Science.gov

Sample records for portal imager dosimetry

  1. Portal dosimetry for VMAT using integrated images obtained during treatment

    SciTech Connect

    Bedford, James L. Hanson, Ian M.; Hansen, Vibeke Nordmark

    2014-02-15

    Purpose: Portal dosimetry provides an accurate and convenient means of verifying dose delivered to the patient. A simple method for carrying out portal dosimetry for volumetric modulated arc therapy (VMAT) is described, together with phantom measurements demonstrating the validity of the approach. Methods: Portal images were predicted by projecting dose in the isocentric plane through to the portal image plane, with exponential attenuation and convolution with a double-Gaussian scatter function. Appropriate parameters for the projection were selected by fitting the calculation model to portal images measured on an iViewGT portal imager (Elekta AB, Stockholm, Sweden) for a variety of phantom thicknesses and field sizes. This model was then used to predict the portal image resulting from each control point of a VMAT arc. Finally, all these control point images were summed to predict the overall integrated portal image for the whole arc. The calculated and measured integrated portal images were compared for three lung and three esophagus plans delivered to a thorax phantom, and three prostate plans delivered to a homogeneous phantom, using a gamma index for 3% and 3 mm. A 0.6 cm{sup 3} ionization chamber was used to verify the planned isocentric dose. The sensitivity of this method to errors in monitor units, field shaping, gantry angle, and phantom position was also evaluated by means of computer simulations. Results: The calculation model for portal dose prediction was able to accurately compute the portal images due to simple square fields delivered to solid water phantoms. The integrated images of VMAT treatments delivered to phantoms were also correctly predicted by the method. The proportion of the images with a gamma index of less than unity was 93.7% ± 3.0% (1SD) and the difference between isocenter dose calculated by the planning system and measured by the ionization chamber was 0.8% ± 1.0%. The method was highly sensitive to errors in monitor units and

  2. [Electronic portal image device dosimetry for volumetric modulated arc therapy].

    PubMed

    Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2013-01-01

    Recently electronic portal image devices (EPIDs) have been widely used for quality assurance and dose verification. However there are no reports describing EPID dosimetry for Elekta volumetric modulated arc therapy (VMAT). We have investigated EPID dosimetry during VMAT delivery using a commercial software EPIDose with an Elekta Synergy linac. Dose rate dependence and the linac system sag during gantry rotation were measured. Gamma indices were calculated between measured doses using an EPID and calculation made by a treatment planning system for prostate VMAT test plans. The results were also compared to gamma indices using films and a two-dimensional detector array, MapCHECK2. The pass rates of the gamma analysis with a criterion of 3% and 2 mm for the three methods were over 96% with good consistency. Our results have showed that EPID dosimetry is feasible for Elekta VMAT. PMID:23358333

  3. Monte Carlo portal dosimetry

    SciTech Connect

    Chin, P.W. . E-mail: mary.chin@physics.org

    2005-10-15

    This project developed a solution for verifying external photon beam radiotherapy. The solution is based on a calibration chain for deriving portal dose maps from acquired portal images, and a calculation framework for predicting portal dose maps. Quantitative comparison between acquired and predicted portal dose maps accomplishes both geometric (patient positioning with respect to the beam) and dosimetric (two-dimensional fluence distribution of the beam) verifications. A disagreement would indicate that beam delivery had not been according to plan. The solution addresses the clinical need for verifying radiotherapy both pretreatment (without the patient in the beam) and on treatment (with the patient in the beam). Medical linear accelerators mounted with electronic portal imaging devices (EPIDs) were used to acquire portal images. Two types of EPIDs were investigated: the amorphous silicon (a-Si) and the scanning liquid ion chamber (SLIC). The EGSnrc family of Monte Carlo codes were used to predict portal dose maps by computer simulation of radiation transport in the beam-phantom-EPID configuration. Monte Carlo simulations have been implemented on several levels of high throughput computing (HTC), including the grid, to reduce computation time. The solution has been tested across the entire clinical range of gantry angle, beam size (5 cmx5 cm to 20 cmx20 cm), and beam-patient and patient-EPID separations (4 to 38 cm). In these tests of known beam-phantom-EPID configurations, agreement between acquired and predicted portal dose profiles was consistently within 2% of the central axis value. This Monte Carlo portal dosimetry solution therefore achieved combined versatility, accuracy, and speed not readily achievable by other techniques.

  4. A new approach in the design of electronic portal imaging devices for portal dosimetry in radiotherapy.

    PubMed

    Badel, J N; Partouche-Sebban, D; Abraham, I; Carrie, C

    2014-09-01

    A CCD-based EPID using new crystal-assembly X-ray (CAX) converters is investigated for radiotherapy dosimetry. The proposed EPID design consists in replacing the common phosphor X-ray converters of current CCD-based EPIDs with high-stopping-power CAX converters. A Test Imaging Device (TID), consisting of a 30-mm-thick CAX converter made of Bismuth Germanate (BGO), coupled to a highly sensitive CCD camera, was used to evaluate the accessible imaging and dosimetric performance of the proposed design. The system response to dose and its dependence on photon beam energy were investigated. The effects of ghosting, dose rate, field size and phantom thickness were evaluated as well. The same measurements were also performed with our clinically used aSi-EPID so that comparisons of performance could be directly inferred. The TID displayed no detectable ghosting or sensitivity to dose rate. Its response to MU exposure was found to be linear within about ±1%. The level of glare induced in the TID and the aSi-EPID were equivalent. The TID resolution was higher than that of the aSi-EPID on the axis, but was found to decrease with off-axis distance. Finally, the image quality, assessed on the basis of signal-to-noise ratio in low dose radiographs of the larynx of a patient, was higher for the TID. The imaging performance accessible with the TID proved to be satisfying and its dosimetric capability was found to be superior to that of the current aSi-EPID. PMID:24767869

  5. Transit Dosimetry for Patient Treatment Verification with an Electronic Portal Imaging Device

    NASA Astrophysics Data System (ADS)

    Berry, Sean L.

    The complex and individualized photon fluence patterns constructed during intensity modulated radiation therapy (IMRT) treatment planning must be verified before they are delivered to the patient. There is a compelling argument for additional verification throughout the course of treatment due to the possibility of data corruption, unintentional modification of the plan parameters, changes in patient anatomy, errors in patient alignment, and even mistakes in identifying the correct patient for treatment. Amorphous silicon (aSi) Electronic Portal Imaging Devices (EPIDs) can be utilized for IMRT verification. The goal of this thesis is to implement EPID transit dosimetry, measurement of the dose at a plane behind the patient during their treatment, within the clinical process. In order to achieve this goal, a number of the EPID's dosimetric shortcomings were studied and subsequently resolved. Portal dose images (PDIs) acquired with an aSi EPID suffer from artifacts related to radiation backscattered asymmetrically from the EPID support structure. This backscatter signal varies as a function of field size (FS) and location on the EPID. Its presence can affect pixel values in the measured PDI by up to 3.6%. Two methods to correct for this artifact are offered: discrete FS specific correction matrices and a single generalized equation. The dosimetric comparison between the measured and predicted through-air dose images for 49 IMRT treatment fields was significantly improved (p << .001) after the application of these FS specific backscatter corrections. The formulation of a transit dosimetry algorithm followed the establishment of the backscatter correction and a confirmation of the EPID's positional stability with linac gantry rotation. A detailed characterization of the attenuation, scatter, and EPID response behind an object in the beam's path is necessary to predict transit PDIs. In order to validate the algorithm's performance, 49 IMRT fields were delivered to a

  6. Calibration of portal imaging devices for radiotherapy in-vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Piermattei, Angelo; Cilla, Savino; Fidanzio, Andrea; Greco, Francesca; Sabatino, Domenico; Gargiulo, Laura; Azario, Luigi

    2010-11-01

    The complexity of radiotherapy techniques requires an accurate verification of the dose delivered to the patient during treatment. Recently, the present authors have developed an in patient dose reconstruction method with X-ray beams for 3D conformal radiotherapy. The procedure is based on correlation functions defined by the ratios of the transit signal measured by an electronic portal imaging device (EPID) to the mid-plane dose measured by calibrated ion chambers in a solid water phantom. The dosimetric characterization of aSi EPIDs in terms of signal stability, linearity and dependence on field dimension pointed out that these detectors are useful for the transit dosimetry of photon beams. However, the aSi EPIDs manufactured by Varian, Elekta and Siemens for their linacs are at present used for the visual inspection of the patient's set-up, and their use as transit dosimeters needs a special calibration that requires an effort for every beam. The aim of this paper has been the determination of a generalized EPID calibration that can be used by linacs of different manufacturers equipped with aSi EPIDs. The transit dosimetry method here proposed could supply for every linac the reconstruction in real time of the isocenter dose in patients with a tolerance level ranging between ±4% and ±6% depending on the treatment type and body district.

  7. An evaluation of cine-mode 3D portal image dosimetry for Volumetric Modulated Arc Therapy

    NASA Astrophysics Data System (ADS)

    Ansbacher, W.; Swift, C.-L.; Greer, P. B.

    2010-11-01

    We investigated cine-mode portal imaging on a Varian Trilogy accelerator and found that the linearity and other dosimetric properties are sufficient for 3D dose reconstruction as used in patient-specific quality assurance for VMAT (RapidArc) treatments. We also evaluated the gantry angle label in the portal image file header as a surrogate for the true imaged angle. The precision is only just adequate for the 3D evaluation method chosen, as discrepancies of 2° were observed.

  8. Software tool for portal dosimetry research.

    PubMed

    Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C

    2008-09-01

    This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects. PMID:18946980

  9. Automatic in vivo portal dosimetry of all treatments

    NASA Astrophysics Data System (ADS)

    Olaciregui-Ruiz, I.; Rozendaal, R.; Mijnheer, B.; van Herk, M.; Mans, A.

    2013-11-01

    At our institution EPID (electronic portal imaging device) dosimetry is routinely applied to perform in vivo dose verification of all patient treatments with curative intent since January 2008. The major impediment of the method has been the amount of work required to produce and inspect the in vivo dosimetry reports (a time-consuming and labor-intensive process). In this paper we present an overview of the actions performed to implement an automated in vivo dosimetry solution clinically. We reimplemented the EPID dosimetry software and modified the acquisition software. Furthermore, we introduced new tools to periodically inspect the record-and-verify database and automatically run the EPID dosimetry software when needed. In 2012, 95% of our 3839 treatments scheduled for in vivo dosimetry were analyzed automatically (27 633 portal images of intensity-modulated radiotherapy (IMRT) fields, 5551 portal image data of VMAT arcs, and 2003 portal images of non-IMRT fields). The in vivo dosimetry verification results are available a few minutes after delivery and alerts are immediately raised when deviations outside tolerance levels are detected. After the clinical introduction of this automated solution, inspection of the detected deviations is the only remaining work. These newly developed tools are a major step forward towards full integration of in vivo EPID dosimetry in radiation oncology practice.

  10. Automatic in vivo portal dosimetry of all treatments.

    PubMed

    Olaciregui-Ruiz, I; Rozendaal, R; Mijnheer, B; van Herk, M; Mans, A

    2013-11-21

    At our institution EPID (electronic portal imaging device) dosimetry is routinely applied to perform in vivo dose verification of all patient treatments with curative intent since January 2008. The major impediment of the method has been the amount of work required to produce and inspect the in vivo dosimetry reports (a time-consuming and labor-intensive process). In this paper we present an overview of the actions performed to implement an automated in vivo dosimetry solution clinically. We reimplemented the EPID dosimetry software and modified the acquisition software. Furthermore, we introduced new tools to periodically inspect the record-and-verify database and automatically run the EPID dosimetry software when needed. In 2012, 95% of our 3839 treatments scheduled for in vivo dosimetry were analyzed automatically (27,633 portal images of intensity-modulated radiotherapy (IMRT) fields, 5551 portal image data of VMAT arcs, and 2003 portal images of non-IMRT fields). The in vivo dosimetry verification results are available a few minutes after delivery and alerts are immediately raised when deviations outside tolerance levels are detected. After the clinical introduction of this automated solution, inspection of the detected deviations is the only remaining work. These newly developed tools are a major step forward towards full integration of in vivo EPID dosimetry in radiation oncology practice. PMID:24201085

  11. On flattening filter-free portal dosimetry.

    PubMed

    Pardo, Eduardo; Castro Novais, Juan; Molina López, María Yolanda; Ruiz Maqueda, Sheila

    2016-01-01

    Varian introduced (in 2010) the option of removing the flattening filter (FF) in their C-Arm linacs for intensity-modulated treatments. This mode, called flattening filter-free (FFF), offers the advantage of a greater dose rate. Varian's "Portal Dosimetry" is an electronic portal imager device (EPID)-based tool for IMRT verification. This tool lacks the capability of verifying flattening filter-free (FFF) modes due to saturation and lack of an image prediction algorithm. (Note: the latest versions of this software and EPID correct these issues.) The objective of the present study is to research the feasibility of said verifications (with the older versions of the software and EPID). By placing the EPID at a greater distance, the images can be acquired without saturation, yielding a linearity similar to the flattened mode. For the image prediction, a method was optimized based on the clinically used algorithm (analytical anisotropic algorithm (AAA)) over a homogeneous phantom. The depth inside the phantom and its electronic density were tailored. An application was developed to allow the conversion of a dose plane (in DICOM format) to Varian's custom format for Portal Dosimetry. The proposed method was used for the verification of test and clinical fields for the three qualities used in our institution for IMRT: 6X, 6FFF and 10FFF. The method developed yielded a positive verification (more than 95% of the points pass a 2%/2 mm gamma) for both the clinical and test fields. This method was also capable of "predicting" static and wedged fields. A workflow for the verification of FFF fields was developed. This method relies on the clinical algorithm used for dose calculation and is able to verify the FFF modes, as well as being useful for machine quality assurance. The procedure described does not require new hardware. This method could be used as a verification of Varian's Portal Dose Image Prediction. PMID:27455487

  12. Fast transit portal dosimetry using density-scaled layer modeling of aSi-based electronic portal imaging device and Monte Carlo method

    SciTech Connect

    Jung, Jae Won; Kim, Jong Oh; Yeo, Inhwan Jason; Cho, Young-Bin; Kim, Sun Mo; DiBiase, Steven

    2012-12-15

    Purpose: Fast and accurate transit portal dosimetry was investigated by developing a density-scaled layer model of electronic portal imaging device (EPID) and applying it to a clinical environment. Methods: The model was developed for fast Monte Carlo dose calculation. The model was validated through comparison with measurements of dose on EPID using first open beams of varying field sizes under a 20-cm-thick flat phantom. After this basic validation, the model was further tested by applying it to transit dosimetry and dose reconstruction that employed our predetermined dose-response-based algorithm developed earlier. The application employed clinical intensity-modulated beams irradiated on a Rando phantom. The clinical beams were obtained through planning on pelvic regions of the Rando phantom simulating prostate and large pelvis intensity modulated radiation therapy. To enhance agreement between calculations and measurements of dose near penumbral regions, convolution conversion of acquired EPID images was alternatively used. In addition, thickness-dependent image-to-dose calibration factors were generated through measurements of image and calculations of dose in EPID through flat phantoms of various thicknesses. The factors were used to convert acquired images in EPID into dose. Results: For open beam measurements, the model showed agreement with measurements in dose difference better than 2% across open fields. For tests with a Rando phantom, the transit dosimetry measurements were compared with forwardly calculated doses in EPID showing gamma pass rates between 90.8% and 98.8% given 4.5 mm distance-to-agreement (DTA) and 3% dose difference (DD) for all individual beams tried in this study. The reconstructed dose in the phantom was compared with forwardly calculated doses showing pass rates between 93.3% and 100% in isocentric perpendicular planes to the beam direction given 3 mm DTA and 3% DD for all beams. On isocentric axial planes, the pass rates varied

  13. Calibration of an amorphous-silicon flat panel portal imager for exit-beam dosimetry

    SciTech Connect

    Chen, Josephine; Chuang, Cynthia F.; Morin, Olivier; Aubin, Michele; Pouliot, Jean

    2006-03-15

    Amorphous-silicon flat panel detectors are currently used to acquire digital portal images with excellent image quality for patient alignment before external beam radiation therapy. As a first step towards interpreting portal images acquired during treatment in terms of the actual dose delivered to the patient, a calibration method is developed to convert flat panel portal images to the equivalent water dose deposited in the detector plane and at a depth of 1.5 cm. The method is based on empirical convolution models of dose deposition in the flat panel detector and in water. A series of calibration experiments comparing the response of the flat panel imager and ion chamber measurements of dose in water determines the model parameters. Kernels derived from field size measurements account for the differences in the production and detection of scattered radiation in the two systems. The dissimilar response as a function of beam energy spectrum is characterized from measurements performed at various off-axis positions and for increasing attenuator thickness in the beam. The flat panel pixel inhomogeneity is corrected by comparing a large open field image with profiles measured in water. To verify the accuracy of the calibration method, calibrated flat panel profiles were compared with measured dose profiles for fields delivered through solid water slabs, a solid water phantom containing an air cavity, and an anthropomorphic head phantom. Open rectangular fields of various sizes and locations as well as a multileaf collimator-shaped field were delivered. For all but the smallest field centered about the central axis, the calibrated flat panel profiles matched the measured dose profiles with little or no systematic deviation and approximately 3% (two standard deviations) accuracy for the in-field region. The calibrated flat panel profiles for fields located off the central axis showed a small -1.7% systematic deviation from the measured profiles for the in-field region

  14. A novel algorithm for the reconstruction of an entrance beam fluence from treatment exit patient portal dosimetry images

    NASA Astrophysics Data System (ADS)

    Sperling, Nicholas Niven

    The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. Most methods which have found clinical acceptance work by use of a proxy dosimeter, e.g.: glass rods, using radiophotoluminescence; thermoluminescent dosimeters (TLD), typically CaF or LiF; Metal Oxide Silicon Field Effect Transistor (MOSFET) dosimeters, using threshold voltage shift; Optically Stimulated Luminescent Dosimeters (OSLD), composed of Carbon doped Aluminum Dioxide crystals; RadioChromic film, using leuko-dye polymers; Silicon Diode dosimeters, typically p-type; and ion chambers. More recent methods employ Electronic Portal Image Devices (EPID), or dosimeter arrays, for entrance or exit beam fluence determination. The difficulty with the proxy in vivo dosimetery methods is the requirement that they be placed at the particular location where the dose is to be determined. This precludes measurements across the entire patient volume. These methods are best suited where the dose at a particular location is required. The more recent methods of in vivo dosimetry make use of detector arrays and reconstruction techniques to determine dose throughout the patient volume. One method uses an array of ion chambers located upstream of the patient. This requires a special hardware device and places an additional attenuator in the beam path, which may not be desirable. A final approach is to use the existing EPID, which is part of most modern linear accelerators, to image the patient using the treatment beam. Methods exist to deconvolve the detector function of the EPID using a series of weighted exponentials. Additionally, this method has been extended to determine in vivo dosimetry. The method developed here employs the use of EPID images and an iterative deconvolution algorithm to reconstruct the impinging primary beam fluence on the patient. This primary fluence may then be employed to determine dose through

  15. Inclusion of the treatment couch in portal dose image prediction for high precision EPID dosimetry

    SciTech Connect

    Ali, Ali Sid Ahmed M.; Dirkx, Maarten L. P.; Breuers, Marcel G. J.; Heijmen, Ben J. M.

    2011-01-15

    Purpose: When comparing predicted portal dose images (PDIs) to PDIs acquired by an EPID during treatment delivery, differences are often observed. These differences may be partially attributed to beam attenuation by parts of the treatment couch not taken into account in the PDI prediction. In order to improve the agreement, a model for the treatment couch was derived and included in the PDI prediction. Methods: A CT scan was used to model the couch top. The model for the couch top base was derived by iteratively matching the predicted and measured PDIs for gantry angles of 0 deg., 45 deg., and 90 deg. For PDI prediction, the modeled treatment couch was added to the CT scan of a patient or phantom by using the recorded couch positions from the record and verify system. To validate the couch model, PDI measurements were performed for a range of couch positions and gantry angles, both with and without an anatomical phantom in the beam. Results: After including the couch model in the PDI prediction for beams passing through the couch without phantom, the mean local dose differences between measured and predicted PDIs were reduced from up to 5.5% to less than 1.0% at each gantry angle. Similar results were obtained for measurements with a lung phantom on the couch. Although the couch model was originally derived by using a 6 MV photon beam, the results showed that it is also applicable for a 10 MV beam. Conclusions: A model of the treatment couch was derived and included in the PDI prediction, yielding a substantially improved agreement between measured and predicted PDIs, which makes interpretation of the observed deviations more straightforward.

  16. Conditions for reliable time-resolved dosimetry of electronic portal imaging devices for fixed-gantry IMRT and VMAT

    SciTech Connect

    Yeo, Inhwan Jason; Patyal, Baldev; Mandapaka, Anant; Jung, Jae Won; Yi, Byong Yong; Kim, Jong Oh

    2013-07-15

    Purpose: The continuous scanning mode of electronic portal imaging devices (EPID) that offers time-resolved information has been newly explored for verifying dynamic radiation deliveries. This study seeks to determine operating conditions (dose rate stability and time resolution) under which that mode can be used accurately for the time-resolved dosimetry of intensity-modulated radiation therapy (IMRT) beams.Methods: The authors have designed the following test beams with variable beam holdoffs and dose rate regulations: a 10 Multiplication-Sign 10 cm open beam to serve as a reference beam; a sliding window (SW) beam utilizing the motion of a pair of multileaf collimator (MLC) leaves outside the 10 Multiplication-Sign 10 cm jaw; a step and shoot (SS) beam to move the pair in step; a volumetric modulated arc therapy (VMAT) beam. The beams were designed in such a way that they all produce the same open beam output of 10 Multiplication-Sign 10 cm. Time-resolved ion chamber measurements at isocenter and time-resolved and integrating EPID measurements were performed for all beams. The time-resolved EPID measurements were evaluated through comparison with the ion chamber and integrating EPID measurements, as the latter are accepted procedures. For two-dimensional, time-resolved evaluation, a VMAT beam with an infield MLC travel was designed. Time-resolved EPID measurements and Monte Carlo calculations of such EPID dose images for this beam were performed and intercompared.Results: For IMRT beams (SW and SS), the authors found disagreement greater than 2%, caused by frame missing of the time-resolved mode. However, frame missing disappeared, yielding agreement better than 2%, when the dose rate of irradiation (and thus the frame acquisition rates) reached a stable and planned rate as the dose of irradiation was raised past certain thresholds (a minimum 12 s of irradiation per shoot used for SS IMRT). For VMAT, the authors found that dose rate does not affect the frame

  17. Conditions for reliable time-resolved dosimetry of electronic portal imaging devices for fixed-gantry IMRT and VMAT

    PubMed Central

    Yeo, Inhwan Jason; Jung, Jae Won; Patyal, Baldev; Mandapaka, Anant; Yong Yi, Byong; Oh Kim, Jong

    2013-01-01

    Purpose: The continuous scanning mode of electronic portal imaging devices (EPID) that offers time-resolved information has been newly explored for verifying dynamic radiation deliveries. This study seeks to determine operating conditions (dose rate stability and time resolution) under which that mode can be used accurately for the time-resolved dosimetry of intensity-modulated radiation therapy (IMRT) beams. Methods: The authors have designed the following test beams with variable beam holdoffs and dose rate regulations: a 10 × 10 cm open beam to serve as a reference beam; a sliding window (SW) beam utilizing the motion of a pair of multileaf collimator (MLC) leaves outside the 10 × 10 cm jaw; a step and shoot (SS) beam to move the pair in step; a volumetric modulated arc therapy (VMAT) beam. The beams were designed in such a way that they all produce the same open beam output of 10 × 10 cm. Time-resolved ion chamber measurements at isocenter and time-resolved and integrating EPID measurements were performed for all beams. The time-resolved EPID measurements were evaluated through comparison with the ion chamber and integrating EPID measurements, as the latter are accepted procedures. For two-dimensional, time-resolved evaluation, a VMAT beam with an infield MLC travel was designed. Time-resolved EPID measurements and Monte Carlo calculations of such EPID dose images for this beam were performed and intercompared. Results: For IMRT beams (SW and SS), the authors found disagreement greater than 2%, caused by frame missing of the time-resolved mode. However, frame missing disappeared, yielding agreement better than 2%, when the dose rate of irradiation (and thus the frame acquisition rates) reached a stable and planned rate as the dose of irradiation was raised past certain thresholds (a minimum 12 s of irradiation per shoot used for SS IMRT). For VMAT, the authors found that dose rate does not affect the frame acquisition rate, thereby causing no frame missing

  18. Feasibility of portal dosimetry for flattening filter-free radiotherapy.

    PubMed

    Chuter, Robert W; Rixham, Philip A; Weston, Steve J; Cosgrove, Vivian P

    2016-01-01

    The feasibility of using portal dosimetry (PD) to verify 6 MV flattening filter-free (FFF) IMRT treatments was investigated. An Elekta Synergy linear accelerator with an Agility collimator capable of delivering FFF beams and a standard iViewGT amorphous silicon (aSi) EPID panel (RID 1640 AL5P) at a fixed SSD of 160 cm were used. Dose rates for FFF beams are up to four times higher than for conventional flattened beams, meaning images taken at maximum FFF dose rate can saturate the EPID. A dose rate of 800 MU/min was found not to saturate the EPID for open fields. This dose rate was subsequently used to characterize the EPID for FFF portal dosimetry. A range of open and phantom fields were measured with both an ion chamber and the EPID, to allow comparison between the two. The measured data were then used to create a model within The Nederlands Kanker Instituut's (NKI's) portal dosimetry software. The model was verified using simple square fields with a range of field sizes and phantom thicknesses. These were compared to calculations performed with the Monaco treatment planning system (TPS) and isocentric ion chamber measurements. It was found that the results for the FFF verification were similar to those for flattened beams with testing on square fields, indicating a difference in dose between the TPS and portal dosimetry of approximately 1%. Two FFF IMRT plans (prostate and lung SABR) were delivered to a homogeneous phantom and showed an overall dose difference at isocenter of ~0.5% and good agreement between the TPS and PD dose distributions. The feasibility of using the NKI software without any modifications for high-dose-rate FFF beams and using a standard EPID detector has been investigated and some initial limitations highlighted. PMID:26894337

  19. Comparison between an in-house 1D profile correction method and a 2D correction provided in Varian's PDPC Package for improving the accuracy of portal dosimetry images.

    PubMed

    Hobson, Maritza A; Davis, Stephen D

    2015-01-01

    While commissioning Varian's Portal Dose Image Prediction (PDIP) algorithm for portal dosimetry, an asymmetric radial response in the portal imager due to backscatter from the support arm was observed. This asymmetric response led to differences on the order of 2%-3% for simple square fields (< 20 × 20 cm2) when comparing the measured to predicted portal fluences. A separate problem was that discrepancies of up to 10% were seen in measured to predicted portal fluences at increasing off-axis distance (> 10 cm). We have modified suggested methods from the literature to provide a 1D correction for the off-axis response problem which adjusts the diagonal profile used in the portal imager calibration. This inherently cannot fix the 2D problem since the PDIP algorithm assumes a radially symmetric response and will lead to some uncertainty in portal dosimetry results. Varian has recently released generic "2D correction" files with their Portal Dosimetry Pre-configuration (PDPC) package, but no independent testing has been published. We present the comparison between QA results using the Varian correction method to results using our 1D profile correction method using the gamma passing rates with a 3%, 3 mm criterion. The average, minimum, and maximum gamma pass rates for nine fixed-field IMRT fields at gantry 0° using our profile correction method were 98.1%, 93.7%, and 99.8%, respectively, while the results using the PDPC correction method were 98.4%, 93.1%, and 99.8%. For four RapidArc fields, the average, minimum, and maximum gamma pass rates using our correction method were 99.6%, 99.4%, and 99.9%, respectively, while the results using the PDPC correction method were 99.8%, 99.5%, and 99.9%. The average gamma pass rates for both correction methods are quite similar, but both show improvement over the uncorrected results. PMID:26103173

  20. SU-E-T-335: Transit Dosimetry for Verification of Dose Delivery Using Electronic Portal Imaging Device (EPID)

    SciTech Connect

    Baek, T; Chung, E; Lee, S; Yoon, M

    2014-06-01

    Purpose: To evaluate the effectiveness of transit dose, measured with an electronic portal imaging device (EPID), in verifying actual dose delivery to patients. Methods: Plans of 5 patients with lung cancer, who received IMRT treatment, were examined using homogeneous solid water phantom and inhomogeneous anthropomorphic phantom. To simulate error in patient positioning, the anthropomorphic phantom was displaced from 5 mm to 10 mm in the inferior to superior (IS), superior to inferior (SI), left to right (LR), and right to left (RL) directions. The transit dose distribution was measured with EPID and was compared to the planed dose using gamma index. Results: Although the average passing rate based on gamma index (GI) with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit was 94.34 % for the transit dose with homogeneous phantom, it was reduced to 84.63 % for the transit dose with inhomogeneous anthropomorphic phantom. The Result also shows that the setup error of 5mm (10mm) in IS, SI, LR and SI direction can Result in the decrease in values of GI passing rates by 1.3% (3.0%), 2.2% (4.3%), 5.9% (10.9%), and 8.9% (16.3%), respectively. Conclusion: Our feasibility study suggests that the transit dose-based quality assurance may provide information regarding accuracy of dose delivery as well as patient positioning.

  1. Implementation of IMRT and VMAT using Delta4 phantom and portal dosimetry as dosimetry verification tools

    NASA Astrophysics Data System (ADS)

    Daci, Lulzime; Malkaj, Partizan

    2016-03-01

    In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distance to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.

  2. Denoising portal images by means of wavelet techniques

    NASA Astrophysics Data System (ADS)

    Gonzalez Lopez, Antonio Francisco

    Portal images are used in radiotherapy for the verification of patient positioning. The distinguishing feature of this image type lies in its formation process: the same beam used for patient treatment is used for image formation. The high energy of the photons used in radiotherapy strongly limits the quality of portal images: Low contrast between tissues, low spatial resolution and low signal to noise ratio. This Thesis studies the enhancement of these images, in particular denoising of portal images. The statistical properties of portal images and noise are studied: power spectra, statistical dependencies between image and noise and marginal, joint and conditional distributions in the wavelet domain. Later, various denoising methods are applied to noisy portal images. Methods operating in the wavelet domain are the basis of this Thesis. In addition, the Wiener filter and the non local means filter (NLM), operating in the image domain, are used as a reference. Other topics studied in this Thesis are spatial resolution, wavelet processing and image processing in dosimetry in radiotherapy. In this regard, the spatial resolution of portal imaging systems is studied; a new method for determining the spatial resolution of the imaging equipments in digital radiology is presented; the calculation of the power spectrum in the wavelet domain is studied; reducing uncertainty in film dosimetry is investigated; a method for the dosimetry of small radiation fields with radiochromic film is presented; the optimal signal resolution is determined, as a function of the noise level and the quantization step, in the digitization process of films and the useful optical density range is set, as a function of the required uncertainty level, for a densitometric system. Marginal distributions of portal images are similar to those of natural images. This also applies to the statistical relationships between wavelet coefficients, intra-band and inter-band. These facts result in a better

  3. Pre-treatment verification of intensity modulated radiation therapy plans using a commercial electronic portal dosimetry system.

    PubMed

    Roxby, Kathleen J; Crosbie, Jeffrey C

    2010-03-01

    We commissioned a commercially available portal dosimetry system for quality assurance of intensity modulated radiation therapy (IMRT) treatment plans. The system included gamma analysis software to compare the measured and predicted fluence maps from individual IMRT fields. The portal dosimetry system was tested using six head and neck IMRT patient plans, and we demonstrated that the accuracy of the alignment of measured and predicted images improved by retracting and repositioning the electronic portal imaging device (EPID) at each new gantry angle. The mean gamma score (fraction of pixels passing the gamma criteria) for the six test plans (after initial testing and using the EPID retracting and repositioning method) was 0.987 (2SD = 0.018), using gamma criteria of a dose difference of 2% of the maximum field dose and 2 mm distance to agreement. The mean gamma score was 0.989 (2SD = 0.017) for 24 head and neck IMRT patient plans carried out with portal dosimetry. Using gamma criteria of 2% maximum field dose and 2 mm distance to agreement, a gamma score tolerance of 0.980 is a useful way of highlighting only those fields requiring further analysis. Portal dosimetry is a quick way of assessing individual field fluence distributions and can be integrated into an IMRT quality assurance programme. PMID:20237893

  4. Breast in vivo dosimetry by a portal ionization chamber

    SciTech Connect

    Grimaldi, Luca; D'Onofrio, Guido; Cilla, Savino; Fidanzio, Andrea; Stimato, Gerardina; Azario, Luigi; Deodato, Francesco; Macchia, Gabriella; Morganti, Alessio; Piermattei, Angelo

    2007-03-15

    This work reports a practical method for the determination of the in vivo breast middle dose value, D{sub m}, on the beam central axis, using a signal S{sub t}, obtained by a small thimble ion chamber positioned at the center of the electronic portal imaging device, and irradiated by the x-ray beam transmitted through the patient. The use of a stable ion chamber reduces many of the disadvantages associated with the use of diodes as their periodic recalibration and positioning is time consuming. The method makes use of a set of correlation functions obtained by the ratios S{sub t}/D{sub m}, determined by irradiating cylindrical water phantoms with different diameters. The method proposed here is based on the determination of the water-equivalent thickness of the patient, along the beam central axis, by the treatment planning system that makes use of the electron densities obtained by a computed tomography scanner. The method has been applied for the breast in vivo dosimetry of ten patients treated with a manual intensity modulation with four asymmetric beams. In particular, two tangential rectangular fields were first delivered, thereafter a fraction of the dose (typically less than 10%) was delivered with two multi leaf-shaped beams which included only the mammarian tissue. Only the two rectangular fields were tested and for every checked field five measurements were carried out. Applying a continuous quality assurance program based on the tests of patient setup, machine settings and dose planning, the proposed method is able to verify agreements between the computed dose D{sub m,TPS} and the in vivo dose value D{sub m}, within 4%.

  5. A comparison of electronic portal dosimetry verification methods for use in stereotactic radiotherapy.

    PubMed

    Millin, Anthony E; Windle, Rebecca S; Lewis, D Geraint

    2016-01-01

    Three methods of transit dosimetry using Electronic Portal Imaging Devices (EPIDs) were investigated for use in routine in-vivo dosimetry for cranial stereotactic radiosurgery and radiotherapy. The approaches examined were (a) A full Monte Carlo (MC) simulation of radiation transport through the linear accelerator and patient; (b) Calculation of the expected fluence by a treatment planning system (TPS); (c) Point doses calculated along the central axis compared to doses calculated using parameters acquired using the EPID. A dosimetric comparison of each of the three methods predicted doses at the imager plane to within ±5% and a gamma comparison for the MC and TPS based approaches showed good agreement for a range of dose and distance to agreement criteria. The MC technique was most time consuming, followed by the TPS calculation with the point dose calculation significantly quicker than the other methods. PMID:26748961

  6. Interfractional trend analysis of dose differences based on 2D transit portal dosimetry

    NASA Astrophysics Data System (ADS)

    Persoon, L. C. G. G.; Nijsten, S. M. J. J. G.; Wilbrink, F. J.; Podesta, M.; Snaith, J. A. D.; Lustberg, T.; van Elmpt, W. J. C.; van Gils, F.; Verhaegen, F.

