is 6.3-16.4 wt% NaCl eqv. The homogenization temperature of FIs in quartz-sericite-pyrite is in a range of 326-419 °C, and the salinity is 4.7-49.4 wt% NaCl eqv. The ore-forming fluids of the Yinjiagou deposit are mainly high-temperature, high-salinity fluids, generally with affinities to an H2O-NaCl-KCl ± CO2 system. The δ18OH2O values of ore

  7. Late Cretaceous (ca. 90 Ma) adakitic intrusive rocks in the Kelu area, Gangdese Belt (southern Tibet): Slab melting and implications for Cu-Au mineralization

    NASA Astrophysics Data System (ADS)

    Jiang, Zi-Qi; Wang, Qiang; Li, Zheng-Xiang; Wyman, Derek A.; Tang, Gong-Jian; Jia, Xiao-Hui; Yang, Yue-Heng

    2012-07-01

    The Gangdese Belt in southern Tibet (GBST) is a major Cu-Au-Mo mineralization zone that mostly formed after the India-Asia collision in association with the small-volume, though widespread, Miocene (18-10 Ma) adakitic porphyries. Cu-Au mineralization has scarcely been found in the regional Jurassic-Early Tertiary batholiths related to subduction of the Neo-Tethyan oceanic plate. Here, we report petrological, zircon geochronological and geochemical data for Late Cretaceous (˜90 Ma) intrusive rocks that contain Cu-Au mineralization from the Kelu area in the GBST. These rocks consist of quartz monzonites and diorites. The quartz monzonites, with SiO2 of 58-59 wt.% and Na2O/K2O of 1.1-1.2, are geochemically similar to slab-derived adakites characterized by apparent depletions in heavy rare earth elements (e.g., Yb = 1.4-1.5 ppm) and Y (16-18 ppm) contents, positive Sr but negative Nb and Ti anomalies on multi-element variation diagrams. They have relatively low (87Sr/86Sr)i (0.7038-0.7039) ratios and high ɛNd(t) (+3.4 to +3.9) and in situ zircon ɛHf(t) (+9.3 to +15.8) values. The diorites exhibit high Mg-numbers (0.57-0.61) similar to those of magnesian andesites, and have (87Sr/86Sr)i (0.7040-0.7041) and ɛNd(t) (+3.0 to +4.4) values similar to those of the quartz monzonites. We suggest that the quartz monzonitic magmas were most likely generated by partial melting of the subducted Neo-Tethyan basaltic oceanic crust and minor associated oceanic sediments, with subsequent melt-mantle interaction, and the dioritic magmas were mainly derived by the interaction between slab melts and mantle wedge peridotites, with fractionation of apatite and hornblende. These slab-derived adakitic magmas have high oxygen fugacity that may have facilitated Cu-Au mineralization. The close association of the Late Cretaceous adakitic intrusive rocks and Cu-Au mineralization in the Kelu area suggests that the arc magmatic rocks in the GBST may have higher potential than previously thought

  8. Porphyry copper enrichment linked to excess aluminium in plagioclase

    NASA Astrophysics Data System (ADS)

    Williamson, B. J.; Herrington, R. J.; Morris, A.

    2016-03-01

    Porphyry copper deposits provide around 75%, 50% and 20% of world copper, molybdenum and gold, respectively. The deposits are mainly centred on calc-alkaline porphyry magmatic systems in subduction zone settings. Although calc-alkaline magmas are relatively common, large porphyry copper deposits are extremely rare and increasingly difficult to discover. Here, we compile existing geochemical data for magmatic plagioclase, a dominant mineral in calc-alkaline rocks, from fertile (porphyry-associated) and barren magmatic systems worldwide, barren examples having no associated porphyry deposit. We show that plagioclase from fertile systems is distinct in containing `excess’ aluminium. This signature is clearly demonstrated in a case study carried out on plagioclase from the fertile La Paloma and Los Sulfatos copper porphyry systems in Chile. Further, the presence of concentric zones of high excess aluminium suggests its incorporation as a result of magmatic processes. As excess aluminium has been linked to high melt water contents, the concentric zones may record injections of hydrous fluid or fluid-rich melts into the sub-porphyry magma chamber. We propose that excess aluminium may exclude copper from plagioclase, so enriching the remaining melts. Furthermore, this chemical signature can be used as an exploration indicator for copper porphyry deposits.

  9. Geochemical characteristics of the Shujiadian Cu deposit related intrusion in Tongling: Petrogenesis and implications for the formation of porphyry Cu systems in the Middle-Lower Yangtze River Valley metallogenic belt, eastern China

    NASA Astrophysics Data System (ADS)

    Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; Cooke, David R.; Zhang, Lejun; Fu, Bin; White, Noel C.

    2016-05-01

    Porphyry Cu deposits can form in intracontinental or post-collision settings; however, both the genesis of fertile magmas and the mechanism of metal enrichment remain controversial. The Shujiadian porphyry Cu deposit is located in the Tongling area of the Middle-Lower Yangtze River Valley metallogenic belt. It is hosted by the Shujiadian complex, which mainly consists of quartz diorite porphyry (143.7 ± 1.7 Ma) and pyroxene diorite (139.8 ± 1.6 Ma). They both belong to the calc-alkaline series, with enrichment in large-ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in high field-strength elements (HFSE) and heavy rare earth elements (HREE), and slightly negative Eu anomalies. Both quartz diorite porphyry and pyroxene diorite have geochemical affinities with adakite, and their low MgO (1.5-3.7 wt%), and Ni (3.7-6.9 ppm), Cr (2.0-44 ppm), and Th/Ce contents (0.06-0.11) indicate that the intrusive rocks have some characteristics of adakite-like rocks derived from thickened lower crust and melts from metabasaltic rocks and eclogites. Plagioclases from the quartz diorite porphyry are andesine (An value = 31.8-40.5) and from the pyroxene diorite are felsic albite and oligoclase with large-scale zones and variable An value (An value = 8.9-18.3), Fe and Sr contents, which indicate that mixing of mafic and felsic magma may have occurred in the shallow magma chamber. Compared to the barren quartz diorite porphyry, relatively lower SiO2 contents (49.5-55.2 wt.%), higher εNd(t) values (- 7.4 to - 6.9), εHf(t) values (- 11.0 to - 9.1) compositions, Ti-in-zircon temperatures (714-785 °C), and variations of HREE contents of the mineralization-related pyroxene diorite suggest mixing with high-temperature mafic magma. Calculated Ce4 +/Ce3 + values of pyroxene diorite plot between the Ni-NiO buffer (NNO) and magnetite-hematite buffer (MH), and barren quartz diorite porphyry samples plot below the Ni-NiO buffer (NNO). Geochemical features of

  10. Fluid inclusion and H-O-C isotope geochemistry of the Yaochong porphyry Mo deposit in Dabie Shan, China: a case study of porphyry systems in continental collision orogens

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Chen, Yan-Jing; Fu, Bin; Yang, Yong-Fei; Mi, Mei; Li, Zhong-Lie

    2014-04-01

    The Yaochong porphyry Mo deposit in Xinxian County, Henan Province, China, is located in the Hong'an terrane, that is, the western part of the Dabie orogen. The Dabie orogen is part of a >1,500 km long, Triassic continental collision belt between the North China Block and the South China Block. Four types of vein are present. Paragenetically, from early to late, they are as follows: stage 1 quartz + K-feldspar ± pyrite ± magnetite vein; stage 2 quartz + K-feldspar + molybdenite ± pyrite vein; stage 3 quartz + polymetallic sulfides ± K-feldspar vein; and stage 4 quartz ± carbonate ± fluorite vein. Four compositional types of fluid inclusion, pure CO2, CO2 bearing, aqueous, and solid bearing, are present in quartz from the first three stages; only low-salinity aqueous fluid inclusions occur in quartz from the last stage. All the estimated salinities are ≤13.1 wt% NaCl eq., and no halite crystals were identified. Homogenization temperatures for the fluid inclusions from stages 1 to 4 are in the ranges of 262-501, 202-380, 168-345, and 128-286 °C, respectively, and estimated depths decrease from 6.9 to 8.9 km, through 6.2-7.2, to ~4.7 km. Quartz separates from the veins yielded a δ18O value of 7.7-11.2 ‰, corresponding to δ18OH2O values of -1.3 to 6.9 ‰ using temperature estimates from fluid inclusion data; δDH2O values of fluid inclusion vary from -80 to -55 ‰, and δ13CCO2 from -2.3 to 2.7 ‰, suggesting that the ore-fluids evolved from magmatic to meteoric sources. We conclude that the ore-forming fluid system at Yaochong was initially high temperature, high salinity, and CO2-rich and then progressively evolved to CO2-poor, lower salinity, and lower temperature, by mixing with meteoric water, which results in ore precipitation.

  11. Genesis and evolution of the Leimengou porphyry Mo deposit in West Henan Province, East Qinling-Dabie belt, China: Constraints from hydrothermal alteration, fluid inclusions and stable isotope data

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodan; Ye, Huishou; Wang, Huan

    2014-01-01

    The Leimengou Mo deposit is located in the East Qinling-Dabie metallogenic Mo belt, located at the southern margin of the North China Craton. The deposit is hosted within the Mesozoic Leimengou granite porphyry pluton and at the contact between the granite and Late Archean gneisses. In light of mineral assemblage and crosscutting relationships among veinlets, the mineralization and alteration can be classified in four distinct stages: (1) a Mo-barren pre-mineralization stage of alteration characterized by massive K-feldspar alteration of the granite porphyry; (2) a K-feldspar-quartz vein stage that formed veinlets with minor molybdenite; (3) a quartz-sulfide veinlet stage, which is the main stage of mineralization; and (4) post-mineralization quartz-calcite vein stage.

  12. Results from Cu+Au collisions at 200 GeV in PHENIX Experiment

    NASA Astrophysics Data System (ADS)

    Berdnikov, Ya. A.; Ivanishchev, D. A.; Kotov, D. O.; Riabov, V. G.; Riabov, Yu. G.; Samsonov, V. M.; Safonov, A. S.

    2016-01-01

    Collisions of asymmetric nuclei (Cu+Au) differ essentially from the case of symmetric nuclei (Cu+Cu, Au+Au) collisions in the geometry of overlap region. This leads to a number of consequences, which provide more absolute and accurate information about fundamental properties of matter under extreme conditions. Nuclear modification factors for π-mesons in Cu+Au interactions at 200 GeV were measured in PHENIX Experiment at RHIC. New experimental data on measurement of flows of different order (v1, v2) for light hadrons in Cu+Au interactions at 200 GeV will be discussed in this paper.

  13. Precipitations in a dental Ag-Pd-Cu-Au alloy.

    PubMed

    Herø, H; Jørgensen, R; Sørbrøden, E; Suoninen, E

    1982-05-01

    The structure of a dental Ag-PD-Cu-Au alloy has been studied after centrifugal casting and various heat treatments. By transmission electron microscopy, a high density of small fct particles, assumed to be PdCu, was observed, but, in addition, finely-spaced rods of approximately equal to 0.05 micrometer (500 A) diameter with an fcc structure precipitated on the [100] planes of the matrix were found. On the basis of their structure and the pertaining lattice parameter, these rods are assumed to be Cu-rich. They could also be observed by scanning electron microscopy, but not at annealing temperatures lower than 425 degrees C. PMID:6953095

  14. Early Carboniferous adakitic rocks in the area of the Tuwu deposit, eastern Tianshan, NW China: Slab melting and implications for porphyry copper mineralization

    NASA Astrophysics Data System (ADS)

    Wang, Yin-Hong; Xue, Chun-Ji; Liu, Jia-Jun; Wang, Jian-Ping; Yang, Jun-Tao; Zhang, Fang-Fang; Zhao, Ze-Nan; Zhao, Yun-Jiang; Liu, Bin

    2015-05-01

    Existing geochronological and geochemical data for the Early Carboniferous magmatic rocks in the eastern Tianshan, Xinjiang, have been interpreted in a variety of theories regarding petrogenesis and geodynamic setting. The proposed settings include rift, back-arc basin, passive continental margin, island arc, ridge subduction, and post-collisional environment. To evaluate these possibilities, we present new SHRIMP zircon U-Pb geochronology and geochemical data, whole-rock geochemical, Hf isotope, and S isotope data for tonalitic rocks and ores associated with the Tuwu porphyry copper deposit located in the center of the late Paleozoic Dananhu-Tousuquan arc, eastern Tianshan. SHRIMP zircon U-Pb dating indicates that the magmatic activity and thus associated copper mineralization occurred ca.332 Ma. The tonalitic rocks are calc-alkaline granites with A/CNK values ranging from 1.16 to 1.58; are enriched in K, Rb, Sr, and Ba; and are markedly depleted in Nb, Ta, Ti, and Th. They show geochemical affinities similar to adakites, with high Sr, Al2O3, and Na2O contents and La/Yb ratios; low Y and Yb contents; and slight positive Eu anomalies. In situ Hf isotopic analyses of zircons yielded positive initial εHf(t) values ranging from 6.9 to 17.2. The δ34S values of the ore sulfides range from -3.0‰ to +1.7‰, reflecting a deep sulfur source. Our results indicate that the paleo-Tianshan oceanic slab was being simultaneously subducted northward beneath the Dananhu-Tousuquan arc, and southward beneath the Aqishan-Yamansu arc during the Early Carboniferous. The Tuwu adakitic tonalitic rocks were derived from the partial melting of the subducted paleo-Tianshan oceanic slab, which was subsequently hybridized by mantle wedge peridotites. The slab-derived magmas have considerably high copper contents and are highly oxidized, thus leading to porphyry copper mineralization. Such Early Carboniferous tonalitic rocks that are widespread in the eastern Tianshan define a province

  15. Temporal evolution of bacterial communities associated with the in situ wetland-based remediation of a marine shore porphyry copper tailings deposit.

    PubMed

    Diaby, N; Dold, B; Rohrbach, E; Holliger, C; Rossi, P

    2015-11-15

    Mine tailings are a serious threat to the environment and public health. Remediation of these residues can be carried out effectively by the activation of specific microbial processes. This article presents detailed information about temporal changes in bacterial community composition during the remediation of a section of porphyry copper tailings deposited on the Bahía de Ite shoreline (Peru). An experimental remediation cell was flooded and transformed into a wetland in order to prevent oxidation processes, immobilizing metals. Initially, the top oxidation zone of the tailings deposit displayed a low pH (3.1) and high concentrations of metals, sulfate, and chloride, in a sandy grain size geological matrix. This habitat was dominated by sulfur- and iron-oxidizing bacteria, such as Leptospirillum spp., Acidithiobacillus spp., and Sulfobacillus spp., in a microbial community which structure resembled acid mine drainage environments. After wetland implementation, the cell was water-saturated, the acidity was consumed and metals dropped to a fraction of their initial respective concentrations. Bacterial communities analyzed by massive sequencing showed time-dependent changes both in composition and cell numbers. The final remediation stage was characterized by the highest bacterial diversity and evenness. Aside from classical sulfate reducers from the phyla δ-Proteobacteria and Firmicutes, community structure comprised taxa derived from very diverse habitats. The community was also characterized by an elevated proportion of rare phyla and unaffiliated sequences. Numerical ecology analysis confirmed that the temporal population evolution was driven by pH, redox, and K. Results of this study demonstrated the usefulness of a detailed follow-up of the remediation process, not only for the elucidation of the communities gradually switching from autotrophic, oxidizing to heterotrophic and reducing living conditions, but also for the long term management of the remediation

  16. Origin of the ore-forming fluids and metals of the Bangpu porphyry Mo-Cu deposit of Tibet, China: Constraints from He-Ar, H-O, S and Pb isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Tang, Juxing; Cheng, Wenbin; Chen, Wei; Zhang, Zhi; Lin, Xin; Luo, Maocheng; Yang, Chao

    2015-05-01

    The Bangpu porphyry Mo-Cu deposit is a representative Mo-dominated deposit besides the Sharang porphyry Mo deposit in the Gangdese metallogenic belt. The Mo-Cu mineralization has a close relationship with the monzogranite porphyry and diorite porphyrite. We identify three stages during the ore formation: a pre-ore stage, a main-ore stage with Mo-Cu deposited dominantly, and a post-ore stage. In this study, He-Ar, H-O, S and Pb isotopic compositions of the Bangpu deposit were determined. Based on these determinations, integrated isotope geochemistry studies were performed to constrain the possible sources of the ore-forming fluids and metals. The 3He/4He and 40Ar/36Ar ratios of fluid inclusions exhibit a range of 0.12209-0.36370 Ra and 275.6-346.1, respectively. The 4He and 40Ar concentrations vary from 1.51 to 3.57 (10-7 cm3 STP g-1) and 0.49 to 9.31 (10-7 cm3 STP g-1), respectively. He-Ar isotopic compositions suggest dominantly crustal-derived fluid with minor amount of meteoric water in the main ore stage. The δ18Ofluid and δDfluid values vary from -1.3‰ to 3.9‰ and -140.5‰ to -73.7‰, respectively, indicating that magma fluids mixed with meteoric water. The average δ34S value of the sulfides (0.3‰) in the main-ore stage is close to the ore-forming porphyries, indicating a magmatic source. The lead isotopic components of ore sulfides exhibit restricted ranges with 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 18.450-18.728, 15.602-5.672, and 38.715-39.211, respectively and μ values in the range of and 9.46-9.58, indicating ore-forming metals of primarily an upper crust source with a small amount of mantle materials. Compared to the Bangpu deposit, the ore metals derived from mantle are even greater in the Jiama and Qulong deposits, which leads to Cu being the dominant mineralization in the Jiama and Qulong deposit.

  17. Environmental behavior of two molybdenum porphyry systems

    USGS Publications Warehouse

    Tuttle, M.L.W.; Wanty, R.B.; Berger, B.R.

