Science.gov

Sample records for portal imager dosimetry

  1. Portal dosimetry for VMAT using integrated images obtained during treatment

    SciTech Connect

    Bedford, James L. Hanson, Ian M.; Hansen, Vibeke Nordmark

    2014-02-15

    Purpose: Portal dosimetry provides an accurate and convenient means of verifying dose delivered to the patient. A simple method for carrying out portal dosimetry for volumetric modulated arc therapy (VMAT) is described, together with phantom measurements demonstrating the validity of the approach. Methods: Portal images were predicted by projecting dose in the isocentric plane through to the portal image plane, with exponential attenuation and convolution with a double-Gaussian scatter function. Appropriate parameters for the projection were selected by fitting the calculation model to portal images measured on an iViewGT portal imager (Elekta AB, Stockholm, Sweden) for a variety of phantom thicknesses and field sizes. This model was then used to predict the portal image resulting from each control point of a VMAT arc. Finally, all these control point images were summed to predict the overall integrated portal image for the whole arc. The calculated and measured integrated portal images were compared for three lung and three esophagus plans delivered to a thorax phantom, and three prostate plans delivered to a homogeneous phantom, using a gamma index for 3% and 3 mm. A 0.6 cm{sup 3} ionization chamber was used to verify the planned isocentric dose. The sensitivity of this method to errors in monitor units, field shaping, gantry angle, and phantom position was also evaluated by means of computer simulations. Results: The calculation model for portal dose prediction was able to accurately compute the portal images due to simple square fields delivered to solid water phantoms. The integrated images of VMAT treatments delivered to phantoms were also correctly predicted by the method. The proportion of the images with a gamma index of less than unity was 93.7% ± 3.0% (1SD) and the difference between isocenter dose calculated by the planning system and measured by the ionization chamber was 0.8% ± 1.0%. The method was highly sensitive to errors in monitor units and

  2. [Electronic portal image device dosimetry for volumetric modulated arc therapy].

    PubMed

    Tatsumi, Daisaku; Nakada, Ryosei; Ienaga, Akinori; Yomoda, Akane; Inoue, Makoto; Ichida, Takao; Hosono, Masako

    2013-01-01

    Recently electronic portal image devices (EPIDs) have been widely used for quality assurance and dose verification. However there are no reports describing EPID dosimetry for Elekta volumetric modulated arc therapy (VMAT). We have investigated EPID dosimetry during VMAT delivery using a commercial software EPIDose with an Elekta Synergy linac. Dose rate dependence and the linac system sag during gantry rotation were measured. Gamma indices were calculated between measured doses using an EPID and calculation made by a treatment planning system for prostate VMAT test plans. The results were also compared to gamma indices using films and a two-dimensional detector array, MapCHECK2. The pass rates of the gamma analysis with a criterion of 3% and 2 mm for the three methods were over 96% with good consistency. Our results have showed that EPID dosimetry is feasible for Elekta VMAT. PMID:23358333

  3. Monte Carlo portal dosimetry

    SciTech Connect

    Chin, P.W. . E-mail: mary.chin@physics.org

    2005-10-15

    This project developed a solution for verifying external photon beam radiotherapy. The solution is based on a calibration chain for deriving portal dose maps from acquired portal images, and a calculation framework for predicting portal dose maps. Quantitative comparison between acquired and predicted portal dose maps accomplishes both geometric (patient positioning with respect to the beam) and dosimetric (two-dimensional fluence distribution of the beam) verifications. A disagreement would indicate that beam delivery had not been according to plan. The solution addresses the clinical need for verifying radiotherapy both pretreatment (without the patient in the beam) and on treatment (with the patient in the beam). Medical linear accelerators mounted with electronic portal imaging devices (EPIDs) were used to acquire portal images. Two types of EPIDs were investigated: the amorphous silicon (a-Si) and the scanning liquid ion chamber (SLIC). The EGSnrc family of Monte Carlo codes were used to predict portal dose maps by computer simulation of radiation transport in the beam-phantom-EPID configuration. Monte Carlo simulations have been implemented on several levels of high throughput computing (HTC), including the grid, to reduce computation time. The solution has been tested across the entire clinical range of gantry angle, beam size (5 cmx5 cm to 20 cmx20 cm), and beam-patient and patient-EPID separations (4 to 38 cm). In these tests of known beam-phantom-EPID configurations, agreement between acquired and predicted portal dose profiles was consistently within 2% of the central axis value. This Monte Carlo portal dosimetry solution therefore achieved combined versatility, accuracy, and speed not readily achievable by other techniques.

  4. A new approach in the design of electronic portal imaging devices for portal dosimetry in radiotherapy.

    PubMed

    Badel, J N; Partouche-Sebban, D; Abraham, I; Carrie, C

    2014-09-01

    A CCD-based EPID using new crystal-assembly X-ray (CAX) converters is investigated for radiotherapy dosimetry. The proposed EPID design consists in replacing the common phosphor X-ray converters of current CCD-based EPIDs with high-stopping-power CAX converters. A Test Imaging Device (TID), consisting of a 30-mm-thick CAX converter made of Bismuth Germanate (BGO), coupled to a highly sensitive CCD camera, was used to evaluate the accessible imaging and dosimetric performance of the proposed design. The system response to dose and its dependence on photon beam energy were investigated. The effects of ghosting, dose rate, field size and phantom thickness were evaluated as well. The same measurements were also performed with our clinically used aSi-EPID so that comparisons of performance could be directly inferred. The TID displayed no detectable ghosting or sensitivity to dose rate. Its response to MU exposure was found to be linear within about ±1%. The level of glare induced in the TID and the aSi-EPID were equivalent. The TID resolution was higher than that of the aSi-EPID on the axis, but was found to decrease with off-axis distance. Finally, the image quality, assessed on the basis of signal-to-noise ratio in low dose radiographs of the larynx of a patient, was higher for the TID. The imaging performance accessible with the TID proved to be satisfying and its dosimetric capability was found to be superior to that of the current aSi-EPID. PMID:24767869

  5. Transit Dosimetry for Patient Treatment Verification with an Electronic Portal Imaging Device

    NASA Astrophysics Data System (ADS)

    Berry, Sean L.

    The complex and individualized photon fluence patterns constructed during intensity modulated radiation therapy (IMRT) treatment planning must be verified before they are delivered to the patient. There is a compelling argument for additional verification throughout the course of treatment due to the possibility of data corruption, unintentional modification of the plan parameters, changes in patient anatomy, errors in patient alignment, and even mistakes in identifying the correct patient for treatment. Amorphous silicon (aSi) Electronic Portal Imaging Devices (EPIDs) can be utilized for IMRT verification. The goal of this thesis is to implement EPID transit dosimetry, measurement of the dose at a plane behind the patient during their treatment, within the clinical process. In order to achieve this goal, a number of the EPID's dosimetric shortcomings were studied and subsequently resolved. Portal dose images (PDIs) acquired with an aSi EPID suffer from artifacts related to radiation backscattered asymmetrically from the EPID support structure. This backscatter signal varies as a function of field size (FS) and location on the EPID. Its presence can affect pixel values in the measured PDI by up to 3.6%. Two methods to correct for this artifact are offered: discrete FS specific correction matrices and a single generalized equation. The dosimetric comparison between the measured and predicted through-air dose images for 49 IMRT treatment fields was significantly improved (p << .001) after the application of these FS specific backscatter corrections. The formulation of a transit dosimetry algorithm followed the establishment of the backscatter correction and a confirmation of the EPID's positional stability with linac gantry rotation. A detailed characterization of the attenuation, scatter, and EPID response behind an object in the beam's path is necessary to predict transit PDIs. In order to validate the algorithm's performance, 49 IMRT fields were delivered to a

  6. Calibration of portal imaging devices for radiotherapy in-vivo dosimetry

    NASA Astrophysics Data System (ADS)

    Piermattei, Angelo; Cilla, Savino; Fidanzio, Andrea; Greco, Francesca; Sabatino, Domenico; Gargiulo, Laura; Azario, Luigi

    2010-11-01

    The complexity of radiotherapy techniques requires an accurate verification of the dose delivered to the patient during treatment. Recently, the present authors have developed an in patient dose reconstruction method with X-ray beams for 3D conformal radiotherapy. The procedure is based on correlation functions defined by the ratios of the transit signal measured by an electronic portal imaging device (EPID) to the mid-plane dose measured by calibrated ion chambers in a solid water phantom. The dosimetric characterization of aSi EPIDs in terms of signal stability, linearity and dependence on field dimension pointed out that these detectors are useful for the transit dosimetry of photon beams. However, the aSi EPIDs manufactured by Varian, Elekta and Siemens for their linacs are at present used for the visual inspection of the patient's set-up, and their use as transit dosimeters needs a special calibration that requires an effort for every beam. The aim of this paper has been the determination of a generalized EPID calibration that can be used by linacs of different manufacturers equipped with aSi EPIDs. The transit dosimetry method here proposed could supply for every linac the reconstruction in real time of the isocenter dose in patients with a tolerance level ranging between ±4% and ±6% depending on the treatment type and body district.

  7. An evaluation of cine-mode 3D portal image dosimetry for Volumetric Modulated Arc Therapy

    NASA Astrophysics Data System (ADS)

    Ansbacher, W.; Swift, C.-L.; Greer, P. B.

    2010-11-01

    We investigated cine-mode portal imaging on a Varian Trilogy accelerator and found that the linearity and other dosimetric properties are sufficient for 3D dose reconstruction as used in patient-specific quality assurance for VMAT (RapidArc) treatments. We also evaluated the gantry angle label in the portal image file header as a surrogate for the true imaged angle. The precision is only just adequate for the 3D evaluation method chosen, as discrepancies of 2° were observed.

  8. Software tool for portal dosimetry research.

    PubMed

    Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C

    2008-09-01

    This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects. PMID:18946980

  9. Automatic in vivo portal dosimetry of all treatments

    NASA Astrophysics Data System (ADS)

    Olaciregui-Ruiz, I.; Rozendaal, R.; Mijnheer, B.; van Herk, M.; Mans, A.

    2013-11-01

    At our institution EPID (electronic portal imaging device) dosimetry is routinely applied to perform in vivo dose verification of all patient treatments with curative intent since January 2008. The major impediment of the method has been the amount of work required to produce and inspect the in vivo dosimetry reports (a time-consuming and labor-intensive process). In this paper we present an overview of the actions performed to implement an automated in vivo dosimetry solution clinically. We reimplemented the EPID dosimetry software and modified the acquisition software. Furthermore, we introduced new tools to periodically inspect the record-and-verify database and automatically run the EPID dosimetry software when needed. In 2012, 95% of our 3839 treatments scheduled for in vivo dosimetry were analyzed automatically (27 633 portal images of intensity-modulated radiotherapy (IMRT) fields, 5551 portal image data of VMAT arcs, and 2003 portal images of non-IMRT fields). The in vivo dosimetry verification results are available a few minutes after delivery and alerts are immediately raised when deviations outside tolerance levels are detected. After the clinical introduction of this automated solution, inspection of the detected deviations is the only remaining work. These newly developed tools are a major step forward towards full integration of in vivo EPID dosimetry in radiation oncology practice.

  10. Automatic in vivo portal dosimetry of all treatments.

    PubMed

    Olaciregui-Ruiz, I; Rozendaal, R; Mijnheer, B; van Herk, M; Mans, A

    2013-11-21

    At our institution EPID (electronic portal imaging device) dosimetry is routinely applied to perform in vivo dose verification of all patient treatments with curative intent since January 2008. The major impediment of the method has been the amount of work required to produce and inspect the in vivo dosimetry reports (a time-consuming and labor-intensive process). In this paper we present an overview of the actions performed to implement an automated in vivo dosimetry solution clinically. We reimplemented the EPID dosimetry software and modified the acquisition software. Furthermore, we introduced new tools to periodically inspect the record-and-verify database and automatically run the EPID dosimetry software when needed. In 2012, 95% of our 3839 treatments scheduled for in vivo dosimetry were analyzed automatically (27,633 portal images of intensity-modulated radiotherapy (IMRT) fields, 5551 portal image data of VMAT arcs, and 2003 portal images of non-IMRT fields). The in vivo dosimetry verification results are available a few minutes after delivery and alerts are immediately raised when deviations outside tolerance levels are detected. After the clinical introduction of this automated solution, inspection of the detected deviations is the only remaining work. These newly developed tools are a major step forward towards full integration of in vivo EPID dosimetry in radiation oncology practice. PMID:24201085

  11. On flattening filter-free portal dosimetry.

    PubMed

    Pardo, Eduardo; Castro Novais, Juan; Molina López, María Yolanda; Ruiz Maqueda, Sheila

    2016-01-01

    Varian introduced (in 2010) the option of removing the flattening filter (FF) in their C-Arm linacs for intensity-modulated treatments. This mode, called flattening filter-free (FFF), offers the advantage of a greater dose rate. Varian's "Portal Dosimetry" is an electronic portal imager device (EPID)-based tool for IMRT verification. This tool lacks the capability of verifying flattening filter-free (FFF) modes due to saturation and lack of an image prediction algorithm. (Note: the latest versions of this software and EPID correct these issues.) The objective of the present study is to research the feasibility of said verifications (with the older versions of the software and EPID). By placing the EPID at a greater distance, the images can be acquired without saturation, yielding a linearity similar to the flattened mode. For the image prediction, a method was optimized based on the clinically used algorithm (analytical anisotropic algorithm (AAA)) over a homogeneous phantom. The depth inside the phantom and its electronic density were tailored. An application was developed to allow the conversion of a dose plane (in DICOM format) to Varian's custom format for Portal Dosimetry. The proposed method was used for the verification of test and clinical fields for the three qualities used in our institution for IMRT: 6X, 6FFF and 10FFF. The method developed yielded a positive verification (more than 95% of the points pass a 2%/2 mm gamma) for both the clinical and test fields. This method was also capable of "predicting" static and wedged fields. A workflow for the verification of FFF fields was developed. This method relies on the clinical algorithm used for dose calculation and is able to verify the FFF modes, as well as being useful for machine quality assurance. The procedure described does not require new hardware. This method could be used as a verification of Varian's Portal Dose Image Prediction. PMID:27455487

  12. Fast transit portal dosimetry using density-scaled layer modeling of aSi-based electronic portal imaging device and Monte Carlo method

    SciTech Connect

    Jung, Jae Won; Kim, Jong Oh; Yeo, Inhwan Jason; Cho, Young-Bin; Kim, Sun Mo; DiBiase, Steven

    2012-12-15

    Purpose: Fast and accurate transit portal dosimetry was investigated by developing a density-scaled layer model of electronic portal imaging device (EPID) and applying it to a clinical environment. Methods: The model was developed for fast Monte Carlo dose calculation. The model was validated through comparison with measurements of dose on EPID using first open beams of varying field sizes under a 20-cm-thick flat phantom. After this basic validation, the model was further tested by applying it to transit dosimetry and dose reconstruction that employed our predetermined dose-response-based algorithm developed earlier. The application employed clinical intensity-modulated beams irradiated on a Rando phantom. The clinical beams were obtained through planning on pelvic regions of the Rando phantom simulating prostate and large pelvis intensity modulated radiation therapy. To enhance agreement between calculations and measurements of dose near penumbral regions, convolution conversion of acquired EPID images was alternatively used. In addition, thickness-dependent image-to-dose calibration factors were generated through measurements of image and calculations of dose in EPID through flat phantoms of various thicknesses. The factors were used to convert acquired images in EPID into dose. Results: For open beam measurements, the model showed agreement with measurements in dose difference better than 2% across open fields. For tests with a Rando phantom, the transit dosimetry measurements were compared with forwardly calculated doses in EPID showing gamma pass rates between 90.8% and 98.8% given 4.5 mm distance-to-agreement (DTA) and 3% dose difference (DD) for all individual beams tried in this study. The reconstructed dose in the phantom was compared with forwardly calculated doses showing pass rates between 93.3% and 100% in isocentric perpendicular planes to the beam direction given 3 mm DTA and 3% DD for all beams. On isocentric axial planes, the pass rates varied

  13. Calibration of an amorphous-silicon flat panel portal imager for exit-beam dosimetry

    SciTech Connect

    Chen, Josephine; Chuang, Cynthia F.; Morin, Olivier; Aubin, Michele; Pouliot, Jean

    2006-03-15

    Amorphous-silicon flat panel detectors are currently used to acquire digital portal images with excellent image quality for patient alignment before external beam radiation therapy. As a first step towards interpreting portal images acquired during treatment in terms of the actual dose delivered to the patient, a calibration method is developed to convert flat panel portal images to the equivalent water dose deposited in the detector plane and at a depth of 1.5 cm. The method is based on empirical convolution models of dose deposition in the flat panel detector and in water. A series of calibration experiments comparing the response of the flat panel imager and ion chamber measurements of dose in water determines the model parameters. Kernels derived from field size measurements account for the differences in the production and detection of scattered radiation in the two systems. The dissimilar response as a function of beam energy spectrum is characterized from measurements performed at various off-axis positions and for increasing attenuator thickness in the beam. The flat panel pixel inhomogeneity is corrected by comparing a large open field image with profiles measured in water. To verify the accuracy of the calibration method, calibrated flat panel profiles were compared with measured dose profiles for fields delivered through solid water slabs, a solid water phantom containing an air cavity, and an anthropomorphic head phantom. Open rectangular fields of various sizes and locations as well as a multileaf collimator-shaped field were delivered. For all but the smallest field centered about the central axis, the calibrated flat panel profiles matched the measured dose profiles with little or no systematic deviation and approximately 3% (two standard deviations) accuracy for the in-field region. The calibrated flat panel profiles for fields located off the central axis showed a small -1.7% systematic deviation from the measured profiles for the in-field region

  14. A novel algorithm for the reconstruction of an entrance beam fluence from treatment exit patient portal dosimetry images

    NASA Astrophysics Data System (ADS)

    Sperling, Nicholas Niven

    The problem of determining the in vivo dosimetry for patients undergoing radiation treatment has been an area of interest since the development of the field. Most methods which have found clinical acceptance work by use of a proxy dosimeter, e.g.: glass rods, using radiophotoluminescence; thermoluminescent dosimeters (TLD), typically CaF or LiF; Metal Oxide Silicon Field Effect Transistor (MOSFET) dosimeters, using threshold voltage shift; Optically Stimulated Luminescent Dosimeters (OSLD), composed of Carbon doped Aluminum Dioxide crystals; RadioChromic film, using leuko-dye polymers; Silicon Diode dosimeters, typically p-type; and ion chambers. More recent methods employ Electronic Portal Image Devices (EPID), or dosimeter arrays, for entrance or exit beam fluence determination. The difficulty with the proxy in vivo dosimetery methods is the requirement that they be placed at the particular location where the dose is to be determined. This precludes measurements across the entire patient volume. These methods are best suited where the dose at a particular location is required. The more recent methods of in vivo dosimetry make use of detector arrays and reconstruction techniques to determine dose throughout the patient volume. One method uses an array of ion chambers located upstream of the patient. This requires a special hardware device and places an additional attenuator in the beam path, which may not be desirable. A final approach is to use the existing EPID, which is part of most modern linear accelerators, to image the patient using the treatment beam. Methods exist to deconvolve the detector function of the EPID using a series of weighted exponentials. Additionally, this method has been extended to determine in vivo dosimetry. The method developed here employs the use of EPID images and an iterative deconvolution algorithm to reconstruct the impinging primary beam fluence on the patient. This primary fluence may then be employed to determine dose through

  15. Inclusion of the treatment couch in portal dose image prediction for high precision EPID dosimetry

    SciTech Connect

    Ali, Ali Sid Ahmed M.; Dirkx, Maarten L. P.; Breuers, Marcel G. J.; Heijmen, Ben J. M.

    2011-01-15

    Purpose: When comparing predicted portal dose images (PDIs) to PDIs acquired by an EPID during treatment delivery, differences are often observed. These differences may be partially attributed to beam attenuation by parts of the treatment couch not taken into account in the PDI prediction. In order to improve the agreement, a model for the treatment couch was derived and included in the PDI prediction. Methods: A CT scan was used to model the couch top. The model for the couch top base was derived by iteratively matching the predicted and measured PDIs for gantry angles of 0 deg., 45 deg., and 90 deg. For PDI prediction, the modeled treatment couch was added to the CT scan of a patient or phantom by using the recorded couch positions from the record and verify system. To validate the couch model, PDI measurements were performed for a range of couch positions and gantry angles, both with and without an anatomical phantom in the beam. Results: After including the couch model in the PDI prediction for beams passing through the couch without phantom, the mean local dose differences between measured and predicted PDIs were reduced from up to 5.5% to less than 1.0% at each gantry angle. Similar results were obtained for measurements with a lung phantom on the couch. Although the couch model was originally derived by using a 6 MV photon beam, the results showed that it is also applicable for a 10 MV beam. Conclusions: A model of the treatment couch was derived and included in the PDI prediction, yielding a substantially improved agreement between measured and predicted PDIs, which makes interpretation of the observed deviations more straightforward.

  16. Conditions for reliable time-resolved dosimetry of electronic portal imaging devices for fixed-gantry IMRT and VMAT

    SciTech Connect

    Yeo, Inhwan Jason; Patyal, Baldev; Mandapaka, Anant; Jung, Jae Won; Yi, Byong Yong; Kim, Jong Oh

    2013-07-15

    Purpose: The continuous scanning mode of electronic portal imaging devices (EPID) that offers time-resolved information has been newly explored for verifying dynamic radiation deliveries. This study seeks to determine operating conditions (dose rate stability and time resolution) under which that mode can be used accurately for the time-resolved dosimetry of intensity-modulated radiation therapy (IMRT) beams.Methods: The authors have designed the following test beams with variable beam holdoffs and dose rate regulations: a 10 Multiplication-Sign 10 cm open beam to serve as a reference beam; a sliding window (SW) beam utilizing the motion of a pair of multileaf collimator (MLC) leaves outside the 10 Multiplication-Sign 10 cm jaw; a step and shoot (SS) beam to move the pair in step; a volumetric modulated arc therapy (VMAT) beam. The beams were designed in such a way that they all produce the same open beam output of 10 Multiplication-Sign 10 cm. Time-resolved ion chamber measurements at isocenter and time-resolved and integrating EPID measurements were performed for all beams. The time-resolved EPID measurements were evaluated through comparison with the ion chamber and integrating EPID measurements, as the latter are accepted procedures. For two-dimensional, time-resolved evaluation, a VMAT beam with an infield MLC travel was designed. Time-resolved EPID measurements and Monte Carlo calculations of such EPID dose images for this beam were performed and intercompared.Results: For IMRT beams (SW and SS), the authors found disagreement greater than 2%, caused by frame missing of the time-resolved mode. However, frame missing disappeared, yielding agreement better than 2%, when the dose rate of irradiation (and thus the frame acquisition rates) reached a stable and planned rate as the dose of irradiation was raised past certain thresholds (a minimum 12 s of irradiation per shoot used for SS IMRT). For VMAT, the authors found that dose rate does not affect the frame

  17. Conditions for reliable time-resolved dosimetry of electronic portal imaging devices for fixed-gantry IMRT and VMAT

    PubMed Central

    Yeo, Inhwan Jason; Jung, Jae Won; Patyal, Baldev; Mandapaka, Anant; Yong Yi, Byong; Oh Kim, Jong

    2013-01-01

    Purpose: The continuous scanning mode of electronic portal imaging devices (EPID) that offers time-resolved information has been newly explored for verifying dynamic radiation deliveries. This study seeks to determine operating conditions (dose rate stability and time resolution) under which that mode can be used accurately for the time-resolved dosimetry of intensity-modulated radiation therapy (IMRT) beams. Methods: The authors have designed the following test beams with variable beam holdoffs and dose rate regulations: a 10 × 10 cm open beam to serve as a reference beam; a sliding window (SW) beam utilizing the motion of a pair of multileaf collimator (MLC) leaves outside the 10 × 10 cm jaw; a step and shoot (SS) beam to move the pair in step; a volumetric modulated arc therapy (VMAT) beam. The beams were designed in such a way that they all produce the same open beam output of 10 × 10 cm. Time-resolved ion chamber measurements at isocenter and time-resolved and integrating EPID measurements were performed for all beams. The time-resolved EPID measurements were evaluated through comparison with the ion chamber and integrating EPID measurements, as the latter are accepted procedures. For two-dimensional, time-resolved evaluation, a VMAT beam with an infield MLC travel was designed. Time-resolved EPID measurements and Monte Carlo calculations of such EPID dose images for this beam were performed and intercompared. Results: For IMRT beams (SW and SS), the authors found disagreement greater than 2%, caused by frame missing of the time-resolved mode. However, frame missing disappeared, yielding agreement better than 2%, when the dose rate of irradiation (and thus the frame acquisition rates) reached a stable and planned rate as the dose of irradiation was raised past certain thresholds (a minimum 12 s of irradiation per shoot used for SS IMRT). For VMAT, the authors found that dose rate does not affect the frame acquisition rate, thereby causing no frame missing

  18. Feasibility of portal dosimetry for flattening filter-free radiotherapy.

    PubMed

    Chuter, Robert W; Rixham, Philip A; Weston, Steve J; Cosgrove, Vivian P

    2016-01-01

    The feasibility of using portal dosimetry (PD) to verify 6 MV flattening filter-free (FFF) IMRT treatments was investigated. An Elekta Synergy linear accelerator with an Agility collimator capable of delivering FFF beams and a standard iViewGT amorphous silicon (aSi) EPID panel (RID 1640 AL5P) at a fixed SSD of 160 cm were used. Dose rates for FFF beams are up to four times higher than for conventional flattened beams, meaning images taken at maximum FFF dose rate can saturate the EPID. A dose rate of 800 MU/min was found not to saturate the EPID for open fields. This dose rate was subsequently used to characterize the EPID for FFF portal dosimetry. A range of open and phantom fields were measured with both an ion chamber and the EPID, to allow comparison between the two. The measured data were then used to create a model within The Nederlands Kanker Instituut's (NKI's) portal dosimetry software. The model was verified using simple square fields with a range of field sizes and phantom thicknesses. These were compared to calculations performed with the Monaco treatment planning system (TPS) and isocentric ion chamber measurements. It was found that the results for the FFF verification were similar to those for flattened beams with testing on square fields, indicating a difference in dose between the TPS and portal dosimetry of approximately 1%. Two FFF IMRT plans (prostate and lung SABR) were delivered to a homogeneous phantom and showed an overall dose difference at isocenter of ~0.5% and good agreement between the TPS and PD dose distributions. The feasibility of using the NKI software without any modifications for high-dose-rate FFF beams and using a standard EPID detector has been investigated and some initial limitations highlighted. PMID:26894337

  19. Comparison between an in-house 1D profile correction method and a 2D correction provided in Varian's PDPC Package for improving the accuracy of portal dosimetry images.

    PubMed

    Hobson, Maritza A; Davis, Stephen D

    2015-01-01

    While commissioning Varian's Portal Dose Image Prediction (PDIP) algorithm for portal dosimetry, an asymmetric radial response in the portal imager due to backscatter from the support arm was observed. This asymmetric response led to differences on the order of 2%-3% for simple square fields (< 20 × 20 cm2) when comparing the measured to predicted portal fluences. A separate problem was that discrepancies of up to 10% were seen in measured to predicted portal fluences at increasing off-axis distance (> 10 cm). We have modified suggested methods from the literature to provide a 1D correction for the off-axis response problem which adjusts the diagonal profile used in the portal imager calibration. This inherently cannot fix the 2D problem since the PDIP algorithm assumes a radially symmetric response and will lead to some uncertainty in portal dosimetry results. Varian has recently released generic "2D correction" files with their Portal Dosimetry Pre-configuration (PDPC) package, but no independent testing has been published. We present the comparison between QA results using the Varian correction method to results using our 1D profile correction method using the gamma passing rates with a 3%, 3 mm criterion. The average, minimum, and maximum gamma pass rates for nine fixed-field IMRT fields at gantry 0° using our profile correction method were 98.1%, 93.7%, and 99.8%, respectively, while the results using the PDPC correction method were 98.4%, 93.1%, and 99.8%. For four RapidArc fields, the average, minimum, and maximum gamma pass rates using our correction method were 99.6%, 99.4%, and 99.9%, respectively, while the results using the PDPC correction method were 99.8%, 99.5%, and 99.9%. The average gamma pass rates for both correction methods are quite similar, but both show improvement over the uncorrected results. PMID:26103173

  20. SU-E-T-335: Transit Dosimetry for Verification of Dose Delivery Using Electronic Portal Imaging Device (EPID)

    SciTech Connect

    Baek, T; Chung, E; Lee, S; Yoon, M

    2014-06-01

    Purpose: To evaluate the effectiveness of transit dose, measured with an electronic portal imaging device (EPID), in verifying actual dose delivery to patients. Methods: Plans of 5 patients with lung cancer, who received IMRT treatment, were examined using homogeneous solid water phantom and inhomogeneous anthropomorphic phantom. To simulate error in patient positioning, the anthropomorphic phantom was displaced from 5 mm to 10 mm in the inferior to superior (IS), superior to inferior (SI), left to right (LR), and right to left (RL) directions. The transit dose distribution was measured with EPID and was compared to the planed dose using gamma index. Results: Although the average passing rate based on gamma index (GI) with a 3% dose and a 3 mm distance-to-dose agreement tolerance limit was 94.34 % for the transit dose with homogeneous phantom, it was reduced to 84.63 % for the transit dose with inhomogeneous anthropomorphic phantom. The Result also shows that the setup error of 5mm (10mm) in IS, SI, LR and SI direction can Result in the decrease in values of GI passing rates by 1.3% (3.0%), 2.2% (4.3%), 5.9% (10.9%), and 8.9% (16.3%), respectively. Conclusion: Our feasibility study suggests that the transit dose-based quality assurance may provide information regarding accuracy of dose delivery as well as patient positioning.

  1. Implementation of IMRT and VMAT using Delta4 phantom and portal dosimetry as dosimetry verification tools

    NASA Astrophysics Data System (ADS)

    Daci, Lulzime; Malkaj, Partizan

    2016-03-01

    In this study we analyzed and compared the dose distribution of different IMRT and VMAT plans with the intent to provide pre-treatment quality assurance using two different tools. Materials/Methods: We have used the electronic portal imaging device EPID after calibration to dose and correction for the background offset signal and also the Delta4 phantom after en evaluation of angular sensitivity. The Delta4 phantom has a two-dimensional array with ionization chambers. We analyzed three plans for each anatomical site calculated by Eclipse treatment planning system. The measurements were analyzed using γ-evaluation method with passing criteria 3% absolute dose and 3 mm distance to agreement (DTA). For all the plans the range of score has been from 97% to 99% for gantry fixed at 0° while for rotational planes there was a slightly decreased pass rates and above 95%. Point measurement with a ionization chamber were done in additional to see the accuracy of portal dosimetry and to evaluate the Delta4 device to various dose rates. Conclusions: Both Delt4 and Portal dosimetry shows good results between the measured and calculated doses. While Delta4 is more accurate in measurements EPID is more time efficient. We have decided to use both methods in the first steps of IMRT and VMAT implementation and later on to decide which of the tools to use depending on the complexity of plans, how much accurate we want to be and the time we have on the machine.

  2. Denoising portal images by means of wavelet techniques

    NASA Astrophysics Data System (ADS)

    Gonzalez Lopez, Antonio Francisco

    Portal images are used in radiotherapy for the verification of patient positioning. The distinguishing feature of this image type lies in its formation process: the same beam used for patient treatment is used for image formation. The high energy of the photons used in radiotherapy strongly limits the quality of portal images: Low contrast between tissues, low spatial resolution and low signal to noise ratio. This Thesis studies the enhancement of these images, in particular denoising of portal images. The statistical properties of portal images and noise are studied: power spectra, statistical dependencies between image and noise and marginal, joint and conditional distributions in the wavelet domain. Later, various denoising methods are applied to noisy portal images. Methods operating in the wavelet domain are the basis of this Thesis. In addition, the Wiener filter and the non local means filter (NLM), operating in the image domain, are used as a reference. Other topics studied in this Thesis are spatial resolution, wavelet processing and image processing in dosimetry in radiotherapy. In this regard, the spatial resolution of portal imaging systems is studied; a new method for determining the spatial resolution of the imaging equipments in digital radiology is presented; the calculation of the power spectrum in the wavelet domain is studied; reducing uncertainty in film dosimetry is investigated; a method for the dosimetry of small radiation fields with radiochromic film is presented; the optimal signal resolution is determined, as a function of the noise level and the quantization step, in the digitization process of films and the useful optical density range is set, as a function of the required uncertainty level, for a densitometric system. Marginal distributions of portal images are similar to those of natural images. This also applies to the statistical relationships between wavelet coefficients, intra-band and inter-band. These facts result in a better

  3. Pre-treatment verification of intensity modulated radiation therapy plans using a commercial electronic portal dosimetry system.

    PubMed

    Roxby, Kathleen J; Crosbie, Jeffrey C

    2010-03-01

    We commissioned a commercially available portal dosimetry system for quality assurance of intensity modulated radiation therapy (IMRT) treatment plans. The system included gamma analysis software to compare the measured and predicted fluence maps from individual IMRT fields. The portal dosimetry system was tested using six head and neck IMRT patient plans, and we demonstrated that the accuracy of the alignment of measured and predicted images improved by retracting and repositioning the electronic portal imaging device (EPID) at each new gantry angle. The mean gamma score (fraction of pixels passing the gamma criteria) for the six test plans (after initial testing and using the EPID retracting and repositioning method) was 0.987 (2SD = 0.018), using gamma criteria of a dose difference of 2% of the maximum field dose and 2 mm distance to agreement. The mean gamma score was 0.989 (2SD = 0.017) for 24 head and neck IMRT patient plans carried out with portal dosimetry. Using gamma criteria of 2% maximum field dose and 2 mm distance to agreement, a gamma score tolerance of 0.980 is a useful way of highlighting only those fields requiring further analysis. Portal dosimetry is a quick way of assessing individual field fluence distributions and can be integrated into an IMRT quality assurance programme. PMID:20237893

  4. Breast in vivo dosimetry by a portal ionization chamber

    SciTech Connect

    Grimaldi, Luca; D'Onofrio, Guido; Cilla, Savino; Fidanzio, Andrea; Stimato, Gerardina; Azario, Luigi; Deodato, Francesco; Macchia, Gabriella; Morganti, Alessio; Piermattei, Angelo

    2007-03-15

    This work reports a practical method for the determination of the in vivo breast middle dose value, D{sub m}, on the beam central axis, using a signal S{sub t}, obtained by a small thimble ion chamber positioned at the center of the electronic portal imaging device, and irradiated by the x-ray beam transmitted through the patient. The use of a stable ion chamber reduces many of the disadvantages associated with the use of diodes as their periodic recalibration and positioning is time consuming. The method makes use of a set of correlation functions obtained by the ratios S{sub t}/D{sub m}, determined by irradiating cylindrical water phantoms with different diameters. The method proposed here is based on the determination of the water-equivalent thickness of the patient, along the beam central axis, by the treatment planning system that makes use of the electron densities obtained by a computed tomography scanner. The method has been applied for the breast in vivo dosimetry of ten patients treated with a manual intensity modulation with four asymmetric beams. In particular, two tangential rectangular fields were first delivered, thereafter a fraction of the dose (typically less than 10%) was delivered with two multi leaf-shaped beams which included only the mammarian tissue. Only the two rectangular fields were tested and for every checked field five measurements were carried out. Applying a continuous quality assurance program based on the tests of patient setup, machine settings and dose planning, the proposed method is able to verify agreements between the computed dose D{sub m,TPS} and the in vivo dose value D{sub m}, within 4%.