    2012-10-01

    Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic—appearing repeatedly, (2) random—appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of

  7. SU-E-J-235: Varian Portal Dosimetry Accuracy at Detecting Simulated Delivery Errors

    SciTech Connect

    Gordon, J; Bellon, M; Barton, K; Gulam, M; Chetty, I

    2014-06-01

    Purpose: To use receiver operating characteristic (ROC) analysis to quantify the Varian Portal Dosimetry (VPD) application's ability to detect delivery errors in IMRT fields. Methods: EPID and VPD were calibrated/commissioned using vendor-recommended procedures. Five clinical plans comprising 56 modulated fields were analyzed using VPD. Treatment sites were: pelvis, prostate, brain, orbit, and base of tongue. Delivery was on a Varian Trilogy linear accelerator at 6MV using a Millenium120 multi-leaf collimator. Image pairs (VPD-predicted and measured) were exported in dicom format. Each detection test imported an image pair into Matlab, optionally inserted a simulated error (rectangular region with intensity raised or lowered) into the measured image, performed 3%/3mm gamma analysis, and saved the gamma distribution. For a given error, 56 negative tests (without error) were performed, one per 56 image pairs. Also, 560 positive tests (with error) with randomly selected image pairs and randomly selected in-field error location. Images were classified as errored (or error-free) if percent pixels with γ<κ was < (or ≥) τ. (Conventionally, κ=1 and τ=90%.) A ROC curve was generated from the 616 tests by varying τ. For a range of κ and τ, true/false positive/negative rates were calculated. This procedure was repeated for inserted errors of different sizes. VPD was considered to reliably detect an error if images were correctly classified as errored or error-free at least 95% of the time, for some κ+τ combination. Results: 20mm{sup 2} errors with intensity altered by ≥20% could be reliably detected, as could 10mm{sup 2} errors with intensity was altered by ≥50%. Errors with smaller size or intensity change could not be reliably detected. Conclusion: Varian Portal Dosimetry using 3%/3mm gamma analysis is capable of reliably detecting only those fluence errors that exceed the stated sizes. Images containing smaller errors can pass mathematical analysis, though

  8. Three-dimensional heart dose reconstruction to estimate normal tissue complication probability after breast irradiation using portal dosimetry

    SciTech Connect

    Louwe, R. J. W.; Wendling, M.; Herk, M. B. van; Mijnheer, B. J.

    2007-04-15

    Irradiation of the heart is one of the major concerns during radiotherapy of breast cancer. Three-dimensional (3D) treatment planning would therefore be useful but cannot always be performed for left-sided breast treatments, because CT data may not be available. However, even if 3D dose calculations are available and an estimate of the normal tissue damage can be made, uncertainties in patient positioning may significantly influence the heart dose during treatment. Therefore, 3D reconstruction of the actual heart dose during breast cancer treatment using electronic imaging portal device (EPID) dosimetry has been investigated. A previously described method to reconstruct the dose in the patient from treatment portal images at the radiological midsurface was used in combination with a simple geometrical model of the irradiated heart volume to enable calculation of dose-volume histograms (DVHs), to independently verify this aspect of the treatment without using 3D data from a planning CT scan. To investigate the accuracy of our method, the DVHs obtained with full 3D treatment planning system (TPS) calculations and those obtained after resampling the TPS dose in the radiological midsurface were compared for fifteen breast cancer patients for whom CT data were available. In addition, EPID dosimetry as well as 3D dose calculations using our TPS, film dosimetry, and ionization chamber measurements were performed in an anthropomorphic phantom. It was found that the dose reconstructed using EPID dosimetry and the dose calculated with the TPS agreed within 1.5% in the lung/heart region. The dose-volume histograms obtained with EPID dosimetry were used to estimate the normal tissue complication probability (NTCP) for late excess cardiac mortality. Although the accuracy of these NTCP calculations might be limited due to the uncertainty in the NTCP model, in combination with our portal dosimetry approach it allows incorporation of the actual heart dose. For the anthropomorphic

  9. Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device

    SciTech Connect

    Kruszyna, Marta

    2010-01-05

    This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The evaluation of dosimetric verification for various organ, during a 2 year period is given.

  10. Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device

    NASA Astrophysics Data System (ADS)

    Kruszyna, Marta

    2010-01-01

    This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The ewaluation of dosimetric verification for various organ, during a 2 year period is given.

  11. Prediction of DVH parameter changes due to setup errors for breast cancer treatment based on 2D portal dosimetry

    SciTech Connect

    Nijsten, S. M. J. J. G.; Elmpt, W. J. C. van; Mijnheer, B. J.; Minken, A. W. H.; Persoon, L. C. G. G.; Lambin, P.; Dekker, A. L. A. J.

    2009-01-15

    Electronic portal imaging devices (EPIDs) are increasingly used for portal dosimetry applications. In our department, EPIDs are clinically used for two-dimensional (2D) transit dosimetry. Predicted and measured portal dose images are compared to detect dose delivery errors caused for instance by setup errors or organ motion. The aim of this work is to develop a model to predict dose-volume histogram (DVH) changes due to setup errors during breast cancer treatment using 2D transit dosimetry. First, correlations between DVH parameter changes and 2D gamma parameters are investigated for different simulated setup errors, which are described by a binomial logistic regression model. The model calculates the probability that a DVH parameter changes more than a specific tolerance level and uses several gamma evaluation parameters for the planning target volume (PTV) projection in the EPID plane as input. Second, the predictive model is applied to clinically measured portal images. Predicted DVH parameter changes are compared to calculated DVH parameter changes using the measured setup error resulting from a dosimetric registration procedure. Statistical accuracy is investigated by using receiver operating characteristic (ROC) curves and values for the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values. Changes in the mean PTV dose larger than 5%, and changes in V{sub 90} and V{sub 95} larger than 10% are accurately predicted based on a set of 2D gamma parameters. Most pronounced changes in the three DVH parameters are found for setup errors in the lateral-medial direction. AUC, sensitivity, specificity, and negative predictive values were between 85% and 100% while the positive predictive values were lower but still higher than 54%. Clinical predictive value is decreased due to the occurrence of patient rotations or breast deformations during treatment, but the overall reliability of the predictive model remains high. Based on our

  12. Phase contrast portal imaging using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Kondoh, T.

    2014-07-01

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  13. Phase contrast portal imaging using synchrotron radiation

    SciTech Connect

    Umetani, K.; Kondoh, T.

    2014-07-15

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  14. Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations

    SciTech Connect

    Bojechko, C.; Ford, E. C.

    2015-12-15

    Purpose: To quantify the ability of electronic portal imaging device (EPID) dosimetry used during treatment (in vivo) in detecting variations that can occur in the course of patient treatment. Methods: Images of transmitted radiation from in vivo EPID measurements were converted to a 2D planar dose at isocenter and compared to the treatment planning dose using a prototype software system. Using the treatment planning system (TPS), four different types of variability were modeled: overall dose scaling, shifting the positions of the multileaf collimator (MLC) leaves, shifting of the patient position, and changes in the patient body contour. The gamma pass rate was calculated for the modified and unmodified plans and used to construct a receiver operator characteristic (ROC) curve to assess the detectability of the different parameter variations. The detectability is given by the area under the ROC curve (AUC). The TPS was also used to calculate the impact of the variations on the target dose–volume histogram. Results: Nine intensity modulation radiation therapy plans were measured for four different anatomical sites consisting of 70 separate fields. Results show that in vivo EPID dosimetry was most sensitive to variations in the machine output, AUC = 0.70 − 0.94, changes in patient body habitus, AUC = 0.67 − 0.88, and systematic shifts in the MLC bank positions, AUC = 0.59 − 0.82. These deviations are expected to have a relatively small clinical impact [planning target volume (PTV) D{sub 99} change <7%]. Larger variations have even higher detectability. Displacements in the patient’s position and random variations in MLC leaf positions were not readily detectable, AUC < 0.64. The D{sub 99} of the PTV changed by up to 57% for the patient position shifts considered here. Conclusions: In vivo EPID dosimetry is able to detect relatively small variations in overall dose, systematic shifts of the MLC’s, and changes in the patient habitus. Shifts in the

  15. SU-E-J-70: Evaluation of Multiple Isocentric Intensity Modulated and Volumetric Modulated Arc Therapy Techniques Using Portal Dosimetry

    SciTech Connect

    Muralidhar, K Raja; Pangam, S; Kolla, J; Ponaganti, S; Ali, M; Vuba, S; Mariyappan, P; Babaiah, M; Komanduri, K

    2015-06-15

    Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence of beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.

  16. Time-resolved versus time-integrated portal dosimetry: the role of an object’s position with respect to the isocenter in volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Schyns, Lotte E. J. R.; Persoon, Lucas C. G. G.; Podesta, Mark; van Elmpt, Wouter J. C.; Verhaegen, Frank

    2016-05-01

    The aim of this work is to compare time-resolved (TR) and time-integrated (TI) portal dosimetry, focussing on the role of an object’s position with respect to the isocenter in volumetric modulated arc therapy (VMAT). Portal dose images (PDIs) are simulated and measured for different cases: a sphere (1), a bovine bone (2) and a patient geometry (3). For the simulated case (1) and the experimental case (2), several transformations are applied at different off-axis positions. In the patient case (3), three simple plans with different isocenters are created and pleural effusion is simulated in the patient. The PDIs before and after the sphere transformations, as well as the PDIs with and without simulated pleural effusion, are compared using a TI and TR gamma analysis. In addition, the performance of the TI and TR gamma analyses for the detection of real geometric changes in patients treated with clinical plans is investigated and a correlation analysis is performed between gamma fail rates and differences in dose volume histogram (DVH) metrics. The TI gamma analysis can show large differences in gamma fail rates for the same transformation at different off-axis positions (or for different plan isocenters). The TR gamma analysis, however, shows consistent gamma fail rates. For the detection of real geometric changes in patients treated with clinical plans, the TR gamma analysis has a higher sensitivity than the TI gamma analysis. However, the specificity for the TR gamma analysis is lower than for the TI gamma analysis. Both the TI and TR gamma fail rates show no correlation with changes in DVH metrics. This work shows that TR portal dosimetry is fundamentally superior to TI portal dosimetry, because it removes the strong dependence of the gamma fail rate on the off-axis position/plan isocenter. However, for 2D TR portal dosimetry, it is still difficult to interpret gamma fail rates in terms of changes in DVH metrics for patients treated with VMAT.

  17. Exit fluence analysis using portal dosimetry in volumetric modulated arc therapy

    PubMed Central

    Sukumar, Prabakar; Padmanaban, Sriram; Rajasekaran, Dhanabalan; Kannan, Muniyappan; Nagarajan, Vivekanandan

    2012-01-01

    Aim In measuring exit fluences, there are several sources of deviations which include the changes in the entrance fluence, changes in the detector response and patient orientation or geometry. The purpose of this work is to quantify these sources of errors. Background The use of the volumetric modulated arc therapy treatment with the help of image guidance in radiotherapy results in high accuracy of delivering complex dose distributions while sparing critical organs. The transit dosimetry has the potential of Verifying dose delivery by the linac, Multileaf collimator positional accuracy and the calculation of dose to a patient or phantom. Materials and methods The quantification of errors caused by a machine delivery is done by comparing static and arc picket fence test for 30 days. A RapidArc plan, created for the pelvis site was delivered without and with Rando phantom and exit portal images were acquired. The day to day dose variation were analysed by comparing the daily exit dose images during the course of treatment. The gamma criterion used for analysis is 3% dose difference and 3 mm distance to agreement with a threshold of 10% of maximum dose. Results The maximum standard deviation for the static and arc picket fence test fields were 0.19 CU and 1.3 CU, respectively. The delivery of the RapidArc plans without a phantom shows the maximum standard deviation of 1.85 CU and the maximum gamma value of 0.59. The maximum gamma value for the RapidArc plan delivered with the phantom was found to be 1.2. The largest observed fluence deviation during the delivery to patient was 5.7% and the maximum standard deviation was 4.1 CU. Conclusion It is found from this study that the variation due to patient anatomy and interfraction organ motion is significant. PMID:24377034

  18. Open source portal to distributed image repositories

    NASA Astrophysics Data System (ADS)

    Tao, Wenchao; Ratib, Osman M.; Kho, Hwa; Hsu, Yung-Chao; Wang, Cun; Lee, Cason; McCoy, J. M.

    2004-04-01

    In large institution PACS, patient data may often reside in multiple separate systems. While most systems tend to be DICOM compliant, none of them offer the flexibility of seamless integration of multiple DICOM sources through a single access point. We developed a generic portal system with a web-based interactive front-end as well as an application programming interface (API) that allows both web users and client applications to query and retrieve image data from multiple DICOM sources. A set of software tools was developed to allow accessing several DICOM archives through a single point of access. An interactive web-based front-end allows user to search image data seamlessly from the different archives and display the results or route the image data to another DICOM compliant destination. An XML-based API allows other software programs to easily benefit from this portal to query and retrieve image data as well. Various techniques are employed to minimize the performance overhead inherent in the DICOM. The system is integrated with a hospital-wide HIPAA-compliant authentication and auditing service that provides centralized management of access to patient medical records. The system is provided under open source free licensing and developed using open-source components (Apache Tomcat for web server, MySQL for database, OJB for object/relational data mapping etc.). The portal paradigm offers a convenient and effective solution for accessing multiple image data sources in a given healthcare enterprise and can easily be extended to multi-institution through appropriate security and encryption mechanisms.

  19. Initial Clinical Experience Performing Patient Treatment Verification With an Electronic Portal Imaging Device Transit Dosimeter

    SciTech Connect

    Berry, Sean L.; Polvorosa, Cynthia; Cheng, Simon; Deutsch, Israel; Chao, K. S. Clifford; Wuu, Cheng-Shie

    2014-01-01

    Purpose: To prospectively evaluate a 2-dimensional transit dosimetry algorithm's performance on a patient population and to analyze the issues that would arise in a widespread clinical adoption of transit electronic portal imaging device (EPID) dosimetry. Methods and Materials: Eleven patients were enrolled on the protocol; 9 completed and were analyzed. Pretreatment intensity modulated radiation therapy (IMRT) patient-specific quality assurance was performed using a stringent local 3%, 3-mm γ criterion to verify that the planned fluence had been appropriately transferred to and delivered by the linear accelerator. Transit dosimetric EPID images were then acquired during treatment and compared offline with predicted transit images using a global 5%, 3-mm γ criterion. Results: There were 288 transit images analyzed. The overall γ pass rate was 89.1% ± 9.8% (average ± 1 SD). For the subset of images for which the linear accelerator couch did not interfere with the measurement, the γ pass rate was 95.7% ± 2.4%. A case study is presented in which the transit dosimetry algorithm was able to identify that a lung patient's bilateral pleural effusion had resolved in the time between the planning CT scan and the treatment. Conclusions: The EPID transit dosimetry algorithm under consideration, previously described and verified in a phantom study, is feasible for use in treatment delivery verification for real patients. Two-dimensional EPID transit dosimetry can play an important role in indicating when a treatment delivery is inconsistent with the original plan.

  20. 3-D Imaging Based, Radiobiological Dosimetry

    PubMed Central

    Sgouros, George; Frey, Eric; Wahl, Richard; He, Bin; Prideaux, Andrew; Hobbs, Robert

    2008-01-01

    Targeted radionuclide therapy holds promise as a new treatment against cancer. Advances in imaging are making it possible to evaluate the spatial distribution of radioactivity in tumors and normal organs over time. Matched anatomical imaging such as combined SPECT/CT and PET/CT have also made it possible to obtain tissue density information in conjunction with the radioactivity distribution. Coupled with sophisticated iterative reconstruction algorithims, these advances have made it possible to perform highly patient-specific dosimetry that also incorporates radiobiological modeling. Such sophisticated dosimetry techniques are still in the research investigation phase. Given the attendant logistical and financial costs, a demonstrated improvement in patient care will be a prerequisite for the adoption of such highly-patient specific internal dosimetry methods. PMID:18662554

  1. Clinical use of electronic portal imaging.

    PubMed

    Herman, Michael G

    2005-07-01

    Accurate and routine target localization is necessary for successful outcome in radiation therapy treatments. Electronic portal imaging devices (EPIDs) provide an advanced tool with digital technology to improve target localization and maintain clinical efficiency. EPIDs are ubiquitous in the radiation therapy clinic, and they provide a powerful and flexible tool to collect and process data in a quantitative manner to improve treatment accuracy for virtually any treatment site. This manuscript provides an overview of the clinical implementation process for effective use of EPIDs. It continues with a review of correction strategies and finally highlights numerous examples of effective clinical application of EPID. PMID:15983941

  2. SU-E-T-364: 6X FFF and 10X FFF Portal Dosimetry Output Factor Verification: Application for SRS/SBRT

    SciTech Connect

    Gulam, M; Bellon, M; Gopal, A; Wen, N; Chetty, I; Gordon, J; Hames, S; Schmidt, M

    2014-06-01

    Purpose: To enhance portal dosimetry of high dose rate SRS/SBRT plan verifications with extensive imager measurement of output factors (OF). Methods: Electronic portal image dosimetry (EPID), implemented on the Varian Edge allows for acquisition of its two energies: 6X FFF and 10 FFF (1400 and 2400 MU/min, respectively) at source to imager distance (SID) =100cm without imager saturation. Square and rectangular aSi OF following EPID calibration were obtained. Data taken was similar to that obtained during beam commissioning (of almost all field sizes from 1×1 to 15×15 and 20×20 cm{sup 2}, [Trilogy] and [Edge], respectively) to construct a table using the OF tool for use in the Portal Dosimetry Prediction Algorithm (PDIP v11). The Trilogy 6x SRS 1000 MU/min EPID data were taken at 140 SID. The large number of OF were obtained for comparison to that obtained with diode detectors and ion chambers (cc13 for >3×3 field size). As Edge PDIP verification is currently ongoing, EPID measurements of three SRS/SBRT plans for the Trilogy were taken and compared to results obtained prior to these measurements. Results: The relative difference output factors of field sizes 2×2 and higher compared to commissioning data were (mean+/-SD, [range]): Edge 6X (−1.9+/−2.9%, [−5.9%,3.1%]), Edge 10X (−0.7+/−1.2%, [− 3.3%,0.8%] and Trilogy (0.03+/−0.5%, [−1.4%,1.1%]) with EPID over predicting. The results for the 140 SID showed excellent agreement throughout except at the 1×1 to 1×15 and 15×1 field sizes where differences were: −10.6%, −6.0% and −5.8%. The differences were also most pronounced for the 1×1 at 100 SID. They were −7.4% and −11.5% for 6X and 10X, respectively. The Gamma (3%, 1mm) for three clinical plans improved by 8.7+/−1.8%. Conclusion: Results indicate that imager output factor measurements at any SID of high dose rate SRS/SBRT are quite reliable for portal dosimetry plan verification except for the smallest fields. This work was not

  3. Algorithms for contrast enhancement of electronic portal images

    NASA Astrophysics Data System (ADS)

    Díez, S.; Sánchez, S.

    2015-11-01

    An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results.

  4. Monte Carlo simulation of the transit dosimetric response of an a-Si electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Blake, S. J.; McNamara, A. L.; Vial, P.; Holloway, L.; Greer, P. B.; Kuncic, Z.

    2014-03-01

    Amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) are x-ray detectors frequently used in radiotherapy imaging and dosimetry applications. EPIDs employ a copper plate and gadolinium oxysulfide phosphor screen with an array of a-Si photodiodes to indirectly detect incident radiation. In this study, a previously developed Monte Carlo (MC) model of an a-Si EPID has been extended for transit dosimetry. The GEANT4 MC toolkit was used to integrate an a-Si EPID model with two phantoms and a 6 MV x-ray source. A solid water phantom was used to simulate EPID transmission factors, field size output factors and relative dose profiles and results were compared to experimental measurements. An anthropomorphic head phantom was used to qualitatively compare simulated and measured portal images of humanoid anatomy. Calculated transmission factors and field size output factors agreed to within 2.0% and 1.9% of experimental measurements, respectively. A comparison of calculated and measured relative dose profiles yielded >98% of points passing a gamma analysis with 3%/3 mm criterion for all field sizes. The simulated anthropomorphic head phantom image shows macroscopic anatomical features and qualitatively agrees with the measured image. Results validate the suitability of the MC model for predicting EPID response in transit dosimetry.

  5. Impact of dose rate on accuracy of intensity modulated radiation therapy plan delivery using the pretreatment portal dosimetry quality assurance and setting up the workflow at hospital levels

    PubMed Central

    Kaviarasu, Karunakaran; Raj, N. Arunai Nambi; Murthy, K. Krishna; Babu, A. Ananda Giri; Prasad, Bhaskar Laxman Durga

    2015-01-01

    The aim of this study was to examine the impact of dose rate on accuracy of intensity modulated radiation therapy (IMRT) plan delivery by comparing the gamma agreement between the calculated and measured portal doses by pretreatment quality assurance (QA) using electronic portal imaging device dosimetry and creating a workflow for the pretreatment IMRT QA at hospital levels. As the improvement in gamma agreement leads to increase in the quality of IMRT treatment delivery, gamma evaluation was carried out for the calculated and the measured portal images for the criteria of 3% dose difference and 3 mm distance-to-agreement (DTA). Three gamma parameters: Maximum gamma, average gamma, and percentage of the field area with a gamma value>1.0 were analyzed. Three gamma index parameters were evaluated for 40 IMRT plans (315 IMRT fields) which were calculated for 400 monitor units (MU)/min dose rate and maximum multileaf collimator (MLC) speed of 2.5 cm/s. Gamma parameters for all 315 fields are within acceptable limits set at our center. Further, to improve the gamma results, we set an action level for this study using the mean and standard deviation (SD) values from the 315 fields studied. Forty out of 315 IMRT fields showed low gamma agreement (gamma parameters>2 SD as per action level of the study). The parameters were recalculated and reanalyzed for the dose rates of 300, 400 and 500 MU/min. Lowering the dose rate helped in getting an enhanced gamma agreement between the calculated and measured portal doses of complicated fields. This may be attributed to the less complex motion of MLC over time and the MU of the field/segment. An IMRT QA work flow was prepared which will help in improving the quality of IMRT delivery. PMID:26865759

  6. Epid Dosimetry

    NASA Astrophysics Data System (ADS)

    Greer, Peter B.; Vial, Philip

    2011-05-01

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  7. Epid Dosimetry

    SciTech Connect

    Greer, Peter B.; Vial, Philip

    2011-05-05

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  8. 6. AN IMAGE OF THE WEST PORTAL OF THE BRIDGE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. AN IMAGE OF THE WEST PORTAL OF THE BRIDGE, TAKEN FROM AN ELEVATED POSITION, SHOWING THE RURAL QUALITY OF THE RIVER SCENE AND ITS BANKS. - Freedom Bridge, Spanning West Fork of White River at County Road 590 South, Freedom, Owen County, IN

  9. SU-E-T-582: On-Line Dosimetric Verification of Respiratory Gated Volumetric Modulated Arc Therapy Using the Electronic Portal Imaging Device

    SciTech Connect

    Schaly, B; Gaede, S; Xhaferllari, I

    2015-06-15

    Purpose: To investigate the clinical utility of on-line verification of respiratory gated VMAT dosimetry during treatment. Methods: Portal dose images were acquired during treatment in integrated mode on a Varian TrueBeam (v. 1.6) linear accelerator for gated lung and liver patients that used flattening filtered beams. The source to imager distance (SID) was set to 160 cm to ensure imager clearance in case the isocenter was off midline. Note that acquisition of integrated images resulted in no extra dose to the patient. Fraction 1 was taken as baseline and all portal dose images were compared to that of the baseline, where the gamma comparison and dose difference were used to measure day-to-day exit dose variation. All images were analyzed in the Portal Dosimetry module of Aria (v. 10). The portal imager on the TrueBeam was calibrated by following the instructions for dosimetry calibration in service mode, where we define 1 calibrated unit (CU) equal to 1 Gy for 10×10 cm field size at 100 cm SID. This reference condition was measured frequently to verify imager calibration. Results: The gamma value (3%, 3 mm, 5% threshold) ranged between 92% and 100% for the lung and liver cases studied. The exit dose can vary by as much as 10% of the maximum dose for an individual fraction. The integrated images combined with the information given by the corresponding on-line soft tissue matched cone-beam computed tomography (CBCT) images were useful in explaining dose variation. For gated lung treatment, dose variation was mainly due to the diaphragm position. For gated liver treatment, the dose variation was due to both diaphragm position and weight loss. Conclusion: Integrated images can be useful in verifying dose delivery consistency during respiratory gated VMAT, although the CBCT information is needed to explain dose differences due to anatomical changes.

  10. An electronic portal imaging device as a physics tool.

    PubMed

    Curtin-Savard, A; Podgorsak, E B

    1997-01-01

    An electronic portal imaging device (EPID) can be used not only to acquire megavoltage patient images but also to measure certain radiation beam parameters of the linear accelerator. EPID images can be used to verify field junctions, center of collimator rotation, or radiation vs. light field coincidence. If the EPID images are calibrated in terms of dose rate, an EPID can be applied to beam penumbra measurement, collimator transmission determination, or compensator verification. Beam parameters measured with EPIDs are in close agreement with those measured with film or ionization chamber, making EPIDs reliable physics tools for quality control of various beam parameters in radiotherapy. PMID:9243462

  11. Optimisation of the imaging and dosimetric characteristics of an electronic portal imaging device employing plastic scintillating fibres using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Blake, S. J.; McNamara, A. L.; Vial, P.; Holloway, L.; Kuncic, Z.

    2014-11-01

    A Monte Carlo model of a novel electronic portal imaging device (EPID) has been developed using Geant4 and its performance for imaging and dosimetry applications in radiotherapy has been characterised. The EPID geometry is based on a physical prototype under ongoing investigation and comprises an array of plastic scintillating fibres in place of the metal plate/phosphor screen in standard EPIDs. Geometrical and optical transport parameters were varied to investigate their impact on imaging and dosimetry performance. Detection efficiency was most sensitive to variations in fibre length, achieving a peak value of 36% at 50 mm using 400 keV x-rays for the lengths considered. Increases in efficiency for longer fibres were partially offset by reductions in sensitivity. Removing the extra-mural absorber surrounding individual fibres severely decreased the modulation transfer function (MTF), highlighting its importance in maximising spatial resolution. Field size response and relative dose profile simulations demonstrated a water-equivalent dose response and thus the prototype’s suitability for dosimetry applications. Element-to-element mismatch between scintillating fibres and underlying photodiode pixels resulted in a reduced MTF for high spatial frequencies and quasi-periodic variations in dose profile response. This effect is eliminated when fibres are precisely matched to underlying pixels. Simulations strongly suggest that with further optimisation, this prototype EPID may be capable of simultaneous imaging and dosimetry in radiotherapy.

  12. Phase contrast portal imaging for image-guided microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Kondoh, Takeshi

    2014-03-01

    High-dose synchrotron microbeam radiation therapy is a unique treatment technique used to destroy tumors without severely affecting circumjacent healthy tissue. We applied a phase contrast technique to portal imaging in preclinical microbeam radiation therapy experiments. Phase contrast portal imaging is expected to enable us to obtain higherresolution X-ray images at therapeutic X-ray energies compared to conventional portal imaging. Frontal view images of a mouse head sample were acquired in propagation-based phase contrast imaging. The phase contrast images depicted edge-enhanced fine structures of the parietal bones surrounding the cerebrum. The phase contrast technique is expected to be effective in bony-landmark-based verification for image-guided radiation therapy.

  13. Quality assurance of RapidArc in clinical practice using portal dosimetry

    PubMed Central

    Fogliata, A; Clivio, A; Fenoglietto, P; Hrbacek, J; Kloeck, S; Lattuada, P; Mancosu, P; Nicolini, G; Parietti, E; Urso, G; Vanetti, E; Cozzi, L

    2011-01-01

    Objective Quality assurance data from five centres were analysed to assess the reliability of RapidArc radiotherapy delivery in terms of machine and dosimetric performance. Methods A large group of patients was treated with RapidArc radiotherapy and treatment data recorded. Machine quality assurance was performed according to Ling et al (Int J Radiat Oncol Biol Phys 2008;72:575–81). In addition, treatment to a typical clinical case was delivered biweekly as a constancy check. Pre-treatment dosimetric validation of plan delivery was performed for each patient. All measurements and computations were performed at the depth of the maximum dose in water according to the GLAaS method using electronic portal imaging device measurements. Evaluation was carried out according to a gamma agreement index (GAI, the percentage of field area passing the test); the threshold dose difference was 3% and the threshold distance to agreement was 3 mm. Results A total of 275 patients (395 arcs) were included in the study. Mean delivery parameters were 31.0±20.0° (collimator angle), 4.7±0.5° s–1 (gantry speed), 343±134 MU min–1 (dose rate) and 1.6±1.4 min (beam-on time) for prescription doses ranging from 1.8 to 16.7 Gy/fraction. Mean deviations from the baseline dose rate and gantry speed ranged from −0.61% to 1.75%. Mean deviations from the baseline for leaf speed variation ranged from −0.73% to 0.41%. The mean GAI of repeated clinical fields was 99.2±0.2%. GAI varied from 84.7% to 100%; the mean across all patients was 97.1±2.4%. Conclusion RapidArc can provide a reliable and accurate delivery of radiotherapy for a variety of clinical conditions. PMID:21606069

  14. Datamining the NOAO NVO Portal: Automated Image Classification

    NASA Astrophysics Data System (ADS)

    Vaswani, Pooja; Miller, C. J.; Barg, I.; Smith, R. C.

    2006-12-01

    Image metadata describes the properties of an image and can be used for classification, e.g., galactic, extra-galactic, solar system, standard star, among others. We are developing a data mining application to automate such a classification process based on supervised learning using decision trees. We are applying this application to the NOAO NVO Portal (www.nvo.noao.edu). The core concepts of Quinlan's C4.5 decision tree induction algorithm are used to train, build a decision tree, and generate classification rules. These rules are then used to classify previously unseen image metadata. We utilize a collection of decision trees instead of a single classifier and average the classification probabilities. The concept of ``Bagging'' was used to create the collection of classifiers. The classification algorithm also facilitates the addition of weights to the probability estimate of the classes when prior knowledge of the class distribution is known.

  15. Alternative imaging modalities for polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Jirasek, Andrew

    2010-11-01

    This review summarizes recent work in the area of imaging polymer gel dosimeters using x-ray CT imaging, ultrasound, and radiation-induced changes in gel mechanical properties. In addition, recent work in the area of Raman tomographic imaging of canine bone, in conjunction with past efforts in Raman imaging of polymer gel dosimeters, raises new possibilities for new polymer gel imaging techniques.

  16. Dosimetric verification of IMAT delivery with a conventional EPID system and a commercial portal dose image prediction tool

    SciTech Connect

    Iori, Mauro; Cagni, Elisabetta; Paiusco, Marta; Munro, Peter; Nahum, Alan E.

    2010-01-15

    Purpose: The electronic portal imaging device (EPID) is a system for checking the patient setup; as a result of its integration with the linear accelerator and software customized for dosimetry, it is increasingly used for verification of the delivery of fixed-field intensity-modulated radiation therapy (IMRT). In order to extend such an approach to intensity-modulated arc therapy (IMAT), the combined use of an EPID system and a portal dose image prediction (PDIP) tool has been investigated. Methods: The dosimetric behavior of an EPID system, mechanically reinforced to maintain its positional stability during the accelerator gantry rotation, has been studied to assess its ability to measure portal dose distributions for IMAT treatment beams. In addition, the PDIP tool of a commercial treatment planning system, commonly used for static IMRT dosimetry, has been validated for simulating the PDIs of IMAT treatment fields. The method has been applied to the delivery verification of 23 treatment fields that were measured in their dual mode of IMRT and IMAT modalities. Results: The EPID system has proved to be appropriate for measuring the PDIs of IMAT fields; additionally the PDIP tool was able to simulate these accurately. The results are quite similar to those obtained for static IMRT treatment verification, although it was necessary to investigate the dependence of the EPID signal and of the accelerator monitor chamber response on variable dose rate. Conclusions: Our initial tests indicate that the EPID system, together with the PDIP tool, is a suitable device for the verification of IMAT plan delivery; however, additional tests are necessary to confirm these results.

  17. Anatomy of hepatic arteriolo-portal venular shunts evaluated by 3D micro-CT imaging

    PubMed Central

    Kline, Timothy L; Knudsen, Bruce E; Anderson, Jill L; Vercnocke, Andrew J; Jorgensen, Steven M; Ritman, Erik L

    2014-01-01

    The liver differs from other organs in that two vascular systems deliver its blood – the hepatic artery and the portal vein. However, how the two systems interact is not fully understood. We therefore studied the microvascular geometry of rat liver hepatic artery and portal vein injected with the contrast polymer Microfil®. Intact isolated rat livers were imaged by micro-CT and anatomic evidence for hepatic arteriolo-portal venular shunts occurring between hepatic artery and portal vein branches was found. Simulations were performed to rule out the possibility of the observed shunts being artifacts resulting from image blurring. In addition, in the case of specimens where only the portal vein was injected, only the portal vein was opacified, whereas in hepatic artery injections, both the hepatic artery and portal vein were opacified. We conclude that mixing of the hepatic artery and portal vein blood can occur proximal to the sinusoidal level, and that the hepatic arteriolo-portal venular shunts may function as a one-way valve-like mechanism, allowing flow only from the hepatic artery to the portal vein (and not the other way around). PMID:24684343

  18. Physical characteristics of a commercial electronic portal imaging device.

    PubMed

    Althof, V G; de Boer, J C; Huizenga, H; Stroom, J C; Visser, A G; Swanenburg, B N

    1996-11-01

    An electronic portal imaging device (EPID) for use in radiotherapy with high energy photons has been under development since 1985 and has been in clinical use since 1988. The x-ray detector consists of a metal plate/fluorescent screen combination, which is monitored by a charge-coupled device (CDD)-camera. This paper discusses the physical quantities governing image quality. A model which describes the signal and noise propagation through the detector is presented. The predicted contrasts and signal-to-noise ratios are found to be in agreement with measurements based on the EPID images. Based on this agreement the visibility of low contrast structures in clinical images has been calculated with the model. Sufficient visibility of relevant structures (4-10 mm water-equivalent thickness) has been obtained down to a delivered dose of 4 cGy at dose maximum. It is found that the described system is not limited by quantum noise but by camera read-out noise. In addition we predict that with a new type of CCD sensor the signal-to-noise ratio can be increased by a factor of 5 at small doses, enabling high quality imaging, for most relevant clinical situations, with a patient dose smaller than 4 cGy. The latter system would be quantum noise limited. PMID:8947896

  19. SU-F-BRE-13: Replacing Pre-Treatment Phantom QA with 3D In-Vivo Portal Dosimetry for IMRT Breast Cancer

    SciTech Connect

    Stroom, J; Vieira, S; Greco, C; Olaciregui-Ruiz, I; Rozendaal, R; Herk, M van; Moser, E

    2014-06-15

    Purpose: Pre-treatment QA of individual treatment plans requires costly linac time and physics effort. Starting with IMRT breast treatments, we aim to replace pre-treatment QA with in-vivo portal dosimetry. Methods: Our IMRT breast cancer plans are routinely measured using the ArcCheck device (SunNuclear). 2D-Gamma analysis is performed with 3%/3mm criteria and the percentage of points with gamma<1 (nG1) is calculated within the 50% isodose surface. Following AAPM recommendations, plans with nG1<90% are approved; others need further inspection and might be rejected. For this study, we used invivo portal dosimetry (IPD) to measure the 3D back-projected dose of the first three fractions for IMRT breast plans. Patient setup was online corrected before for all measured fractions. To reduce patient related uncertainties, the three IPD results were averaged and 3D-gamma analysis was applied with abovementioned criteria . For a subset of patients, phantom portal dosimetry (PPD) was also performed on a slab phantom. Results: Forty consecutive breast patients with plans that fitted the EPID were analysed. The average difference between planned and IPD dose in the reference point was −0.7+/−1.6% (1SD). Variation in nG1 between the 3 invivo fractions was about 6% (1SD). The average nG1 for IPD was 89+/−6%, worse than ArcCheck (95+/−3%). This can be explained by patient related factors such as changes in anatomy and/or model deficiencies due to e.g. inhomogeneities. For the 20 cases with PPD, mean nG1 was equal to ArcCheck values, which indicates that the two systems are equally accurate. These data therefore suggest that proper criteria for 3D invivo verification of breast treatments should be nG1>80% instead of nG1>90%, which, for our breast cases, would result in 5% (2/40) further inspections. Conclusion: First-fraction in-vivo portal dosimetry using new gamma-evaluation criteria will replace phantom measurements in our institution, saving resources and yielding 3D

  20. Optimal steel thickness combined with computed radiography for portal imaging of nasopharyngeal cancer patients

    SciTech Connect

    Wu Shixiu; Jin Xiance; Xie Congying; Cao Guoquan

    2005-10-15

    The poor image quality of conventional metal screen-film portal imaging system has long been of concern, and various methods have been investigated in an attempt to enhance the quality of portal images. Computed radiography (CR) used in combination with a steel plate displays image enhancement. The optimal thickness of the steel plate had been studied by measuring the modulation transfer function (MTF) characteristics. Portal images of nasopharyngeal carcinoma patients were taken by both a conventional metal screen-film system and this optimal steel and CR plate combination system. Compared with a conventional metal screen-film system, the CR-metal screen system achieves a much higher image contrast. The measured modulation transfer function (MTF) of the CR combination is greater than conventional film-screen portal imaging systems and also results in superior image performance, as demonstrated by receiver operator characteristic (ROC) analysis. This optimal combination steel CR plate portal imaging system is capable of producing high contrast portal images conveniently.