    2004-01-01

    Our study focuses on the geology, hydrology, and geochemistry of a variety of molybdenum (Mo) porphyry systems. The systems are either high fluorine, granite, Climax-type, systems (e.g. Mount Emmons/ Redwell Mo deposit, Colorado and Questa Mo deposit, New Mexico) or low fluorine granodiorite systems (e.g. Buckingham Stockwork Mo deposit, Battle Mountain, Nevada and Cannivan Gulch Mo deposit, Montana). The water quality of streams, natural springs, mine discharge, and ground water from drill holes were assessed in the region of these deposits. The ultimate goal of our study is to understand the environmental behavior of these Mo porphyry systems in the context of geologic setting, hydrologic regime, and climate.

  18. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang - Red River alkaline igneous belt, SW China

    NASA Astrophysics Data System (ADS)

    Xu, Leiluo; Bi, Xianwu; Hu, Ruizhong; Tang, Yongyong; Wang, Xinsong; Xu, Yue

    2015-04-01

    The Jinshajiang-Red River alkaline igneous belt in the eastern Indian-Asian collision zone, of southwestern China, hosts abundant, economically important Cu-Mo-Au mineralization of Cenozoic age. Major- and trace-element compositions of titanites from representative Cu-mineralized intrusions determined by LA-ICP-MS show higher values for Fe2O3/Al2O3, ΣREE + Y, LREE/HREE, Ce/Ce*, (Ce/Ce*)/(Eu/Eu*), U, Th, Ta, Nb and Ga, and lower values for Al2O3, CaO, Eu/Eu*, Zr/Hf, Nb/Ta and Sr than those for titanites from barren intrusions. Different ΣREE + Y, LREE/HREE, U, Th, Ta and Nb values of titanites between Cu-mineralized and barren intrusions were controlled mainly by the coexisting melt compositions. However, different Sr concentrations and negative Eu anomalies of titanites between Cu-mineralized and barren intrusions were most probably caused by different degrees of crystallization of feldspar from melts. In addition, different Ga concentrations and positive Ce anomalies of titanites between Cu-mineralized and barren intrusions were most likely caused by different magmatic fO2 conditions. Pronounced compositional differences of titanites between Cu-mineralized and barren intrusions can provide a useful tool to help discriminate between ore-bearing and barren intrusions at an early stage of exploration, and, thus, have a potential application in exploration for porphyry Cu deposits in the Jinshajiang - Red River alkaline igneous belt, and to other areas.

  19. High REE and Y concentrations in Co-Cu-Au ores of the Blackbird district, Idaho

    USGS Publications Warehouse

    Slack, J.F.

    2006-01-01

    Analysis of 11 samples of strata-bound Co-Cu-Au ore from the Blackbird district in Idaho shows previously unknown high concentrations of rare earth elements (REE) and Y, averaging 0.53 wt percent ???REE + Y oxides. Scanning electron microscopy indicates REE and Y residence in monazite, xenotime, and allanite that form complex intergrowths with cobaltite, suggesting coeval Co and REE + Y mineralization during the Mesoproterozoic. Occurrence of high REE and Y concentrations in the Blackbird ores, together with previously documented saline-rich fluid inclusions and Cl-rich biotite, suggest that these are not volcanogenic massive sulfide or sedimentary exhalative deposits but instead are iron oxide-copper-gold (IOCG) deposits. Other strata-bound Co deposits of Proterozoic age in the North American Cordillera and elsewhere in the world may have potential for REE and Y resources. IOCG deposits with abundant light REE should also be evaluated for possible unrecognized heavy REE and Y mineralization. ?? 2006 by Economic Geology.

  20. Low-Lying Electronic States of CuAu.

    PubMed

    Alizadeh Sanati, Davood; Andrae, Dirk

    2016-07-28

    Coinage metal diatomic molecules are building blocks for nanostructured materials, electronic devices, and catalytically or photochemically active systems that are currently receiving lively interest in both fundamental and applied research. The theoretical study presented here elucidates the electronic structure in the ground and several low-lying excited states of the diatomic molecule CuAu that result from the combination of the atoms in their ground states nd(10)(n + 1)s(1 2)S and lowest excited d-hole states nd(9)(n + 1)s(2 2)D (n = 3 for Cu, n = 5 for Au). Full and smooth potential energy curves, obtained at the multireference configuration interaction (MRCI) level of theory, are presented for the complete set of the thus resulting 44 Λ-S terms and 86 Ω terms. Our approach is based on a scalar relativistic description using the Douglas-Kroll-Hess (DKH) Hamiltonian, with subsequent perturbative inclusion of spin-orbit (SO) coupling via the spin-orbit terms of the Breit-Pauli (BP) Hamiltonian. The Ω terms span an energy interval of about 7 eV at the ground state's equilibrium distance. Spectroscopic constants, calculated for all terms, are shown to accurately reproduce the observation for those nine terms that are experimentally known. PMID:27379475

  1. Pre-eruptive conditions of the Hideaway Park topaz rhyolite: Insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado

    USGS Publications Warehouse

    Mercer, Celestine N.; Hofstra, Albert H.; Todorov, Todor I.; Roberge, Julie; Burgisser, Alain; Adams, David T.; Cosca, Michael A.

    2015-01-01

    The Hideaway Park tuff is the only preserved extrusive volcanic unit related to the Red Mountain intrusive complex, which produced the world-class Henderson porphyry Mo deposit. Located within the Colorado Mineral Belt, USA, Henderson is the second largest Climax-type Mo deposit in the world, and is therefore an excellent location to investigate magmatic processes leading to Climax-type Mo mineralization. We combine an extensive dataset of major element, volatile, and trace element abundances in quartz-hosted melt inclusions and pumice matrix glass with major element geochemistry from phenocrysts to reconstruct the pre-eruptive conditions and the source and evolution of metals within the magma. Melt inclusions are slightly peraluminous topaz rhyolitic in composition and are volatile-charged (≤6 wt % H2O, ≤600 ppm CO2, ∼0·3–1·0 wt % F, ∼2300–3500 ppm Cl) and metal-rich (∼7–24 ppm Mo, ∼4–14 ppm W, ∼21–52 ppm Pb, ∼28–2700 ppm Zn, <0·1–29 ppm Cu, ∼0·3–1·8 ppm Bi, ∼40–760 ppb Ag, ∼690–1400 ppm Mn). Melt inclusion and pumice matrix glass chemistry reveal that the Hideaway Park magma evolved by large degrees of fractional crystallization (≤60–70%) during quartz crystallization and melt inclusion entrapment at pressures of ≤300 MPa (≤8 km depth), with little to no crystallization upon shallow ascent and eruption. Filter pressing, crystal settling, magma recharge and mixing of less evolved rhyolite melt, and volatile exsolution were important processes during magma evolution; the low estimated viscosities (∼105–1010 Pa s) of these H2O- and F-rich melts probably enhanced these processes. A noteworthy discrepancy between the metal contents in the pumice matrix glass and in the melt inclusions suggests that after quartz crystallization ceased upon shallow magma ascent and eruption, the Hideaway Park magma exsolved an aqueous fluid into which Mo, Bi, Ag, Zn, Mn, Cs, and Y strongly

  2. Cu-Au Alloys Using Monte Carlo Simulations and the BFS Method for Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Good, Brian; Ferrante, John

    1996-01-01

    Semi empirical methods have shown considerable promise in aiding in the calculation of many properties of materials. Materials used in engineering applications have defects that occur for various reasons including processing. In this work we present the first application of the BFS method for alloys to describe some aspects of microstructure due to processing for the Cu-Au system (Cu-Au, CuAu3, and Cu3Au). We use finite temperature Monte Carlo calculations, in order to show the influence of 'heat treatment' in the low-temperature phase of the alloy. Although relatively simple, it has enough features that could be used as a first test of the reliability of the technique. The main questions to be answered in this work relate to the existence of low temperature ordered structures for specific concentrations, for example, the ability to distinguish between rather similar phases for equiatomic alloys (CuAu I and CuAu II, the latter characterized by an antiphase boundary separating two identical phases).

  3. Surface segregation phenomena in extended and nanoparticle surfaces of Cu-Au alloys

    NASA Astrophysics Data System (ADS)

    Li, Jonathan; Wang, Guofeng; Zhou, Guangwen

    2016-07-01

    Using density functional theory (DFT) and Monte Carlo (MC) simulations, we studied the surface segregation phenomena of Au atoms in the extended and nanoparticle surfaces of Cu-Au alloys. Our MC simulations predicted significant Au enrichment in the outermost layer of (111) and (100) extended surfaces, and Au enrichment in the two outermost layers of (110) extended surfaces. The equilibrium Cu-Au nanoparticles were predicted to develop into an Au-enriched shell structure, where Au atoms preferably segregate to the (100) facets while Cu atoms are mainly located on the (111) facet of the nanoparticles. Our simulation predictions agree with experimental measurements.

  4. Porphyry copper assessment of northeast Asia: Far East Russia and northeasternmost China: Chapter W in Global mineral resource assessment

    USGS Publications Warehouse

    Mihalasky, Mark J.; Ludington, Stephen; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Briggs, Deborah A.; Hammarstrom, Jane M.; Wallis, John C.; Bookstrom, Arthur A.; Panteleyev, Andre

    2015-01-01

    The database of known deposits, significant prospects, and prospects includes an inventory of mineral resources in two known porphyry copper deposits, as well as key characteristics derived from available exploration reports for 70 significant porphyry copper prospects and 86 other prospects. Resource and exploration and development activity are updated with information current through February 2013.

  5. Ultra-deep oxidation and exotic copper formation at the late pliocene boyongan and bayugo porphyry copper-gold deposits, surigao, philippines: Geology, mineralogy, paleoaltimetry, and their implications for Geologic, physiographic, and tectonic controls

    USGS Publications Warehouse

    Braxton, D.P.; Cooke, D.R.; Ignacio, A.M.; Rye, R.O.; Waters, P.J.

    2009-01-01

    The Boyongan and Bayugo porphyry copper-gold deposits are part of an emerging belt of intrusion-centered gold-rich deposits in the Surigao district of northeast Mindanao, Philippines. Exhumation and weathering of these Late Pliocene-age deposits has led to the development of the world's deepest known porphyry oxidation profile at Boyongan (600 m), and yet only a modest (30-70 m) oxidation profile at adjacent Bayugo. Debris flows, volcanic rocks, and fluviolacustrine sediments accumulating in the actively extending Mainit graben subsequently covered the deposits and preserved the supergene profiles. At Boyongan and Bayugo, there is a vertical transition from shallower supergene copper oxide minerals (malachite + azurite + cuprite) to deeper sulfide-stable assemblages (chalcocite ?? hypogene sulfides). This transition provides a time-integrated proxy for the position of the water table at the base of the saturated zone during supergene oxidation. Contours of the elevation of the paleopotentiometric surface based on this min- eralogical transition show that the thickest portions of the unsaturated zone coincided with a silt-sand matrix diatreme breccia complex at Boyongan. Within the breccia complex, the thickness of the unsaturated zone approached 600 in, whereas outside the breccia complex (e.g., at Bayugo), the thickness averaged 50 m. Contours of the paleopotentiometric surface suggest that during weathering, groundwater flowed into the breccia complex from the north, south, and east, and exited along a high permeability zone to the west. The high relief (>550 m) on the elevation of the paleopotentiometric surface is consistent with an environment of high topographic relief, and the outflow zone to the west of the breccia complex probably reflects proximity to a steep scarp intersecting the western breccia complex margin. Stable isotope paleoaltimetry has enabled estimation of the elevation of the land surface, which further constrains the physiographic setting

  6. Porphyry copper assessment of western Central Asia: Chapter N in Global mineral resource assessment

    USGS Publications Warehouse

    Berger, Byron R.; Mars, John L.; Denning, Paul D.; Phillips, Jeffrey D.; Hammarstrom, Jane M.; Zientek, Michael L.; Dicken, Connie L.; Drew, Lawrence J.; with contributions from Alexeiev, Dmitriy; Seltmann, Reimar; Herrington, Richard J.

    2014-01-01

    The assessment includes a discussion of the tectonic and geologic setting of porphyry copper deposits in western Central Asia (chapter 1), an application of remote sensing data for hydrothermal alteration mapping as a tool for porphyry copper assessment in the region (chapter 2), and a probabilistic assessment of undiscovered porphyry copper resources in four areas that represent Ordovician and Late Paleozoic (Carboniferous-Permian) magmatic arcs (chapter 3). The principal litho-tectonic terrane concept used to delineate permissive tracts was that of a magmatic arc that formed in the subduction boundary zone above a subducting plate. Eight permissive tracts are delineated on the basis of mapped and inferred subsurface distributions of igneous rocks assigned to magmatic arcs of specified age ranges that define areas where the occurrence of porphyry copper deposits within 1 kilometer of the Earth’s surface is possible. These tracts range in area from about 8,000 to 200,000 square kilometers and host 18 known porphyry copper deposits that contain about 54 million metric tons of copper. Available data included geologic maps, the distribution of significant porphyry copper occurrences and potentially related deposit types, the distribution of hydrothermal alteration patterns that are consistent with porphyry copper mineralization, and information on possible subsurface extensions of permissive rocks. On the basis of analyses of these data, the assessment team estimated a mean of 25 undis

  7. Origin of the ore-forming fluids of the Tongchang porphyry Cu-Mo deposit in the Jinshajiang-Red River alkaline igneous belt, SW China: Constraints from He, Ar and S isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Leiluo; Bi, Xianwu; Hu, Ruizhong; Tang, Yongyong; Jiang, Guohao; Qi, Youqiang

    2014-01-01

    The Jinshajiang-Red River alkaline igneous belt with abundant Cu-Mo-Au mineralization, in the eastern Indian-Asian collision zone, is an important Cenozoic magmatic belt formed under an intra-continental strike-slip system in southwestern (SW) China. The Tongchang deposit is a representative porphyry Cu-Mo deposit in southern segment of the Jinshajiang-Red River alkaline igneous belt, with 8621 t Cu @ 1.24 wt.% and 17,060 t Mo @ 0.218 wt.%. In this study, He, Ar and S isotopic compositions of the Tongchang deposit were determined. He and Ar isotopic compositions suggest that the ore-forming fluids, with 3He/4He ratios varying from 0.17 to 1.50 Ra and 40Ar/36Ar ratios from 299.1 to 347.3 for the deposit, are a mixture between a crust-derived fluid (MASW) with near atmospheric Ar and crustal He, and a mantle-derived fluid. However, the δ34S values of the hydrothermal pyrite samples ranging from 1.0‰ to 1.5‰ with an average of 1.2‰, indicate that the sulfur in the ore-forming fluids of the Tongchang deposit was primarily derived from the magma or indirectly mantle-derived without assimilation of crustal sulfur. In combination with previously published He and Ar isotopic data of the Yulong and Machangqing deposits in northern and central segments of the Jinshajiang-Red River alkaline igneous belt, respectively, the ore-forming fluids of the Yulong and Machangqing deposits are obviously richer in 3He and 40Ar, and poorer in 36Ar in comparison with the Tongchang deposit, implying that more mantle-derived fluids were involved in the ore-forming fluids of the Yulong and Machangqing deposits than those for the Tongchang deposit. This might be one of the most important factors producing larger scales of mineralization in the Yulong and Machangqing deposits than the Tongchang deposit.

  8. Fabrication of bimetallic Cu/Au nanotubes and their sensitive, selective, reproducible and reusable electrochemical sensing of glucose

    NASA Astrophysics Data System (ADS)

    Tee, Si Yin; Ye, Enyi; Pan, Pei Hua; Lee, Coryl Jing Jun; Hui, Hui Kim; Zhang, Shuang-Yuan; Koh, Leng Duei; Dong, Zhili; Han, Ming-Yong

    2015-06-01

    Herein, we report a facile two-step approach to produce gold-incorporated copper (Cu/Au) nanostructures through controlled disproportionation of the Cu+-oleylamine complex at 220 °C to form copper nanowires and the subsequent reaction with Au3+ at different temperatures of 140, 220 and 300 °C. In comparison with copper nanowires, these bimetallic Cu/Au nanostructures exhibit their synergistic effect to greatly enhance glucose oxidation. Among them, the shape-controlled Cu/Au nanotubes prepared at 140 °C show the highest electrocatalytic activity for non-enzymatic glucose sensing in alkaline solution. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other potential interfering species and excellent reproducibility with long-term stability. By introducing gold into copper nanostructures at a low level of 3, 1 and 0.1 mol% relative to the initial copper precursor, a significant electrocatalytic enhancement of the resulting bimetallic Cu/Au nanostructures starts to occur at 1 mol%. Overall, the present fabrication of stable Cu/Au nanostructures offers a promising low-cost platform for sensitive, selective, reproducible and reusable electrochemical sensing of glucose.Herein, we report a facile two-step approach to produce gold-incorporated copper (Cu/Au) nanostructures through controlled disproportionation of the Cu+-oleylamine complex at 220 °C to form copper nanowires and the subsequent reaction with Au3+ at different temperatures of 140, 220 and 300 °C. In comparison with copper nanowires, these bimetallic Cu/Au nanostructures exhibit their synergistic effect to greatly enhance glucose oxidation. Among them, the shape-controlled Cu/Au nanotubes prepared at 140 °C show the highest electrocatalytic activity for non-enzymatic glucose sensing in alkaline solution. In addition to high sensitivity and fast response, the Cu/Au nanotubes possess high selectivity against interferences from other

  9. Structural, mineralogical and geochemical constraints on the atypical komatiite-hosted Turret deposit in the Agnew-Mt. White district, Western Australia

    NASA Astrophysics Data System (ADS)

    Voute, F.; Thébaud, N.