  5. A comparison of electronic portal dosimetry verification methods for use in stereotactic radiotherapy.

    PubMed

    Millin, Anthony E; Windle, Rebecca S; Lewis, D Geraint

    2016-01-01

    Three methods of transit dosimetry using Electronic Portal Imaging Devices (EPIDs) were investigated for use in routine in-vivo dosimetry for cranial stereotactic radiosurgery and radiotherapy. The approaches examined were (a) A full Monte Carlo (MC) simulation of radiation transport through the linear accelerator and patient; (b) Calculation of the expected fluence by a treatment planning system (TPS); (c) Point doses calculated along the central axis compared to doses calculated using parameters acquired using the EPID. A dosimetric comparison of each of the three methods predicted doses at the imager plane to within ±5% and a gamma comparison for the MC and TPS based approaches showed good agreement for a range of dose and distance to agreement criteria. The MC technique was most time consuming, followed by the TPS calculation with the point dose calculation significantly quicker than the other methods. PMID:26748961

  6. Interfractional trend analysis of dose differences based on 2D transit portal dosimetry

    NASA Astrophysics Data System (ADS)

    Persoon, L. C. G. G.; Nijsten, S. M. J. J. G.; Wilbrink, F. J.; Podesta, M.; Snaith, J. A. D.; Lustberg, T.; van Elmpt, W. J. C.; van Gils, F.; Verhaegen, F.

    2012-10-01

    Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic—appearing repeatedly, (2) random—appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of

  7. SU-E-J-235: Varian Portal Dosimetry Accuracy at Detecting Simulated Delivery Errors

    SciTech Connect

    Gordon, J; Bellon, M; Barton, K; Gulam, M; Chetty, I

    2014-06-01

    Purpose: To use receiver operating characteristic (ROC) analysis to quantify the Varian Portal Dosimetry (VPD) application's ability to detect delivery errors in IMRT fields. Methods: EPID and VPD were calibrated/commissioned using vendor-recommended procedures. Five clinical plans comprising 56 modulated fields were analyzed using VPD. Treatment sites were: pelvis, prostate, brain, orbit, and base of tongue. Delivery was on a Varian Trilogy linear accelerator at 6MV using a Millenium120 multi-leaf collimator. Image pairs (VPD-predicted and measured) were exported in dicom format. Each detection test imported an image pair into Matlab, optionally inserted a simulated error (rectangular region with intensity raised or lowered) into the measured image, performed 3%/3mm gamma analysis, and saved the gamma distribution. For a given error, 56 negative tests (without error) were performed, one per 56 image pairs. Also, 560 positive tests (with error) with randomly selected image pairs and randomly selected in-field error location. Images were classified as errored (or error-free) if percent pixels with γ<κ was < (or ≥) τ. (Conventionally, κ=1 and τ=90%.) A ROC curve was generated from the 616 tests by varying τ. For a range of κ and τ, true/false positive/negative rates were calculated. This procedure was repeated for inserted errors of different sizes. VPD was considered to reliably detect an error if images were correctly classified as errored or error-free at least 95% of the time, for some κ+τ combination. Results: 20mm{sup 2} errors with intensity altered by ≥20% could be reliably detected, as could 10mm{sup 2} errors with intensity was altered by ≥50%. Errors with smaller size or intensity change could not be reliably detected. Conclusion: Varian Portal Dosimetry using 3%/3mm gamma analysis is capable of reliably detecting only those fluence errors that exceed the stated sizes. Images containing smaller errors can pass mathematical analysis, though

  8. Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device

    SciTech Connect

    Kruszyna, Marta

    2010-01-05

    This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The evaluation of dosimetric verification for various organ, during a 2 year period is given.

  9. Dosimetric Verification of IMRT Treatment Plans Using an Electronic Portal Imaging Device

    NASA Astrophysics Data System (ADS)

    Kruszyna, Marta

    2010-01-01

    This paper presents the procedures and results of dosimetric verification using an Electronic Portal Imaging Device as a tool for pre-treatment dosimetry in IMRT technique at the Greater Poland Cancer Centre in Poznan, Poland. The ewaluation of dosimetric verification for various organ, during a 2 year period is given.

  10. Three-dimensional heart dose reconstruction to estimate normal tissue complication probability after breast irradiation using portal dosimetry

    SciTech Connect

    Louwe, R. J. W.; Wendling, M.; Herk, M. B. van; Mijnheer, B. J.

    2007-04-15

    Irradiation of the heart is one of the major concerns during radiotherapy of breast cancer. Three-dimensional (3D) treatment planning would therefore be useful but cannot always be performed for left-sided breast treatments, because CT data may not be available. However, even if 3D dose calculations are available and an estimate of the normal tissue damage can be made, uncertainties in patient positioning may significantly influence the heart dose during treatment. Therefore, 3D reconstruction of the actual heart dose during breast cancer treatment using electronic imaging portal device (EPID) dosimetry has been investigated. A previously described method to reconstruct the dose in the patient from treatment portal images at the radiological midsurface was used in combination with a simple geometrical model of the irradiated heart volume to enable calculation of dose-volume histograms (DVHs), to independently verify this aspect of the treatment without using 3D data from a planning CT scan. To investigate the accuracy of our method, the DVHs obtained with full 3D treatment planning system (TPS) calculations and those obtained after resampling the TPS dose in the radiological midsurface were compared for fifteen breast cancer patients for whom CT data were available. In addition, EPID dosimetry as well as 3D dose calculations using our TPS, film dosimetry, and ionization chamber measurements were performed in an anthropomorphic phantom. It was found that the dose reconstructed using EPID dosimetry and the dose calculated with the TPS agreed within 1.5% in the lung/heart region. The dose-volume histograms obtained with EPID dosimetry were used to estimate the normal tissue complication probability (NTCP) for late excess cardiac mortality. Although the accuracy of these NTCP calculations might be limited due to the uncertainty in the NTCP model, in combination with our portal dosimetry approach it allows incorporation of the actual heart dose. For the anthropomorphic

  11. Prediction of DVH parameter changes due to setup errors for breast cancer treatment based on 2D portal dosimetry

    SciTech Connect

    Nijsten, S. M. J. J. G.; Elmpt, W. J. C. van; Mijnheer, B. J.; Minken, A. W. H.; Persoon, L. C. G. G.; Lambin, P.; Dekker, A. L. A. J.

    2009-01-15

    Electronic portal imaging devices (EPIDs) are increasingly used for portal dosimetry applications. In our department, EPIDs are clinically used for two-dimensional (2D) transit dosimetry. Predicted and measured portal dose images are compared to detect dose delivery errors caused for instance by setup errors or organ motion. The aim of this work is to develop a model to predict dose-volume histogram (DVH) changes due to setup errors during breast cancer treatment using 2D transit dosimetry. First, correlations between DVH parameter changes and 2D gamma parameters are investigated for different simulated setup errors, which are described by a binomial logistic regression model. The model calculates the probability that a DVH parameter changes more than a specific tolerance level and uses several gamma evaluation parameters for the planning target volume (PTV) projection in the EPID plane as input. Second, the predictive model is applied to clinically measured portal images. Predicted DVH parameter changes are compared to calculated DVH parameter changes using the measured setup error resulting from a dosimetric registration procedure. Statistical accuracy is investigated by using receiver operating characteristic (ROC) curves and values for the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values. Changes in the mean PTV dose larger than 5%, and changes in V{sub 90} and V{sub 95} larger than 10% are accurately predicted based on a set of 2D gamma parameters. Most pronounced changes in the three DVH parameters are found for setup errors in the lateral-medial direction. AUC, sensitivity, specificity, and negative predictive values were between 85% and 100% while the positive predictive values were lower but still higher than 54%. Clinical predictive value is decreased due to the occurrence of patient rotations or breast deformations during treatment, but the overall reliability of the predictive model remains high. Based on our

  12. Phase contrast portal imaging using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Umetani, K.; Kondoh, T.

    2014-07-01

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  13. Phase contrast portal imaging using synchrotron radiation

    SciTech Connect

    Umetani, K.; Kondoh, T.

    2014-07-15

    Microbeam radiation therapy is an experimental form of radiation treatment with great potential to improve the treatment of many types of cancer. We applied a synchrotron radiation phase contrast technique to portal imaging to improve targeting accuracy for microbeam radiation therapy in experiments using small animals. An X-ray imaging detector was installed 6.0 m downstream from an object to produce a high-contrast edge enhancement effect in propagation-based phase contrast imaging. Images of a mouse head sample were obtained using therapeutic white synchrotron radiation with a mean beam energy of 130 keV. Compared to conventional portal images, remarkably clear images of bones surrounding the cerebrum were acquired in an air environment for positioning brain lesions with respect to the skull structure without confusion with overlapping surface structures.

  14. Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations

    SciTech Connect

    Bojechko, C.; Ford, E. C.

    2015-12-15

    Purpose: To quantify the ability of electronic portal imaging device (EPID) dosimetry used during treatment (in vivo) in detecting variations that can occur in the course of patient treatment. Methods: Images of transmitted radiation from in vivo EPID measurements were converted to a 2D planar dose at isocenter and compared to the treatment planning dose using a prototype software system. Using the treatment planning system (TPS), four different types of variability were modeled: overall dose scaling, shifting the positions of the multileaf collimator (MLC) leaves, shifting of the patient position, and changes in the patient body contour. The gamma pass rate was calculated for the modified and unmodified plans and used to construct a receiver operator characteristic (ROC) curve to assess the detectability of the different parameter variations. The detectability is given by the area under the ROC curve (AUC). The TPS was also used to calculate the impact of the variations on the target dose–volume histogram. Results: Nine intensity modulation radiation therapy plans were measured for four different anatomical sites consisting of 70 separate fields. Results show that in vivo EPID dosimetry was most sensitive to variations in the machine output, AUC = 0.70 − 0.94, changes in patient body habitus, AUC = 0.67 − 0.88, and systematic shifts in the MLC bank positions, AUC = 0.59 − 0.82. These deviations are expected to have a relatively small clinical impact [planning target volume (PTV) D{sub 99} change <7%]. Larger variations have even higher detectability. Displacements in the patient’s position and random variations in MLC leaf positions were not readily detectable, AUC < 0.64. The D{sub 99} of the PTV changed by up to 57% for the patient position shifts considered here. Conclusions: In vivo EPID dosimetry is able to detect relatively small variations in overall dose, systematic shifts of the MLC’s, and changes in the patient habitus. Shifts in the

  15. SU-E-J-70: Evaluation of Multiple Isocentric Intensity Modulated and Volumetric Modulated Arc Therapy Techniques Using Portal Dosimetry

    SciTech Connect

    Muralidhar, K Raja; Pangam, S; Kolla, J; Ponaganti, S; Ali, M; Vuba, S; Mariyappan, P; Babaiah, M; Komanduri, K

    2015-06-15

    Purpose: To develop a method for verification of dose distribution in a patient during treatment using multiple isocentric Intensity modulated and volumetric modulated arc therapy techniques with portal dosimetry. Methods: Varian True Beam accelerator, equipped with an aS1000 megavoltage electronic portal imaging device (EPID) has an integrated image mode for portal dosimetry (PD). The source-to-imager distance was taken at 150 cm to avoid collision to the table. Fourteen fractions were analyzed for this study. During shift in a single plan from one isocenter to another isocenter, EPID also shifted longitudinally for each field by taking the extent of divergence of beam into the consideration for EPID distance of 150cm. Patients were given treatment everyday with EPID placed in proper position for each field. Several parameters were obtained by comparing the dose distribution between fractions to fraction. The impact of the intra-fraction and inter-fraction of the patient in combination with isocenter shift of the beams were observed. Results: During treatment, measurements were performed by EPID and were evaluated by the gamma method. Analysis was done between fractions for multiple isocenter treatments. The pass rates of the gamma analysis with a criterion of 3% and 3 mm for the 14 fractions were over 97.8% with good consistency. Whereas maximum gamma exceeded the criteria in few fractions (in<1 cc vol). Average gamma was observed in the criteria of 0.5%. Maximum dose difference and average dose differences were less than 0.22 CU and 0.01 CU for maximum tolerance of 1.0 CU and 0.2 CU respectively. Conclusion: EPID with extended distance is ideal method to verify the multiple isocentric dose distribution in patient during treatment, especially cold and hot spots in junction dose. Verification of shifts as well as the dose differences between each fraction due to inter-fraction and intra-fraction of the patient can be derived.

  16. Time-resolved versus time-integrated portal dosimetry: the role of an object’s position with respect to the isocenter in volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Schyns, Lotte E. J. R.; Persoon, Lucas C. G. G.; Podesta, Mark; van Elmpt, Wouter J. C.; Verhaegen, Frank

    2016-05-01

    The aim of this work is to compare time-resolved (TR) and time-integrated (TI) portal dosimetry, focussing on the role of an object’s position with respect to the isocenter in volumetric modulated arc therapy (VMAT). Portal dose images (PDIs) are simulated and measured for different cases: a sphere (1), a bovine bone (2) and a patient geometry (3). For the simulated case (1) and the experimental case (2), several transformations are applied at different off-axis positions. In the patient case (3), three simple plans with different isocenters are created and pleural effusion is simulated in the patient. The PDIs before and after the sphere transformations, as well as the PDIs with and without simulated pleural effusion, are compared using a TI and TR gamma analysis. In addition, the performance of the TI and TR gamma analyses for the detection of real geometric changes in patients treated with clinical plans is investigated and a correlation analysis is performed between gamma fail rates and differences in dose volume histogram (DVH) metrics. The TI gamma analysis can show large differences in gamma fail rates for the same transformation at different off-axis positions (or for different plan isocenters). The TR gamma analysis, however, shows consistent gamma fail rates. For the detection of real geometric changes in patients treated with clinical plans, the TR gamma analysis has a higher sensitivity than the TI gamma analysis. However, the specificity for the TR gamma analysis is lower than for the TI gamma analysis. Both the TI and TR gamma fail rates show no correlation with changes in DVH metrics. This work shows that TR portal dosimetry is fundamentally superior to TI portal dosimetry, because it removes the strong dependence of the gamma fail rate on the off-axis position/plan isocenter. However, for 2D TR portal dosimetry, it is still difficult to interpret gamma fail rates in terms of changes in DVH metrics for patients treated with VMAT.

  17. Exit fluence analysis using portal dosimetry in volumetric modulated arc therapy

    PubMed Central

    Sukumar, Prabakar; Padmanaban, Sriram; Rajasekaran, Dhanabalan; Kannan, Muniyappan; Nagarajan, Vivekanandan

    2012-01-01

    Aim In measuring exit fluences, there are several sources of deviations which include the changes in the entrance fluence, changes in the detector response and patient orientation or geometry. The purpose of this work is to quantify these sources of errors. Background The use of the volumetric modulated arc therapy treatment with the help of image guidance in radiotherapy results in high accuracy of delivering complex dose distributions while sparing critical organs. The transit dosimetry has the potential of Verifying dose delivery by the linac, Multileaf collimator positional accuracy and the calculation of dose to a patient or phantom. Materials and methods The quantification of errors caused by a machine delivery is done by comparing static and arc picket fence test for 30 days. A RapidArc plan, created for the pelvis site was delivered without and with Rando phantom and exit portal images were acquired. The day to day dose variation were analysed by comparing the daily exit dose images during the course of treatment. The gamma criterion used for analysis is 3% dose difference and 3 mm distance to agreement with a threshold of 10% of maximum dose. Results The maximum standard deviation for the static and arc picket fence test fields were 0.19 CU and 1.3 CU, respectively. The delivery of the RapidArc plans without a phantom shows the maximum standard deviation of 1.85 CU and the maximum gamma value of 0.59. The maximum gamma value for the RapidArc plan delivered with the phantom was found to be 1.2. The largest observed fluence deviation during the delivery to patient was 5.7% and the maximum standard deviation was 4.1 CU. Conclusion It is found from this study that the variation due to patient anatomy and interfraction organ motion is significant. PMID:24377034

  18. Open source portal to distributed image repositories

    NASA Astrophysics Data System (ADS)

    Tao, Wenchao; Ratib, Osman M.; Kho, Hwa; Hsu, Yung-Chao; Wang, Cun; Lee, Cason; McCoy, J. M.

    2004-04-01

    In large institution PACS, patient data may often reside in multiple separate systems. While most systems tend to be DICOM compliant, none of them offer the flexibility of seamless integration of multiple DICOM sources through a single access point. We developed a generic portal system with a web-based interactive front-end as well as an application programming interface (API) that allows both web users and client applications to query and retrieve image data from multiple DICOM sources. A set of software tools was developed to allow accessing several DICOM archives through a single point of access. An interactive web-based front-end allows user to search image data seamlessly from the different archives and display the results or route the image data to another DICOM compliant destination. An XML-based API allows other software programs to easily benefit from this portal to query and retrieve image data as well. Various techniques are employed to minimize the performance overhead inherent in the DICOM. The system is integrated with a hospital-wide HIPAA-compliant authentication and auditing service that provides centralized management of access to patient medical records. The system is provided under open source free licensing and developed using open-source components (Apache Tomcat for web server, MySQL for database, OJB for object/relational data mapping etc.). The portal paradigm offers a convenient and effective solution for accessing multiple image data sources in a given healthcare enterprise and can easily be extended to multi-institution through appropriate security and encryption mechanisms.

  19. Initial Clinical Experience Performing Patient Treatment Verification With an Electronic Portal Imaging Device Transit Dosimeter

    SciTech Connect

    Berry, Sean L.; Polvorosa, Cynthia; Cheng, Simon; Deutsch, Israel; Chao, K. S. Clifford; Wuu, Cheng-Shie

    2014-01-01

    Purpose: To prospectively evaluate a 2-dimensional transit dosimetry algorithm's performance on a patient population and to analyze the issues that would arise in a widespread clinical adoption of transit electronic portal imaging device (EPID) dosimetry. Methods and Materials: Eleven patients were enrolled on the protocol; 9 completed and were analyzed. Pretreatment intensity modulated radiation therapy (IMRT) patient-specific quality assurance was performed using a stringent local 3%, 3-mm γ criterion to verify that the planned fluence had been appropriately transferred to and delivered by the linear accelerator. Transit dosimetric EPID images were then acquired during treatment and compared offline with predicted transit images using a global 5%, 3-mm γ criterion. Results: There were 288 transit images analyzed. The overall γ pass rate was 89.1% ± 9.8% (average ± 1 SD). For the subset of images for which the linear accelerator couch did not interfere with the measurement, the γ pass rate was 95.7% ± 2.4%. A case study is presented in which the transit dosimetry algorithm was able to identify that a lung patient's bilateral pleural effusion had resolved in the time between the planning CT scan and the treatment. Conclusions: The EPID transit dosimetry algorithm under consideration, previously described and verified in a phantom study, is feasible for use in treatment delivery verification for real patients. Two-dimensional EPID transit dosimetry can play an important role in indicating when a treatment delivery is inconsistent with the original plan.

  20. Clinical use of electronic portal imaging.

    PubMed

    Herman, Michael G

    2005-07-01

    Accurate and routine target localization is necessary for successful outcome in radiation therapy treatments. Electronic portal imaging devices (EPIDs) provide an advanced tool with digital technology to improve target localization and maintain clinical efficiency. EPIDs are ubiquitous in the radiation therapy clinic, and they provide a powerful and flexible tool to collect and process data in a quantitative manner to improve treatment accuracy for virtually any treatment site. This manuscript provides an overview of the clinical implementation process for effective use of EPIDs. It continues with a review of correction strategies and finally highlights numerous examples of effective clinical application of EPID. PMID:15983941

  1. 3-D Imaging Based, Radiobiological Dosimetry

    PubMed Central

    Sgouros, George; Frey, Eric; Wahl, Richard; He, Bin; Prideaux, Andrew; Hobbs, Robert

    2008-01-01

    Targeted radionuclide therapy holds promise as a new treatment against cancer. Advances in imaging are making it possible to evaluate the spatial distribution of radioactivity in tumors and normal organs over time. Matched anatomical imaging such as combined SPECT/CT and PET/CT have also made it possible to obtain tissue density information in conjunction with the radioactivity distribution. Coupled with sophisticated iterative reconstruction algorithims, these advances have made it possible to perform highly patient-specific dosimetry that also incorporates radiobiological modeling. Such sophisticated dosimetry techniques are still in the research investigation phase. Given the attendant logistical and financial costs, a demonstrated improvement in patient care will be a prerequisite for the adoption of such highly-patient specific internal dosimetry methods. PMID:18662554

  2. SU-E-T-364: 6X FFF and 10X FFF Portal Dosimetry Output Factor Verification: Application for SRS/SBRT

    SciTech Connect

    Gulam, M; Bellon, M; Gopal, A; Wen, N; Chetty, I; Gordon, J; Hames, S; Schmidt, M

    2014-06-01

    Purpose: To enhance portal dosimetry of high dose rate SRS/SBRT plan verifications with extensive imager measurement of output factors (OF). Methods: Electronic portal image dosimetry (EPID), implemented on the Varian Edge allows for acquisition of its two energies: 6X FFF and 10 FFF (1400 and 2400 MU/min, respectively) at source to imager distance (SID) =100cm without imager saturation. Square and rectangular aSi OF following EPID calibration were obtained. Data taken was similar to that obtained during beam commissioning (of almost all field sizes from 1×1 to 15×15 and 20×20 cm{sup 2}, [Trilogy] and [Edge], respectively) to construct a table using the OF tool for use in the Portal Dosimetry Prediction Algorithm (PDIP v11). The Trilogy 6x SRS 1000 MU/min EPID data were taken at 140 SID. The large number of OF were obtained for comparison to that obtained with diode detectors and ion chambers (cc13 for >3×3 field size). As Edge PDIP verification is currently ongoing, EPID measurements of three SRS/SBRT plans for the Trilogy were taken and compared to results obtained prior to these measurements. Results: The relative difference output factors of field sizes 2×2 and higher compared to commissioning data were (mean+/-SD, [range]): Edge 6X (−1.9+/−2.9%, [−5.9%,3.1%]), Edge 10X (−0.7+/−1.2%, [− 3.3%,0.8%] and Trilogy (0.03+/−0.5%, [−1.4%,1.1%]) with EPID over predicting. The results for the 140 SID showed excellent agreement throughout except at the 1×1 to 1×15 and 15×1 field sizes where differences were: −10.6%, −6.0% and −5.8%. The differences were also most pronounced for the 1×1 at 100 SID. They were −7.4% and −11.5% for 6X and 10X, respectively. The Gamma (3%, 1mm) for three clinical plans improved by 8.7+/−1.8%. Conclusion: Results indicate that imager output factor measurements at any SID of high dose rate SRS/SBRT are quite reliable for portal dosimetry plan verification except for the smallest fields. This work was not

  3. Algorithms for contrast enhancement of electronic portal images

    NASA Astrophysics Data System (ADS)

    Díez, S.; Sánchez, S.

    2015-11-01

    An implementation of two new automatized image processing algorithms for contrast enhancement of portal images is presented as suitable tools which facilitate the setup verification and visualization of patients during radiotherapy treatments. In the first algorithm, called Automatic Segmentation and Histogram Stretching (ASHS), the portal image is automatically segmented in two sub-images delimited by the conformed treatment beam: one image consisting of the imaged patient obtained directly from the radiation treatment field, and the second one is composed of the imaged patient outside it. By segmenting the original image, a histogram stretching can be independently performed and improved in both regions. The second algorithm involves a two-step process. In the first step, a Normalization to Local Mean (NLM), an inverse restoration filter is applied by dividing pixel by pixel a portal image by its blurred version. In the second step, named Lineally Combined Local Histogram Equalization (LCLHE), the contrast of the original image is strongly improved by a Local Contrast Enhancement (LCE) algorithm, revealing the anatomical structures of patients. The output image is lineally combined with a portal image of the patient. Finally the output images of the previous algorithms (NLM and LCLHE) are lineally combined, once again, in order to obtain a contrast enhanced image. These two algorithms have been tested on several portal images with great results.

  4. Monte Carlo simulation of the transit dosimetric response of an a-Si electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Blake, S. J.; McNamara, A. L.; Vial, P.; Holloway, L.; Greer, P. B.; Kuncic, Z.

    2014-03-01

    Amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) are x-ray detectors frequently used in radiotherapy imaging and dosimetry applications. EPIDs employ a copper plate and gadolinium oxysulfide phosphor screen with an array of a-Si photodiodes to indirectly detect incident radiation. In this study, a previously developed Monte Carlo (MC) model of an a-Si EPID has been extended for transit dosimetry. The GEANT4 MC toolkit was used to integrate an a-Si EPID model with two phantoms and a 6 MV x-ray source. A solid water phantom was used to simulate EPID transmission factors, field size output factors and relative dose profiles and results were compared to experimental measurements. An anthropomorphic head phantom was used to qualitatively compare simulated and measured portal images of humanoid anatomy. Calculated transmission factors and field size output factors agreed to within 2.0% and 1.9% of experimental measurements, respectively. A comparison of calculated and measured relative dose profiles yielded >98% of points passing a gamma analysis with 3%/3 mm criterion for all field sizes. The simulated anthropomorphic head phantom image shows macroscopic anatomical features and qualitatively agrees with the measured image. Results validate the suitability of the MC model for predicting EPID response in transit dosimetry.

  5. Impact of dose rate on accuracy of intensity modulated radiation therapy plan delivery using the pretreatment portal dosimetry quality assurance and setting up the workflow at hospital levels

    PubMed Central

    Kaviarasu, Karunakaran; Raj, N. Arunai Nambi; Murthy, K. Krishna; Babu, A. Ananda Giri; Prasad, Bhaskar Laxman Durga

    2015-01-01

    The aim of this study was to examine the impact of dose rate on accuracy of intensity modulated radiation therapy (IMRT) plan delivery by comparing the gamma agreement between the calculated and measured portal doses by pretreatment quality assurance (QA) using electronic portal imaging device dosimetry and creating a workflow for the pretreatment IMRT QA at hospital levels. As the improvement in gamma agreement leads to increase in the quality of IMRT treatment delivery, gamma evaluation was carried out for the calculated and the measured portal images for the criteria of 3% dose difference and 3 mm distance-to-agreement (DTA). Three gamma parameters: Maximum gamma, average gamma, and percentage of the field area with a gamma value>1.0 were analyzed. Three gamma index parameters were evaluated for 40 IMRT plans (315 IMRT fields) which were calculated for 400 monitor units (MU)/min dose rate and maximum multileaf collimator (MLC) speed of 2.5 cm/s. Gamma parameters for all 315 fields are within acceptable limits set at our center. Further, to improve the gamma results, we set an action level for this study using the mean and standard deviation (SD) values from the 315 fields studied. Forty out of 315 IMRT fields showed low gamma agreement (gamma parameters>2 SD as per action level of the study). The parameters were recalculated and reanalyzed for the dose rates of 300, 400 and 500 MU/min. Lowering the dose rate helped in getting an enhanced gamma agreement between the calculated and measured portal doses of complicated fields. This may be attributed to the less complex motion of MLC over time and the MU of the field/segment. An IMRT QA work flow was prepared which will help in improving the quality of IMRT delivery. PMID:26865759

  6. 6. AN IMAGE OF THE WEST PORTAL OF THE BRIDGE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. AN IMAGE OF THE WEST PORTAL OF THE BRIDGE, TAKEN FROM AN ELEVATED POSITION, SHOWING THE RURAL QUALITY OF THE RIVER SCENE AND ITS BANKS. - Freedom Bridge, Spanning West Fork of White River at County Road 590 South, Freedom, Owen County, IN

  7. Epid Dosimetry

    NASA Astrophysics Data System (ADS)

    Greer, Peter B.; Vial, Philip

    2011-05-01

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  8. Epid Dosimetry

    SciTech Connect

    Greer, Peter B.; Vial, Philip

    2011-05-05

    Electronic portal imaging devices (EPIDs) were introduced originally for patient position verification. The idea of using EPIDs for dosimetry was realised in the 1980s. Little was published on the topic until the mid 1990's, when the interest in EPIDs for dosimetry increased rapidly and continues to grow. The increasing research on EPID dosimetry coincided with the introduction of intensity modulated radiation therapy (IMRT). EPIDs are well suited to IMRT dosimetry because they are high resolution, two-dimensional (2D) digital detectors. They are also pre-existing on almost all modern linear accelerators. They generally show a linear response to increasing dose. Different types of EPIDs have been clinically implemented, and these have been described in several review papers. The current generation of commercially available EPIDs are indirect detection active matrix flat panel imagers, also known as amorphous silicon (a-Si) EPIDs. Disadvantages of a-Si EPIDs for dosimetry include non-water equivalent construction materials, and the energy sensitivity and optical scatter of the phosphor scintillators used to create optical signal from the megavoltage beam. This report discusses current knowledge regarding a-Si EPIDs for dosimetry.

  9. SU-E-T-582: On-Line Dosimetric Verification of Respiratory Gated Volumetric Modulated Arc Therapy Using the Electronic Portal Imaging Device

    SciTech Connect

    Schaly, B; Gaede, S; Xhaferllari, I

    2015-06-15

    Purpose: To investigate the clinical utility of on-line verification of respiratory gated VMAT dosimetry during treatment. Methods: Portal dose images were acquired during treatment in integrated mode on a Varian TrueBeam (v. 1.6) linear accelerator for gated lung and liver patients that used flattening filtered beams. The source to imager distance (SID) was set to 160 cm to ensure imager clearance in case the isocenter was off midline. Note that acquisition of integrated images resulted in no extra dose to the patient. Fraction 1 was taken as baseline and all portal dose images were compared to that of the baseline, where the gamma comparison and dose difference were used to measure day-to-day exit dose variation. All images were analyzed in the Portal Dosimetry module of Aria (v. 10). The portal imager on the TrueBeam was calibrated by following the instructions for dosimetry calibration in service mode, where we define 1 calibrated unit (CU) equal to 1 Gy for 10×10 cm field size at 100 cm SID. This reference condition was measured frequently to verify imager calibration. Results: The gamma value (3%, 3 mm, 5% threshold) ranged between 92% and 100% for the lung and liver cases studied. The exit dose can vary by as much as 10% of the maximum dose for an individual fraction. The integrated images combined with the information given by the corresponding on-line soft tissue matched cone-beam computed tomography (CBCT) images were useful in explaining dose variation. For gated lung treatment, dose variation was mainly due to the diaphragm position. For gated liver treatment, the dose variation was due to both diaphragm position and weight loss. Conclusion: Integrated images can be useful in verifying dose delivery consistency during respiratory gated VMAT, although the CBCT information is needed to explain dose differences due to anatomical changes.

  10. An electronic portal imaging device as a physics tool.

    PubMed

    Curtin-Savard, A; Podgorsak, E B

    1997-01-01

    An electronic portal imaging device (EPID) can be used not only to acquire megavoltage patient images but also to measure certain radiation beam parameters of the linear accelerator. EPID images can be used to verify field junctions, center of collimator rotation, or radiation vs. light field coincidence. If the EPID images are calibrated in terms of dose rate, an EPID can be applied to beam penumbra measurement, collimator transmission determination, or compensator verification. Beam parameters measured with EPIDs are in close agreement with those measured with film or ionization chamber, making EPIDs reliable physics tools for quality control of various beam parameters in radiotherapy. PMID:9243462

  11. Optimisation of the imaging and dosimetric characteristics of an electronic portal imaging device employing plastic scintillating fibres using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Blake, S. J.; McNamara, A. L.; Vial, P.; Holloway, L.; Kuncic, Z.

    2014-11-01

    A Monte Carlo model of a novel electronic portal imaging device (EPID) has been developed using Geant4 and its performance for imaging and dosimetry applications in radiotherapy has been characterised. The EPID geometry is based on a physical prototype under ongoing investigation and comprises an array of plastic scintillating fibres in place of the metal plate/phosphor screen in standard EPIDs. Geometrical and optical transport parameters were varied to investigate their impact on imaging and dosimetry performance. Detection efficiency was most sensitive to variations in fibre length, achieving a peak value of 36% at 50 mm using 400 keV x-rays for the lengths considered. Increases in efficiency for longer fibres were partially offset by reductions in sensitivity. Removing the extra-mural absorber surrounding individual fibres severely decreased the modulation transfer function (MTF), highlighting its importance in maximising spatial resolution. Field size response and relative dose profile simulations demonstrated a water-equivalent dose response and thus the prototype’s suitability for dosimetry applications. Element-to-element mismatch between scintillating fibres and underlying photodiode pixels resulted in a reduced MTF for high spatial frequencies and quasi-periodic variations in dose profile response. This effect is eliminated when fibres are precisely matched to underlying pixels. Simulations strongly suggest that with further optimisation, this prototype EPID may be capable of simultaneous imaging and dosimetry in radiotherapy.

  12. Phase contrast portal imaging for image-guided microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Umetani, Keiji; Kondoh, Takeshi

    2014-03-01

    High-dose synchrotron microbeam radiation therapy is a unique treatment technique used to destroy tumors without severely affecting circumjacent healthy tissue. We applied a phase contrast technique to portal imaging in preclinical microbeam radiation therapy experiments. Phase contrast portal imaging is expected to enable us to obtain higherresolution X-ray images at therapeutic X-ray energies compared to conventional portal imaging. Frontal view images of a mouse head sample were acquired in propagation-based phase contrast imaging. The phase contrast images depicted edge-enhanced fine structures of the parietal bones surrounding the cerebrum. The phase contrast technique is expected to be effective in bony-landmark-based verification for image-guided radiation therapy.

  13. Quality assurance of RapidArc in clinical practice using portal dosimetry

    PubMed Central

    Fogliata, A; Clivio, A; Fenoglietto, P; Hrbacek, J; Kloeck, S; Lattuada, P; Mancosu, P; Nicolini, G; Parietti, E; Urso, G; Vanetti, E; Cozzi, L

    2011-01-01

    Objective Quality assurance data from five centres were analysed to assess the reliability of RapidArc radiotherapy delivery in terms of machine and dosimetric performance. Methods A large group of patients was treated with RapidArc radiotherapy and treatment data recorded. Machine quality assurance was performed according to Ling et al (Int J Radiat Oncol Biol Phys 2008;72:575–81). In addition, treatment to a typical clinical case was delivered biweekly as a constancy check. Pre-treatment dosimetric validation of plan delivery was performed for each patient. All measurements and computations were performed at the depth of the maximum dose in water according to the GLAaS method using electronic portal imaging device measurements. Evaluation was carried out according to a gamma agreement index (GAI, the percentage of field area passing the test); the threshold dose difference was 3% and the threshold distance to agreement was 3 mm. Results A total of 275 patients (395 arcs) were included in the study. Mean delivery parameters were 31.0±20.0° (collimator angle), 4.7±0.5° s–1 (gantry speed), 343±134 MU min–1 (dose rate) and 1.6±1.4 min (beam-on time) for prescription doses ranging from 1.8 to 16.7 Gy/fraction. Mean deviations from the baseline dose rate and gantry speed ranged from −0.61% to 1.75%. Mean deviations from the baseline for leaf speed variation ranged from −0.73% to 0.41%. The mean GAI of repeated clinical fields was 99.2±0.2%. GAI varied from 84.7% to 100%; the mean across all patients was 97.1±2.4%. Conclusion RapidArc can provide a reliable and accurate delivery of radiotherapy for a variety of clinical conditions. PMID:21606069

  14. Datamining the NOAO NVO Portal: Automated Image Classification

    NASA Astrophysics Data System (ADS)

    Vaswani, Pooja; Miller, C. J.; Barg, I.; Smith, R. C.

    2006-12-01

    Image metadata describes the properties of an image and can be used for classification, e.g., galactic, extra-galactic, solar system, standard star, among others. We are developing a data mining application to automate such a classification process based on supervised learning using decision trees. We are applying this application to the NOAO NVO Portal (www.nvo.noao.edu). The core concepts of Quinlan's C4.5 decision tree induction algorithm are used to train, build a decision tree, and generate classification rules. These rules are then used to classify previously unseen image metadata. We utilize a collection of decision trees instead of a single classifier and average the classification probabilities. The concept of ``Bagging'' was used to create the collection of classifiers. The classification algorithm also facilitates the addition of weights to the probability estimate of the classes when prior knowledge of the class distribution is known.