  1. SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images

    SciTech Connect

    Qiu, J; Yang, D

    2015-06-15

    Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets, and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from

  2. Tracking moving objects with megavoltage portal imaging: A feasibility study

    SciTech Connect

    Meyer, Juergen; Richter, Anne; Baier, Kurt; Wilbert, Juergen; Guckenberger, Matthias; Flentje, Michael

    2006-05-15

    Four different algorithms were investigated with the aim to determine their suitability to track an object in conventional megavoltage portal images. The algorithms considered were the mean of the sum of squared differences (MSSD), mutual information (MI), the correlation ratio (CR), and the correlation coefficient (CC). Simulation studies were carried out with various image series containing a rigid object of interest that was moved along a predefined trajectory. For each of the series the signal-to-noise ratio (SNR) was varied to compare the performance of the algorithms under noisy conditions. For a poor SNR of -6 dB the mean tracking error was 2.4, 6.5, 39.0, and 17.2 pixels for MSSD, CC, CR and MI, respectively, with a standard deviation of 1.9, 12.9, 19.5, and 7.5 pixels, respectively. The size of a pixel was 0.5 mm. These results improved to 1.1, 1.3, 1.3, and 2.0 pixels, respectively, with a standard deviation of 0.6, 0.8, 0.8, and 2.1 pixels, respectively, when a mean filter was applied to the images prior to tracking. The implementation of MSSD into existing in-house software demonstrated that, depending on the search range, it was possible to process between 2 and 15 images/s, making this approach capable of real-time applications. In conclusion, the best geometric tracking accuracy overall was obtained with MSSD, followed by CC, CR, and MI. The simplest and best algorithm, both in terms of geometric accuracy as well as computational cost, was the MSSD algorithm and was therefore the method of choice.

  3. Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy.

    PubMed

    Ljungberg, Michael; Gleisner, Katarina Sjögreen

    2015-01-01

    Radionuclide therapy aims to treat malignant diseases by systemic administration of radiopharmaceuticals, often using carrier molecules such as peptides and antibodies. The radionuclides used emit electrons or alpha particles as a consequence of radioactive decay, thus leading to local energy deposition. Administration to individual patients can be tailored with regards to the risk of toxicity in normal organs by using absorbed dose planning. The scintillation camera, employed in planar imaging or single-photon emission computed tomography (SPECT), generates images of the spatially and temporally varying activity distribution. Recent commercially available combined SPECT and computed tomography (CT) systems have dramatically increased the possibility of performing accurate dose planning by using the CT information in several steps of the dose-planning calculation chain. This paper discusses the dosimetry chain used for individual absorbed-dose planning and highlights the areas where hybrid imaging makes significant contributions. PMID:26854156

  4. Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy

    PubMed Central

    Ljungberg, Michael; Sjögreen Gleisner, Katarina

    2015-01-01

    Radionuclide therapy aims to treat malignant diseases by systemic administration of radiopharmaceuticals, often using carrier molecules such as peptides and antibodies. The radionuclides used emit electrons or alpha particles as a consequence of radioactive decay, thus leading to local energy deposition. Administration to individual patients can be tailored with regards to the risk of toxicity in normal organs by using absorbed dose planning. The scintillation camera, employed in planar imaging or single-photon emission computed tomography (SPECT), generates images of the spatially and temporally varying activity distribution. Recent commercially available combined SPECT and computed tomography (CT) systems have dramatically increased the possibility of performing accurate dose planning by using the CT information in several steps of the dose-planning calculation chain. This paper discusses the dosimetry chain used for individual absorbed-dose planning and highlights the areas where hybrid imaging makes significant contributions. PMID:26854156

  5. Analytical scatter kernels for portal imaging at 6 MV.

    PubMed

    Spies, L; Bortfeld, T

    2001-04-01

    X-ray photon scatter kernels for 6 MV electronic portal imaging are investigated using an analytical and a semi-analytical model. The models are tested on homogeneous phantoms for a range of uniform circular fields and scatterer-to-detector air gaps relevant for clinical use. It is found that a fully analytical model based on an exact treatment of photons undergoing a single Compton scatter event and an approximate treatment of second and higher order scatter events, assuming a multiple-scatter source at the center of the scatter volume, is accurate within 1% (i.e., the residual scatter signal is less than 1% of the primary signal) for field sizes up to 100 cm2 and air gaps over 30 cm, but shows significant discrepancies for larger field sizes. Monte Carlo results are presented showing that the effective multiple-scatter source is located toward the exit surface of the scatterer, rather than at its center. A second model is therefore investigated where second and higher-order scattering is instead modeled by fitting an analytical function describing a nonstationary isotropic point-scatter source to Monte Carlo generated data. This second model is shown to be accurate to within 1% for air gaps down to 20 cm, for field sizes up to 900 cm2 and phantom thicknesses up to 50 cm. PMID:11339752

  6. Comparison of the performance between portal dosimetry and a commercial two-dimensional array system on pretreatment quality assurance for volumetric-modulated arc and intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Lae; Chung, Jin-Beom; Kim, Jae-Sung; Lee, Jeong-Woo; Choi, Kyoung-Sik

    2014-04-01

    The aim of this study was to compare the dosimetric performance and to evaluate the pretreatment quality assurance (QA) of a portal dosimetry and a commercial two-dimensional (2-D) array system. In the characteristics comparison study, the measured values for the dose linearity, dose rate response, reproducibility, and field size dependence for 6-MV photon beams were analyzed for both detector systems. To perform the qualitative evaluations of the 10 IMRT and the 10 VMAT plans, we used the Gamma index for quantifying the agreement between calculations and measurements. The performance estimates for both systems show that overall, minimal differences in the dosimetric characteristics exist between the Electron portal imaging device (EPID) and 2-D array system. In the qualitative analysis for pretreatment quality assurance, the EPID and 2-D array system yield similar passing rate results for the majority of clinical Intensity-modulated radiation therapy (IMRT) and Volumetric-modulated arc therapy (VMAT) cases. These results were satisfactory for IMRT and VMAT fields and were within the acceptable criteria of γ%≤1, γ avg <0.5. The EPDI and the 2-D array systems showed comparable dosimetric results. In this study, the results revealed both systems to be suitable for patient-specific QA measurements for IMRT and VMAT. We conclude that, depending on the status of clinic, both systems can be used interchangeably for routine pretreatment QA.

  7. Image guided IMRT dosimetry using anatomy specific MOSFET configurations.

    PubMed

    Amin, Md Nurul; Norrlinger, Bern; Heaton, Robert; Islam, Mohammad

    2008-01-01

    We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobile MOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within -0.26 +/- 0.88% and 0.06 +/- 1.94% (1 sigma) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X-Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47 +/- 2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans. PMID:18716593

  8. Evaluation of an aSi-EPID with flattening filter free beams: Applicability to the GLAaS algorithm for portal dosimetry and first experience for pretreatment QA of RapidArc

    SciTech Connect

    Nicolini, G.; Clivio, A.; Vanetti, E.; Cozzi, L.; Fogliata, A.; Krauss, H.; Fenoglietto, P.

    2013-11-15

    Purpose: To demonstrate the feasibility of portal dosimetry with an amorphous silicon mega voltage imager for flattening filter free (FFF) photon beams by means of the GLAaS methodology and to validate it for pretreatment quality assurance of volumetric modulated arc therapy (RapidArc).Methods: The GLAaS algorithm, developed for flattened beams, was applied to FFF beams of nominal energy of 6 and 10 MV generated by a Varian TrueBeam (TB). The amorphous silicon electronic portal imager [named mega voltage imager (MVI) on TB] was used to generate integrated images that were converted into matrices of absorbed dose to water. To enable GLAaS use under the increased dose-per-pulse and dose-rate conditions of the FFF beams, new operational source-detector-distance (SDD) was identified to solve detector saturation issues. Empirical corrections were defined to account for the shape of the profiles of the FFF beams to expand the original methodology of beam profile and arm backscattering correction. GLAaS for FFF beams was validated on pretreatment verification of RapidArc plans for three different TB linacs. In addition, the first pretreatment results from clinical experience on 74 arcs were reported in terms of γ analysis.Results: MVI saturates at 100 cm SDD for FFF beams but this can be avoided if images are acquired at 150 cm for all nominal dose rates of FFF beams. Rotational stability of the gantry-imager system was tested and resulted in a minimal apparent imager displacement during rotation of 0.2 ± 0.2 mm at SDD = 150 cm. The accuracy of this approach was tested with three different Varian TrueBeam linacs from different institutes. Data were stratified per energy and machine and showed no dependence with beam quality and MLC model. The results from clinical pretreatment quality assurance, provided a gamma agreement index (GAI) in the field area for six and ten FFF beams of (99.8 ± 0.3)% and (99.5 ± 0.6)% with distance to agreement and dose difference criteria

  9. Performance of electronic portal imaging devices (EPIDs) used in radiotherapy: image quality and dose measurements.

    PubMed

    Cremers, F; Frenzel, Th; Kausch, C; Albers, D; Schönborn, T; Schmidt, R

    2004-05-01

    The aim of our study was to compare the image and dosimetric quality of two different imaging systems. The first one is a fluoroscopic electronic portal imaging device (first generation), while the second is based on an amorphous silicon flat-panel array (second generation). The parameters describing image quality include spatial resolution [modulation transfer function (MTF)], noise [noise power spectrum (NPS)], and signal-to-noise transfer [detective quantum efficiency (DQE)]. The dosimetric measurements were compared with ionization chamber as well as with film measurements. The response of the flat-panel imager and the fluoroscopic-optical device was determined performing a two-step Monte Carlo simulation. All measurements were performed in a 6 MV linear accelerator photon beam. The resolution (MTF) of the fluoroscopic device (f 1/2 = 0.3 mm(-1)) is larger than of the amorphous silicon based system (f 1/2 = 0.21 mm(-1)), which is due to the missing backscattered photons and the smaller pixel size. The noise measurements (NPS) show the correlation of neighboring pixels of the amorphous silicon electronic portal imaging device, whereas the NPS of the fluoroscopic system is frequency independent. At zero spatial frequency the DQE of the flat-panel imager has a value of 0.008 (0.8%). Due to the minor frequency dependency this device may be almost x-ray quantum limited. Monte Carlo simulations verified these characteristics. For the fluoroscopic imaging system the DQE at low frequencies is about 0.0008 (0.08%) and degrades with higher frequencies. Dose measurements with the flat-panel imager revealed that images can only be directly converted to portal dose images, if scatter can be neglected. Thus objects distant to the detector (e.g., inhomogeneous dose distribution generated by a modificator) can be verified dosimetrically, while objects close to a detector (e.g., a patient) cannot be verified directly and must be scatter corrected prior to verification. This is

  10. EPID dosimetry for pretreatment quality assurance with two commercial systems.

    PubMed

    Bailey, Daniel W; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Malhotra, Harish K; Podgorsak, Matthew B

    2012-01-01

    This study compares the EPID dosimetry algorithms of two commercial systems for pretreatment QA, and analyzes dosimetric measurements made with each system alongside the results obtained with a standard diode array. 126 IMRT fields are examined with both EPID dosimetry systems (EPIDose by Sun Nuclear Corporation, Melbourne FL, and Portal Dosimetry by Varian Medical Systems, Palo Alto CA) and the diode array, MapCHECK (also by Sun Nuclear Corporation). Twenty-six VMAT arcs of varying modulation complexity are examined with the EPIDose and MapCHECK systems. Optimization and commissioning testing of the EPIDose physics model is detailed. Each EPID IMRT QA system is tested for sensitivity to critical TPS beam model errors. Absolute dose gamma evaluation (3%, 3 mm, 10% threshold, global normalization to the maximum measured dose) yields similar results (within 1%-2%) for all three dosimetry modalities, except in the case of off-axis breast tangents. For these off-axis fields, the Portal Dosimetry system does not adequately model EPID response, though a previously-published correction algorithm improves performance. Both MapCHECK and EPIDose are found to yield good results for VMAT QA, though limitations are discussed. Both the Portal Dosimetry and EPIDose algorithms, though distinctly different, yield similar results for the majority of clinical IMRT cases, in close agreement with a standard diode array. Portal dose image prediction may overlook errors in beam modeling beyond the calculation of the actual fluence, while MapCHECK and EPIDose include verification of the dose calculation algorithm, albeit in simplified phantom conditions (and with limited data density in the case of the MapCHECK detector). Unlike the commercial Portal Dosimetry package, the EPIDose algorithm (when sufficiently optimized) allows accurate analysis of EPID response for off-axis, asymmetric fields, and for orthogonal VMAT QA. Other forms of QA are necessary to supplement the limitations of the

  11. Quantitative 3D Optical Imaging: Applications in Dosimetry and Biophysics

    NASA Astrophysics Data System (ADS)

    Thomas, Andrew Stephen

    Optical-CT has been shown to be a potentially useful imaging tool for the two very different spheres of biologists and radiation therapy physicists, but it has yet to live up to that potential. In radiation therapy, researchers have used optical-CT for the readout of 3D dosimeters, but it is yet to be a clinically relevant tool as the technology is too slow to be considered practical. Biologists have used the technique for structural imaging, but have struggled with emission tomography as the reality of photon attenuation for both excitation and emission have made the images quantitatively irrelevant. Dosimetry. The DLOS (Duke Large field of view Optical-CT Scanner) was designed and constructed to make 3D dosimetry utilizing optical-CT a fast and practical tool while maintaining the accuracy of readout of the previous, slower readout technologies. Upon construction/optimization/implementation of several components including a diffuser, band pass filter, registration mount & fluid filtration system the dosimetry system provides high quality data comparable to or exceeding that of commercial products. In addition, a stray light correction algorithm was tested and implemented. The DLOS in combination with the 3D dosimeter it was designed for, PREAGETM, then underwent rigorous commissioning and benchmarking tests validating its performance against gold standard data including a set of 6 irradiations. DLOS commissioning tests resulted in sub-mm isotropic spatial resolution (MTF >0.5 for frequencies of 1.5lp/mm) and a dynamic range of ˜60dB. Flood field uniformity was 10% and stable after 45minutes. Stray light proved to be small, due to telecentricity, but even the residual can be removed through deconvolution. Benchmarking tests showed the mean 3D passing gamma rate (3%, 3mm, 5% dose threshold) over the 6 benchmark data sets was 97.3% +/- 0.6% (range 96%-98%) scans totaling ˜10 minutes, indicating excellent ability to perform 3D dosimetry while improving the speed of

  12. A region-based Retinex with data filling for the enhancement of electronic portal images

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Po; Yeh, Shyh-An; Huang, Yung-Hui; Chang, Li-Yun; Kuo, Chung-Ming; Ding, Hueisch-Jy

    2013-05-01

    PurposePortal images are acquired by electronic portal imaging devices (EPID) with megavoltage (MV) x-ray, but they are inherently poor in terms of contrast, due to Compton Effect. In comparison with diagnostic x-ray images, portal images usually lack sufficient detail information for normal human vision. Therefore, an effective method of enhancing these images would be very useful. This paper proposes a new approach that combines global and local enhancement techniques. Materials and methodsA portal image usually has a high dynamic range (HDR) of up to 16 bits, so it could records details that are imperceptible to the naked eye. However, this property provides the potential for enhancement of the portal image. In order to overcome the low contrast appearance caused by innate physical properties, two phases and four sequential steps were proposed. At phase 1, global enhancement, HE is used to stretch narrow range histogram of original raw image to reasonable wide range so that we can easily partition the image into regions for local enhancement. At phase 2, local enhancement, EPIs were first segmented into regions based on histogram distribution. Then a new concept of local enhancement, pseudo-data filling, in which enhancement is controlled by manipulating the pseudo-data, is proposed in order to maximize the regional enhancement. Finally each region of EPI is enhanced by Retinex with optimized parameter and synthesized as output image. ResultsAt phase 1, HE can successfully improve EPIs contrast at varies body sites by redistribution histogram. This step provides possibility of histogram analyzing at phase 2. Therefore, histogram-based segmentation is feasible for nearly every patient as we expected. Simulation of pseudo-data filling and region-based Retinex enhancement demonstrate that the proposed method provides a more detailed portal image, which is proved by objective evaluation of two groups of radiation oncology staffs. ConclusionsAn effective enhancement

  13. TL dosimetry for quality control of CR mammography imaging systems

    NASA Astrophysics Data System (ADS)

    Gaona, E.; Nieto, J. A.; Góngora, J. A. I. D.; Arreola, M.; Enríquez, J. G. F.

    The aim of this work is to estimate the average glandular dose with thermoluminescent (TL) dosimetry and comparison with quality imaging in computed radiography (CR) mammography. For a measuring dose, the Food and Drug Administration (FDA) and the American College of Radiology (ACR) use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, full field digital mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium flourohalideE We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated X-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose greater than 3.0 mGy without demonstrating improved image quality. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement for X-rays with a HVL (0.35-0.38 mmAl) and kVp (24-26) used in quality control procedures with ACR Mammography Accreditation Phantom.

  14. The Feasibility of Thermal Imaging as a Future Portal Imaging Device for Therapeutic Ultrasound.

    PubMed

    Miloro, Piero; Civale, John; Rivens, Ian; Shaw, Adam

    2016-08-01

    This technical note describes a prototype thermally based portal imaging device that allows mapping of energy deposition on the surface of a tissue mimicking material in a focused ultrasound surgery (FUS) beam by using an infrared camera to measure the temperature change on that surface. The aim of the work is to explore the feasibility of designing and building a system suitable for rapid quality assurance (QA) for use with both ultrasound- and magnetic resonance (MR) imaging-guided clinical therapy ultrasound systems. The prototype was tested using an MR-guided Sonalleve FUS system (with the treatment couch outside the magnet bore). The system's effective thermal noise was 0.02°C, and temperature changes as low as 0.1°C were easily quantifiable. The advantages and drawbacks of thermal imaging for QA are presented through analysis of the results of an experimental session. PMID:27174419

  15. Imaging and radiological interventions in extra-hepatic portal vein obstruction

    PubMed Central

    Pargewar, Sudheer S; Desai, Saloni N; Rajesh, S; Singh, Vaibhav P; Arora, Ankur; Mukund, Amar

    2016-01-01

    Extrahepatic portal vein obstruction (EHPVO) is a primary vascular condition characterized by chronic long standing blockage and cavernous transformation of portal vein with or without additional involvement of intrahepatic branches, splenic or superior mesenteric vein. Patients generally present in childhood with multiple episodes of variceal bleed and EHPVO is the predominant cause of paediatric portal hypertension (PHT) in developing countries. It is a pre-hepatic type of PHT in which liver functions and morphology are preserved till late. Characteristic imaging findings include multiple parabiliary venous collaterals which form to bypass the obstructed portal vein with resultant changes in biliary tree termed portal biliopathy or portal cavernoma cholangiopathy. Ultrasound with Doppler, computed tomography, magnetic resonance cholangiography and magnetic resonance portovenography are non-invasive techniques which can provide a comprehensive analysis of degree and extent of EHPVO, collaterals and bile duct abnormalities. These can also be used to assess in surgical planning as well screening for shunt patency in post-operative patients. The multitude of changes and complications seen in EHPVO can be addressed by various radiological interventional procedures. The myriad of symptoms arising secondary to vascular, biliary, visceral and neurocognitive changes in EHPVO can be managed by various radiological interventions like transjugular intra-hepatic portosystemic shunt, percutaneous transhepatic biliary drainage, partial splenic embolization, balloon occluded retrograde obliteration of portosystemic shunt (PSS) and revision of PSS. PMID:27358683

  16. SILICON PHOTOMULTIPLIERS FOR MEDICAL IMAGING AND DOSIMETRY-AN OVERVIEW.

    PubMed

    Herrnsdorf, L; Caccia, M; Mattsson, S

    2016-06-01

    Silicon photomultipliers (SiPMs) are an enabling solid-state technology for low light sensing, with single photon sensitivity and photon number resolving capability. They feature an extremely high internal gain at the 10(6) level, comparable to photomultiplier tubes (PMTs), with the advantage of low operating voltage (~50 V compared to ~1000 V for PMT) and low energy consumption. The solid-state technology makes SiPMs compact, insensitive to magnetic fields and with an extreme flexibility in the design to cope with different applications. The fast development of the multiplication avalanche opens up the possibility to achieve time resolution at the 30 ps level. Dynamic range is however limited compared to PMT and the dark count rate relatively high, yet today at the level of 50 kHz/mm(2) at room temperature. Interfaced with scintillation material, SiPMs provide a powerful platform for medical imaging applications (in positron emission tomography/computed tomography and in positron emission tomography/magnetic resonance), for X-ray quality control as well as for novel compact radiation protection instruments. This article gives an overview of SiPMs for medical imaging and dosimetry. In addition, a learning and training program targeted to graduate students is described. PMID:27103639

  17. Dose reconstruction for intensity-modulated radiation therapy using a non-iterative method and portal dose image

    NASA Astrophysics Data System (ADS)

    Yeo, Inhwan Jason; Jung, Jae Won; Chew, Meng; Kim, Jong Oh; Wang, Brian; Di Biase, Steven; Zhu, Yunping; Lee, Dohyung

    2009-09-01

    A straightforward and accurate method was developed to verify the delivery of intensity-modulated radiation therapy (IMRT) and to reconstruct the dose in a patient. The method is based on a computational algorithm that linearly describes the physical relationship between beamlets and dose-scoring voxels in a patient and the dose image from an electronic portal imaging device (EPID). The relationship is expressed in the form of dose response functions (responses) that are quantified using Monte Carlo (MC) particle transport techniques. From the dose information measured by the EPID the received patient dose is reconstructed by inversely solving the algorithm. The unique and novel non-iterative feature of this algorithm sets it apart from many existing dose reconstruction methods in the literature. This study presents the algorithm in detail and validates it experimentally for open and IMRT fields. Responses were first calculated for each beamlet of the selected fields by MC simulation. In-phantom and exit film dosimetry were performed on a flat phantom. Using the calculated responses and the algorithm, the exit film dose was used to inversely reconstruct the in-phantom dose, which was then compared with the measured in-phantom dose. The dose comparison in the phantom for all irradiated fields showed a pass rate of higher than 90% dose points given the criteria of dose difference of 3% and distance to agreement of 3 mm.

  18. Integrated megavoltage portal imaging with a 1.5 T MRI linac

    NASA Astrophysics Data System (ADS)

    Raaymakers, B. W.; de Boer, J. C. J.; Knox, C.; Crijns, S. P. M.; Smit, K.; Stam, M. K.; van den Bosch, M. R.; Kok, J. G. M.; Lagendijk, J. J. W.

    2011-10-01

    In this note, the feasibility of complementing our hybrid 1.5 T MRI linac (MRL) with a megavoltage (MV) portal imager is investigated. A standard aSi MV detector panel is added to the system and both qualitative and quantitative performances are determined. Simultaneous MR imaging and transmission imaging can be performed without mutual interference. The MV image quality is compromised by beam transmission and longer isocentre distance; still, the field edges and bony anatomy can be detected at very low dose levels of 0.4 cGy. MV imaging integrated with the MRL provides an independent and well-established position verification tool, a field edge check and a calibration for alignment of the coordinate systems of the MRI and the accelerator. The portal imager can also be a valuable means for benchmarking MRI-guided position verification protocols on a patient-specific basis in the introductory phase.

  19. Real-time Cherenkov emission portal imaging during CyberKnife® radiotherapy.

    PubMed

    Roussakis, Yiannis; Zhang, Rongxiao; Heyes, Geoff; Webster, Gareth; Mason, Suzannah; Green, Stuart; Pogue, Brian; Dehghani, Hamid

    2015-11-21

    The feasibility of real-time portal imaging during radiation therapy, through the Cherenkov emission (CE) effect is investigated via a medical linear accelerator (CyberKnife(®)) irradiating a partially-filled water tank with a 60 mm circular beam. A graticule of lead/plywood and a number of tissue equivalent materials were alternatively placed at the beam entrance face while the induced CE at the exit face was imaged using a gated electron-multiplying-intensified-charged-coupled device (emICCD) for both stationary and dynamic scenarios. This was replicated on an Elekta Synergy(®) linear accelerator with portal images acquired using the iViewGT(™) system. Profiles across the acquired portal images were analysed to reveal the potential resolution and contrast limits of this novel CE based portal imaging technique and compared against the current standard. The CE resolution study revealed that using the lead/plywood graticule, separations down to 3.4  ±  0.5 mm can be resolved. A 28 mm thick tissue-equivalent rod with electron density of 1.69 relative to water demonstrated a CE contrast of 15% through air and 14% through water sections, as compared to a corresponding contrast of 19% and 12% using the iViewGT(™) system. For dynamic scenarios, video rate imaging with 30 frames per second was achieved. It is demonstrated that CE-based portal imaging is feasible to identify both stationary and dynamic objects within a CyberKnife(®) radiotherapy treatment field. PMID:26513015

  20. Real-time Cherenkov emission portal imaging during CyberKnife® radiotherapy

    NASA Astrophysics Data System (ADS)

    Roussakis, Yiannis; Zhang, Rongxiao; Heyes, Geoff; Webster, Gareth; Mason, Suzannah; Green, Stuart; Pogue, Brian; Dehghani, Hamid

    2015-11-01

    The feasibility of real-time portal imaging during radiation therapy, through the Cherenkov emission (CE) effect is investigated via a medical linear accelerator (CyberKnife®) irradiating a partially-filled water tank with a 60 mm circular beam. A graticule of lead/plywood and a number of tissue equivalent materials were alternatively placed at the beam entrance face while the induced CE at the exit face was imaged using a gated electron-multiplying-intensified-charged-coupled device (emICCD) for both stationary and dynamic scenarios. This was replicated on an Elekta Synergy® linear accelerator with portal images acquired using the iViewGT™ system. Profiles across the acquired portal images were analysed to reveal the potential resolution and contrast limits of this novel CE based portal imaging technique and compared against the current standard. The CE resolution study revealed that using the lead/plywood graticule, separations down to 3.4  ±  0.5 mm can be resolved. A 28 mm thick tissue-equivalent rod with electron density of 1.69 relative to water demonstrated a CE contrast of 15% through air and 14% through water sections, as compared to a corresponding contrast of 19% and 12% using the iViewGT™ system. For dynamic scenarios, video rate imaging with 30 frames per second was achieved. It is demonstrated that CE-based portal imaging is feasible to identify both stationary and dynamic objects within a CyberKnife® radiotherapy treatment field.

  1. Assessment of the influence of a carbon fiber tabletop on portal imaging

    NASA Astrophysics Data System (ADS)

    Misiarz, Agnieszka; Krawczyk, Paweł; Swat, Kaja; Andrasiak, Michał

    2013-06-01

    The purpose of this paper was to investigate beam attenuation caused by a carbon-fiber tabletop and its influence on portal image quality. The dose was measured by a Farmer type jonization chamber. The measurements of the portal image quality were performed with an EPID QC phantom for 6 MV beam for a specified field size (covering all test elements of the phantom completely -26×26 cm2 in the isocenter, SSD 96.2 cm) and various portal—isocenter distances. The beam attenuation factor was measured for Polkam 16 treatment table with a carbon fiber tabletop. Carbon fiber tabletop induces beam attenuation in vertical direction by a factor of 3.39%. The lowest maximum deviation to the regression line for linearity was measured for 40 cm portal—phantom distance. The lowest signal to noise ratio was observed for the portal—phantom distance of 30 cm. This factor dropped by 9% for images with a tabletop. The difference in high contrast: horizontal is 3.64; 0.32; 3.25 for 50 cm, 40 cm and 30 cm respectively and vertical—3.64%; 0.32%; 4.01% for 50 cm, 40 cm and 30 cm respectively. The visibility of the holes with the smallest diameters (1 mm) is the same for 50 and 40 cm while it is better for 30 cm, as can be expected due to the lower SNR. Carbon-fiber inserts, tabletops play a vital role in modern radiotherapy. One of the most important advantages of carbon-fiber tabletops is the lack of the gantry direction limitations. In this paper the attenuation of a carbon-fiber tabletop and its influence on a portal image quality were investigated. Dose attenuation effects, comparable to other measurements, were found. That effect influences dose distribution delivered to the target volume and can increase the time of irradiation needed to take a portal image. It has been found that the best conditions for taking portal image occur when the distance from the phantom (patient) to the portal is 40 cm and the portal is parallel to the tabletop. In such conditions one observes the

  2. The landsat image mosaic of the Antarctica Web Portal

    USGS Publications Warehouse

    Rusanowski, C.J.

    2007-01-01

    People believe what they can see. The Poles exist as a frozen dream to most people. The International Polar Year wants to break the ice (so to speak), open up the Poles to the general public, support current polar research, and encourage new research projects. The IPY officially begins in March, 2007. As part of this effort, the U.S. Geological Survey (USGS) and the British Antarctic Survey (BAS), with funding from the National Science Foundation (NSF), are developing three Landsat mosaics of Antarctica and an Antarctic Web Portal with a Community site and an online map viewer. When scientists are able to view the entire scope of polar research, they will be better able to collaborate and locate the resources they need. When the general public more readily sees what is happening in the polar environments, they will understand how changes to the polar areas affect everyone.

  3. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    SciTech Connect

    Cao Yue; Wang Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  4. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    PubMed Central

    Cao, Yue; Wang, Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  5. Three-dimensional portal image-based dose reconstruction in a virtual phantom for rapid evaluation of IMRT plans.

    PubMed

    Ansbacher, W

    2006-09-01

    A new method for rapid evaluation of intensity modulated radiation therapy (IMRT) plans has been developed, using portal images for reconstruction of the dose delivered to a virtual three-dimensional (3D) phantom. This technique can replace an array of less complete but more time-consuming measurements. A reference dose calculation is first created by transferring an IMRT plan to a cylindrical phantom, retaining the treatment gantry angles. The isocenter of the fields is placed on or near the phantom axis. This geometry preserves the relative locations of high and low dose regions and has the required symmetry for the dose reconstruction. An electronic portal image (EPI) is acquired for each field, representing the dose in the midplane of a virtual phantom. The image is convolved with a kernel to correct for the lack of scatter, replicating the effect of the cylindrical phantom surrounding the dose plane. This avoids the need to calculate fluence. Images are calibrated to a reference field that delivers a known dose to the isocenter of this phantom. The 3D dose matrix is reconstructed by attenuation and divergence corrections and summed to create a dose matrix (PI-dose) on the same grid spacing as the reference calculation. Comparison of the two distributions is performed with a gradient-weighted 3D dose difference based on dose and position tolerances. Because of its inherent simplicity, the technique is optimally suited for detecting clinically significant variances from a planned dose distribution, rather than for use in the validation of IMRT algorithms. An analysis of differences between PI-dose and calculation, delta PI, compared to differences between conventional quality assurance (QA) and calculation, delta CQ, was performed retrospectively for 20 clinical IMRT cases. PI-dose differences at the isocenter were in good agreement with ionization chamber differences (mean delta PI = -0.8%, standard deviation sigma = 1.5%, against delta CQ = 0.3%, sigma = 1

  6. CT reconstruction from portal images acquired during volumetric-modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Poludniowski, G.; Thomas, M. D. R.; Evans, P. M.; Webb, S.

    2010-10-01

    Volumetric-modulated arc therapy (VMAT), a form of intensity-modulated arc therapy (IMAT), has become a topic of research and clinical activity in recent years. As a form of arc therapy, portal images acquired during the treatment fraction form a (partial) Radon transform of the patient. We show that these portal images, when used in a modified global cone-beam filtered backprojection (FBP) algorithm, allow a surprisingly recognizable CT-volume to be reconstructed. The possibility of distinguishing anatomy in such VMAT-CT reconstructions suggests that this could prove to be a valuable treatment position-verification tool. Further, some potential for local-tomography techniques to improve image quality is shown.

  7. Verification of segmented beam delivery using a commercial electronic portal imaging device.

    PubMed

    Curtin-Savard, A J; Podgorsak, E B

    1999-05-01

    In modern radiotherapy, three-dimensional conformal dose distributions are achieved through the delivery of beam ports having precalculated planar distributions of photon beam intensity. Although sophisticated means to calculate and deliver these spatially modulated beams have been developed, means to verify their actual delivery are relatively cumbersome, making equipment and treatment quality assurance difficult to enforce. An electronic portal imaging device of the scanning liquid ionization chamber type yields images which, once calibrated from a previously determined calibration curve, provide highly precise planar maps of the incident dose rate. For verification of an intensity-modulated beam delivered in the segmented approach with a multileaf collimator, a portal image is acquired for each subfield of the leaf sequence. Subsequent to their calibration, the images are multiplied by their respective associated monitor unit settings, and summed to produce a planar dose distribution at the measurement depth in phantom. The excellent agreement of our portal imager measurements with calculations of our treatment planning system and measurements with a one-dimensional beam profiler attests to the usefulness of this method for the planar verification of intensity-modulated fields produced in the segmented approach on a computerized linear accelerator equipped with a multileaf collimator. PMID:10360535

  8. Motion estimation accuracy for visible-light/gamma-ray imaging fusion for portable portal monitoring

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Gee, Timothy F.

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Portable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest. We have constructed a prototype, rapid-deployment portal gamma-ray imaging portal monitor that uses machine vision and gamma-ray imaging to monitor multiple lanes of traffic. Vehicles are detected and tracked by using point detection and optical flow methods as implemented in the OpenCV software library. Points are clustered together but imperfections in the detected points and tracks cause errors in the accuracy of the vehicle position estimates. The resulting errors cause a "blurring" effect in the gamma image of the vehicle. To minimize these errors, we have compared a variety of motion estimation techniques including an estimate using the median of the clustered points, a "best-track" filtering algorithm, and a constant velocity motion estimation model. The accuracy of these methods are contrasted and compared to a manually verified ground-truth measurement by quantifying the rootmean- square differences in the times the vehicles cross the gamma-ray image pixel boundaries compared with a groundtruth manual measurement.

  9. LIVER FUNCTION AFTER IRRADIATION BASED UPON CT PORTAL VEIN PERFUSION IMAGING

    PubMed Central

    Cao, Yue; Pan, Charlie; Balter, James M.; Platt, Joel F.; Francis, Isaac R.; Knol, James A.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.

    2009-01-01

    Purpose The role of radiation in the treatment of intrahepatic cancer is limited by the development of radiation-induced liver disease (RILD), which occurs weeks after the course of radiation is completed. We hypothesized that, as the pathophysiology of RILD is veno-occlusive disease, we could assess individual and regional liver sensitivity to radiation by measuring liver perfusion during a course of treatment using dynamic contrast enhanced CT (DCE-CT) scanning. Materials and Methods Patients with intrahepatic cancer undergoing conformal radiotherapy underwent DCE-CT (to measure perfusion distribution) and an indocyanine extraction study (to measure liver function) prior to, during, and one month after treatment. We wished to determine if the residual functioning liver (i.e. those regions showing portal vein perfusion) could be used to predict overall liver function after irradiation. Results Radiation doses from 45 to 84 Gy resulted in undectable regional portal vein perfusion one month after treatment. The volume of each liver with undectable portal vein perfusion ranged from 0% to 39% and depended both on the patient’s sensitivity and dose distribution. There was a significant correlation between indocyanine green clearance and the mean of the estimated portal vein perfusion in the functional liver parenchyma (P < .001). Conclusion This study reveals substantial individual variability in the sensitivity of the liver to irradiation. In addition, these findings suggest that hepatic perfusion imaging may be a marker for liver function, and has the potential to be a tool for individualizing therapy. PMID:17855011

  10. Portal imaging practice patterns of children's oncology group institutions: Dosimetric assessment and recommendations for minimizing unnecessary exposure

    SciTech Connect

    Olch, Arthur J. . E-mail: aolch@chla.usc.edu; Geurts, Mark; Thomadsen, Bruce; Famiglietti, Robin; Chang, Eric L.