    2015-08-01

    In the Norseman-Wiluna belt, Yilgarn Craton, the Agnew-Mt. White district is the host of many gold deposits. Located in the hinge of the regional Lawlers anticline, the Turret gold deposit is structurally controlled by the Table Hill shear zone that transects the Agnew Ultramafic unit. Geochemistry, coupled with petrographic data, allowed the delineation of the paragenetic sequence associated with gold mineralisation and include (1) a pervasive talc-carbonate alteration assemblage, (2) a pre-mineralisation stage associated with pervasive arsenopyrite + chalcopyrite + pyrrhotite + pyrite alteration, followed by (3) a late deformation event along a dilatational segment of the main Table Hill shear zone, leading to the formation of a breccia hosting a Cu-Bi-Mo-Au (± Ag ± Zn ± Te ± W) metal assemblage. The presence of Au-Ag-Cu alloys, native bismuth, chalcopyrite and other Bi-Te-S phases in the mineralisation stage suggest that gold may have been scavenged from the hydrothermal fluids by composite Bi-Te-Cu-Au-Ag-S liquids or melts. Using this mineral paragenetic sequence, together with mineralogical re-equilibration textures observed, we show that the gold deposition at Turret occurred over a temperature range approximately between c. 350 and 270 °C. This temperature range, together with the structural control and typical mesothermal alteration pattern including carbonate-chlorite alteration, shows that the Turret deposit shares common characteristics with the orogenic gold deposit class. However, the metal association of Cu, Au, Bi, and Mo, the quartz-poor, and high copper-sulphide content (up to 15 %) are characteristics that depart from the typical orogenic gold deposit mineralogy. Through comparison with similar deposits in the Yilgarn Craton and worldwide, we propose that the Turret deposit represents an example of a porphyry-derived Au-Cu-Bi-Mo deposit.

  10. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    NASA Astrophysics Data System (ADS)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  11. Iodide-Responsive Cu-Au Nanoparticle-Based Colorimetric Platform for Ultrasensitive Detection of Target Cancer Cells.

    PubMed

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Wang, Kemin; He, Dinggeng; Yan, Lv'an; Xu, Fengzhou; Lei, Yanli; Tang, Jinlu; Yu, Yanru

    2015-07-21

    Colorimetric analysis is promising in developing facile, fast, and point-of-care cancer diagnosis techniques, but the existing colorimetric cancer cell assays remain problematic because of dissatisfactory sensitivity as well as complex probe design or synthesis. To solve the problem, we here present a novel colorimetric analytical strategy based on iodide-responsive Cu-Au nanoparticles (Cu-Au NPs) combined with the iodide-catalyzed H2O2-TMB (3,3,5,5-tetramethylbenzidine) reaction system. In this strategy, bimetallic Cu-Au NPs prepared with an irregular shape and a diameter of ∼15 nm could chemically absorb iodide, thus indirectly inducing colorimetric signal variation of the H2O2-TMB system. By further utilizing its property of easy biomolecule modification, a versatile colorimetric platform was constructed for detection of any target that could cause the change of Cu-Au NPs concentration via molecular recognition. As proof of concept, an analysis of human leukemia CCRF-CEM cells was performed using aptamer Sgc8c-modified Cu-Au NPs as the colorimetric probe. Results showed that Sgc8c-modified Cu-Au NPs successfully achieved a simple, label-free, cost-effective, visualized, selective, and ultrasensitive detection of cancer cells with a linear range from 50 to 500 cells/mL and a detection limit of 5 cells in 100 μL of binding buffer. Moreover, feasibility was demonstrated for cancer cell analysis in diluted serum samples. The iodide-responsive Cu-Au NP-based colorimetric strategy might not only afford a new design pattern for developing cancer cell assays but also greatly extend the application of the iodide-catalyzed colorimetric system. PMID:26100583

  12. Kuh-e Dom Fe-Cu-Au prospect, Anarak Metallogenic Complex, Central Iran: a geological, mineralogical and fluid inclusion study

    NASA Astrophysics Data System (ADS)

    Tale Fazel, Ebrahim; Mehrabi, Behzad; Tabbakh Shabani, Amir Ali

    2015-02-01

    The Kuh-e Dom Fe-Cu-Au prospect is located in the Urumieh-Dokhtar Magmatic Belt, and is characterized by copper-iron oxide and gold veins, stockworks and breccias hosted by the Eocene Kuh-e Dom arc intrusion. Mineralization is located within NE-SW to WNW-ESE sinistral faults and likely formed in a subduction-related continental margin that is typical of IOCG deposit systems. The deposits have a distinct metal composition of Fe, Cu, Bi, Co, Mo and LREE with gold (up to 3 g/t), and the mineral assemblages are quartz, hematite, pyrite, chalcopyrite, emplectite, magnetite, free gold, calcite, barite, chlorite, and tourmaline. Three paragenetic stages of mineralized quartz veins are distinguished in the Kuh-e Dom prospect, including: (i) hematite-bearing quartz veins, (ii) quartz-sulfide stockwork and breccia veins, and (iii) quartz-calcite±sulfide infilling veins. Sodic (albitization), potassic, and quartz-calcite±chlorite pervasive alterations are commonly associated with these three mineralization stages. Three types of fluid inclusions have been identified at Kuh-e Dom, including: aqueous two-phase (H2O-NaCl-CaCl2±FeCl2), halite-saturated aqueous (H2O-NaCl±KCl), and CO2-bearing (H2O-CO2±CH4 and CO2±CH4) fluid inclusions. A hypersaline (~35 wt% NaCl equiv.), aqueous magmatic fluid was released at about 400 °C and a pressure of nearly 4 kbar, forming early hematite-bearing quartz veins. These high salinity fluids were progressively diluted further away from Kuh-e Dom intrusion due to substantial input of meteoric water and mixing with the magmatic components during the middle and late stages of mineralization. The mineralogy, alteration, and fluid composition of the Kuh-e Dom Fe-Cu-Au prospect compared well with Fe oxide Cu-Au (IOCG) deposits worldwide.

  13. Optical properties of random alloys: application to CuAu and NiPt

    NASA Astrophysics Data System (ADS)

    Krishna Saha, Kamal; Mookerjee, Abhijit

    2005-07-01

    In an earlier paper we presented a formulation for the calculation of the configuration-averaged optical conductivity in random alloys. Our formulation is based on the augmented-space theorem introduced by one of us (Mookerjee 1973 J. Phys. C: Solid State Phys. 6 1340). In this communication we shall combine the augmented space methodology with the tight-binding linear muffin-tin orbital technique (TB-LMTO) to study the optical conductivities of two alloys, CuAu and NiPt.

  14. Experimental and Theoretical Studies on Oxidation of Cu-Au Alloy Surfaces: Effect of Bulk Au Concentration.

    PubMed

    Okada, Michio; Tsuda, Yasutaka; Oka, Kohei; Kojima, Kazuki; Diño, Wilson Agerico; Yoshigoe, Akitaka; Kasai, Hideaki

    2016-01-01

    We report results of our experimental and theoretical studies on the oxidation of Cu-Au alloy surfaces, viz., Cu3Au(111), CuAu(111), and Au3Cu(111), using hyperthermal O2 molecular beam (HOMB). We observed strong Au segregation to the top layer of the corresponding clean (111) surfaces. This forms a protective layer that hinders further oxidation into the bulk. The higher the concentration of Au in the protective layer formed, the higher the protective efficacy. As a result, of the three Cu-Au surfaces studied, Au3Cu(111) is the most stable against dissociative adsorption of O2, even with HOMB. We also found that this protective property breaks down for oxidations occurring at temperatures above 300 K. PMID:27516137

  15. Experimental and Theoretical Studies on Oxidation of Cu-Au Alloy Surfaces: Effect of Bulk Au Concentration

    PubMed Central

    Okada, Michio; Tsuda, Yasutaka; Oka, Kohei; Kojima, Kazuki; Diño, Wilson Agerico; Yoshigoe, Akitaka; Kasai, Hideaki

    2016-01-01

    We report results of our experimental and theoretical studies on the oxidation of Cu-Au alloy surfaces, viz., Cu3Au(111), CuAu(111), and Au3Cu(111), using hyperthermal O2 molecular beam (HOMB). We observed strong Au segregation to the top layer of the corresponding clean (111) surfaces. This forms a protective layer that hinders further oxidation into the bulk. The higher the concentration of Au in the protective layer formed, the higher the protective efficacy. As a result, of the three Cu-Au surfaces studied, Au3Cu(111) is the most stable against dissociative adsorption of O2, even with HOMB. We also found that this protective property breaks down for oxidations occurring at temperatures above 300 K. PMID:27516137

  16. Effect of gold composition on the orientations of oxide nuclei during the early stage oxidation of Cu-Au alloys

    SciTech Connect

    Luo Langli; Zhou Guangwen; Kang Yihong; Yang, Judith C.

    2012-04-15

    In situ environmental transmission electron microscopy is employed to study the effect of Au composition in Cu-Au alloys on the orientations of oxide islands during the initial-stage oxidation of Cu-Au(100) alloys. An orientation transition from nucleating epitaxial Cu{sub 2}O islands to randomly oriented oxide islands is observed upon increasing the oxygen gas pressure. By increasing the Au composition in the Cu-Au alloys, both the oxide nucleation time and saturation density of oxide islands increase, but the critical oxygen pressure leading to nucleating randomly oriented Cu{sub 2}O islands decreases. It is shown by a kinetic model that such a dependence of the critical oxygen pressure on the alloy composition is related to its effect on two competing processes, the oxide-alloy structure match and the effective collision of oxygen atoms, in determining the overall nucleation rate of oxide islands during the oxidation.

  17. Lead-isotopic, sulphur-isotopic, and trace-element studies of galena from the Silesian-Cracow Zn-Pb ores, polymetallic veins from the Gory Swietokrzyskie MTS, and the Myszkow porphyry copper deposit, Poland

    USGS Publications Warehouse

    Church, S.E.; Vaughn, R.B.; Gent, C.A.; Hopkins, R.T.

    1996-01-01

    Lead-isotopic data on galena samples collected from a paragenetically constrained suite of samples from the Silesian-Cracow ore district show no regional or paragenetically controlled lead-isotopic trends within the analytical reproducibility of the measurements. Furthermore, the new lead-isotopic data agree with previously reported lead-isotopic results (R. E. Zartman et al., 1979). Sulfur-isotopic analyses of ores from the Silesian-Cracow district as well as from vein ore from the Gory Swietokrzyskie Mts. and the Myszkow porphyry copper deposit, when coupled with trace-element data from the galena samples, clearly discriminate different hydrothermal ore-forming events. Lead-isotopic data from the Permian and Miocene evaporite deposits in Poland indicate that neither of these evaporite deposits were a source of metals for the Silesian-Cracow district ores. Furthermore, lead-isotopic data from these evaporite deposits and the shale residues from the Miocene halite samples indicate that the crustal evolution of lead in the central and western European platform in southern Poland followed normal crustal lead-isotopic growth, and that the isotopic composition of crustal lead had progressed beyond the lead-isotopic composition of lead in the Silesian-Cracow ores by Permian time. Thus, Mesozoic and Tertiary sedimentary flysch rocks can be eliminated as viable source rocks for the metals in the Silesian-Cracow Mississippi Valley-type (MVT) deposits. The uniformity of the isotopic composition of lead in the Silesian-Cracow ores, when coupled with the geologic evidence that mineralization must post-date Late Jurassic faulting (E. Gorecka, 1991), constrains the geochemical nature of the source region. The source of the metals is probably a well-mixed, multi-cycle molasse sequence of sedimentary rocks that contains little if any Precambrian metamorphic or granitic clasts (S. E. Church, R. B. Vaughn, 1992). If ore deposition was post Late Jurassic (about 150 m. y.) or later

  18. Geology, mineralization, and fluid inclusion characteristics of the Kumbel oxidized W-Cu-Mo skarn and Au-W stockwork deposit in Kyrgyzstan, Tien Shan

    NASA Astrophysics Data System (ADS)

    Soloviev, Serguei G.

    2015-02-01

    The Kumbel deposit is located within a metallogenic belt of W-Mo, Cu-Mo, Au-W, and Au deposits along the Late Paleozoic active continental margin of Tien Shan. The deposit is related to a Late Carboniferous multiphase pluton, with successive intrusive phases from early olivine monzogabbro through monzonite-quartz monzonite to granodiorite and granite, with the latest monzogabbro-porphyry dikes. The deposit represents an example of a complex W-Cu-Mo-Au magmatic-hydrothermal system related to magnetite-series high-K calc-alkaline to shoshonitic igneous suite. It contains large bodies of W-Cu-Mo oxidized prograde and retrograde skarns, with abundant andradite garnet, magnetite, and especially hematite, as well as K-feldspar, molybdoscheelite, chalcopyrite, and molybdenite, with transitions to zones of intense quartz-K-feldspar (with minor andradite and hematite) veining. The skarns are cut by quartz-carbonate ± adularia ± sericite veins (locally sheeted) and stockworks bearing scheelite and minor Cu, Zn, Pb sulfides, as well as Au, Bi, Te, and As mineralization. The association of these veins with the oxidized skarns and magnetite-series intrusion is consistent with the general oxidized, intrusion-related W-Mo-Cu-Au type of deposit, with an affinity to the alkalic (silica-saturated) Cu-Au ± Mo porphyry deposits. The fluid inclusion data show the predominance of magmatic-hydrothermal aqueous chloride fluid during the formation of skarns and quartz-carbonate-scheelite-sulfide veins. The high fluid pressures (˜1,750 bars), together with their high temperature (up to 600 °C) and high salinity (˜50-60 wt% NaCl-equiv.), suggest the formation of skarns and quartz-K-feldspar-andradite-hematite veins under conditions typical of magmatic-hydrothermal transition (depth of ≥4-5 km) of intrusion-related mineralized system, possibly by exsolution of the fluids from crystallizing magma. The auriferous quartz-carbonate-scheelite-sulfide veins formed from high to moderate

  19. Porphyry copper assessment of British Columbia and Yukon Territory, Canada: Chapter C in Global mineral resource assessment

    USGS Publications Warehouse

    Mihalasky, Mark J.; Bookstrom, Arthur A.; Frost, Thomas P.; Ludington, Steve

    2011-01-01

    Western Canada has been thoroughly explored for porphyry copper deposits. The total estimated copper contained in known deposits is about 66.8 Mt (based on 2010 data), as compared to a 49 Mt mean of estimated copper in undiscovered deposits and a 34 Mt median of estimated copper in undiscovered deposits. The copper contained in known porphyry copper deposits represents about 58 percent of the total of known and undiscovered porphyry copper deposits (based on mean values). About 86 percent of the increase in estimated copper resources between 1993 and 2009 resulted from the discovery of extensions to known deposits. Nevertheless, exploration for undiscovered deposits continues, especially in and around significant prospects and in parts of permissive tracts that are mostly hidden beneath younger volcanic, sedimentary, or vegetated surficial cover.

  20. Ages and sources of components of Zn-Pb, Cu, precious metal, and platinum group element deposits in the goodsprings district, clark county, Nevada

    USGS Publications Warehouse

    Vikre, P.; Browne, Q.J.; Fleck, R.; Hofstra, A.; Wooden, J.

    2011-01-01

    The Goodsprings district, Clark County, Nevada, includes zinc-dominant carbonate replacement deposits of probable late Paleozoic age, and lead-dominant carbonate replacement deposits, copper ?? precious metal-platinum group element (PGE) deposits, and gold ?? silver deposits that are spatially associated with Late Triassic porphyritic intrusions. The district encompasses ??500 km2 although the distribution of all deposits has been laterally condensed by late Mesozoic crustal contraction. Zinc, Pb, and Cu production from about 90 deposits was ??160,000 metric tons (t) (Zn > Pb >> Cu), 2.1 million ounces (Moz) Ag, 0.09 Moz Au, and small amounts of PGEs-Co, V, Hg, Sb, Ni, Mo, Mn, Ir, and U-were also recovered. Zinc-dominant carbonate replacement deposits (Zn > Pb; Ag ?? Cu) resemble Mississippi Valley Type (MVT) Zn-Pb deposits in that they occur in karst and fault breccias in Mississippian limestone where the southern margin of the regional late Paleozoic foreland basin adjoins Proterozoic crystalline rocks of the craton. They consist of calcite, dolomite, sphalerite, and galena with variably positive S isotope compositions (??34S values range from 2.5-13%), and highly radiogenic Pb isotope compositions (206Pb/204Pb >19), typical of MVT deposits above crystalline Precambrian basement. These deposits may have formed when southward flow of saline fluids, derived from basinal and older sedimentary rocks, encountered thinner strata and pinch-outs against the craton, forcing fluid mixing and mineral precipitation in karst and fault breccias. Lead-dominant carbonate replacement deposits (Pb > Zn, Ag ?? Cu ?? Au) occur among other deposit types, often near porphyritic intrusions. They generally contain higher concentrations of precious metals than zinc-dominant deposits and relatively abundant iron oxides after pyrite. They share characteristics with copper ?? precious metal- PGE and gold ?? silver deposits including fine-grained quartz replacement of carbonate minerals in

  1. Magmatic evolution of pre-ore volcanics and porphyry intrusives associated with the Altar Cu-porphyry prospect, Argentina

    NASA Astrophysics Data System (ADS)

    Gatzoubaros, M.; von Quadt, A.; Gallhofer, D.; Rey, R.

    2014-11-01

    Altar is a Cu-porphyry deposit related to several small plagioclase porphyry intrusions of the late Miocene formed on the margin of the Flat-Slab segment along the Andean Cordillera in north-west Argentina. New stratigraphic and structural mapping supported by geochemistry and geochronology of pre-ore volcanics at Altar has revealed that a period of ˜6-7 Ma of volcanism during the late Oligocene-early Miocene formed ˜4000 m of volcano-stratigraphic succession making up the Pachón Formation. It represents a period dominated by explosive to effusive eruption in a dynamic arc basin with local ash fall and flow deposition in lacustrine and fluvial sites. Volcanism is typified by medium- to high-K calc-alkaline arc magmatism with a shift from mafic compositions at the base to felsic rocks at the top of the formation containing zircons aged 21.9 ± 0.2 Ma (2 Std.Dev, U-Pb). A clear geochemical separation exists between early Miocene pre-ore volcanics that show signatures akin to non-adakitic, normal arc, extensional tectonic settings conducive of chemical differentiation at shallow crustal levels and correlate with intra-regional Abanico and Farellones Formations; and the middle to late-Miocene Cu-mineralised porphyry intrusions. After a break of ˜9 Ma in the geological record at Altar, these Cu-fertile bodies are emplaced entirely within the Pachón Rhyolite and represent adakite-like magmas with fractionation trends evolving from a lower crustal MASH zone. This distinction is controlled by a change from an extensional to compressive tectonic regime in the region during the middle Miocene in which magmas were stalled in the lower crust for an extended period, subsequently became enriched in metals and then formed several Cu-porphyry bodies which were emplaced during a relatively short period towards the late Miocene.