  15. Dosimetric verification of IMAT delivery with a conventional EPID system and a commercial portal dose image prediction tool

    SciTech Connect

    Iori, Mauro; Cagni, Elisabetta; Paiusco, Marta; Munro, Peter; Nahum, Alan E.

    2010-01-15

    Purpose: The electronic portal imaging device (EPID) is a system for checking the patient setup; as a result of its integration with the linear accelerator and software customized for dosimetry, it is increasingly used for verification of the delivery of fixed-field intensity-modulated radiation therapy (IMRT). In order to extend such an approach to intensity-modulated arc therapy (IMAT), the combined use of an EPID system and a portal dose image prediction (PDIP) tool has been investigated. Methods: The dosimetric behavior of an EPID system, mechanically reinforced to maintain its positional stability during the accelerator gantry rotation, has been studied to assess its ability to measure portal dose distributions for IMAT treatment beams. In addition, the PDIP tool of a commercial treatment planning system, commonly used for static IMRT dosimetry, has been validated for simulating the PDIs of IMAT treatment fields. The method has been applied to the delivery verification of 23 treatment fields that were measured in their dual mode of IMRT and IMAT modalities. Results: The EPID system has proved to be appropriate for measuring the PDIs of IMAT fields; additionally the PDIP tool was able to simulate these accurately. The results are quite similar to those obtained for static IMRT treatment verification, although it was necessary to investigate the dependence of the EPID signal and of the accelerator monitor chamber response on variable dose rate. Conclusions: Our initial tests indicate that the EPID system, together with the PDIP tool, is a suitable device for the verification of IMAT plan delivery; however, additional tests are necessary to confirm these results.

  16. Alternative imaging modalities for polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Jirasek, Andrew

    2010-11-01

    This review summarizes recent work in the area of imaging polymer gel dosimeters using x-ray CT imaging, ultrasound, and radiation-induced changes in gel mechanical properties. In addition, recent work in the area of Raman tomographic imaging of canine bone, in conjunction with past efforts in Raman imaging of polymer gel dosimeters, raises new possibilities for new polymer gel imaging techniques.

  17. Anatomy of hepatic arteriolo-portal venular shunts evaluated by 3D micro-CT imaging

    PubMed Central

    Kline, Timothy L; Knudsen, Bruce E; Anderson, Jill L; Vercnocke, Andrew J; Jorgensen, Steven M; Ritman, Erik L

    2014-01-01

    The liver differs from other organs in that two vascular systems deliver its blood – the hepatic artery and the portal vein. However, how the two systems interact is not fully understood. We therefore studied the microvascular geometry of rat liver hepatic artery and portal vein injected with the contrast polymer Microfil®. Intact isolated rat livers were imaged by micro-CT and anatomic evidence for hepatic arteriolo-portal venular shunts occurring between hepatic artery and portal vein branches was found. Simulations were performed to rule out the possibility of the observed shunts being artifacts resulting from image blurring. In addition, in the case of specimens where only the portal vein was injected, only the portal vein was opacified, whereas in hepatic artery injections, both the hepatic artery and portal vein were opacified. We conclude that mixing of the hepatic artery and portal vein blood can occur proximal to the sinusoidal level, and that the hepatic arteriolo-portal venular shunts may function as a one-way valve-like mechanism, allowing flow only from the hepatic artery to the portal vein (and not the other way around). PMID:24684343

  18. Physical characteristics of a commercial electronic portal imaging device.

    PubMed

    Althof, V G; de Boer, J C; Huizenga, H; Stroom, J C; Visser, A G; Swanenburg, B N

    1996-11-01

    An electronic portal imaging device (EPID) for use in radiotherapy with high energy photons has been under development since 1985 and has been in clinical use since 1988. The x-ray detector consists of a metal plate/fluorescent screen combination, which is monitored by a charge-coupled device (CDD)-camera. This paper discusses the physical quantities governing image quality. A model which describes the signal and noise propagation through the detector is presented. The predicted contrasts and signal-to-noise ratios are found to be in agreement with measurements based on the EPID images. Based on this agreement the visibility of low contrast structures in clinical images has been calculated with the model. Sufficient visibility of relevant structures (4-10 mm water-equivalent thickness) has been obtained down to a delivered dose of 4 cGy at dose maximum. It is found that the described system is not limited by quantum noise but by camera read-out noise. In addition we predict that with a new type of CCD sensor the signal-to-noise ratio can be increased by a factor of 5 at small doses, enabling high quality imaging, for most relevant clinical situations, with a patient dose smaller than 4 cGy. The latter system would be quantum noise limited. PMID:8947896

  19. SU-F-BRE-13: Replacing Pre-Treatment Phantom QA with 3D In-Vivo Portal Dosimetry for IMRT Breast Cancer

    SciTech Connect

    Stroom, J; Vieira, S; Greco, C; Olaciregui-Ruiz, I; Rozendaal, R; Herk, M van; Moser, E

    2014-06-15

    Purpose: Pre-treatment QA of individual treatment plans requires costly linac time and physics effort. Starting with IMRT breast treatments, we aim to replace pre-treatment QA with in-vivo portal dosimetry. Methods: Our IMRT breast cancer plans are routinely measured using the ArcCheck device (SunNuclear). 2D-Gamma analysis is performed with 3%/3mm criteria and the percentage of points with gamma<1 (nG1) is calculated within the 50% isodose surface. Following AAPM recommendations, plans with nG1<90% are approved; others need further inspection and might be rejected. For this study, we used invivo portal dosimetry (IPD) to measure the 3D back-projected dose of the first three fractions for IMRT breast plans. Patient setup was online corrected before for all measured fractions. To reduce patient related uncertainties, the three IPD results were averaged and 3D-gamma analysis was applied with abovementioned criteria . For a subset of patients, phantom portal dosimetry (PPD) was also performed on a slab phantom. Results: Forty consecutive breast patients with plans that fitted the EPID were analysed. The average difference between planned and IPD dose in the reference point was −0.7+/−1.6% (1SD). Variation in nG1 between the 3 invivo fractions was about 6% (1SD). The average nG1 for IPD was 89+/−6%, worse than ArcCheck (95+/−3%). This can be explained by patient related factors such as changes in anatomy and/or model deficiencies due to e.g. inhomogeneities. For the 20 cases with PPD, mean nG1 was equal to ArcCheck values, which indicates that the two systems are equally accurate. These data therefore suggest that proper criteria for 3D invivo verification of breast treatments should be nG1>80% instead of nG1>90%, which, for our breast cases, would result in 5% (2/40) further inspections. Conclusion: First-fraction in-vivo portal dosimetry using new gamma-evaluation criteria will replace phantom measurements in our institution, saving resources and yielding 3D

  20. Optimal steel thickness combined with computed radiography for portal imaging of nasopharyngeal cancer patients

    SciTech Connect

    Wu Shixiu; Jin Xiance; Xie Congying; Cao Guoquan

    2005-10-15

    The poor image quality of conventional metal screen-film portal imaging system has long been of concern, and various methods have been investigated in an attempt to enhance the quality of portal images. Computed radiography (CR) used in combination with a steel plate displays image enhancement. The optimal thickness of the steel plate had been studied by measuring the modulation transfer function (MTF) characteristics. Portal images of nasopharyngeal carcinoma patients were taken by both a conventional metal screen-film system and this optimal steel and CR plate combination system. Compared with a conventional metal screen-film system, the CR-metal screen system achieves a much higher image contrast. The measured modulation transfer function (MTF) of the CR combination is greater than conventional film-screen portal imaging systems and also results in superior image performance, as demonstrated by receiver operator characteristic (ROC) analysis. This optimal combination steel CR plate portal imaging system is capable of producing high contrast portal images conveniently.

  1. Tracking moving objects with megavoltage portal imaging: A feasibility study

    SciTech Connect

    Meyer, Juergen; Richter, Anne; Baier, Kurt; Wilbert, Juergen; Guckenberger, Matthias; Flentje, Michael

    2006-05-15

    Four different algorithms were investigated with the aim to determine their suitability to track an object in conventional megavoltage portal images. The algorithms considered were the mean of the sum of squared differences (MSSD), mutual information (MI), the correlation ratio (CR), and the correlation coefficient (CC). Simulation studies were carried out with various image series containing a rigid object of interest that was moved along a predefined trajectory. For each of the series the signal-to-noise ratio (SNR) was varied to compare the performance of the algorithms under noisy conditions. For a poor SNR of -6 dB the mean tracking error was 2.4, 6.5, 39.0, and 17.2 pixels for MSSD, CC, CR and MI, respectively, with a standard deviation of 1.9, 12.9, 19.5, and 7.5 pixels, respectively. The size of a pixel was 0.5 mm. These results improved to 1.1, 1.3, 1.3, and 2.0 pixels, respectively, with a standard deviation of 0.6, 0.8, 0.8, and 2.1 pixels, respectively, when a mean filter was applied to the images prior to tracking. The implementation of MSSD into existing in-house software demonstrated that, depending on the search range, it was possible to process between 2 and 15 images/s, making this approach capable of real-time applications. In conclusion, the best geometric tracking accuracy overall was obtained with MSSD, followed by CC, CR, and MI. The simplest and best algorithm, both in terms of geometric accuracy as well as computational cost, was the MSSD algorithm and was therefore the method of choice.

  2. SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images

    SciTech Connect

    Qiu, J; Yang, D

    2015-06-15

    Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets, and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from

  3. Analytical scatter kernels for portal imaging at 6 MV.

    PubMed

    Spies, L; Bortfeld, T

    2001-04-01

    X-ray photon scatter kernels for 6 MV electronic portal imaging are investigated using an analytical and a semi-analytical model. The models are tested on homogeneous phantoms for a range of uniform circular fields and scatterer-to-detector air gaps relevant for clinical use. It is found that a fully analytical model based on an exact treatment of photons undergoing a single Compton scatter event and an approximate treatment of second and higher order scatter events, assuming a multiple-scatter source at the center of the scatter volume, is accurate within 1% (i.e., the residual scatter signal is less than 1% of the primary signal) for field sizes up to 100 cm2 and air gaps over 30 cm, but shows significant discrepancies for larger field sizes. Monte Carlo results are presented showing that the effective multiple-scatter source is located toward the exit surface of the scatterer, rather than at its center. A second model is therefore investigated where second and higher-order scattering is instead modeled by fitting an analytical function describing a nonstationary isotropic point-scatter source to Monte Carlo generated data. This second model is shown to be accurate to within 1% for air gaps down to 20 cm, for field sizes up to 900 cm2 and phantom thicknesses up to 50 cm. PMID:11339752

  4. Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy.

    PubMed

    Ljungberg, Michael; Gleisner, Katarina Sjögreen

    2015-01-01

    Radionuclide therapy aims to treat malignant diseases by systemic administration of radiopharmaceuticals, often using carrier molecules such as peptides and antibodies. The radionuclides used emit electrons or alpha particles as a consequence of radioactive decay, thus leading to local energy deposition. Administration to individual patients can be tailored with regards to the risk of toxicity in normal organs by using absorbed dose planning. The scintillation camera, employed in planar imaging or single-photon emission computed tomography (SPECT), generates images of the spatially and temporally varying activity distribution. Recent commercially available combined SPECT and computed tomography (CT) systems have dramatically increased the possibility of performing accurate dose planning by using the CT information in several steps of the dose-planning calculation chain. This paper discusses the dosimetry chain used for individual absorbed-dose planning and highlights the areas where hybrid imaging makes significant contributions. PMID:26854156

  5. Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy

    PubMed Central

    Ljungberg, Michael; Sjögreen Gleisner, Katarina

    2015-01-01

    Radionuclide therapy aims to treat malignant diseases by systemic administration of radiopharmaceuticals, often using carrier molecules such as peptides and antibodies. The radionuclides used emit electrons or alpha particles as a consequence of radioactive decay, thus leading to local energy deposition. Administration to individual patients can be tailored with regards to the risk of toxicity in normal organs by using absorbed dose planning. The scintillation camera, employed in planar imaging or single-photon emission computed tomography (SPECT), generates images of the spatially and temporally varying activity distribution. Recent commercially available combined SPECT and computed tomography (CT) systems have dramatically increased the possibility of performing accurate dose planning by using the CT information in several steps of the dose-planning calculation chain. This paper discusses the dosimetry chain used for individual absorbed-dose planning and highlights the areas where hybrid imaging makes significant contributions. PMID:26854156

  6. Comparison of the performance between portal dosimetry and a commercial two-dimensional array system on pretreatment quality assurance for volumetric-modulated arc and intensity-modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Kim, Yon-Lae; Chung, Jin-Beom; Kim, Jae-Sung; Lee, Jeong-Woo; Choi, Kyoung-Sik

    2014-04-01

    The aim of this study was to compare the dosimetric performance and to evaluate the pretreatment quality assurance (QA) of a portal dosimetry and a commercial two-dimensional (2-D) array system. In the characteristics comparison study, the measured values for the dose linearity, dose rate response, reproducibility, and field size dependence for 6-MV photon beams were analyzed for both detector systems. To perform the qualitative evaluations of the 10 IMRT and the 10 VMAT plans, we used the Gamma index for quantifying the agreement between calculations and measurements. The performance estimates for both systems show that overall, minimal differences in the dosimetric characteristics exist between the Electron portal imaging device (EPID) and 2-D array system. In the qualitative analysis for pretreatment quality assurance, the EPID and 2-D array system yield similar passing rate results for the majority of clinical Intensity-modulated radiation therapy (IMRT) and Volumetric-modulated arc therapy (VMAT) cases. These results were satisfactory for IMRT and VMAT fields and were within the acceptable criteria of γ%≤1, γ avg <0.5. The EPDI and the 2-D array systems showed comparable dosimetric results. In this study, the results revealed both systems to be suitable for patient-specific QA measurements for IMRT and VMAT. We conclude that, depending on the status of clinic, both systems can be used interchangeably for routine pretreatment QA.

  7. Evaluation of an aSi-EPID with flattening filter free beams: Applicability to the GLAaS algorithm for portal dosimetry and first experience for pretreatment QA of RapidArc

    SciTech Connect

    Nicolini, G.; Clivio, A.; Vanetti, E.; Cozzi, L.; Fogliata, A.; Krauss, H.; Fenoglietto, P.

    2013-11-15

    Purpose: To demonstrate the feasibility of portal dosimetry with an amorphous silicon mega voltage imager for flattening filter free (FFF) photon beams by means of the GLAaS methodology and to validate it for pretreatment quality assurance of volumetric modulated arc therapy (RapidArc).Methods: The GLAaS algorithm, developed for flattened beams, was applied to FFF beams of nominal energy of 6 and 10 MV generated by a Varian TrueBeam (TB). The amorphous silicon electronic portal imager [named mega voltage imager (MVI) on TB] was used to generate integrated images that were converted into matrices of absorbed dose to water. To enable GLAaS use under the increased dose-per-pulse and dose-rate conditions of the FFF beams, new operational source-detector-distance (SDD) was identified to solve detector saturation issues. Empirical corrections were defined to account for the shape of the profiles of the FFF beams to expand the original methodology of beam profile and arm backscattering correction. GLAaS for FFF beams was validated on pretreatment verification of RapidArc plans for three different TB linacs. In addition, the first pretreatment results from clinical experience on 74 arcs were reported in terms of γ analysis.Results: MVI saturates at 100 cm SDD for FFF beams but this can be avoided if images are acquired at 150 cm for all nominal dose rates of FFF beams. Rotational stability of the gantry-imager system was tested and resulted in a minimal apparent imager displacement during rotation of 0.2 ± 0.2 mm at SDD = 150 cm. The accuracy of this approach was tested with three different Varian TrueBeam linacs from different institutes. Data were stratified per energy and machine and showed no dependence with beam quality and MLC model. The results from clinical pretreatment quality assurance, provided a gamma agreement index (GAI) in the field area for six and ten FFF beams of (99.8 ± 0.3)% and (99.5 ± 0.6)% with distance to agreement and dose difference criteria

  8. Performance of electronic portal imaging devices (EPIDs) used in radiotherapy: image quality and dose measurements.

    PubMed

    Cremers, F; Frenzel, Th; Kausch, C; Albers, D; Schönborn, T; Schmidt, R

    2004-05-01

    The aim of our study was to compare the image and dosimetric quality of two different imaging systems. The first one is a fluoroscopic electronic portal imaging device (first generation), while the second is based on an amorphous silicon flat-panel array (second generation). The parameters describing image quality include spatial resolution [modulation transfer function (MTF)], noise [noise power spectrum (NPS)], and signal-to-noise transfer [detective quantum efficiency (DQE)]. The dosimetric measurements were compared with ionization chamber as well as with film measurements. The response of the flat-panel imager and the fluoroscopic-optical device was determined performing a two-step Monte Carlo simulation. All measurements were performed in a 6 MV linear accelerator photon beam. The resolution (MTF) of the fluoroscopic device (f 1/2 = 0.3 mm(-1)) is larger than of the amorphous silicon based system (f 1/2 = 0.21 mm(-1)), which is due to the missing backscattered photons and the smaller pixel size. The noise measurements (NPS) show the correlation of neighboring pixels of the amorphous silicon electronic portal imaging device, whereas the NPS of the fluoroscopic system is frequency independent. At zero spatial frequency the DQE of the flat-panel imager has a value of 0.008 (0.8%). Due to the minor frequency dependency this device may be almost x-ray quantum limited. Monte Carlo simulations verified these characteristics. For the fluoroscopic imaging system the DQE at low frequencies is about 0.0008 (0.08%) and degrades with higher frequencies. Dose measurements with the flat-panel imager revealed that images can only be directly converted to portal dose images, if scatter can be neglected. Thus objects distant to the detector (e.g., inhomogeneous dose distribution generated by a modificator) can be verified dosimetrically, while objects close to a detector (e.g., a patient) cannot be verified directly and must be scatter corrected prior to verification. This is

  9. Image guided IMRT dosimetry using anatomy specific MOSFET configurations.

    PubMed

    Amin, Md Nurul; Norrlinger, Bern; Heaton, Robert; Islam, Mohammad

    2008-01-01

    We have investigated the feasibility of using a set of multiple MOSFETs in conjunction with the mobile MOSFET wireless dosimetry system, to perform a comprehensive and efficient quality assurance (QA) of IMRT plans. Anatomy specific MOSFET configurations incorporating 5 MOSFETs have been developed for a specially designed IMRT dosimetry phantom. Kilovoltage cone beam computed tomography (kV CBCT) imaging was used to increase the positional precision and accuracy of the detectors and phantom, and so minimize dosimetric uncertainties in high dose gradient regions. The effectiveness of the MOSFET based dose measurements was evaluated by comparing the corresponding doses measured by an ion chamber. For 20 head and neck IMRT plans the agreement between the MOSFET and ionization chamber dose measurements was found to be within -0.26 +/- 0.88% and 0.06 +/- 1.94% (1 sigma) for measurement points in the high dose and low dose respectively. A precision of 1 mm in detector positioning was achieved by using the X-Ray Volume Imaging (XVI) kV CBCT system available with the Elekta Synergy Linear Accelerator. Using the anatomy specific MOSFET configurations, simultaneous measurements were made at five strategically located points covering high dose and low dose regions. The agreement between measurements and calculated doses by the treatment planning system for head and neck and prostate IMRT plans was found to be within 0.47 +/- 2.45%. The results indicate that a cylindrical phantom incorporating multiple MOSFET detectors arranged in an anatomy specific configuration, in conjunction with image guidance, can be utilized to perform a comprehensive and efficient quality assurance of IMRT plans. PMID:18716593

  10. EPID dosimetry for pretreatment quality assurance with two commercial systems.

    PubMed

    Bailey, Daniel W; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Malhotra, Harish K; Podgorsak, Matthew B

    2012-01-01

    This study compares the EPID dosimetry algorithms of two commercial systems for pretreatment QA, and analyzes dosimetric measurements made with each system alongside the results obtained with a standard diode array. 126 IMRT fields are examined with both EPID dosimetry systems (EPIDose by Sun Nuclear Corporation, Melbourne FL, and Portal Dosimetry by Varian Medical Systems, Palo Alto CA) and the diode array, MapCHECK (also by Sun Nuclear Corporation). Twenty-six VMAT arcs of varying modulation complexity are examined with the EPIDose and MapCHECK systems. Optimization and commissioning testing of the EPIDose physics model is detailed. Each EPID IMRT QA system is tested for sensitivity to critical TPS beam model errors. Absolute dose gamma evaluation (3%, 3 mm, 10% threshold, global normalization to the maximum measured dose) yields similar results (within 1%-2%) for all three dosimetry modalities, except in the case of off-axis breast tangents. For these off-axis fields, the Portal Dosimetry system does not adequately model EPID response, though a previously-published correction algorithm improves performance. Both MapCHECK and EPIDose are found to yield good results for VMAT QA, though limitations are discussed. Both the Portal Dosimetry and EPIDose algorithms, though distinctly different, yield similar results for the majority of clinical IMRT cases, in close agreement with a standard diode array. Portal dose image prediction may overlook errors in beam modeling beyond the calculation of the actual fluence, while MapCHECK and EPIDose include verification of the dose calculation algorithm, albeit in simplified phantom conditions (and with limited data density in the case of the MapCHECK detector). Unlike the commercial Portal Dosimetry package, the EPIDose algorithm (when sufficiently optimized) allows accurate analysis of EPID response for off-axis, asymmetric fields, and for orthogonal VMAT QA. Other forms of QA are necessary to supplement the limitations of the

  11. A region-based Retinex with data filling for the enhancement of electronic portal images

    NASA Astrophysics Data System (ADS)

    Chen, Yuan-Po; Yeh, Shyh-An; Huang, Yung-Hui; Chang, Li-Yun; Kuo, Chung-Ming; Ding, Hueisch-Jy

    2013-05-01

    PurposePortal images are acquired by electronic portal imaging devices (EPID) with megavoltage (MV) x-ray, but they are inherently poor in terms of contrast, due to Compton Effect. In comparison with diagnostic x-ray images, portal images usually lack sufficient detail information for normal human vision. Therefore, an effective method of enhancing these images would be very useful. This paper proposes a new approach that combines global and local enhancement techniques. Materials and methodsA portal image usually has a high dynamic range (HDR) of up to 16 bits, so it could records details that are imperceptible to the naked eye. However, this property provides the potential for enhancement of the portal image. In order to overcome the low contrast appearance caused by innate physical properties, two phases and four sequential steps were proposed. At phase 1, global enhancement, HE is used to stretch narrow range histogram of original raw image to reasonable wide range so that we can easily partition the image into regions for local enhancement. At phase 2, local enhancement, EPIs were first segmented into regions based on histogram distribution. Then a new concept of local enhancement, pseudo-data filling, in which enhancement is controlled by manipulating the pseudo-data, is proposed in order to maximize the regional enhancement. Finally each region of EPI is enhanced by Retinex with optimized parameter and synthesized as output image. ResultsAt phase 1, HE can successfully improve EPIs contrast at varies body sites by redistribution histogram. This step provides possibility of histogram analyzing at phase 2. Therefore, histogram-based segmentation is feasible for nearly every patient as we expected. Simulation of pseudo-data filling and region-based Retinex enhancement demonstrate that the proposed method provides a more detailed portal image, which is proved by objective evaluation of two groups of radiation oncology staffs. ConclusionsAn effective enhancement

  12. Quantitative 3D Optical Imaging: Applications in Dosimetry and Biophysics

    NASA Astrophysics Data System (ADS)

    Thomas, Andrew Stephen

    Optical-CT has been shown to be a potentially useful imaging tool for the two very different spheres of biologists and radiation therapy physicists, but it has yet to live up to that potential. In radiation therapy, researchers have used optical-CT for the readout of 3D dosimeters, but it is yet to be a clinically relevant tool as the technology is too slow to be considered practical. Biologists have used the technique for structural imaging, but have struggled with emission tomography as the reality of photon attenuation for both excitation and emission have made the images quantitatively irrelevant. Dosimetry. The DLOS (Duke Large field of view Optical-CT Scanner) was designed and constructed to make 3D dosimetry utilizing optical-CT a fast and practical tool while maintaining the accuracy of readout of the previous, slower readout technologies. Upon construction/optimization/implementation of several components including a diffuser, band pass filter, registration mount & fluid filtration system the dosimetry system provides high quality data comparable to or exceeding that of commercial products. In addition, a stray light correction algorithm was tested and implemented. The DLOS in combination with the 3D dosimeter it was designed for, PREAGETM, then underwent rigorous commissioning and benchmarking tests validating its performance against gold standard data including a set of 6 irradiations. DLOS commissioning tests resulted in sub-mm isotropic spatial resolution (MTF >0.5 for frequencies of 1.5lp/mm) and a dynamic range of ˜60dB. Flood field uniformity was 10% and stable after 45minutes. Stray light proved to be small, due to telecentricity, but even the residual can be removed through deconvolution. Benchmarking tests showed the mean 3D passing gamma rate (3%, 3mm, 5% dose threshold) over the 6 benchmark data sets was 97.3% +/- 0.6% (range 96%-98%) scans totaling ˜10 minutes, indicating excellent ability to perform 3D dosimetry while improving the speed of

  13. The Feasibility of Thermal Imaging as a Future Portal Imaging Device for Therapeutic Ultrasound.

    PubMed

    Miloro, Piero; Civale, John; Rivens, Ian; Shaw, Adam

    2016-08-01

    This technical note describes a prototype thermally based portal imaging device that allows mapping of energy deposition on the surface of a tissue mimicking material in a focused ultrasound surgery (FUS) beam by using an infrared camera to measure the temperature change on that surface. The aim of the work is to explore the feasibility of designing and building a system suitable for rapid quality assurance (QA) for use with both ultrasound- and magnetic resonance (MR) imaging-guided clinical therapy ultrasound systems. The prototype was tested using an MR-guided Sonalleve FUS system (with the treatment couch outside the magnet bore). The system's effective thermal noise was 0.02°C, and temperature changes as low as 0.1°C were easily quantifiable. The advantages and drawbacks of thermal imaging for QA are presented through analysis of the results of an experimental session. PMID:27174419

  14. Imaging and radiological interventions in extra-hepatic portal vein obstruction

    PubMed Central

    Pargewar, Sudheer S; Desai, Saloni N; Rajesh, S; Singh, Vaibhav P; Arora, Ankur; Mukund, Amar

    2016-01-01

    Extrahepatic portal vein obstruction (EHPVO) is a primary vascular condition characterized by chronic long standing blockage and cavernous transformation of portal vein with or without additional involvement of intrahepatic branches, splenic or superior mesenteric vein. Patients generally present in childhood with multiple episodes of variceal bleed and EHPVO is the predominant cause of paediatric portal hypertension (PHT) in developing countries. It is a pre-hepatic type of PHT in which liver functions and morphology are preserved till late. Characteristic imaging findings include multiple parabiliary venous collaterals which form to bypass the obstructed portal vein with resultant changes in biliary tree termed portal biliopathy or portal cavernoma cholangiopathy. Ultrasound with Doppler, computed tomography, magnetic resonance cholangiography and magnetic resonance portovenography are non-invasive techniques which can provide a comprehensive analysis of degree and extent of EHPVO, collaterals and bile duct abnormalities. These can also be used to assess in surgical planning as well screening for shunt patency in post-operative patients. The multitude of changes and complications seen in EHPVO can be addressed by various radiological interventional procedures. The myriad of symptoms arising secondary to vascular, biliary, visceral and neurocognitive changes in EHPVO can be managed by various radiological interventions like transjugular intra-hepatic portosystemic shunt, percutaneous transhepatic biliary drainage, partial splenic embolization, balloon occluded retrograde obliteration of portosystemic shunt (PSS) and revision of PSS. PMID:27358683

  15. TL dosimetry for quality control of CR mammography imaging systems

    NASA Astrophysics Data System (ADS)

    Gaona, E.; Nieto, J. A.; Góngora, J. A. I. D.; Arreola, M.; Enríquez, J. G. F.

    The aim of this work is to estimate the average glandular dose with thermoluminescent (TL) dosimetry and comparison with quality imaging in computed radiography (CR) mammography. For a measuring dose, the Food and Drug Administration (FDA) and the American College of Radiology (ACR) use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, full field digital mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium flourohalideE We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated X-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose greater than 3.0 mGy without demonstrating improved image quality. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement for X-rays with a HVL (0.35-0.38 mmAl) and kVp (24-26) used in quality control procedures with ACR Mammography Accreditation Phantom.

  16. Dose reconstruction for intensity-modulated radiation therapy using a non-iterative method and portal dose image

    NASA Astrophysics Data System (ADS)

    Yeo, Inhwan Jason; Jung, Jae Won; Chew, Meng; Kim, Jong Oh; Wang, Brian; Di Biase, Steven; Zhu, Yunping; Lee, Dohyung

    2009-09-01

    A straightforward and accurate method was developed to verify the delivery of intensity-modulated radiation therapy (IMRT) and to reconstruct the dose in a patient. The method is based on a computational algorithm that linearly describes the physical relationship between beamlets and dose-scoring voxels in a patient and the dose image from an electronic portal imaging device (EPID). The relationship is expressed in the form of dose response functions (responses) that are quantified using Monte Carlo (MC) particle transport techniques. From the dose information measured by the EPID the received patient dose is reconstructed by inversely solving the algorithm. The unique and novel non-iterative feature of this algorithm sets it apart from many existing dose reconstruction methods in the literature. This study presents the algorithm in detail and validates it experimentally for open and IMRT fields. Responses were first calculated for each beamlet of the selected fields by MC simulation. In-phantom and exit film dosimetry were performed on a flat phantom. Using the calculated responses and the algorithm, the exit film dose was used to inversely reconstruct the in-phantom dose, which was then compared with the measured in-phantom dose. The dose comparison in the phantom for all irradiated fields showed a pass rate of higher than 90% dose points given the criteria of dose difference of 3% and distance to agreement of 3 mm.

  17. Integrated megavoltage portal imaging with a 1.5 T MRI linac

    NASA Astrophysics Data System (ADS)

    Raaymakers, B. W.; de Boer, J. C. J.; Knox, C.; Crijns, S. P. M.; Smit, K.; Stam, M. K.; van den Bosch, M. R.; Kok, J. G. M.; Lagendijk, J. J. W.

    2011-10-01

    In this note, the feasibility of complementing our hybrid 1.5 T MRI linac (MRL) with a megavoltage (MV) portal imager is investigated. A standard aSi MV detector panel is added to the system and both qualitative and quantitative performances are determined. Simultaneous MR imaging and transmission imaging can be performed without mutual interference. The MV image quality is compromised by beam transmission and longer isocentre distance; still, the field edges and bony anatomy can be detected at very low dose levels of 0.4 cGy. MV imaging integrated with the MRL provides an independent and well-established position verification tool, a field edge check and a calibration for alignment of the coordinate systems of the MRI and the accelerator. The portal imager can also be a valuable means for benchmarking MRI-guided position verification protocols on a patient-specific basis in the introductory phase.

  18. SILICON PHOTOMULTIPLIERS FOR MEDICAL IMAGING AND DOSIMETRY-AN OVERVIEW.

    PubMed

    Herrnsdorf, L; Caccia, M; Mattsson, S

    2016-06-01

    Silicon photomultipliers (SiPMs) are an enabling solid-state technology for low light sensing, with single photon sensitivity and photon number resolving capability. They feature an extremely high internal gain at the 10(6) level, comparable to photomultiplier tubes (PMTs), with the advantage of low operating voltage (~50 V compared to ~1000 V for PMT) and low energy consumption. The solid-state technology makes SiPMs compact, insensitive to magnetic fields and with an extreme flexibility in the design to cope with different applications. The fast development of the multiplication avalanche opens up the possibility to achieve time resolution at the 30 ps level. Dynamic range is however limited compared to PMT and the dark count rate relatively high, yet today at the level of 50 kHz/mm(2) at room temperature. Interfaced with scintillation material, SiPMs provide a powerful platform for medical imaging applications (in positron emission tomography/computed tomography and in positron emission tomography/magnetic resonance), for X-ray quality control as well as for novel compact radiation protection instruments. This article gives an overview of SiPMs for medical imaging and dosimetry. In addition, a learning and training program targeted to graduate students is described. PMID:27103639

  19. Real-time Cherenkov emission portal imaging during CyberKnife® radiotherapy.

    PubMed

    Roussakis, Yiannis; Zhang, Rongxiao; Heyes, Geoff; Webster, Gareth; Mason, Suzannah; Green, Stuart; Pogue, Brian; Dehghani, Hamid

    2015-11-21

    The feasibility of real-time portal imaging during radiation therapy, through the Cherenkov emission (CE) effect is investigated via a medical linear accelerator (CyberKnife(®)) irradiating a partially-filled water tank with a 60 mm circular beam. A graticule of lead/plywood and a number of tissue equivalent materials were alternatively placed at the beam entrance face while the induced CE at the exit face was imaged using a gated electron-multiplying-intensified-charged-coupled device (emICCD) for both stationary and dynamic scenarios. This was replicated on an Elekta Synergy(®) linear accelerator with portal images acquired using the iViewGT(™) system. Profiles across the acquired portal images were analysed to reveal the potential resolution and contrast limits of this novel CE based portal imaging technique and compared against the current standard. The CE resolution study revealed that using the lead/plywood graticule, separations down to 3.4  ±  0.5 mm can be resolved. A 28 mm thick tissue-equivalent rod with electron density of 1.69 relative to water demonstrated a CE contrast of 15% through air and 14% through water sections, as compared to a corresponding contrast of 19% and 12% using the iViewGT(™) system. For dynamic scenarios, video rate imaging with 30 frames per second was achieved. It is demonstrated that CE-based portal imaging is feasible to identify both stationary and dynamic objects within a CyberKnife(®) radiotherapy treatment field. PMID:26513015

  20. Real-time Cherenkov emission portal imaging during CyberKnife® radiotherapy

    NASA Astrophysics Data System (ADS)

    Roussakis, Yiannis; Zhang, Rongxiao; Heyes, Geoff; Webster, Gareth; Mason, Suzannah; Green, Stuart; Pogue, Brian; Dehghani, Hamid

    2015-11-01

    The feasibility of real-time portal imaging during radiation therapy, through the Cherenkov emission (CE) effect is investigated via a medical linear accelerator (CyberKnife®) irradiating a partially-filled water tank with a 60 mm circular beam. A graticule of lead/plywood and a number of tissue equivalent materials were alternatively placed at the beam entrance face while the induced CE at the exit face was imaged using a gated electron-multiplying-intensified-charged-coupled device (emICCD) for both stationary and dynamic scenarios. This was replicated on an Elekta Synergy® linear accelerator with portal images acquired using the iViewGT™ system. Profiles across the acquired portal images were analysed to reveal the potential resolution and contrast limits of this novel CE based portal imaging technique and compared against the current standard. The CE resolution study revealed that using the lead/plywood graticule, separations down to 3.4  ±  0.5 mm can be resolved. A 28 mm thick tissue-equivalent rod with electron density of 1.69 relative to water demonstrated a CE contrast of 15% through air and 14% through water sections, as compared to a corresponding contrast of 19% and 12% using the iViewGT™ system. For dynamic scenarios, video rate imaging with 30 frames per second was achieved. It is demonstrated that CE-based portal imaging is feasible to identify both stationary and dynamic objects within a CyberKnife® radiotherapy treatment field.