    2007-02-01

    Purpose: To determine and analyze the dosimetric consequences of current portal imaging practices for pediatric patients, and make specific recommendations for reducing exposure from portal imaging procedures. Methods and Materials: A survey was sent to approximately 250 Children's Oncology Group (COG) member institutions asking a series of questions about their portal imaging practices. Three case studies are presented with dosimetric analysis to illustrate the magnitude of unintended dose received by nontarget tissues using the most common techniques from the survey. Results: The vast majority of centers use double-exposure portal image techniques with a variety of open field margins. Only 17% of portal images were obtained during treatment, and for other imaging methods, few centers subtract monitor units from the treatment delivery. The number of monitor units used was nearly the same regardless of imager type, including electronic portal imaging devices. Eighty-six percent imaged all fields the first week and 17% imaged all fields every week. An additional 1,112 cm{sup 3} of nontarget tissue received 1 Gy in one of the example cases. Eight new recommendations are made, which will lower nontarget radiation doses with minimal impact on treatment verification accuracy. Conclusion: Based on the survey, changes can be made in portal imaging practices that will lower nontarget doses. It is anticipated that treatment verification accuracy will be minimally affected. Specific recommendations made to decrease the imaging dose and help lower the rate of radiation-induced secondary cancers in children are proposed for inclusion in future COG protocols using radiation therapy.

  11. A Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images

    SciTech Connect

    Elmpt, Wouter J. C. van; Nijsten, Sebastiaan M. J. J. G.; Schiffeleers, Robert F. H.; Dekker, Andre L. A. J.; Mijnheer, Ben J.; Lambin, Philippe; Minken, Andre W. H.

    2006-07-15

    The verification of intensity-modulated radiation therapy (IMRT) is necessary for adequate quality control of the treatment. Pretreatment verification may trace the possible differences between the planned dose and the actual dose delivered to the patient. To estimate the impact of differences between planned and delivered photon beams, a three-dimensional (3-D) dose verification method has been developed that reconstructs the dose inside a phantom. The pretreatment procedure is based on portal dose images measured with an electronic portal imaging device (EPID) of the separate beams, without the phantom in the beam and a 3-D dose calculation engine based on the Monte Carlo calculation. Measured gray scale portal images are converted into portal dose images. From these images the lateral scattered dose in the EPID is subtracted and the image is converted into energy fluence. Subsequently, a phase-space distribution is sampled from the energy fluence and a 3-D dose calculation in a phantom is started based on a Monte Carlo dose engine. The reconstruction model is compared to film and ionization chamber measurements for various field sizes. The reconstruction algorithm is also tested for an IMRT plan using 10 MV photons delivered to a phantom and measured using films at several depths in the phantom. Depth dose curves for both 6 and 10 MV photons are reconstructed with a maximum error generally smaller than 1% at depths larger than the buildup region, and smaller than 2% for the off-axis profiles, excluding the penumbra region. The absolute dose values are reconstructed to within 1.5% for square field sizes ranging from 5 to 20 cm width. For the IMRT plan, the dose was reconstructed and compared to the dose distribution with film using the gamma evaluation, with a 3% and 3 mm criterion. 99% of the pixels inside the irradiated field had a gamma value smaller than one. The absolute dose at the isocenter agreed to within 1% with the dose measured with an ionization

  12. Accurate setup of paraspinal patients using a noninvasive patient immobilization cradle and portal imaging

    SciTech Connect

    Lovelock, D. Michael; Hua Chiaho; Wang Ping; Hunt, Margie; Fournier-Bidoz, Nathalie; Yenice, Kamil; Toner, Sean; Lutz, Wendell; Amols, Howard; Bilsky, Mark; Fuks, Zvi; Yamada, Yoshiya

    2005-08-15

    Because of the proximity of the spinal cord, effective radiotherapy of paraspinal tumors to high doses requires highly conformal dose distributions, accurate patient setup, setup verification, and patient immobilization. An immobilization cradle has been designed to facilitate the rapid setup and radiation treatment of patients with paraspinal disease. For all treatments, patients were set up to within 2.5 mm of the design using an amorphous silicon portal imager. Setup reproducibility of the target using the cradle and associated clinical procedures was assessed by measuring the setup error prior to any correction. From 350 anterior/posterior images, and 303 lateral images, the standard deviations, as determined by the imaging procedure, were 1.3 m, 1.6 m, and 2.1 in the ant/post, right/left, and superior/inferior directions. Immobilization was assessed by measuring patient shifts between localization images taken before and after treatment. From 67 ant/post image pairs and 49 lateral image pairs, the standard deviations were found to be less than 1 mm in all directions. Careful patient positioning and immobilization has enabled us to develop a successful clinical program of high dose, conformal radiotherapy of paraspinal disease using a conventional Linac equipped with dynamic multileaf collimation and an amorphous silicon portal imager.

  13. Automatic registration of portal images and volumetric CT for patient positioning in radiation therapy.

    PubMed

    Khamene, Ali; Bloch, Peter; Wein, Wolfgang; Svatos, Michelle; Sauer, Frank

    2006-02-01

    The efficacy of radiation therapy treatment depends on the patient setup accuracy at each daily fraction. A significant problem is reproducing the patient position during treatment planning for every fraction of the treatment process. We propose and evaluate an intensity based automatic registration method using multiple portal images and the pre-treatment CT volume. We perform both geometric and radiometric calibrations to generate high quality digitally reconstructed radiographs (DRRs) that can be compared against portal images acquired right before treatment dose delivery. We use a graphics processing unit (GPU) to generate the DRRs in order to gain computational efficiency. We also perform a comparative study on various similarity measures and optimization procedures. Simple similarity measure such as local normalized correlation (LNC) performs best as long as the radiometric calibration is carefully done. Using the proposed method, we achieved better than 1mm average error in repositioning accuracy for a series of phantom studies using two open field (i.e., 41 cm2) portal images with 90 degrees vergence angle. PMID:16150629

  14. Physical characterization and optimal magnification of a portal imaging system

    NASA Astrophysics Data System (ADS)

    Bissonnette, Jean-Pierre; Jaffray, David A.; Fenster, Aaron; Munro, Peter

    1992-06-01

    One problem in radiation therapy is ensuring accurate positioning of the patient so that the prescribed dose is delivered to the diseased regions while healthy tissues are spared. Positioning is usually assessed by exposing film to the high-energy treatment beam. Unfortunately, these films exhibit poor image quality (primarily due to low subject contrast) and the development delays make film impractical to check patient positioning routinely. Therefore, we have been developing a digital video-based imaging system to replace film. The system consists of a copper plate/fluorescent screen detector, a 45 degree(s) mirror, and a TV camera equipped with a large aperture lens. We have determined the signal and noise transfer properties of the imaging system by measuring its MTF(f) and NPS(f) and used these valued to estimate the optimal magnification for the imaging system. We have found that the optimal magnification is 2.3 - 2.5 when optimizing signal transfer (spatial resolution) alone; however, the optimal magnification is only 1.5 - 2.0 if SNR transfer is considered.

  15. Model-based pancreas segmentation in portal venous phase contrast-enhanced CT images.

    PubMed

    Hammon, Matthias; Cavallaro, Alexander; Erdt, Marius; Dankerl, Peter; Kirschner, Matthias; Drechsler, Klaus; Wesarg, Stefan; Uder, Michael; Janka, Rolf

    2013-12-01

    This study aims to automatically detect and segment the pancreas in portal venous phase contrast-enhanced computed tomography (CT) images. The institutional review board of the University of Erlangen-Nuremberg approved this study and waived the need for informed consent. Discriminative learning is used to build a pancreas tissue classifier incorporating spatial relationships between the pancreas and surrounding organs and vessels. Furthermore, discrete cosine and wavelet transforms are used to build texture features to describe local tissue appearance. Classification is used to guide a constrained statistical shape model to fit the data. The algorithm to detect and segment the pancreas was evaluated on 40 consecutive CT data that were acquired in the portal venous contrast agent phase. Manual segmentation of the pancreas was carried out by experienced radiologists and served as reference standard. Threefold cross validation was performed. The algorithm-based detection and segmentation yielded an average surface distance of 1.7 mm and an average overlap of 61.2 % compared with the reference standard. The overall runtime of the system was 20.4 min. The presented novel approach enables automatic pancreas segmentation in portal venous phase contrast-enhanced CT images which are included in almost every clinical routine abdominal CT examination. Reliable pancreatic segmentation is crucial for computer-aided detection systems and an organ-specific decision support. PMID:23471751

  16. Portal imaging: Performance improvement in noise reduction by means of wavelet processing.

    PubMed

    González-López, Antonio; Morales-Sánchez, Juan; Larrey-Ruiz, Jorge; Bastida-Jumilla, María-Consuelo; Verdú-Monedero, Rafael

    2016-01-01

    This paper discusses the suitability, in terms of noise reduction, of various methods which can be applied to an image type often used in radiation therapy: the portal image. Among these methods, the analysis focuses on those operating in the wavelet domain. Wavelet-based methods tested on natural images--such as the thresholding of the wavelet coefficients, the minimization of the Stein unbiased risk estimator on a linear expansion of thresholds (SURE-LET), and the Bayes least-squares method using as a prior a Gaussian scale mixture (BLS-GSM method)--are compared with other methods that operate on the image domain--an adaptive Wiener filter and a nonlocal mean filter (NLM). For the assessment of the performance, the peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM), the Pearson correlation coefficient, and the Spearman rank correlation (ρ) coefficient are used. The performance of the wavelet filters and the NLM method are similar, but wavelet filters outperform the Wiener filter in terms of portal image denoising. It is shown how BLS-GSM and NLM filters produce the smoothest image, while keeping soft-tissue and bone contrast. As for the computational cost, filters using a decimated wavelet transform (decimated thresholding and SURE-LET) turn out to be the most efficient, with calculation times around 1 s. PMID:26602966

  17. Daily electronic portal imaging of implanted gold seed fiducials in patients undergoing radiotherapy after radical prostatectomy

    SciTech Connect

    Schiffner, Daniel C.; Gottschalk, Alexander R. . E-mail: gottschalk@radonc17.ucsf.edu; Lometti, Michael M.S.; Aubin, Michele M.Sc.E.E.; Pouliot, Jean; Speight, Joycelyn; Hsu, I.-Chow; Shinohara, Katsuto; Roach, Mack

    2007-02-01

    Purpose: The aim of this study was to measure interfraction prostate bed motion, setup error, and total positioning error in 10 consecutive patients undergoing postprostatectomy radiotherapy. Methods and Materials: Daily image-guided target localization and alignment using electronic portal imaging of gold seed fiducials implanted into the prostate bed under transrectal ultrasound guidance was used in 10 patients undergoing adjuvant or salvage radiotherapy after prostatectomy. Prostate bed motion, setup error, and total positioning error were measured by analysis of gold seed fiducial location on the daily electronic portal images compared with the digitally reconstructed radiographs from the treatment-planning CT. Results: Mean ({+-} standard deviation) prostate bed motion was 0.3 {+-} 0.9 mm, 0.4 {+-} 2.4 mm, and -1.1 {+-} 2.1 mm in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) axes, respectively. Mean set-up error was 0.1 {+-} 4.5 mm, 1.1 {+-} 3.9 mm, and -0.2 {+-} 5.1 mm in the LR, SI, and AP axes, respectively. Mean total positioning error was 0.2 {+-} 4.5 mm, 1.2 {+-} 5.1 mm, and -0.3 {+-} 4.5 mm in the LR, SI, and AP axes, respectively. Total positioning errors >5 mm occurred in 14.1%, 38.7%, and 28.2% of all fractions in the LR, SI, and AP axes, respectively. There was no significant migration of the gold marker seeds. Conclusions: This study validates the use of daily image-guided target localization and alignment using electronic portal imaging of implanted gold seed fiducials as a valuable method to correct for interfraction target motion and to improve precision in the delivery of postprostatectomy radiotherapy.

  18. Optimization of accelerator target and detector for portal imaging using Monte Carlo simulation and experiment

    NASA Astrophysics Data System (ADS)

    Flampouri, S.; Evans, P. M.; Verhaegen, F.; Nahum, A. E.; Spezi, E.; Partridge, M.

    2002-09-01

    Megavoltage portal images suffer from poor quality compared to those produced with kilovoltage x-rays. Several authors have shown that the image quality can be improved by modifying the linear accelerator to generate more low-energy photons. This work addresses the problem of using Monte Carlo simulation and experiment to optimize the beam and detector combination to maximize image quality for a given patient thickness. A simple model of the whole imaging chain was developed for investigation of the effect of the target parameters on the quality of the image. The optimum targets (6 mm thick aluminium and 1.6 mm copper) were installed in an Elekta SL25 accelerator. The first beam will be referred to as Al6 and the second as Cu1.6. A tissue-equivalent contrast phantom was imaged with the 6 MV standard photon beam and the experimental beams with standard radiotherapy and mammography film/screen systems. The arrangement with a thin Al target/mammography system improved the contrast from 1.4 cm bone in 5 cm water to 19% compared with 2% for the standard arrangement of a thick, high-Z target/radiotherapy verification system. The linac/phantom/detector system was simulated with the BEAM/EGS4 Monte Carlo code. Contrast calculated from the predicted images was in good agreement with the experiment (to within 2.5%). The use of MC techniques to predict images accurately, taking into account the whole imaging system, is a powerful new method for portal imaging system design optimization.

  19. A simple method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter

    SciTech Connect

    Du Weiliang; Yang, James; Luo Dershan; Martel, Mary

    2010-05-15

    Purpose: The aim of this study was to develop a computerized method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter. Three types of graticules were included in this study: Megavoltage (MV) mechanical graticule, MV electronic portal imaging device digital graticule, and kilovoltage (kV) on-board imaging digital graticule. Methods: A metal ball bearing (BB) was imaged with MV and kV x-ray beams in a procedure similar to a Winston-Lutz test. The radiation fields, graticules, and BB were localized in eight portal images using Hough transform-based computer algorithms. The center of the BB served as a static reference point in the 3D space so that the distances between the graticule centers and the radiation field centers were calculated. The radiation isocenter was determined from the radiation field centers at different gantry angles. Results: Misalignments of MV and kV portal imaging graticules varied with the gantry or x-ray source angle as a result of mechanical imperfections of the linear accelerator and its imaging system. While the three graticules in this study were aligned to the radiation field centers and the radiation isocenter within 2.0 mm, misalignments of 1.5-2.0 mm were found at certain gantry angles. These misalignments were highly reproducible with the gantry rotation. Conclusions: A simple method was developed to quantify the alignments of portal image graticules directly against the radiation field centers or the radiation isocenter. The advantage of this method is that it does not require the BB to be placed exactly at the radiation isocenter through a precalibrated surrogating device such as room lasers or light field crosshairs. The present method is useful for radiation therapy modalities that require high-precision portal imaging such as image-guided stereotactic radiotherapy.

  20. A gradient feature weighted Minimax algorithm for registration of multiple portal images to 3DCT volumes in prostate radiotherapy

    SciTech Connect

    Chelikani, Sudhakar . E-mail: sudhakar.chelikani@yale.edu; Purushothaman, Kailasnath; Knisely, Jonathan; Chen, Zhe; Nath, Ravinder; Bansal, Ravi; Duncan, James

    2006-06-01

    Purpose: To develop an accurate, fast, and robust algorithm for registering portal and computed tomographic (CT) images for radiotherapy using a combination of sparse and dense field data that complement each other. Methods and Materials: Gradient Feature Weighted Minimax (GFW Minimax) method was developed to register multiple portal images to three-dimensional CT images. Its performance was compared with that of three others: Minimax, Mutual Information, and Gilhuijs' method. Phantom and prostate cancer patient images were used. Effects of registration errors on tumor control probability (TCP) and normal tissue complication probability (NTCP) were investigated as a relative measure. Results: Registration of four portals to CTs resulted in 30% lower error when compared with registration with two portals. Computation time increased by nearly 50%. GFW Minimax performed the best, followed by Gilhuijs' method, the Minimax method, and Mutual Information. Conclusions: Using four portals instead of two lowered the registration error. Reduced fields of view images with full feature sets gave similar results in shorter times as full fields of view images. In clinical situations where soft tissue targets are of importance, GFW Minimax algorithm was significantly more accurate and robust. With registration errors lower than 1 mm, margins may be scaled down to 4 mm without adversely affecting TCP and NTCP.

  1. New geo-portal for MODIS/SEVIRI image products with geolocation-based retrieval functionality

    NASA Astrophysics Data System (ADS)

    Sevilla, Jorge; Julien, Yves; Sória, Guillem; Sobrino, José A.; Plaza, Antonio

    2015-01-01

    A large number of remote sensing data sets have been collected in recent years by Earth observation instruments such as the moderate resolution imaging spectroradiometer (MODIS) aboard the Terra/Aqua satellite and the spinning enhanced visible and infrared imager (SEVIRI) aboard the geostationary platform Meteosat Second Generation. The advanced remote sensing products resulting from the analysis of these data are useful in a wide variety of applications but require significant resources in terms of storage, retrieval, and analysis. Despite the wide availability of these MODIS/SEVIRI products, the data coming from these instruments are spread among different locations and retrieved from different sources, and there is no common data repository from which the data or the associated products can be retrieved. We take a first step toward the development of a geo-portal for storing and efficiently retrieving MODIS/SEVIRI remote sensing products. The products are obtained using an automatic system that processes the data as soon as they are provided by the collecting antennas, and then the final products are uploaded with a one day delay in the geo-portal. Our focus in this work is on describing the design and efficient implementation of the geo-portal, which allows for a user-friendly and effective access to a full repository of MODIS/SEVIRI advanced products (comprising tens of terabytes of data) using geolocation retrieval capabilities. The geo-portal has been implemented as a web application composed of different layers. Its modular design provides quality of service and scalability (capacity for growth without any quality losing), allowing for the addition of components without the need to modify the entire system. On the client layer, an intuitive web browser interface provides users with remote access to the system. On the server layer, the system provides advanced data management and storage capabilities. On the storage layer, the system provides a secure

  2. Portal dose image prediction for in vivo treatment verification completely based on EPID measurements

    SciTech Connect

    Zijtveld, Mathilda van; Dirkx, Maarten; Breuers, Marcel; Boer, Hans; Heijmen, Ben de

    2009-03-15

    A high dosimetric accuracy is required for radiotherapy treatments where IMRT in combination with narrow treatment margins is applied to achieve optimally conformal dose distributions. In order to routinely verify the in vivo fluence delivery (i.e., during the actual patient treatment), our method for predicting portal dose images with a patient in the beam was validated. A unique feature of this method is that it is fully based on calibration measurements with an EPID. The portal dose image (PDI) behind a patient is dependent on the transmission of primary radiation through the patient and a contribution of scattered radiation from the patient. To derive both components, the patient geometry as observed in the planning CT scan is converted into an equivalent homogeneous phantom. A limited set of EPID measurements is required to derive the input parameters of this model. The accuracy of the in vivo PDI prediction was verified using measurements behind phantoms and four prostate cancer patients treated with IMRT. Behind homogeneous slab phantoms, the local differences between measured and predicted PDIs were within 2% inside the field, while behind a lung and a pelvic phantom, the agreement was within 3% or within 3 mm in regions with steep gradients. Outside the fields, the PDIs agreed within 2% of the global dose maximum. Evaluation of the in vivo PDI measurements behind patients showed that, on average, 87% of the pixels inside the field fulfilled the 3% local dose and 3 mm distance-to-agreement criteria. For half of the failing pixels the differences occurred due to changes in patient geometry with respect to the planning CT or due to beam attenuation by the treatment couch that was not accounted for. A fully EPID-based method for predicting portal dose images using the planning CT scan has been implemented and validated for phantoms and clinical patients.

  3. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device

    SciTech Connect

    Samant, Sanjiv S.; Gopal, Arun

    2006-08-15

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25x25 cm{sup 2} CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240x1024 pixels, 250 {mu}m pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW{sup PLUS}) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was

  4. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-08-01

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25 X 25 cm2 CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240 X 1024 pixels, 250 microm pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW(PLUS)) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was developed

  5. Analysis of interfraction and intrafraction variation during tangential breast irradiation with an electronic portal imaging device

    SciTech Connect

    Smith, Ryan P.; Bloch, Peter; Harris, Eleanor E. . E-mail: harris@xrt.upenn.edu; McDonough, James; Sarkar, Abhirup; Kassaee, Alireza; Avery, Steven; Solin, Lawrence J.

    2005-06-01

    Purpose: To evaluate the daily setup variation and the anatomic movement of the heart and lungs during breast irradiation with tangential photon beams, as measured with an electronic portal imaging device. Methods and materials: Analysis of 1,709 portal images determined changes in the radiation field during a treatment course in 8 patients. Values obtained for every image included central lung distance (CLD) and area of lung and heart within the irradiated field. The data from these measurements were used to evaluate variation from setup between treatment days and motion due to respiration and/or patient movement during treatment delivery. Results: The effect of respiratory motion and movement during treatment was minimal: the maximum range in CLD for any patient on any day was 0.25 cm. The variation caused by day-to-day setup variation was greater, with CLD values for patients ranging from 0.59 cm to 2.94 cm. Similar findings were found for heart and lung areas. Conclusions: There is very little change in CLD and corresponding lung and heart area during individual radiation treatment fractions in breast tangential fields, compared with a relatively greater amount of variation that occurs between days.

  6. Development of Automated Image Analysis Tools for Verification of Radiotherapy Field Accuracy with AN Electronic Portal Imaging Device.

    NASA Astrophysics Data System (ADS)

    Dong, Lei

    1995-01-01

    The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5^ circ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1^ circ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross -correlation technique were

  7. Simulations of three-dimensional radiometric imaging of extended sources in a security screening portal

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.; Bowring, Nick

    2015-10-01

    This paper investigates by simulation the use of the three-dimensional aperture synthesis imaging technique to image three-dimensional extended sources. Software was written to access the three-dimensional information from computer graphics models in the formats of *.dxf and *.3ds and use these to generate synthetic cross-correlations, as if they would have been generated by an aperture synthesis antenna/receiver array measuring the radiometric emission from the three-dimensional object. A three-dimensional (near-field) aperture synthesis imaging algorithm generates [1] a voxel image of the three-dimensional object. Images created from a sphere indicate faithful reproduction about a single phase centre when the radius of the sphere is less than the Fresnel scale. However, for larger spheres, definition in the threedimensional imagery suffers and a phenomenon, referred to in this paper as Fresnel noise, appears in the image. Images of objects larger than the Fresnel scale can be created by having multiple smaller images, each having a size approximately of the Fresnel scale and centred on separate phase centres. Using the software to generate threedimensional imagery of a person, to demonstrate capabilities for portal security screening, indicates the technique works to first order. Improvements are needed in the software to improve the spatial sampling of the radiometric fields from the three-dimensional objects and implement a volumetric image mosaicking technique to remove the Fresnel noise.

  8. A novel method for automatic detection of patient out-of-plane rotation by comparing a single portal image to a reference image

    SciTech Connect

    Jabbari, Keyvan; Pistorius, Stephen

    2005-12-15

    A novel method for detecting out-of-plane patient rotation by comparing a single portal image to its reference image is presented. Out-of-plane rotation results in an apparent distortion of the anatomy in a portal image. This distortion can be mathematically predicted with the magnification varying at each point in the image. While scaling of points at equal depth is invariant under in-plane rotation or translation, and changes equally in both dimensions for an axial shift of the patient, a change of scaling in only one dimension can be ascribed to an out-of-plane rotation. For the two conditions that are used in this study, it is shown that out-of-plane rotation yields a different scaling of the image in two perpendicular directions and therefore it is feasible to calculate the scale factors as a function of out-of-plane rotation. Conversely the recovery of scale factors in two different directions at the same time would enable the magnitude of the out-of-plane rotation to be recovered. The properties of the Fourier transform of the image are used to align the portal image with the reference image (a simulator image or first approved portal image) prior to the recovery of the scale factors. Correlating the Fourier transform of the portal image on a log-scale with that of the reference image enables the scale factors to be automatically extracted from a single portal image. In the two approaches investigated, out-of-plane rotations of up to 41 deg. and 20 deg. (respectively) have been recovered with a maximum error of 2.4 deg. . This technique could be used to automatically detect patient roll or tilt prior to or during a treatment session.

  9. A novel method for automatic detection of patient out-of-plane rotation by comparing a single portal image to a reference image.

    PubMed

    Jabbari, Keyvan; Pistorius, Stephen

    2005-12-01

    A novel method for detecting out-of-plane patient rotation by comparing a single portal image to its reference image is presented. Out-of-plane rotation results in an apparent distortion of the anatomy in a portal image. This distortion can be mathematically predicted with the magnification varying at each point in the image. While scaling of points at equal depth is invariant under in-plane rotation or translation, and changes equally in both dimensions for an axial shift of the patient, a change of scaling in only one dimension can be ascribed to an out-of-plane rotation. For the two conditions that are used in this study, it is shown that out-of-plane rotation yields a different scaling of the image in two perpendicular directions and therefore it is feasible to calculate the scale factors as a function of out-of-plane rotation. Conversely the recovery of scale factors in two different directions at the same time would enable the magnitude of the out-of-plane rotation to be recovered. The properties of the Fourier transform of the image are used to align the portal image with the reference image (a simulator image or first approved portal image) prior to the recovery of the scale factors. Correlating the Fourier transform of the portal image on a log-scale with that of the reference image enables the scale factors to be automatically extracted from a single portal image. In the two approaches investigated, out-of-plane rotations of up to 41 degrees and 20 degrees (respectively) have been recovered with a maximum error of 2.4 degrees. This technique could be used to automatically detect patient roll or tilt prior to or during a treatment session. PMID:16475767

  10. The Pipeline, Portal and Archive (PPA) System for the WIYN Partial One Degree Imager

    NASA Astrophysics Data System (ADS)

    Rajagopal, Jayadev

    2013-06-01

    The WIYN telescope has recently commissioned the partial One Degree Imager (pODI), which has already demonstrated very high image quality over a wide field. The PPA system was envisioned as the transport, archiving, reduction and discovery system for the complex and high-volume data from this instrument. The building blocks of the PPA are a high-speed transport conduit from the WIYN Observatory to Indiana where the archive resides, a pipeline data reduction system running on an NSF super computing facility (XSEDE) and a data access and discovery Portal. In many ways, the PPA is a forerunner of data systems for the extremely large data from the mega-surveys envisaged for the future. PPA has been designed and executed jointly by the WIYN partnership and Pervasive Technologies Institute (PTI) at IU. NOAO designed the pipeline algorithms and data transport, and PTI hosts the Archive, handles XSEDE computing and developed the Portal. The PPA was deployed for the first semester (2013A) of pODI shared-risk operation with essential services in place. When complete, the PPA will offer users, in addition to advanced data visualization tools, the option of generating pipeline re-runs and a virtual Desktop for limited custom analysis of reduced data. I will describe the development and report on the current status of the PPA system.

  11. Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Chytyk-Praznik, Krista Joy

    Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The

  12. On modelling the kinestatic charge detector for digital radiographic diagnostic and portal imaging.

    PubMed

    Qi, G; Goloubev, M Y; DiBianca, F A; Samant, S

    2002-01-01

    The kinestatic charge detection (KCD) principle has been a digital radiography technique for more than a decade. The advances of the KCD technique have gone from diagnostic imaging to portal imaging. However, little work has been done on understanding the selection of key KCD parameters and relationships between them. In the present study, an engineering model was established that could be used to optimize the placements of key parameters in terms of KCD system mechanical design. In the proposed KCD engineering model, the basic energy conservation law was applied to the process of ion transmission. It allows for the computation of the KCD design parameters such as the optimum grid placement, high voltage board tilt angle and grid wire space, as well as to provide recommendations on high voltage board and electric potentials and their ratio. PMID:12487709

  13. Digital Rocks Portal: a sustainable platform for imaged dataset sharing, translation and automated analysis

    NASA Astrophysics Data System (ADS)

    Prodanovic, M.; Esteva, M.; Hanlon, M.; Nanda, G.; Agarwal, P.

    2015-12-01

    Recent advances in imaging have provided a wealth of 3D datasets that reveal pore space microstructure (nm to cm length scale) and allow investigation of nonlinear flow and mechanical phenomena from first principles using numerical approaches. This framework has popularly been called "digital rock physics". Researchers, however, have trouble storing and sharing the datasets both due to their size and the lack of standardized image types and associated metadata for volumetric datasets. This impedes scientific cross-validation of the numerical approaches that characterize large scale porous media properties, as well as development of multiscale approaches required for correct upscaling. A single research group typically specializes in an imaging modality and/or related modeling on a single length scale, and lack of data-sharing infrastructure makes it difficult to integrate different length scales. We developed a sustainable, open and easy-to-use repository called the Digital Rocks Portal, that (1) organizes images and related experimental measurements of different porous materials, (2) improves access to them for a wider community of geosciences or engineering researchers not necessarily trained in computer science or data analysis. Once widely accepter, the repository will jumpstart productivity and enable scientific inquiry and engineering decisions founded on a data-driven basis. This is the first repository of its kind. We show initial results on incorporating essential software tools and pipelines that make it easier for researchers to store and reuse data, and for educators to quickly visualize and illustrate concepts to a wide audience. For data sustainability and continuous access, the portal is implemented within the reliable, 24/7 maintained High Performance Computing Infrastructure supported by the Texas Advanced Computing Center (TACC) at the University of Texas at Austin. Long-term storage is provided through the University of Texas System Research

  14. Fluorescent Molecular Imaging and Dosimetry Tools in Photodynamic Therapy

    PubMed Central

    Pogue, Brian W.; Samkoe, Kimberley S.; Gibbs-Strauss, Summer L.; Davis, Scott C.

    2013-01-01

    Measurement of fluorescence and phosphorescence in vivo is readily used to quantify the concentration of specific species that are relevant to photodynamic therapy. However, the tools to make the data quantitatively accurate vary considerably between different applications. Sampling of the signal can be done with point samples, such as specialized fiber probes or from bulk regions with either imaging or sampling, and then in broad region image-guided manner. Each of these methods is described below, the application to imaging photosensitizer uptake is discussed, and developing methods to image molecular responses to therapy are outlined. PMID:20552350

  15. Dosimetry for spectral molecular imaging of small animals with MARS-CT

    NASA Astrophysics Data System (ADS)

    Ganet, Noémie; Anderson, Nigel; Bell, Stephen; Butler, Anthony; Butler, Phil; Carbonez, Pierre; Cook, Nicholas; Cotterill, Tony; Marsh, Steven; Panta, Raj Kumar; Laban, John; Walker, Sophie; Yeabsley, Adam; Damet, Jérôme

    2015-03-01

    The Medipix All Resolution Scanner (MARS) spectral CT is intended for small animal, pre-clinical imaging and uses an x-ray detector (Medipix) operating in single photon counting mode. The MARS system provides spectrometric information to facilitate differentiation of tissue types and bio-markers. For longitudinal studies of disease models, it is desirable to characterise the system's dosimetry. This dosimetry study is performed using three phantoms each consisting of a 30 mm diameter homogeneous PMMA cylinder simulating a mouse. The imaging parameters used for this study are derived from those used for gold nanoparticle identification in mouse kidneys. Dosimetry measurement are obtained with thermo-luminescent Lithium Fluoride (LiF:CuMgP) detectors, calibrated in terms of air kerma and placed at different depths and orientations in the phantoms. Central axis TLD air kerma rates of 17.2 (± 0.71) mGy/min and 18.2 (± 0.75) mGy/min were obtained for different phantoms and TLD orientations. Validation measurements were acquired with a pencil ionization chamber, giving an air-kerma rate of 20.3 (±1) mGy/min and an estimated total air kerma of 81.2 (± 4) mGy for a 720 projection acquisition. It is anticipated that scanner design improvements will significantly decrease future dose requirements. The procedures developed in this work will be used for further dosimetry calculations when optimizing image acquisition for the MARS system as it undergoes development towards human clinical applications.

  16. Automated detection of a prostate Ni-Ti stent in electronic portal images

    SciTech Connect

    Carl, Jesper; Nielsen, Henning; Nielsen, Jane; Lund, Bente; Larsen, Erik Hoejkjaer

    2006-12-15

    Planning target volumes (PTV) in fractionated radiotherapy still have to be outlined with wide margins to the clinical target volume due to uncertainties arising from daily shift of the prostate position. A recently proposed new method of visualization of the prostate is based on insertion of a thermo-expandable Ni-Ti stent. The current study proposes a new detection algorithm for automated detection of the Ni-Ti stent in electronic portal images. The algorithm is based on the Ni-Ti stent having a cylindrical shape with a fixed diameter, which was used as the basis for an automated detection algorithm. The automated method uses enhancement of lines combined with a grayscale morphology operation that looks for enhanced pixels separated with a distance similar to the diameter of the stent. The images in this study are all from prostate cancer patients treated with radiotherapy in a previous study. Images of a stent inserted in a humanoid phantom demonstrated a localization accuracy of 0.4-0.7 mm which equals the pixel size in the image. The automated detection of the stent was compared to manual detection in 71 pairs of orthogonal images taken in nine patients. The algorithm was successful in 67 of 71 pairs of images. The method is fast, has a high success rate, good accuracy, and has a potential for unsupervised localization of the prostate before radiotherapy, which would enable automated repositioning before treatment and allow for the use of very tight PTV margins.

  17. Dosimetry and image quality assessment in a direct radiography system

    PubMed Central

    Oliveira, Bruno Beraldo; de Oliveira, Marcio Alves; Paixão, Lucas; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2014-01-01

    Objective To evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and Methods Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results Considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion The present study contributes to verify the equipment conformity as regards dose values and image quality. PMID:25741119

  18. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  19. Electronic portal imaging based on Cerenkov radiation: A new approach and its feasibility

    SciTech Connect

    Mei, X.; Rowlands, J. A.; Pang, G.

    2006-11-15

    Most electronic portal imaging devices (EPIDs) developed so far use a Cu plate/phosphor screen to absorb x rays and convert their energies into light, and the light image is then read out. The main problem with this approach is that the Cu plate/phosphor screen must be thin ({approx}2 mm thick) in order to obtain a high spatial resolution, resulting in a low x-ray absorption or low quantum efficiency for megavoltage x rays (typically 2-4%). In addition, the phosphor screen contains high atomic number (high-Z) materials, resulting in an over-response of the detector to low-energy x rays in dosimetric verification. In this paper, we propose a new approach that uses Cerenkov radiation to convert x-ray energy absorbed by the detector into light for portal imaging applications. With our approach, a thick ({approx}10-30 cm) energy conversion layer made of a low-Z dielectric medium, such as a large-area, thick fiber-optic taper consisting of a matrix of optical fibers aligned with the incident x rays, is used to replace the thin Cu plate/phosphor screen. The feasibility of this approach has been investigated using a single optical fiber embedded in a solid material. The spatial resolution expressed by the modulation transfer function (MTF) and the sensitivity of the detector at low doses ({approx} one Linac pulse) have been measured. It is predicted that, using this approach, a detective quantum efficiency of an order of magnitude higher at zero frequency can be obtained while maintaining a reasonable MTF, as compared to current EPIDs.

  20. TLD assessment of mouse dosimetry during microCT imaging

    SciTech Connect

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.

    2008-09-15

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm{sup 3} CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0{+-}5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0{+-}6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0{+-}4.0 mGy and 97.0{+-}5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0{+-}5.0 mGy. The author's results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality.

  1. TLD assessment of mouse dosimetry during microCT imaging

    PubMed Central

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.

    2008-01-01

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0±5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0±6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0±4.0 mGy and 97.0±5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0±5.0 mGy. The author’s results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality. PMID:18841837

  2. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in 177Lu-DOTATATE peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Sjögreen Gleisner, Katarina

    2015-08-01

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with 177Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for 177Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in 177Lu PRRT.

  3. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in (177)Lu-DOTATATE peptide receptor radionuclide therapy.

    PubMed

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Gleisner, Katarina Sjögreen

    2015-08-01

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with (177)Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for (177)Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in (177)Lu PRRT. PMID:26215085

  4. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging

    SciTech Connect

    Jackson, Price A.; Kron, Tomas; Beauregard, Jean-Mathieu; Hofman, Michael S.; Hogg, Annette; Hicks, Rodney J.