  2. Neutral pion production in \\sqrt{s_{NN}}=200 GeV Cu+Au collisions at PHENIX

    NASA Astrophysics Data System (ADS)

    Campbell, Sarah; PHENIX Collaboration

    2015-05-01

    Cu+Au collisions at RHIC generate asymmetric initial geometries and densities in both azimuth and rapidity. High pT π0s produced in \\sqrt{sNN} = 200 GeV Cu+Au collisions provide new environments to study parton energy loss in the Quark Gluon Plasma, including very central events where the Cu nucleus is enveloped by the Au nucleus. By measuring π0 yields in ϕ relative to the event plane, we can probe different core-corona regions in these very central events and study the path length dependence of energy loss in various lopsided initial geometries. PHENIX has observed the suppression of π0s as a function of the azimuthal angle with respect to the event plane in \\sqrt{sNN} = 200 GeV Au+Au collisions and found it consistent with a larger than quadratic path length dependence suggesting a non-perturbative energy loss model applies. The unique collision geometries available in Cu+Au provide new settings to explore and possibly confirm this path length dependence. The status of the Cu+Au π0 analysis is presented.

  3. Garnets in porphyry-skarn systems: A LA-ICP-MS, fluid inclusion, and stable isotope study of garnets from the Hongniu-Hongshan copper deposit, Zhongdian area, NW Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Peng, Hui-juan; Zhang, Chang-qing; Mao, Jing-wen; Santosh, M.; Zhou, Yun-man; Hou, Lin

    2015-05-01

    The Late Cretaceous Hongniu-Hongshan porphyry-skarn copper deposit is located in the Zhongdian area of northwestern Yunnan Province, China. Garnets from the deposit have compositions that range from Adr14Grs86 to almost pure andradite (Adr98Grs2) and display two different styles of zoning. The garnets are predominantly of magmatic-hydrothermal origin, as is evidenced by their 18Ofluid (5.4-6.9‰) and low Dfluid (-142‰ to -100‰) values, both of which likely result from late-stage magmatic open-system degassing. Three generations of garnet have been identified in this deposit: (1) Al-rich garnets (Grt I; Adr22-57Grs78-43) are anisotropic, have sector dodecahedral twinning, are slightly enriched in light rare earth elements (LREEs) compared with the heavy rare earth elements (HREEs), have negative or negligible Eu anomalies, and contain high concentrations of F. Fluid inclusions within these Al-rich garnets generally have salinities of 12-39 wt.% NaCl eq. and have liquid-vapor homogenization temperatures (Th) of 272-331 °C. The Grt I are most likely associated with low- to medium-salinity fluids that were generated by the contraction of an ascending vapor phase and that formed during diffusive metasomatism caused by pore fluids equilibrating with the host rocks at low W/R (water/rock) ratios. These garnets formed as a result of the high F activity of the system, which increased the solubility of Al within the magmato-hydrothermal fluids in the system. (2) Fe-rich garnets (Adr75-98Grs25-2) have trapezohedral faces, and are both anisotropic with oscillatory zoning and isotropic. These second-generation Fe-rich garnets (Grt II) have high ΣREE concentrations, are LREE-enriched and HREE-depleted, and generally have positive but variable Eu anomalies. All of the Fe-rich garnets contain high-salinity fluid inclusions with multiple daughter minerals with salinities of 33-80 wt.% NaCl eq. Some of them show higher temperatures of halite dissolution (465-591 °C) than

  4. Cu-Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics

    NASA Astrophysics Data System (ADS)

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Yu, Yanru; He, Dinggeng; Tang, Jinlu; Lei, Yanli; Wang, Kemin

    2016-01-01

    As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity and lower cost was introduced to generate a novel Cu-Au alloy nanostructure produced by a simple, gentle and one-pot synthetic method. Having the good qualities of both Cu and Au, the irregularly-shaped Cu-Au alloy nanostructures showed several advantages over traditional Au nanorods, including a broad and intense near-infrared (NIR) absorption band from 400 to 1100 nm, an excellent heating performance under laser irradiation at different wavelengths and even a notable photostability against melting. Then, via a simple conjugation of fluorophore-labeled aptamers on the Cu-Au alloy nanostructures, active targeting and signal output were simultaneously introduced, thus constructing a theranostic platform based on fluorophore-labeled, aptamer-coated Cu-Au alloy nanostructures. By using human leukemia CCRF-CEM cancer and Cy5-labeled aptamer Sgc8c (Cy5-Sgc8c) as the model, a selective fluorescence imaging and NIR photothermal therapy was successfully realized for both in vitro cancer cells and in vivo tumor tissues. It was revealed that Cy5-Sgc8c-coated Cu-Au alloy nanostructures were not only capable of robust target recognition and stable signal output for molecular imaging in complex biological systems, but also killed target cancer cells in mice with only five minutes of 980 nm irradiation. The platform was found to be simple, stable, biocompatible and highly effective, and shows great potential as a versatile tool for cancer theranostics.As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity

  5. Cu-Au alloy nanostructures coated with aptamers: a simple, stable and highly effective platform for in vivo cancer theranostics.

    PubMed

    Ye, Xiaosheng; Shi, Hui; He, Xiaoxiao; Yu, Yanru; He, Dinggeng; Tang, Jinlu; Lei, Yanli; Wang, Kemin

    2016-01-28

    As a star material in cancer theranostics, photoresponsive gold (Au) nanostructures may still have drawbacks, such as low thermal conductivity, irradiation-induced melting effect and high cost. To solve the problem, copper (Cu) with a much higher thermal conductivity and lower cost was introduced to generate a novel Cu-Au alloy nanostructure produced by a simple, gentle and one-pot synthetic method. Having the good qualities of both Cu and Au, the irregularly-shaped Cu-Au alloy nanostructures showed several advantages over traditional Au nanorods, including a broad and intense near-infrared (NIR) absorption band from 400 to 1100 nm, an excellent heating performance under laser irradiation at different wavelengths and even a notable photostability against melting. Then, via a simple conjugation of fluorophore-labeled aptamers on the Cu-Au alloy nanostructures, active targeting and signal output were simultaneously introduced, thus constructing a theranostic platform based on fluorophore-labeled, aptamer-coated Cu-Au alloy nanostructures. By using human leukemia CCRF-CEM cancer and Cy5-labeled aptamer Sgc8c (Cy5-Sgc8c) as the model, a selective fluorescence imaging and NIR photothermal therapy was successfully realized for both in vitro cancer cells and in vivo tumor tissues. It was revealed that Cy5-Sgc8c-coated Cu-Au alloy nanostructures were not only capable of robust target recognition and stable signal output for molecular imaging in complex biological systems, but also killed target cancer cells in mice with only five minutes of 980 nm irradiation. The platform was found to be simple, stable, biocompatible and highly effective, and shows great potential as a versatile tool for cancer theranostics. PMID:26743815

  6. The origin and evolution of skarn-forming fluids from the Phu Lon deposit, northern Loei Fold Belt, Thailand: Evidence from fluid inclusion and sulfur isotope studies

    NASA Astrophysics Data System (ADS)

    Kamvong, Teera; Zaw, Khin

    2009-05-01

    The Phu Lon skarn Cu-Au deposit is located in the northern Loei Fold Belt (LFB), Thailand. It is hosted by Devonian volcano-sedimentary sequences intercalated with limestone and marble units, intruded by diorite and quartz monzonite porphyries. Phu Lon is a calcic skarn with both endoskarn and exoskarn facies. In both skarn facies, andradite and diopside comprise the main prograde skarn minerals, whereas epidote, chlorite, tremolite, actinolite and calcite are the principal retrograde skarn minerals. Four types of fluid inclusions in garnet were distinguished: (1) liquid-rich inclusions; (2) daughter mineral-bearing inclusions; (3) salt-saturated inclusions; and (4) vapor-rich inclusions. Epidote contains only one type of fluid inclusion: liquid-rich inclusions. Fluid inclusions associated with garnet (prograde skarn stage) display high homogenization temperatures and moderate salinities (421.6-468.5 °C; 17.4-23.1 wt% NaCl equiv.). By contrast, fluid inclusions associated with epidote (retrograde skarn stage) record lower homogenization temperatures and salinities (350.9-399.8 °C; 0.5-8 wt% NaCl equiv.). These data suggest a possible mixing of saline magmatic fluids with external, dilute fluid sources (e.g., meteoric fluids), as the system cooled. Some fluid inclusions in garnet contain hematite daughters, suggesting an oxidizing magmatic environment. Sulfur isotope determinations on sulfide minerals from both the prograde and retrograde stages show a uniform and narrow range of δ34S values (-2.6 to -1.1 ‰ δ34S), suggesting that the ore-forming fluid contained sulfur of orthomagmatic origin. Overall, the Phu Lon deposit is interpreted as an oxidized Cu-Au skarn based on the mineralogy and fluid inclusion characteristics.

  7. The architecture of the porphyry-metal system as a prospecting stratagem in the Southern Rocky Mountains

    USGS Publications Warehouse

    Neuerburg, George J.

    1978-01-01

    A model of the porphyry-metal system characteristic of the consanguineous Cretaceous and Tertiary igneous rocks and associated ores of the southern Rocky Mountains is constructed from the bits and pieces exposed in the Colorado mineral belt and the San Juan volcanic field. Hydrothermally altered rocks in a part of the areas of mineralized rock associated with the Platoro caldera are matched against the model, to locate and to characterize latent mineral deposits for optimal prospecting and exploration. The latent deposits are two stockwork molybdenite deposits (porphyry-molybdenum) and one or two copper-gold-silver chimney deposits.

  8. Economic filters for evaluating porphyry copper deposit resource assessments using grade-tonnage deposit models, with examples from the U.S. Geological Survey global mineral resource assessment: Chapter H in Global mineral resource assessment

    USGS Publications Warehouse

    Robinson, Gilpin R., Jr.; Menzie, W. David

    2012-01-01

    One implication of the economic filter results for undiscovered copper resources is that global copper supply will continue to be dominated by production from a small number of giant deposits. This domination of resource supply by a small number of producers may increase in the future, because an increasing proportion of new deposit discoveries are likely to occur in remote areas and be concealed deep beneath covering rock and sediments. Extensive mineral exploration activity will be required to meet future resource demand, because these deposits will be harder to find and more costly to mine than near-surface deposits located in more accessible areas. Relatively few of the new deposit discoveries in these high-cost settings will have sufficient tonnage and grade characteristics to assure positive economic returns on development and exploration costs.

  9. Porphyry copper assessment of the Tibetan Plateau, China: Chapter F in Global mineral resource assessment

    USGS Publications Warehouse

    Ludington, Steve; Hammarstrom, Jane M.; Robinson, Gilpin R., Jr.; Mars, John L.; Miller, Robert J.

    2012-01-01

    Assessment results, presented in tables and graphs, show mean expected amounts of metal and rock in undiscovered deposits at different quantile levels, as well as the arithmetic mean for each tract. This assessment estimated a mean of 39 undiscovered porphyry copper deposits within the assessed permissive tracts on the Tibetan Plateau. This represents nearly four times the number of known deposits (11) already discovered. Predicted mean (arithmetic) resources that could be associated with the undiscovered deposits are about 145,000,000 t of copper and about 4,900 t of gold, as well as byproduct molybdenum and silver. Reliable reports of the identified resources in the 11 known deposits total about 27,000,000 t of copper and about 800 t of gold. Therefore, based on the assessments of undiscovered Tibetan Plateau resources in this report, about six times as much copper may occur in undiscovered porphyry copper deposits as has been identified to date.

  10. Porphyry copper assessment of Southeast Asia and Melanesia: Chapter D in Global mineral resource assessment

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Dicken, Connie L.; Drenth, Benjamin J.; Ludington, Steve; Robinson, Gilpin R., Jr.; Setiabudi, Bambang Tjahjono; Sukserm, Wudhikarn; Sunuhadi, Dwi Nugroho; Wah, Alexander Yan Sze; Zientek, Michael L.

    2013-01-01

    On a regional basis, both the Indochina Peninsula area and the Indonesian-Malaysian Islands area are estimated to contain about 10 times as much in place copper in undiscovered porphyry copper deposits as has been identified to date. For the New Guinea Island areas, the ratio of undiscovered to identified copper resources is about 2. Some parts of the region have a long history of porphyry exploration cycles and mine development, interrupted at times by political and social unrest, environmental concerns, and natural disasters. Changes in mining laws within the region and the recent high price of gold on the world market have prompted renewed inter

  11. Audio-magnetotelluric survey to characterize the Sunnyside porphyry copper system in the Patagonia Mountains, Arizona

    USGS Publications Warehouse

    Sampson, Jay A.; Rodriguez, Brian D.

    2010-01-01

    The Sunnyside porphyry copper system is part of the concealed San Rafael Valley porphyry system located in the Patagonia Mountains of Arizona. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. To help characterize the size, resistivity, and skin depth of the polarizable mineral deposit concealed beneath thick overburden, a regional east-west audio-magnetotelluric sounding profile was acquired. The purpose of this report is to release the audio-magnetotelluric sounding data collected along that east-west profile. No interpretation of the data is included.

  12. Porphyry copper assessment of western Central Asia: Chapter N in Global mineral resource assessment

    USGS Publications Warehouse

    Berger, Byron R.; Mars, John L.; Denning, Paul D.; Phillips, Jeffrey D.; Hammarstrom, Jane M.; Zientek, Michael L.; Dicken, Connie L.; Drew, Lawrence J.; with contributions from Alexeiev, Dmitriy; Seltmann, Reimar; Herrington, Richard J.

    2014-01-01

    Detailed descriptions of each permissive tract, including the rationales for delineation and assessment, are given in appendixes, along with a geographic information system (GIS) that includes permissive tract boundaries, point locations of known porphyry copper deposits and significant occurrences, and hydrothermal alteration data based on analysis of remote sensing data.

  13. Comparative study of the alloying effect on the initial oxidation of Cu-Au(100) and Cu-Pt(100)

    SciTech Connect

    Luo, Langli; Zhou, Guangwen; Kang, Yihong; Yang, Judith C.; Su, Dong; Stach, Eric A.

    2014-03-24

    Using in situ transmission electron microscopy, we show that the oxidation of the Cu-Au(100) results in the formation of Cu{sub 2}O islands that deeply embed into the Cu-Au substrate while the oxidation of the Cu-Pt(100) leads to the formation of Cu{sub 2}O islands that highly protrude above the Cu-Pt substrate. Their difference is attributed to the different mobilities of Pt and Au in the Cu base alloys for which the sluggish mobility of Pt in Cu results in trapped Pt atoms at the oxide/alloy interface while the faster mobility of Au in Cu leads to enhanced rehomogenization of the alloy composition.

  14. The structure of a commercial dental Ag-Pd-Cu-Au casting alloy.

    PubMed

    Niemi, L; Herø, H

    1984-02-01

    The structure of a commercial dental Ag-Pd-Cu-Au casting alloy has been studied by microprobe and X-ray diffraction analyses after various heat treatments. The composition of phases in equilibrium was established. After being annealed at 400 degrees C, 500 degrees C, and 600 degrees C for seven wk, the alloy consisted of three phases: a Cu- and Pd-rich fee phase (alpha 1) with alpha = 0.372nm, a Ag-rich matrix (alpha 2) with alpha = 0.399nm, and an ordered CsCl-type bcc PdCu phase with alpha = 0.296nm. The PdCu phase was not observed above 600 degrees C, and the proportion of the alpha 1 phase decreased sharply above 700 degrees C. After being annealed at 900 degrees C, the alloy matrix was partly decomposed at the Cu-enriched grain boundaries. The decomposed areas grew into the grain interior during subsequent precipitation hardening. No segregation of Au was detected after casting, and the element was evenly distributed throughout the alloy structure after all heat treatments. PMID:6582096

  15. New Stable Crystal Structures for Cu-Au and Ni-Pt Alloy Systems

    NASA Astrophysics Data System (ADS)

    Sanati, Mahdi; Wang, L. G.; Zunger, A.

    2003-10-01

    Cu-Au and Ni-Pt are among the best studied fcc alloy systems, exhibiting the famous L10 (AB) and L12 (A_3B) phases. We were wondering if a complete configurational search of the T=0 LDA total energies would reveal any unexpected phases. Total-energy calculations of ˜ 30 arbitrarily chosen structures were used to construct a generalized (momentum-space) Ising Hamiltonian containing ˜ 20 pair-interactions, ˜ 5-10 many-body terms, as well as the long-range strain term. This Hamiltonian was tested carefully as to its ability to predict the LDA energies of other structures. We searched the energies of all fcc configurations with 20 or less atoms per primitive cell ( ˜ 2,700,000 structures), found known L1_0, L12 as well as new, unsuspected structures. The new ground state structures are NiPt_7, Cu_2Au, and Cu_2Au_3. We also found a composition range in which there is quasicontinuum of stable, ordered structures made of (001) repeat units of simple structural motifs. This structural adaptivity is explained in terms of anisotropic, long-range strain energy.

  16. Selective copper diffusion into quartz-hosted vapor inclusions: Evidence from other host minerals, driving forces, and consequences for Cu-Au ore formation

    NASA Astrophysics Data System (ADS)

    Seo, Jung Hun; Heinrich, Christoph A.