  1. Assessment of the influence of a carbon fiber tabletop on portal imaging

    NASA Astrophysics Data System (ADS)

    Misiarz, Agnieszka; Krawczyk, Paweł; Swat, Kaja; Andrasiak, Michał

    2013-06-01

    The purpose of this paper was to investigate beam attenuation caused by a carbon-fiber tabletop and its influence on portal image quality. The dose was measured by a Farmer type jonization chamber. The measurements of the portal image quality were performed with an EPID QC phantom for 6 MV beam for a specified field size (covering all test elements of the phantom completely -26×26 cm2 in the isocenter, SSD 96.2 cm) and various portal—isocenter distances. The beam attenuation factor was measured for Polkam 16 treatment table with a carbon fiber tabletop. Carbon fiber tabletop induces beam attenuation in vertical direction by a factor of 3.39%. The lowest maximum deviation to the regression line for linearity was measured for 40 cm portal—phantom distance. The lowest signal to noise ratio was observed for the portal—phantom distance of 30 cm. This factor dropped by 9% for images with a tabletop. The difference in high contrast: horizontal is 3.64; 0.32; 3.25 for 50 cm, 40 cm and 30 cm respectively and vertical—3.64%; 0.32%; 4.01% for 50 cm, 40 cm and 30 cm respectively. The visibility of the holes with the smallest diameters (1 mm) is the same for 50 and 40 cm while it is better for 30 cm, as can be expected due to the lower SNR. Carbon-fiber inserts, tabletops play a vital role in modern radiotherapy. One of the most important advantages of carbon-fiber tabletops is the lack of the gantry direction limitations. In this paper the attenuation of a carbon-fiber tabletop and its influence on a portal image quality were investigated. Dose attenuation effects, comparable to other measurements, were found. That effect influences dose distribution delivered to the target volume and can increase the time of irradiation needed to take a portal image. It has been found that the best conditions for taking portal image occur when the distance from the phantom (patient) to the portal is 40 cm and the portal is parallel to the tabletop. In such conditions one observes the

  2. The landsat image mosaic of the Antarctica Web Portal

    USGS Publications Warehouse

    Rusanowski, C.J.

    2007-01-01

    People believe what they can see. The Poles exist as a frozen dream to most people. The International Polar Year wants to break the ice (so to speak), open up the Poles to the general public, support current polar research, and encourage new research projects. The IPY officially begins in March, 2007. As part of this effort, the U.S. Geological Survey (USGS) and the British Antarctic Survey (BAS), with funding from the National Science Foundation (NSF), are developing three Landsat mosaics of Antarctica and an Antarctic Web Portal with a Community site and an online map viewer. When scientists are able to view the entire scope of polar research, they will be better able to collaborate and locate the resources they need. When the general public more readily sees what is happening in the polar environments, they will understand how changes to the polar areas affect everyone.

  3. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    SciTech Connect

    Cao Yue; Wang Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose: To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials: Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results: There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions: This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  4. Prediction of Liver Function by Using Magnetic Resonance-based Portal Venous Perfusion Imaging

    PubMed Central

    Cao, Yue; Wang, Hesheng; Johnson, Timothy D.; Pan, Charlie; Hussain, Hero; Balter, James M.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.; Feng, Mary

    2013-01-01

    Purpose To evaluate whether liver function can be assessed globally and spatially by using volumetric dynamic contrast-enhanced magnetic resonance imaging MRI (DCE-MRI) to potentially aid in adaptive treatment planning. Methods and Materials Seventeen patients with intrahepatic cancer undergoing focal radiation therapy (RT) were enrolled in institution review board-approved prospective studies to obtain DCE-MRI (to measure regional perfusion) and indocyanine green (ICG) clearance rates (to measure overall liver function) prior to, during, and at 1 and 2 months after treatment. The volumetric distribution of portal venous perfusion in the whole liver was estimated for each scan. We assessed the correlation between mean portal venous perfusion in the nontumor volume of the liver and overall liver function measured by ICG before, during, and after RT. The dose response for regional portal venous perfusion to RT was determined using a linear mixed effects model. Results There was a significant correlation between the ICG clearance rate and mean portal venous perfusion in the functioning liver parenchyma, suggesting that portal venous perfusion could be used as a surrogate for function. Reduction in regional venous perfusion 1 month after RT was predicted by the locally accumulated biologically corrected dose at the end of RT (P<.0007). Regional portal venous perfusion measured during RT was a significant predictor for regional venous perfusion assessed 1 month after RT (P<.00001). Global hypovenous perfusion pre-RT was observed in 4 patients (3 patients with hepatocellular carcinoma and cirrhosis), 3 of whom had recovered from hypoperfusion, except in the highest dose regions, post-RT. In addition, 3 patients who had normal perfusion pre-RT had marked hypervenous perfusion or reperfusion in low-dose regions post-RT. Conclusions This study suggests that MR-based volumetric hepatic perfusion imaging may be a biomarker for spatial distribution of liver function, which

  5. Three-dimensional portal image-based dose reconstruction in a virtual phantom for rapid evaluation of IMRT plans.

    PubMed

    Ansbacher, W

    2006-09-01

    A new method for rapid evaluation of intensity modulated radiation therapy (IMRT) plans has been developed, using portal images for reconstruction of the dose delivered to a virtual three-dimensional (3D) phantom. This technique can replace an array of less complete but more time-consuming measurements. A reference dose calculation is first created by transferring an IMRT plan to a cylindrical phantom, retaining the treatment gantry angles. The isocenter of the fields is placed on or near the phantom axis. This geometry preserves the relative locations of high and low dose regions and has the required symmetry for the dose reconstruction. An electronic portal image (EPI) is acquired for each field, representing the dose in the midplane of a virtual phantom. The image is convolved with a kernel to correct for the lack of scatter, replicating the effect of the cylindrical phantom surrounding the dose plane. This avoids the need to calculate fluence. Images are calibrated to a reference field that delivers a known dose to the isocenter of this phantom. The 3D dose matrix is reconstructed by attenuation and divergence corrections and summed to create a dose matrix (PI-dose) on the same grid spacing as the reference calculation. Comparison of the two distributions is performed with a gradient-weighted 3D dose difference based on dose and position tolerances. Because of its inherent simplicity, the technique is optimally suited for detecting clinically significant variances from a planned dose distribution, rather than for use in the validation of IMRT algorithms. An analysis of differences between PI-dose and calculation, delta PI, compared to differences between conventional quality assurance (QA) and calculation, delta CQ, was performed retrospectively for 20 clinical IMRT cases. PI-dose differences at the isocenter were in good agreement with ionization chamber differences (mean delta PI = -0.8%, standard deviation sigma = 1.5%, against delta CQ = 0.3%, sigma = 1

  6. CT reconstruction from portal images acquired during volumetric-modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Poludniowski, G.; Thomas, M. D. R.; Evans, P. M.; Webb, S.

    2010-10-01

    Volumetric-modulated arc therapy (VMAT), a form of intensity-modulated arc therapy (IMAT), has become a topic of research and clinical activity in recent years. As a form of arc therapy, portal images acquired during the treatment fraction form a (partial) Radon transform of the patient. We show that these portal images, when used in a modified global cone-beam filtered backprojection (FBP) algorithm, allow a surprisingly recognizable CT-volume to be reconstructed. The possibility of distinguishing anatomy in such VMAT-CT reconstructions suggests that this could prove to be a valuable treatment position-verification tool. Further, some potential for local-tomography techniques to improve image quality is shown.

  7. Verification of segmented beam delivery using a commercial electronic portal imaging device.

    PubMed

    Curtin-Savard, A J; Podgorsak, E B

    1999-05-01

    In modern radiotherapy, three-dimensional conformal dose distributions are achieved through the delivery of beam ports having precalculated planar distributions of photon beam intensity. Although sophisticated means to calculate and deliver these spatially modulated beams have been developed, means to verify their actual delivery are relatively cumbersome, making equipment and treatment quality assurance difficult to enforce. An electronic portal imaging device of the scanning liquid ionization chamber type yields images which, once calibrated from a previously determined calibration curve, provide highly precise planar maps of the incident dose rate. For verification of an intensity-modulated beam delivered in the segmented approach with a multileaf collimator, a portal image is acquired for each subfield of the leaf sequence. Subsequent to their calibration, the images are multiplied by their respective associated monitor unit settings, and summed to produce a planar dose distribution at the measurement depth in phantom. The excellent agreement of our portal imager measurements with calculations of our treatment planning system and measurements with a one-dimensional beam profiler attests to the usefulness of this method for the planar verification of intensity-modulated fields produced in the segmented approach on a computerized linear accelerator equipped with a multileaf collimator. PMID:10360535

  8. Motion estimation accuracy for visible-light/gamma-ray imaging fusion for portable portal monitoring

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Gee, Timothy F.

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Portable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest. We have constructed a prototype, rapid-deployment portal gamma-ray imaging portal monitor that uses machine vision and gamma-ray imaging to monitor multiple lanes of traffic. Vehicles are detected and tracked by using point detection and optical flow methods as implemented in the OpenCV software library. Points are clustered together but imperfections in the detected points and tracks cause errors in the accuracy of the vehicle position estimates. The resulting errors cause a "blurring" effect in the gamma image of the vehicle. To minimize these errors, we have compared a variety of motion estimation techniques including an estimate using the median of the clustered points, a "best-track" filtering algorithm, and a constant velocity motion estimation model. The accuracy of these methods are contrasted and compared to a manually verified ground-truth measurement by quantifying the rootmean- square differences in the times the vehicles cross the gamma-ray image pixel boundaries compared with a groundtruth manual measurement.

  9. LIVER FUNCTION AFTER IRRADIATION BASED UPON CT PORTAL VEIN PERFUSION IMAGING

    PubMed Central

    Cao, Yue; Pan, Charlie; Balter, James M.; Platt, Joel F.; Francis, Isaac R.; Knol, James A.; Normolle, Daniel; Ben-Josef, Edgar; Ten Haken, Randall K.; Lawrence, Theodore S.

    2009-01-01

    Purpose The role of radiation in the treatment of intrahepatic cancer is limited by the development of radiation-induced liver disease (RILD), which occurs weeks after the course of radiation is completed. We hypothesized that, as the pathophysiology of RILD is veno-occlusive disease, we could assess individual and regional liver sensitivity to radiation by measuring liver perfusion during a course of treatment using dynamic contrast enhanced CT (DCE-CT) scanning. Materials and Methods Patients with intrahepatic cancer undergoing conformal radiotherapy underwent DCE-CT (to measure perfusion distribution) and an indocyanine extraction study (to measure liver function) prior to, during, and one month after treatment. We wished to determine if the residual functioning liver (i.e. those regions showing portal vein perfusion) could be used to predict overall liver function after irradiation. Results Radiation doses from 45 to 84 Gy resulted in undectable regional portal vein perfusion one month after treatment. The volume of each liver with undectable portal vein perfusion ranged from 0% to 39% and depended both on the patient’s sensitivity and dose distribution. There was a significant correlation between indocyanine green clearance and the mean of the estimated portal vein perfusion in the functional liver parenchyma (P < .001). Conclusion This study reveals substantial individual variability in the sensitivity of the liver to irradiation. In addition, these findings suggest that hepatic perfusion imaging may be a marker for liver function, and has the potential to be a tool for individualizing therapy. PMID:17855011

  10. Portal imaging practice patterns of children's oncology group institutions: Dosimetric assessment and recommendations for minimizing unnecessary exposure

    SciTech Connect

    Olch, Arthur J. . E-mail: aolch@chla.usc.edu; Geurts, Mark; Thomadsen, Bruce; Famiglietti, Robin; Chang, Eric L.

    2007-02-01

    Purpose: To determine and analyze the dosimetric consequences of current portal imaging practices for pediatric patients, and make specific recommendations for reducing exposure from portal imaging procedures. Methods and Materials: A survey was sent to approximately 250 Children's Oncology Group (COG) member institutions asking a series of questions about their portal imaging practices. Three case studies are presented with dosimetric analysis to illustrate the magnitude of unintended dose received by nontarget tissues using the most common techniques from the survey. Results: The vast majority of centers use double-exposure portal image techniques with a variety of open field margins. Only 17% of portal images were obtained during treatment, and for other imaging methods, few centers subtract monitor units from the treatment delivery. The number of monitor units used was nearly the same regardless of imager type, including electronic portal imaging devices. Eighty-six percent imaged all fields the first week and 17% imaged all fields every week. An additional 1,112 cm{sup 3} of nontarget tissue received 1 Gy in one of the example cases. Eight new recommendations are made, which will lower nontarget radiation doses with minimal impact on treatment verification accuracy. Conclusion: Based on the survey, changes can be made in portal imaging practices that will lower nontarget doses. It is anticipated that treatment verification accuracy will be minimally affected. Specific recommendations made to decrease the imaging dose and help lower the rate of radiation-induced secondary cancers in children are proposed for inclusion in future COG protocols using radiation therapy.

  11. A Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images

    SciTech Connect

    Elmpt, Wouter J. C. van; Nijsten, Sebastiaan M. J. J. G.; Schiffeleers, Robert F. H.; Dekker, Andre L. A. J.; Mijnheer, Ben J.; Lambin, Philippe; Minken, Andre W. H.

    2006-07-15

    The verification of intensity-modulated radiation therapy (IMRT) is necessary for adequate quality control of the treatment. Pretreatment verification may trace the possible differences between the planned dose and the actual dose delivered to the patient. To estimate the impact of differences between planned and delivered photon beams, a three-dimensional (3-D) dose verification method has been developed that reconstructs the dose inside a phantom. The pretreatment procedure is based on portal dose images measured with an electronic portal imaging device (EPID) of the separate beams, without the phantom in the beam and a 3-D dose calculation engine based on the Monte Carlo calculation. Measured gray scale portal images are converted into portal dose images. From these images the lateral scattered dose in the EPID is subtracted and the image is converted into energy fluence. Subsequently, a phase-space distribution is sampled from the energy fluence and a 3-D dose calculation in a phantom is started based on a Monte Carlo dose engine. The reconstruction model is compared to film and ionization chamber measurements for various field sizes. The reconstruction algorithm is also tested for an IMRT plan using 10 MV photons delivered to a phantom and measured using films at several depths in the phantom. Depth dose curves for both 6 and 10 MV photons are reconstructed with a maximum error generally smaller than 1% at depths larger than the buildup region, and smaller than 2% for the off-axis profiles, excluding the penumbra region. The absolute dose values are reconstructed to within 1.5% for square field sizes ranging from 5 to 20 cm width. For the IMRT plan, the dose was reconstructed and compared to the dose distribution with film using the gamma evaluation, with a 3% and 3 mm criterion. 99% of the pixels inside the irradiated field had a gamma value smaller than one. The absolute dose at the isocenter agreed to within 1% with the dose measured with an ionization

  12. Accurate setup of paraspinal patients using a noninvasive patient immobilization cradle and portal imaging

    SciTech Connect

    Lovelock, D. Michael; Hua Chiaho; Wang Ping; Hunt, Margie; Fournier-Bidoz, Nathalie; Yenice, Kamil; Toner, Sean; Lutz, Wendell; Amols, Howard; Bilsky, Mark; Fuks, Zvi; Yamada, Yoshiya

    2005-08-15

    Because of the proximity of the spinal cord, effective radiotherapy of paraspinal tumors to high doses requires highly conformal dose distributions, accurate patient setup, setup verification, and patient immobilization. An immobilization cradle has been designed to facilitate the rapid setup and radiation treatment of patients with paraspinal disease. For all treatments, patients were set up to within 2.5 mm of the design using an amorphous silicon portal imager. Setup reproducibility of the target using the cradle and associated clinical procedures was assessed by measuring the setup error prior to any correction. From 350 anterior/posterior images, and 303 lateral images, the standard deviations, as determined by the imaging procedure, were 1.3 m, 1.6 m, and 2.1 in the ant/post, right/left, and superior/inferior directions. Immobilization was assessed by measuring patient shifts between localization images taken before and after treatment. From 67 ant/post image pairs and 49 lateral image pairs, the standard deviations were found to be less than 1 mm in all directions. Careful patient positioning and immobilization has enabled us to develop a successful clinical program of high dose, conformal radiotherapy of paraspinal disease using a conventional Linac equipped with dynamic multileaf collimation and an amorphous silicon portal imager.

  13. Automatic registration of portal images and volumetric CT for patient positioning in radiation therapy.

    PubMed

    Khamene, Ali; Bloch, Peter; Wein, Wolfgang; Svatos, Michelle; Sauer, Frank

    2006-02-01

    The efficacy of radiation therapy treatment depends on the patient setup accuracy at each daily fraction. A significant problem is reproducing the patient position during treatment planning for every fraction of the treatment process. We propose and evaluate an intensity based automatic registration method using multiple portal images and the pre-treatment CT volume. We perform both geometric and radiometric calibrations to generate high quality digitally reconstructed radiographs (DRRs) that can be compared against portal images acquired right before treatment dose delivery. We use a graphics processing unit (GPU) to generate the DRRs in order to gain computational efficiency. We also perform a comparative study on various similarity measures and optimization procedures. Simple similarity measure such as local normalized correlation (LNC) performs best as long as the radiometric calibration is carefully done. Using the proposed method, we achieved better than 1mm average error in repositioning accuracy for a series of phantom studies using two open field (i.e., 41 cm2) portal images with 90 degrees vergence angle. PMID:16150629

  14. Physical characterization and optimal magnification of a portal imaging system

    NASA Astrophysics Data System (ADS)

    Bissonnette, Jean-Pierre; Jaffray, David A.; Fenster, Aaron; Munro, Peter

    1992-06-01

    One problem in radiation therapy is ensuring accurate positioning of the patient so that the prescribed dose is delivered to the diseased regions while healthy tissues are spared. Positioning is usually assessed by exposing film to the high-energy treatment beam. Unfortunately, these films exhibit poor image quality (primarily due to low subject contrast) and the development delays make film impractical to check patient positioning routinely. Therefore, we have been developing a digital video-based imaging system to replace film. The system consists of a copper plate/fluorescent screen detector, a 45 degree(s) mirror, and a TV camera equipped with a large aperture lens. We have determined the signal and noise transfer properties of the imaging system by measuring its MTF(f) and NPS(f) and used these valued to estimate the optimal magnification for the imaging system. We have found that the optimal magnification is 2.3 - 2.5 when optimizing signal transfer (spatial resolution) alone; however, the optimal magnification is only 1.5 - 2.0 if SNR transfer is considered.

  15. Model-based pancreas segmentation in portal venous phase contrast-enhanced CT images.

    PubMed

    Hammon, Matthias; Cavallaro, Alexander; Erdt, Marius; Dankerl, Peter; Kirschner, Matthias; Drechsler, Klaus; Wesarg, Stefan; Uder, Michael; Janka, Rolf

    2013-12-01

    This study aims to automatically detect and segment the pancreas in portal venous phase contrast-enhanced computed tomography (CT) images. The institutional review board of the University of Erlangen-Nuremberg approved this study and waived the need for informed consent. Discriminative learning is used to build a pancreas tissue classifier incorporating spatial relationships between the pancreas and surrounding organs and vessels. Furthermore, discrete cosine and wavelet transforms are used to build texture features to describe local tissue appearance. Classification is used to guide a constrained statistical shape model to fit the data. The algorithm to detect and segment the pancreas was evaluated on 40 consecutive CT data that were acquired in the portal venous contrast agent phase. Manual segmentation of the pancreas was carried out by experienced radiologists and served as reference standard. Threefold cross validation was performed. The algorithm-based detection and segmentation yielded an average surface distance of 1.7 mm and an average overlap of 61.2 % compared with the reference standard. The overall runtime of the system was 20.4 min. The presented novel approach enables automatic pancreas segmentation in portal venous phase contrast-enhanced CT images which are included in almost every clinical routine abdominal CT examination. Reliable pancreatic segmentation is crucial for computer-aided detection systems and an organ-specific decision support. PMID:23471751

  16. Portal imaging: Performance improvement in noise reduction by means of wavelet processing.

    PubMed

    González-López, Antonio; Morales-Sánchez, Juan; Larrey-Ruiz, Jorge; Bastida-Jumilla, María-Consuelo; Verdú-Monedero, Rafael

    2016-01-01

    This paper discusses the suitability, in terms of noise reduction, of various methods which can be applied to an image type often used in radiation therapy: the portal image. Among these methods, the analysis focuses on those operating in the wavelet domain. Wavelet-based methods tested on natural images--such as the thresholding of the wavelet coefficients, the minimization of the Stein unbiased risk estimator on a linear expansion of thresholds (SURE-LET), and the Bayes least-squares method using as a prior a Gaussian scale mixture (BLS-GSM method)--are compared with other methods that operate on the image domain--an adaptive Wiener filter and a nonlocal mean filter (NLM). For the assessment of the performance, the peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM), the Pearson correlation coefficient, and the Spearman rank correlation (ρ) coefficient are used. The performance of the wavelet filters and the NLM method are similar, but wavelet filters outperform the Wiener filter in terms of portal image denoising. It is shown how BLS-GSM and NLM filters produce the smoothest image, while keeping soft-tissue and bone contrast. As for the computational cost, filters using a decimated wavelet transform (decimated thresholding and SURE-LET) turn out to be the most efficient, with calculation times around 1 s. PMID:26602966

  17. Daily electronic portal imaging of implanted gold seed fiducials in patients undergoing radiotherapy after radical prostatectomy

    SciTech Connect

    Schiffner, Daniel C.; Gottschalk, Alexander R. . E-mail: gottschalk@radonc17.ucsf.edu; Lometti, Michael M.S.; Aubin, Michele M.Sc.E.E.; Pouliot, Jean; Speight, Joycelyn; Hsu, I.-Chow; Shinohara, Katsuto; Roach, Mack

    2007-02-01

    Purpose: The aim of this study was to measure interfraction prostate bed motion, setup error, and total positioning error in 10 consecutive patients undergoing postprostatectomy radiotherapy. Methods and Materials: Daily image-guided target localization and alignment using electronic portal imaging of gold seed fiducials implanted into the prostate bed under transrectal ultrasound guidance was used in 10 patients undergoing adjuvant or salvage radiotherapy after prostatectomy. Prostate bed motion, setup error, and total positioning error were measured by analysis of gold seed fiducial location on the daily electronic portal images compared with the digitally reconstructed radiographs from the treatment-planning CT. Results: Mean ({+-} standard deviation) prostate bed motion was 0.3 {+-} 0.9 mm, 0.4 {+-} 2.4 mm, and -1.1 {+-} 2.1 mm in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) axes, respectively. Mean set-up error was 0.1 {+-} 4.5 mm, 1.1 {+-} 3.9 mm, and -0.2 {+-} 5.1 mm in the LR, SI, and AP axes, respectively. Mean total positioning error was 0.2 {+-} 4.5 mm, 1.2 {+-} 5.1 mm, and -0.3 {+-} 4.5 mm in the LR, SI, and AP axes, respectively. Total positioning errors >5 mm occurred in 14.1%, 38.7%, and 28.2% of all fractions in the LR, SI, and AP axes, respectively. There was no significant migration of the gold marker seeds. Conclusions: This study validates the use of daily image-guided target localization and alignment using electronic portal imaging of implanted gold seed fiducials as a valuable method to correct for interfraction target motion and to improve precision in the delivery of postprostatectomy radiotherapy.

  18. Optimization of accelerator target and detector for portal imaging using Monte Carlo simulation and experiment

    NASA Astrophysics Data System (ADS)

    Flampouri, S.; Evans, P. M.; Verhaegen, F.; Nahum, A. E.; Spezi, E.; Partridge, M.

    2002-09-01

    Megavoltage portal images suffer from poor quality compared to those produced with kilovoltage x-rays. Several authors have shown that the image quality can be improved by modifying the linear accelerator to generate more low-energy photons. This work addresses the problem of using Monte Carlo simulation and experiment to optimize the beam and detector combination to maximize image quality for a given patient thickness. A simple model of the whole imaging chain was developed for investigation of the effect of the target parameters on the quality of the image. The optimum targets (6 mm thick aluminium and 1.6 mm copper) were installed in an Elekta SL25 accelerator. The first beam will be referred to as Al6 and the second as Cu1.6. A tissue-equivalent contrast phantom was imaged with the 6 MV standard photon beam and the experimental beams with standard radiotherapy and mammography film/screen systems. The arrangement with a thin Al target/mammography system improved the contrast from 1.4 cm bone in 5 cm water to 19% compared with 2% for the standard arrangement of a thick, high-Z target/radiotherapy verification system. The linac/phantom/detector system was simulated with the BEAM/EGS4 Monte Carlo code. Contrast calculated from the predicted images was in good agreement with the experiment (to within 2.5%). The use of MC techniques to predict images accurately, taking into account the whole imaging system, is a powerful new method for portal imaging system design optimization.

  19. A simple method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter

    SciTech Connect

    Du Weiliang; Yang, James; Luo Dershan; Martel, Mary

    2010-05-15

    Purpose: The aim of this study was to develop a computerized method to quantify the coincidence between portal image graticules and radiation field centers or radiation isocenter. Three types of graticules were included in this study: Megavoltage (MV) mechanical graticule, MV electronic portal imaging device digital graticule, and kilovoltage (kV) on-board imaging digital graticule. Methods: A metal ball bearing (BB) was imaged with MV and kV x-ray beams in a procedure similar to a Winston-Lutz test. The radiation fields, graticules, and BB were localized in eight portal images using Hough transform-based computer algorithms. The center of the BB served as a static reference point in the 3D space so that the distances between the graticule centers and the radiation field centers were calculated. The radiation isocenter was determined from the radiation field centers at different gantry angles. Results: Misalignments of MV and kV portal imaging graticules varied with the gantry or x-ray source angle as a result of mechanical imperfections of the linear accelerator and its imaging system. While the three graticules in this study were aligned to the radiation field centers and the radiation isocenter within 2.0 mm, misalignments of 1.5-2.0 mm were found at certain gantry angles. These misalignments were highly reproducible with the gantry rotation. Conclusions: A simple method was developed to quantify the alignments of portal image graticules directly against the radiation field centers or the radiation isocenter. The advantage of this method is that it does not require the BB to be placed exactly at the radiation isocenter through a precalibrated surrogating device such as room lasers or light field crosshairs. The present method is useful for radiation therapy modalities that require high-precision portal imaging such as image-guided stereotactic radiotherapy.

  20. A gradient feature weighted Minimax algorithm for registration of multiple portal images to 3DCT volumes in prostate radiotherapy

    SciTech Connect

    Chelikani, Sudhakar . E-mail: sudhakar.chelikani@yale.edu; Purushothaman, Kailasnath; Knisely, Jonathan; Chen, Zhe; Nath, Ravinder; Bansal, Ravi; Duncan, James

    2006-06-01

    Purpose: To develop an accurate, fast, and robust algorithm for registering portal and computed tomographic (CT) images for radiotherapy using a combination of sparse and dense field data that complement each other. Methods and Materials: Gradient Feature Weighted Minimax (GFW Minimax) method was developed to register multiple portal images to three-dimensional CT images. Its performance was compared with that of three others: Minimax, Mutual Information, and Gilhuijs' method. Phantom and prostate cancer patient images were used. Effects of registration errors on tumor control probability (TCP) and normal tissue complication probability (NTCP) were investigated as a relative measure. Results: Registration of four portals to CTs resulted in 30% lower error when compared with registration with two portals. Computation time increased by nearly 50%. GFW Minimax performed the best, followed by Gilhuijs' method, the Minimax method, and Mutual Information. Conclusions: Using four portals instead of two lowered the registration error. Reduced fields of view images with full feature sets gave similar results in shorter times as full fields of view images. In clinical situations where soft tissue targets are of importance, GFW Minimax algorithm was significantly more accurate and robust. With registration errors lower than 1 mm, margins may be scaled down to 4 mm without adversely affecting TCP and NTCP.

  1. New geo-portal for MODIS/SEVIRI image products with geolocation-based retrieval functionality

    NASA Astrophysics Data System (ADS)

    Sevilla, Jorge; Julien, Yves; Sória, Guillem; Sobrino, José A.; Plaza, Antonio

    2015-01-01

    A large number of remote sensing data sets have been collected in recent years by Earth observation instruments such as the moderate resolution imaging spectroradiometer (MODIS) aboard the Terra/Aqua satellite and the spinning enhanced visible and infrared imager (SEVIRI) aboard the geostationary platform Meteosat Second Generation. The advanced remote sensing products resulting from the analysis of these data are useful in a wide variety of applications but require significant resources in terms of storage, retrieval, and analysis. Despite the wide availability of these MODIS/SEVIRI products, the data coming from these instruments are spread among different locations and retrieved from different sources, and there is no common data repository from which the data or the associated products can be retrieved. We take a first step toward the development of a geo-portal for storing and efficiently retrieving MODIS/SEVIRI remote sensing products. The products are obtained using an automatic system that processes the data as soon as they are provided by the collecting antennas, and then the final products are uploaded with a one day delay in the geo-portal. Our focus in this work is on describing the design and efficient implementation of the geo-portal, which allows for a user-friendly and effective access to a full repository of MODIS/SEVIRI advanced products (comprising tens of terabytes of data) using geolocation retrieval capabilities. The geo-portal has been implemented as a web application composed of different layers. Its modular design provides quality of service and scalability (capacity for growth without any quality losing), allowing for the addition of components without the need to modify the entire system. On the client layer, an intuitive web browser interface provides users with remote access to the system. On the server layer, the system provides advanced data management and storage capabilities. On the storage layer, the system provides a secure

  2. Portal dose image prediction for in vivo treatment verification completely based on EPID measurements

    SciTech Connect

    Zijtveld, Mathilda van; Dirkx, Maarten; Breuers, Marcel; Boer, Hans; Heijmen, Ben de

    2009-03-15

    A high dosimetric accuracy is required for radiotherapy treatments where IMRT in combination with narrow treatment margins is applied to achieve optimally conformal dose distributions. In order to routinely verify the in vivo fluence delivery (i.e., during the actual patient treatment), our method for predicting portal dose images with a patient in the beam was validated. A unique feature of this method is that it is fully based on calibration measurements with an EPID. The portal dose image (PDI) behind a patient is dependent on the transmission of primary radiation through the patient and a contribution of scattered radiation from the patient. To derive both components, the patient geometry as observed in the planning CT scan is converted into an equivalent homogeneous phantom. A limited set of EPID measurements is required to derive the input parameters of this model. The accuracy of the in vivo PDI prediction was verified using measurements behind phantoms and four prostate cancer patients treated with IMRT. Behind homogeneous slab phantoms, the local differences between measured and predicted PDIs were within 2% inside the field, while behind a lung and a pelvic phantom, the agreement was within 3% or within 3 mm in regions with steep gradients. Outside the fields, the PDIs agreed within 2% of the global dose maximum. Evaluation of the in vivo PDI measurements behind patients showed that, on average, 87% of the pixels inside the field fulfilled the 3% local dose and 3 mm distance-to-agreement criteria. For half of the failing pixels the differences occurred due to changes in patient geometry with respect to the planning CT or due to beam attenuation by the treatment couch that was not accounted for. A fully EPID-based method for predicting portal dose images using the planning CT scan has been implemented and validated for phantoms and clinical patients.

  3. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device

    SciTech Connect

    Samant, Sanjiv S.; Gopal, Arun

    2006-08-15

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25x25 cm{sup 2} CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240x1024 pixels, 250 {mu}m pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW{sup PLUS}) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was

  4. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-08-01

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25 X 25 cm2 CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240 X 1024 pixels, 250 microm pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW(PLUS)) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was developed

  5. Analysis of interfraction and intrafraction variation during tangential breast irradiation with an electronic portal imaging device

    SciTech Connect

    Smith, Ryan P.; Bloch, Peter; Harris, Eleanor E. . E-mail: harris@xrt.upenn.edu; McDonough, James; Sarkar, Abhirup; Kassaee, Alireza; Avery, Steven; Solin, Lawrence J.

    2005-06-01

    Purpose: To evaluate the daily setup variation and the anatomic movement of the heart and lungs during breast irradiation with tangential photon beams, as measured with an electronic portal imaging device. Methods and materials: Analysis of 1,709 portal images determined changes in the radiation field during a treatment course in 8 patients. Values obtained for every image included central lung distance (CLD) and area of lung and heart within the irradiated field. The data from these measurements were used to evaluate variation from setup between treatment days and motion due to respiration and/or patient movement during treatment delivery. Results: The effect of respiratory motion and movement during treatment was minimal: the maximum range in CLD for any patient on any day was 0.25 cm. The variation caused by day-to-day setup variation was greater, with CLD values for patients ranging from 0.59 cm to 2.94 cm. Similar findings were found for heart and lung areas. Conclusions: There is very little change in CLD and corresponding lung and heart area during individual radiation treatment fractions in breast tangential fields, compared with a relatively greater amount of variation that occurs between days.

  6. Development of Automated Image Analysis Tools for Verification of Radiotherapy Field Accuracy with AN Electronic Portal Imaging Device.

    NASA Astrophysics Data System (ADS)

    Dong, Lei

    1995-01-01

    The successful management of cancer with radiation relies on the accurate deposition of a prescribed dose to a prescribed anatomical volume within the patient. Treatment set-up errors are inevitable because the alignment of field shaping devices with the patient must be repeated daily up to eighty times during the course of a fractionated radiotherapy treatment. With the invention of electronic portal imaging devices (EPIDs), patient's portal images can be visualized daily in real-time after only a small fraction of the radiation dose has been delivered to each treatment field. However, the accuracy of human visual evaluation of low-contrast portal images has been found to be inadequate. The goal of this research is to develop automated image analysis tools to detect both treatment field shape errors and patient anatomy placement errors with an EPID. A moments method has been developed to align treatment field images to compensate for lack of repositioning precision of the image detector. A figure of merit has also been established to verify the shape and rotation of the treatment fields. Following proper alignment of treatment field boundaries, a cross-correlation method has been developed to detect shifts of the patient's anatomy relative to the treatment field boundary. Phantom studies showed that the moments method aligned the radiation fields to within 0.5mm of translation and 0.5^ circ of rotation and that the cross-correlation method aligned anatomical structures inside the radiation field to within 1 mm of translation and 1^ circ of rotation. A new procedure of generating and using digitally reconstructed radiographs (DRRs) at megavoltage energies as reference images was also investigated. The procedure allowed a direct comparison between a designed treatment portal and the actual patient setup positions detected by an EPID. Phantom studies confirmed the feasibility of the methodology. Both the moments method and the cross -correlation technique were

  7. Simulations of three-dimensional radiometric imaging of extended sources in a security screening portal

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.; Bowring, Nick

    2015-10-01

    This paper investigates by simulation the use of the three-dimensional aperture synthesis imaging technique to image three-dimensional extended sources. Software was written to access the three-dimensional information from computer graphics models in the formats of *.dxf and *.3ds and use these to generate synthetic cross-correlations, as if they would have been generated by an aperture synthesis antenna/receiver array measuring the radiometric emission from the three-dimensional object. A three-dimensional (near-field) aperture synthesis imaging algorithm generates [1] a voxel image of the three-dimensional object. Images created from a sphere indicate faithful reproduction about a single phase centre when the radius of the sphere is less than the Fresnel scale. However, for larger spheres, definition in the threedimensional imagery suffers and a phenomenon, referred to in this paper as Fresnel noise, appears in the image. Images of objects larger than the Fresnel scale can be created by having multiple smaller images, each having a size approximately of the Fresnel scale and centred on separate phase centres. Using the software to generate threedimensional imagery of a person, to demonstrate capabilities for portal security screening, indicates the technique works to first order. Improvements are needed in the software to improve the spatial sampling of the radiometric fields from the three-dimensional objects and implement a volumetric image mosaicking technique to remove the Fresnel noise.

  8. A novel method for automatic detection of patient out-of-plane rotation by comparing a single portal image to a reference image.