    2013-11-15

    Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose based on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.

  5. Image guided portal vein access techniques in TIPS creation and considerations regarding their use

    PubMed Central

    2016-01-01

    Transjugular intrahepatic portosystemic shunt (TIPS) is a difficult procedure to perform and accessing the portal vein is a very challenging step. There are three broad categories of image guided TIPS creation techniques. Each technique has its advantages and disadvantages. TIPS procedure carries some risk of complications regardless of the guidance technique employed. The technology for TIPS has evolved in parallel with the expanding indications for TIPS. Ultrasound guidance technique offers a safe option, particularly for patients with challenging anatomy. Patient safety should always come first and the US guided technique should be more routinely used. Experience is the main factor in the success of TIPS. Other factors to consider in reducing the all-cause morbidity and mortality are patient selection, patient management and the clinical setting. PMID:27385392

  6. The Use of Gamma-Ray Imaging to Improve Portal Monitor Performance

    SciTech Connect

    Ziock, Klaus-Peter; Collins, Jeff; Fabris, Lorenzo; Gee, Timothy Felix; Goddard, James K; Habte Ghebretatios, Frezghi; Karnowski, Thomas Paul

    2008-01-01

    We have constructed a prototype, rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. Our Roadside Tracker uses automated target acquisition and tracking (TAT) software to identify and track vehicles in visible light images. The field of view of the visible camera overlaps with and is calibrated to that of a one-dimensional gamma-ray imager. The TAT code passes information on when vehicles enter and exit the system field of view and when they cross gamma-ray pixel boundaries. Based on this in-formation, the gamma-ray imager "harvests" the gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. In this fashion we are able to generate vehicle-specific radiation signatures and avoid source confusion problems that plague nonimaging approaches to the same problem.

  7. Dual Energy CT (DECT) Monochromatic Imaging: Added Value of Adaptive Statistical Iterative Reconstructions (ASIR) in Portal Venography

    PubMed Central

    Winklhofer, Sebastian; Jiang, Rong; Wang, Xinlian; He, Wen

    2016-01-01

    Objective To investigate the effect of the adaptive statistical iterative reconstructions (ASIR) on image quality in portal venography by dual energy CT (DECT) imaging. Materials and Methods DECT scans of 45 cirrhotic patients obtained in the portal venous phase were analyzed. Monochromatic images at 70keV were reconstructed with the following 4 ASIR percentages: 0%, 30%, 50%, and 70%. The image noise (IN) (standard deviation, SD) of portal vein (PV), the contrast-to-noise-ratio (CNR), and the subjective score for the sharpness of PV boundaries, and the diagnostic acceptability (DA) were obtained. The IN, CNR, and the subjective scores were compared among the four ASIR groups. Results The IN (in HU) of PV (10.05±3.14, 9.23±3.05, 8.44±2.95 and 7.83±2.90) decreased and CNR values of PV (8.04±3.32, 8.95±3.63, 9.80±4.12 and 10.74±4.73) increased with the increase in ASIR percentage (0%, 30%, 50%, and 70%, respectively), and were statistically different for the 4 ASIR groups (p<0.05). The subjective scores showed that the sharpness of portal vein boundaries (3.13±0.59, 2.82±0.44, 2.73±0.54 and 2.07±0.54) decreased with higher ASIR percentages (p<0.05). The subjective diagnostic acceptability was highest at 30% ASIR (p<0.05). Conclusions 30% ASIR addition in DECT portal venography could improve the 70 keV monochromatic image quality. PMID:27315158

  8. Determination of dosimetric leaf gap using amorphous silicon electronic portal imaging device and its influence on intensity modulated radiotherapy dose delivery

    PubMed Central

    Balasingh, S. Timothy Peace; Singh, I. Rabi Raja; Rafic, K. Mohamathu; Babu, S. Ebenezer Suman; Ravindran, B. Paul

    2015-01-01

    As complex treatment techniques such as intensity modulated radiotherapy (IMRT) entail the modeling of rounded leaf-end transmission in the treatment planning system, it is important to accurately determine the dosimetric leaf gap (DLG) value for a precise calculation of dose. The advancements in the application of the electronic portal imaging device (EPID) in quality assurance (QA) and dosimetry have facilitated the determination of DLG in this study. The DLG measurements were performed using both the ionization chamber (DLGion) and EPID (DLGEPID) for sweeping gap fields of different widths. The DLGion values were found to be 1.133 mm and 1.120 mm for perpendicular and parallel orientations of the 0.125 cm3 ionization chamber, while the corresponding DLGEPID values were 0.843 mm and 0.819 mm, respectively. It was found that the DLG was independent of volume and orientation of the ionization chamber, depth, source to surface distance (SSD), and the rate of dose delivery. Since the patient-specific QA tests showed comparable results between the IMRT plans based on the DLGEPID and DLGion, it is concluded that the EPID can be a suitable alternative in the determination of DLG. PMID:26500398

  9. High field magnetic resonance imaging-based gel dosimetry for small radiation fields

    NASA Astrophysics Data System (ADS)

    Ding, Xuanfeng

    Small megavoltage photon radiation fields (< 3cm diameter) are used in advanced radiation therapy techniques, such as intensity modulated radiotherapy, and stereotactic radiosurgery, as well as for cellular and preclinical radiobiology studies (very small fields, <1 mm diameter). Radiation dose characteristics for these small fields are difficult to determine in multiple dimensions because of steep dose gradients (30--40% per mm) and conditions of electronic disequilibrium. Conventional radiation dosimetry techniques have limitations for small fields because detector size may be large compared to radiation field size and/or dose acquisition may be restricted to one or two dimensions. Polymer gel dosimetry, is a three-dimensional (3D) dosimeter based on radiation-induced polymerization of tissue equivalent gelatin. Polymer gel dosimeters can be read using magnetic resonance imaging (MRI), which detects changes in relaxivity due to gel polymerization. Spatial resolution for dose readout is limited to 0.25--0.5mm pixel size because of available the magnetic field strengths (1.5T and 3T) and the stability of polymer gelatin at room temperature. A reliable glucose-based MAGIC (methacrylic and ascorbic acid in gelatine initiated by copper) gel dosimeter was formulated and evaluated for small field 3D dosimetry using 3T and 7T high field MRI for dose readout. The melting point of the original recipe MAGIC gel was increased by 4°C by adding 10% glucose to improve gel stability. Excellent spatial resolution of 79um (1.5 hr scan) and 39um (12 hr scan) was achieved using 7T MRI, proving gel stability for long scan times and high resolution 3D dosimetry.

  10. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device.

    PubMed

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-21

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions. PMID:20019398

  11. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-01

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  12. Surface area overestimation within three-dimensional digital images and its consequence for skeletal dosimetry.

    PubMed

    Rajon, D A; Patton, P W; Shah, A P; Watchman, C J; Bolch, W E

    2002-05-01

    The most recent methods for trabecular bone dosimetry are based on Monte Carlo transport simulations within three-dimensional (3D) images of real human bone samples. Nuclear magnetic resonance and micro-computed tomography have been commonly used as imaging tools for studying trabecular microstructure. In order to evaluate the accuracy of these techniques for radiation dosimetry, a previous study was conducted that showed an overestimate in the absorbed fraction of energy for low-energy electrons emitted within the marrow space and irradiating the bone trabeculae. This problem was found to be related to an overestimate of the surface area of the true bone-marrow interface within the 3D digital images, and was identified as the surface-area effect. The goal of the present study is to better understand how this surface-area effect occurs in the case of single spheres representing individual marrow cavities within trabecular bone. First, a theoretical study was conducted which showed that voxelization of the spherical marrow cavity results in a 50% overestimation of the spherical surface area. Moreover, this overestimation cannot be reduced through a reduction in the voxel size (e.g., improved image resolution). Second, a series of single-sphere marrow cavity models was created with electron sources simulated within the sphere (marrow source) and outside the sphere (bone trabeculae source). The series of single-sphere models was then voxelized to represent 3D digital images of varying resolution. Transport calculations were made for both marrow and bone electron sources within these simulated images. The study showed that for low-energy electrons (<100 keV), the 50% overestimate of the bone-marrow interface surface area can lead to a 50% overestimate of the cross-absorbed fraction. It is concluded that while improved resolution will not reduce the surface area effects found within 3D image-based transport models, a tenfold improvement in current image resolution would

  13. Feasibility of fully automated detection of fiducial markers implanted into the prostate using electronic portal imaging: A comparison of methods

    SciTech Connect

    Harris, Emma J. . E-mail: eharris@icr.ac.uk; McNair, Helen A.; Evans, Phillip M.

    2006-11-15

    Purpose: To investigate the feasibility of fully automated detection of fiducial markers implanted into the prostate using portal images acquired with an electronic portal imaging device. Methods and Materials: We have made a direct comparison of 4 different methods (2 template matching-based methods, a method incorporating attenuation and constellation analyses and a cross correlation method) that have been published in the literature for the automatic detection of fiducial markers. The cross-correlation technique requires a-priory information from the portal images, therefore the technique is not fully automated for the first treatment fraction. Images of 7 patients implanted with gold fiducial markers (8 mm in length and 1 mm in diameter) were acquired before treatment (set-up images) and during treatment (movie images) using 1MU and 15MU per image respectively. Images included: 75 anterior (AP) and 69 lateral (LAT) set-up images and 51 AP and 83 LAT movie images. Using the different methods described in the literature, marker positions were automatically identified. Results: The method based upon cross correlation techniques gave the highest percentage detection success rate of 99% (AP) and 83% (LAT) set-up (1MU) images. The methods gave detection success rates of less than 91% (AP) and 42% (LAT) set-up images. The amount of a-priory information used and how it affects the way the techniques are implemented, is discussed. Conclusions: Fully automated marker detection in set-up images for the first treatment fraction is unachievable using these methods and that using cross-correlation is the best technique for automatic detection on subsequent radiotherapy treatment fractions.

  14. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. PMID:26256630

  15. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  16. Improved dosimetry for targeted radionuclide therapy using nonrigid registration on sequential SPECT images

    SciTech Connect

    Ao, Edwin C. I.; Mok, Greta S. P.; Wu, Nien-Yun; Wang, Shyh-Jen; Song, Na

    2015-02-15

    Purpose: Voxel-level and patient-specific 3D dosimetry for targeted radionuclide therapy (TRT) typically involves serial nuclear medicine scans. Misalignment of the images can result in reduced dosimetric accuracy. Since the scans are typically performed over a period of several days, there will be patient movement between scans and possible nonrigid organ deformation. This work aims to implement and evaluate the use of nonrigid image registration on a series of quantitative SPECT (QSPECT) images for TRT dosimetry. Methods: A population of 4D extended cardiac torso phantoms, comprised of three In-111 Zevalin biokinetics models and three anatomical variations, was generated based on the patient data. The authors simulated QSPECT acquisitions at five time points. At each time point, individual organ and whole-body deformation between scans were modeled by translating/rotating organs and the body up to 5°/voxels, keeping ≤5% difference in organ volume. An analytical projector was used to generate realistic noisy projections for a medium energy general purpose collimator. Projections were reconstructed using OS-EM algorithm with geometric collimator detector response, attenuation, and scatter corrections. The QSPECT images were registered using organ-based nonrigid image registration method. The cumulative activity in each voxel was obtained by integrating the activity over time. Dose distribution images were obtained by convolving the cumulative activity images with a Y-90 dose kernel. Dose volume histograms (DVHs) for organs-of-interest were analyzed. Results: After nonrigid registration, the mean differences in organ doses compared to the case without misalignment were improved from (−15.50 ± 5.59)% to (−2.12 ± 1.05)% and (−7.28 ± 2.30)% to (−0.23 ± 0.71)% for the spleen and liver, respectively. For all organs, the cumulative DVHs showed improvement after nonrigid registration and the normalized absolute error of differential DVHs ranged from 6.79% to

  17. Incorporating multislice imaging into x-ray CT polymer gel dosimetry

    SciTech Connect

    Johnston, H.; Hilts, M.; Jirasek, A.

    2015-04-15

    Purpose: To evaluate multislice computed tomography (CT) scanning for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD) and to establish a baseline assessment of image noise and uniformity in an unirradiated gel dosimeter. Methods: A 16-slice CT scanner was used to acquire images through a 1 L cylinder filled with water. Additional images were collected using a single slice machine. The variability in CT number (N{sub CT}) associated with the anode heel effect was evaluated and used to define a new slice-by-slice background subtraction artifact removal technique for CT PGD. Image quality was assessed for the multislice system by evaluating image noise and uniformity. The agreement in N{sub CT} for slices acquired simultaneously using the multislice detector array was also examined. Further study was performed to assess the effects of increasing x-ray tube load on the constancy of measured N{sub CT} and overall scan time. In all cases, results were compared to the single slice machine. Finally, images were collected throughout the volume of an unirradiated gel dosimeter to quantify image noise and uniformity before radiation is delivered. Results: Slice-by-slice background subtraction effectively removes the variability in N{sub CT} observed across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image noise was higher for the multislice system compared to the single slice scanner, but overall image quality was comparable between the two systems. Further study showed N{sub CT} was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thicknesses examined. In addition, the multislice system was found to eliminate variations in N{sub CT} due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to

  18. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2013-08-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2 = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ±1˜2%, diode = ±2˜3%, TPS = ±6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons.

  19. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms.

    PubMed

    Zhang, Rongxiao; Fox, Colleen J; Glaser, Adam K; Gladstone, David J; Pogue, Brian W

    2013-08-21

    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R(2) = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (± 2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ± 1~2%, diode = ± 2~3%, TPS = ± 6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons. PMID:23880473

  20. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    NASA Astrophysics Data System (ADS)

    Gu, Songxiang; Gupta, Rajiv; Kyprianou, Iacovos

    2011-09-01

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  1. Superficial Dosimetry Imaging of Čerenkov Emission in Electron Beam Radiotherapy of Phantoms

    PubMed Central

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2014-01-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6cm×6cm to 20cm×20cm, incident angles from 0 to 50 degrees, and energies from 6 to 18 MeV. The Čerenkov images were compared with estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2=0.97) with reference data of the known dose for energies from 6MeV to 18MeV. When orthogonal delivery was done, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2~4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50 degrees, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system (TPS) had at a larger error (OPT=±1~2%, Diode=±2~3%, TPS=±6~8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging from incident radiotherapy beams of electrons. PMID:23880473

  2. A review of 3D image-based dosimetry, technical considerations and emerging perspectives in 90Y microsphere therapy

    PubMed Central

    O’ Doherty, Jim

    2016-01-01

    Yttrium-90 radioembolization (90Y-RE) is a well-established therapy for the treatment of hepatocellular carcinoma (HCC) and also of metastatic liver deposits from other malignancies. Nuclear Medicine and Cath Lab diagnostic imaging takes a pivotal role in the success of the treatment, and in order to fully exploit the efficacy of the technique and provide reliable quantitative dosimetry that are related to clinical endpoints in the era of personalized medicine, technical challenges in imaging need to be overcome. In this paper, the extensive literature of current 90Y-RE techniques and challenges facing it in terms of quantification and dosimetry are reviewed, with a focus on the current generation of 3D dosimetry techniques. Finally, new emerging techniques are reviewed which seek to overcome these challenges, such as high-resolution imaging, novel surgical procedures and the use of other radiopharmaceuticals for therapy and pre-therapeutic planning. PMID:27182449

  3. Reference radiochromic film dosimetry in kilovoltage photon beams during CBCT image acquisition

    SciTech Connect

    Tomic, Nada; Devic, Slobodan; DeBlois, Francois; Seuntjens, Jan

    2010-03-15

    Purpose: A common approach for dose assessment during cone beam computed tomography (CBCT) acquisition is to use thermoluminescent detectors for skin dose measurements (on patients or phantoms) or ionization chamber (in phantoms) for body dose measurements. However, the benefits of a daily CBCT image acquisition such as margin reduction in planning target volume and the image quality must be weighted against the extra dose received during CBCT acquisitions. Methods: The authors describe a two-dimensional reference dosimetry technique for measuring dose from CBCT scans using the on-board imaging system on a Varian Clinac-iX linear accelerator that employs the XR-QA radiochromic film model, specifically designed for dose measurements at low energy photons. The CBCT dose measurements were performed for three different body regions (head and neck, pelvis, and thorax) using humanoid Rando phantom. Results: The authors report on both surface dose and dose profiles measurements during clinical CBCT procedures carried out on a humanoid Rando phantom. Our measurements show that the surface doses per CBCT scan can range anywhere between 0.1 and 4.7 cGy, with the lowest surface dose observed in the head and neck region, while the highest surface dose was observed for the Pelvis spot light CBCT protocol in the pelvic region, on the posterior side of the Rando phantom. The authors also present results of the uncertainty analysis of our XR-QA radiochromic film dosimetry system. Conclusions: Radiochromic film dosimetry protocol described in this work was used to perform dose measurements during CBCT acquisitions with the one-sigma dose measurement uncertainty of up to 3% for doses above 1 cGy. Our protocol is based on film exposure calibration in terms of ''air kerma in air,'' which simplifies both the calibration procedure and reference dosimetry measurements. The results from a full Monte Carlo investigation of the dose conversion of measured XR-QA film dose at the surface into

  4. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device

    SciTech Connect

    Samant, Sanjiv S.; Gopal, Arun

    2006-09-15

    Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of kinestatis and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a

  5. A self-sufficient method for calibration of Varian electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Sun, Baozhou; Yaddanapudi, Sridhar; Goddu, Sreekrishna M.; Mutic, Sasa

    2015-01-01

    Electronic portal imaging device (EPID) is currently used for dosimetric verification of IMRT fields and linac quality assurance (QA). It is critical to understand the dosimetric response and perform an accurate and robust calibration of EPID. We present the implementation of an efficient method for the calibration and the validation of a Varian EPID, which relies only on data collected with that specific device. The calibration method is based on images obtained with five shifts of EPID panel. With this method, the relative gain (sensitivity) of each element of a detector matrix is calculated and applied on top of the calibration determined with the flood-field procedure. The calibration procedure was verified using a physical wedge inserted in the beam line and the corrected profile shows consistent results with the measurements using a calibrated 2D array. This method does not rely on the beam profile used in the flood-field calibration process, which allows EPID calibration in 10 minutes with no additional equipment compared to at least 2 hours to obtain beam profile and scanning beam equipment requirement with the conventional method.

  6. Characterization of Target Volume Changes During Breast Radiotherapy Using Implanted Fiducial Markers and Portal Imaging

    SciTech Connect

    Harris, Emma J. Donovan, Ellen M.; Yarnold, John R.; Coles, Charlotte E.; Evans, Philip M.

    2009-03-01

    Purpose: To determine target volume changes by using volume and shape analysis for patients receiving radiotherapy after breast conservation surgery and to compare different methods of automatically identifying changes in target volume, position, size, and shape during radiotherapy for use in adaptive radiotherapy. Methods and Materials: Eleven patients undergoing whole breast radiotherapy had fiducial markers sutured into the excision cavity at the time of surgery. Patients underwent imaging using computed tomography (for planning and at the end of treatment) and during treatment by using portal imaging. A marker volume (MV) was defined by using the measured marker positions. Changes in both individual marker positions and MVs were identified manually and using six automated similarity indices. Comparison of the two types of analysis (manual and automated) was undertaken to establish whether similarity indices can be used to automatically detect changes in target volumes. Results: Manual analysis showed that 3 patients had significant MV reduction. This analysis also showed significant changes between planning computed tomography and the start of treatment for 9 patients, including single and multiple marker movement, deformation (shape change), and rotation. Four of the six similarity indices were shown to be sensitive to the observed changes. Conclusions: Significant changes in size, shape, and position occur to the fiducial marker-defined volume. Four similarity indices can be used to identify these changes, and a protocol for their use in adaptive radiotherapy is suggested.

  7. Use of a megavoltage electronic portal imaging device to identify prosthetic materials.

    PubMed

    Moutrie, Vaughan; Kairn, Tanya; Rosenfeld, Anatoly; Charles, Paul H

    2015-03-01

    To achieve accurate dose calculations in radiation therapy the electron density of patient tissues must be known. This information is ordinarily gained from a computed tomography (CT) image that has been calibrated to allow relative electron density (RED) to be determined from CT number. When high density objects such as metallic prostheses are involved, direct use of the CT data can become problematic due to the artefacts introduced by high attenuation of the beam. This requires manual correction of the density values, however the properties of the implanted prosthetic are not always known. A method is introduced where the RED of such an object can be determined using the treatment beam of a linear accelerator with an electronic portal imaging device. The technique was tested using a metallic hip replacement that was placed within a container of water. Compared to the theoretical RED of 6.8 for cobalt-chromium alloy, these measurements calculated a value of 6.4 ± 0.7. This would allow the distinction of an implant as Co-Cr or steel, which have similar RED, or titanium, which is much less dense with an RED of 3.7. PMID:25576013

  8. Portal Hypertension

    MedlinePlus

    ... Chronic Hepatitis C Additional Content Medical News Portal Hypertension By Steven K. Herrine, MD NOTE: This is ... Hepatic Encephalopathy Jaundice in Adults Liver Failure Portal Hypertension Portal hypertension is abnormally high blood pressure in ...

  9. An attenuation integral digital imaging technique for the treatment portal verification of conventional and intensity-modulated radiotherapy

    SciTech Connect

    Guan Huaiqun

    2010-07-15

    Purpose: To propose an attenuation integral digital imaging (AIDI) technique for the treatment portal verification of conventional and intensity-modulated radiotherapy (IMRT). Methods: In AIDI technique, an open in air fluence image I{sub o} and a patient fluence image I were acquired under the same exposure. Then after doing the dark field correction for both the I{sub o} and I, the AIDI image was simply calculated as log(I{sub o}/I), which is the attenuation integral along the ray path from the x-ray source to a detector pixel element. Theoretical analysis for the low contrast detection and the contrast to noise ratio (CNR) of AIDI was presented and compared to those for the fluence imaging. With AIDI, the variation of x-ray fluence and the variation of individual detector pixel's response can be automatically compensated without using the flood field correction. Results: The AIDI image for a contrast detail phantom demonstrated that it can efficiently suppress the background structures such as the couch and generate better visibility for low contrast objects with megavoltage x rays. The AIDI image acquired for a Catphan 500 phantom using a 60 deg. electronic dynamic wedge field also revealed more contrast disks than the fluence imaging did. Finally, AIDI for an IMRT field of a head/neck patient successfully displayed the anatomical structures underneath the treatment portal but not shown in fluence imaging. Conclusions: For IMRT and high degree wedge beams, direct imaging using them is difficult because their photon fluence is highly nonuniform. But AIDI can be used for the treatment portal verification of these beams.

  10. Tracking lung tumour motion using a dynamically weighted optical flow algorithm and electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Teo, P. T.; Crow, R.; Van Nest, S.; Sasaki, D.; Pistorius, S.

    2013-07-01

    This paper investigates the feasibility and accuracy of using a computer vision algorithm and electronic portal images to track the motion of a tumour-like target from a breathing phantom. A multi-resolution optical flow algorithm that incorporates weighting based on the differences between frames was used to obtain a set of vectors corresponding to the motion between two frames. A global value representing the average motion was obtained by computing the average weighted mean from the set of vectors. The tracking accuracy of the optical flow algorithm as a function of the breathing rate and target visibility was investigated. Synthetic images with different contrast-to-noise ratios (CNR) were created, and motions were tracked. The accuracy of the proposed algorithm was compared against potentiometer measurements giving average position errors of 0.6 ± 0.2 mm, 0.2 ± 0.2 mm and 0.1 ± 0.1 mm with average velocity errors of 0.2 ± 0.2 mm s-1, 0.4 ± 0.3 mm s-1 and 0.6 ± 0.5 mm s-1 for 6, 12 and 16 breaths min-1 motions, respectively. The cumulative average position error reduces more rapidly with the greater number of breathing cycles present in higher breathing rates. As the CNR increases from 4.27 to 5.6, the average relative error approaches zero and the errors are less dependent on the velocity. When tracking a tumour on a patient's digitally reconstructed radiograph images, a high correlation was obtained between the dynamically weighted optical flow algorithm, a manual delineation process and a centroid tracking algorithm. While the accuracy of our approach is similar to that of other methods, the benefits are that it does not require manual delineation of the target and can therefore provide accurate real-time motion estimation during treatment.

  11. SU-E-J-237: Image Feature Based DRR and Portal Image Registration

    SciTech Connect

    Wang, X; Chang, J

    2014-06-01

    Purpose: Two-dimensional (2D) matching of the kV X-ray and digitally reconstructed radiography (DRR) images is an important setup technique for image-guided radiotherapy (IGRT). In our clinics, mutual information based methods are used for this purpose on commercial linear accelerators, but with often needs for manual corrections. This work proved the feasibility that feature based image transform can be used to register kV and DRR images. Methods: The scale invariant feature transform (SIFT) method was implemented to detect the matching image details (or key points) between the kV and DRR images. These key points represent high image intensity gradients, and thus the scale invariant features. Due to the poor image contrast from our kV image, direct application of the SIFT method yielded many detection errors. To assist the finding of key points, the center coordinates of the kV and DRR images were read from the DICOM header, and the two groups of key points with similar relative positions to their corresponding centers were paired up. Using these points, a rigid transform (with scaling, horizontal and vertical shifts) was estimated. We also artificially introduced vertical and horizontal shifts to test the accuracy of our registration method on anterior-posterior (AP) and lateral pelvic images. Results: The results provided a satisfactory overlay of the transformed kV onto the DRR image. The introduced vs. detected shifts were fit into a linear regression. In the AP image experiments, linear regression analysis showed a slope of 1.15 and 0.98 with an R2 of 0.89 and 0.99 for the horizontal and vertical shifts, respectively. The results are 1.2 and 1.3 with R2 of 0.72 and 0.82 for the lateral image shifts. Conclusion: This work provided an alternative technique for kV to DRR alignment. Further improvements in the estimation accuracy and image contrast tolerance are underway.

  12. Clinical practice and evaluation of electronic portal imaging device for VMAT quality assurance

    SciTech Connect

    Huang, Yen-Cho; Yeh, Chien-Yi; Yeh, Jih-Hsiang; Lo, Ching-Jung; Tsai, Ping-Fang; Hung, Chih-Hung; Tsai, Chieh-Sheng; Chen, Chen-Yuan

    2013-04-01

    Volumetric-modulated arc therapy (VMAT) is a novel extension of the intensity-modulated radiation therapy (IMRT) technique, which has brought challenges to dose verification. To perform VMAT pretreatment quality assurance, an electronic portal imaging device (EPID) can be applied. This study's aim was to evaluate EPID performance for VMAT dose verification. First, dosimetric characteristics of EPID were investigated. Then 10 selected VMAT dose plans were measured by EPID with the rotational method. The overall variation of EPID dosimetric characteristics was within 1.4% for VMAT. The film system serving as a conventional tool for verification showed good agreement both with EPID measurements ([94.1 ± 1.5]% with 3 mm/3% criteria) and treatment planning system (TPS) calculations ([97.4 ± 2.8]% with 3 mm/3% criteria). In addition, EPID measurements for VMAT presented good agreement with TPS calculations ([99.1 ± 0.6]% with 3 mm/3% criteria). The EPID system performed the robustness of potential error findings in TPS calculations and the delivery system. This study demonstrated that an EPID system can be used as a reliable and efficient quality assurance tool for VMAT dose verification.

  13. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58.

    PubMed

    Herman, M G; Balter, J M; Jaffray, D A; McGee, K P; Munro, P; Shalev, S; Van Herk, M; Wong, J W

    2001-05-01

    AAPM Task Group 58 was created to provide materials to help the medical physicist and colleagues succeed in the clinical implementation of electronic portal imaging devices (EPIDs) in radiation oncology. This complex technology has matured over the past decade and is capable of being integrated into routine practice. However, the difficulties encountered during the specification, installation, and implementation process can be overwhelming. TG58 was charged with providing sufficient information to allow the users to overcome these difficulties and put EPIDs into routine clinical practice. In answering the charge, this report provides; comprehensive information about the physics and technology of currently available EPID systems; a detailed discussion of the steps required for successful clinical implementation, based on accumulated experience; a review of software tools available and clinical use protocols to enhance EPID utilization; and specific quality assurance requirements for initial and continuing clinical use of the systems. Specific recommendations are summarized to assist the reader with successful implementation and continuing use of an EPID. PMID:11393467

  14. Use of a line-pair resolution phantom for comprehensive quality assurance of electronic portal imaging devices based on fundamental imaging metrics

    SciTech Connect

    Gopal, Arun; Samant, Sanjiv S.

    2009-06-15

    Image guided radiation therapy solutions based on megavoltage computed tomography (MVCT) involve the extension of electronic portal imaging devices (EPIDs) from their traditional role of weekly localization imaging and planar dose mapping to volumetric imaging for 3D setup and dose verification. To sustain the potential advantages of MVCT, EPIDs are required to provide improved levels of portal image quality. Therefore, it is vital that the performance of EPIDs in clinical use is maintained at an optimal level through regular and rigorous quality assurance (QA). Traditionally, portal imaging QA has been carried out by imaging calibrated line-pair and contrast resolution phantoms and obtaining arbitrarily defined QA indices that are usually dependent on imaging conditions and merely indicate relative trends in imaging performance. They are not adequately sensitive to all aspects of image quality unlike fundamental imaging metrics such as the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) that are widely used to characterize detector performance in radiographic imaging and would be ideal for QA purposes. However, due to the difficulty of performing conventional MTF measurements, they have not been used for routine clinical QA. The authors present a simple and quick QA methodology based on obtaining the MTF, NPS, and DQE of a megavoltage imager by imaging standard open fields and a bar-pattern QA phantom containing 2 mm thick tungsten line-pair bar resolution targets. Our bar-pattern based MTF measurement features a novel zero-frequency normalization scheme that eliminates normalization errors typically associated with traditional bar-pattern measurements at megavoltage x-ray energies. The bar-pattern QA phantom and open-field images are used in conjunction with an automated image analysis algorithm that quickly computes the MTF, NPS, and DQE of an EPID system. Our approach combines the fundamental advantages of

  15. Patient dosimetry and image quality in digital radiology from online audit of the X-ray system.

    PubMed

    Vano, E; Fernandez, J M; Ten, J I; Gonzalez, L; Guibelalde, E; Prieto, C

    2005-01-01

    The present work describes an online patient dosimetry and an image quality system in digital radiology. For the patient dosimetry audit, current mean values of entrance surface dose (ESD) were compared with local and national reference values (RVs) for the specific examination type evaluated. Mean values exceeding the RV trigger an alarm signal and then an evaluation of the technical parameters, operational practice and image quality was begun, using data available in the DICOM header to derive any abnormal settings or performance to obtain the image. The X-ray tube output for different kVp values is measured periodically, to allow for the automatic calculation of ESD. The system allows also for image audit, linking the dose imparted, the image quality and the alarm condition, if produced. Results and the benefits derived from this online quality control are discussed here. PMID:16461529

  16. Dosimetry and image quality in digital mammography facilities in the State of Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    da Silva, Sabrina Donato; Joana, Geórgia Santos; Oliveira, Bruno Beraldo; de Oliveira, Marcio Alves; Leyton, Fernando; Nogueira, Maria do Socorro

    2015-11-01

    According to the National Register of Health Care Facilities (CNES), there are approximately 477 mammography systems operating in the state of Minas Gerais, Brazil, of which an estimated 200 are digital apparatus using mainly computerized radiography (CR) or direct radiography (DR) systems. Mammography is irreplaceable in the diagnosis and early detection of breast cancer, the leading cause of cancer death among women worldwide. A high standard of image quality alongside smaller doses and optimization of procedures are essential if early detection is to occur. This study aimed to determine dosimetry and image quality in 68 mammography services in Minas Gerais using CR or DR systems. The data of this study were collected between the years of 2011 and 2013. The contrast-to-noise ratio proved to be a critical point in the image production chain in digital systems, since 90% of services were not compliant in this regard, mainly for larger PMMA thicknesses (60 and 70 mm). Regarding the image noise, only 31% of these were compliant. The average glandular dose found is of concern, since more than half of the services presented doses above acceptable limits. Therefore, despite the potential benefits of using CR and DR systems, the employment of this technology has to be revised and optimized to achieve better quality image and reduce radiation dose as much as possible.

  17. Evaluation of intra- and inter-fraction motion in breast radiotherapy using electronic portal cine imaging.

    PubMed

    Kron, T; Lee, C; Perera, F; Yu, E

    2004-10-01

    Breast irradiation is one of the most challenging problems in radiotherapy due to the complex shape of the target volume, proximity of radiation sensitive normal structures and breathing motion. It was the aim of the present study to use electronic portal imaging (EPI) during treatment to determine intra- and inter-fraction motion in patients undergoing radiotherapy and to correlate the magnitude of motion with patient specific parameters. EPI cine images were acquired from the medial tangential fields of twenty radiotherapy patients on a minimum of 5 days each over the course of their treatment. The treatments were administered using 10 MV X-rays and dynamic wedges on a Varian Clinac 2100CD linear accelerator. Depending on the incident dose and the angle of the wedge, between 4 and 16 images could be acquired in one session using an EPI device based on liquid ionization chambers (Varian). The border between lung and chest-wall could be easily detected in all images and quantitative measurements were taken for the amount of lung in the field and the distance of the breast tissue from the field edges. Inter-fraction variability was found to be about twice as large as intra-fraction variability. The largest variability was detected in cranio/caudal direction (intra-fraction: 1.3 +/- 0.4 mm; inter-fraction: 2.6 +/- 1.3 mm) while the lung involvement varied by 1.1 +/- 0.2 mm and 1.8 +/- 0.6 mm intra- and inter-fraction, respectively. This indicates that the effect of breathing motion on the amount of radiated lung was not of major concern in the patients studied. Of other patient specific parameters such as body weight, breast separation, field size and location of the target, only increasing age was significantly correlated with larger inter-fraction motion. Acquisition of EPI cine loops proved to be a quick and easy technique to establish the amount of patient movement during breast radiotherapy. The relatively small variability found in the present pilot study

  18. SIFT: A method to verify the IMRT fluence delivered during patient treatment using an electronic portal imaging device

    SciTech Connect

    Vieira, Sandra C. . E-mail: s.vieira@erasmusmc.nl; Dirkx, Maarten L.P.; Heijmen, Ben J.M.; Boer, Hans C.J. de

    2004-11-01

    Purpose: Radiotherapy patients are increasingly treated with intensity-modulated radiotherapy (IMRT) and high tumor doses. As part of our quality control program to ensure accurate dose delivery, a new method was investigated that enables the verification of the IMRT fluence delivered during patient treatment using an electronic portal imaging device (EPID), irrespective of changes in patient geometry. Methods and materials: Each IMRT treatment field is split into a static field and a modulated field, which are delivered in sequence. Images are acquired for both fields using an EPID. The portal dose image obtained for the static field is used to determine changes in patient geometry between the planning CT scan and the time of treatment delivery. With knowledge of these changes, the delivered IMRT fluence can be verified using the portal dose image of the modulated field. This method, called split IMRT field technique (SIFT), was validated first for several phantom geometries, followed by clinical implementation for a number of patients treated with IMRT. Results: The split IMRT field technique allows for an accurate verification of the delivered IMRT fluence (generally within 1% [standard deviation]), even if large interfraction changes in patient geometry occur. For interfraction radiological path length changes of 10 cm, deliberately introduced errors in the delivered fluence could still be detected to within 1% accuracy. Application of SIFT requires only a minor increase in treatment time relative to the standard IMRT delivery. Conclusions: A new technique to verify the delivered IMRT fluence from EPID images, which is independent of changes in the patient geometry, has been developed. SIFT has been clinically implemented for daily verification of IMRT treatment delivery.

  19. A Comparison of Techniques for 90Y PET/CT Image-Based Dosimetry Following Radioembolization with Resin Microspheres

    PubMed Central

    Pasciak, Alexander S.; Bourgeois, Austin C.; Bradley, Yong C.