    2013-07-01

    Recent experimental studies have raised concerns that Cu concentrations in quartz-hosted fluid inclusions from magmatic-hydrothermal ore deposits do not represent pristine concentrations in the trapped fluids, but are modified by post-entrapment diffusional exchange through the host quartz. New microanalyses of fluid inclusions hosted in topaz show significantly lower Cu concentrations in vapor inclusions, compared to otherwise identical inclusions hosted by coexisting quartz, whereas coeval brine (hypersaline liquid) inclusions are very similar independent of host mineral in one sample. Sulfur is present as a major component in all vapor inclusions, as in most porphyry-related vapor inclusions, and Cu never exceeds S, but commonly matches the S content at a molar ratio of Cu:S ⩽ 2 in vapor inclusions hosted by quartz. Univalent ions with a radius smaller than ˜1 Å are known to diffuse rapidly through the channels of the quartz structure, parallel to its crystallographic c axis. Since only Cu concentrations differ between topaz- and quartz-hosted inclusions, we hypothesize that Cu+ and H+ re-equilibrate by diffusional ion exchange through these channels, while all other element concentrations remain essentially unchanged. A thermodynamic model considering charge-balanced Cu+H+ exchange and diffusive H2 re-equilibration of an initially Cu-poor but S-rich vapor inclusion with a typical rock-buffered fluid environment outside the host crystal demonstrates a strong chemical driving force for Cu+ to migrate from the surrounding rock into the fluid inclusion during cooling of the system. The driving force for Cu diffusion, against the gradient in total Cu concentration, is the abundant H+ liberated inside the inclusion by dissociation of HCl and particularly by the precipitation of CuFeS2 by reaction with the initially trapped H2S and/or SO2. Gold is not only a much larger ion, but is subject to an opposing driving force, suggesting that high concentrations of this

  17. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Reich, Martin; Kesler, Stephen E.; Utsunomiya, Satoshi; Chryssoulis, Stephen L.; Walshe, John; Ewing, Rodney C.

    2014-09-01

    The ubiquity of Au-bearing arsenian pyrite in hydrothermal ore deposits suggests that the coupled geochemical behaviour of Au and As in this sulfide occurs under a wide range of physico-chemical conditions. Despite significant advances in the last 20 years, fundamental factors controlling Au and As ratios in pyrite from ore deposits remain poorly known. Here we explore these constraints using new and previously published EMPA, LA-ICP-MS, SIMS, and μ-PIXE analyses of As and Au in pyrite from Carlin-type Au, epithermal Au, porphyry Cu, Cu-Au, and orogenic Au deposits, volcanogenic massive sulfide (VHMS), Witwatersrand Au, iron oxide copper gold (IOCG), and coal deposits. Pyrite included in the data compilation formed under temperatures from ∼30 to ∼600 °C and in a wide variety of geological environments. The pyrite Au-As data form a wedge-shaped zone in compositional space, and the fact that most data points plot below the solid solubility limit defined by Reich et al. (2005) indicate that Au1+ is the dominant form of Au in arsenian pyrite and that Au-bearing ore fluids that deposit this sulfide are mostly undersaturated with respect to native Au. The analytical data also show that the solid solubility limit of Au in arsenian pyrite defined by an Au/As ratio of 0.02 is independent of the geochemical environment of pyrite formation and rather depends on the crystal-chemical properties of pyrite and post-depositional alteration. Compilation of Au-As concentrations and formation temperatures for pyrite indicates that Au and As solubility in pyrite is retrograde; Au and As contents decrease as a function of increasing temperature from ∼200 to ∼500 °C. Based on these results, two major Au-As trends for Au-bearing arsenian pyrite from ore deposits are defined. One trend is formed by pyrites from Carlin-type and orogenic Au deposits where compositions are largely controlled by fluid-rock interactions and/or can be highly perturbed by changes in temperature and

  18. Porphyry of Russian Empires in Paris

    NASA Astrophysics Data System (ADS)

    Bulakh, Andrey

    2014-05-01

    Porphyry of Russian Empires in Paris A. G. Bulakh (St Petersburg State University, Russia) So called "Schokhan porphyry" from Lake Onega, Russia, belongs surely to stones of World cultural heritage. One can see this "porphyry" at facades of a lovely palace of Pavel I and in pedestal of the monument after Nicolas I in St Petersburg. There are many other cases of using this stone in Russia. In Paris, sarcophagus of Napoleon I Bonaparte is constructed of blocks of this stone. Really, it is Proterozoic quartzite. Geology situation, petrography and mineralogical characteristic will be reported too. Comparison with antique porphyre from the Egyptian Province of the Roma Empire is given. References: 1) A.G.Bulakh, N.B.Abakumova, J.V.Romanovsky. St Petersburg: a History in Stone. 2010. Print House of St Petersburg State University. 173 p.

  19. Tellurides, selenides and Bi-mineral assemblages from the Río Narcea Gold Belt, Asturias, Spain: genetic implications in Cu-Au and Au skarns

    NASA Astrophysics Data System (ADS)

    Cepedal, A.; Fuertes-Fuente, M.; Martín-Izard, A.; González-Nistal, S.; Rodríguez-Pevida, L.

    2006-07-01

    Gold ores in skarns from the Río Narcea Gold Belt are associated with Bi-Te(-Se)-bearing minerals. These mineral assemblages have been used to compare two different skarns from this belt, a Cu-Au skarn (calcic and magnesian) from the El Valle deposit, and a Au-reduced calcic skarn from the Ortosa deposit. In the former, gold mineralization occurs associated with Cu-(Fe)-sulfides (chalcopyrite, bornite, chalcocite-digenite), commonly in the presence of magnetite. Gold occurs mainly as native gold and electrum. Au-tellurides (petzite, sylvanite, calaverite) are locally present; other tellurides are hessite, clausthalite and coloradoite. The Bi-bearing minerals related to gold are Bi-sulfosalts (wittichenite, emplectite, aikinite, bismuthinite), native bismuth, and Bi-tellurides and selenides (tetradymite, kawazulite, tsumoite). The speciation of Bi-tellurides with Bi/Te(Se + S) ≤ 1, the presence of magnetite and the abundance of precious metal tellurides and clausthalite indicate fO2 conditions within the magnetite stability field that locally overlap the magnetite-hematite buffer. In Ortosa deposit, gold essentially occurs as native gold and maldonite and is commonly related to pyrrhotite and to the replacement of löllingite by arsenopyrite, indicating lower fO2 conditions for gold mineralization than those for El Valle deposit. This fact is confirmed by the speciation of Bi-tellurides and selenides (hedleyite, joséite-B, joséite-A, ikunolite-laitakarite) with Bi/Te(+ Se + S) ≥ 1.

  20. Degradation mechanisms studies in CdS/CdTe solar cells with ZnTe:Cu/Au back contact

    SciTech Connect

    Morgan, D.; Tang, J.; Kaydanov, V.; Ohno, T.R.; Trefny, J.U.

    1999-03-01

    CdS/CdTe/ZnTe:Cu/Au solar cells were fabricated and tested under stressed conditions including enhanced temperature, forward and reverse bias, open circuit, dark and light. Discussion of results was focused mostly on the development of the back contact Schottky diode (increase in series resistance). Changes in the cell parameters were detected based on the analysis of the dynamic resistance of a cell (dV/dJ) at forward biases. A possible role of electromigration of the Cu dopant was discussed. {copyright} {ital 1999 American Institute of Physics.}

  1. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64Cu-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhao, Yongfeng; Sultan, Deborah; Detering, Lisa; Luehmann, Hannah; Liu, Yongjian

    2014-10-01

    Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal biodistribution and significant renal and hepatobiliary excretion. PET imaging showed low non-specific tumor uptake, indicating its potential for active targeting of clinically relevant biomarkers in tumor and metastatic organs.Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal

  2. Automatic identification of responses from porphyry intrusive systems within magnetic data using image analysis

    NASA Astrophysics Data System (ADS)

    Holden, Eun-Jung; Fu, Shih Ching; Kovesi, Peter; Dentith, Michael; Bourne, Barry; Hope, Matthew

    2011-08-01

    Direct targeting of mineral deposits using magnetic data may be facilitated by hydrothermal alteration associated with the mineralising event if the alteration changes the magnetic properties of the host rock. Hydrothermal alteration associated with porphyry-style mineralisation typically comprises concentric near-circular alteration zones surrounding a roughly circular central intrusion. The intrusion itself and the proximal alteration zone are usually associated with positive magnetic anomalies whilst the outer alteration zones are much less magnetic. Because the country rocks are usually magnetic, this pattern of alteration produces a central magnetic 'high' surrounded by an annular magnetic 'low'. This paper presents an automatic image analysis system for gridded data that provides an efficient, accurate and non-subjective way to seek the magnetic response of an idealised porphyry mineralising system within magnetic datasets. The method finds circular anomalies that are associated with the central intrusion and inner alteration zone of the porphyry system using a circular feature detection method called the radial symmetry transform. Next, their boundaries are traced using deformable splines that are drawn to the locations of maximum contrast between the amplitudes of the central 'high' and surrounding area of lower magnetisation. Experiments were conducted on magnetic data from Reko Diq, Pakistan; a region known to contain numerous occurrences of porphyry-style mineralisation. The predicted locations of porphyry systems closely match the locations of the known deposits in this region. This system is suitable as an initial screening tool for large geophysical datasets, therefore reducing the time and cost imposed by manual data inspection in the exploration process. The same principles can be applied to the search for circular magnetic responses with different amplitude characteristics.

  3. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    USGS Publications Warehouse

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  4. Regional mapping of hydrothermally altered igneous rocks along the Urumieh-Dokhtar, Chagai, and Alborz Belts of western Asia using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and Interactive Data Language (IDL) logical operators: a tool for porphyry copper exploration and assessment: Chapter O in Global mineral resource assessment

    USGS Publications Warehouse

    Mars, John L.

    2014-01-01

    The ASTER alteration map and corresponding geologic maps were used to select circular to elliptical patterns of argillic- and phyllic-altered volcanic and intrusive rocks as potential porphyry copper sites. One hundred and seventy eight potential porphyry copper sites were mapped along the UDVB, and 23 sites were mapped along the CVB. The potential sites were selected to assist in further exploration and assessments of undiscovered porphyry copper deposits.

  5. Sub-pixel mineral mapping of a porphyry copper belt using EO-1 Hyperion data

    NASA Astrophysics Data System (ADS)

    Hosseinjani Zadeh, Mahdieh; Tangestani, Majid H.; Roldan, Francisco Velasco; Yusta, Iñaki

    2014-02-01

    The main aim of the present study was to examine the feasibility of the EO-1 Hyperion data in discriminating and mapping diagnostic alteration minerals around porphyry copper deposits (PCDs), verified by field surveys and laboratory analyses. A partial sub-pixel method, mixture tuned matched filtering (MTMF), was implemented on a pre-processed and calibrated Hyperion dataset. The tested area is situated at the Central Iranian Volcano-Sedimentary Complex, where abundant porphyry copper deposits like Sarcheshmeh, Darrehzar, and Sereidun are located. The characteristic alteration minerals identified by Hyperion data included biotite, muscovite, illite, kaolinite, goethite, hematite, jarosite, pyrophyllite, and chlorite. Discrimination of these minerals especially biotite and iron oxide (hematite and goethite) can provide valuable evidences for PCD exploration projects. Results revealed that Hyperion data prove to be powerful in discriminating and mapping various types of alteration zones while the data were subjected to adequate pre-processing.

  6. First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon.

    PubMed

    Bercx, Marnik; Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk

    2016-07-27

    Chalcopyrite semiconductors are of considerable interest for application as absorber layers in thin-film photovoltaic cells. When growing films of these compounds, however, they are often found to contain CuAu-like domains, a metastable phase of chalcopyrite. It has been reported that for CuInS2, the presence of the CuAu-like phase improves the short circuit current of the chalcopyrite-based photovoltaic cell. We investigate the thermodynamic stability of both phases for a selected list of I-III-VI2 materials using a first-principles density functional theory approach. For the CuIn-VI2 compounds, the difference in formation energy between the chalcopyrite and CuAu-like phase is found to be close to 2 meV per atom, indicating a high likelihood of the presence of CuAu-like domains. Next, we calculate the spectroscopic limited maximum efficiency (SLME) of the CuAu-like phase and compare the results with those of the corresponding chalcopyrite phase. We identify several candidates with a high efficiency, such as CuAu-like CuInS2, for which we obtain an SLME of 29% at a thickness of 500 nm. We observe that the SLME can have values above the Shockley-Queisser (SQ) limit, and show that this can occur because the SQ limit assumes the absorptivity to be a step function, thus overestimating the radiative recombination in the detailed balance approach. This means that it is possible to find higher theoretical efficiencies within this framework simply by calculating the J-V characteristic with an absorption spectrum. Finally, we expand our SLME analysis to indirect band gap absorbers by studying silicon, and find that the SLME quickly overestimates the reverse saturation current of indirect band gap materials, drastically lowering their calculated efficiency. PMID:27405243

  7. Modeling the formation of porphyry-copper ores

    USGS Publications Warehouse

    Ingebritsen, Steven E.

    2012-01-01

    Porphyry-copper ore systems, the source of much of the world's copper and molybdenum, form when metal-bearing fluids are expelled from shallow, degassing magmas. On page 1613 of this issue, Weis et al. (1) demonstrate that self-organizing processes focus metal deposition. Specifically, their simulation studies indicate that ores develop as consequences of dynamic variations in rock permeability driven by injection of volatile species from rising magmas. Scenarios with a static permeability structure could not reproduce key field observations, whereas dynamic permeability responses to magmatic-fluid injection localized a metal-precipitation front where enrichment by a factor of 103 could be achieved [for an overview of their numerical-simulation model CSMP++, see (2)].

  8. Isotopic and geochemical studies of a Pliocene porphyry-Mo system, Rico, Colorado

    SciTech Connect

    Wareham, C.D.

    1991-01-01

    The historic mining district of Rico in southern Colorado Mineral Belt contains a Pliocene porphyry-Mo deposit and peripheral epithermal Pb-Zn-Ag deposits, and hot-springs. The porphyry-Mo mineralization is confined almost exclusively to Precambrian greenstone. The epithermal mineralization is hosted by a Paleozoic and Mesozoic sequence dominated by carbonates, but containing evaporites. The system is geologically complex and focused on a resurgent dome which is cored by a horst of Precambrian strata, and cut by reactivated Precambrian basement shears. The shears have controlled the emplacement of the Laramide and Pliocene granitoids in area. The mineralization is associated with more evolved members of the latter suite. Sr-Nd-Pb-O isotope and minor element data on the granitoid intrusions indicate that they are not simply differentiates of mantle magmas. However, Nd model ages indicate that they are not purely remelts of 1800Ma Precambrian crust. Realistically it is impossible to quantify the relative proportions of crust and mantle material involved in the genesis of the intrusions. Notwithstanding this, the Rico granitoids are isotopically distinct from those associated with Climax-type porphyry-Mo deposits in Colorado. Sd-Nd-Pb isotope and trace element data on a lamprophyre suite in the area suggest two episodes of mafic magmatism; a period whereby the source was predominantly, OIB-type, asthenospheric mantle. [sigma][sup 34]S data and ore deposit paragenesis indicate that the sulphide S has an igneous origin and that the sulphate S was derived by mobilization of Pennsylvanian evaporites. Modelling of the S isotopic data indicates a common S source for the epithermal and porphyry mineralization. The sulphate and sulphide S reservoirs remained essentially decoupled during mineralization. [sigma][sup 34]C data are compatible with the hydrothermal C having been derived by the dissolution and re-precipitation of host sequence carbonate.

  9. Using TOPSIS approaches for predictive porphyry Cu potential mapping: A case study in Ahar-Arasbaran area (NW, Iran)

    NASA Astrophysics Data System (ADS)

    Pazand, Kaveh; Hezarkhani, Ardeshir; Ataei, Mohammad

    2012-12-01

    In this article, by using TOPSIS technique we propose a new method for mineral potential mapping that commonly used to exploration mineral deposits. TOPSIS is a practical and useful technique for ranking and selection of a number of externally determined alternatives through distance measures. We used TOPSIS and GIS to providing prospectivity maps for porphyry copper mineralization on the basis of criteria derived from geological, geochemical, and geophysical controls, and remote sensing data including alteration and faults in Ahar-Arasbaran area in North West Iran. This Method allowed a mixture of quantitative and qualitative information with group decision. The results demonstrate the acceptable outcomes for copper porphyry exploration.

  10. Porphyry copper assessment of Europe, exclusive of the Fennoscandian Shield: Chapter K in Global mineral resource assessment

    USGS Publications Warehouse

    Sutphin, David M.; Hammarstrom, Jane M.; Drew, Lawrence J.; Large, Duncan E.; Berger, Byron R.; Dicken, Connie L.; DeMarr, Michael W.; with contributions from Billa, Mario; Briskey, Joseph A.; Cassard, Daniel; Lips, Andor; Pertold, Zdeněk; Roşu, Emilian

    2013-01-01

    The assessment includes an overview with summary tables. Detailed descriptions of each tract, including the rationales for delineation and assessment, are given in appendixes A–G. Appendix H describes a geographic information system (GIS) that includes tract boundaries and point locations of known porphyry copper deposits and significant prospects.

  11. Porphyry copper assessment of Central America and the Caribbean Basin: Chapter I in Global mineral resource assessment

    USGS Publications Warehouse

    Gray, Floyd; Hammarstrom, Jane M.; Ludington, Stephen; Zürcher, Lukas; Nelson, Carl E.; Robinson, Gilpin R., Jr.; Miller, Robert J.; Moring, Barry C.

    2014-01-01

    This assessment estimated a total mean of 37 undiscovered porphyry copper deposits within the assessed permissive tracts in Central America and the Caribbean Basin. This represents more than five times the seven known deposits. Predicted mean (arithmetic) resources that could be associated with these undiscovered deposits are about 130 million metric tons of copper and about 5,200 metric tons of gold, as well as byproduct molybdenum and silver. The reported identified resources for the seven known deposits total about 39 million metric tons of copper and about 930 metric tons of gold. The assessment area is estimated to contain nearly four times as much copper and six times as much gold in undiscovered porphyry copper deposits as has been identified to date.