    PubMed

    Jabbari, Keyvan; Pistorius, Stephen

    2005-12-01

    A novel method for detecting out-of-plane patient rotation by comparing a single portal image to its reference image is presented. Out-of-plane rotation results in an apparent distortion of the anatomy in a portal image. This distortion can be mathematically predicted with the magnification varying at each point in the image. While scaling of points at equal depth is invariant under in-plane rotation or translation, and changes equally in both dimensions for an axial shift of the patient, a change of scaling in only one dimension can be ascribed to an out-of-plane rotation. For the two conditions that are used in this study, it is shown that out-of-plane rotation yields a different scaling of the image in two perpendicular directions and therefore it is feasible to calculate the scale factors as a function of out-of-plane rotation. Conversely the recovery of scale factors in two different directions at the same time would enable the magnitude of the out-of-plane rotation to be recovered. The properties of the Fourier transform of the image are used to align the portal image with the reference image (a simulator image or first approved portal image) prior to the recovery of the scale factors. Correlating the Fourier transform of the portal image on a log-scale with that of the reference image enables the scale factors to be automatically extracted from a single portal image. In the two approaches investigated, out-of-plane rotations of up to 41 degrees and 20 degrees (respectively) have been recovered with a maximum error of 2.4 degrees. This technique could be used to automatically detect patient roll or tilt prior to or during a treatment session. PMID:16475767

  9. A novel method for automatic detection of patient out-of-plane rotation by comparing a single portal image to a reference image

    SciTech Connect

    Jabbari, Keyvan; Pistorius, Stephen

    2005-12-15

    A novel method for detecting out-of-plane patient rotation by comparing a single portal image to its reference image is presented. Out-of-plane rotation results in an apparent distortion of the anatomy in a portal image. This distortion can be mathematically predicted with the magnification varying at each point in the image. While scaling of points at equal depth is invariant under in-plane rotation or translation, and changes equally in both dimensions for an axial shift of the patient, a change of scaling in only one dimension can be ascribed to an out-of-plane rotation. For the two conditions that are used in this study, it is shown that out-of-plane rotation yields a different scaling of the image in two perpendicular directions and therefore it is feasible to calculate the scale factors as a function of out-of-plane rotation. Conversely the recovery of scale factors in two different directions at the same time would enable the magnitude of the out-of-plane rotation to be recovered. The properties of the Fourier transform of the image are used to align the portal image with the reference image (a simulator image or first approved portal image) prior to the recovery of the scale factors. Correlating the Fourier transform of the portal image on a log-scale with that of the reference image enables the scale factors to be automatically extracted from a single portal image. In the two approaches investigated, out-of-plane rotations of up to 41 deg. and 20 deg. (respectively) have been recovered with a maximum error of 2.4 deg. . This technique could be used to automatically detect patient roll or tilt prior to or during a treatment session.

  10. The Pipeline, Portal and Archive (PPA) System for the WIYN Partial One Degree Imager

    NASA Astrophysics Data System (ADS)

    Rajagopal, Jayadev

    2013-06-01

    The WIYN telescope has recently commissioned the partial One Degree Imager (pODI), which has already demonstrated very high image quality over a wide field. The PPA system was envisioned as the transport, archiving, reduction and discovery system for the complex and high-volume data from this instrument. The building blocks of the PPA are a high-speed transport conduit from the WIYN Observatory to Indiana where the archive resides, a pipeline data reduction system running on an NSF super computing facility (XSEDE) and a data access and discovery Portal. In many ways, the PPA is a forerunner of data systems for the extremely large data from the mega-surveys envisaged for the future. PPA has been designed and executed jointly by the WIYN partnership and Pervasive Technologies Institute (PTI) at IU. NOAO designed the pipeline algorithms and data transport, and PTI hosts the Archive, handles XSEDE computing and developed the Portal. The PPA was deployed for the first semester (2013A) of pODI shared-risk operation with essential services in place. When complete, the PPA will offer users, in addition to advanced data visualization tools, the option of generating pipeline re-runs and a virtual Desktop for limited custom analysis of reduced data. I will describe the development and report on the current status of the PPA system.

  11. Dosimetric verification of radiation therapy including intensity modulated treatments, using an amorphous-silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Chytyk-Praznik, Krista Joy

    Radiation therapy is continuously increasing in complexity due to technological innovation in delivery techniques, necessitating thorough dosimetric verification. Comparing accurately predicted portal dose images to measured images obtained during patient treatment can determine if a particular treatment was delivered correctly. The goal of this thesis was to create a method to predict portal dose images that was versatile and accurate enough to use in a clinical setting. All measured images in this work were obtained with an amorphous silicon electronic portal imaging device (a-Si EPID), but the technique is applicable to any planar imager. A detailed, physics-motivated fluence model was developed to characterize fluence exiting the linear accelerator head. The model was further refined using results from Monte Carlo simulations and schematics of the linear accelerator. The fluence incident on the EPID was converted to a portal dose image through a superposition of Monte Carlo-generated, monoenergetic dose kernels specific to the a-Si EPID. Predictions of clinical IMRT fields with no patient present agreed with measured portal dose images within 3% and 3 mm. The dose kernels were applied ignoring the geometrically divergent nature of incident fluence on the EPID. A computational investigation into this parallel dose kernel assumption determined its validity under clinically relevant situations. Introducing a patient or phantom into the beam required the portal image prediction algorithm to account for patient scatter and attenuation. Primary fluence was calculated by attenuating raylines cast through the patient CT dataset, while scatter fluence was determined through the superposition of pre-calculated scatter fluence kernels. Total dose in the EPID was calculated by convolving the total predicted incident fluence with the EPID-specific dose kernels. The algorithm was tested on water slabs with square fields, agreeing with measurement within 3% and 3 mm. The

  12. On modelling the kinestatic charge detector for digital radiographic diagnostic and portal imaging.

    PubMed

    Qi, G; Goloubev, M Y; DiBianca, F A; Samant, S

    2002-01-01

    The kinestatic charge detection (KCD) principle has been a digital radiography technique for more than a decade. The advances of the KCD technique have gone from diagnostic imaging to portal imaging. However, little work has been done on understanding the selection of key KCD parameters and relationships between them. In the present study, an engineering model was established that could be used to optimize the placements of key parameters in terms of KCD system mechanical design. In the proposed KCD engineering model, the basic energy conservation law was applied to the process of ion transmission. It allows for the computation of the KCD design parameters such as the optimum grid placement, high voltage board tilt angle and grid wire space, as well as to provide recommendations on high voltage board and electric potentials and their ratio. PMID:12487709

  13. Digital Rocks Portal: a sustainable platform for imaged dataset sharing, translation and automated analysis

    NASA Astrophysics Data System (ADS)

    Prodanovic, M.; Esteva, M.; Hanlon, M.; Nanda, G.; Agarwal, P.

    2015-12-01

    Recent advances in imaging have provided a wealth of 3D datasets that reveal pore space microstructure (nm to cm length scale) and allow investigation of nonlinear flow and mechanical phenomena from first principles using numerical approaches. This framework has popularly been called "digital rock physics". Researchers, however, have trouble storing and sharing the datasets both due to their size and the lack of standardized image types and associated metadata for volumetric datasets. This impedes scientific cross-validation of the numerical approaches that characterize large scale porous media properties, as well as development of multiscale approaches required for correct upscaling. A single research group typically specializes in an imaging modality and/or related modeling on a single length scale, and lack of data-sharing infrastructure makes it difficult to integrate different length scales. We developed a sustainable, open and easy-to-use repository called the Digital Rocks Portal, that (1) organizes images and related experimental measurements of different porous materials, (2) improves access to them for a wider community of geosciences or engineering researchers not necessarily trained in computer science or data analysis. Once widely accepter, the repository will jumpstart productivity and enable scientific inquiry and engineering decisions founded on a data-driven basis. This is the first repository of its kind. We show initial results on incorporating essential software tools and pipelines that make it easier for researchers to store and reuse data, and for educators to quickly visualize and illustrate concepts to a wide audience. For data sustainability and continuous access, the portal is implemented within the reliable, 24/7 maintained High Performance Computing Infrastructure supported by the Texas Advanced Computing Center (TACC) at the University of Texas at Austin. Long-term storage is provided through the University of Texas System Research

  14. Automated detection of a prostate Ni-Ti stent in electronic portal images

    SciTech Connect

    Carl, Jesper; Nielsen, Henning; Nielsen, Jane; Lund, Bente; Larsen, Erik Hoejkjaer

    2006-12-15

    Planning target volumes (PTV) in fractionated radiotherapy still have to be outlined with wide margins to the clinical target volume due to uncertainties arising from daily shift of the prostate position. A recently proposed new method of visualization of the prostate is based on insertion of a thermo-expandable Ni-Ti stent. The current study proposes a new detection algorithm for automated detection of the Ni-Ti stent in electronic portal images. The algorithm is based on the Ni-Ti stent having a cylindrical shape with a fixed diameter, which was used as the basis for an automated detection algorithm. The automated method uses enhancement of lines combined with a grayscale morphology operation that looks for enhanced pixels separated with a distance similar to the diameter of the stent. The images in this study are all from prostate cancer patients treated with radiotherapy in a previous study. Images of a stent inserted in a humanoid phantom demonstrated a localization accuracy of 0.4-0.7 mm which equals the pixel size in the image. The automated detection of the stent was compared to manual detection in 71 pairs of orthogonal images taken in nine patients. The algorithm was successful in 67 of 71 pairs of images. The method is fast, has a high success rate, good accuracy, and has a potential for unsupervised localization of the prostate before radiotherapy, which would enable automated repositioning before treatment and allow for the use of very tight PTV margins.

  15. Fluorescent Molecular Imaging and Dosimetry Tools in Photodynamic Therapy

    PubMed Central

    Pogue, Brian W.; Samkoe, Kimberley S.; Gibbs-Strauss, Summer L.; Davis, Scott C.

    2013-01-01

    Measurement of fluorescence and phosphorescence in vivo is readily used to quantify the concentration of specific species that are relevant to photodynamic therapy. However, the tools to make the data quantitatively accurate vary considerably between different applications. Sampling of the signal can be done with point samples, such as specialized fiber probes or from bulk regions with either imaging or sampling, and then in broad region image-guided manner. Each of these methods is described below, the application to imaging photosensitizer uptake is discussed, and developing methods to image molecular responses to therapy are outlined. PMID:20552350

  16. Electronic portal imaging based on Cerenkov radiation: A new approach and its feasibility

    SciTech Connect

    Mei, X.; Rowlands, J. A.; Pang, G.

    2006-11-15

    Most electronic portal imaging devices (EPIDs) developed so far use a Cu plate/phosphor screen to absorb x rays and convert their energies into light, and the light image is then read out. The main problem with this approach is that the Cu plate/phosphor screen must be thin ({approx}2 mm thick) in order to obtain a high spatial resolution, resulting in a low x-ray absorption or low quantum efficiency for megavoltage x rays (typically 2-4%). In addition, the phosphor screen contains high atomic number (high-Z) materials, resulting in an over-response of the detector to low-energy x rays in dosimetric verification. In this paper, we propose a new approach that uses Cerenkov radiation to convert x-ray energy absorbed by the detector into light for portal imaging applications. With our approach, a thick ({approx}10-30 cm) energy conversion layer made of a low-Z dielectric medium, such as a large-area, thick fiber-optic taper consisting of a matrix of optical fibers aligned with the incident x rays, is used to replace the thin Cu plate/phosphor screen. The feasibility of this approach has been investigated using a single optical fiber embedded in a solid material. The spatial resolution expressed by the modulation transfer function (MTF) and the sensitivity of the detector at low doses ({approx} one Linac pulse) have been measured. It is predicted that, using this approach, a detective quantum efficiency of an order of magnitude higher at zero frequency can be obtained while maintaining a reasonable MTF, as compared to current EPIDs.

  17. Dosimetry for spectral molecular imaging of small animals with MARS-CT

    NASA Astrophysics Data System (ADS)

    Ganet, Noémie; Anderson, Nigel; Bell, Stephen; Butler, Anthony; Butler, Phil; Carbonez, Pierre; Cook, Nicholas; Cotterill, Tony; Marsh, Steven; Panta, Raj Kumar; Laban, John; Walker, Sophie; Yeabsley, Adam; Damet, Jérôme

    2015-03-01

    The Medipix All Resolution Scanner (MARS) spectral CT is intended for small animal, pre-clinical imaging and uses an x-ray detector (Medipix) operating in single photon counting mode. The MARS system provides spectrometric information to facilitate differentiation of tissue types and bio-markers. For longitudinal studies of disease models, it is desirable to characterise the system's dosimetry. This dosimetry study is performed using three phantoms each consisting of a 30 mm diameter homogeneous PMMA cylinder simulating a mouse. The imaging parameters used for this study are derived from those used for gold nanoparticle identification in mouse kidneys. Dosimetry measurement are obtained with thermo-luminescent Lithium Fluoride (LiF:CuMgP) detectors, calibrated in terms of air kerma and placed at different depths and orientations in the phantoms. Central axis TLD air kerma rates of 17.2 (± 0.71) mGy/min and 18.2 (± 0.75) mGy/min were obtained for different phantoms and TLD orientations. Validation measurements were acquired with a pencil ionization chamber, giving an air-kerma rate of 20.3 (±1) mGy/min and an estimated total air kerma of 81.2 (± 4) mGy for a 720 projection acquisition. It is anticipated that scanner design improvements will significantly decrease future dose requirements. The procedures developed in this work will be used for further dosimetry calculations when optimizing image acquisition for the MARS system as it undergoes development towards human clinical applications.

  18. Dosimetry and image quality assessment in a direct radiography system

    PubMed Central

    Oliveira, Bruno Beraldo; de Oliveira, Marcio Alves; Paixão, Lucas; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2014-01-01

    Objective To evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and Methods Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results Considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion The present study contributes to verify the equipment conformity as regards dose values and image quality. PMID:25741119

  19. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  20. Image guided portal vein access techniques in TIPS creation and considerations regarding their use

    PubMed Central

    2016-01-01

    Transjugular intrahepatic portosystemic shunt (TIPS) is a difficult procedure to perform and accessing the portal vein is a very challenging step. There are three broad categories of image guided TIPS creation techniques. Each technique has its advantages and disadvantages. TIPS procedure carries some risk of complications regardless of the guidance technique employed. The technology for TIPS has evolved in parallel with the expanding indications for TIPS. Ultrasound guidance technique offers a safe option, particularly for patients with challenging anatomy. Patient safety should always come first and the US guided technique should be more routinely used. Experience is the main factor in the success of TIPS. Other factors to consider in reducing the all-cause morbidity and mortality are patient selection, patient management and the clinical setting. PMID:27385392

  1. The Use of Gamma-Ray Imaging to Improve Portal Monitor Performance

    SciTech Connect

    Ziock, Klaus-Peter; Collins, Jeff; Fabris, Lorenzo; Gee, Timothy Felix; Goddard, James K; Habte Ghebretatios, Frezghi; Karnowski, Thomas Paul

    2008-01-01

    We have constructed a prototype, rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. Our Roadside Tracker uses automated target acquisition and tracking (TAT) software to identify and track vehicles in visible light images. The field of view of the visible camera overlaps with and is calibrated to that of a one-dimensional gamma-ray imager. The TAT code passes information on when vehicles enter and exit the system field of view and when they cross gamma-ray pixel boundaries. Based on this in-formation, the gamma-ray imager "harvests" the gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. In this fashion we are able to generate vehicle-specific radiation signatures and avoid source confusion problems that plague nonimaging approaches to the same problem.

  2. Dual Energy CT (DECT) Monochromatic Imaging: Added Value of Adaptive Statistical Iterative Reconstructions (ASIR) in Portal Venography

    PubMed Central

    Winklhofer, Sebastian; Jiang, Rong; Wang, Xinlian; He, Wen

    2016-01-01

    Objective To investigate the effect of the adaptive statistical iterative reconstructions (ASIR) on image quality in portal venography by dual energy CT (DECT) imaging. Materials and Methods DECT scans of 45 cirrhotic patients obtained in the portal venous phase were analyzed. Monochromatic images at 70keV were reconstructed with the following 4 ASIR percentages: 0%, 30%, 50%, and 70%. The image noise (IN) (standard deviation, SD) of portal vein (PV), the contrast-to-noise-ratio (CNR), and the subjective score for the sharpness of PV boundaries, and the diagnostic acceptability (DA) were obtained. The IN, CNR, and the subjective scores were compared among the four ASIR groups. Results The IN (in HU) of PV (10.05±3.14, 9.23±3.05, 8.44±2.95 and 7.83±2.90) decreased and CNR values of PV (8.04±3.32, 8.95±3.63, 9.80±4.12 and 10.74±4.73) increased with the increase in ASIR percentage (0%, 30%, 50%, and 70%, respectively), and were statistically different for the 4 ASIR groups (p<0.05). The subjective scores showed that the sharpness of portal vein boundaries (3.13±0.59, 2.82±0.44, 2.73±0.54 and 2.07±0.54) decreased with higher ASIR percentages (p<0.05). The subjective diagnostic acceptability was highest at 30% ASIR (p<0.05). Conclusions 30% ASIR addition in DECT portal venography could improve the 70 keV monochromatic image quality. PMID:27315158

  3. TLD assessment of mouse dosimetry during microCT imaging

    SciTech Connect

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.

    2008-09-15

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm{sup 3} CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0{+-}5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0{+-}6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0{+-}4.0 mGy and 97.0{+-}5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0{+-}5.0 mGy. The author's results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality.

  4. TLD assessment of mouse dosimetry during microCT imaging

    PubMed Central

    Figueroa, Said Daibes; Winkelmann, Christopher T.; Miller, William H.; Volkert, Wynn A.; Hoffman, Timothy J.

    2008-01-01

    Advances in laboratory animal imaging have provided new resources for noninvasive biomedical research. Among these technologies is microcomputed tomography (microCT) which is widely used to obtain high resolution anatomic images of small animals. Because microCT utilizes ionizing radiation for image formation, radiation exposure during imaging is a concern. The objective of this study was to quantify the radiation dose delivered during a standard microCT scan. Radiation dose was measured using thermoluminescent dosimeters (TLDs), which were irradiated employing an 80 kVp x-ray source, with 0.5 mm Al filtration and a total of 54 mA s for a full 360 deg rotation of the unit. The TLD data were validated using a 3.2 cm3 CT ion chamber probe. TLD results showed a single microCT scan air kerma of 78.0±5.0 mGy when using a poly(methylmethacrylate) (PMMA) anesthesia support module and an air kerma of 92.0±6.0 mGy without the use of the anesthesia module. The validation CT ion chamber study provided a measured radiation air kerma of 81.0±4.0 mGy and 97.0±5.0 mGy with and without the PMMA anesthesia module, respectively. Internal TLD analysis demonstrated an average mouse organ radiation absorbed dose of 76.0±5.0 mGy. The author’s results have defined x-ray exposure for a routine microCT study which must be taken into consideration when performing serial molecular imaging studies involving the microCT imaging modality. PMID:18841837

  5. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in 177Lu-DOTATATE peptide receptor radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Sjögreen Gleisner, Katarina

    2015-08-01

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with 177Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for 177Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in 177Lu PRRT.

  6. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in (177)Lu-DOTATATE peptide receptor radionuclide therapy.

    PubMed

    Brolin, Gustav; Gustafsson, Johan; Ljungberg, Michael; Gleisner, Katarina Sjögreen

    2015-08-01

    Patient-specific image-based dosimetry is considered to be a useful tool to limit toxicity associated with peptide receptor radionuclide therapy (PRRT). To facilitate the establishment and reliability of absorbed-dose response relationships, it is essential to assess the accuracy of dosimetry in clinically realistic scenarios. To this end, we developed pharmacokinetic digital phantoms corresponding to patients treated with (177)Lu-DOTATATE. Three individual voxel phantoms from the XCAT population were generated and assigned a dynamic activity distribution based on a compartment model for (177)Lu-DOTATATE, designed specifically for this purpose. The compartment model was fitted to time-activity data from 10 patients, primarily acquired using quantitative scintillation camera imaging. S values for all phantom source-target combinations were calculated based on Monte-Carlo simulations. Combining the S values and time-activity curves, reference values of the absorbed dose to the phantom kidneys, liver, spleen, tumours and whole-body were calculated. The phantoms were used in a virtual dosimetry study, using Monte-Carlo simulated gamma-camera images and conventional methods for absorbed-dose calculations. The characteristics of the SPECT and WB planar images were found to well represent those of real patient images, capturing the difficulties present in image-based dosimetry. The phantoms are expected to be useful for further studies and optimisation of clinical dosimetry in (177)Lu PRRT. PMID:26215085

  7. An automated voxelized dosimetry tool for radionuclide therapy based on serial quantitative SPECT/CT imaging

    SciTech Connect

    Jackson, Price A.; Kron, Tomas; Beauregard, Jean-Mathieu; Hofman, Michael S.; Hogg, Annette; Hicks, Rodney J.

    2013-11-15

    Purpose: To create an accurate map of the distribution of radiation dose deposition in healthy and target tissues during radionuclide therapy.Methods: Serial quantitative SPECT/CT images were acquired at 4, 24, and 72 h for 28 {sup 177}Lu-octreotate peptide receptor radionuclide therapy (PRRT) administrations in 17 patients with advanced neuroendocrine tumors. Deformable image registration was combined with an in-house programming algorithm to interpolate pharmacokinetic uptake and clearance at a voxel level. The resultant cumulated activity image series are comprised of values representing the total number of decays within each voxel's volume. For PRRT, cumulated activity was translated to absorbed dose based on Monte Carlo-determined voxel S-values at a combination of long and short ranges. These dosimetric image sets were compared for mean radiation absorbed dose to at-risk organs using a conventional MIRD protocol (OLINDA 1.1).Results: Absorbed dose values to solid organs (liver, kidneys, and spleen) were within 10% using both techniques. Dose estimates to marrow were greater using the voxelized protocol, attributed to the software incorporating crossfire effect from nearby tumor volumes.Conclusions: The technique presented offers an efficient, automated tool for PRRT dosimetry based on serial post-therapy imaging. Following retrospective analysis, this method of high-resolution dosimetry may allow physicians to prescribe activity based on required dose to tumor volume or radiation limits to healthy tissue in individual patients.

  8. Determination of dosimetric leaf gap using amorphous silicon electronic portal imaging device and its influence on intensity modulated radiotherapy dose delivery

    PubMed Central

    Balasingh, S. Timothy Peace; Singh, I. Rabi Raja; Rafic, K. Mohamathu; Babu, S. Ebenezer Suman; Ravindran, B. Paul

    2015-01-01

    As complex treatment techniques such as intensity modulated radiotherapy (IMRT) entail the modeling of rounded leaf-end transmission in the treatment planning system, it is important to accurately determine the dosimetric leaf gap (DLG) value for a precise calculation of dose. The advancements in the application of the electronic portal imaging device (EPID) in quality assurance (QA) and dosimetry have facilitated the determination of DLG in this study. The DLG measurements were performed using both the ionization chamber (DLGion) and EPID (DLGEPID) for sweeping gap fields of different widths. The DLGion values were found to be 1.133 mm and 1.120 mm for perpendicular and parallel orientations of the 0.125 cm3 ionization chamber, while the corresponding DLGEPID values were 0.843 mm and 0.819 mm, respectively. It was found that the DLG was independent of volume and orientation of the ionization chamber, depth, source to surface distance (SSD), and the rate of dose delivery. Since the patient-specific QA tests showed comparable results between the IMRT plans based on the DLGEPID and DLGion, it is concluded that the EPID can be a suitable alternative in the determination of DLG. PMID:26500398

  9. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device.

    PubMed

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-21

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions. PMID:20019398

  10. A novel method for patient exit and entrance dose prediction based on water equivalent path length measured with an amorphous silicon electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Kavuma, Awusi; Glegg, Martin; Metwaly, Mohamed; Currie, Garry; Elliott, Alex

    2010-01-01

    In vivo dosimetry is one of the quality assurance tools used in radiotherapy to monitor the dose delivered to the patient. Electronic portal imaging device (EPID) images for a set of solid water phantoms of varying thicknesses were acquired and the data fitted onto a quadratic equation, which relates the reduction in photon beam intensity to the attenuation coefficient and material thickness at a reference condition. The quadratic model is used to convert the measured grey scale value into water equivalent path length (EPL) at each pixel for any material imaged by the detector. For any other non-reference conditions, scatter, field size and MU variation effects on the image were corrected by relative measurements using an ionization chamber and an EPID. The 2D EPL is linked to the percentage exit dose table, for different thicknesses and field sizes, thereby converting the plane pixel values at each point into a 2D dose map. The off-axis ratio is corrected using envelope and boundary profiles generated from the treatment planning system (TPS). The method requires field size, monitor unit and source-to-surface distance (SSD) as clinical input parameters to predict the exit dose, which is then used to determine the entrance dose. The measured pixel dose maps were compared with calculated doses from TPS for both entrance and exit depth of phantom. The gamma index at 3% dose difference (DD) and 3 mm distance to agreement (DTA) resulted in an average of 97% passing for the square fields of 5, 10, 15 and 20 cm. The exit dose EPID dose distributions predicted by the algorithm were in better agreement with TPS-calculated doses than phantom entrance dose distributions.

  11. Feasibility of fully automated detection of fiducial markers implanted into the prostate using electronic portal imaging: A comparison of methods

    SciTech Connect

    Harris, Emma J. . E-mail: eharris@icr.ac.uk; McNair, Helen A.; Evans, Phillip M.

    2006-11-15

    Purpose: To investigate the feasibility of fully automated detection of fiducial markers implanted into the prostate using portal images acquired with an electronic portal imaging device. Methods and Materials: We have made a direct comparison of 4 different methods (2 template matching-based methods, a method incorporating attenuation and constellation analyses and a cross correlation method) that have been published in the literature for the automatic detection of fiducial markers. The cross-correlation technique requires a-priory information from the portal images, therefore the technique is not fully automated for the first treatment fraction. Images of 7 patients implanted with gold fiducial markers (8 mm in length and 1 mm in diameter) were acquired before treatment (set-up images) and during treatment (movie images) using 1MU and 15MU per image respectively. Images included: 75 anterior (AP) and 69 lateral (LAT) set-up images and 51 AP and 83 LAT movie images. Using the different methods described in the literature, marker positions were automatically identified. Results: The method based upon cross correlation techniques gave the highest percentage detection success rate of 99% (AP) and 83% (LAT) set-up (1MU) images. The methods gave detection success rates of less than 91% (AP) and 42% (LAT) set-up images. The amount of a-priory information used and how it affects the way the techniques are implemented, is discussed. Conclusions: Fully automated marker detection in set-up images for the first treatment fraction is unachievable using these methods and that using cross-correlation is the best technique for automatic detection on subsequent radiotherapy treatment fractions.

  12. High field magnetic resonance imaging-based gel dosimetry for small radiation fields

    NASA Astrophysics Data System (ADS)

    Ding, Xuanfeng

    Small megavoltage photon radiation fields (< 3cm diameter) are used in advanced radiation therapy techniques, such as intensity modulated radiotherapy, and stereotactic radiosurgery, as well as for cellular and preclinical radiobiology studies (very small fields, <1 mm diameter). Radiation dose characteristics for these small fields are difficult to determine in multiple dimensions because of steep dose gradients (30--40% per mm) and conditions of electronic disequilibrium. Conventional radiation dosimetry techniques have limitations for small fields because detector size may be large compared to radiation field size and/or dose acquisition may be restricted to one or two dimensions. Polymer gel dosimetry, is a three-dimensional (3D) dosimeter based on radiation-induced polymerization of tissue equivalent gelatin. Polymer gel dosimeters can be read using magnetic resonance imaging (MRI), which detects changes in relaxivity due to gel polymerization. Spatial resolution for dose readout is limited to 0.25--0.5mm pixel size because of available the magnetic field strengths (1.5T and 3T) and the stability of polymer gelatin at room temperature. A reliable glucose-based MAGIC (methacrylic and ascorbic acid in gelatine initiated by copper) gel dosimeter was formulated and evaluated for small field 3D dosimetry using 3T and 7T high field MRI for dose readout. The melting point of the original recipe MAGIC gel was increased by 4°C by adding 10% glucose to improve gel stability. Excellent spatial resolution of 79um (1.5 hr scan) and 39um (12 hr scan) was achieved using 7T MRI, proving gel stability for long scan times and high resolution 3D dosimetry.

  13. Surface area overestimation within three-dimensional digital images and its consequence for skeletal dosimetry.

    PubMed

    Rajon, D A; Patton, P W; Shah, A P; Watchman, C J; Bolch, W E

    2002-05-01

    The most recent methods for trabecular bone dosimetry are based on Monte Carlo transport simulations within three-dimensional (3D) images of real human bone samples. Nuclear magnetic resonance and micro-computed tomography have been commonly used as imaging tools for studying trabecular microstructure. In order to evaluate the accuracy of these techniques for radiation dosimetry, a previous study was conducted that showed an overestimate in the absorbed fraction of energy for low-energy electrons emitted within the marrow space and irradiating the bone trabeculae. This problem was found to be related to an overestimate of the surface area of the true bone-marrow interface within the 3D digital images, and was identified as the surface-area effect. The goal of the present study is to better understand how this surface-area effect occurs in the case of single spheres representing individual marrow cavities within trabecular bone. First, a theoretical study was conducted which showed that voxelization of the spherical marrow cavity results in a 50% overestimation of the spherical surface area. Moreover, this overestimation cannot be reduced through a reduction in the voxel size (e.g., improved image resolution). Second, a series of single-sphere marrow cavity models was created with electron sources simulated within the sphere (marrow source) and outside the sphere (bone trabeculae source). The series of single-sphere models was then voxelized to represent 3D digital images of varying resolution. Transport calculations were made for both marrow and bone electron sources within these simulated images. The study showed that for low-energy electrons (<100 keV), the 50% overestimate of the bone-marrow interface surface area can lead to a 50% overestimate of the cross-absorbed fraction. It is concluded that while improved resolution will not reduce the surface area effects found within 3D image-based transport models, a tenfold improvement in current image resolution would

  14. Portal Hypertension

    MedlinePlus

    ... Chronic Hepatitis C Additional Content Medical News Portal Hypertension By Steven K. Herrine, MD NOTE: This is ... Hepatic Encephalopathy Jaundice in Adults Liver Failure Portal Hypertension Portal hypertension is abnormally high blood pressure in ...

  15. A semiconductor radiation imaging pixel detector for space radiation dosimetry.

    PubMed

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented. PMID:26256630

  16. A semiconductor radiation imaging pixel detector for space radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Kroupa, Martin; Bahadori, Amir; Campbell-Ricketts, Thomas; Empl, Anton; Hoang, Son Minh; Idarraga-Munoz, John; Rios, Ryan; Semones, Edward; Stoffle, Nicholas; Tlustos, Lukas; Turecek, Daniel; Pinsky, Lawrence

    2015-07-01

    Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.

  17. A self-sufficient method for calibration of Varian electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Sun, Baozhou; Yaddanapudi, Sridhar; Goddu, Sreekrishna M.; Mutic, Sasa

    2015-01-01

    Electronic portal imaging device (EPID) is currently used for dosimetric verification of IMRT fields and linac quality assurance (QA). It is critical to understand the dosimetric response and perform an accurate and robust calibration of EPID. We present the implementation of an efficient method for the calibration and the validation of a Varian EPID, which relies only on data collected with that specific device. The calibration method is based on images obtained with five shifts of EPID panel. With this method, the relative gain (sensitivity) of each element of a detector matrix is calculated and applied on top of the calibration determined with the flood-field procedure. The calibration procedure was verified using a physical wedge inserted in the beam line and the corrected profile shows consistent results with the measurements using a calibrated 2D array. This method does not rely on the beam profile used in the flood-field calibration process, which allows EPID calibration in 10 minutes with no additional equipment compared to at least 2 hours to obtain beam profile and scanning beam equipment requirement with the conventional method.

  18. Characterization of Target Volume Changes During Breast Radiotherapy Using Implanted Fiducial Markers and Portal Imaging

    SciTech Connect

    Harris, Emma J. Donovan, Ellen M.; Yarnold, John R.; Coles, Charlotte E.; Evans, Philip M.

    2009-03-01

    Purpose: To determine target volume changes by using volume and shape analysis for patients receiving radiotherapy after breast conservation surgery and to compare different methods of automatically identifying changes in target volume, position, size, and shape during radiotherapy for use in adaptive radiotherapy. Methods and Materials: Eleven patients undergoing whole breast radiotherapy had fiducial markers sutured into the excision cavity at the time of surgery. Patients underwent imaging using computed tomography (for planning and at the end of treatment) and during treatment by using portal imaging. A marker volume (MV) was defined by using the measured marker positions. Changes in both individual marker positions and MVs were identified manually and using six automated similarity indices. Comparison of the two types of analysis (manual and automated) was undertaken to establish whether similarity indices can be used to automatically detect changes in target volumes. Results: Manual analysis showed that 3 patients had significant MV reduction. This analysis also showed significant changes between planning computed tomography and the start of treatment for 9 patients, including single and multiple marker movement, deformation (shape change), and rotation. Four of the six similarity indices were shown to be sensitive to the observed changes. Conclusions: Significant changes in size, shape, and position occur to the fiducial marker-defined volume. Four similarity indices can be used to identify these changes, and a protocol for their use in adaptive radiotherapy is suggested.

  19. Use of a megavoltage electronic portal imaging device to identify prosthetic materials.

    PubMed

    Moutrie, Vaughan; Kairn, Tanya; Rosenfeld, Anatoly; Charles, Paul H

    2015-03-01

    To achieve accurate dose calculations in radiation therapy the electron density of patient tissues must be known. This information is ordinarily gained from a computed tomography (CT) image that has been calibrated to allow relative electron density (RED) to be determined from CT number. When high density objects such as metallic prostheses are involved, direct use of the CT data can become problematic due to the artefacts introduced by high attenuation of the beam. This requires manual correction of the density values, however the properties of the implanted prosthetic are not always known. A method is introduced where the RED of such an object can be determined using the treatment beam of a linear accelerator with an electronic portal imaging device. The technique was tested using a metallic hip replacement that was placed within a container of water. Compared to the theoretical RED of 6.8 for cobalt-chromium alloy, these measurements calculated a value of 6.4 ± 0.7. This would allow the distinction of an implant as Co-Cr or steel, which have similar RED, or titanium, which is much less dense with an RED of 3.7. PMID:25576013

  20. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device

    SciTech Connect

    Samant, Sanjiv S.; Gopal, Arun

    2006-09-15

    Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of kinestatis and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a

  1. Improved dosimetry for targeted radionuclide therapy using nonrigid registration on sequential SPECT images

    SciTech Connect

    Ao, Edwin C. I.; Mok, Greta S. P.; Wu, Nien-Yun; Wang, Shyh-Jen; Song, Na

    2015-02-15

    Purpose: Voxel-level and patient-specific 3D dosimetry for targeted radionuclide therapy (TRT) typically involves serial nuclear medicine scans. Misalignment of the images can result in reduced dosimetric accuracy. Since the scans are typically performed over a period of several days, there will be patient movement between scans and possible nonrigid organ deformation. This work aims to implement and evaluate the use of nonrigid image registration on a series of quantitative SPECT (QSPECT) images for TRT dosimetry. Methods: A population of 4D extended cardiac torso phantoms, comprised of three In-111 Zevalin biokinetics models and three anatomical variations, was generated based on the patient data. The authors simulated QSPECT acquisitions at five time points. At each time point, individual organ and whole-body deformation between scans were modeled by translating/rotating organs and the body up to 5°/voxels, keeping ≤5% difference in organ volume. An analytical projector was used to generate realistic noisy projections for a medium energy general purpose collimator. Projections were reconstructed using OS-EM algorithm with geometric collimator detector response, attenuation, and scatter corrections. The QSPECT images were registered using organ-based nonrigid image registration method. The cumulative activity in each voxel was obtained by integrating the activity over time. Dose distribution images were obtained by convolving the cumulative activity images with a Y-90 dose kernel. Dose volume histograms (DVHs) for organs-of-interest were analyzed. Results: After nonrigid registration, the mean differences in organ doses compared to the case without misalignment were improved from (−15.50 ± 5.59)% to (−2.12 ± 1.05)% and (−7.28 ± 2.30)% to (−0.23 ± 0.71)% for the spleen and liver, respectively. For all organs, the cumulative DVHs showed improvement after nonrigid registration and the normalized absolute error of differential DVHs ranged from 6.79% to

  2. Superficial Dosimetry Imaging of Čerenkov Emission in Electron Beam Radiotherapy of Phantoms

    PubMed Central

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2014-01-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6cm×6cm to 20cm×20cm, incident angles from 0 to 50 degrees, and energies from 6 to 18 MeV. The Čerenkov images were compared with estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2=0.97) with reference data of the known dose for energies from 6MeV to 18MeV. When orthogonal delivery was done, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2~4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50 degrees, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system (TPS) had at a larger error (OPT=±1~2%, Diode=±2~3%, TPS=±6~8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable way to superficial dosimetry imaging from incident radiotherapy beams of electrons. PMID:23880473

  3. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms.