    2014-01-01

    90Y PET/CT following radioembolization has recently been established as a viable diagnostic tool, capable of producing images that are both quantitative and have superior image quality than alternative 90Y imaging modalities. Because radioembolization is assumed to be a permanent implant, it is possible to convert quantitative 90Y PET image sets into data representative of spatial committed absorbed-dose. Multiple authors have performed this transformation using dose-point kernel (DPK) convolution to account for the transport of the high-energy 90Y β-particles. This article explores a technique called the Local Deposition Method (LDM), an alternative to DPK convolution for 90Y image-based dosimetry. The LDM assumes that the kinetic energy from each 90Y β-particle is deposited locally, within the voxel where the decay occurred. Using the combined analysis of phantoms scanned using 90Y PET/CT and ideal mathematical phantoms, an accuracy comparison of DPK convolution and the LDM has been performed. Based on the presented analysis, DPK convolution provides no detectible accuracy benefit over the LDM for 90Y PET-based dosimetry. For PET systems with 90Y resolution poorer than 3.25 mm at full-width and half-max using a small voxel size, the LDM may produce a dosimetric solution that is more accurate than DPK convolution under ideal conditions; however, image noise can obscure some of the perceived benefit. As voxel size increases and resolution decreases, differences between the LDM and DPK convolution are reduced. The LDM method of post-radioembolization dosimetry has the advantage of not requiring additional post-processing. The provided conversion factors can be used to determine committed absorbed-dose using conventional PET image analysis tools. The LDM is a recommended option for routine post-radioembolization 90Y dosimetry based on PET/CT imaging. PMID:24904832

  20. Image-guided in vivo dosimetry for quality assurance of IMRT treatment for prostate cancer

    SciTech Connect

    Wertz, Hansjoerg . E-mail: hansjoerg.wertz@radonk.ma.uni-heidelberg.de; Boda-Heggemann, Judit; Walter, Cornelia; Dobler, Barbara; Mai, Sabine; Wenz, Frederik; Lohr, Frank

    2007-01-01

    Purpose: In external beam radiotherapy (EBRT) and especially in intensity-modulated radiotherapy (IMRT), the accuracy of the dose distribution in the patient is of utmost importance. It was investigated whether image guided in vivo dosimetry in the rectum is a reliable method for online dose verification. Methods and Materials: Twenty-one dose measurements were performed with an ionization chamber in the rectum of 7 patients undergoing IMRT for prostate cancer. The position of the probe was determined with cone beam computed tomography (CBCT). The point of measurement was determined relative to the isocenter and relative to an anatomic reference point. The dose deviations relative to the corresponding doses in the treatment plan were calculated. With an offline CT soft-tissue match, patient positioning after ultrasound was verified. Results: The mean magnitude {+-} standard deviation (SD) of patient positioning errors was 3.0 {+-} 2.5 mm, 5.1 {+-} 4.9 mm, and 4.3 {+-} 2.4 mm in the left-right, anteroposterior and craniocaudal direction. The dose deviations in points at corresponding positions relative to the isocenter were -1.4 {+-} 4.9% (mean {+-} SD). The mean dose deviation at corresponding anatomic positions was 6.5 {+-} 21.6%. In the rare event of insufficient patient positioning, dose deviations could be >30% because of the close proximity of the probe and the posterior dose gradient. Conclusions: Image-guided dosimetry in the rectum during IMRT of the prostate is a feasible and reliable direct method for dose verification when probe position is effectively controlled.

  1. Skeletal dosimetry based on µCT images of trabecular bone: update and comparisons

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; de Oliveira Lira, C. A. B.; Robson Brown, K.

    2012-06-01

    Two skeletal dosimetry methods using µCT images of human bone have recently been developed: the paired-image radiation transport (PIRT) model introduced by researchers at the University of Florida (UF) in the US and the systematic-periodic cluster (SPC) method developed by researchers at the Federal University of Pernambuco in Brazil. Both methods use µCT images of trabecular bone (TB) to model spongiosa regions of human bones containing marrow cavities segmented into soft tissue volumes of active marrow (AM), trabecular inactive marrow and the bone endosteum (BE), which is a 50 µm thick layer of marrow on all TB surfaces and on cortical bone surfaces next to TB as well as inside the medullary cavities. With respect to the radiation absorbed dose, the AM and the BE are sensitive soft tissues for the induction of leukaemia and bone cancer, respectively. The two methods differ mainly with respect to the number of bone sites and the size of the µCT images used in Monte Carlo calculations and they apply different methods to simulate exposure from radiation sources located outside the skeleton. The PIRT method calculates dosimetric quantities in isolated human bones while the SPC method uses human bones embedded in the body of a phantom which contains all relevant organs and soft tissues. Consequently, the SPC method calculates absorbed dose to the AM and to the BE from particles emitted by radionuclides concentrated in organs or from radiation sources located outside the human body in one calculation step. In order to allow for similar calculations of AM and BE absorbed doses using the PIRT method, the so-called dose response functions (DRFs) have been developed based on absorbed fractions (AFs) of energy for electrons isotropically emitted in skeletal tissues. The DRFs can be used to transform the photon fluence in homogeneous spongiosa regions into absorbed dose to AM and BE. This paper will compare AM and BE AFs of energy from electrons emitted in skeletal

  2. A two-dimensional matrix correction for off-axis portal dose prediction errors

    SciTech Connect

    Bailey, Daniel W.; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Podgorsak, Matthew B.

    2013-05-15

    Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ['An effective correction algorithm for off-axis portal dosimetry errors,' Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As in

  3. Portal Vein Thrombosis

    PubMed Central

    Mallet, Thierry; Soltys, Remigiusz; Loarte, Pablo

    2015-01-01

    Portal vein thrombosis (PVT) is the blockage or narrowing of the portal vein by a thrombus. It is relatively rare and has been linked with the presence of an underlying liver disease or prothrombotic disorders. We present a case of a young male who presented with vague abdominal symptoms for approximately one week. Imaging revealed the presence of multiple nonocclusive thrombi involving the right portal vein, the splenic vein, and the left renal vein, as well as complete occlusion of the left portal vein and the superior mesenteric vein. We discuss pathogenesis, clinical presentation, and management of both acute and chronic thrombosis. The presence of PVT should be considered as a clue for prothrombotic disorders, liver disease, and other local and general factors that must be carefully investigated. It is hoped that this case report will help increase awareness of the complexity associated with portal vein thrombosis among the medical community. PMID:25802795

  4. Transition from Paris dosimetry system to 3D image-guided planning in interstitial breast brachytherapy

    PubMed Central

    Wronczewska, Anna; Kabacińska, Renata; Makarewicz, Roman

    2015-01-01

    Purpose The purpose of this study is to evaluate our first experience with 3D image-guided breast brachytherapy and to compare dose distribution parameters between Paris dosimetry system (PDS) and image-based plans. Material and methods First 49 breast cancer patients treated with 3D high-dose-rate interstitial brachytherapy as a boost were selected for the study. Every patient underwent computed tomography, and the planning target volume (PTV) and organs at risk (OAR) were outlined. Two treatment plans were created for every patient. First, based on a Paris dosimetry system (PDS), and the second one, imaged-based plan with graphical optimization (OPT). The reference isodose in PDS implants was 85%, whereas in OPT plans the isodose was chosen to obtain proper target coverage. Dose and volume parameters (D90, D100, V90, V100), doses at OARs, total reference air kerma (TRAK), and quality assurance parameters: dose nonuniformity ratio (DNR), dose homogeneity index (DHI), and conformity index (COIN) were used for a comparison of both plans. Results The mean number of catheters was 7 but the mean for 20 first patients was 5 and almost 9 for the next 29 patients. The mean value of prescribed isodose for OPT plans was 73%. The mean D90 was 88.2% and 105.8%, the D100 was 59.8% and 75.7%, the VPTV90 was 88.6% and 98.1%, the VPTV100 was 79.9% and 98.9%, and the TRAK was 0.00375 Gym–1 and 0.00439 Gym–1 for the PDS and OPT plans, respectively. The mean DNR was 0.29 and 0.42, the DHI was 0.71 and 0.58, and the COIN was 0.68 and 0.76, respectively. Conclusions The target coverage in image-guided plans (OPT) was significantly higher than in PDS plans but the dose homogeneity was worse. Also, the value of TRAK increased because of change of prescribing isodose. The learning curve slightly affected our results. PMID:26816505

  5. Characterization and evaluation of 2.5 MV electronic portal imaging for accurate localization of intra- and extracranial stereotactic radiosurgery.

    PubMed

    Song, Kwang Hyun; Snyder, Karen Chin; Kim, Jinkoo; Li, Haisen; Ning, Wen; Rusnac, Robert; Jackson, Paul; Gordon, James; Siddiqui, Salim M; Chetty, Indrin J

    2016-01-01

    2.5 MV electronic portal imaging, available on Varian TrueBeam machines, was characterized using various phantoms in this study. Its low-contrast detectability, spatial resolution, and contrast-to-noise ratio (CNR) were compared with those of conventional 6 MV and kV planar imaging. Scatter effect in large patient body was simulated by adding solid water slabs along the beam path. The 2.5 MV imaging mode was also evaluated using clinically acquired images from 24 patients for the sites of brain, head and neck, lung, and abdomen. With respect to 6 MV, the 2.5 MV achieved higher contrast and preserved sharpness on bony structures with only half of the imaging dose. The quality of 2.5 MV imaging was comparable to that of kV imaging when the lateral separation of patient was greater than 38 cm, while the kV image quality degraded rapidly as patient separation increased. Based on the results of patient images, 2.5 MV imaging was better for cranial and extracranial SRS than the 6 MV imaging. PMID:27455505

  6. The Effect of E-Portal System on Corporate Image of Universities

    ERIC Educational Resources Information Center

    Tunji, Oyedepo; Nelson, Okorie

    2011-01-01

    Internet connectivity in tertiary institutions in Africa has been summarized in three characteristics-- too little, too expensive and poorly managed (African Tertiary Institutions Connectivity Survey (ATICS), 2006 report). The Internet portal system offers educational organizations the ability to track students needs and promote their programs and…

  7. Improved dosimetry in prostate brachytherapy using high resolution contrast enhanced magnetic resonance imaging: a feasibility study

    PubMed Central

    Morancy, Tye; Kaplan, Irving; Qureshi, Muhammad M.; Hirsch, Ariel E.; Rofksy, Neil M.; Holupka, Edward; Oismueller, Renee; Hawliczek, Robert; Helbich, Thomas H.; Bloch, B. Nicolas

    2014-01-01

    Purpose To assess detailed dosimetry data for prostate and clinical relevant intra- and peri-prostatic structures including neurovascular bundles (NVB), urethra, and penile bulb (PB) from postbrachytherapy computed tomography (CT) versus high resolution contrast enhanced magnetic resonance imaging (HR-CEMRI). Material and methods Eleven postbrachytherapy prostate cancer patients underwent HR-CEMRI and CT imaging. Computed tomography and HR-CEMRI images were randomized and 2 independent expert readers created contours of prostate, intra- and peri-prostatic structures on each CT and HR-CEMRI scan for all 11 patients. Dosimetry data including V100, D90, and D100 was calculated from these contours. Results Mean V100 values from CT and HR-CEMRI contours were as follows: prostate (98.5% and 96.2%, p = 0.003), urethra (81.0% and 88.7%, p = 0.027), anterior rectal wall (ARW) (8.9% and 2.8%, p < 0.001), left NVB (77.9% and 51.5%, p = 0.002), right NVB (69.2% and 43.1%, p = 0.001), and PB (0.09% and 11.4%, p = 0.005). Mean D90 (Gy) derived from CT and HR-CEMRI contours were: prostate (167.6 and 150.3, p = 0.012), urethra (81.6 and 109.4, p = 0.041), ARW (2.5 and 0.11, p = 0.003), left NVB (98.2 and 58.6, p = 0.001), right NVB (87.5 and 55.5, p = 0.001), and PB (11.2 and 12.4, p = 0.554). Conclusions Findings of this study suggest that HR-CEMRI facilitates accurate and meaningful dosimetric assessment of prostate and clinically relevant structures, which is not possible with CT. Significant differences were seen between CT and HR-CEMRI, with volume overestimation of CT derived contours compared to HR-CEMRI. PMID:25834576

  8. PET/CT image registration: Preliminary tests for its application to clinical dosimetry in radiotherapy

    SciTech Connect

    Banos-Capilla, M. C.; Garcia, M. A.; Bea, J.; Pla, C.; Larrea, L.; Lopez, E.

    2007-06-15

    The quality of dosimetry in radiotherapy treatment requires the accurate delimitation of the gross tumor volume. This can be achieved by complementing the anatomical detail provided by CT images through fusion with other imaging modalities that provide additional metabolic and physiological information. Therefore, use of multiple imaging modalities for radiotherapy treatment planning requires an accurate image registration method. This work describes tests carried out on a Discovery LS positron emission/computed tomography (PET/CT) system by General Electric Medical Systems (GEMS), for its later use to obtain images to delimit the target in radiotherapy treatment. Several phantoms have been used to verify image correlation, in combination with fiducial markers, which were used as a system of external landmarks. We analyzed the geometrical accuracy of two different fusion methods with the images obtained with these phantoms. We first studied the fusion method used by the PET/CT system by GEMS (hardware fusion) on the basis that there is satisfactory coincidence between the reconstruction centers in CT and PET systems; and secondly the fiducial fusion, a registration method, by means of least-squares fitting algorithm of a landmark points system. The study concluded with the verification of the centroid position of some phantom components in both imaging modalities. Centroids were estimated through a calculation similar to center-of-mass, weighted by the value of the CT number and the uptake intensity in PET. The mean deviations found for the hardware fusion method were: vertical bar {delta}x vertical bar {+-}{sigma}=3.3 mm{+-}1.0 mm and vertical bar {delta}y vertical bar {+-}{sigma}=3.6 mm{+-}1.0 mm. These values were substantially improved upon applying fiducial fusion based on external landmark points: vertical bar {delta}x vertical bar {+-}{sigma}=0.7 mm{+-}0.8 mm and vertical bar {delta}y vertical bar {+-}{sigma}=0.3 mm{+-}1.7 mm. We also noted that differences

  9. Biokinetics and dosimetry of target-specific radiopharmaceuticals for molecular imaging and therapy

    NASA Astrophysics Data System (ADS)

    Ferro-Flores, Guillermina; Torres-García, Eugenio; Gonz&Ález-v&Ázquez, Armando; de Murphy, Consuelo Arteaga

    Molecular imaging techniques directly or indirectly monitor and record the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic or therapeutic applications. 99mTc-HYNIC-TOC has shown high stability both in vitro and in vivo and rapid detection of somatostatin receptor-positive tumors. Therapies using radiolabeled anti-CD20 have demonstrated their efficacy in patients with B-cell non-Hodgkin's lymphoma (NHL). The aim of this study was to establish biokinetic models for 99mTc-HYNIC-TOC and 188Re-anti-CD20 and to evaluate their dosimetry as target-specific radiopharmaceuticals. The OLINDA/EXM code was used to calculate patient-specific internal radiation dose estimates. 99mTc-HYNIC-TOC images showed an average tumor/blood ratio of 4.3±0.7 in receptor-positive tumors with an average effective dose of 4.4 mSv. Dosimetric studies indicated that after administration of 5.8 to 7.5 GBq of 188Re-anti-CD20 the absorbed dose to total body would be 0.75 Gy which corresponds to the recommended dose for NHL therapies.

  10. Dosimetry and quantitative radionuclide imaging in radioimmunotherapy: Final report, July 15, 1992-July 14, 1996

    SciTech Connect

    Leichner, P.K.

    1996-09-01

    Brief summaries of the principal accomplishments of this project on the development of quantitative SPECT for high energy photons (87Y, 19F) and stability testing of 87Y-labeled antibodies in the nude mouse model, development of an unified approach to photon and beta particle dosimetry, quantitative SPECT for nonuniform attenuation, and development of patient-specific dosimetry in radioimmunotherapy.

  11. The CEOS Water Portal

    NASA Astrophysics Data System (ADS)

    Miura, Satoko; Sekioka, Shinichi; Kuroiwa, Kaori; Kudo, Yoshiyuki; Koide, Michihiro

    2014-05-01

    The CEOS Water is a one of the DIAS (Data Integration and Analysis System, http://www.editoria.u-tokyo.ac.jp/projects/dias/?locale=en_US) data distributed systems. The CEOS Water Portal system is distributed in the sense that, while the portal system is located in Tokyo, the data is located in archive centers which are globally distributed. For example, some in-situ data is archived at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory in Boulder, Colorado, USA. The NWP station time series and global gridded model output data is archived at the Max Planck Institute for Meteorology (MPIM) in cooperation with the World Data Centerfor Climate in Hamburg, Germany. Part of satellite data is archived at DIAS storage at the University of Tokyo, Japan. This portal does not store data. Instead, according to requests made by users on the web page, it retrieves data from distributed data centers on-the-fly and lets them download and see rendered images/plots. Considering the popularity among water related data centers, OpenDAP protocol is mainly being used between this portal and most of data centers. And this portal also is connected to a kind of data brokering system, which is already connected to multiple data centers. For this interface, OpenSearch protocol is being used. The CEOS Water Portal intends to extend its users to include decision makers and officers like river administrators by facilitating a feedback loop. One example of data and information flow centered on the CEOS Water Portal is shown below. (1)Scientists get various data needed for Model Calculation (WEB-DHM, for example) via the portal. (2)Scientists use Model output data and do analysis. (3)Scientists register their use cases into the portal. (4)Decision makers and officers can refer and acquire use cases and data easily. Users can access the CEOS Water Portal system at http://waterportal.ceos.org/.

  12. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which

  13. Analysis of the rigid and deformable component of setup inaccuracies on portal images in head and neck radiotherapy.

    PubMed

    Birkner, Mattias; Thorwarth, Daniela; Poser, Alexander; Ammazzalorso, Filippo; Alber, Markus

    2007-09-21

    The issue of setup errors consisting of translation, rotation and deformation components in head and neck radiotherapy is addressed with a piecewise registration of small independent regions on a portal image to their reference position. These rectangular regions are termed featurelets as they contain relevant anatomical features. The resulting displacement vectors of each featurelet reflect both the center-of-mass (COM), i.e. the rigid, and the non-rigid component of the setup error. The displacement vectors of a series of daily portal images were subjected to a principal component analysis. In addition to the mean, systematic displacement of each featurelet, this analysis yields correlated patterns of anatomical deformations. Hence, the physiological movements of an individual patient can be obtained without a biomechanical model. It is shown that in the presence of setup errors that are due to rotations or deformations a correction by the COM displacement may deteriorate the error of parts of the anatomy further. The featurelet analysis can be used to refine setup correction protocols, tune spatially variable setup margins in treatment planning and optimize patient immobilization devices. PMID:17804891

  14. Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance

    SciTech Connect

    Lim, Sangwook; Ma, Sun Young; Jeung, Tae Sig; Yi, Byong Yong; Lee, Sang Hoon; Lee, Suk; Cho, Sam Ju; Choi, Jinho

    2012-10-01

    In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment.

  15. Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance.

    PubMed

    Lim, Sangwook; Ma, Sun Young; Jeung, Tae Sig; Yi, Byong Yong; Lee, Sang Hoon; Lee, Suk; Cho, Sam Ju; Choi, Jinho

    2012-01-01

    In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment. PMID:22277157

  16. Phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography

    PubMed Central

    Ludlow, John B.; Walker, Cameron

    2013-01-01

    Introduction Increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern with the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Methods Effective doses resulting from various combinations of field size, and field location comparing child and adult anthropomorphic phantoms using the recently introduced i-CAT FLX cone-beam computed tomography unit were measured with Optical Stimulated Dosimetry using previously validated protocols. Scan protocols included High Resolution (360° rotation, 600 image frames, 120 kVp, 5 mA, 7.4 sec), Standard (360°, 300 frames, 120 kVp, 5 mA, 3.7 sec), QuickScan (180°, 160 frames, 120 kVp, 5 mA, 2 sec) and QuickScan+ (180°, 160 frames, 90 kVp, 3 mA, 2 sec). Contrast-to-noise ratio (CNR) was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Results Child phantom doses were on average 36% greater than Adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than Standard protocols for child (p=0.0167) and adult (p=0.0055) phantoms. 13×16 cm cephalometric fields of view ranged from 11–85 μSv in the adult phantom and 18–120 μSv in the child for QuickScan+ and Standard protocols respectively. CNR was reduced by approximately 2/3rds comparing QuickScan+ to Standard exposure parameters. Conclusions QuickScan+ effective doses are comparable to conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off may be acceptable for certain diagnostic tasks such as interim assessment of treatment results. PMID:24286904

  17. Portal Vein Thrombosis in Patients with Hepatocellular Carcinoma: Diagnostic Accuracy of Gadoxetic Acid-enhanced MR Imaging.

    PubMed

    Kim, Jae Hyun; Lee, Jeong Min; Yoon, Jeong Hee; Lee, Dong Ho; Lee, Kyung Bun; Han, Joon Koo; Choi, Byung Ihn

    2016-06-01

    Purpose To assess the diagnostic performance of gadoxetic acid-enhanced magnetic resonance (MR) imaging in the evaluation of portal vein thrombosis (PVT) in patients with hepatocellular carcinoma (HCC). Materials and Methods This retrospective study was approved by the institutional review board. The requirement to obtain informed consent was waived. A total of 366 patients with HCC who underwent gadoxetic acid-enhanced MR imaging between January 2007 and May 2013, including 134 with malignant PVT, 49 with benign PVT, and 183 without PVT matched for age and sex, comprised our study population. PVTs were complete in 125 patients and partial in 58 and were located in a major portal vein (n = 159) or segmental portal vein (n = 24). Two radiologists independently reviewed the MR images and assessed the sensitivity, specificity, and accuracy in the detection and characterization of PVT according to location (major vs segmental) and type (complete vs partial). The Fisher exact or χ(2) test was used to evaluate sensitivity difference between the subsets. Results Gadoxetic acid-enhanced MR imaging showed good sensitivity (reviewer 1, 84% [154 of 183 patients]; reviewer 2, 70% [129 of 183 patients]) and high specificity (reviewer 1, 89% [163 of 183 patients]; reviewer 2, 96% [176 of 183 patients]) in the detection of PVT. Diagnostic accuracy for differentiating malignant PVT from benign PVT was high (reviewer 1, 92% [141 of 154 patients]; reviewer 2, 95% [122 of 129 patients]). However, there was slightly lower sensitivity for detecting segmental PVT compared with that of major PVT in the malignant PVT group (reviewer 1, 95% [104 of 110 patients] vs 88% [21 of 24 patients]; reviewer 2, 82% [90 of 110 patients] vs 79% [19 of 24 patients]; P = .203 and .775 for reviewers 1 and 2, respectively). Conclusion Gadoxetic acid-enhanced MR imaging provided good diagnostic performance in the detection of PVT and the differentiation of malignant from benign PVT in patients with HCC

  18. Characterization of a new polymer gel for radiosurgery dosimetry using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Petrokokkinos, L.; Kozicki, M.; Pantelis, E.; Antypas, C.; Fijuth, J.; Karaiskos, P.; Sakelliou, L.; Seimenis, I.

    2009-06-01

    The VIPAR polymer gel dosimeter formulation was modified in an effort to eliminate the need for deoxygenation in the manufacturing procedure while preserving its favorable characteristics of dose rate independence and a wide dose response range. Aiming at an adequate dose sensitivity and the extension of dose response in the low dose region to facilitate the dose verification of radiosurgery applications where narrow beams are employed and steep dose gradients are involved, the new formulation consists of 8% N-Vinylpyrrolidone, 7.5% gelatine, 4% N,N'-methylenebisacrylamide, as well as of 0.0008% Copper Sulfate and 0.007% Ascorbic Acid as oxygen scavengers. To study the dose-R2 response, dose rate dependence and ``edge effect'' behaviour of the new formulation, one batch of two gel filled glass vials was prepared. Before MR Imaging, one vial was irradiated with a brachytherapy source while the other one was irradiated using circular CyberKnife radiation fields of 60, 10, 7.5 and 5 mm in diameter. Results of this study suggest that the new gel dosimeter responds linearly in the dose range of about 3 to 30 Gy, whilst the full dose response range exceeds the maximum delivered dose of 50 Gy. No dose rate dependence was observed for the new gel, while Cyberknife dosimetry results in the form of stereotactic field size and penumbra measurements suggest that the new formulation could be effective in the dose verification of demanding radiosurgery techniques.

  19. Design of Dual-Road Transportable Portal Monitoring System for Visible Light and Gamma-Ray Imaging

    SciTech Connect

    Karnowski, Thomas Paul; Cunningham, Mark F; Goddard Jr, James Samuel; Cheriyadat, Anil M; Hornback, Donald Eric; Fabris, Lorenzo; Kerekes, Ryan A; Ziock, Klaus-Peter; Bradley, Eric Craig; Chesser, Joel B; Marchant, William

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third alignment camera for motion compensation and are mounted on a 50 deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  20. Design of dual-road transportable portal monitoring system for visible light and gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, E. Craig; Chesser, J.; Marchant, W.

    2010-04-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third "alignment" camera for motion compensation and are mounted on a 50' deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  1. A comprehensive tool for image-based generation of fetus and pregnant women mesh models for numerical dosimetry studies

    NASA Astrophysics Data System (ADS)

    Dahdouh, S.; Varsier, N.; Serrurier, A.; De la Plata, J.-P.; Anquez, J.; Angelini, E. D.; Wiart, J.; Bloch, I.

    2014-08-01

    Fetal dosimetry studies require the development of accurate numerical 3D models of the pregnant woman and the fetus. This paper proposes a 3D articulated fetal growth model covering the main phases of pregnancy and a pregnant woman model combining the utero-fetal structures and a deformable non-pregnant woman body envelope. The structures of interest were automatically or semi-automatically (depending on the stage of pregnancy) segmented from a database of images and surface meshes were generated. By interpolating linearly between fetal structures, each one can be generated at any age and in any position. A method is also described to insert the utero-fetal structures in the maternal body. A validation of the fetal models is proposed, comparing a set of biometric measurements to medical reference charts. The usability of the pregnant woman model in dosimetry studies is also investigated, with respect to the influence of the abdominal fat layer.

  2. Electronic portal imaging vs kilovoltage imaging in fiducial marker image-guided radiotherapy for prostate cancer: an analysis of set-up uncertainties

    PubMed Central

    Gill, S; Thomas, J; Fox, C; Kron, T; Thompson, A; Chander, S; Williams, S; Tai, K H; Duchesne, G; Foroudi, F

    2012-01-01

    Objectives The purpose of this study was to compare interfraction prostate displacement data between electronic portal imaging (EPI) and kilovoltage imaging (KVI) treatment units and discuss the impact of any difference on margin calculations for prostate cancer image-guided radiotherapy (IGRT). Methods Prostate interfraction displacement data was collected prospectively for the first 4 fractions in 333 patients treated with IGRT with daily pre-treatment EPI or KVI orthogonal imaging. Displacement was recorded in the anteroposterior (AP), left–right (LR) and superoinferior (SI) directions. The proportion of displacement <3 mm and the difference in median absolute displacements were calculated in all directions. Results 1088 image pairs were analysed in total, 448 by EPI and 640 by KVI. There were 23% (95% confidence interval [CI] 18–28%) more displacements under 3 mm for EPI than for KVI in the AP direction, 14% (95% CI 10–19%) more in the LR direction and 10% (95% CI 5–15%) more in the SI direction. The differences in absolute median displacement (KVI>EPI) were AP 1 mm, LR 1 mm and SI 0.5 mm. Wilcoxon rank-sum test showed that distributions were significantly different for all three dimensions (p<0.0001 for AP and LR and p=0.02 for SI). Conclusion EPI has a statistically significant smaller set-up error distribution than KVI. We would expect that, because fiducial marker imaging is less clear for EPI, the clinical target volume to planning target volume margin would be greater when using IGRT; however, relying wholly on displacement data gives the opposite result. We postulate that this is owing to observer bias, which is not accounted for in margin calculation formulas. PMID:21976627

  3. Assessment of flatness and symmetry of megavoltage x-ray beam with an electronic portal imaging device (EPID).

    PubMed

    Liu, G; van Doorn, T; Bezak, E

    2002-07-01

    The input/output characteristics of the Wellhofer BIS 710 electronic portal imaging device (EPID) have been investigated to establish its efficacy for periodic quality assurance (QA) applications. Calibration curves have been determined for the energy fluence incident on the detector versus the pixel values. The effect of the charge coupled device (CCD) camera sampling time and beam parameters (such as beam field size, dose rate, photon energy) on the calibration have been investigated for a region of interest (ROI) around the central beam axis. The results demonstrate that the pixel output is a linear function of the incident exposure, as expected for a video-based electronic portal imaging system. The field size effects of the BIS 710 are similar to that of an ion chamber for smaller field sizes up to 10 x 10 cm2. However, for larger field sizes the pixel value increases more rapidly. Furthermore, the system is slightly sensitive to dose rate and is also energy dependent The BIS 710 has been used in the current study to develop a QA procedure for measurements of flatness and symmetry of a linac x-ray beam. As a two-dimensional image of the radiation field is obtained from a single exposure of the BIS 710, a technique has been developed to calculate flatness and symmetry from a defined radiation area. The flatness and symmetry values obtained are different from those calculated conventionally from major axes only (inplane, crossplane). This demonstrates that the technique can pick up the "cold" and "hot" spots in the analysed area, providing thus more information about the radiation beam. When calibrated against the water tank measurements, the BIS 710 can be used as a secondary device to monitor the x-ray beam flatness and symmetry. PMID:12219846

  4. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  5. Localization of linked {sup 125}I seeds in postimplant TRUS images for prostate brachytherapy dosimetry

    SciTech Connect

    Xue Jinyu . E-mail: Jinyu.Xue@mail.tju.edu; Waterman, Frank; Handler, Jay; Gressen, Eric

    2005-07-01

    Purpose: To demonstrate that {sup 125}I seeds can be localized in transrectal ultrasound (TRUS) images obtained with a high-resolution probe when the implant is performed with linked seeds and spacers. Adequate seed localization is essential to the implementation of TRUS-based intraoperative dosimetry for prostate brachytherapy. Methods and Materials: Thirteen preplanned peripherally loaded prostate implants were performed using {sup 125}I seeds and spacers linked together in linear arrays that prevent seed migration and maintain precise seed spacing. A set of two-dimensional transverse images spaced at 0.50-cm intervals were obtained with a high-resolution TRUS probe at the conclusion of the procedure with the patient still under anesthesia. The image set extended from 1.0 cm superior to the base to 1.0 cm inferior to the apex. The visible echoes along each needle track were first localized and then compared with the known construction of the implanted array. The first step was to define the distal and proximal ends of each array. The visible echoes were then identified as seeds or spacers from the known sequence of the array. The locations of the seeds that did not produce a visible echo were interpolated from their known position in the array. A CT scan was obtained after implantation for comparison with the TRUS images. Results: On average, 93% (range, 86-99%) of the seeds were visible in the TRUS images. However, it was possible to localize 100% of the seeds in each case, because the locations of the missing seeds could be determined from the known construction of the arrays. Two factors complicated the interpretation of the TRUS images. One was that the spacers also produced echoes. Although weak and diffuse, these echoes could be mistaken for seeds. The other was that the number of echoes along a needle track sometimes exceeded the number of seeds and spacers implanted. This was attributed to the overall length of the array, which was approximately 0.5 cm

  6. Automatic Prostate Tracking and Motion Assessment in Volumetric Modulated Arc Therapy With an Electronic Portal Imaging Device

    SciTech Connect

    Azcona, Juan Diego; Li, Ruijiang; Mok, Edward; Hancock, Steven; Xing, Lei

    2013-07-15

    Purpose: To assess the prostate intrafraction motion in volumetric modulated arc therapy treatments using cine megavoltage (MV) images acquired with an electronic portal imaging device (EPID). Methods and Materials: Ten prostate cancer patients were treated with volumetric modulated arc therapy using a Varian TrueBeam linear accelerator equipped with an EPID for acquiring cine MV images during treatment. Cine MV images acquisition was scheduled for single or multiple treatment fractions (between 1 and 8). A novel automatic fiducial detection algorithm that can handle irregular multileaf collimator apertures, field edges, fast leaf and gantry movement, and MV image noise and artifacts in patient anatomy was used. All sets of images (approximately 25,000 images in total) were analyzed to measure the positioning accuracy of implanted fiducial markers and assess the prostate movement. Results: Prostate motion can vary greatly in magnitude among different patients. Different motion patterns were identified, showing its unpredictability. The mean displacement and standard deviation of the intrafraction motion was generally less than 2.0 ± 2.0 mm in each of the spatial directions. In certain patients, however, the percentage of the treatment time in which the prostate is displaced more than 5 mm from its planned position in at least 1 spatial direction was 10% or more. The maximum prostate displacement observed was 13.3 mm. Conclusion: Prostate tracking and motion assessment was performed with MV imaging and an EPID. The amount of prostate motion observed suggests that patients will benefit from its real-time monitoring. Megavoltage imaging can provide the basis for real-time prostate tracking using conventional linear accelerators.

  7. Evaluation of the precision of portal-image-guided head-and-neck localization: An intra- and interobserver study

    SciTech Connect

    Court, Laurence E.; Allen, Aaron; Tishler, Roy

    2007-07-15

    There is increasing evidence that, for some patients, image-guided intensity-modulated radiation therapy (IMRT) for head-and-neck cancer patients may maintain target dose coverage and critical organ (e.g., parotids) dose closer to the planned doses than setup using lasers alone. We investigated inter- and intraobserver uncertainties in patient setup in head-and-neck cancer patients. Twenty-two sets of orthogonal digital portal images (from five patients) were selected from images used for daily localization of head-and-neck patients treated with IMRT. To evaluate interobserver variations, five radiation therapists compared the portal images with the plan digitally reconstructed radiographs and reported shifts for the isocenter ({approx}C2) and for a supraclavicular reference point. One therapist repeated the procedure a month later to evaluate intraobserver variations. The procedure was then repeated with teams of two therapists. The frequencies for which agreement between the shift reported by the observer and the daily mean shift (average of all observers for a given image set) were less than 1.5 and 2.5 mm were calculated. Standard errors of measurement for the intra- and interobserver uncertainty (SEM{sub intra} and SEM{sub inter}) for the individual and teams were calculated. The data showed that there was very little difference between individual therapists and teams. At isocenter, 80%-90% of all reported shifts agreed with the daily average within 1.5 mm, showing consistency in the ways both individuals and teams interpret the images (SEM{sub inter}{approx}1 mm). This dropped to 65% for the supraclavicular point (SEM{sub inter}{approx}1.5 mm). Uncertainties increased for larger setup errors. In conclusion, image-guided patient positioning allows head-and-neck patients to be controlled within 3-4 mm. This is similar to the setup uncertainties found for most head-and-neck patients, but may provide some improvement for the subset of patients with larger setup

  8. Transjugular Portal Venous Stenting in Inflammatory Extrahepatic Portal Vein Stenosis

    SciTech Connect

    Schaible, Rolf; Textor, Jochen; Decker, Pan; Strunk, Holger; Schild, Hans

    2002-12-15

    We report the case of a 37-year-old man with necrotizing pancreatitis associated with inflammatory extrahepatic portal vein stenosis and progressive ascites. Four months after the acute onset, when no signs of infection were present, portal decompression was performed to treat refractory ascites. Transjugulartranshepatic venoplasty failed to dilate the stenosis in the extrahepatic portion of the portal vein sufficiently. Therefore a Wallstent was implanted, resulting in almost normal diameter of the vessel. In follow-up imaging studies the stent and the portal vein were still patent 12 months after the intervention and total resolution of the ascites was observed.

  9. An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources

    NASA Astrophysics Data System (ADS)

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  10. Intensity-Modulated Radiotherapy Using Implanted Fiducial Markers With Daily Portal Imaging: Assessment of Prostate Organ Motion

    SciTech Connect

    Chen Jergin . E-mail: jergin.chen@hci.utah.edu; Lee, R. Jeffrey; Handrahan, Diana; Sause, William T.