  12. Global mineral resource assessment: porphyry copper assessment of Mexico: Chapter A in Global mineral resource assessment

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Robinson, Gilpin R., Jr.; Ludington, Steve; Gray, Floyd; Drenth, Benjamin J.; Cendejas-Cruz, Francisco; Espinosa, Enrique; Pérez-Segura, Efrén; Valencia-Moreno, Martín; Rodríguez-Castañeda, José Luis; Vásquez-Mendoza, Rigobert; Zürcher, Lukas

    2010-01-01

    This report includes a brief overview of porphyry copper deposits in Mexico, a description of the assessment process used, a summary of results, and appendixes. Appendixes A through K contain summary information for each tract, as follows: location, the geologic feature assessed, the rationale for tract delineation, tables and descriptions of known deposits and significant prospects, exploration history, model selection, rationale for the estimates, assessment results, and references. The accompanying digital map files (shapefiles) provide permissive tract outlines, assessment results, and data for deposits and prospects in a GIS format (appendix L).

  13. Age of Supergene oxidation and enrichment in the chilean porphyry copper province

    USGS Publications Warehouse

    Sillitoe, R.H.; McKee, E.H.

    1996-01-01

    Twenty-five samples of supergene alunite collected from deeply developed supergene profiles in porphyry copper deposits and prospects between latitudes 20?? and 27?? S in northern Chile yield K/Ar ages ranging from about 34 to 14 Ma. Therefore supergene oxidation and enrichment processes were active from the early Oligocene to the middle Miocene, a minimum of 20 m.y. Supergene activity at individual deposits lasted for at least 0.4 to 6.2 m.y. The early Oligocene supergene activity affected deposits in the Paleocene porphyry copper belt, whereas early and middle Miocene supergene processes are documented in the Early Cretaceous, Paleocene, and late Eocene to early Oligocene porphyry copper belts. Middle Miocene oxidation also affected the oldest epithermal gold-silver deposits in the Maricunga belt farther east. Supergene activity commenced no less than 11 m.y. after generation of each porphyry copper deposit because of the time required to unroof the copper-bearing parts of the system. Supergene activity throughout northern Chile ceased at -14 Ma. The geologic features of deposits and prospects and their morphotectonic positions, present latitudes, and present elevations display no obvious correlations with the supergene chronology. Exploration for major cumulative enrichment blankets should not be carried out either beneath thick sequences of piedmont gravels (?? ignimbrites) of Oligocene through middle Miocene age unless their accumulation is demonstrably late in the documented history of supergene activity, or in porphyry copper provinces, such as those of central Chile and northwestern Argentina, which formed after ??? 14 Ma. The uplift responsible for efficient cumulative copper enrichment is difficult to correlate convincingly with the brief pulses of compressive tectonism postulated for northern Chile and contiguous areas unless their effects were much more prolonged. Intensifying aridity is confirmed as the likely reason for the cessation of supergene

  14. Ecosystem Health in Mineralized Terrane-Data from Podiform Chromite (Chinese Camp Mining District, California), Quartz Alunite (Castle Peak and Masonic Mining Districts, Nevada/California), and Mo/Cu Porphyry (Battle Mountain Mining District, Nevada) Deposits

    USGS Publications Warehouse

    Blecker, Steve W.; Stillings, Lisa L.; Amacher, Michael C.; Ippolito, James A.; DeCrappeo, Nicole M.

    2010-01-01

    various mineralized terranes. We were also interested in examining these relations in the context of determining appropriate reference conditions with which to compare reclamation efforts. The purpose of this report is to present the data used to develop indices of soil and ecosystem quality associated with mineralized terranes (areas enriched in metal-bearing minerals), specifically podiform chromite, quartz alunite, and Mo/Cu porphyry systems. Within each of these mineralized terranes, a nearby unmineralized counterpart was chosen for comparison. The data consist of soil biological, chemical, and physical parameters, along with vegetation measurements for each of the sites described below. Synthesis of these data and index development will be the subject of future publications.

  15. Surface segregation at the binary alloy CuAu (100) studied by low-energy ion scattering

    NASA Astrophysics Data System (ADS)

    Beikler, Robert; Taglauer, Edmund

    2016-01-01

    We present results from an experimental study of segregation at the CuAu (100) surface. It is shown that Au enrichment in the top surface layer persists up to temperatures far beyond the bulk order-disorder transition temperature. From the gradual desegregation at higher temperatures a segregation energy of - 0.30 eV was determined. Our results are in quantitative agreement with calculations by Tersoff predicting oscillatory concentration depth profiles with decreasing amplitudes at higher temperatures. For the layer selective surface analysis we used low-energy He+ and Na+ scattering. Data interpretation and quantification were supported by numerical simulations with the MARLOWE code to which we had added the special features of trajectory resolved analysis and anisotropic thermal vibrations of surface atoms.

  16. Formation of nanostructured porous Cu-Au surfaces: the influence of cationic sites on (electro)-catalysis

    NASA Astrophysics Data System (ADS)

    Najdovski, Ilija; Selvakannan, Pr.; Bhargava, Suresh K.; O'Mullane, Anthony P.

    2012-09-01

    The fabrication of nanostructured bimetallic materials through electrochemical routes offers the ability to control the composition and shape of the final material that can then be effectively applied as (electro)-catalysts. In this work a clean and transitory hydrogen bubble templating method is employed to generate porous Cu-Au materials with a highly anisotropic nanostructured interior. Significantly, the co-electrodeposition of copper and gold promotes the formation of a mixed bimetallic oxide surface which does not occur at the individually electrodeposited materials. Interestingly, the surface is dominated by Au(i) oxide species incorporated within a Cu2O matrix which is extremely effective for the industrially important (electro)-catalytic reduction of 4-nitrophenol. It is proposed that an aurophilic type of interaction takes place between both oxidized gold and copper species which stabilizes the surface against further oxidation and facilitates the binding of 4-nitrophenol to the surface and increases the rate of reaction. An added benefit is that very low gold loadings are required typically less than 2 wt% for a significant enhancement in performance to be observed. Therefore the ability to create a partially oxidized Cu-Au surface through a facile electrochemical route that uses a clean template consisting of only hydrogen bubbles should be of benefit for many more important reactions.The fabrication of nanostructured bimetallic materials through electrochemical routes offers the ability to control the composition and shape of the final material that can then be effectively applied as (electro)-catalysts. In this work a clean and transitory hydrogen bubble templating method is employed to generate porous Cu-Au materials with a highly anisotropic nanostructured interior. Significantly, the co-electrodeposition of copper and gold promotes the formation of a mixed bimetallic oxide surface which does not occur at the individually electrodeposited materials

  17. Mine drainage water from the Sar Cheshmeh porphyry copper mine, Kerman, IR Iran.

    PubMed

    Shahabpour, J; Doorandish, M

    2008-06-01

    This paper presents the results of a study on stream and mine waters in the area of one of the world largest porphyry copper deposit located in the southeastern Iran, the Sar Cheshmeh porphyry copper mine. Trace metals are present as adsorption on Fe and Mn oxide and hydroxide particles, as sulfate, simple metal ions, and scarcely as adsorption on clay particles and hydrous aluminium oxides. Mean pH decreases and the mean concentration of trace elements, EC and SO4(2-) increases from the maximum discharge period (MXDP) during snow melt run off (May), through the moderate discharge period (MDDP; March and July) to the minimum discharge period (MNDP; September). Water samples have sulfatic character essentially, however, from the MNDP through the MDDP towards the MXDP they show a bicarbonate tendency. This study indicates that the surface waters draining the Sar Cheshmeh open pit have a higher pH and lower concentration of trace metals compared with some other porphyry copper deposits. PMID:17879141

  18. Origin of high Sr/Y magmas from the northern Taihang Mountains: Implications for Mesozoic porphyry copper mineralization in the North China Craton

    NASA Astrophysics Data System (ADS)

    Gao, Yongfeng; Santosh, M.; Wei, Ruihua; Ma, Guoxi; Chen, Zhikuan; Wu, Jinluan

    2013-12-01

    A number of porphyry Cu deposits have been described from east China which occur in association with Mesozoic high Sr/Y rocks within the continental interior rather than in an arc setting. However, the origin of these high Sr/Y rocks remains controversial. In this study we report precise zircon U-Pb age, as well as major-trace element and Sr-Nd-Pb isotope compositions from the Mujicun Cu mineralized porphyries in the northern Taihang orogen of eastern North China Craton (NCC). LA-ICP-MS zircon U-Pb dating yields an emplacement age of 143 ± 2 Ma, identical to the molybdenite Re-Os isochron ages of 142.5 ± 1.4 Ma for this intrusion. Like most of the Mesozoic adakitic rocks from the eastern NCC, the ore-bearing porphyries and associated volcanic lavas from northern Taihang orogen are rich in large ion lithophile elements and light REE, and have highly differentiated REE patterns. The porphyries and associated volcanic lavas have Sr-Nd-Pb isotopic compositions showing EM1-like isotopic signatures. Such geochemical and isotopic features confirm that the parental magma for these rocks originated from melting of an enriched sub-continental lithospheric mantle source. In comparison to the associated lavas, the ore-bearing porphyries have pronounced low FeO3T, TiO2 and P2O5 contents, and middle-heavy REE (and Y) and Zr concentrations, indicating fractional crystallization of amphibole with the observed accessory mineral assemblage such as Fe-Ti oxides, titanite, zircon and apatite. On the other hand, most of the porphyries exhibit relatively high Al2O3, Ba and Sr concentrations and pronounced positive Eu anomalies, excluding significant plagioclase fractionation due to suppression of the high water content in the magmas. The presence of the contemporary amphibole cumulates regionally exposed in the study area strongly support significant amphibole fractionation during the formation of the Mujicun porphyries. Thus, fractionation of a water-saturated magma is proposed as a

  19. Porphyry copper assessment of the Tethys region of western and southern Asia: Chapter V in Global mineral resource assessment

    USGS Publications Warehouse

    Zürcher, Lukas; Bookstrom, Arthur A.; Hammarstrom, Jane M.; Mars, John C.; Ludington, Stephen; Zientek, Michael L.; Dunlap, Pamela; Wallis, John C.; Drew, Lawrence J.; Sutphin, David M.; Berger, Byron R.; Herrington, Richard J.; Billa, Mario; Kuşcu, Ilkay; Moon, Charles J.; Richards, Jeremy P.

    2015-01-01

    The assessment estimates that the Tethys region contains 47 undiscovered deposits within 1 kilometer of the surface. Probabilistic estimates of numbers of undiscovered deposits were combined with grade and tonnage models in a Monte Carlo simulation to estimate probable amounts of contained metal. The 47 undiscovered deposits are estimated to contain a mean of 180 million metric tons (Mt) of copper distributed among the 18 tracts for which probabilistic estimates were made, in addition to the 62 Mt of copper already identified in the 42 known porphyry deposits in the study area. Results of Monte Carlo simulations show that 80 percent of the estimated undiscovered porphyry copper resources in the Tethys region are located in four tracts or sub-tracts.

  20. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Buret, Yannick; von Quadt, Albrecht; Heinrich, Christoph; Selby, David; Wälle, Markus; Peytcheva, Irena

    2016-09-01

    The formation of world class porphyry copper deposits reflect magmatic processes that take place in a deeper and much larger underlying magmatic system, which provides the source of porphyry magmas, as well as metal and sulphur-charged mineralising fluids. Reading the geochemical record of this large magmatic source region, as well as constraining the time-scales for creating a much smaller porphyry copper deposit, are critical in order to fully understand and quantify the processes that lead to metal concentration within these valuable mineral deposits. This study focuses on the Bajo de la Alumbrera porphyry copper deposit in Northwest Argentina. The deposit is centred on a dacitic porphyry intrusive stock that was mineralised by several pulses of porphyry magma emplacement and hydrothermal fluid injections. To constrain the duration of ore formation, we dated zircons from four porphyry intrusions, including pre-, syn- and post-mineralisation porphyries based on intersection relations between successive intrusion and vein generations, using high precision CA-ID-TIMS. Based on the youngest assemblages of zircon grains, which overlap within analytical error, all four intrusions were emplaced within 29 ka, which places an upper limit on the total duration of hydrothermal mineralisation. Re/Os dating of hydrothermal molybdenite fully overlaps with this high-precision age bracket. However, all four porphyries contain zircon antecrysts which record protracted zircon crystallisation during the ∼200 ka preceding the emplacement of the porphyries. Zircon trace element variations, Ti-in-zircon temperatures, and Hf isotopic compositions indicate that the four porphyry magmas record a common geochemical and thermal history, and that the four intrusions were derived from the same upper-crustal magma chamber. Trace element zoning within single zircon crystals confirms a fractional crystallisation trend dominated by titanite and apatite crystallisation. However, zircon

  1. Porphyry copper assessment of eastern Australia: Chapter L in Global mineral resource assessment

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Len, Richard A.; Hammarstrom, Jane M.; Robinson, Gilpin R., Jr.; Zientek, Michael L.; Drenth, Benjamin J.; Jaireth, Subhash; Cossette, Pamela M.; Wallis, John C.

    2014-01-01

    This assessment estimates that 15 undiscovered deposits contain an arithmetic mean of ~21 million metric tons or more of copper in four tracts, in addition to the 24 known porphyry copper deposits that contain identified resources of ~16 million metric tons of copper. In addition to copper, the mean expected amount of undiscovered byproduct gold predicted by the simulation is ~1,500 metric tons. The probability associated with these arithmetic means is on the order of 30 percent. Median expected amounts of metals predicted by the simulations may be ~50 percent lower than mean e

  2. Origin of Late Mesozoic granitoids in the newly discovered Zha-Shan porphyry Cu district, South Qinling, central China, and implications for regional metallogeny

    NASA Astrophysics Data System (ADS)

    Xie, Guiqing; Mao, Jingwen; Wang, Ruiting; Ren, Tao; Li, Jianbi; Da, Junzhi

    2015-05-01

    The newly discovered porphyry Cu deposits in the South Qinling Belt (SQB) have not been well researched as compared with the large porphyry Mo province in the southern North China Block (S-NCB), and the origin of granitoids associated with porphyry Cu mineralization in the Zha-Shan district, SQB is poorly constrained. Here, we present detailed zircon U-Pb geochronological, whole rock elemental and Sr-Nd isotopic data for important Late Mesozoic granitoid stocks associated with porphyry Cu deposits in the Zha-Shan district; these data are used to constrain the age and the source of magmas that formed these granitoids, and implication of regional metallogeny. The new zircon LA-ICPMS U-Pb ages presented here indicate that the granitoids related to porphyry Cu system at Chigou, Beishagou, Shuangyuangou and Yuanjiagou developed at 148-144 Ma, 144 Ma, 145-144 Ma and 146 Ma, respectively. These rocks are high-K calc-alkaline I-type granitoids, which are enriched in large ion lithophile elements (e.g., Th, U, and Pb) and light rare earth elements, are depleted in Nb, Ta and Ti, characterizing by wide variations in initial εNd(t) (-3.8 to -9.5), and moderate radiogenic Sr isotopes ((87Sr/86Sr)i = 0.7046 to 0.7093). These features indicate that the magmas that formed the granitoids related to porphyry Cu system in the Zha-Shan district formed as a result of variable degrees of mixing between crustal and metasomatic lithospheric mantle. The new zircon LA-ICPMS U-Pb ages in this study, combined with previous published data, suggest that regional-scale Late Jurassic to Early Cretaceous granitoid stocks, and associated porphyry Cu and Mo systems in both the S-NCB and SQB formed almost contemporaneously, with 147-139 Ma porphyry Mo deposits in the S-NCB and 148-145 Ma porphyry Cu deposits in the SQB. The Cu-related intrusions contained a greater contribution of lithospheric mantle component than the Mo-related intrusions in the East Qinling Orogeny.