    PubMed

    Zhang, Rongxiao; Fox, Colleen J; Glaser, Adam K; Gladstone, David J; Pogue, Brian W

    2013-08-21

    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R(2) = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (± 2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ± 1~2%, diode = ± 2~3%, TPS = ± 6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons. PMID:23880473

  4. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    NASA Astrophysics Data System (ADS)

    Gu, Songxiang; Gupta, Rajiv; Kyprianou, Iacovos

    2011-09-01

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  5. Superficial dosimetry imaging of Čerenkov emission in electron beam radiotherapy of phantoms

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao; Fox, Colleen J.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2013-08-01

    Čerenkov emission is generated from ionizing radiation in tissue above 264 keV energy. This study presents the first examination of this optical emission as a surrogate for the absorbed superficial dose. Čerenkov emission was imaged from the surface of flat tissue phantoms irradiated with electrons, using a range of field sizes from 6 cm × 6 cm to 20 cm × 20 cm, incident angles from 0° to 50°, and energies from 6 to 18 MeV. The Čerenkov images were compared with the estimated superficial dose in phantoms from direct diode measurements, as well as calculations by Monte Carlo and the treatment planning system. Intensity images showed outstanding linear agreement (R2 = 0.97) with reference data of the known dose for energies from 6 to 18 MeV. When orthogonal delivery was carried out, the in-plane and cross-plane dose distribution comparisons indicated very little difference (±2-4% differences) between the different methods of estimation as compared to Čerenkov light imaging. For an incident angle 50°, the Čerenkov images and Monte Carlo simulation show excellent agreement with the diode data, but the treatment planning system had a larger error (OPT = ±1˜2%, diode = ±2˜3%, TPS = ±6-8% differences) as would be expected. The sampling depth of superficial dosimetry based on Čerenkov radiation has been simulated in a layered skin model, showing the potential of sampling depth tuning by spectral filtering. Taken together, these measurements and simulations indicate that Čerenkov emission imaging might provide a valuable method of superficial dosimetry imaging from incident radiotherapy beams of electrons.

  6. Incorporating multislice imaging into x-ray CT polymer gel dosimetry

    SciTech Connect

    Johnston, H.; Hilts, M.; Jirasek, A.

    2015-04-15

    Purpose: To evaluate multislice computed tomography (CT) scanning for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD) and to establish a baseline assessment of image noise and uniformity in an unirradiated gel dosimeter. Methods: A 16-slice CT scanner was used to acquire images through a 1 L cylinder filled with water. Additional images were collected using a single slice machine. The variability in CT number (N{sub CT}) associated with the anode heel effect was evaluated and used to define a new slice-by-slice background subtraction artifact removal technique for CT PGD. Image quality was assessed for the multislice system by evaluating image noise and uniformity. The agreement in N{sub CT} for slices acquired simultaneously using the multislice detector array was also examined. Further study was performed to assess the effects of increasing x-ray tube load on the constancy of measured N{sub CT} and overall scan time. In all cases, results were compared to the single slice machine. Finally, images were collected throughout the volume of an unirradiated gel dosimeter to quantify image noise and uniformity before radiation is delivered. Results: Slice-by-slice background subtraction effectively removes the variability in N{sub CT} observed across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image noise was higher for the multislice system compared to the single slice scanner, but overall image quality was comparable between the two systems. Further study showed N{sub CT} was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thicknesses examined. In addition, the multislice system was found to eliminate variations in N{sub CT} due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to

  7. A review of 3D image-based dosimetry, technical considerations and emerging perspectives in 90Y microsphere therapy

    PubMed Central

    O’ Doherty, Jim

    2016-01-01

    Yttrium-90 radioembolization (90Y-RE) is a well-established therapy for the treatment of hepatocellular carcinoma (HCC) and also of metastatic liver deposits from other malignancies. Nuclear Medicine and Cath Lab diagnostic imaging takes a pivotal role in the success of the treatment, and in order to fully exploit the efficacy of the technique and provide reliable quantitative dosimetry that are related to clinical endpoints in the era of personalized medicine, technical challenges in imaging need to be overcome. In this paper, the extensive literature of current 90Y-RE techniques and challenges facing it in terms of quantification and dosimetry are reviewed, with a focus on the current generation of 3D dosimetry techniques. Finally, new emerging techniques are reviewed which seek to overcome these challenges, such as high-resolution imaging, novel surgical procedures and the use of other radiopharmaceuticals for therapy and pre-therapeutic planning. PMID:27182449

  8. An attenuation integral digital imaging technique for the treatment portal verification of conventional and intensity-modulated radiotherapy

    SciTech Connect

    Guan Huaiqun

    2010-07-15

    Purpose: To propose an attenuation integral digital imaging (AIDI) technique for the treatment portal verification of conventional and intensity-modulated radiotherapy (IMRT). Methods: In AIDI technique, an open in air fluence image I{sub o} and a patient fluence image I were acquired under the same exposure. Then after doing the dark field correction for both the I{sub o} and I, the AIDI image was simply calculated as log(I{sub o}/I), which is the attenuation integral along the ray path from the x-ray source to a detector pixel element. Theoretical analysis for the low contrast detection and the contrast to noise ratio (CNR) of AIDI was presented and compared to those for the fluence imaging. With AIDI, the variation of x-ray fluence and the variation of individual detector pixel's response can be automatically compensated without using the flood field correction. Results: The AIDI image for a contrast detail phantom demonstrated that it can efficiently suppress the background structures such as the couch and generate better visibility for low contrast objects with megavoltage x rays. The AIDI image acquired for a Catphan 500 phantom using a 60 deg. electronic dynamic wedge field also revealed more contrast disks than the fluence imaging did. Finally, AIDI for an IMRT field of a head/neck patient successfully displayed the anatomical structures underneath the treatment portal but not shown in fluence imaging. Conclusions: For IMRT and high degree wedge beams, direct imaging using them is difficult because their photon fluence is highly nonuniform. But AIDI can be used for the treatment portal verification of these beams.

  9. Reference radiochromic film dosimetry in kilovoltage photon beams during CBCT image acquisition

    SciTech Connect

    Tomic, Nada; Devic, Slobodan; DeBlois, Francois; Seuntjens, Jan

    2010-03-15

    Purpose: A common approach for dose assessment during cone beam computed tomography (CBCT) acquisition is to use thermoluminescent detectors for skin dose measurements (on patients or phantoms) or ionization chamber (in phantoms) for body dose measurements. However, the benefits of a daily CBCT image acquisition such as margin reduction in planning target volume and the image quality must be weighted against the extra dose received during CBCT acquisitions. Methods: The authors describe a two-dimensional reference dosimetry technique for measuring dose from CBCT scans using the on-board imaging system on a Varian Clinac-iX linear accelerator that employs the XR-QA radiochromic film model, specifically designed for dose measurements at low energy photons. The CBCT dose measurements were performed for three different body regions (head and neck, pelvis, and thorax) using humanoid Rando phantom. Results: The authors report on both surface dose and dose profiles measurements during clinical CBCT procedures carried out on a humanoid Rando phantom. Our measurements show that the surface doses per CBCT scan can range anywhere between 0.1 and 4.7 cGy, with the lowest surface dose observed in the head and neck region, while the highest surface dose was observed for the Pelvis spot light CBCT protocol in the pelvic region, on the posterior side of the Rando phantom. The authors also present results of the uncertainty analysis of our XR-QA radiochromic film dosimetry system. Conclusions: Radiochromic film dosimetry protocol described in this work was used to perform dose measurements during CBCT acquisitions with the one-sigma dose measurement uncertainty of up to 3% for doses above 1 cGy. Our protocol is based on film exposure calibration in terms of ''air kerma in air,'' which simplifies both the calibration procedure and reference dosimetry measurements. The results from a full Monte Carlo investigation of the dose conversion of measured XR-QA film dose at the surface into

  10. Tracking lung tumour motion using a dynamically weighted optical flow algorithm and electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Teo, P. T.; Crow, R.; Van Nest, S.; Sasaki, D.; Pistorius, S.

    2013-07-01

    This paper investigates the feasibility and accuracy of using a computer vision algorithm and electronic portal images to track the motion of a tumour-like target from a breathing phantom. A multi-resolution optical flow algorithm that incorporates weighting based on the differences between frames was used to obtain a set of vectors corresponding to the motion between two frames. A global value representing the average motion was obtained by computing the average weighted mean from the set of vectors. The tracking accuracy of the optical flow algorithm as a function of the breathing rate and target visibility was investigated. Synthetic images with different contrast-to-noise ratios (CNR) were created, and motions were tracked. The accuracy of the proposed algorithm was compared against potentiometer measurements giving average position errors of 0.6 ± 0.2 mm, 0.2 ± 0.2 mm and 0.1 ± 0.1 mm with average velocity errors of 0.2 ± 0.2 mm s-1, 0.4 ± 0.3 mm s-1 and 0.6 ± 0.5 mm s-1 for 6, 12 and 16 breaths min-1 motions, respectively. The cumulative average position error reduces more rapidly with the greater number of breathing cycles present in higher breathing rates. As the CNR increases from 4.27 to 5.6, the average relative error approaches zero and the errors are less dependent on the velocity. When tracking a tumour on a patient's digitally reconstructed radiograph images, a high correlation was obtained between the dynamically weighted optical flow algorithm, a manual delineation process and a centroid tracking algorithm. While the accuracy of our approach is similar to that of other methods, the benefits are that it does not require manual delineation of the target and can therefore provide accurate real-time motion estimation during treatment.

  11. SU-E-J-237: Image Feature Based DRR and Portal Image Registration

    SciTech Connect

    Wang, X; Chang, J

    2014-06-01

    Purpose: Two-dimensional (2D) matching of the kV X-ray and digitally reconstructed radiography (DRR) images is an important setup technique for image-guided radiotherapy (IGRT). In our clinics, mutual information based methods are used for this purpose on commercial linear accelerators, but with often needs for manual corrections. This work proved the feasibility that feature based image transform can be used to register kV and DRR images. Methods: The scale invariant feature transform (SIFT) method was implemented to detect the matching image details (or key points) between the kV and DRR images. These key points represent high image intensity gradients, and thus the scale invariant features. Due to the poor image contrast from our kV image, direct application of the SIFT method yielded many detection errors. To assist the finding of key points, the center coordinates of the kV and DRR images were read from the DICOM header, and the two groups of key points with similar relative positions to their corresponding centers were paired up. Using these points, a rigid transform (with scaling, horizontal and vertical shifts) was estimated. We also artificially introduced vertical and horizontal shifts to test the accuracy of our registration method on anterior-posterior (AP) and lateral pelvic images. Results: The results provided a satisfactory overlay of the transformed kV onto the DRR image. The introduced vs. detected shifts were fit into a linear regression. In the AP image experiments, linear regression analysis showed a slope of 1.15 and 0.98 with an R2 of 0.89 and 0.99 for the horizontal and vertical shifts, respectively. The results are 1.2 and 1.3 with R2 of 0.72 and 0.82 for the lateral image shifts. Conclusion: This work provided an alternative technique for kV to DRR alignment. Further improvements in the estimation accuracy and image contrast tolerance are underway.

  12. Clinical use of electronic portal imaging: report of AAPM Radiation Therapy Committee Task Group 58.

    PubMed

    Herman, M G; Balter, J M; Jaffray, D A; McGee, K P; Munro, P; Shalev, S; Van Herk, M; Wong, J W

    2001-05-01

    AAPM Task Group 58 was created to provide materials to help the medical physicist and colleagues succeed in the clinical implementation of electronic portal imaging devices (EPIDs) in radiation oncology. This complex technology has matured over the past decade and is capable of being integrated into routine practice. However, the difficulties encountered during the specification, installation, and implementation process can be overwhelming. TG58 was charged with providing sufficient information to allow the users to overcome these difficulties and put EPIDs into routine clinical practice. In answering the charge, this report provides; comprehensive information about the physics and technology of currently available EPID systems; a detailed discussion of the steps required for successful clinical implementation, based on accumulated experience; a review of software tools available and clinical use protocols to enhance EPID utilization; and specific quality assurance requirements for initial and continuing clinical use of the systems. Specific recommendations are summarized to assist the reader with successful implementation and continuing use of an EPID. PMID:11393467

  13. Clinical practice and evaluation of electronic portal imaging device for VMAT quality assurance

    SciTech Connect

    Huang, Yen-Cho; Yeh, Chien-Yi; Yeh, Jih-Hsiang; Lo, Ching-Jung; Tsai, Ping-Fang; Hung, Chih-Hung; Tsai, Chieh-Sheng; Chen, Chen-Yuan

    2013-04-01

    Volumetric-modulated arc therapy (VMAT) is a novel extension of the intensity-modulated radiation therapy (IMRT) technique, which has brought challenges to dose verification. To perform VMAT pretreatment quality assurance, an electronic portal imaging device (EPID) can be applied. This study's aim was to evaluate EPID performance for VMAT dose verification. First, dosimetric characteristics of EPID were investigated. Then 10 selected VMAT dose plans were measured by EPID with the rotational method. The overall variation of EPID dosimetric characteristics was within 1.4% for VMAT. The film system serving as a conventional tool for verification showed good agreement both with EPID measurements ([94.1 ± 1.5]% with 3 mm/3% criteria) and treatment planning system (TPS) calculations ([97.4 ± 2.8]% with 3 mm/3% criteria). In addition, EPID measurements for VMAT presented good agreement with TPS calculations ([99.1 ± 0.6]% with 3 mm/3% criteria). The EPID system performed the robustness of potential error findings in TPS calculations and the delivery system. This study demonstrated that an EPID system can be used as a reliable and efficient quality assurance tool for VMAT dose verification.

  14. Use of a line-pair resolution phantom for comprehensive quality assurance of electronic portal imaging devices based on fundamental imaging metrics

    SciTech Connect

    Gopal, Arun; Samant, Sanjiv S.

    2009-06-15

    Image guided radiation therapy solutions based on megavoltage computed tomography (MVCT) involve the extension of electronic portal imaging devices (EPIDs) from their traditional role of weekly localization imaging and planar dose mapping to volumetric imaging for 3D setup and dose verification. To sustain the potential advantages of MVCT, EPIDs are required to provide improved levels of portal image quality. Therefore, it is vital that the performance of EPIDs in clinical use is maintained at an optimal level through regular and rigorous quality assurance (QA). Traditionally, portal imaging QA has been carried out by imaging calibrated line-pair and contrast resolution phantoms and obtaining arbitrarily defined QA indices that are usually dependent on imaging conditions and merely indicate relative trends in imaging performance. They are not adequately sensitive to all aspects of image quality unlike fundamental imaging metrics such as the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) that are widely used to characterize detector performance in radiographic imaging and would be ideal for QA purposes. However, due to the difficulty of performing conventional MTF measurements, they have not been used for routine clinical QA. The authors present a simple and quick QA methodology based on obtaining the MTF, NPS, and DQE of a megavoltage imager by imaging standard open fields and a bar-pattern QA phantom containing 2 mm thick tungsten line-pair bar resolution targets. Our bar-pattern based MTF measurement features a novel zero-frequency normalization scheme that eliminates normalization errors typically associated with traditional bar-pattern measurements at megavoltage x-ray energies. The bar-pattern QA phantom and open-field images are used in conjunction with an automated image analysis algorithm that quickly computes the MTF, NPS, and DQE of an EPID system. Our approach combines the fundamental advantages of

  15. Patient dosimetry and image quality in digital radiology from online audit of the X-ray system.

    PubMed

    Vano, E; Fernandez, J M; Ten, J I; Gonzalez, L; Guibelalde, E; Prieto, C

    2005-01-01

    The present work describes an online patient dosimetry and an image quality system in digital radiology. For the patient dosimetry audit, current mean values of entrance surface dose (ESD) were compared with local and national reference values (RVs) for the specific examination type evaluated. Mean values exceeding the RV trigger an alarm signal and then an evaluation of the technical parameters, operational practice and image quality was begun, using data available in the DICOM header to derive any abnormal settings or performance to obtain the image. The X-ray tube output for different kVp values is measured periodically, to allow for the automatic calculation of ESD. The system allows also for image audit, linking the dose imparted, the image quality and the alarm condition, if produced. Results and the benefits derived from this online quality control are discussed here. PMID:16461529

  16. Evaluation of intra- and inter-fraction motion in breast radiotherapy using electronic portal cine imaging.

    PubMed

    Kron, T; Lee, C; Perera, F; Yu, E

    2004-10-01

    Breast irradiation is one of the most challenging problems in radiotherapy due to the complex shape of the target volume, proximity of radiation sensitive normal structures and breathing motion. It was the aim of the present study to use electronic portal imaging (EPI) during treatment to determine intra- and inter-fraction motion in patients undergoing radiotherapy and to correlate the magnitude of motion with patient specific parameters. EPI cine images were acquired from the medial tangential fields of twenty radiotherapy patients on a minimum of 5 days each over the course of their treatment. The treatments were administered using 10 MV X-rays and dynamic wedges on a Varian Clinac 2100CD linear accelerator. Depending on the incident dose and the angle of the wedge, between 4 and 16 images could be acquired in one session using an EPI device based on liquid ionization chambers (Varian). The border between lung and chest-wall could be easily detected in all images and quantitative measurements were taken for the amount of lung in the field and the distance of the breast tissue from the field edges. Inter-fraction variability was found to be about twice as large as intra-fraction variability. The largest variability was detected in cranio/caudal direction (intra-fraction: 1.3 +/- 0.4 mm; inter-fraction: 2.6 +/- 1.3 mm) while the lung involvement varied by 1.1 +/- 0.2 mm and 1.8 +/- 0.6 mm intra- and inter-fraction, respectively. This indicates that the effect of breathing motion on the amount of radiated lung was not of major concern in the patients studied. Of other patient specific parameters such as body weight, breast separation, field size and location of the target, only increasing age was significantly correlated with larger inter-fraction motion. Acquisition of EPI cine loops proved to be a quick and easy technique to establish the amount of patient movement during breast radiotherapy. The relatively small variability found in the present pilot study

  17. SIFT: A method to verify the IMRT fluence delivered during patient treatment using an electronic portal imaging device

    SciTech Connect

    Vieira, Sandra C. . E-mail: s.vieira@erasmusmc.nl; Dirkx, Maarten L.P.; Heijmen, Ben J.M.; Boer, Hans C.J. de

    2004-11-01

    Purpose: Radiotherapy patients are increasingly treated with intensity-modulated radiotherapy (IMRT) and high tumor doses. As part of our quality control program to ensure accurate dose delivery, a new method was investigated that enables the verification of the IMRT fluence delivered during patient treatment using an electronic portal imaging device (EPID), irrespective of changes in patient geometry. Methods and materials: Each IMRT treatment field is split into a static field and a modulated field, which are delivered in sequence. Images are acquired for both fields using an EPID. The portal dose image obtained for the static field is used to determine changes in patient geometry between the planning CT scan and the time of treatment delivery. With knowledge of these changes, the delivered IMRT fluence can be verified using the portal dose image of the modulated field. This method, called split IMRT field technique (SIFT), was validated first for several phantom geometries, followed by clinical implementation for a number of patients treated with IMRT. Results: The split IMRT field technique allows for an accurate verification of the delivered IMRT fluence (generally within 1% [standard deviation]), even if large interfraction changes in patient geometry occur. For interfraction radiological path length changes of 10 cm, deliberately introduced errors in the delivered fluence could still be detected to within 1% accuracy. Application of SIFT requires only a minor increase in treatment time relative to the standard IMRT delivery. Conclusions: A new technique to verify the delivered IMRT fluence from EPID images, which is independent of changes in the patient geometry, has been developed. SIFT has been clinically implemented for daily verification of IMRT treatment delivery.

  18. Dosimetry and image quality in digital mammography facilities in the State of Minas Gerais, Brazil

    NASA Astrophysics Data System (ADS)

    da Silva, Sabrina Donato; Joana, Geórgia Santos; Oliveira, Bruno Beraldo; de Oliveira, Marcio Alves; Leyton, Fernando; Nogueira, Maria do Socorro

    2015-11-01

    According to the National Register of Health Care Facilities (CNES), there are approximately 477 mammography systems operating in the state of Minas Gerais, Brazil, of which an estimated 200 are digital apparatus using mainly computerized radiography (CR) or direct radiography (DR) systems. Mammography is irreplaceable in the diagnosis and early detection of breast cancer, the leading cause of cancer death among women worldwide. A high standard of image quality alongside smaller doses and optimization of procedures are essential if early detection is to occur. This study aimed to determine dosimetry and image quality in 68 mammography services in Minas Gerais using CR or DR systems. The data of this study were collected between the years of 2011 and 2013. The contrast-to-noise ratio proved to be a critical point in the image production chain in digital systems, since 90% of services were not compliant in this regard, mainly for larger PMMA thicknesses (60 and 70 mm). Regarding the image noise, only 31% of these were compliant. The average glandular dose found is of concern, since more than half of the services presented doses above acceptable limits. Therefore, despite the potential benefits of using CR and DR systems, the employment of this technology has to be revised and optimized to achieve better quality image and reduce radiation dose as much as possible.

  19. A Comparison of Techniques for 90Y PET/CT Image-Based Dosimetry Following Radioembolization with Resin Microspheres

    PubMed Central

    Pasciak, Alexander S.; Bourgeois, Austin C.; Bradley, Yong C.

    2014-01-01

    90Y PET/CT following radioembolization has recently been established as a viable diagnostic tool, capable of producing images that are both quantitative and have superior image quality than alternative 90Y imaging modalities. Because radioembolization is assumed to be a permanent implant, it is possible to convert quantitative 90Y PET image sets into data representative of spatial committed absorbed-dose. Multiple authors have performed this transformation using dose-point kernel (DPK) convolution to account for the transport of the high-energy 90Y β-particles. This article explores a technique called the Local Deposition Method (LDM), an alternative to DPK convolution for 90Y image-based dosimetry. The LDM assumes that the kinetic energy from each 90Y β-particle is deposited locally, within the voxel where the decay occurred. Using the combined analysis of phantoms scanned using 90Y PET/CT and ideal mathematical phantoms, an accuracy comparison of DPK convolution and the LDM has been performed. Based on the presented analysis, DPK convolution provides no detectible accuracy benefit over the LDM for 90Y PET-based dosimetry. For PET systems with 90Y resolution poorer than 3.25 mm at full-width and half-max using a small voxel size, the LDM may produce a dosimetric solution that is more accurate than DPK convolution under ideal conditions; however, image noise can obscure some of the perceived benefit. As voxel size increases and resolution decreases, differences between the LDM and DPK convolution are reduced. The LDM method of post-radioembolization dosimetry has the advantage of not requiring additional post-processing. The provided conversion factors can be used to determine committed absorbed-dose using conventional PET image analysis tools. The LDM is a recommended option for routine post-radioembolization 90Y dosimetry based on PET/CT imaging. PMID:24904832

  20. Image-guided in vivo dosimetry for quality assurance of IMRT treatment for prostate cancer

    SciTech Connect

    Wertz, Hansjoerg . E-mail: hansjoerg.wertz@radonk.ma.uni-heidelberg.de; Boda-Heggemann, Judit; Walter, Cornelia; Dobler, Barbara; Mai, Sabine; Wenz, Frederik; Lohr, Frank

    2007-01-01

    Purpose: In external beam radiotherapy (EBRT) and especially in intensity-modulated radiotherapy (IMRT), the accuracy of the dose distribution in the patient is of utmost importance. It was investigated whether image guided in vivo dosimetry in the rectum is a reliable method for online dose verification. Methods and Materials: Twenty-one dose measurements were performed with an ionization chamber in the rectum of 7 patients undergoing IMRT for prostate cancer. The position of the probe was determined with cone beam computed tomography (CBCT). The point of measurement was determined relative to the isocenter and relative to an anatomic reference point. The dose deviations relative to the corresponding doses in the treatment plan were calculated. With an offline CT soft-tissue match, patient positioning after ultrasound was verified. Results: The mean magnitude {+-} standard deviation (SD) of patient positioning errors was 3.0 {+-} 2.5 mm, 5.1 {+-} 4.9 mm, and 4.3 {+-} 2.4 mm in the left-right, anteroposterior and craniocaudal direction. The dose deviations in points at corresponding positions relative to the isocenter were -1.4 {+-} 4.9% (mean {+-} SD). The mean dose deviation at corresponding anatomic positions was 6.5 {+-} 21.6%. In the rare event of insufficient patient positioning, dose deviations could be >30% because of the close proximity of the probe and the posterior dose gradient. Conclusions: Image-guided dosimetry in the rectum during IMRT of the prostate is a feasible and reliable direct method for dose verification when probe position is effectively controlled.

  1. Portal Vein Thrombosis

    PubMed Central

    Mallet, Thierry; Soltys, Remigiusz; Loarte, Pablo

    2015-01-01

    Portal vein thrombosis (PVT) is the blockage or narrowing of the portal vein by a thrombus. It is relatively rare and has been linked with the presence of an underlying liver disease or prothrombotic disorders. We present a case of a young male who presented with vague abdominal symptoms for approximately one week. Imaging revealed the presence of multiple nonocclusive thrombi involving the right portal vein, the splenic vein, and the left renal vein, as well as complete occlusion of the left portal vein and the superior mesenteric vein. We discuss pathogenesis, clinical presentation, and management of both acute and chronic thrombosis. The presence of PVT should be considered as a clue for prothrombotic disorders, liver disease, and other local and general factors that must be carefully investigated. It is hoped that this case report will help increase awareness of the complexity associated with portal vein thrombosis among the medical community. PMID:25802795

  2. A two-dimensional matrix correction for off-axis portal dose prediction errors

    SciTech Connect

    Bailey, Daniel W.; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Podgorsak, Matthew B.

    2013-05-15

    Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ['An effective correction algorithm for off-axis portal dosimetry errors,' Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As in

  3. Characterization and evaluation of 2.5 MV electronic portal imaging for accurate localization of intra- and extracranial stereotactic radiosurgery.

    PubMed

    Song, Kwang Hyun; Snyder, Karen Chin; Kim, Jinkoo; Li, Haisen; Ning, Wen; Rusnac, Robert; Jackson, Paul; Gordon, James; Siddiqui, Salim M; Chetty, Indrin J

    2016-01-01

    2.5 MV electronic portal imaging, available on Varian TrueBeam machines, was characterized using various phantoms in this study. Its low-contrast detectability, spatial resolution, and contrast-to-noise ratio (CNR) were compared with those of conventional 6 MV and kV planar imaging. Scatter effect in large patient body was simulated by adding solid water slabs along the beam path. The 2.5 MV imaging mode was also evaluated using clinically acquired images from 24 patients for the sites of brain, head and neck, lung, and abdomen. With respect to 6 MV, the 2.5 MV achieved higher contrast and preserved sharpness on bony structures with only half of the imaging dose. The quality of 2.5 MV imaging was comparable to that of kV imaging when the lateral separation of patient was greater than 38 cm, while the kV image quality degraded rapidly as patient separation increased. Based on the results of patient images, 2.5 MV imaging was better for cranial and extracranial SRS than the 6 MV imaging. PMID:27455505

  4. Skeletal dosimetry based on µCT images of trabecular bone: update and comparisons

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Cassola, V. F.; Vieira, J. W.; Khoury, H. J.; de Oliveira Lira, C. A. B.; Robson Brown, K.

    2012-06-01

    Two skeletal dosimetry methods using µCT images of human bone have recently been developed: the paired-image radiation transport (PIRT) model introduced by researchers at the University of Florida (UF) in the US and the systematic-periodic cluster (SPC) method developed by researchers at the Federal University of Pernambuco in Brazil. Both methods use µCT images of trabecular bone (TB) to model spongiosa regions of human bones containing marrow cavities segmented into soft tissue volumes of active marrow (AM), trabecular inactive marrow and the bone endosteum (BE), which is a 50 µm thick layer of marrow on all TB surfaces and on cortical bone surfaces next to TB as well as inside the medullary cavities. With respect to the radiation absorbed dose, the AM and the BE are sensitive soft tissues for the induction of leukaemia and bone cancer, respectively. The two methods differ mainly with respect to the number of bone sites and the size of the µCT images used in Monte Carlo calculations and they apply different methods to simulate exposure from radiation sources located outside the skeleton. The PIRT method calculates dosimetric quantities in isolated human bones while the SPC method uses human bones embedded in the body of a phantom which contains all relevant organs and soft tissues. Consequently, the SPC method calculates absorbed dose to the AM and to the BE from particles emitted by radionuclides concentrated in organs or from radiation sources located outside the human body in one calculation step. In order to allow for similar calculations of AM and BE absorbed doses using the PIRT method, the so-called dose response functions (DRFs) have been developed based on absorbed fractions (AFs) of energy for electrons isotropically emitted in skeletal tissues. The DRFs can be used to transform the photon fluence in homogeneous spongiosa regions into absorbed dose to AM and BE. This paper will compare AM and BE AFs of energy from electrons emitted in skeletal

  5. The Effect of E-Portal System on Corporate Image of Universities

    ERIC Educational Resources Information Center

    Tunji, Oyedepo; Nelson, Okorie

    2011-01-01

    Internet connectivity in tertiary institutions in Africa has been summarized in three characteristics-- too little, too expensive and poorly managed (African Tertiary Institutions Connectivity Survey (ATICS), 2006 report). The Internet portal system offers educational organizations the ability to track students needs and promote their programs and…

  6. Transition from Paris dosimetry system to 3D image-guided planning in interstitial breast brachytherapy

    PubMed Central

    Wronczewska, Anna; Kabacińska, Renata; Makarewicz, Roman

    2015-01-01

    Purpose The purpose of this study is to evaluate our first experience with 3D image-guided breast brachytherapy and to compare dose distribution parameters between Paris dosimetry system (PDS) and image-based plans. Material and methods First 49 breast cancer patients treated with 3D high-dose-rate interstitial brachytherapy as a boost were selected for the study. Every patient underwent computed tomography, and the planning target volume (PTV) and organs at risk (OAR) were outlined. Two treatment plans were created for every patient. First, based on a Paris dosimetry system (PDS), and the second one, imaged-based plan with graphical optimization (OPT). The reference isodose in PDS implants was 85%, whereas in OPT plans the isodose was chosen to obtain proper target coverage. Dose and volume parameters (D90, D100, V90, V100), doses at OARs, total reference air kerma (TRAK), and quality assurance parameters: dose nonuniformity ratio (DNR), dose homogeneity index (DHI), and conformity index (COIN) were used for a comparison of both plans. Results The mean number of catheters was 7 but the mean for 20 first patients was 5 and almost 9 for the next 29 patients. The mean value of prescribed isodose for OPT plans was 73%. The mean D90 was 88.2% and 105.8%, the D100 was 59.8% and 75.7%, the VPTV90 was 88.6% and 98.1%, the VPTV100 was 79.9% and 98.9%, and the TRAK was 0.00375 Gym–1 and 0.00439 Gym–1 for the PDS and OPT plans, respectively. The mean DNR was 0.29 and 0.42, the DHI was 0.71 and 0.58, and the COIN was 0.68 and 0.76, respectively. Conclusions The target coverage in image-guided plans (OPT) was significantly higher than in PDS plans but the dose homogeneity was worse. Also, the value of TRAK increased because of change of prescribing isodose. The learning curve slightly affected our results. PMID:26816505

  7. The CEOS Water Portal

    NASA Astrophysics Data System (ADS)

    Miura, Satoko; Sekioka, Shinichi; Kuroiwa, Kaori; Kudo, Yoshiyuki; Koide, Michihiro

    2014-05-01

    The CEOS Water is a one of the DIAS (Data Integration and Analysis System, http://www.editoria.u-tokyo.ac.jp/projects/dias/?locale=en_US) data distributed systems. The CEOS Water Portal system is distributed in the sense that, while the portal system is located in Tokyo, the data is located in archive centers which are globally distributed. For example, some in-situ data is archived at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory in Boulder, Colorado, USA. The NWP station time series and global gridded model output data is archived at the Max Planck Institute for Meteorology (MPIM) in cooperation with the World Data Centerfor Climate in Hamburg, Germany. Part of satellite data is archived at DIAS storage at the University of Tokyo, Japan. This portal does not store data. Instead, according to requests made by users on the web page, it retrieves data from distributed data centers on-the-fly and lets them download and see rendered images/plots. Considering the popularity among water related data centers, OpenDAP protocol is mainly being used between this portal and most of data centers. And this portal also is connected to a kind of data brokering system, which is already connected to multiple data centers. For this interface, OpenSearch protocol is being used. The CEOS Water Portal intends to extend its users to include decision makers and officers like river administrators by facilitating a feedback loop. One example of data and information flow centered on the CEOS Water Portal is shown below. (1)Scientists get various data needed for Model Calculation (WEB-DHM, for example) via the portal. (2)Scientists use Model output data and do analysis. (3)Scientists register their use cases into the portal. (4)Decision makers and officers can refer and acquire use cases and data easily. Users can access the CEOS Water Portal system at http://waterportal.ceos.org/.

  8. Improved dosimetry in prostate brachytherapy using high resolution contrast enhanced magnetic resonance imaging: a feasibility study

    PubMed Central

    Morancy, Tye; Kaplan, Irving; Qureshi, Muhammad M.; Hirsch, Ariel E.; Rofksy, Neil M.; Holupka, Edward; Oismueller, Renee; Hawliczek, Robert; Helbich, Thomas H.; Bloch, B. Nicolas

    2014-01-01

    Purpose To assess detailed dosimetry data for prostate and clinical relevant intra- and peri-prostatic structures including neurovascular bundles (NVB), urethra, and penile bulb (PB) from postbrachytherapy computed tomography (CT) versus high resolution contrast enhanced magnetic resonance imaging (HR-CEMRI). Material and methods Eleven postbrachytherapy prostate cancer patients underwent HR-CEMRI and CT imaging. Computed tomography and HR-CEMRI images were randomized and 2 independent expert readers created contours of prostate, intra- and peri-prostatic structures on each CT and HR-CEMRI scan for all 11 patients. Dosimetry data including V100, D90, and D100 was calculated from these contours. Results Mean V100 values from CT and HR-CEMRI contours were as follows: prostate (98.5% and 96.2%, p = 0.003), urethra (81.0% and 88.7%, p = 0.027), anterior rectal wall (ARW) (8.9% and 2.8%, p < 0.001), left NVB (77.9% and 51.5%, p = 0.002), right NVB (69.2% and 43.1%, p = 0.001), and PB (0.09% and 11.4%, p = 0.005). Mean D90 (Gy) derived from CT and HR-CEMRI contours were: prostate (167.6 and 150.3, p = 0.012), urethra (81.6 and 109.4, p = 0.041), ARW (2.5 and 0.11, p = 0.003), left NVB (98.2 and 58.6, p = 0.001), right NVB (87.5 and 55.5, p = 0.001), and PB (11.2 and 12.4, p = 0.554). Conclusions Findings of this study suggest that HR-CEMRI facilitates accurate and meaningful dosimetric assessment of prostate and clinically relevant structures, which is not possible with CT. Significant differences were seen between CT and HR-CEMRI, with volume overestimation of CT derived contours compared to HR-CEMRI. PMID:25834576

  9. PET/CT image registration: Preliminary tests for its application to clinical dosimetry in radiotherapy

    SciTech Connect

    Banos-Capilla, M. C.; Garcia, M. A.; Bea, J.; Pla, C.; Larrea, L.; Lopez, E.