    2007-07-01

    Purpose: To assess our single institutional experience with daily localization, using fiducials for prostate radiotherapy. Methods and Materials: From January 2004 to September 2005, 33 patients were treated with 1,097 intensity-modulated radiation treatments, using three implanted fiducials. Daily portal images were obtained before treatments. Shifts were made for deviations {>=}3 mm in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) dimensions. Results: Of 1,097 treatments, 987 (90%) required shifts. Shifts were made in the LR, SI, and AP dimensions in 51%, 67%, and 58% of treatments, respectively. In the LR dimension, the median distance shifted was 5 mm. Of 739 shifts in the SI dimension, 73% were in the superior direction for a median distance of 6 mm, and 27% were shifted inferiorly for a median distance of 5 mm. The majority of shifts in the AP dimension were in the anterior direction (87%). Median distances shifted in the anterior and posterior directions were 5 mm and 4 mm, respectively. The median percentage of treatments requiring shifts per patient was 93% (range, 57-100%). Median deviations in the LR, SI, and AP dimensions were 3 mm, 4 mm, and 3 mm, respectively. Deviations in the SI and AP dimensions were more often in the superior rather than inferior (60% vs. 29%) and in the anterior rather than posterior (70% vs. 16%) directions. Conclusions: Interfraction prostate motion is significant. Daily portal imaging with implanted fiducials improves localization of the prostate, and is necessary for the reduction of treatment margins.

  11. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system.

    PubMed

    Hanson, Ian M; Hansen, Vibeke N; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients.The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min.The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%.EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments. PMID:25211121

  12. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system

    NASA Astrophysics Data System (ADS)

    Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  13. Testing the GLAaS algorithm for dose measurements on low- and high-energy photon beams using an amorphous silicon portal imager

    SciTech Connect

    Nicolini, Giorgia; Fogliata, Antonella; Vanetti, Eugenio; Clivio, Alessandro; Vetterli, Daniel; Cozzi, Luca

    2008-02-15

    The GLAaS algorithm for pretreatment intensity modulation radiation therapy absolute dose verification based on the use of amorphous silicon detectors, as described in Nicolini et al. [G. Nicolini, A. Fogliata, E. Vanetti, A. Clivio, and L. Cozzi, Med. Phys. 33, 2839-2851 (2006)], was tested under a variety of experimental conditions to investigate its robustness, the possibility of using it in different clinics and its performance. GLAaS was therefore tested on a low-energy Varian Clinac (6 MV) equipped with an amorphous silicon Portal Vision PV-aS500 with electronic readout IAS2 and on a high-energy Clinac (6 and 15 MV) equipped with a PV-aS1000 and IAS3 electronics. Tests were performed for three calibration conditions: A: adding buildup on the top of the cassette such that SDD-SSD=d{sub max} and comparing measurements with corresponding doses computed at d{sub max}, B: without adding any buildup on the top of the cassette and considering only the intrinsic water-equivalent thickness of the electronic portal imaging devices device (0.8 cm), and C: without adding any buildup on the top of the cassette but comparing measurements against doses computed at d{sub max}. This procedure is similar to that usually applied when in vivo dosimetry is performed with solid state diodes without sufficient buildup material. Quantitatively, the gamma index ({gamma}), as described by Low et al. [D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656-660 (1998)], was assessed. The {gamma} index was computed for a distance to agreement (DTA) of 3 mm. The dose difference {delta}D was considered as 2%, 3%, and 4%. As a measure of the quality of results, the fraction of field area with gamma larger than 1 (%FA) was scored. Results over a set of 50 test samples (including fields from head and neck, breast, prostate, anal canal, and brain cases) and from the long-term routine usage, demonstrated the robustness and stability of GLAaS. In general, the mean values of %FA

  14. Dosimetry of an iodine-123-labeled tropane to image dopamine transporters

    SciTech Connect

    Mozley, P.D.; Stubbs, J.B.; Kim, H.J.

    1996-01-01

    N-(3-iodopropen-2-yl)-2{beta}-carbomethoxy-3{beta}(4-chlorophenyl)tropane (IPT) is an analog of cocaine that selectively binds the presynaptic dopamine transporter. The present study sought to measure the radiation dosimetry of IPT in seven healthy human volunteers. Dynamic renal scans were acquired immediately after the intravenous administration of 165 {+-} 16 MBq (4.45 {+-} 0.42 mCi) of [{sup 123}I]IPT. Between 7 and 12 sets of whole-body scans were acquired over the next 24 hr. The 24-hr renal excretion fractions were measured from conjugate emission scans of 7-11 discreet voided urine specimens. The fraction of the administered dose in 11 organs and each urine specimen was quantified from the attenuation-corrected geometric mean counts in opposing views. Subject-specific residence times were evaluated for each subject independently by fitting the time-activity curves to a multicompartmental model. The radiation doses were estimated with the MIRD technique from the residence times for each subject individually before any results were averaged. The findings showed that IPT was excreted rapidly by the renal system. There were no reservoirs of retained activity outside the basal ganglia, where SPECT images in these subjects showed that the mean ratio of caudate to calcarine cortex averaged 25:1 at 3 hr after injection (range 19.6-32 hr). The basal ganglia received a radiation dose of 0.028 mGy/MBq (0.10 rad/mCi). The dose-limiting organ in men was the stomach, which received an estimated 0.11 mGy/MBq (0.37 rad/mCi). In women, the critical organ was the urinary bladder at 0.14 mGy/MBq (0.51 rad/mCi). Relatively high-contrast images of the presynaptic dopamine transporters in the basal ganglia can be acquired with 185 MBq (5 mCi) of [{sup 123}I]IPT. The radiation exposure that results is significantly less than the maximum allowed by current safety guidelines for research volunteers. 33 refs., 4 figs., 3 tabs.

  15. SU-D-BRF-07: Ultrasound and Fluoroscopy Based Intraoperative Image-Guidance System for Dynamic Dosimetry in Prostate Brachytherapy

    SciTech Connect

    Kuo, N; Le, Y; Deguet, A; Prince, J; Song, D; Lee, J; Dehghan, E; Burdette, E; Fichtinger, G

    2014-06-01

    Purpose: Prostate brachytherapy is a common treatment method for low-risk prostate cancer patients. Intraoperative treatment planning is known to improve the treatment procedure and the outcome. The current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. We developed an image-guidance system to fulfill this need to achieve intraoperative dynamic dosimetry in prostate brachytherapy. Methods: Our system is based on standard imaging equipments available in the operating room, including the transrectal ultrasound (TRUS) and the mobile C-arm. A simple fiducial is added to compute the C-arm pose. Three fluoroscopic images and an ultrasound volume of the seeds and the prostate are acquired and processed by four image processing algorithms: seed segmentation, fiducial detection with pose estimation, seed reconstruction, and seeds-to-TRUS registration. The updated seed positions allow the physician to assess the quality of implantation and dynamically adjust the treatment plan during the course of surgery to achieve improved exit dosimetry. Results: The system was tested on 10 phantoms and 37 patients. Seed segmentation resulted in a 1% false negative and 2% false positive rates. Fiducial detection with pose estimation resulted in a detection rate of 98%. Seed reconstruction had a mean reconstruction error of 0.4 mm. Seeds-to-TRUS registration had a mean registration error of 1.3 mm. The total processing time from image acquisition to registration was approximately 1 minute. Conclusion: We present an image-guidance system for intraoperative dynamic dosimetry in prostate brachytherapy. Using standard imaging equipments and a simple fiducial, our system can be easily adopted in any clinics. Robust image processing algorithms enable accurate and fast computation of the delivered dose. Especially, the system enables detection of possible hot/cold spots during the surgery, allowing the physician to address these

  16. Investigation of the mechanical performance of Siemens linacs components during arc: gantry, MLC, and electronic portal imaging device

    PubMed Central

    Rowshanfarzad, Pejman; Häring, Peter; Riis, Hans L; Zimmermann, Sune J; Ebert, Martin A

    2015-01-01

    Background In radiotherapy treatments, it is crucial to monitor the performance of linac components including gantry, collimation system, and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method is suggested in conjunction with an algorithm to investigate the stability of these systems at various gantry angles with the aim of evaluating machine-related errors in treatments. Methods The EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt, and the sag in leaf bank assembly due to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with five ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of image data. Three Siemens linacs were investigated. Results The average EPID sag was within 1 mm for all tested linacs. Two machines showed >1 mm gantry sag. Changes in the SDD values were within 7.5 mm. EPID skewness and tilt values were <1° in all machines. The maximum sag in leaf bank assembly was <1 mm. Conclusion The method and software developed in this study provide a simple tool for effective investigation of the behavior of Siemens linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Siemens machines. PMID:26604840

  17. Comparison of CT on Rails With Electronic Portal Imaging for Positioning of Prostate Cancer Patients With Implanted Fiducial Markers

    SciTech Connect

    Owen, Rebecca Kron, Tomas; Foroudi, Farshad; Milner, Alvin; Cox, Jennifer; Duchesne, Gillian; Cleeve, Laurence; Zhu Li; Cramb, Jim; Sparks, Laura; Laferlita, Marcus

    2009-07-01

    Purpose: The objective of this investigation was to measure the agreement between in-room computed tomography (CT) on rails and electronic portal image (EPI) radiography. Methods and Materials: Agreement between the location of the center of gravity (COG) of fiducial markers (FMs) on CT and EPI images was determined in phantom studies and a patient cohort. A secondary analysis between the center of volume (COV) of the prostate on CT and the COG of FMs on CT and EPI was performed. Agreement was defined as the 95% probability of a difference of {<=}3.0 mm between images. Systematic and random errors from CT and EPI are reported. Results: From 8 patients, 254 CT and EPI pairs were analyzed. FMs were localized to within 3 mm on CT and EPI images 96.9% of the time in the left-right (LR) plane, 85.8% superior-inferior (SI), and 89% anterior-posterior (AP). The differences between the COV on CT and the COG on EPI were not within 3 mm in any plane: 87.8% (LR), 64.2% (SI), and 70.9% (AP). The systematic error varied from 1.2 to 2.9 mm (SI) and 1.8-2.9 mm (AP) between the COG on EPI and COV on CT. Conclusions: Considerable differences between in-room CT and EPI exist. The phantom measurements showed slice thickness affected the accuracy of localization in the SI plane, and couch sag that occurs at the CT on rails gantry could not be totally corrected for in the AP plane. Other confounding factors are the action of rotating the couch and associated time lag between image acquisitions (prostate motion), EPI image quality, and outlining uncertainties.

  18. SU-C-204-05: Simulations of a Portal Imaging System for Conformal and Intensity Modulated Fast Neutron Therapy

    SciTech Connect

    James, S St.; Argento, D; Stewart, R

    2015-06-15

    Purpose: The University of Washington Medical Center offers neutron therapy for the palliative and definitive treatment of selected cancers. In vivo field verification has the potential to improve the safe and effective delivery of neutron therapy. We propose a portal imaging method that relies on the creation of positron emitting isotopes (11C and 15O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects annihilation photons. The spatial pattern of activity produced in the PMMA plate provides information to reconstruct the neutron fluence map needed to confirm treatment delivery. Methods: We used MCNP to simulate the accumulation of 11C activity in a slab of PMMA 2 mm thick, and GATE was used to simulate the sensitivity and spatial resolution of a prototype imaging system. BGO crystal thicknesses of 1 cm, 2 cm and 3 cm were simulated with detector separations of 2 cm. Crystal pitches of 2 mm and 4 mm were evaluated. Back-projection of the events was used to create a planar image. The spatial resolution was taken to be the FWHM of the reconstructed point source image. Results: The system sensitivity for a point source in the center of the field of view was found to range from 58% for 1 cm thick BGO with 2 mm crystal pitch to 74% for the 3 cm thick BGO crystals with 4 mm crystal pitch. The spatial resolution at the center of the field of view was found to be 1.5 mm for the system with 2 mm crystal pitch and 2.8 mm for the system with the 4 mm crystal pitch. Conclusion: BGO crystals with 4 mm crystal pitch and 3 cm length would offer the best sensitivity reader.

  19. Biodistribution and Radiation Dosimetry for a Probe Targeting Prostate-Specific Membrane Antigen for Imaging and Therapy

    PubMed Central

    Herrmann, Ken; Bluemel, Christina; Weineisen, Martina; Schottelius, Margret; Wester, Hans-Jürgen; Czernin, Johannes; Eberlein, Uta; Beykan, Seval; Lapa, Constantin; Riedmiller, Hubertus; Krebs, Markus; Kropf, Saskia; Schirbel, Andreas; Buck, Andreas K.; Lassmann, Michael

    2016-01-01

    Prostate-specific membrane antigen (PSMA) is a promising target for diagnosis and treatment of prostate cancer. EuK-Subkff-68Ga-DOTAGA (68Ga-PSMA Imaging & Therapy [PSMA I&T]) is a recently introduced PET tracer for imaging PSMA expression in vivo. Whole-body distribution and radiation dosimetry of this new probe were evaluated. Methods Five patients with a history of prostate cancer were injected intravenously with 91–148 MBq of 68Ga-PSMA I&T (mean ± SD, 128 ± 23 MBq). After an initial series of rapid whole-body scans, 3 static whole-body scans were acquired at 1, 2, and 4 h after tracer injection. Time-dependent changes of the injected activity per organ were determined. Mean organ-absorbed doses and effective doses were calculated using OLINDA/EXM. Results Injection of 150 MBq of 68Ga-PSMA I&T resulted in an effective dose of 3.0 mSv. The kidneys were the critical organ (33 mGy), followed by the urinary bladder wall and spleen (10 mGy each), salivary glands (9 mGy each), and liver (7 mGy). Conclusion 68Ga-PSMA I&T exhibits a favorable dosimetry, delivering organ doses that are comparable to (kidneys) or lower than those delivered by 18F-FDG. PMID:25883128

  20. The use of high field strength and parallel imaging techniques for MRI-based gel dosimetry in stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Seimenis, I.; Moutsatsos, A.; Petrokokkinos, L.; Kantemiris, I.; Benekos, O.; Efstathopoulos, E.; Papagiannis, P.; Spevacek, V.; Semnicka, J.; Dvorak, P.

    2009-07-01

    The poor clinical acceptance of polymer gel dosimetry for dose verification in stereotactic radio-surgery applications stems, inter alia, from the increased MRI acquisition times needed to meet the associated spatial resolution demands. To examine whether this could be partly alleviated by the employment of 3 Tesla imagers and parallel imaging techniques, a PolyAcrylamide Gel filled tube was irradiated in a Leksell Gamma Knife unit with two single irradiation shots (4 mm and 8 mm) and underwent four different scanning sessions using an optimised, volume selective, 32 echo CPMG pulse sequence: One performed on a 1.5 T imager with 0.5 × 0.5 mm2 in-plane spatial resolution and 0.75 mm slice thickness (scan A), while the rest three on a 3.0 T imager; one with the same spatial resolution as in scan A (scan B) and two with finer in-plane resolution (scans C and D). In scans B and C the sensitivity encoding (SENSE) parallel imaging technique was employed. Relative dose distributions derived by scan A were benchmarked against Monte Carlo and treatment planning system calculations, and then used as the reference for the comparison of 2D relative dose distributions derived by each scan in terms of dose difference and distance-to-agreement criteria (γ index tool). Findings suggest that careful MRI planning based on a figure of merit accounting for scanning time and precision for a given increase in spatial resolution, could facilitate the introduction of polymer gel dosimetry into the clinical setting as a practical quality assurance tool for complex radio-surgery techniques.

  1. The importance of 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    2015-01-01

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions.

  2. Effect of recombination in a high quantum efficiency prototype ionization-chamber-based electronic portal imaging device

    SciTech Connect

    Gopal, A.; Samant, S. S.

    2007-08-15

    The quantum efficiency (QE) of an imaging detector can be increased by utilizing a thick, high-density detection medium to increase the number of quantum interactions. However, image quality is more accurately described by the detection quantum efficiency (DQE). If a significant fraction of the increase in the number of detected quanta from a thick, dense detector were to result in useful imaging signal, this represents a favorable case where enhanced QE leads to increased DQE. However, for ionization-type detectors, one factor that limits DQE is the recombination between ion pairs that acts as a secondary quantum sink due to which enhancement in QE may not result in higher DQE depending on the extent of the signal loss from recombination. Therefore, an analysis of signal loss mechanisms or quantum sinks in an imaging system is essential for validating the overall benefit of high QE detectors. In this paper, a study of ion recombination as a secondary quantum sink is presented for a high QE prototype ion-chamber-based electronic portal imaging device (EPID): the kinestatic charge detector (KCD). The KCD utilizes a high pressure noble gas (krypton or xenon at 100 atm) and an arbitrarily large detector thickness (of the order of centimeters), resulting in a high QE imager. Compared with commercial amorphous silicon flat panel imagers that provide DQE(0){approx_equal}0.01, the KCD has much higher DQE. Studies indicated that DQE(0)=0.20 for 6.1 cm thick, 100 atm ({rho}=3.4 g/cm{sup 3}) xenon chamber, and DQE(0)=0.34 for a 9.1 cm thick chamber. A series of experiments was devised and conducted to determine the signal loss due to recombination for a KCD chamber. The measurements indicated a fractional recombination loss of about 14% for a krypton chamber and about 18% for a xenon chamber under standard operating conditions (100 atm chamber pressure and 1275 V/cm electric field intensity). A theoretical treatment of the effect of recombination on imaging signal

  3. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    SciTech Connect

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand; Ranouil, Julien; Morgand, Loïc; Raguin, Olivier; Walker, Paul; Brunotte, François

    2013-12-15

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 ± 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 ± 2.1 and 110.7 ± 3.0 mGy for the rat-like phantom and between 169.3 ± 4.6 and 203.6 ± 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse

  4. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    NASA Astrophysics Data System (ADS)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  5. Breast Patient Setup Error Assessment: Comparison of Electronic Portal Image Devices and Cone-Beam Computed Tomography Matching Results

    SciTech Connect

    Topolnjak, Rajko; Sonke, Jan-Jakob; Nijkamp, Jasper; Rasch, Coen; Minkema, Danny; Remeijer, Peter; Vliet-Vroegindeweij, Corine van

    2010-11-15

    Purpose: To quantify the differences in setup errors measured with the cone-beam computed tomography (CBCT) and electronic portal image devices (EPID) in breast cancer patients. Methods and Materials: Repeat CBCT scan were acquired for routine offline setup verification in 20 breast cancer patients. During the CBCT imaging fractions, EPID images of the treatment beams were recorded. Registrations of the bony anatomy for CBCT to planning CT and EPID to digitally reconstructed-radiographs (DRRs) were compared. In addition, similar measurements of an anthropomorphic thorax phantom were acquired. Bland-Altman and linear regression analysis were performed for clinical and phantom registrations. Systematic and random setup errors were quantified for CBCT and EPID-driven correction protocols in the EPID coordinate system (U, V), with V parallel to the cranial-caudal axis and U perpendicular to V and the central beam axis. Results: Bland-Altman analysis of clinical EPID and CBCT registrations yielded 4 to 6-mm limits of agreement, indicating that both methods were not compatible. The EPID-based setup errors were smaller than the CBCT-based setup errors. Phantom measurements showed that CBCT accurately measures setup error whereas EPID underestimates setup errors in the cranial-caudal direction. In the clinical measurements, the residual bony anatomy setup errors after offline CBCT-based corrections were {Sigma}{sub U} = 1.4 mm, {Sigma}{sub V} = 1.7 mm, and {sigma}{sub U} = 2.6 mm, {sigma}{sub V} = 3.1 mm. Residual setup errors of EPID driven corrections corrected for underestimation were estimated at {Sigma}{sub U} = 2.2mm, {Sigma}{sub V} = 3.3 mm, and {sigma}{sub U} = 2.9 mm, {sigma}{sub V} = 2.9 mm. Conclusion: EPID registration underestimated the actual bony anatomy setup error in breast cancer patients by 20% to 50%. Using CBCT decreased setup uncertainties significantly.

  6. Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers

    SciTech Connect

    Teymurazyan, A.; Pang, G.

    2012-03-15

    Purpose: Most electronic portal imaging devices (EPIDs) developed so far use a thin Cu plate/phosphor screen to convert x-ray energies into light photons, while maintaining a high spatial resolution. This results in a low x-ray absorption and thus a low quantum efficiency (QE) of approximately 2-4% for megavoltage (MV) x-rays. A significant increase of QE is desirable for applications such as MV cone-beam computed tomography (MV-CBCT). Furthermore, the Cu plate/phosphor screen contains high atomic number (high-Z) materials, resulting in an undesirable over-response to low energy x-rays (due to photoelectric effect) as well as high energy x-rays (due to pair production) when used for dosimetric verification. Our goal is to develop a new MV x-ray detector that has a high QE and uses low-Z materials to overcome the obstacles faced by current MV x-ray imaging technologies. Methods: A new high QE and low-Z EPID is proposed. It consists of a matrix of plastic scintillating fibers embedded in a water-equivalent medium and coupled to an optically sensitive 2D active matrix flat panel imager (AMFPI) for image readout. It differs from the previous approach that uses segmented crystalline scintillators made of higher density and higher atomic number materials to detect MV x-rays. The plastic scintillating fibers are focused toward the x-ray source to avoid image blurring due to oblique incidence of off-axis x-rays. When MV x-rays interact with the scintillating fibers in the detector, scintillation light will be produced. The light photons produced in a fiber core and emitted within the acceptance angle of the fiber will be guided toward the AMFPI by total internal reflection. A Monte Carlo simulation has been used to investigate imaging and dosimetric characteristics of the proposed detector under irradiation of MV x-rays. Results: Properties, such as detection efficiency, modulation transfer function, detective quantum efficiency (DQE), energy dependence of detector

  7. Registration of DRRs and portal images for verification of stereotactic body radiotherapy: a feasibility study in lung cancer treatment

    NASA Astrophysics Data System (ADS)

    Künzler, Thomas; Grezdo, Jozef; Bogner, Joachim; Birkfellner, Wolfgang; Georg, Dietmar

    2007-04-01

    Image guidance has become a pre-requisite for hypofractionated radiotherapy where the applied dose per fraction is increased. Particularly in stereotactic body radiotherapy (SBRT) for lung tumours, one has to account for set-up errors and intrafraction tumour motion. In our feasibility study, we compared digitally reconstructed radiographs (DRRs) of lung lesions with MV portal images (PIs) to obtain the displacement of the tumour before irradiation. The verification of the tumour position was performed by rigid intensity based registration and three different merit functions such as the sum of squared pixel intensity differences, normalized cross correlation and normalized mutual information. The registration process then provided a translation vector that defines the displacement of the target in order to align the tumour with the isocentre. To evaluate the registration algorithms, 163 test images were created and subsequently, a lung phantom containing an 8 cm3 tumour was built. In a further step, the registration process was applied on patient data, containing 38 tumours in 113 fractions. To potentially improve registration outcome, two filter types (histogram equalization and display equalization) were applied and their impact on the registration process was evaluated. Generated test images showed an increase in successful registrations when applying a histogram equalization filter whereas the lung phantom study proved the accuracy of the selected algorithms, i.e. deviations of the calculated translation vector for all test algorithms were below 1 mm. For clinical patient data, successful registrations occurred in about 59% of anterior-posterior (AP) and 46% of lateral projections, respectively. When patients with a clinical target volume smaller than 10 cm3 were excluded, successful registrations go up to 90% in AP and 50% in lateral projection. In addition, a reliable identification of the tumour position was found to be difficult for clinical target volumes

  8. Study of X-ray field junction dose using an a-Si electronic portal imaging device.

    PubMed

    Madebo, Mebratu; Perkins, A; Fox, C; Johnston, P; Kron, T

    2010-03-01

    Field junctions between megavoltage photon beams are important in modern radiotherapy for treatments such as head and neck and breast cancer. An electronic portal imaging device (EPID) may be used to study junction dose between two megavoltage X-ray fields. In this study, the junction dose was used to determine machine characteristics such as jaw positions and their reproducibility, collimator rotation and the effect of gantry rotation. All measurements were done on Varian linear accelerators with EPID (Varian, Palo Alto, CA). The results show reproducibility in jaw positions of approximately 0.3 mm for repeated jaw placement while EPID readings were reproducible within a standard deviation of 0.4% for fixed jaw positions. Junction dose also allowed collimator rotation error of 0.1 degrees to be observed. Dependence of junction dose on gantry rotation due to gravity was observed; the gravity effect being maximum at 180 degrees gantry angle (beam pointing up). EPIDs were found to be reliable tools for checking field junctions, which in turn may be used to check jaw reproducibility and collimator rotation of linacs. PMID:20237889

  9. Portal hypertensive enteropathy

    PubMed Central

    Mekaroonkamol, Parit; Cohen, Robert; Chawla, Saurabh

    2015-01-01

    Portal hypertensive enteropathy (PHE) is a condition that describes the pathologic changes and mucosal abnormalities observed in the small intestine of patients with portal hypertension. This entity is being increasingly recognized and better understood over the past decade due to increased accessibility of the small intestine made possible by the introduction of video capsule endoscopy and deep enteroscopy. Though challenged by its diverse endoscopic appearance, multiple scoring systems have been proposed to classify the endoscopic presentation and grade its severity. Endoscopic findings can be broadly categorized into vascular and non-vascular lesions with many subtypes of both categories. Clinical manifestations of PHE can range from asymptomatic incidental findings to fatal gastrointestinal hemorrhage. Classic endoscopic findings in the setting of portal hypertension may lead to a prompt diagnosis. Occasionally histopathology and cross sectional imaging like computed tomography or magnetic resonance imaging may be helpful in establishing a diagnosis. Management of overt bleeding requires multidisciplinary approach involving hepatologists, endoscopists, surgeons, and interventional radiologists. Adequate resuscitation, reduction of portal pressure, and endoscopic therapeutic intervention remain the main principles of the initial treatment. This article reviews the existing evidence on PHE with emphasis on its classification, diagnosis, clinical manifestations, endoscopic appearance, pathological findings, and clinical management. A new schematic management of ectopic variceal bleed is also proposed. PMID:25729469

  10. Feasibility study on dosimetry verification of volumetric-modulated arc therapy-based total marrow irradiation.

    PubMed

    Liang, Yun; Kim, Gwe-Ya; Pawlicki, Todd; Mundt, Arno J; Mell, Loren K

    2013-01-01

    The purpose of this study was to develop dosimetry verification procedures for volumetric-modulated arc therapy (VMAT)-based total marrow irradiation (TMI). The VMAT based TMI plans were generated for three patients: one child and two adults. The planning target volume (PTV) was defined as bony skeleton, from head to mid-femur, with a 3 mm margin. The plan strategy similar to published studies was adopted. The PTV was divided into head and neck, chest, and pelvic regions, with separate plans each of which is composed of 2-3 arcs/fields. Multiple isocenters were evenly distributed along the patient's axial direction. The focus of this study is to establish a dosimetry quality assurance procedure involving both two-dimensional (2D) and three-dimensional (3D) volumetric verifications, which is desirable for a large PTV treated with multiple isocenters. The 2D dose verification was performed with film for gamma evaluation and absolute point dose was measured with ion chamber, with attention to the junction between neighboring plans regarding hot/cold spots. The 3D volumetric dose verification used commercial dose reconstruction software to reconstruct dose from electronic portal imaging devices (EPID) images. The gamma evaluation criteria in both 2D and 3D verification were 5% absolute point dose difference and 3 mm of distance to agreement. With film dosimetry, the overall average gamma passing rate was 98.2% and absolute dose difference was 3.9% in junction areas among the test patients; with volumetric portal dosimetry, the corresponding numbers were 90.7% and 2.4%. A dosimetry verification procedure involving both 2D and 3D was developed for VMAT-based TMI. The initial results are encouraging and warrant further investigation in clinical trials. PMID:23470926

  11. Patient-specific dosimetry based on quantitative SPECT imaging and 3D-DFT convolution

    SciTech Connect

    Akabani, G.; Hawkins, W.G.; Eckblade, M.B.; Leichner, P.K.

    1999-01-01

    The objective of this study was to validate the use of a 3-D discrete Fourier Transform (3D-DFT) convolution method to carry out the dosimetry for I-131 for soft tissues in radioimmunotherapy procedures. To validate this convolution method, mathematical and physical phantoms were used as a basis of comparison with Monte Carlo transport (MCT) calculations which were carried out using the EGS4 system code. The mathematical phantom consisted of a sphere containing uniform and nonuniform activity distributions. The physical phantom consisted of a cylinder containing uniform and nonuniform activity distributions. Quantitative SPECT reconstruction was carried out using the Circular Harmonic Transform (CHT) algorithm.

  12. Bone marrow dosimetry via microCT imaging and stem cell spatial mapping

    NASA Astrophysics Data System (ADS)

    Kielar, Kayla N.

    In order to make predictions of radiation dose in patients undergoing targeted radionuclide therapy of cancer, an accurate model of skeletal tissues is necessary. Concerning these tissues, the dose-limiting factor in these therapies is the toxicity of the hematopoietically active bone marrow. In addition to acute effects, one must be concerned as well with long-term stochastic effects such as radiation-induced leukemia. Particular cells of interest for both toxicity and cancer risk are the hematopoietic stem cells (HSC), found within the active marrow regions of the skeleton. At present, cellular-level dosimetry models are complex, and thus we cannot model individual stem cells in an anatomic model of the patient. As a result, one reverts to looking at larger tissue regions where these cell populations may reside. To provide a more accurate marrow dose assessment, the skeletal dosimetry model must also be patient-specific. That is, it should be designed to match as closely as possible to the patient undergoing treatment. Absorbed dose estimates then can be tailored based on the skeletal size and trabecular microstructure of an individual for an accurate prediction of marrow toxicity. Thus, not only is it important to accurately model the target tissues of interest in a normal patient, it is important to do so for differing levels of marrow health. A skeletal dosimetry model for the adult female was provided for better predictions of marrow toxicity in patients undergoing radionuclide therapy. This work is the first fully established gender specific model for these applications, and supersedes previous models in scalability of the skeleton and radiation transport methods. Furthermore, the applicability of using bone marrow biopsies was deemed sufficient in prediction of bone marrow health, specifically for the hematopoietic stem cell population. The location and concentration of the HSC in bone marrow was found to follow a spatial gradient from the bone trabeculae

  13. The CEOS-Land Surface Imaging Constellation Portal for GEOSS: A resource for land surface imaging system information and data access

    USGS Publications Warehouse

    Holm, Thomas; Gallo, Kevin P.; Bailey, Bryan

    2010-01-01

    The Committee on Earth Observation Satellites is an international group that coordinates civil space-borne observations of the Earth, and provides the space component of the Global Earth Observing System of Systems (GEOSS). The CEOS Virtual Constellations concept was implemented in an effort to engage and coordinate disparate Earth observing programs of CEOS member agencies and ultimately facilitate their contribution in supplying the space-based observations required to satisfy the requirements of the GEOSS. The CEOS initially established Study Teams for four prototype constellations that included precipitation, land surface imaging, ocean surface topography, and atmospheric composition. The basic mission of the Land Surface Imaging (LSI) Constellation [1] is to promote the efficient, effective, and comprehensive collection, distribution, and application of space-acquired image data of the global land surface, especially to meet societal needs of the global population, such as those addressed by the nine Group on Earth Observations (GEO) Societal Benefit Areas (SBAs) of agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather. The LSI Constellation Portal is the result of an effort to address important goals within the LSI Constellation mission and provide resources to assist in planning for future space missions that might further contribute to meeting those goals.

  14. Superficial dosimetry imaging based on Čerenkov emission for external beam radiotherapy with megavoltage x-ray beam

    SciTech Connect

    Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Fox, Colleen J.; Pogue, Brian W.

    2013-10-15

    Purpose: Čerenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the Čerenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical Čerenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams.Methods: In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. Čerenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on Čerenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50–200 × 200 mm{sup 2}), incident angles (0°–70°) and imaging regions were all varied.Results: The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their Čerenkov emission is proportional to dose. Directly simulated local intensity of Čerenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of Čerenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the

  15. SU-E-T-497: Semi-Automated in Vivo Radiochromic Film Dosimetry Using a Novel Image Processing Algorithm

    SciTech Connect

    Reyhan, M; Yue, N

    2014-06-01

    Purpose: To validate an automated image processing algorithm designed to detect the center of radiochromic film used for in vivo film dosimetry against the current gold standard of manual selection. Methods: An image processing algorithm was developed to automatically select the region of interest (ROI) in *.tiff images that contain multiple pieces of radiochromic film (0.5x1.3cm{sup 2}). After a user has linked a calibration file to the processing algorithm and selected a *.tiff file for processing, an ROI is automatically detected for all films by a combination of thresholding and erosion, which removes edges and any additional markings for orientation. Calibration is applied to the mean pixel values from the ROIs and a *.tiff image is output displaying the original image with an overlay of the ROIs and the measured doses. Validation of the algorithm was determined by comparing in vivo dose determined using the current gold standard (manually drawn ROIs) versus automated ROIs for n=420 scanned films. Bland-Altman analysis, paired t-test, and linear regression were performed to demonstrate agreement between the processes. Results: The measured doses ranged from 0.2-886.6cGy. Bland-Altman analysis of the two techniques (automatic minus manual) revealed a bias of -0.28cGy and a 95% confidence interval of (5.5cGy,-6.1cGy). These values demonstrate excellent agreement between the two techniques. Paired t-test results showed no statistical differences between the two techniques, p=0.98. Linear regression with a forced zero intercept demonstrated that Automatic=0.997*Manual, with a Pearson correlation coefficient of 0.999. The minimal differences between the two techniques may be explained by the fact that the hand drawn ROIs were not identical to the automatically selected ones. The average processing time was 6.7seconds in Matlab on an IntelCore2Duo processor. Conclusion: An automated image processing algorithm has been developed and validated, which will help

  16. Superficial dosimetry imaging based on Čerenkov emission for external beam radiotherapy with megavoltage x-ray beam

    PubMed Central

    Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Fox, Colleen J.; Pogue, Brian W.

    2013-01-01

    Purpose: Čerenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the Čerenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical Čerenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams. Methods: In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. Čerenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on Čerenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50–200 × 200 mm2), incident angles (0°–70°) and imaging regions were all varied. Results: The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their Čerenkov emission is proportional to dose. Directly simulated local intensity of Čerenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of Čerenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the

  17. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    SciTech Connect

    Fallahpoor, M; Abbasi, M; Sen, A; Parach, A; Kalantari, F

    2015-06-15

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  18. Cubical S values for use with SPECT, PET, and autoradiographic imaging data in performing small-scale dosimetry

    SciTech Connect

    Costes, S.V.; Bouchet, L.G.; Bolch, W.E.

    1996-06-01

    A traditional assumption made in nuclear medicine dosimetry methodologies such as the MIRD schema is that the activity in the source organ is uniformly distributed. Localization techniques such as quantitative SPEC and PET imaging allow one to dispense with this assumption and look at realistic nonuniform activity distributions in selected organs or organ regions. Therapy applications further emphasize the need for direct treatment of nonuniformities. Many researchers have relied upon elaborate computational techniques such as dose kernels to assess dose distributions in these regions. In this work, a simplified approach is proposed which allows direct use of the MIRD schema in conjunction with imaging data to rapidly assess organ dose distributions with minimal computational effort. The EGS4 radiation transportcode has been used with a cubical array of tissue voxel elements for a centrally located source cube of {sup 32}P, {sup 131}I, {sup 89}Sr, {sup 90}Y, and {sup 99m}Tc. Three sets of voxel dimensions are considered: 6 mm for SPECT images, 3 mm for PET images, and 50 {mu}m for autoradiography. Radionuclide S values are subsequently tabulated as a single function of the source-to-target voxel separation distance. Isodose contours are shown for (1) a mouse renal cell carcinoma with {sup 131}I-labeled antibody, (2) a human colon adenocarcinoma with {sup 131}I-labeled antibody, and (3) various tumors directly injected With {sup 32}P.