  3. Fluid evolution of Cerro Colorado Porphyry Copper Mine

    NASA Astrophysics Data System (ADS)

    Tsang, Debbie Pui Wai; Wallis, Simon

    2014-05-01

    The Cerro Colorado porphyry copper deposit is the northernmost currently active copper mine in Chile, producing 90.5kt copper per year. It belongs to one of the Paleocene to early Eocene porphyry copper deposits that are distributed along the western slope of the main Andean Cordillera in Northern Chile (Bouzari & Clark, 2002). Active commercial production began in 1994, and the estimated reserves within the supergene blanket can sustain further 12 years of copper mining. Field studies of the well-exposed geology around the mine site and the access to drilled cores that penetrate into the hypogene zone provide a good opportunity to study the temporal relationship between magmatism, hypogene and supergene ore formation of the region. The geological evolution of Cerro Colorado area can be generalized as follows. The Cretaceous Cerro Empexa Formation, consisting of a sequence of volcanic rocks, mainly andesitic lava and breccia, lahars, some ignimbrite intercalations and dacitic tuff (Charrier, Pinto & Rodrigues, 2007), was intruded by tonalitic to dioritic magma in Middle-Eocene. Magmatic activities generated brecciated rocks accompanying with different alteration zones radiate outward from the intrusion. The mineralized hypogene protore later interacted with ground water, creating the supergene blanket, which is now the principal mining target of Cerro Colorado. Several plutonic lithologies with slight but distinct compositional differences were exposed in the valleys around the mine site. The presence of these several phases of small-scale intrusions suggests the ore genesis may be related to multiple pulses of heating and associated fluid flow. Complementarily, on-site geologists have reported occurrences of early stage biotites vein cutting into phyllitic alteration zone, or across terminal stage quartz-pyrite veins in the drilled cores. These observations are direct evidences of at least two major distinct phases of fluid flow, and imply the ore mineralization

  4. Re-Os and U-Pb geochronology of the Laochang Pb-Zn-Ag and concealed porphyry Mo mineralization along the Changning-Menglian suture, SW China: implications for ore genesis and porphyry Cu-Mo exploration

    NASA Astrophysics Data System (ADS)

    Deng, Xiao-Dong; Li, Jian-Wei; Zhao, Xin-Fu; Wang, Hong-Qiang; Qi, Liang

    2016-02-01

    Numerous polymetallic volcanogenic massive sulfide (VMS), vein, and replacement deposits are distributed along the Changning-Menglian suture zone in Sanjiang Tethyan metallogenic province, SW China. Laochang is the largest Pb-Zn-Ag vein and replacement deposit in this area, with a proven reserve of 0.51 Mt Pb, 0.34 Mt Zn, and 1,737 t Ag. Its age and relationship to magmatic events and VMS deposits in the region, however, have long been debated. In this paper, we present pyrite Re-Os and titanite U-Pb ages aiming to provide significant insights into the timing and genesis of the Pb-Zn-Ag mineralization. Pyrite grains in textural equilibrium with galena, sphalerite, and chalcopyrite from stratabound Pb-Zn-Ag and Cu-bearing Pb-Zn-Ag orebodies have a Re-Os isochron age of 45.7 ± 3.1 Ma (2 σ, mean square weighted deviation (MSWD) = 0.45), whereas titanite grains intergrown with sulfide minerals yield a weighted mean 206Pb/238U age of 43.4 ± 1.2 Ma (2 σ, n = 8). A Mo-mineralized granitic porphyry intersected by recent drilling below the Laochang Pb-Zn-Ag ores yields a zircon U-Pb age of 44.4 ± 0.4 Ma (2 σ, n = 12). Within analytical uncertainties, the ages of the Pb-Zn-Ag deposit and the concealed Mo-mineralized porphyry are indistinguishable, indicating that they are products of a single magmatic hydrothermal system. The results show that Laochang Pb-Zn-Ag deposit is significantly younger than the host mafic volcanic rock (zircon U-Pb age of 320.8 ± 2.7 Ma; 2 σ, n = 12) and Silurian VMS deposits along the Changning-Menglian suture zone, arguing against its origin as a Carboniferous VMS deposit as many researchers claimed. The initial 187Os/188Os ratio (0.540 ± 0.012) obtained from the pyrite Re-Os isochron suggests that metals were likely derived from the granitic porphyry that formed from a hybrid magma due to mixing of crustal- and mantle-derived melts, rather than from the mafic volcanic host rocks as previously thought. Our results favor that the Laochang

  5. Geochemical and Sr-Pb-Nd isotopic characteristics of the Shakhtama porphyry Mo-Cu system (Eastern Transbaikalia, Russia)

    NASA Astrophysics Data System (ADS)

    Berzina, A. P.; Berzina, A. N.; Gimon, V. O.

    2014-01-01

    The Shakhtama Mo-Cu porphyry deposit is located within the eastern segment of the Central Asian Orogenic Belt, bordering the southern margin of the Mongol-Okhotsk suture zone. The deposit includes rocks of two magmatic complexes: the precursor plutonic (J2) and ore-bearing porphyry (J3) complexes. The plutonic complex was emplaced at the final stages of the collisional regime in the region; the formation of the porphyry complex may have overlapped with a transition to extension. The Shakhtama rocks are predominantly metaluminous, I-type high K calc-alkaline to shoshonitic in composition, with relatively high Mg#, Ni, Cr and V. They are characterized by crustal-like ISr (0.70741-0.70782), relatively radiogenic Pb isotopic compositions, ɛNd(T) values close to CHUR (-2.7 to +2.1) and Nd model ages from 0.8 to 1.2 Ga. Both complexes are composed of rocks with K-adakitic features and rocks without adakite trace element signatures. The regional geological setting together with geochemical and isotopic data indicate that both juvenile and old continental crust contributed to their origin. High-Mg# K-adakitic Shakhtama magmas were most likely generated by partial melting of thickened lower crust during delamination and interaction with mantle material, while magmas lacking adakite-like signatures were probably generated at shallower levels of lower crust. The derivation of melts, related to the formation of plutonic and porphyry complexes involved variable amounts of old Precambrian lower crust and juvenile Phanerozoic crust. Isotopic data imply stronger contribution of juvenile mantle-derived material to the fertile magmas of the porphyry complex. Juvenile crust is proposed as an important source of fluids and metals for the Shakhtama ore-magmatic system.

  6. Nuclear matter effects on J/ψ production in asymmetric Cu + Au collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV

    SciTech Connect

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Bing, X.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C. -H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Datta, A.; Daugherity, M. S.; David, G.; DeBlasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Do, J. H.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E. -J.; Kim, H. -J.; Kim, M.; Kim, Y. -J.; Kim, Y. K.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J. -C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T. -A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.

    2014-12-18

    We report on J/ψ production from asymmetric Cu+Au heavy-ion collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/ψ yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression in the larger Au nucleus. Thus, the relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.

  7. Nuclear matter effects on J /ψ production in asymmetric Cu + Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Bing, X.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Do, J. H.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, H.-J.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Yokkaichi, S.; Yoon, I.; You, Z.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration

    2014-12-01

    We report on J /ψ production from asymmetric Cu + Au heavy-ion collisions at √{sNN}=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J /ψ yields in Cu + Au collisions in the Au-going direction is found to be comparable to that in Au + Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J /ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression in the larger Au nucleus.

  8. Activity of calcined Ag,Cu,Au/TiO2 catalysts in the dehydrogenation/dehydration of ethanol

    NASA Astrophysics Data System (ADS)

    Mai, Do Tkhyui; Pylinina, A. I.; Mikhailenko, I. I.

    2015-07-01

    The catalytic activity of the anatase TiO2 and M z+/TiO2 with supported ions M z+ = Ag+, Cu2+, Au3+ in vapor phase conversions of ethanol is investigated at temperatures of 100-400°C. It is shown that the yields of acetaldehyde and ethylene decline for the most active catalyst Cu2+/TiO2 but increase for TiO2 and Ag/TiO2. The drop in the activation energy of the dehydrogenation reaction over calcined samples is linearly correlated with the one in the reduction potential of M z+ to Cu+, Au+, Ag0 and the ionic radius of M z+ in the crystal. The energies of activation for ethylene formation change in the series TiO2 > Au3+ > Cu2+ >Ag+ and TiO2 ≈ Cu2+ ≈ Ag+ > Au3+ for the calcined samples. The rate of pyridine adsorption, considered as an indicator of the activity of acid sites, is a linear function of ion charge + z = 1, 2, 3, and slows by two-thirds after calcination.

  9. Gaseous transport and deposition of gold in magmatic fluid: evidence from the active Kudryavy volcano, Kurile Islands

    NASA Astrophysics Data System (ADS)

    Yudovskaya, Marina A.; Distler, Vadim V.; Chaplygin, Ilya V.; Mokhov, Andrew V.; Trubkin, Nikolai V.; Gorbacheva, Sonya A.

    2006-03-01

    The distribution of gold in high-temperature fumarole gases of the Kudryavy volcano (Kurile Islands) was measured for gas, gas condensate, natural fumarolic sublimates, and precipitates in silica tubes from vents with outlet temperatures ranging from 380 to 870°C. Gold abundance in condensates ranges from 0.3 to 2.4 ppb, which is significantly lower than the abundances of transition metals. Gold contents in zoned precipitates from silica tubes increase gradually with a decrease in temperature to a maximum of 8 ppm in the oxychloride zone at a temperature of approximately 300°C. Total Au content in moderate-temperature sulfide and oxychloride zones is mainly a result of Au inclusions in the abundant Fe-Cu and Zn sulfide minerals as determined by instrumental neutron activation analysis. Most Au occurs as a Cu-Au-Ag triple alloy. Single grains of native gold and binary Au-Ag alloys were also identified among sublimates, but aggregates and crystals of Cu-Au-Ag alloy were found in all fumarolic fields, both in silica tube precipitates and in natural fumarolic crusts. Although the Au triple alloy is homogeneous on the scale of microns and has a composition close to (Cu,Ni,Zn)3(Au,Ag)2, transmission electron microscopy (TEM) shows that these alloy solid solutions consist of monocrystal domains of Au-Ag, Au-Cu, and possibly Cu2O. Gold occurs in oxide assemblages due to the decomposition of its halogenide complexes under high-temperature conditions (650-870°C). In lower temperature zones (<650°C), Au behavior is related to sulfur compounds whose evolution is strongly controlled by redox state. Other minerals that formed from gas transport and precipitation at Kudryavy volcano include garnet, aegirine, diopside, magnetite, anhydrite, molybdenite, multivalent molybdenum oxides (molybdite, tugarinovite, and ilsemannite), powellite, scheelite, wolframite, Na-K chlorides, pyrrhotite, wurtzite, greenockite, pyrite, galena, cubanite, rare native metals (including Fe, Cr, Mo

  10. The Dala (Älvdalen) Porphyries from Sweden

    NASA Astrophysics Data System (ADS)

    Wikström, Anders; Pereira, Lola; Lundqvist, Thomas; Cooper, Barry

    2014-05-01

    The Dala (Älvdalen) Porphyries from Sweden Anders Wikström (retired from Geological Survey of Sweden) Lola Pereira (University of Salamanca, Spain) Thomas Lundqvist (retired from Geological Survey of Sweden) Barry Cooper (University of South Australia) The commercial stone industry in Älvdalen, about 350 km northwest of Stockholm, commenced in the second half of the 18th century, as a consequence of social need. The region had been plagued by severe famine and there was an urgent need for additional wealth-generating industry. At that time it was already known that the porphyry in the area was similar to the "porfido rosso antico" from Egypt which had played an important role in the Roman culture. Many ups and downs followed. During one period in the 19th century, the Swedish Royal family owned the industry. At the same time, several "porphyry" objects were presented to different courts around Europe (e.g. a 4 metre tall vase to the Russian czar, although of a more granitic variety). Otherwise most products have been smaller objects like urns, vases, candelabras, etc. The very hard stone (with variable red or black colours) can be highly polished. Many of the porphyry varieties were sourced from glacial boulders. These had been "mechanically tested" by nature and were free from joints which otherwise was a problem in the associated quarries. Comagmatic granites also occur. The porphyries and granites have an age around 1700 Ma, and the former are amazingly well preserved with magnificent volcanic textures. The porphyries and granites occupy a vast area and are in part covered with red, continental sandstones (which are quarried to-day). In the middle of the 20th century, the ignimbritic character of the porphyry was discovered. Previously, the flattened "fiamme" (collapsed pumice) had been interpreted as some kind of flow structure in a lava. The porphyry manufacturing plants in Älvdalen are a part of the Swedish industrial history. Over a significant

  11. The coupled geochemistry of Au and As in pyrite from ore deposits and geothermal fields: monitoring fluid evolution and external forcing factors in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Reich, M.; Deditius, A.; Tardani, D.; Sanchez-Alfaro, P.

    2014-12-01

    Gold and arsenic incorporation into pyrite (FeS2) is strongly coupled in different types of ore deposits, including Carlin-type Au, porphyry Cu, epithermal Au, orogenic Au, volcanogenic massive sulphide (VMS) and iron-oxide Cu-Au (IOCG), among others. Despite significant advances in the last decades, the fundamental factors controlling Au and As partition in pyrite from hydrothermal systems formed under different tectonic settings and crustal levels remain poorly known. Furthermore, the complexity of pyrite microtextures and growth features suggest multi-stage growth that may be useful to monitor changes in fluid composition related to episodic pumping of fluids. Here we report a comprehensive database of EMPA, SIMS, LA-ICP-MS and micro-PIXE Au-As analyses that cover temperature conditions of pyrite formation from ~30ºC to ~600ºC. The global pyrite Au-As data form a wedge-shaped zone in compositional space, and show that the solid solubility limit of Au in arsenian pyrite is independent of the geochemical environment of pyrite formation and rather depends on its crystal-chemical properties and post-depositional alteration. Compilation of Au-As concentrations and formation temperatures for pyrite indicates that Au and As solubility is retrograde in this mineral, as Au and As contents decrease with increasing temperature from ~200-500ºC. Based on these results, we define one Au-As trend formed by pyrites from Carlin-type and orogenic Au deposits where compositions are largely controlled by fluid-rock-interactions and can be highly perturbed by changes of temperature or subsequent alteration. The second trend consists of pyrites from porphyry Cu, epithermal Au deposits and geothermal systems, which are characterized by compositions that preserve the Au/As signature of mineralizing magmatic-hydrothermal fluids. The well-developed oscillatory zoning in pyrite detected in these systems, where Cu-rich, Au-As-depleted growth zones alternate with Cu-poor, Au

  12. Late Cretaceous caldera volcanism and porphyry copper mineralization at Silver Bell, Pima County, Arizona: geology, petrology, and geochemistry

    SciTech Connect

    Sawyer, D.A.

    1987-01-01

    Late Cretaceous igneous activity associated with the porphyry copper deposit at Silver Bell was related to caldera volcanism. Caldera volcanism is documented by several lines of evidence: (1) the Confidence Peak Tuff, a phenocryst-rich low-silica rhyolite, ponded to a thickness of greater than 1.5 km.; (2) a belt of Paleozoic sedimentary rocks are enclosed by the tuff as caldera collapse megabreccia; and (3) caldera structure expressed by a 150/sup 0/ arcuate fault, later intruded by plutons and dikes of the QMP (quartz monzodiorite porphyry) suite host to porphyry copper mineralization. Geochemical data show that these rocks are calcalkaline and have close petrotectonic affinities with subduction-related continental arc volcanic provinces. Major element compositions range from high-K andesites to high-K dacites and low-silica rhyolites with the dacites and rhyolites being volumetrically most abundant. Caldera-related rocks have strong LREE/HREE fractionation, except that QMP suite plutons have lower HREE resulting from hornblende fractionation. The chemistry of the common dacites and rhyolites can be derived from andesite by relatively small amounts of plagioclase + pyroxene (or hornblende) + Fe-Ti oxide + apatite fractionation. The composition of the precaldera syenogranite intrusion is anomalous with its high Th, Rb, Ta and flat HREE. Lead isotope ratios for rocks and ores yield a secondary isochron age of 1700 +/- 365 Ma, similar to the age of the oldest Proterozoic crust in southern Arizona. Quartz monzodiorite porphyry plutons have similar Pb isotopic compositions as the porphyry copper ores. Coupled /sup 208/Pb//sup 204/Pb and /sup 206/Pb//sup 204/Pb variation are indicate of variable interaction with a U-depleted source, such as lower crust. Strontium isotopic ratios also support this model.

  13. Porphyry copper assessment of East and Southeast Asia: Philippines, Taiwan (Republic of China), Republic of Korea (South Korea), and Japan: Chapter P in Global mineral resource assessment

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Demarr, Michael W.; Dicken, Connie L.; Ludington, Stephen; Robinson, Gilpin R., Jr.; Zientek, Michael L.

    2014-01-01

    Descriptions of the geologic basis for delineating each tract, the data used, the geologic criteria and rationale for the assessment, and results of the assessment are included in appendixes along with the description of a geographic information system (GIS) that includes tract boundaries, known porphyry copper deposits and significant prospects, and assessment results.

  14. Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-principles study of temperature-composition phase diagrams and structures

    NASA Astrophysics Data System (ADS)

    Ozoliņš, V.; Wolverton, C.; Zunger, Alex

    1998-03-01

    The classic metallurgical systems-noble-metal alloys-that have formed the benchmark for various alloy theories are revisited. First-principles fully relaxed general-potential linearized augmented plane-wave (LAPW) total energies of a few ordered structures are used as input to a mixed-space cluster expansion calculation to study the phase stability, thermodynamic properties, and bond lengths in Cu-Au, Ag-Au, Cu-Ag, and Ni-Au alloys. (i) Our theoretical calculations correctly reproduce the tendencies of Ag-Au and Cu-Au to form compounds and Ni-Au and Cu-Ag to phase separate at T=0 K. (ii) Of all possible structures, Cu3Au (L12) and CuAu (L10) are found to be the most stable low-temperature phases of Cu1-xAux with transition temperatures of 530 K and 660 K, respectively, compared to the experimental values 663 K and ~670 K. The significant improvement over previous first-principles studies is attributed to the more accurate treatment of atomic relaxations in the present work. (iii) LAPW formation enthalpies demonstrate that L12, the commonly assumed stable phase of CuAu3, is not the ground state for Au-rich alloys, but rather that ordered (100) superlattices are stabilized. (iv) We extract the nonconfigurational (e.g., vibrational) entropies of formation and obtain large values for the size-mismatched systems: 0.48 kB/atom in Ni0.5Au0.5 (T=1100 K), 0.37 kB/atom in Cu0.141Ag0.859 (T=1052 K), and 0.16 kB/atom in Cu0.5Au0.5 (T=800 K). (v) Using 8 atom/cell special quasirandom structures we study the bond lengths in disordered Cu-Au and Ni-Au alloys and obtain good qualitative agreement with recent extended x-ray-absorption fine-structure measurements.

  15. Porphyry copper assessment of the Mesozoic of East Asia: China, Vietnam, North Korea, Mongolia, and Russia: Chapter G in Global mineral resource assessment

    USGS Publications Warehouse

    Ludington, Steve; Mihalasky, Mark J.; Hammarstrom, Jane M.; Robinson, Giplin R., Jr.; Frost, Thomas P.; Gans, Kathleen D.; Light, Thomas D.; Miller, Robert J.; Alexeiev, Dmitriy V.

    2012-01-01

    This report includes an overview of the assessment results and summary tables. Descriptions of each tract are included in appendixes, with estimates of numbers of undiscovered deposits, and probabilistic estimates of amounts of copper, molybdenum, gold, and silver that could be contained in undiscovered deposits for each permissive tract. A geographic information system that accompanies the report includes tract boundaries and a database of known porphyry copper deposits and prospects.