    2007-06-15

    The quality of dosimetry in radiotherapy treatment requires the accurate delimitation of the gross tumor volume. This can be achieved by complementing the anatomical detail provided by CT images through fusion with other imaging modalities that provide additional metabolic and physiological information. Therefore, use of multiple imaging modalities for radiotherapy treatment planning requires an accurate image registration method. This work describes tests carried out on a Discovery LS positron emission/computed tomography (PET/CT) system by General Electric Medical Systems (GEMS), for its later use to obtain images to delimit the target in radiotherapy treatment. Several phantoms have been used to verify image correlation, in combination with fiducial markers, which were used as a system of external landmarks. We analyzed the geometrical accuracy of two different fusion methods with the images obtained with these phantoms. We first studied the fusion method used by the PET/CT system by GEMS (hardware fusion) on the basis that there is satisfactory coincidence between the reconstruction centers in CT and PET systems; and secondly the fiducial fusion, a registration method, by means of least-squares fitting algorithm of a landmark points system. The study concluded with the verification of the centroid position of some phantom components in both imaging modalities. Centroids were estimated through a calculation similar to center-of-mass, weighted by the value of the CT number and the uptake intensity in PET. The mean deviations found for the hardware fusion method were: vertical bar {delta}x vertical bar {+-}{sigma}=3.3 mm{+-}1.0 mm and vertical bar {delta}y vertical bar {+-}{sigma}=3.6 mm{+-}1.0 mm. These values were substantially improved upon applying fiducial fusion based on external landmark points: vertical bar {delta}x vertical bar {+-}{sigma}=0.7 mm{+-}0.8 mm and vertical bar {delta}y vertical bar {+-}{sigma}=0.3 mm{+-}1.7 mm. We also noted that differences

  10. Biokinetics and dosimetry of target-specific radiopharmaceuticals for molecular imaging and therapy

    NASA Astrophysics Data System (ADS)

    Ferro-Flores, Guillermina; Torres-García, Eugenio; Gonz&Ález-v&Ázquez, Armando; de Murphy, Consuelo Arteaga

    Molecular imaging techniques directly or indirectly monitor and record the spatiotemporal distribution of molecular or cellular processes for biochemical, biologic, diagnostic or therapeutic applications. 99mTc-HYNIC-TOC has shown high stability both in vitro and in vivo and rapid detection of somatostatin receptor-positive tumors. Therapies using radiolabeled anti-CD20 have demonstrated their efficacy in patients with B-cell non-Hodgkin's lymphoma (NHL). The aim of this study was to establish biokinetic models for 99mTc-HYNIC-TOC and 188Re-anti-CD20 and to evaluate their dosimetry as target-specific radiopharmaceuticals. The OLINDA/EXM code was used to calculate patient-specific internal radiation dose estimates. 99mTc-HYNIC-TOC images showed an average tumor/blood ratio of 4.3±0.7 in receptor-positive tumors with an average effective dose of 4.4 mSv. Dosimetric studies indicated that after administration of 5.8 to 7.5 GBq of 188Re-anti-CD20 the absorbed dose to total body would be 0.75 Gy which corresponds to the recommended dose for NHL therapies.

  11. Dosimetry and quantitative radionuclide imaging in radioimmunotherapy: Final report, July 15, 1992-July 14, 1996

    SciTech Connect

    Leichner, P.K.

    1996-09-01

    Brief summaries of the principal accomplishments of this project on the development of quantitative SPECT for high energy photons (87Y, 19F) and stability testing of 87Y-labeled antibodies in the nude mouse model, development of an unified approach to photon and beta particle dosimetry, quantitative SPECT for nonuniform attenuation, and development of patient-specific dosimetry in radioimmunotherapy.

  12. Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance

    SciTech Connect

    Lim, Sangwook; Ma, Sun Young; Jeung, Tae Sig; Yi, Byong Yong; Lee, Sang Hoon; Lee, Suk; Cho, Sam Ju; Choi, Jinho

    2012-10-01

    In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment.

  13. Development of a one-stop beam verification system using electronic portal imaging devices for routine quality assurance.

    PubMed

    Lim, Sangwook; Ma, Sun Young; Jeung, Tae Sig; Yi, Byong Yong; Lee, Sang Hoon; Lee, Suk; Cho, Sam Ju; Choi, Jinho

    2012-01-01

    In this study, a computer-based system for routine quality assurance (QA) of a linear accelerator (linac) was developed by using the dosimetric properties of an amorphous silicon electronic portal imaging device (EPID). An acrylic template phantom was designed such that it could be placed on the EPID and be aligned with the light field of the collimator. After irradiation, portal images obtained from the EPID were transferred in DICOM format to a computer and analyzed using a program we developed. The symmetry, flatness, field size, and congruence of the light and radiation fields of the photon beams from the linac were verified simultaneously. To validate the QA system, the ion chamber and film (X-Omat V2; Kodak, New York, NY) measurements were compared with the EPID measurements obtained in this study. The EPID measurements agreed with the film measurements. Parameters for beams with energies of 6 MV and 15 MV were obtained daily for 1 month using this system. It was found that our QA tool using EPID could substitute for the film test, which is a time-consuming method for routine QA assessment. PMID:22277157

  14. Analysis of the rigid and deformable component of setup inaccuracies on portal images in head and neck radiotherapy.

    PubMed

    Birkner, Mattias; Thorwarth, Daniela; Poser, Alexander; Ammazzalorso, Filippo; Alber, Markus

    2007-09-21

    The issue of setup errors consisting of translation, rotation and deformation components in head and neck radiotherapy is addressed with a piecewise registration of small independent regions on a portal image to their reference position. These rectangular regions are termed featurelets as they contain relevant anatomical features. The resulting displacement vectors of each featurelet reflect both the center-of-mass (COM), i.e. the rigid, and the non-rigid component of the setup error. The displacement vectors of a series of daily portal images were subjected to a principal component analysis. In addition to the mean, systematic displacement of each featurelet, this analysis yields correlated patterns of anatomical deformations. Hence, the physiological movements of an individual patient can be obtained without a biomechanical model. It is shown that in the presence of setup errors that are due to rotations or deformations a correction by the COM displacement may deteriorate the error of parts of the anatomy further. The featurelet analysis can be used to refine setup correction protocols, tune spatially variable setup margins in treatment planning and optimize patient immobilization devices. PMID:17804891

  15. Portal Vein Thrombosis in Patients with Hepatocellular Carcinoma: Diagnostic Accuracy of Gadoxetic Acid-enhanced MR Imaging.

    PubMed

    Kim, Jae Hyun; Lee, Jeong Min; Yoon, Jeong Hee; Lee, Dong Ho; Lee, Kyung Bun; Han, Joon Koo; Choi, Byung Ihn

    2016-06-01

    Purpose To assess the diagnostic performance of gadoxetic acid-enhanced magnetic resonance (MR) imaging in the evaluation of portal vein thrombosis (PVT) in patients with hepatocellular carcinoma (HCC). Materials and Methods This retrospective study was approved by the institutional review board. The requirement to obtain informed consent was waived. A total of 366 patients with HCC who underwent gadoxetic acid-enhanced MR imaging between January 2007 and May 2013, including 134 with malignant PVT, 49 with benign PVT, and 183 without PVT matched for age and sex, comprised our study population. PVTs were complete in 125 patients and partial in 58 and were located in a major portal vein (n = 159) or segmental portal vein (n = 24). Two radiologists independently reviewed the MR images and assessed the sensitivity, specificity, and accuracy in the detection and characterization of PVT according to location (major vs segmental) and type (complete vs partial). The Fisher exact or χ(2) test was used to evaluate sensitivity difference between the subsets. Results Gadoxetic acid-enhanced MR imaging showed good sensitivity (reviewer 1, 84% [154 of 183 patients]; reviewer 2, 70% [129 of 183 patients]) and high specificity (reviewer 1, 89% [163 of 183 patients]; reviewer 2, 96% [176 of 183 patients]) in the detection of PVT. Diagnostic accuracy for differentiating malignant PVT from benign PVT was high (reviewer 1, 92% [141 of 154 patients]; reviewer 2, 95% [122 of 129 patients]). However, there was slightly lower sensitivity for detecting segmental PVT compared with that of major PVT in the malignant PVT group (reviewer 1, 95% [104 of 110 patients] vs 88% [21 of 24 patients]; reviewer 2, 82% [90 of 110 patients] vs 79% [19 of 24 patients]; P = .203 and .775 for reviewers 1 and 2, respectively). Conclusion Gadoxetic acid-enhanced MR imaging provided good diagnostic performance in the detection of PVT and the differentiation of malignant from benign PVT in patients with HCC

  16. Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-09-01

    A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which

  17. Design of dual-road transportable portal monitoring system for visible light and gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, E. Craig; Chesser, J.; Marchant, W.

    2010-04-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third "alignment" camera for motion compensation and are mounted on a 50' deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  18. Design of Dual-Road Transportable Portal Monitoring System for Visible Light and Gamma-Ray Imaging

    SciTech Connect

    Karnowski, Thomas Paul; Cunningham, Mark F; Goddard Jr, James Samuel; Cheriyadat, Anil M; Hornback, Donald Eric; Fabris, Lorenzo; Kerekes, Ryan A; Ziock, Klaus-Peter; Bradley, Eric Craig; Chesser, Joel B; Marchant, William

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third alignment camera for motion compensation and are mounted on a 50 deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  19. Phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography

    PubMed Central

    Ludlow, John B.; Walker, Cameron

    2013-01-01

    Introduction Increasing use of cone-beam computed tomography in orthodontics has been coupled with heightened concern with the long-term risks of x-ray exposure in orthodontic populations. An industry response to this has been to offer low-exposure alternative scanning options in newer cone-beam computed tomography models. Methods Effective doses resulting from various combinations of field size, and field location comparing child and adult anthropomorphic phantoms using the recently introduced i-CAT FLX cone-beam computed tomography unit were measured with Optical Stimulated Dosimetry using previously validated protocols. Scan protocols included High Resolution (360° rotation, 600 image frames, 120 kVp, 5 mA, 7.4 sec), Standard (360°, 300 frames, 120 kVp, 5 mA, 3.7 sec), QuickScan (180°, 160 frames, 120 kVp, 5 mA, 2 sec) and QuickScan+ (180°, 160 frames, 90 kVp, 3 mA, 2 sec). Contrast-to-noise ratio (CNR) was calculated as a quantitative measure of image quality for the various exposure options using the QUART DVT phantom. Results Child phantom doses were on average 36% greater than Adult phantom doses. QuickScan+ protocols resulted in significantly lower doses than Standard protocols for child (p=0.0167) and adult (p=0.0055) phantoms. 13×16 cm cephalometric fields of view ranged from 11–85 μSv in the adult phantom and 18–120 μSv in the child for QuickScan+ and Standard protocols respectively. CNR was reduced by approximately 2/3rds comparing QuickScan+ to Standard exposure parameters. Conclusions QuickScan+ effective doses are comparable to conventional panoramic examinations. Significant dose reductions are accompanied by significant reductions in image quality. However, this trade-off may be acceptable for certain diagnostic tasks such as interim assessment of treatment results. PMID:24286904

  20. Characterization of a new polymer gel for radiosurgery dosimetry using Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Petrokokkinos, L.; Kozicki, M.; Pantelis, E.; Antypas, C.; Fijuth, J.; Karaiskos, P.; Sakelliou, L.; Seimenis, I.

    2009-06-01

    The VIPAR polymer gel dosimeter formulation was modified in an effort to eliminate the need for deoxygenation in the manufacturing procedure while preserving its favorable characteristics of dose rate independence and a wide dose response range. Aiming at an adequate dose sensitivity and the extension of dose response in the low dose region to facilitate the dose verification of radiosurgery applications where narrow beams are employed and steep dose gradients are involved, the new formulation consists of 8% N-Vinylpyrrolidone, 7.5% gelatine, 4% N,N'-methylenebisacrylamide, as well as of 0.0008% Copper Sulfate and 0.007% Ascorbic Acid as oxygen scavengers. To study the dose-R2 response, dose rate dependence and ``edge effect'' behaviour of the new formulation, one batch of two gel filled glass vials was prepared. Before MR Imaging, one vial was irradiated with a brachytherapy source while the other one was irradiated using circular CyberKnife radiation fields of 60, 10, 7.5 and 5 mm in diameter. Results of this study suggest that the new gel dosimeter responds linearly in the dose range of about 3 to 30 Gy, whilst the full dose response range exceeds the maximum delivered dose of 50 Gy. No dose rate dependence was observed for the new gel, while Cyberknife dosimetry results in the form of stereotactic field size and penumbra measurements suggest that the new formulation could be effective in the dose verification of demanding radiosurgery techniques.

  1. Electronic portal imaging vs kilovoltage imaging in fiducial marker image-guided radiotherapy for prostate cancer: an analysis of set-up uncertainties

    PubMed Central

    Gill, S; Thomas, J; Fox, C; Kron, T; Thompson, A; Chander, S; Williams, S; Tai, K H; Duchesne, G; Foroudi, F

    2012-01-01

    Objectives The purpose of this study was to compare interfraction prostate displacement data between electronic portal imaging (EPI) and kilovoltage imaging (KVI) treatment units and discuss the impact of any difference on margin calculations for prostate cancer image-guided radiotherapy (IGRT). Methods Prostate interfraction displacement data was collected prospectively for the first 4 fractions in 333 patients treated with IGRT with daily pre-treatment EPI or KVI orthogonal imaging. Displacement was recorded in the anteroposterior (AP), left–right (LR) and superoinferior (SI) directions. The proportion of displacement <3 mm and the difference in median absolute displacements were calculated in all directions. Results 1088 image pairs were analysed in total, 448 by EPI and 640 by KVI. There were 23% (95% confidence interval [CI] 18–28%) more displacements under 3 mm for EPI than for KVI in the AP direction, 14% (95% CI 10–19%) more in the LR direction and 10% (95% CI 5–15%) more in the SI direction. The differences in absolute median displacement (KVI>EPI) were AP 1 mm, LR 1 mm and SI 0.5 mm. Wilcoxon rank-sum test showed that distributions were significantly different for all three dimensions (p<0.0001 for AP and LR and p=0.02 for SI). Conclusion EPI has a statistically significant smaller set-up error distribution than KVI. We would expect that, because fiducial marker imaging is less clear for EPI, the clinical target volume to planning target volume margin would be greater when using IGRT; however, relying wholly on displacement data gives the opposite result. We postulate that this is owing to observer bias, which is not accounted for in margin calculation formulas. PMID:21976627

  2. Assessment of flatness and symmetry of megavoltage x-ray beam with an electronic portal imaging device (EPID).

    PubMed

    Liu, G; van Doorn, T; Bezak, E

    2002-07-01

    The input/output characteristics of the Wellhofer BIS 710 electronic portal imaging device (EPID) have been investigated to establish its efficacy for periodic quality assurance (QA) applications. Calibration curves have been determined for the energy fluence incident on the detector versus the pixel values. The effect of the charge coupled device (CCD) camera sampling time and beam parameters (such as beam field size, dose rate, photon energy) on the calibration have been investigated for a region of interest (ROI) around the central beam axis. The results demonstrate that the pixel output is a linear function of the incident exposure, as expected for a video-based electronic portal imaging system. The field size effects of the BIS 710 are similar to that of an ion chamber for smaller field sizes up to 10 x 10 cm2. However, for larger field sizes the pixel value increases more rapidly. Furthermore, the system is slightly sensitive to dose rate and is also energy dependent The BIS 710 has been used in the current study to develop a QA procedure for measurements of flatness and symmetry of a linac x-ray beam. As a two-dimensional image of the radiation field is obtained from a single exposure of the BIS 710, a technique has been developed to calculate flatness and symmetry from a defined radiation area. The flatness and symmetry values obtained are different from those calculated conventionally from major axes only (inplane, crossplane). This demonstrates that the technique can pick up the "cold" and "hot" spots in the analysed area, providing thus more information about the radiation beam. When calibrated against the water tank measurements, the BIS 710 can be used as a secondary device to monitor the x-ray beam flatness and symmetry. PMID:12219846

  3. A comprehensive tool for image-based generation of fetus and pregnant women mesh models for numerical dosimetry studies

    NASA Astrophysics Data System (ADS)

    Dahdouh, S.; Varsier, N.; Serrurier, A.; De la Plata, J.-P.; Anquez, J.; Angelini, E. D.; Wiart, J.; Bloch, I.

    2014-08-01

    Fetal dosimetry studies require the development of accurate numerical 3D models of the pregnant woman and the fetus. This paper proposes a 3D articulated fetal growth model covering the main phases of pregnancy and a pregnant woman model combining the utero-fetal structures and a deformable non-pregnant woman body envelope. The structures of interest were automatically or semi-automatically (depending on the stage of pregnancy) segmented from a database of images and surface meshes were generated. By interpolating linearly between fetal structures, each one can be generated at any age and in any position. A method is also described to insert the utero-fetal structures in the maternal body. A validation of the fetal models is proposed, comparing a set of biometric measurements to medical reference charts. The usability of the pregnant woman model in dosimetry studies is also investigated, with respect to the influence of the abdominal fat layer.

  4. Automatic Prostate Tracking and Motion Assessment in Volumetric Modulated Arc Therapy With an Electronic Portal Imaging Device

    SciTech Connect

    Azcona, Juan Diego; Li, Ruijiang; Mok, Edward; Hancock, Steven; Xing, Lei

    2013-07-15

    Purpose: To assess the prostate intrafraction motion in volumetric modulated arc therapy treatments using cine megavoltage (MV) images acquired with an electronic portal imaging device (EPID). Methods and Materials: Ten prostate cancer patients were treated with volumetric modulated arc therapy using a Varian TrueBeam linear accelerator equipped with an EPID for acquiring cine MV images during treatment. Cine MV images acquisition was scheduled for single or multiple treatment fractions (between 1 and 8). A novel automatic fiducial detection algorithm that can handle irregular multileaf collimator apertures, field edges, fast leaf and gantry movement, and MV image noise and artifacts in patient anatomy was used. All sets of images (approximately 25,000 images in total) were analyzed to measure the positioning accuracy of implanted fiducial markers and assess the prostate movement. Results: Prostate motion can vary greatly in magnitude among different patients. Different motion patterns were identified, showing its unpredictability. The mean displacement and standard deviation of the intrafraction motion was generally less than 2.0 ± 2.0 mm in each of the spatial directions. In certain patients, however, the percentage of the treatment time in which the prostate is displaced more than 5 mm from its planned position in at least 1 spatial direction was 10% or more. The maximum prostate displacement observed was 13.3 mm. Conclusion: Prostate tracking and motion assessment was performed with MV imaging and an EPID. The amount of prostate motion observed suggests that patients will benefit from its real-time monitoring. Megavoltage imaging can provide the basis for real-time prostate tracking using conventional linear accelerators.

  5. Transjugular Portal Venous Stenting in Inflammatory Extrahepatic Portal Vein Stenosis

    SciTech Connect

    Schaible, Rolf; Textor, Jochen; Decker, Pan; Strunk, Holger; Schild, Hans

    2002-12-15

    We report the case of a 37-year-old man with necrotizing pancreatitis associated with inflammatory extrahepatic portal vein stenosis and progressive ascites. Four months after the acute onset, when no signs of infection were present, portal decompression was performed to treat refractory ascites. Transjugulartranshepatic venoplasty failed to dilate the stenosis in the extrahepatic portion of the portal vein sufficiently. Therefore a Wallstent was implanted, resulting in almost normal diameter of the vessel. In follow-up imaging studies the stent and the portal vein were still patent 12 months after the intervention and total resolution of the ascites was observed.

  6. Evaluation of the precision of portal-image-guided head-and-neck localization: An intra- and interobserver study

    SciTech Connect

    Court, Laurence E.; Allen, Aaron; Tishler, Roy

    2007-07-15

    There is increasing evidence that, for some patients, image-guided intensity-modulated radiation therapy (IMRT) for head-and-neck cancer patients may maintain target dose coverage and critical organ (e.g., parotids) dose closer to the planned doses than setup using lasers alone. We investigated inter- and intraobserver uncertainties in patient setup in head-and-neck cancer patients. Twenty-two sets of orthogonal digital portal images (from five patients) were selected from images used for daily localization of head-and-neck patients treated with IMRT. To evaluate interobserver variations, five radiation therapists compared the portal images with the plan digitally reconstructed radiographs and reported shifts for the isocenter ({approx}C2) and for a supraclavicular reference point. One therapist repeated the procedure a month later to evaluate intraobserver variations. The procedure was then repeated with teams of two therapists. The frequencies for which agreement between the shift reported by the observer and the daily mean shift (average of all observers for a given image set) were less than 1.5 and 2.5 mm were calculated. Standard errors of measurement for the intra- and interobserver uncertainty (SEM{sub intra} and SEM{sub inter}) for the individual and teams were calculated. The data showed that there was very little difference between individual therapists and teams. At isocenter, 80%-90% of all reported shifts agreed with the daily average within 1.5 mm, showing consistency in the ways both individuals and teams interpret the images (SEM{sub inter}{approx}1 mm). This dropped to 65% for the supraclavicular point (SEM{sub inter}{approx}1.5 mm). Uncertainties increased for larger setup errors. In conclusion, image-guided patient positioning allows head-and-neck patients to be controlled within 3-4 mm. This is similar to the setup uncertainties found for most head-and-neck patients, but may provide some improvement for the subset of patients with larger setup

  7. In vivo dosimetry in external beam radiotherapy

    SciTech Connect

    Mijnheer, Ben; Beddar, Sam; Izewska, Joanna; Reft, Chester

    2013-07-15

    In vivo dosimetry (IVD) is in use in external beam radiotherapy (EBRT) to detect major errors, to assess clinically relevant differences between planned and delivered dose, to record dose received by individual patients, and to fulfill legal requirements. After discussing briefly the main characteristics of the most commonly applied IVD systems, the clinical experience of IVD during EBRT will be summarized. Advancement of the traditional aspects of in vivo dosimetry as well as the development of currently available and newly emerging noninterventional technologies are required for large-scale implementation of IVD in EBRT. These new technologies include the development of electronic portal imaging devices for 2D and 3D patient dosimetry during advanced treatment techniques, such as IMRT and VMAT, and the use of IVD in proton and ion radiotherapy by measuring the decay of radiation-induced radionuclides. In the final analysis, we will show in this Vision 20/20 paper that in addition to regulatory compliance and reimbursement issues, the rationale for in vivo measurements is to provide an accurate and independent verification of the overall treatment procedure. It will enable the identification of potential errors in dose calculation, data transfer, dose delivery, patient setup, and changes in patient anatomy. It is the authors' opinion that all treatments with curative intent should be verified through in vivo dose measurements in combination with pretreatment checks.

  8. Localization of linked {sup 125}I seeds in postimplant TRUS images for prostate brachytherapy dosimetry

    SciTech Connect

    Xue Jinyu . E-mail: Jinyu.Xue@mail.tju.edu; Waterman, Frank; Handler, Jay; Gressen, Eric

    2005-07-01

    Purpose: To demonstrate that {sup 125}I seeds can be localized in transrectal ultrasound (TRUS) images obtained with a high-resolution probe when the implant is performed with linked seeds and spacers. Adequate seed localization is essential to the implementation of TRUS-based intraoperative dosimetry for prostate brachytherapy. Methods and Materials: Thirteen preplanned peripherally loaded prostate implants were performed using {sup 125}I seeds and spacers linked together in linear arrays that prevent seed migration and maintain precise seed spacing. A set of two-dimensional transverse images spaced at 0.50-cm intervals were obtained with a high-resolution TRUS probe at the conclusion of the procedure with the patient still under anesthesia. The image set extended from 1.0 cm superior to the base to 1.0 cm inferior to the apex. The visible echoes along each needle track were first localized and then compared with the known construction of the implanted array. The first step was to define the distal and proximal ends of each array. The visible echoes were then identified as seeds or spacers from the known sequence of the array. The locations of the seeds that did not produce a visible echo were interpolated from their known position in the array. A CT scan was obtained after implantation for comparison with the TRUS images. Results: On average, 93% (range, 86-99%) of the seeds were visible in the TRUS images. However, it was possible to localize 100% of the seeds in each case, because the locations of the missing seeds could be determined from the known construction of the arrays. Two factors complicated the interpretation of the TRUS images. One was that the spacers also produced echoes. Although weak and diffuse, these echoes could be mistaken for seeds. The other was that the number of echoes along a needle track sometimes exceeded the number of seeds and spacers implanted. This was attributed to the overall length of the array, which was approximately 0.5 cm

  9. Intensity-Modulated Radiotherapy Using Implanted Fiducial Markers With Daily Portal Imaging: Assessment of Prostate Organ Motion

    SciTech Connect

    Chen Jergin . E-mail: jergin.chen@hci.utah.edu; Lee, R. Jeffrey; Handrahan, Diana; Sause, William T.

    2007-07-01

    Purpose: To assess our single institutional experience with daily localization, using fiducials for prostate radiotherapy. Methods and Materials: From January 2004 to September 2005, 33 patients were treated with 1,097 intensity-modulated radiation treatments, using three implanted fiducials. Daily portal images were obtained before treatments. Shifts were made for deviations {>=}3 mm in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) dimensions. Results: Of 1,097 treatments, 987 (90%) required shifts. Shifts were made in the LR, SI, and AP dimensions in 51%, 67%, and 58% of treatments, respectively. In the LR dimension, the median distance shifted was 5 mm. Of 739 shifts in the SI dimension, 73% were in the superior direction for a median distance of 6 mm, and 27% were shifted inferiorly for a median distance of 5 mm. The majority of shifts in the AP dimension were in the anterior direction (87%). Median distances shifted in the anterior and posterior directions were 5 mm and 4 mm, respectively. The median percentage of treatments requiring shifts per patient was 93% (range, 57-100%). Median deviations in the LR, SI, and AP dimensions were 3 mm, 4 mm, and 3 mm, respectively. Deviations in the SI and AP dimensions were more often in the superior rather than inferior (60% vs. 29%) and in the anterior rather than posterior (70% vs. 16%) directions. Conclusions: Interfraction prostate motion is significant. Daily portal imaging with implanted fiducials improves localization of the prostate, and is necessary for the reduction of treatment margins.

  10. Testing the GLAaS algorithm for dose measurements on low- and high-energy photon beams using an amorphous silicon portal imager

    SciTech Connect

    Nicolini, Giorgia; Fogliata, Antonella; Vanetti, Eugenio; Clivio, Alessandro; Vetterli, Daniel; Cozzi, Luca

    2008-02-15

    The GLAaS algorithm for pretreatment intensity modulation radiation therapy absolute dose verification based on the use of amorphous silicon detectors, as described in Nicolini et al. [G. Nicolini, A. Fogliata, E. Vanetti, A. Clivio, and L. Cozzi, Med. Phys. 33, 2839-2851 (2006)], was tested under a variety of experimental conditions to investigate its robustness, the possibility of using it in different clinics and its performance. GLAaS was therefore tested on a low-energy Varian Clinac (6 MV) equipped with an amorphous silicon Portal Vision PV-aS500 with electronic readout IAS2 and on a high-energy Clinac (6 and 15 MV) equipped with a PV-aS1000 and IAS3 electronics. Tests were performed for three calibration conditions: A: adding buildup on the top of the cassette such that SDD-SSD=d{sub max} and comparing measurements with corresponding doses computed at d{sub max}, B: without adding any buildup on the top of the cassette and considering only the intrinsic water-equivalent thickness of the electronic portal imaging devices device (0.8 cm), and C: without adding any buildup on the top of the cassette but comparing measurements against doses computed at d{sub max}. This procedure is similar to that usually applied when in vivo dosimetry is performed with solid state diodes without sufficient buildup material. Quantitatively, the gamma index ({gamma}), as described by Low et al. [D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, Med. Phys. 25, 656-660 (1998)], was assessed. The {gamma} index was computed for a distance to agreement (DTA) of 3 mm. The dose difference {delta}D was considered as 2%, 3%, and 4%. As a measure of the quality of results, the fraction of field area with gamma larger than 1 (%FA) was scored. Results over a set of 50 test samples (including fields from head and neck, breast, prostate, anal canal, and brain cases) and from the long-term routine usage, demonstrated the robustness and stability of GLAaS. In general, the mean values of %FA

  11. An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources

    NASA Astrophysics Data System (ADS)

    Pafundi, Deanna; Rajon, Didier; Jokisch, Derek; Lee, Choonsik; Bolch, Wesley

    2010-04-01

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  12. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system

    NASA Astrophysics Data System (ADS)

    Hanson, Ian M.; Hansen, Vibeke N.; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients. The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min. The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%. EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments.

  13. Clinical implementation and rapid commissioning of an EPID based in-vivo dosimetry system.

    PubMed

    Hanson, Ian M; Hansen, Vibeke N; Olaciregui-Ruiz, Igor; van Herk, Marcel

    2014-10-01

    Using an Electronic Portal Imaging Device (EPID) to perform in-vivo dosimetry is one of the most effective and efficient methods of verifying the safe delivery of complex radiotherapy treatments. Previous work has detailed the development of an EPID based in-vivo dosimetry system that was subsequently used to replace pre-treatment dose verification of IMRT and VMAT plans. Here we show that this system can be readily implemented on a commercial megavoltage imaging platform without modification to EPID hardware and without impacting standard imaging procedures. The accuracy and practicality of the EPID in-vivo dosimetry system was confirmed through a comparison with traditional TLD in-vivo measurements performed on five prostate patients.The commissioning time required for the EPID in-vivo dosimetry system was initially prohibitive at approximately 10 h per linac. Here we present a method of calculating linac specific EPID dosimetry correction factors that allow a single energy specific commissioning model to be applied to EPID data from multiple linacs. Using this method reduced the required per linac commissioning time to approximately 30 min.The validity of this commissioning method has been tested by analysing in-vivo dosimetry results of 1220 patients acquired on seven linacs over a period of 5 years. The average deviation between EPID based isocentre dose and expected isocentre dose for these patients was (-0.7  ±  3.2)%.EPID based in-vivo dosimetry is now the primary in-vivo dosimetry tool used at our centre and has replaced nearly all pre-treatment dose verification of IMRT treatments. PMID:25211121

  14. Investigation of the mechanical performance of Siemens linacs components during arc: gantry, MLC, and electronic portal imaging device

    PubMed Central

    Rowshanfarzad, Pejman; Häring, Peter; Riis, Hans L; Zimmermann, Sune J; Ebert, Martin A

    2015-01-01

    Background In radiotherapy treatments, it is crucial to monitor the performance of linac components including gantry, collimation system, and electronic portal imaging device (EPID) during arc deliveries. In this study, a simple EPID-based measurement method is suggested in conjunction with an algorithm to investigate the stability of these systems at various gantry angles with the aim of evaluating machine-related errors in treatments. Methods The EPID sag, gantry sag, changes in source-to-detector distance (SDD), EPID and collimator skewness, EPID tilt, and the sag in leaf bank assembly due to linac rotation were separately investigated by acquisition of 37 EPID images of a simple phantom with five ball bearings at various gantry angles. A fast and robust software package was developed for automated analysis of image data. Three Siemens linacs were investigated. Results The average EPID sag was within 1 mm for all tested linacs. Two machines showed >1 mm gantry sag. Changes in the SDD values were within 7.5 mm. EPID skewness and tilt values were <1° in all machines. The maximum sag in leaf bank assembly was <1 mm. Conclusion The method and software developed in this study provide a simple tool for effective investigation of the behavior of Siemens linac components with gantry rotation. Such a comprehensive study has been performed for the first time on Siemens machines. PMID:26604840

  15. Comparison of CT on Rails With Electronic Portal Imaging for Positioning of Prostate Cancer Patients With Implanted Fiducial Markers

    SciTech Connect

    Owen, Rebecca Kron, Tomas; Foroudi, Farshad; Milner, Alvin; Cox, Jennifer; Duchesne, Gillian; Cleeve, Laurence; Zhu Li; Cramb, Jim; Sparks, Laura; Laferlita, Marcus

    2009-07-01

    Purpose: The objective of this investigation was to measure the agreement between in-room computed tomography (CT) on rails and electronic portal image (EPI) radiography. Methods and Materials: Agreement between the location of the center of gravity (COG) of fiducial markers (FMs) on CT and EPI images was determined in phantom studies and a patient cohort. A secondary analysis between the center of volume (COV) of the prostate on CT and the COG of FMs on CT and EPI was performed. Agreement was defined as the 95% probability of a difference of {<=}3.0 mm between images. Systematic and random errors from CT and EPI are reported. Results: From 8 patients, 254 CT and EPI pairs were analyzed. FMs were localized to within 3 mm on CT and EPI images 96.9% of the time in the left-right (LR) plane, 85.8% superior-inferior (SI), and 89% anterior-posterior (AP). The differences between the COV on CT and the COG on EPI were not within 3 mm in any plane: 87.8% (LR), 64.2% (SI), and 70.9% (AP). The systematic error varied from 1.2 to 2.9 mm (SI) and 1.8-2.9 mm (AP) between the COG on EPI and COV on CT. Conclusions: Considerable differences between in-room CT and EPI exist. The phantom measurements showed slice thickness affected the accuracy of localization in the SI plane, and couch sag that occurs at the CT on rails gantry could not be totally corrected for in the AP plane. Other confounding factors are the action of rotating the couch and associated time lag between image acquisitions (prostate motion), EPI image quality, and outlining uncertainties.

  16. Dosimetry of an iodine-123-labeled tropane to image dopamine transporters

    SciTech Connect

    Mozley, P.D.; Stubbs, J.B.; Kim, H.J.

    1996-01-01

    N-(3-iodopropen-2-yl)-2{beta}-carbomethoxy-3{beta}(4-chlorophenyl)tropane (IPT) is an analog of cocaine that selectively binds the presynaptic dopamine transporter. The present study sought to measure the radiation dosimetry of IPT in seven healthy human volunteers. Dynamic renal scans were acquired immediately after the intravenous administration of 165 {+-} 16 MBq (4.45 {+-} 0.42 mCi) of [{sup 123}I]IPT. Between 7 and 12 sets of whole-body scans were acquired over the next 24 hr. The 24-hr renal excretion fractions were measured from conjugate emission scans of 7-11 discreet voided urine specimens. The fraction of the administered dose in 11 organs and each urine specimen was quantified from the attenuation-corrected geometric mean counts in opposing views. Subject-specific residence times were evaluated for each subject independently by fitting the time-activity curves to a multicompartmental model. The radiation doses were estimated with the MIRD technique from the residence times for each subject individually before any results were averaged. The findings showed that IPT was excreted rapidly by the renal system. There were no reservoirs of retained activity outside the basal ganglia, where SPECT images in these subjects showed that the mean ratio of caudate to calcarine cortex averaged 25:1 at 3 hr after injection (range 19.6-32 hr). The basal ganglia received a radiation dose of 0.028 mGy/MBq (0.10 rad/mCi). The dose-limiting organ in men was the stomach, which received an estimated 0.11 mGy/MBq (0.37 rad/mCi). In women, the critical organ was the urinary bladder at 0.14 mGy/MBq (0.51 rad/mCi). Relatively high-contrast images of the presynaptic dopamine transporters in the basal ganglia can be acquired with 185 MBq (5 mCi) of [{sup 123}I]IPT. The radiation exposure that results is significantly less than the maximum allowed by current safety guidelines for research volunteers. 33 refs., 4 figs., 3 tabs.