  19. A Comparison Between Electronic Portal Imaging Device and Cone Beam CT in Radiotherapy Verification of Nasopharyngeal Carcinoma

    SciTech Connect

    Wu, W.C. Vincent; Leung, Wan Shun; Kay, Shu San; Cheung, Hiu Ching; Wah, Yan Kit

    2011-04-01

    The demand of greater accuracy in intensity-modulated radiotherapy (IMRT) has driven the development of more advanced verification systems. The purpose of this study is to investigate the differences in verification accuracy in terms of the position error detected between cone-beam computed tomography (CBCT) and electronic portal imaging device (EPID) in the IMRT of nasopharyngeal carcinoma (NPC). Two groups of NPC patients (n = 22 and n = 28) verified by CBCT (G1-CB), EPID (G1-EP), and EPID (G2-EP) only, respectively, were recruited. The positional errors between the G1-CB group and the G2-EP group were compared. In addition, the magnitudes of the position errors of EPID taken in the same session of the CBCT, but after necessary corrections (G1-EP), were analyzed. In the CBCT group, 455 CBCT images (G1-CB) and 206 EPID images (G1-EP) were collected, whereas 319 EPID images (G2-EP) for the EPID group, were recorded. The median position errors detected in CBCT were between 0.80 and 0.90 mm in the antero-posterior (A-P), left-right (L-R), and supero-inferior (S-I) directions, whereas those of the EPID were all 0.50 mm. The magnitude of position deviation detected by the CBCT was higher than that of the EPID and their differences were extremely significant (p < 0.001). The frequencies in the G2-EP group with position errors greater than the tolerance (2 mm) were 32, 42, and 27 in the A-P, L-R, and S-I directions, respectively, which accounted for 16.5%, 21.6%, and 13.9% of the total number of EPID. There was difference in verification capability between the CBCT and EPID when applied to IMRT of NPC patients. Because an average of 1 of 6 verifications in EPID was inferior to that of the CBCT, verification by CBCT is recommended.

  20. Secure portal.

    SciTech Connect

    Nelson, Cynthia Lee

    2007-09-01

    There is a need in security systems to rapidly and accurately grant access of authorized personnel to a secure facility while denying access to unauthorized personnel. In many cases this role is filled by security personnel, which can be very costly. Systems that can perform this role autonomously without sacrificing accuracy or speed of throughput are very appealing. To address the issue of autonomous facility access through the use of technology, the idea of a ''secure portal'' is introduced. A secure portal is a defined zone where state-of-the-art technology can be implemented to grant secure area access or to allow special privileges for an individual. Biometric technologies are of interest because they are generally more difficult to defeat than technologies such as badge swipe and keypad entry. The biometric technologies selected for this concept were facial and gait recognition. They were chosen since they require less user cooperation than other biometrics such as fingerprint, iris, and hand geometry and because they have the most potential for flexibility in deployment. The secure portal concept could be implemented within the boundaries of an entry area to a facility. As a person is approaching a badge and/or PIN portal, face and gait information can be gathered and processed. The biometric information could be fused for verification against the information that is gathered from the badge. This paper discusses a facial recognition technology that was developed for the purposes of providing high verification probabilities with low false alarm rates, which would be required of an autonomous entry control system. In particular, a 3-D facial recognition approach using Fisher Linear Discriminant Analysis is described. Gait recognition technology, based on Hidden Markov Models has been explored, but those results are not included in this paper. Fusion approaches for combining the results of the biometrics would be the next step in realizing the secure portal

  1. The Effect of Registration Surrogate and Patient Factors on the Interobserver Variability of Electronic Portal Image Guidance During Prostate Radiotherapy

    SciTech Connect

    Kong, Vickie Lockwood, Gina; Yan Jing; Catton, Charles; Chung, Peter; Bayley, Andrew; Rosewall, Tara

    2011-01-01

    Intraprostatic fiducial markers (IPM) and electronic portal imaging (EPI) are commonly used to identify and correct for prostate motion during radiotherapy. However, little data is available on the precision of this image-guidance technique. This study quantified impact of different registration surrogates and patient factors on the interobserver variability of manual EPI alignment during prostate radiotherapy. For 50 prostate radiotherapy patients previously implanted with 3 IPM, five observers manually aligned 150 pairs of orthogonal EPI to the reference digital reconstructed radiograph using Varian Vision EPI analysis software. Images were aligned using: Bony anatomy (BA), single mid-prostate IPM (SM); and 2 strategies using 3 IPM: center of mass (COM) and rotate and translate (R and T). Intraclass correlation coefficients (ICCs) were calculated to quantify interobserver variability. The absolute displacements measured using SM and R and T were compared with those using COM. The impact of patients' pelvic diameter and adjuvant hormone therapy on interobserver variability were also evaluated. Twelve thousand displacement values were collected for analysis. The maximum discrepancy between the 5 observers was >2 mm in 47% of measurements using BA, 5% using SM, 4% using R and T, and 3% using COM. Both of the 3 IPM alignment strategies demonstrated lower interobserver variability than the single IPM strategy (ICC 0.94-0.97 vs. 0.82-0.94). BA had the highest interobserver variability (ICC = 0.43-0.90). Pelvic diameter and hormone therapy had no discernible impact on interobserver variability. Compared with COM, the absolute displacements measured using the other IPM strategies were statistically different (p < 0.001), but 95% of the absolute magnitude of differences between the strategies were {<=}1 mm. The high reproducibility among the observers demonstrated the precision of prostate localization using multiple IPM and EPI, which was not influenced by the patient

  2. SU-E-T-438: Commissioning of An In-Vivo Quality Assurance Method Using the Electronic Portal Imaging Device

    SciTech Connect

    Morin, O; Held, M; Pouliot, J

    2014-06-01

    Purpose: Patient specific pre-treatment quality assurance (QA) using arrays of detectors or film have been the standard approach to assure the correct treatment is delivered to the patient. This QA approach is expensive, labor intensive and does not guarantee or document that all remaining fractions were treated properly. The purpose of this abstract is to commission and evaluate the performance of a commercially available in-vivo QA software using the electronic portal imaging device (EPID) to record the daily treatments. Methods: The platform EPIgray V2.0.2 (Dosisoft), which machine model compares ratios of TMR with EPID signal to predict dose was commissioned for an Artiste (Siemens Oncology Care Systems) and a Truebeam (Varian medical systems) linear accelerator following the given instructions. The systems were then tested on three different phantoms (homogeneous stack of solid water, anthropomorphic head and pelvis) and on a library of patient cases. Simple and complex fields were delivered at different exposures and for different gantry angles. The effects of the table attenuation and the EPID sagging were evaluated. Gamma analysis of the measured dose was compared to the predicted dose for complex clinical IMRT cases. Results: Commissioning of the EPIgray system for two photon energies took 8 hours. The difference between the dose planned and the dose measured with EPIgray was better than 3% for all phantom scenarios tested. Preliminary results on patients demonstrate an accuracy of 5% is achievable in high dose regions for both 3DCRT and IMRT. Large discrepancies (>5%) were observed due to metallic structures or air cavities and in low dose areas. Flat panel sagging was visible and accounted for in the EPIgray model. Conclusion: The accuracy achieved by EPIgray is sufficient to document the safe delivery of complex IMRT treatments. Future work will evaluate EPIgray for VMAT and high dose rate deliveries. This work is supported by Dosisoft, Cachan, France.

  3. Dosimetry tools and techniques for IMRT

    SciTech Connect

    Low, Daniel A.; Moran, Jean M.; Dempsey, James F.; Dong Lei; Oldham, Mark

    2011-03-15

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  4. Dosimetry tools and techniques for IMRT.

    PubMed

    Low, Daniel A; Moran, Jean M; Dempsey, James F; Dong, Lei; Oldham, Mark

    2011-03-01

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  5. Validation study of ¹³¹I-RRL: assessment of biodistribution, SPECT imaging and radiation dosimetry in mice.

    PubMed

    Zhao, Qian; Yan, Ping; Yin, Lei; Li, Ling; Chen, Xue Qi; Ma, Chao; Wang, Rong Fu

    2013-04-01

    Tumor angiogenesis is important in the growth and metastasis of malignant tumors. In our previous study, we demonstrated that an arginine-arginine-leucine (RRL) peptide is a tumor endothelial cell-specific binding sequence that may be used as a molecular probe for the imaging of malignant tumors in vivo. The aim of the present study was to further explore the characteristics of 131I‑RRL by biodistribution tests, and to estimate the radiation dosimetry of 131I‑RRL for humans using mice data. The RRL peptide was radiolabeled with 131I by a chloramine-T (CH-T) method. The radiolabeling efficiency and radiochemical purity were then characterized in vitro. 131I‑RRL was injected intravenously into B16 xenograft-bearing Kunming mice. Biodistribution analysis and in vivo imaging were performed periodically. The radiation dosimetry in humans was calculated according to the organ distribution and the standard medical internal radiation dose (MIRD) method in mice. All data were analyzed by statistical and MIRDOSE 3.1 software. The labeling efficiency of 131I‑RRL reached 70.0±2.91% (n=5), and the radiochemical purity exceeded 95% following purification. In mice bearing B16 xenografts, 131I‑RRL rapidly cleared from the blood and predominantly accumulated in the kidneys, the stomach and the tumor tissue. The specific uptake of 131I‑RRL in the tumor increased over time and was significantly higher than that of the other organs, 24-72 h following injection (P<0.05). The ratio of tumor-to-skeletal muscle (T/SM) tissue exceeded 4.75, and the ratio of the tumor-to-blood (T/B) tissue peaked at 3.36. In the single-photon emission computed tomography (SPECT) imaging of Kunming mice bearing B16 xenografts, the tumors were clearly identifiable at 6 h, and significant uptake was evident 24-72 h following administration of 131I‑RRL. The effective dose for the adult male dosimetric model was estimated to be 0.0293 mSv/MBq. Higher absorbed doses were estimated for the stomach

  6. Comparison of Combined X-Ray Radiography and Magnetic Resonance (XMR) Imaging-Versus Computed Tomography-Based Dosimetry for the Evaluation of Permanent Prostate Brachytherapy Implants

    SciTech Connect

    Acher, Peter Rhode, Kawal; Morris, Stephen; Gaya, Andrew; Miquel, Marc; Popert, Rick; Tham, Ivan; Nichol, Janette; McLeish, Kate; Deehan, Charles; Dasgupta, Prokar; Beaney, Ronald; Keevil, Stephen F.

    2008-08-01

    Purpose: To present a method for the dosimetric analysis of permanent prostate brachytherapy implants using a combination of stereoscopic X-ray radiography and magnetic resonance (MR) imaging (XMR) in an XMR facility, and to compare the clinical results between XMR- and computed tomography (CT)-based dosimetry. Methods and Materials: Patients who had received nonstranded iodine-125 permanent prostate brachytherapy implants underwent XMR and CT imaging 4 weeks later. Four observers outlined the prostate gland on both sets of images. Dose-volume histograms (DVHs) were derived, and agreement was compared among the observers and between the modalities. Results: A total of 30 patients were evaluated. Inherent XMR registration based on prior calibration and optical tracking required a further automatic seed registration step that revealed a median root mean square registration error of 4.2 mm (range, 1.6-11.4). The observers agreed significantly more closely on prostate base and apex positions as well as outlining contours on the MR images than on those from CT. Coefficients of variation were significantly higher for observed prostate volumes, D90, and V100 parameters on CT-based dosimetry as opposed to XMR. The XMR-based dosimetry showed little agreement with that from CT for all observers, with D90 95% limits of agreement ranges of 65, 118, 79, and 73 Gy for Observers 1, 2, 3, and 4, respectively. Conclusions: The study results showed that XMR-based dosimetry offers an alternative to other imaging modalities and registration methods with the advantages of MR-based prostate delineation and confident three-dimensional reconstruction of the implant. The XMR-derived dose-volume histograms differ from the CT-derived values and demonstrate less interobserver variability.

  7. A computerized framework for monitoring four-dimensional dose distributions during stereotactic body radiation therapy using a portal dose image-based 2D/3D registration approach.

    PubMed

    Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki

    2015-03-01

    A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The mean±standard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.25±4.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment. PMID:25592290

  8. Computational dosimetry

    SciTech Connect

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  9. The role of three-dimensional imaging in optimizing diagnosis, classification and surgical treatment of hepatocellular carcinoma with portal vein tumor thrombus☆

    PubMed Central

    Wei, Xu-Biao; Xu, Jie; Li, Nan; Yu, Ying; Shi, Jie; Guo, Wei-Xing; Cheng, Hong-Yan; Wu, Meng-Chao; Lau, Wan-Yee; Cheng, Shu-Qun

    2015-01-01

    Background Accurate assessment of characteristics of tumor and portal vein tumor thrombus is crucial in the management of hepatocellular carcinoma. Aims Comparison of the three-dimensional imaging with multiple-slice computed tomography in the diagnosis and treatment of hepatocellular carcinoma with portal vein tumor thrombus. Method Patients eligible for surgical resection were divided into the three-dimensional imaging group or the multiple-slice computed tomography group according to the type of preoperative assessment. The clinical data were collected and compared. Results 74 patients were enrolled into this study. The weighted κ values for comparison between the thrombus type based on preoperative evaluation and intraoperative findings were 0.87 for the three-dimensional reconstruction group (n = 31) and 0.78 for the control group (n = 43). Three-dimensional reconstruction was significantly associated with a higher rate of en-bloc resection of tumor and thrombus (P = 0.025). Using three-dimensional reconstruction, significant correlation existed between the predicted and actual volumes of the resected specimens (r = 0.82, P < 0.01), as well as the predicted and actual resection margins (r = 0.97, P < 0.01). Preoperative three-dimensional reconstruction significantly decreased tumor recurrence and tumor-related death, with hazard ratios of 0.49 (95% confidential interval, 0.27–0.90) and 0.41 (95% confidential interval, 0.21–0.78), respectively. Conclusion For hepatocellular carcinoma with portal vein tumor thrombus, three-dimensional imaging was efficient in facilitating surgical treatment and benefiting postoperative survivals. PMID:27017169

  10. IDL Grid Web Portal

    NASA Astrophysics Data System (ADS)

    Massimino, P.; Costa, A.

    2008-08-01

    Image Data Language is a software for data analysis, visualization and cross-platform application development. The potentiality of IDL is well-known in the academic scientific world, especially in the astronomical environment where thousands of procedures are developed by using IDL. The typical use of IDL is the interactive mode but it is also possible to run IDL programs that do not require any interaction with the user, submitting them in batch or background modality. Through the interactive mode the user immediately receives images or other data produced in the running phase of the program; in batch or background mode, the user will have to wait for the end of the program, sometime for many hours or days to obtain images or data that IDL produced as output: in fact in Grid environment it is possible to access to or retrieve data only after completion of the program. The work that we present gives flexibility to IDL procedures submitted to the Grid computer infrastructure. For this purpose we have developed an IDL Grid Web Portal to allow the user to access the Grid and to submit IDL programs granting a full job control and the access to images and data generated during the running phase, without waiting for their completion. We have used the PHP technology and we have given the same level of security that Grid normally offers to its users. In this way, when the user notices that the intermediate program results are not those expected, he can stop the job, change the parameters to better satisfy the computational algorithm and resubmit the program, without consuming the CPU time and other Grid resources. The IDL Grid Web Portal allows you to obtain IDL generated images, graphics and data tables by using a normal browser. All conversations from the user and the Grid resources occur via Web, as well as authentication phases. The IDL user has not to change the program source much because the Portal will automatically introduce the appropriate modification before

  11. Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: Image quality measurements

    NASA Astrophysics Data System (ADS)

    Son, Soon-Yong; Choe, Bo-Young; Lee, Jeong-Woo; Kim, Jung-Min; Jeong, Hoi-Woun; Kim, Ham-Gyum; Kim, Wha-Sun; Lyu, Kwang-Yeul; Min, Jung-Whan; Kim, Ki-Won

    2014-12-01

    Regular quality assurance (QA) of image quality is essential for reasonable patient dose and accurate treatment. Thus, QA should be performed as a routine for correction. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) of the computed radiography (CR) system and the digital radiography (DR) system by using the edge method in megavoltage X-ray imaging (MVI). We used an edge block, which consisting of tungsten with dimensions of 19 (thickness) × 10 (length) × 1 (width) cm3 and measured the pre-sampling MTF by using a 6-megavolt (MV) energy. Computed radiography with an image plate (CR-IP) showed the values of 0.4 mm-1 and 1.19 mm-1 for MTF 0.5 and 0.1. In the DR group, Elekta iViewGT showed the highest value of 0.27 mm-1 for MTF 0.5, and Siemens BEAMVIEW PLUS showed the highest value of 0.98 mm-1 for MTF 0.1. In CR, the NPS of CR-IP showed a favorable noise distribution. Thus, in the DR group, the NPS of Elekta iViewGT showed the highest noise distribution. CR-IP showed values at peak DQE and 1 mm-1 DQE of 0.0013 and 0.00011, respectively. In the DR group, Elekta iViewGT showed the best efficiency at a peak DQE of 0.0009, and Siemens BEAMVIEW PLUS showed the best efficiency at a 1-mm-1 DQE of 0.000008. The edge method produced fast assessments of the MTF and the DQE. We could validate the evaluation of the edge method by comparing of the CR system to the DR system. This study demonstrated that the edge method can be used for not only traditional QA imaging but also quantitative MTF, NPS and DQE measurements in detector development.

  12. In aqua vivo EPID dosimetry

    SciTech Connect

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  13. Portal hypertension complicating myelofibrosis: reversal following splenectomy.

    PubMed Central

    Lukie, B. E.; Card, R. T.

    1977-01-01

    Portal hypertension occurs in approximately 10% of patients with myelofibrosis. Increased portal blood flow secondary to splenomegaly has been proposed to explain its development. In a 60-year-old woman with proven myelofibrosis of 10 years' duration and gross splenomegaly, portal hypertension developed with esophageal varices and ascites. There was no demonstrable obstruction to portal blood flow. Following splenectomy the ascites and esophageal varices disappeared. Despite the presence of splenic myeloid metaplasia, splenectomy did not impair the patient's hematologic status. Portal hypertension complicating myelofibrosis has a poor prognosis, so careful attention should be given to its detection. Splenectomy may be preferable to portal-systemic shunting in the management of this complication. Images FIG. 1 FIG. 2 PMID:907949

  14. Registration of serial SPECT/CT images for three-dimensional dosimetry in radionuclide therapy.

    PubMed

    Sjögreen-Gleisner, K; Rueckert, D; Ljungberg, M

    2009-10-21

    For radionuclide therapy, individual patient pharmacokinetics can be measured in three dimensions by sequential SPECT imaging. Accurate registration of the time series of images is central for voxel-based calculations of the residence time and absorbed dose. In this work, rigid and non-rigid methods are evaluated for registration of 6-7 SPECT/CT images acquired over a week, in anatomical regions from the head-and-neck region down to the pelvis. A method for calculation of the absorbed dose, including a voxel mass determination from the CT images, is also described. Registration of the SPECT/CT images is based on a CT-derived spatial transformation. Evaluation is focused on the CT registration accuracy, and on its impact on values of residence time and absorbed dose. According to the CT evaluation, the non-rigid method produces a more accurate registration than the rigid one. For images of the residence time and absorbed dose, registration produces a sharpening of the images. For volumes-of-interest, the differences between rigid and non-rigid results are generally small. However, the non-rigid method is more consistent for regions where non-rigid patient movements are likely, such as in the head-neck-shoulder region. PMID:19794243

  15. Methodology and dosimetry in adrenal medullary imaging with iodine-131 MIBG

    SciTech Connect

    Lindberg, S.; Fjaelling, M.J.; Jacobsson, L.; Jansson, S.; Tisell, L.E.

    1988-10-01

    Iodine-131 MIBG scans were performed in 59 patients in order to localize intra- or extra-adrenal pheochromocytomas (pheos), or to visualize hyperplastic adrenal medulla. Images were obtained from the pelvis to the base of the skull on Days 1, 4, and 7 after tracer injection. The 15 patients with histopathologic confirmation of adrenal medullary disease had positive scans. In three of these, the pheos were visible only on images obtained on Day 7. One scan was false negative. After excluding patients with a predisposition to adrenal medullary disease, nine subjects (28%) without verification of pheo displayed adrenal uptake of the radionuclide. Late images produce a low rate of false-negative scans; the background activity diminishes and even small pheos can be detected. In order to increase the quality of late images, 40 MBq (/sup 131/I)MIBG was used instead of 20 MBq. The dosimetric considerations are discussed.

  16. An empirical model of electronic portal imager response implemented within a commercial treatment planning system for verification of intensity-modulated radiation therapy fields.

    PubMed

    Khan, Rao F H; Ostapiak, Orest Z; Szabo, Joe J

    2008-01-01

    Quality assurance (QA) of an intensity-modulated radiation therapy (IMRT) plan is more complex than that of a conventional plan. To improve the efficiency of QA, electronic portal imaging devices (EPIDs) can be used. The major objective of the present work was to use a commercial treatment planning system to model EPID response for the purpose of pre-treatment IMRT dose verification. Images were acquired with an amorphous silicon flat panel portal imager (aS500: Varian Medical Systems, Palo Alto, CA) directly irradiated with a 6-MV photon beam from a Clinac 21EX linear accelerator (Varian Medical Systems). Portal images were acquired for a variety of rectangular fields, from which profiles and relative output factors were extracted. A dedicated machine model was created using the physics tools of the Pinnacle3 (Philips Medical Systems, Madison, WI) treatment planning system to model the data. Starting with the known photon spectrum and assuming an effective depth of 7 cm, machine model parameters were adjusted to best fit measured profile and output factors. The machine parameters of a second model, which assumed a 0.8 MeV monoenergetic photon spectrum and an effective depth in water of 3 cm, were also optimized. The second EPID machine model was used to calculate planar dose maps of simple geometric IMRT fields as well as a 9-field IMRT plan developed for clinical trials credentialing purposes. The choice of energy and depth for an EPID machine model influenced the best achievable fit of the optimized machine model to the measured data. When both energy and depth were reduced by a significant amount, a better overall fit was achieved. In either case, the secondary source size and strength could be adjusted to give reasonable agreement with measured data. The gamma evaluation method was used to compare planar dose maps calculated using the second EPID machine model with the EPID images of small IMRT fields. In each case, more than 95% of points fell within 3% of

  17. Pulsed light imaging for wide-field dosimetry of photodynamic therapy in the skin

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Sexton, Kristian; Chapman, Michael Shane; Maytin, Edward; Hasan, Tayyaba; Pogue, Brian W.

    2014-03-01

    Photodynamic therapy using aminoluvelinic acid (ALA) is an FDA-approved treatment for actinic keratoses, pre-cancerous skin lesions which pose a significant risk for immunocompromised individuals, such as organ transplant recipients. While PDT is generally effective, response rates vary, largely due to variations in the accumulation of the photosensitizer protoporphyrin IX (PpIX) after ALA application. The ability to quantify PpIX production before treatment could facilitate the use of additional interventions to improve outcomes. While many groups have demonstrated the ability to image PpIX in the clinic, these systems generally require darkening the room lights during imaging, which is unpopular with clinicians. We have developed a novel wide-field imaging system based on pulsed excitation and gated acquisition to image photosensitizer activity in the skin. The tissue is illuminated using four pulsed LED's to excite PpIX, and the remitted light acquired with a synchronized ICCD. This approach facilitates real-time background subtraction of ambient light, precluding the need to darken the exam room. Delivering light in short bursts also allows the use of elevated excitation intensity while remaining under the maximum permissible exposure limits, making the modality more sensitive to photosensitizer fluorescence than standard approaches. Images of tissue phantoms indicate system sensitivity down to 250nM PpIX and images of animals demonstrate detection of PpIX fluorescence in vivo under normal room light conditions.

  18. WE-E-BRE-01: An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female - Internal Electron Sources

    SciTech Connect

    O'Reilly, S; Maynard, M; Marshall, E; Bolch, W; Sinclair, L; Rajon, D; Wayson, M

    2014-06-15

    Purpose: Limitations seen in previous skeletal dosimetry models, which are still employed in commonly used software today, include the lack of consideration of electron escape and cross-fire from cortical bone, the modeling of infinite spongiosa, the disregard of the effect of varying cellularity on active marrow self-irradiation, and the lack of use of the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells - shallow marrow. These limitations were addressed in the present dosimetry model. Methods: Electron transport was completed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletal regions of the adult female. The bone macrostructure was obtained from the whole-body hybrid computational phantom of the UF series of reference phantoms, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 year-old female cadaver. The target tissue regions were active marrow and shallow marrow. The source tissues were active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume and cortical bone surfaces. The marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or modeled analytically. Results: The method of combining macro- and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al. study. Conclusion: The calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) and did not follow current models used in nuclear medicine dosimetry at high energies (due to that models use of an infinite expanse of trabecular spongiosa)

  19. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  20. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  1. Image guidance during breast radiotherapy: a phantom dosimetry and radiation-induced second cancer risk study

    NASA Astrophysics Data System (ADS)

    Quinn, A.; Holloway, L.; Metcalfe, P.

    2013-06-01

    Imaging procedures utilised for patient position verification during breast radiotherapy can add a considerable dose to organs surrounding the target volume on top of therapeutic scatter dose. This study investigated the dose from a breast kilovoltage cone-beam CT (kV-CBCT), a breast megavoltage fan-beam CT (MV-FBCT), and a TomoDirectTM breast treatment. Thermoluminescent dosimeters placed within a female anthropomorphic phantom were utilised to measure the dose to various organs and tissues. The contralateral breast, lungs and heart received 0.40 cGy, 0.45 cGy and 0.40 cGy from the kV-CBCT and 1.74 cGy, 1.39 cGy and 1.73 cGy from the MV-FBCT. In comparison to treatment alone, daily imaging would increase the contralateral breast, contralateral lung and heart dose by a relative 12%, 24% and 13% for the kV-CBCT, and 52%, 101% and 58% for the MV-FBCT. The impact of the imaging dose relative to the treatment dose was assessed with linear and linear-quadratic radiation-induced secondary cancer risk models for the contralateral breast. The additional imaging dose and risk estimates presented in this study should be taken into account when considering an image modality and frequency for patient position verification protocols in breast radiotherapy.

  2. Image-based dosimetry of an implanted radioactive stent using intravascular ultrasound

    NASA Astrophysics Data System (ADS)

    Peterson, Stephen W.

    Angioplasty has become an increasingly popular and effective treatment for heart disease. Unfortunately, restenosis, a cellular and biological reaction to the procedure, has hindered its effectiveness. Two of the most successful methods of inhibiting restenosis are radiation and stents. The combination of these two components, radioactive stents, is not as common as some of the other methods, yet still has potential of slowing restenosis. Investigation into source characteristics and artery wall radiobiology may illuminate some possible solutions to the problems of restenosis. This work has developed a calculational method to look at in-vivo images of implanted stents and determine the dose to the artery walls in order to test different source characteristics. The images are Intravascular Ultrasound (IVUS) cross-sectional slices of the stent and the artery. From these images, it is possible to determine the implanted stent structure. The pieces of the stent are identified in the images and modeled in a Monte Carlo simulation, using MCNP4c3. The simulation results were combined with the images to give three-dimensional absolute dose contours of the stent. The absolute dose values were verified using radiochromic film and 198Au-plated stents. This work was able to successfully verify the dose results and create a three-dimensional dose map of the implanted stent.

  3. Radioembolization Dosimetry: The Road Ahead

    SciTech Connect

    Smits, Maarten L. J. Elschot, Mattijs; Sze, Daniel Y.; Kao, Yung H.; Nijsen, Johannes F. W.; Iagaru, Andre H.; Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H.

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  4. Are Lateral Electronic Portal Images Adequate for Accurate On-Line Daily Targeting of the Prostate? Results of a Prospective Study

    SciTech Connect

    Lometti, Michael W. Thurston, Damon; Aubin, Michele; Bock, Andrea; Verhey, Lynn; Lockhart, James M.; Bland, Roger; Pouliot, Jean; Roach, Mack

    2008-04-01

    The purpose of this report was to evaluate the magnitude of the error that would be introduced if only a lateral (LAT) portal image, as opposed to a pair of orthogonal images, was used to verify and correct daily setup errors and organ motion in external beam radiation therapy (EBRT) of prostate cancer. The 3-dimensional (3D) coordinates of gold markers from 12 consecutive prostate patients were reconstructed using a pair of orthogonal images. The data were re-analyzed using only the LAT images. Couch moves from the 2-dimensional (2D)-only data were compared with the complete 3D data set. The 2D-only data provided couch moves that differed on average from the 3D data by 2.3 {+-} 3.0, 0.0 {+-} 0.0, and 0.8 {+-} 1.0 mm in the Lat, AP, and SI directions, respectively. Along AP and SI axes, the LAT image provided positional information similar to the orthogonal pair. The error along the LAT axis may be acceptable provided lateral margins are large enough. A LAT-only setup protocol reduces patient treatment times and increases patient throughput. In most circumstances, with exceptions such as morbidly obese patients, acquisition of only a LAT image for daily targeting of the prostate will provide adequate positional precision.

  5. Dosimetry of an In-Line Kilovoltage Imaging System and Implementation in Treatment Planning

    SciTech Connect

    Dzierma, Yvonne; Alaei, Parham; Licht, Norbert; Rübe, Christian

    2014-03-15

    Purpose: To present the beam properties of the Siemens 70-kV and 121-kV linear accelerator-mounted imaging modalities and commissioning of the 121-kV beam in the Philips Pinnacle treatment planning system (TPS); measurements in an Alderson phantom were performed for verification of the model and to estimate the cone-beam CT (CBCT) imaging dose in the head and neck, thorax, and pelvis. Methods and Materials: The beam profiles and depth–dose curve were measured in an acrylic phantom using thermoluminescent dosimeters and a soft x-ray ionization chamber. Measurements were imported into the TPS, modeled, and verified by phantom measurements. Results: Modeling of the profiles and the depth–dose curve can be achieved with good quality. Comparison with the measurements in the Alderson phantom is generally good; only very close to bony structures is the dose underestimated by the TPS. For a 200° arc CBCT of the head and neck, a maximum dose of 7 mGy is measured; the thorax and pelvis 360° CBCTs give doses of 4-10 mGy and 7-15 mGy, respectively. Conclusions: Dosimetric characteristics of the Siemens kVision imaging modalities are presented and modeled in the Pinnacle TPS. Thermoluminescent dosimeter measurements in the Alderson phantom agree well with the calculated TPS dose, validating the model and providing an estimate of the imaging dose for different protocols.

  6. Dosimetry of exendin-4 based radiotracer for glucagonlike peptide-1 receptor imaging: an initial report

    NASA Astrophysics Data System (ADS)

    Tomaszuk, M.; Sowa-Staszczak, A.; Lenda-Tracz, W.; Glowa, B.; Pach, D.; Buziak-Bereza, M.; Stefanska, A.; Janota, B.; Pawlak, D.; Mikolajczak, R.; Hubalewska-Dydejczyk, A. B.

    2011-09-01

    Overexpression of glucagonlike peptide-1 (GLP-1) receptors in human tumours is a potential target for future imaging and therapy. The GLP-1 receptor imaging using [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 could be useful in the localization of unknown insulinoma focus. The aim of this study was to present the first experience of our unit with the new radiopharmaceutical and its dose estimates. Imaging studies and dose assessment, according to the MIRD schema and MIRD Pamphlet No.11, were performed for 3 patients (2 with suspicion of insulinoma, 1 with suspected insulinoma recurrence). In the first case suspicion of insulinoma was not confirmed. In the second case localized accumulation of tracer in the pancreas was removed by surgery and the clinical symptoms of insulinoma receded. In the third case, pathological accumulation of tracer was localized and recurrence of insulinoma was confirmed in fusion with CT images. The biological half-time did not exceed 2.7.h. The effective half-time did not exceed 4.8 h. The total-body radiation dose did not exceed 0.0038 mGy/MBq and is comparable with the radiation dose to patient after somatostatin receptor scintigraphy. The highest radiation dose was calculated for kidneys (~ 0.070 mGy/MBq). [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 is a good candidate for clinical GLP-1 receptor imaging studies and appears safe for the patient from radiological safety point of view.

  7. A simple quality assurance test tool for the visual verification of light and radiation field congruent using electronic portal images device and computed radiography

    PubMed Central

    2012-01-01

    Background The radiation field on most megavoltage radiation therapy units are shown by a light field projected through the collimator by a light source mounted inside the collimator. The light field is traditionally used for patient alignment. Hence it is imperative that the light field is congruent with the radiation field. Method A simple quality assurance tool has been designed for rapid and simple test of the light field and radiation field using electronic portal images device (EPID) or computed radiography (CR). We tested this QA tool using Varian PortalVision and Elekta iViewGT EPID systems and Kodak CR system. Results Both the single and double exposure techniques were evaluated, with double exposure technique providing a better visualization of the light-radiation field markers. The light and radiation congruency could be detected within 1 mm. This will satisfy the American Association of Physicists in Medicine task group report number 142 recommendation of 2 mm tolerance. Conclusion The QA tool can be used with either an EPID or CR to provide a simple and rapid method to verify light and radiation field congruence. PMID:22452821

  8. Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry

    SciTech Connect

    Sechopoulos, Ioannis; Bliznakova, Kristina; Qin Xulei; Fei Baowei; Feng, Steve Si Jia

    2012-08-15

    Purpose: To compare the estimate of normalized glandular dose in mammography and breast CT imaging obtained using the actual glandular tissue distribution in the breast to that obtained using the homogeneous tissue mixture approximation. Methods: Twenty volumetric images of patient breasts were acquired with a dedicated breast CT prototype system and the voxels in the breast CT images were automatically classified into skin, adipose, and glandular tissue. The breasts in the classified images underwent simulated mechanical compression to mimic the conditions present during mammographic acquisition. The compressed thickness for each breast was set to that achieved during each patient's last screening cranio-caudal (CC) acquisition. The volumetric glandular density of each breast was computed using both the compressed and uncompressed classified images, and additional images were created in which all voxels representing adipose and glandular tissue were replaced by a homogeneous mixture of these two tissues in a proportion corresponding to each breast's volumetric glandular density. All four breast images (compressed and uncompressed; heterogeneous and homogeneous tissue) were input into Monte Carlo simulations to estimate the normalized glandular dose during mammography (compressed breasts) and dedicated breast CT (uncompressed breasts). For the mammography simulations the x-ray spectra used was that used during each patient's last screening CC acquisition. For the breast CT simulations, two x-ray spectra were used, corresponding to the x-ray spectra with the lowest and highest energies currently being used in dedicated breast CT prototype systems under clinical investigation. The resulting normalized glandular dose for the heterogeneous and homogeneous versions of each breast for each modality was compared. Results: For mammography, the normalized glandular dose based on the homogeneous tissue approximation was, on average, 27% higher than that estimated using the

  9. aSi EPIDs for the in-vivo dosimetry of static and dynamic beams

    NASA Astrophysics Data System (ADS)

    Piermattei, A.; Cilla, S.; Azario, L.; Greco, F.; Russo, M.; Grusio, M.; Orlandini, L.; Fidanzio, A.

    2015-10-01

    Portal imaging by amorphous silicon (aSi) photodiode is currently the most applied technology for in-vivo dosimetry (IVD) of static and dynamic radiotherapy beams. The strategy, adopted in this work to perform the IVD procedure by aSi EPID, is based on: in patient reconstruction of the isocenter dose and day to day comparison between 2D-portal images to verify the reproducibility of treatment delivery. About 20.000 tests have been carried out in this last 3 years in 8 radiotherapy centers using the SOFTDISO program. The IVD results show that: (i) the procedure can be implemented for linacs of different manufacturer, (ii) the IVD analysis can be obtained on a computer screen, in quasi real time (about 2 min after the treatment delivery) and (iii) once the causes of the discrepancies were eliminated, all the global IVD tests for single patient were within the acceptance criteria defined by: ±5% for the isocenter dose, and Pγ<1≥90% of the checked points for the 2D portal image γ-analysis. This work is the result of a project supported by the Istituto Nazionale di Fisica Nucleare (INFN) and Università Cattolica del S.Cuore (UCSC).

  10. Dosimetry and Image Quality in Control Studies in Computerised Tomography Realized to Paediatric Patients

    NASA Astrophysics Data System (ADS)

    Hernández, M. R.; Dies, P.; Gamboa-deBuen, I.; Rickards, J.; Ruiz, C.

    2008-08-01

    Computerised tomography (CT) is a favourite method of medical diagnosis. Its use has thus increased rapidly throughout the world, particularly in studies relating to children. However to avoid administering unnecessarily high doses of radiation to paediatric patients it is important to have correct dose reference levels to minimize risk. The research is being developed within the public health sector at the Hospital Infantil de México "Dr. Federico Gómez." We measured the entrance surface air kerma (KP) in paediatric patients, during the radiological studies of control in CT (studies of head, thorax and abdomen). Phantom was used to evaluate image quality as the tomograph requires a high resolution image in order to operate at its optimum level.