  16. Microthermometric and stable isotopic (O and H) characteristics of fluid inclusions in the porphyry related Çöpler (İliç - Erzincan) gold deposit, central eastern Turkey

    NASA Astrophysics Data System (ADS)

    Canbaz, Oktay; Gökce, Ahmet

    2014-06-01

    The Çöpler gold deposit occurs within the stockwork of quartz hosted by the Çöpler granitoid (Eosen) and by surrounding metasediments of Keban metamorphic (Late Paleozoic - Early Mesozoic) and the Munzur limestones (Late Carboniferous - Early Cretaceous). Native gold accompanied by small amounts of chalcopyrite, pyrite, magnetite, maghemite, hematite, fahlerz, marcasite, bornite, galena, sphalerite, specular hematite, goethite, lepidochrosite and bravoitic pyrite within the stockwork ore veinlets. In addition, epidote (pistazite - zoisite), garnet, scapolite, chlorite, tremolite/actinolite, muscovite and opaque minerals were determined within the veinlets occurred in skarn zones. The study of fluid inclusions in quartz veinlets showed that the hydrothermal fluids contain CaCl2, MgCl2 and NaCl and the salinities of the two phases (L+V) inclusions range from 1.7 to 20.6% NaCl equivalent. Salinity values up to 44% were determined within the halite bearing three phases inclusions. Their homogenization temperature values have a wide range from 145.0 to 380.0°C, indicative of catathermal/hypothermal to epithermal conditions. The δ 18O and δD values of the fluid inclusion waters from the Çöpler granitoid correspond to those assigned to Primary Magmatic Water, those from the metasediments of Keban metamorphics fall outside of the Primary Magmatic and are within the Metamorphic Water field. A sample from a quartz vein within the skarn zone hosted by the Munzur limestones has a particularly low δD value. The results suggest that fluids derived from the granitoids were mixed with those derived from the metasediments of Keban metamorphics and the the Munzur limestones and resulting in quartz veinlets in these lithologies and the formation of stockwork ores. In view of the occurrence, the features described and processes envisaged for this study area may be applicable in similar settings.

  17. Arizona porphyry copper/hydrothermal deposits II: crystal structure of ajoite, (K + Na)3Cu20Al3Si29O76(OH)16*~8H2O.

    PubMed

    Pluth, Joseph J; Smith, Joseph V

    2002-08-20

    A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16* approximately 8H2O; triclinic, P1, a = 13.634(5) A, b = 13.687(7), c = 14.522(7), alpha = 110.83(1) degrees, beta = 107.21(1), gamma = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4.H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite. PMID:12177404

  18. Arizona porphyry copper/hydrothermal deposits II: Crystal structure of ajoite, (K + Na)3Cu20Al3Si29O76(OH)16⋅∼8H2O

    PubMed Central

    Pluth, Joseph J.; Smith, Joseph V.

    2002-01-01

    A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16⋅∼8H2O; triclinic, P1̄, a = 13.634(5) Å, b = 13.687(7), c = 14.522(7), α = 110.83(1)°, β = 107.21(1), γ = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4⋅H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite. PMID:12177404

  19. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study

    NASA Astrophysics Data System (ADS)

    Reich, Martin; Deditius, Artur; Chryssoulis, Stephen; Li, Jian-Wei; Ma, Chan-Qiang; Parada, Miguel Angel; Barra, Fernando; Mittermayr, Florian

    2013-03-01

    Porphyry copper deposits are currently the world's largest source of copper and molybdenum, and are also among the largest reservoirs of gold in the upper crust. Despite the fact that pyrite is a ubiquitous mineral phase in these deposits and secondary Cu enrichment processes are commonly controlled by the abundance of this sulfide, the major and trace element chemistry of pyrite from porphyry systems remains unconstrained. In this study, we report the first comprehensive trace element database of pyrite from the Dexing deposit, China's largest porphyry Cu deposit. By combining high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capabilities of secondary-ion mass spectrometry (SIMS) in a suite of samples from the Dexing deposit, we show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te) and heavy metals (e.g., Cu, Co, Ni, Zn, Hg) in pyrite from porphyry systems are more significant than previously thought. Among the elements analyzed, Cu, As, Au and Ni are the most abundant with concentrations that vary from sub-ppm levels to a few wt.% (i.e., ˜6 wt.% Cu, ˜3 wt.% As, ˜0.25 wt.% Au, and ˜0.2 wt.% Ni). Detailed wavelength-dispersive spectrometry (WDS) X-ray maps and SIMS depth vs. isotope concentration profiles reveal that pyrite from the Dexing deposit is characterized by complex chemical zoning where the studied elements occur in different mineralogical forms. While As occurs as a structurally bound element in pyrite, Cu and Au can occur as both solid solution and micro- to nano-sized particles of chalcopyrite and native Au (or Au tellurides), respectively, indicating that pyrite can control metal speciation and partitioning during porphyry Cu mineralization. The well-developed oscillatory zoning detected in pyrite, where Cu-rich, As-depleted growth zones alternate with Cu-depleted, As-rich layers, indicates that Cu is geochemically

  20. Compositional Variability of Rutile in Hydrothermal Ore Deposits

    NASA Astrophysics Data System (ADS)

    Clark, J. R.; Williams-Jones, A. E.

    2009-05-01

    Rutile is a relatively common accessory phase in many geological environments, and although it is almost always composed dominantly of TiO2, it is also associated with a wide range of minor and trace element substitutions. The most prominent minor elements that occur in rutile are Fe, Cr, V, Nb and Ta. Like Ti, the latter two elements are essentially immobile in most non-magmatic metallic ore deposits, and their concentrations in rutile are largely influenced by precursor mineral compositions. Iron, Cr and V concentrations vary considerably in rutile hosted by ore deposits, and reflect combinations of precursor mineral composition and the bulk chemistry of the local mineralized or altered rock environment. However, in hydrothermal alteration zones, rutile compositions are clearly anomalous compared to those in unaltered host rocks, and have distinctive elemental associations and substitutions in different types of ore deposits. We have evaluated the mineral chemistry of rutile in >40 ore deposits worldwide. In general, rutile in volcanogenic massive sulfide deposits contains Sn (and locally W, Sb and/or Cu). Rutile from mesothermal and related gold deposits invariably contains W, and in some of the larger and more important deposits, also contains Sb and/or V. Tungsten-bearing detrital rutile grains from the Witwatersrand suggest that paleoplacer mineralization may have had a mesothermal/orogenic gold source. In some magmatic-hydrothermal Pd-Ni-Cu deposits, rutile contains Ni and Cu. Rutile associated with granite-related Sn deposits has strongly elevated concentrations of Sn and W, and granite-pegmatite W-Sn deposits contain rutile with these elements plus Nb and Ta. The Olympic Dam deposit hosts rutile that is enriched in W, Sn and Cu. Rutile associated with porphyry and skarn Cu and Cu-Au deposits tends to contain elevated W, Cu (and sometimes V). Although many ore deposits have well-defined and diagnostic rutile compositions, there are some compositional

  1. 3&4D Geomodeling Applied to Mineral Resources Exploration - A New Tool for Targeting Deposits.

    NASA Astrophysics Data System (ADS)

    Royer, Jean-Jacques; Mejia, Pablo; Caumon, Guillaume; Collon-Drouaillet, Pauline

    2013-04-01

    3 & 4D geomodeling, a computer method for reconstituting the past deformation history of geological formations, has been used in oil and gas exploration for more than a decade for reconstituting fluid migration. It begins nowadays to be applied for exploring with new eyes old mature mining fields and new prospects. We describe shortly the 3&4D geomodeling basic notions, concepts, and methodology when applied to mineral resources assessment and modeling ore deposits, pointing out the advantages, recommendations and limitations, together with new challenges they rise. Several 3D GeoModels of mining explorations selected across Europe will be presented as illustrative case studies which have been achieved during the EU FP7 ProMine research project. It includes: (i) the Cu-Au porphyry deposits in the Hellenic Belt (Greece); (ii) the VMS in the Iberian Pyrite Belt including the Neves Corvo deposit (Portugal) and (iii) the sediment-hosted polymetallic Cu-Ag (Au, PGE) Kupferschiefer ore deposit in the Foresudetic Belt (Poland). In each case full 3D models using surfaces and regular grid (Sgrid) were built from all dataset available from exploration and exploitation including geological primary maps, 2D seismic cross-sections, and boreholes. The level of knowledge may differ from one site to another however those 3D resulting models were used to pilot additional field and exploration works. In the case of the Kupferschiefer, a sequential restoration-decompaction (4D geomodeling) from the Upper Permian to Cenozoic was conducted in the Lubin- Sieroszowice district of Poland. The results help in better understanding the various superimposed mineralization events which occurred through time in this copper deposit. A hydro-fracturing index was then calculated from the estimated overpressures during a Late Cretaceous-Early Paleocene up-lifting, and seems to correlate with the copper content distribution in the ore-series. These results are in agreement with an Early Paleocene

  2. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    PubMed

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production. PMID:23160957

  3. ϕ meson production in the forward/backward rapidity region in Cu + Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Al-Ta'Ani, H.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Harper, C.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Isinhue, A.; Issah, M.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kofarago, M.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Král, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Masui, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Oka, M.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosendahl, S. S. E.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Savastio, M.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Sodre, T.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Thomas, D.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoo, J. S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2016-02-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider has measured ϕ meson production and its nuclear modification in asymmetric Cu +Au heavy-ion collisions at √{sNN}=200 GeV at both forward Cu-going direction (1.2 Cu +Au collisions averaged over all centrality is measured to be similar to the previous PHENIX result in d +Au collisions for these rapidities.

  4. Nuclear matter effects on J/ψ production in asymmetric Cu + Au collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV

    DOE PAGESBeta

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; et al

    2014-12-18

    We report on J/ψ production from asymmetric Cu+Au heavy-ion collisions at \\(\\sqrt{s_{\\mathrm{NN}}} = 200\\) GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/ψ yields in Cu+Au collisions in the Au-going direction is found to be comparable to that in Au+Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression inmore » the larger Au nucleus. Thus, the relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.« less

  5. Initial-state geometry and fluctuations in Au + Au, Cu + Au, and U + U collisions at energies available at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2014-06-01

    We study within the IP-Glasma and two-component MC-Glauber models the effects of initial-state geometry and fluctuations on multiplicities and eccentricities for several collision species at the Relativistic Heavy Ion Collider (RHIC). These include copper-gold (Cu + Au), gold-gold (Au + Au), and uranium-uranium (U + U) collisions. The multiplicity densities per participant pair are very similar in all systems studied. Ellipticities vary strongly between collision systems, most significantly for central collisions, while fluctuation driven odd moments vary little between systems. Event-by-event distributions of eccentricities in mid-central collisions are wider in Cu + Au relative to Au + Au and U + U systems. An anticorrelation between multiplicity and eccentricity is observed in ultracentral U + U collisions which is weaker in the IP-Glasma model than the two-component MC-Glauber model. In ultracentral Au + Au collisions the two models predict opposite signs for the slope of this correlation. Measurements of elliptic flow as a function of multiplicity in such central events can therefore be used to discriminate between models with qualitatively different particle production mechanisms.

  6. Diversity of hydrothermal processes and different types of epithermal deposits

    NASA Astrophysics Data System (ADS)

    Sidorov, A. A.; Volkov, A. V.

    2016-05-01

    It is shown that classical epithermal deposits with hydrothermal explosions, brecciated and framework-lamellar (including agate-like) structures, and well-developed bonanzas are usually pre-porphyry in origin. This inference seems to be important for development of the genetic model of a porphyry-epithermal ore-forming system as well as for exploration of gold-silver deposits and assessment of their potential.

  7. ⁶⁴Cu-Doped PdCu@Au Tripods: A Multifunctional Nanomaterial for Positron Emission Tomography and Image-Guided Photothermal Cancer Treatment.

    PubMed

    Pang, Bo; Zhao, Yongfeng; Luehmann, Hannah; Yang, Xuan; Detering, Lisa; You, Meng; Zhang, Chao; Zhang, Lei; Li, Zhi-Yuan; Ren, Qiushi; Liu, Yongjian; Xia, Younan

    2016-03-22

    This article reports a facile synthesis of radiolabeled PdCu@Au core-shell tripods for use in positron emission tomography (PET) and image-guided photothermal cancer treatment by directly incorporating radioactive (64)Cu atoms into the crystal lattice. The tripod had a unique morphology determined by the PdCu tripod that served as a template for the coating of Au shell, in addition to well-controlled specific activity and physical dimensions. The Au shell provided the nanostructure with strong absorption in the near-infrared region and effectively prevented the Cu and (64)Cu atoms in the core from oxidization and dissolution. When conjugated with D-Ala1-peptide T-amide (DAPTA), the core-shell tripods showed great enhancement in targeting the C-C chemokine receptor 5 (CCR5), a newly identified theranostic target up-regulated in triple negative breast cancer (TNBC). Specifically, the CCR5-targeted tripods with an arm length of about 45 nm showed 2- and 6-fold increase in tumor-to-blood and tumor-to-muscle uptake ratios, respectively, relative to their nontargeted counterpart in an orthotopic mouse 4T1 TNBC model at 24 h postinjection. The targeting specificity was further validated via a competitive receptor blocking study. We also demonstrated the use of these targeted, radioactive tripods for effective photothermal treatment in the 4T1 tumor model as guided by PET imaging. The efficacy of treatment was confirmed by the significant reduction in tumor metabolic activity revealed through the use of (18)F-fluorodeoxyglucose PET/CT imaging. Taken together, we believe that the (64)Cu-doped PdCu@Au tripods could serve as a multifunctional platform for both PET imaging and image-guided photothermal cancer therapy. PMID:26824412

  8. Porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides: China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India: Chapter X in Global mineral resource assessment

    USGS Publications Warehouse

    Mihalasky, Mark J.; Ludington, Stephen; Hammarstrom, Jane M.; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Robinson, Gilpin R., Jr.; Briggs, Deborah A.; Wallis, John C.; Miller, Robert J.; Bookstrom, Arthur A.; Panteleyev, Andre; Chitalin, Andre; Seltmann, Reimar; Guangsheng, Yan; Changyun, Lian; Jingwen, Mao; Jinyi, Li; Keyan, Xiao; Ruizhao, Qiu; Jianbao, Shao; Gangyi, Shai; Yuliang, Du

    2015-01-01

    The U.S. Geological Survey collaborated with international colleagues to assess undiscovered resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides. These areas host 20 known porphyry copper deposits, including the world class Oyu Tolgoi deposit in Mongolia that was discovered in the late 1990s. The study area covers major parts of the world’s largest orogenic systems. The Central Asian Orogenic Belt is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west nearly to the Pacific Coast of Asia in the east and records the evolution and final closure of the Paleo-Asian Ocean in Permian time. The eastern Tethysides, the orogenic belt to the south of the Central Asian Orogenic Belt, records the evolution of another ancient ocean system, the Tethys Ocean. The evolution of these orogenic belts involved magmatism associated with a variety of geologic settings appropriate for formation of porphyry copper deposits, including subduction-related island arcs, continental arcs, and collisional and postconvergent settings. The original settings are difficult to trace because the arcs have been complexly deformed and dismembered by younger tectonic events. Twelve mineral resource assessment tracts were delineated to be permissive for the occurrence of porphyry copper deposits based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges and compositions. These include (1) nine Paleozoic tracts in the Central Asian Orogenic Belt, which range in area from about 60,000 to 800,000 square kilometers (km2); (2) a complex area of about 400,000 km2 on the northern margin of the Tethysides, the Qinling-Dabie tract, which spans central China and areas to the west, encompassing Paleozoic through Triassic igneous rocks that formed in diverse settings; and (3) assemblages of late Paleozoic and Mesozoic rocks that define two other tracts in the Tethysides, the 100

  9. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    NASA Astrophysics Data System (ADS)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  10. Fluid sources and metallogenesis in the Blackbird Co-Cu-Au-Bi-Y-REE district, Idaho, U.S.A.: Insights from major-element and boron isotopic compositions of tourmaline

    USGS Publications Warehouse

    Trumbull, R.B.; Slack, J.F.; Krienitz, M.-S.; Belkin, H.E.; Wiedenbeck, M.

    2011-01-01

    Tourmaline is a widespread mineral in the Mesoproterozoic Blackbird Co-Cu-Au-Bi-Y-REE district, Idaho, where it occurs in both mineralized zones and wallrocks. We report here major-element and B-isotope compositions of tourmaline from stratabound sulfide deposits and their metasedimentary wallrocks, from mineralized and barren pipes of tourmaline breccia, from late barren quartz veins, and from Mesoproterozoic granite. The tourmalines are aluminous, intermediate in the schorl-dravite series, with Fe/(Fe + Mg) values of 0.30 to 0.85, and 10 to 50% X-site vacancies. Compositional zoning is prominent only in tourmaline from breccias and quartz veins; crystal rims are enriched in Mg, Ca and Ti, and depleted in Fe and Al relative to cores. The chemical composition of tourmaline does not correlate with the presence or absence of mineralization. The ??11B values fall into two groups. Isotopically light tourmaline (-21.7 to-7.6%o) occurs in unmineralized samples from wallrocks, late quartz veins and Mesoproterozoic granite, whereas heavy tourmaline (-6.9 to +3.2%o) is spatially associated with mineralization (stratabound and breccia-hosted), and is also found in barren breccia. At an inferred temperature of 300??C, boron in the hydrothermal fluid associated with mineralization had ??11B values of-3 to +7%o. The high end of this range indicates a marine source of the boron. A likely scenario involves leaching of boron principally from marine carbonate beds or B-bearing evaporites in Mesoproterozoic strata of the region. The ??11B values of the isotopically light tourmaline in the sulfide deposits are attributed to recrystallization during Cretaceous metamorphism, superimposed on a light boron component derived from footwall siliciclastic sediments (e.g., marine clays) during Mesoproterozoic mineralization, and possibly a minor component of light boron from a magmatic-hydrothermal fluid. The metal association of Bi-Be-Y-REE in the Blackbird ores suggests some magmatic input