  17. SU-D-BRF-07: Ultrasound and Fluoroscopy Based Intraoperative Image-Guidance System for Dynamic Dosimetry in Prostate Brachytherapy

    SciTech Connect

    Kuo, N; Le, Y; Deguet, A; Prince, J; Song, D; Lee, J; Dehghan, E; Burdette, E; Fichtinger, G

    2014-06-01

    Purpose: Prostate brachytherapy is a common treatment method for low-risk prostate cancer patients. Intraoperative treatment planning is known to improve the treatment procedure and the outcome. The current limitation of intraoperative treatment planning is the inability to localize the seeds in relation to the prostate. We developed an image-guidance system to fulfill this need to achieve intraoperative dynamic dosimetry in prostate brachytherapy. Methods: Our system is based on standard imaging equipments available in the operating room, including the transrectal ultrasound (TRUS) and the mobile C-arm. A simple fiducial is added to compute the C-arm pose. Three fluoroscopic images and an ultrasound volume of the seeds and the prostate are acquired and processed by four image processing algorithms: seed segmentation, fiducial detection with pose estimation, seed reconstruction, and seeds-to-TRUS registration. The updated seed positions allow the physician to assess the quality of implantation and dynamically adjust the treatment plan during the course of surgery to achieve improved exit dosimetry. Results: The system was tested on 10 phantoms and 37 patients. Seed segmentation resulted in a 1% false negative and 2% false positive rates. Fiducial detection with pose estimation resulted in a detection rate of 98%. Seed reconstruction had a mean reconstruction error of 0.4 mm. Seeds-to-TRUS registration had a mean registration error of 1.3 mm. The total processing time from image acquisition to registration was approximately 1 minute. Conclusion: We present an image-guidance system for intraoperative dynamic dosimetry in prostate brachytherapy. Using standard imaging equipments and a simple fiducial, our system can be easily adopted in any clinics. Robust image processing algorithms enable accurate and fast computation of the delivered dose. Especially, the system enables detection of possible hot/cold spots during the surgery, allowing the physician to address these

  18. SU-C-204-05: Simulations of a Portal Imaging System for Conformal and Intensity Modulated Fast Neutron Therapy

    SciTech Connect

    James, S St.; Argento, D; Stewart, R

    2015-06-15

    Purpose: The University of Washington Medical Center offers neutron therapy for the palliative and definitive treatment of selected cancers. In vivo field verification has the potential to improve the safe and effective delivery of neutron therapy. We propose a portal imaging method that relies on the creation of positron emitting isotopes (11C and 15O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects annihilation photons. The spatial pattern of activity produced in the PMMA plate provides information to reconstruct the neutron fluence map needed to confirm treatment delivery. Methods: We used MCNP to simulate the accumulation of 11C activity in a slab of PMMA 2 mm thick, and GATE was used to simulate the sensitivity and spatial resolution of a prototype imaging system. BGO crystal thicknesses of 1 cm, 2 cm and 3 cm were simulated with detector separations of 2 cm. Crystal pitches of 2 mm and 4 mm were evaluated. Back-projection of the events was used to create a planar image. The spatial resolution was taken to be the FWHM of the reconstructed point source image. Results: The system sensitivity for a point source in the center of the field of view was found to range from 58% for 1 cm thick BGO with 2 mm crystal pitch to 74% for the 3 cm thick BGO crystals with 4 mm crystal pitch. The spatial resolution at the center of the field of view was found to be 1.5 mm for the system with 2 mm crystal pitch and 2.8 mm for the system with the 4 mm crystal pitch. Conclusion: BGO crystals with 4 mm crystal pitch and 3 cm length would offer the best sensitivity reader.

  19. Effect of recombination in a high quantum efficiency prototype ionization-chamber-based electronic portal imaging device

    SciTech Connect

    Gopal, A.; Samant, S. S.

    2007-08-15

    The quantum efficiency (QE) of an imaging detector can be increased by utilizing a thick, high-density detection medium to increase the number of quantum interactions. However, image quality is more accurately described by the detection quantum efficiency (DQE). If a significant fraction of the increase in the number of detected quanta from a thick, dense detector were to result in useful imaging signal, this represents a favorable case where enhanced QE leads to increased DQE. However, for ionization-type detectors, one factor that limits DQE is the recombination between ion pairs that acts as a secondary quantum sink due to which enhancement in QE may not result in higher DQE depending on the extent of the signal loss from recombination. Therefore, an analysis of signal loss mechanisms or quantum sinks in an imaging system is essential for validating the overall benefit of high QE detectors. In this paper, a study of ion recombination as a secondary quantum sink is presented for a high QE prototype ion-chamber-based electronic portal imaging device (EPID): the kinestatic charge detector (KCD). The KCD utilizes a high pressure noble gas (krypton or xenon at 100 atm) and an arbitrarily large detector thickness (of the order of centimeters), resulting in a high QE imager. Compared with commercial amorphous silicon flat panel imagers that provide DQE(0){approx_equal}0.01, the KCD has much higher DQE. Studies indicated that DQE(0)=0.20 for 6.1 cm thick, 100 atm ({rho}=3.4 g/cm{sup 3}) xenon chamber, and DQE(0)=0.34 for a 9.1 cm thick chamber. A series of experiments was devised and conducted to determine the signal loss due to recombination for a KCD chamber. The measurements indicated a fractional recombination loss of about 14% for a krypton chamber and about 18% for a xenon chamber under standard operating conditions (100 atm chamber pressure and 1275 V/cm electric field intensity). A theoretical treatment of the effect of recombination on imaging signal

  20. Biodistribution and Radiation Dosimetry for a Probe Targeting Prostate-Specific Membrane Antigen for Imaging and Therapy

    PubMed Central

    Herrmann, Ken; Bluemel, Christina; Weineisen, Martina; Schottelius, Margret; Wester, Hans-Jürgen; Czernin, Johannes; Eberlein, Uta; Beykan, Seval; Lapa, Constantin; Riedmiller, Hubertus; Krebs, Markus; Kropf, Saskia; Schirbel, Andreas; Buck, Andreas K.; Lassmann, Michael

    2016-01-01

    Prostate-specific membrane antigen (PSMA) is a promising target for diagnosis and treatment of prostate cancer. EuK-Subkff-68Ga-DOTAGA (68Ga-PSMA Imaging & Therapy [PSMA I&T]) is a recently introduced PET tracer for imaging PSMA expression in vivo. Whole-body distribution and radiation dosimetry of this new probe were evaluated. Methods Five patients with a history of prostate cancer were injected intravenously with 91–148 MBq of 68Ga-PSMA I&T (mean ± SD, 128 ± 23 MBq). After an initial series of rapid whole-body scans, 3 static whole-body scans were acquired at 1, 2, and 4 h after tracer injection. Time-dependent changes of the injected activity per organ were determined. Mean organ-absorbed doses and effective doses were calculated using OLINDA/EXM. Results Injection of 150 MBq of 68Ga-PSMA I&T resulted in an effective dose of 3.0 mSv. The kidneys were the critical organ (33 mGy), followed by the urinary bladder wall and spleen (10 mGy each), salivary glands (9 mGy each), and liver (7 mGy). Conclusion 68Ga-PSMA I&T exhibits a favorable dosimetry, delivering organ doses that are comparable to (kidneys) or lower than those delivered by 18F-FDG. PMID:25883128

  1. The use of high field strength and parallel imaging techniques for MRI-based gel dosimetry in stereotactic radiosurgery

    NASA Astrophysics Data System (ADS)

    Seimenis, I.; Moutsatsos, A.; Petrokokkinos, L.; Kantemiris, I.; Benekos, O.; Efstathopoulos, E.; Papagiannis, P.; Spevacek, V.; Semnicka, J.; Dvorak, P.

    2009-07-01

    The poor clinical acceptance of polymer gel dosimetry for dose verification in stereotactic radio-surgery applications stems, inter alia, from the increased MRI acquisition times needed to meet the associated spatial resolution demands. To examine whether this could be partly alleviated by the employment of 3 Tesla imagers and parallel imaging techniques, a PolyAcrylamide Gel filled tube was irradiated in a Leksell Gamma Knife unit with two single irradiation shots (4 mm and 8 mm) and underwent four different scanning sessions using an optimised, volume selective, 32 echo CPMG pulse sequence: One performed on a 1.5 T imager with 0.5 × 0.5 mm2 in-plane spatial resolution and 0.75 mm slice thickness (scan A), while the rest three on a 3.0 T imager; one with the same spatial resolution as in scan A (scan B) and two with finer in-plane resolution (scans C and D). In scans B and C the sensitivity encoding (SENSE) parallel imaging technique was employed. Relative dose distributions derived by scan A were benchmarked against Monte Carlo and treatment planning system calculations, and then used as the reference for the comparison of 2D relative dose distributions derived by each scan in terms of dose difference and distance-to-agreement criteria (γ index tool). Findings suggest that careful MRI planning based on a figure of merit accounting for scanning time and precision for a given increase in spatial resolution, could facilitate the introduction of polymer gel dosimetry into the clinical setting as a practical quality assurance tool for complex radio-surgery techniques.

  2. The importance of 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    2015-01-01

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions.

  3. Breast Patient Setup Error Assessment: Comparison of Electronic Portal Image Devices and Cone-Beam Computed Tomography Matching Results

    SciTech Connect

    Topolnjak, Rajko; Sonke, Jan-Jakob; Nijkamp, Jasper; Rasch, Coen; Minkema, Danny; Remeijer, Peter; Vliet-Vroegindeweij, Corine van

    2010-11-15

    Purpose: To quantify the differences in setup errors measured with the cone-beam computed tomography (CBCT) and electronic portal image devices (EPID) in breast cancer patients. Methods and Materials: Repeat CBCT scan were acquired for routine offline setup verification in 20 breast cancer patients. During the CBCT imaging fractions, EPID images of the treatment beams were recorded. Registrations of the bony anatomy for CBCT to planning CT and EPID to digitally reconstructed-radiographs (DRRs) were compared. In addition, similar measurements of an anthropomorphic thorax phantom were acquired. Bland-Altman and linear regression analysis were performed for clinical and phantom registrations. Systematic and random setup errors were quantified for CBCT and EPID-driven correction protocols in the EPID coordinate system (U, V), with V parallel to the cranial-caudal axis and U perpendicular to V and the central beam axis. Results: Bland-Altman analysis of clinical EPID and CBCT registrations yielded 4 to 6-mm limits of agreement, indicating that both methods were not compatible. The EPID-based setup errors were smaller than the CBCT-based setup errors. Phantom measurements showed that CBCT accurately measures setup error whereas EPID underestimates setup errors in the cranial-caudal direction. In the clinical measurements, the residual bony anatomy setup errors after offline CBCT-based corrections were {Sigma}{sub U} = 1.4 mm, {Sigma}{sub V} = 1.7 mm, and {sigma}{sub U} = 2.6 mm, {sigma}{sub V} = 3.1 mm. Residual setup errors of EPID driven corrections corrected for underestimation were estimated at {Sigma}{sub U} = 2.2mm, {Sigma}{sub V} = 3.3 mm, and {sigma}{sub U} = 2.9 mm, {sigma}{sub V} = 2.9 mm. Conclusion: EPID registration underestimated the actual bony anatomy setup error in breast cancer patients by 20% to 50%. Using CBCT decreased setup uncertainties significantly.

  4. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro-CT imaging

    SciTech Connect

    Vrigneaud, Jean-Marc; Courteau, Alan; Oudot, Alexandra; Collin, Bertrand; Ranouil, Julien; Morgand, Loïc; Raguin, Olivier; Walker, Paul; Brunotte, François

    2013-12-15

    Purpose: Micro-CT is considered to be a powerful tool to investigate various models of disease on anesthetized animals. In longitudinal studies, the radiation dose delivered by the micro-CT to the same animal is a major concern as it could potentially induce spurious effects in experimental results. Optically stimulated luminescence dosimeters (OSLDs) are a relatively new kind of detector used in radiation dosimetry for medical applications. The aim of this work was to assess the dose delivered by the CT component of a micro-SPECT (single-photon emission computed tomography)/CT camera during a typical whole-body mouse study, using commercially available OSLDs based on Al{sub 2}O{sub 3}:C crystals.Methods: CTDI (computed tomography dose index) was measured in micro-CT with a properly calibrated pencil ionization chamber using a rat-like phantom (60 mm in diameter) and a mouse-like phantom (30 mm in diameter). OSLDs were checked for reproducibility and linearity in the range of doses delivered by the micro-CT. Dose measurements obtained with OSLDs were compared to those of the ionization chamber to correct for the radiation quality dependence of OSLDs in the low-kV range. Doses to tissue were then investigated in phantoms and cadavers. A 30 mm diameter phantom, specifically designed to insert OSLDs, was used to assess radiation dose over a typical whole-body mouse imaging study. Eighteen healthy female BALB/c mice weighing 27.1 ± 0.8 g (1 SD) were euthanized for small animal measurements. OLSDs were placed externally or implanted internally in nine different locations by an experienced animal technician. Five commonly used micro-CT protocols were investigated.Results: CTDI measurements were between 78.0 ± 2.1 and 110.7 ± 3.0 mGy for the rat-like phantom and between 169.3 ± 4.6 and 203.6 ± 5.5 mGy for the mouse-like phantom. On average, the displayed CTDI at the operator console was underestimated by 1.19 for the rat-like phantom and 2.36 for the mouse

  5. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    NASA Astrophysics Data System (ADS)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  6. Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers

    SciTech Connect

    Teymurazyan, A.; Pang, G.

    2012-03-15

    Purpose: Most electronic portal imaging devices (EPIDs) developed so far use a thin Cu plate/phosphor screen to convert x-ray energies into light photons, while maintaining a high spatial resolution. This results in a low x-ray absorption and thus a low quantum efficiency (QE) of approximately 2-4% for megavoltage (MV) x-rays. A significant increase of QE is desirable for applications such as MV cone-beam computed tomography (MV-CBCT). Furthermore, the Cu plate/phosphor screen contains high atomic number (high-Z) materials, resulting in an undesirable over-response to low energy x-rays (due to photoelectric effect) as well as high energy x-rays (due to pair production) when used for dosimetric verification. Our goal is to develop a new MV x-ray detector that has a high QE and uses low-Z materials to overcome the obstacles faced by current MV x-ray imaging technologies. Methods: A new high QE and low-Z EPID is proposed. It consists of a matrix of plastic scintillating fibers embedded in a water-equivalent medium and coupled to an optically sensitive 2D active matrix flat panel imager (AMFPI) for image readout. It differs from the previous approach that uses segmented crystalline scintillators made of higher density and higher atomic number materials to detect MV x-rays. The plastic scintillating fibers are focused toward the x-ray source to avoid image blurring due to oblique incidence of off-axis x-rays. When MV x-rays interact with the scintillating fibers in the detector, scintillation light will be produced. The light photons produced in a fiber core and emitted within the acceptance angle of the fiber will be guided toward the AMFPI by total internal reflection. A Monte Carlo simulation has been used to investigate imaging and dosimetric characteristics of the proposed detector under irradiation of MV x-rays. Results: Properties, such as detection efficiency, modulation transfer function, detective quantum efficiency (DQE), energy dependence of detector

  7. Registration of DRRs and portal images for verification of stereotactic body radiotherapy: a feasibility study in lung cancer treatment

    NASA Astrophysics Data System (ADS)

    Künzler, Thomas; Grezdo, Jozef; Bogner, Joachim; Birkfellner, Wolfgang; Georg, Dietmar

    2007-04-01

    Image guidance has become a pre-requisite for hypofractionated radiotherapy where the applied dose per fraction is increased. Particularly in stereotactic body radiotherapy (SBRT) for lung tumours, one has to account for set-up errors and intrafraction tumour motion. In our feasibility study, we compared digitally reconstructed radiographs (DRRs) of lung lesions with MV portal images (PIs) to obtain the displacement of the tumour before irradiation. The verification of the tumour position was performed by rigid intensity based registration and three different merit functions such as the sum of squared pixel intensity differences, normalized cross correlation and normalized mutual information. The registration process then provided a translation vector that defines the displacement of the target in order to align the tumour with the isocentre. To evaluate the registration algorithms, 163 test images were created and subsequently, a lung phantom containing an 8 cm3 tumour was built. In a further step, the registration process was applied on patient data, containing 38 tumours in 113 fractions. To potentially improve registration outcome, two filter types (histogram equalization and display equalization) were applied and their impact on the registration process was evaluated. Generated test images showed an increase in successful registrations when applying a histogram equalization filter whereas the lung phantom study proved the accuracy of the selected algorithms, i.e. deviations of the calculated translation vector for all test algorithms were below 1 mm. For clinical patient data, successful registrations occurred in about 59% of anterior-posterior (AP) and 46% of lateral projections, respectively. When patients with a clinical target volume smaller than 10 cm3 were excluded, successful registrations go up to 90% in AP and 50% in lateral projection. In addition, a reliable identification of the tumour position was found to be difficult for clinical target volumes

  8. Study of X-ray field junction dose using an a-Si electronic portal imaging device.

    PubMed

    Madebo, Mebratu; Perkins, A; Fox, C; Johnston, P; Kron, T

    2010-03-01

    Field junctions between megavoltage photon beams are important in modern radiotherapy for treatments such as head and neck and breast cancer. An electronic portal imaging device (EPID) may be used to study junction dose between two megavoltage X-ray fields. In this study, the junction dose was used to determine machine characteristics such as jaw positions and their reproducibility, collimator rotation and the effect of gantry rotation. All measurements were done on Varian linear accelerators with EPID (Varian, Palo Alto, CA). The results show reproducibility in jaw positions of approximately 0.3 mm for repeated jaw placement while EPID readings were reproducible within a standard deviation of 0.4% for fixed jaw positions. Junction dose also allowed collimator rotation error of 0.1 degrees to be observed. Dependence of junction dose on gantry rotation due to gravity was observed; the gravity effect being maximum at 180 degrees gantry angle (beam pointing up). EPIDs were found to be reliable tools for checking field junctions, which in turn may be used to check jaw reproducibility and collimator rotation of linacs. PMID:20237889

  9. Portal hypertensive enteropathy

    PubMed Central

    Mekaroonkamol, Parit; Cohen, Robert; Chawla, Saurabh

    2015-01-01

    Portal hypertensive enteropathy (PHE) is a condition that describes the pathologic changes and mucosal abnormalities observed in the small intestine of patients with portal hypertension. This entity is being increasingly recognized and better understood over the past decade due to increased accessibility of the small intestine made possible by the introduction of video capsule endoscopy and deep enteroscopy. Though challenged by its diverse endoscopic appearance, multiple scoring systems have been proposed to classify the endoscopic presentation and grade its severity. Endoscopic findings can be broadly categorized into vascular and non-vascular lesions with many subtypes of both categories. Clinical manifestations of PHE can range from asymptomatic incidental findings to fatal gastrointestinal hemorrhage. Classic endoscopic findings in the setting of portal hypertension may lead to a prompt diagnosis. Occasionally histopathology and cross sectional imaging like computed tomography or magnetic resonance imaging may be helpful in establishing a diagnosis. Management of overt bleeding requires multidisciplinary approach involving hepatologists, endoscopists, surgeons, and interventional radiologists. Adequate resuscitation, reduction of portal pressure, and endoscopic therapeutic intervention remain the main principles of the initial treatment. This article reviews the existing evidence on PHE with emphasis on its classification, diagnosis, clinical manifestations, endoscopic appearance, pathological findings, and clinical management. A new schematic management of ectopic variceal bleed is also proposed. PMID:25729469

  10. The CEOS-Land Surface Imaging Constellation Portal for GEOSS: A resource for land surface imaging system information and data access

    USGS Publications Warehouse

    Holm, Thomas; Gallo, Kevin P.; Bailey, Bryan

    2010-01-01

    The Committee on Earth Observation Satellites is an international group that coordinates civil space-borne observations of the Earth, and provides the space component of the Global Earth Observing System of Systems (GEOSS). The CEOS Virtual Constellations concept was implemented in an effort to engage and coordinate disparate Earth observing programs of CEOS member agencies and ultimately facilitate their contribution in supplying the space-based observations required to satisfy the requirements of the GEOSS. The CEOS initially established Study Teams for four prototype constellations that included precipitation, land surface imaging, ocean surface topography, and atmospheric composition. The basic mission of the Land Surface Imaging (LSI) Constellation [1] is to promote the efficient, effective, and comprehensive collection, distribution, and application of space-acquired image data of the global land surface, especially to meet societal needs of the global population, such as those addressed by the nine Group on Earth Observations (GEO) Societal Benefit Areas (SBAs) of agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather. The LSI Constellation Portal is the result of an effort to address important goals within the LSI Constellation mission and provide resources to assist in planning for future space missions that might further contribute to meeting those goals.

  11. Secure portal.

    SciTech Connect

    Nelson, Cynthia Lee

    2007-09-01

    There is a need in security systems to rapidly and accurately grant access of authorized personnel to a secure facility while denying access to unauthorized personnel. In many cases this role is filled by security personnel, which can be very costly. Systems that can perform this role autonomously without sacrificing accuracy or speed of throughput are very appealing. To address the issue of autonomous facility access through the use of technology, the idea of a ''secure portal'' is introduced. A secure portal is a defined zone where state-of-the-art technology can be implemented to grant secure area access or to allow special privileges for an individual. Biometric technologies are of interest because they are generally more difficult to defeat than technologies such as badge swipe and keypad entry. The biometric technologies selected for this concept were facial and gait recognition. They were chosen since they require less user cooperation than other biometrics such as fingerprint, iris, and hand geometry and because they have the most potential for flexibility in deployment. The secure portal concept could be implemented within the boundaries of an entry area to a facility. As a person is approaching a badge and/or PIN portal, face and gait information can be gathered and processed. The biometric information could be fused for verification against the information that is gathered from the badge. This paper discusses a facial recognition technology that was developed for the purposes of providing high verification probabilities with low false alarm rates, which would be required of an autonomous entry control system. In particular, a 3-D facial recognition approach using Fisher Linear Discriminant Analysis is described. Gait recognition technology, based on Hidden Markov Models has been explored, but those results are not included in this paper. Fusion approaches for combining the results of the biometrics would be the next step in realizing the secure portal

  12. A Comparison Between Electronic Portal Imaging Device and Cone Beam CT in Radiotherapy Verification of Nasopharyngeal Carcinoma

    SciTech Connect

    Wu, W.C. Vincent; Leung, Wan Shun; Kay, Shu San; Cheung, Hiu Ching; Wah, Yan Kit

    2011-04-01

    The demand of greater accuracy in intensity-modulated radiotherapy (IMRT) has driven the development of more advanced verification systems. The purpose of this study is to investigate the differences in verification accuracy in terms of the position error detected between cone-beam computed tomography (CBCT) and electronic portal imaging device (EPID) in the IMRT of nasopharyngeal carcinoma (NPC). Two groups of NPC patients (n = 22 and n = 28) verified by CBCT (G1-CB), EPID (G1-EP), and EPID (G2-EP) only, respectively, were recruited. The positional errors between the G1-CB group and the G2-EP group were compared. In addition, the magnitudes of the position errors of EPID taken in the same session of the CBCT, but after necessary corrections (G1-EP), were analyzed. In the CBCT group, 455 CBCT images (G1-CB) and 206 EPID images (G1-EP) were collected, whereas 319 EPID images (G2-EP) for the EPID group, were recorded. The median position errors detected in CBCT were between 0.80 and 0.90 mm in the antero-posterior (A-P), left-right (L-R), and supero-inferior (S-I) directions, whereas those of the EPID were all 0.50 mm. The magnitude of position deviation detected by the CBCT was higher than that of the EPID and their differences were extremely significant (p < 0.001). The frequencies in the G2-EP group with position errors greater than the tolerance (2 mm) were 32, 42, and 27 in the A-P, L-R, and S-I directions, respectively, which accounted for 16.5%, 21.6%, and 13.9% of the total number of EPID. There was difference in verification capability between the CBCT and EPID when applied to IMRT of NPC patients. Because an average of 1 of 6 verifications in EPID was inferior to that of the CBCT, verification by CBCT is recommended.

  13. Feasibility study on dosimetry verification of volumetric-modulated arc therapy-based total marrow irradiation.

    PubMed

    Liang, Yun; Kim, Gwe-Ya; Pawlicki, Todd; Mundt, Arno J; Mell, Loren K

    2013-01-01

    The purpose of this study was to develop dosimetry verification procedures for volumetric-modulated arc therapy (VMAT)-based total marrow irradiation (TMI). The VMAT based TMI plans were generated for three patients: one child and two adults. The planning target volume (PTV) was defined as bony skeleton, from head to mid-femur, with a 3 mm margin. The plan strategy similar to published studies was adopted. The PTV was divided into head and neck, chest, and pelvic regions, with separate plans each of which is composed of 2-3 arcs/fields. Multiple isocenters were evenly distributed along the patient's axial direction. The focus of this study is to establish a dosimetry quality assurance procedure involving both two-dimensional (2D) and three-dimensional (3D) volumetric verifications, which is desirable for a large PTV treated with multiple isocenters. The 2D dose verification was performed with film for gamma evaluation and absolute point dose was measured with ion chamber, with attention to the junction between neighboring plans regarding hot/cold spots. The 3D volumetric dose verification used commercial dose reconstruction software to reconstruct dose from electronic portal imaging devices (EPID) images. The gamma evaluation criteria in both 2D and 3D verification were 5% absolute point dose difference and 3 mm of distance to agreement. With film dosimetry, the overall average gamma passing rate was 98.2% and absolute dose difference was 3.9% in junction areas among the test patients; with volumetric portal dosimetry, the corresponding numbers were 90.7% and 2.4%. A dosimetry verification procedure involving both 2D and 3D was developed for VMAT-based TMI. The initial results are encouraging and warrant further investigation in clinical trials. PMID:23470926

  14. Patient-specific dosimetry based on quantitative SPECT imaging and 3D-DFT convolution

    SciTech Connect

    Akabani, G.; Hawkins, W.G.; Eckblade, M.B.; Leichner, P.K.

    1999-01-01

    The objective of this study was to validate the use of a 3-D discrete Fourier Transform (3D-DFT) convolution method to carry out the dosimetry for I-131 for soft tissues in radioimmunotherapy procedures. To validate this convolution method, mathematical and physical phantoms were used as a basis of comparison with Monte Carlo transport (MCT) calculations which were carried out using the EGS4 system code. The mathematical phantom consisted of a sphere containing uniform and nonuniform activity distributions. The physical phantom consisted of a cylinder containing uniform and nonuniform activity distributions. Quantitative SPECT reconstruction was carried out using the Circular Harmonic Transform (CHT) algorithm.

  15. Bone marrow dosimetry via microCT imaging and stem cell spatial mapping

    NASA Astrophysics Data System (ADS)

    Kielar, Kayla N.

    In order to make predictions of radiation dose in patients undergoing targeted radionuclide therapy of cancer, an accurate model of skeletal tissues is necessary. Concerning these tissues, the dose-limiting factor in these therapies is the toxicity of the hematopoietically active bone marrow. In addition to acute effects, one must be concerned as well with long-term stochastic effects such as radiation-induced leukemia. Particular cells of interest for both toxicity and cancer risk are the hematopoietic stem cells (HSC), found within the active marrow regions of the skeleton. At present, cellular-level dosimetry models are complex, and thus we cannot model individual stem cells in an anatomic model of the patient. As a result, one reverts to looking at larger tissue regions where these cell populations may reside. To provide a more accurate marrow dose assessment, the skeletal dosimetry model must also be patient-specific. That is, it should be designed to match as closely as possible to the patient undergoing treatment. Absorbed dose estimates then can be tailored based on the skeletal size and trabecular microstructure of an individual for an accurate prediction of marrow toxicity. Thus, not only is it important to accurately model the target tissues of interest in a normal patient, it is important to do so for differing levels of marrow health. A skeletal dosimetry model for the adult female was provided for better predictions of marrow toxicity in patients undergoing radionuclide therapy. This work is the first fully established gender specific model for these applications, and supersedes previous models in scalability of the skeleton and radiation transport methods. Furthermore, the applicability of using bone marrow biopsies was deemed sufficient in prediction of bone marrow health, specifically for the hematopoietic stem cell population. The location and concentration of the HSC in bone marrow was found to follow a spatial gradient from the bone trabeculae

  16. Superficial dosimetry imaging based on Čerenkov emission for external beam radiotherapy with megavoltage x-ray beam

    PubMed Central

    Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Fox, Colleen J.; Pogue, Brian W.

    2013-01-01

    Purpose: Čerenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the Čerenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical Čerenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams. Methods: In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. Čerenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on Čerenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50–200 × 200 mm2), incident angles (0°–70°) and imaging regions were all varied. Results: The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their Čerenkov emission is proportional to dose. Directly simulated local intensity of Čerenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of Čerenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the

  17. Superficial dosimetry imaging based on Čerenkov emission for external beam radiotherapy with megavoltage x-ray beam

    SciTech Connect

    Zhang, Rongxiao; Glaser, Adam K.; Gladstone, David J.; Fox, Colleen J.; Pogue, Brian W.

    2013-10-15

    Purpose: Čerenkov radiation emission occurs in all tissue, when charged particles (either primary or secondary) travel at velocity above the threshold for the Čerenkov effect (about 220 KeV in tissue for electrons). This study presents the first examination of optical Čerenkov emission as a surrogate for the absorbed superficial dose for MV x-ray beams.Methods: In this study, Monte Carlo simulations of flat and curved surfaces were studied to analyze the energy spectra of charged particles produced in different regions near the surfaces when irradiated by MV x-ray beams. Čerenkov emission intensity and radiation dose were directly simulated in voxelized flat and cylindrical phantoms. The sampling region of superficial dosimetry based on Čerenkov radiation was simulated in layered skin models. Angular distributions of optical emission from the surfaces were investigated. Tissue mimicking phantoms with flat and curved surfaces were imaged with a time domain gating system. The beam field sizes (50 × 50–200 × 200 mm{sup 2}), incident angles (0°–70°) and imaging regions were all varied.Results: The entrance or exit region of the tissue has nearly homogeneous energy spectra across the beam, such that their Čerenkov emission is proportional to dose. Directly simulated local intensity of Čerenkov and radiation dose in voxelized flat and cylindrical phantoms further validate that this signal is proportional to radiation dose with absolute average discrepancy within 2%, and the largest within 5% typically at the beam edges. The effective sampling depth could be tuned from near 0 up to 6 mm by spectral filtering. The angular profiles near the theoretical Lambertian emission distribution for a perfect diffusive medium, suggesting that angular correction of Čerenkov images may not be required even for curved surface. The acquisition speed and signal to noise ratio of the time domain gating system were investigated for different acquisition procedures, and the

  18. SU-E-T-497: Semi-Automated in Vivo Radiochromic Film Dosimetry Using a Novel Image Processing Algorithm

    SciTech Connect

    Reyhan, M; Yue, N

    2014-06-01

    Purpose: To validate an automated image processing algorithm designed to detect the center of radiochromic film used for in vivo film dosimetry against the current gold standard of manual selection. Methods: An image processing algorithm was developed to automatically select the region of interest (ROI) in *.tiff images that contain multiple pieces of radiochromic film (0.5x1.3cm{sup 2}). After a user has linked a calibration file to the processing algorithm and selected a *.tiff file for processing, an ROI is automatically detected for all films by a combination of thresholding and erosion, which removes edges and any additional markings for orientation. Calibration is applied to the mean pixel values from the ROIs and a *.tiff image is output displaying the original image with an overlay of the ROIs and the measured doses. Validation of the algorithm was determined by comparing in vivo dose determined using the current gold standard (manually drawn ROIs) versus automated ROIs for n=420 scanned films. Bland-Altman analysis, paired t-test, and linear regression were performed to demonstrate agreement between the processes. Results: The measured doses ranged from 0.2-886.6cGy. Bland-Altman analysis of the two techniques (automatic minus manual) revealed a bias of -0.28cGy and a 95% confidence interval of (5.5cGy,-6.1cGy). These values demonstrate excellent agreement between the two techniques. Paired t-test results showed no statistical differences between the two techniques, p=0.98. Linear regression with a forced zero intercept demonstrated that Automatic=0.997*Manual, with a Pearson correlation coefficient of 0.999. The minimal differences between the two techniques may be explained by the fact that the hand drawn ROIs were not identical to the automatically selected ones. The average processing time was 6.7seconds in Matlab on an IntelCore2Duo processor. Conclusion: An automated image processing algorithm has been developed and validated, which will help

  19. SU-C-201-06: Utility of Quantitative 3D SPECT/CT Imaging in Patient Specific Internal Dosimetry of 153-Samarium with GATE Monte Carlo Package

    SciTech Connect

    Fallahpoor, M; Abbasi, M; Sen, A; Parach, A; Kalantari, F

    2015-06-15

    Purpose: Patient-specific 3-dimensional (3D) internal dosimetry in targeted radionuclide therapy is essential for efficient treatment. Two major steps to achieve reliable results are: 1) generating quantitative 3D images of radionuclide distribution and attenuation coefficients and 2) using a reliable method for dose calculation based on activity and attenuation map. In this research, internal dosimetry for 153-Samarium (153-Sm) was done by SPECT-CT images coupled GATE Monte Carlo package for internal dosimetry. Methods: A 50 years old woman with bone metastases from breast cancer was prescribed 153-Sm treatment (Gamma: 103keV and beta: 0.81MeV). A SPECT/CT scan was performed with the Siemens Simbia-T scanner. SPECT and CT images were registered using default registration software. SPECT quantification was achieved by compensating for all image degrading factors including body attenuation, Compton scattering and collimator-detector response (CDR). Triple energy window method was used to estimate and eliminate the scattered photons. Iterative ordered-subsets expectation maximization (OSEM) with correction for attenuation and distance-dependent CDR was used for image reconstruction. Bilinear energy mapping is used to convert Hounsfield units in CT image to attenuation map. Organ borders were defined by the itk-SNAP toolkit segmentation on CT image. GATE was then used for internal dose calculation. The Specific Absorbed Fractions (SAFs) and S-values were reported as MIRD schema. Results: The results showed that the largest SAFs and S-values are in osseous organs as expected. S-value for lung is the highest after spine that can be important in 153-Sm therapy. Conclusion: We presented the utility of SPECT-CT images and Monte Carlo for patient-specific dosimetry as a reliable and accurate method. It has several advantages over template-based methods or simplified dose estimation methods. With advent of high speed computers, Monte Carlo can be used for treatment planning

  20. Cubical S values for use with SPECT, PET, and autoradiographic imaging data in performing small-scale dosimetry

    SciTech Connect

    Costes, S.V.; Bouchet, L.G.; Bolch, W.E.

    1996-06-01

    A traditional assumption made in nuclear medicine dosimetry methodologies such as the MIRD schema is that the activity in the source organ is uniformly distributed. Localization techniques such as quantitative SPEC and PET imaging allow one to dispense with this assumption and look at realistic nonuniform activity distributions in selected organs or organ regions. Therapy applications further emphasize the need for direct treatment of nonuniformities. Many researchers have relied upon elaborate computational techniques such as dose kernels to assess dose distributions in these regions. In this work, a simplified approach is proposed which allows direct use of the MIRD schema in conjunction with imaging data to rapidly assess organ dose distributions with minimal computational effort. The EGS4 radiation transportcode has been used with a cubical array of tissue voxel elements for a centrally located source cube of {sup 32}P, {sup 131}I, {sup 89}Sr, {sup 90}Y, and {sup 99m}Tc. Three sets of voxel dimensions are considered: 6 mm for SPECT images, 3 mm for PET images, and 50 {mu}m for autoradiography. Radionuclide S values are subsequently tabulated as a single function of the source-to-target voxel separation distance. Isodose contours are shown for (1) a mouse renal cell carcinoma with {sup 131}I-labeled antibody, (2) a human colon adenocarcinoma with {sup 131}I-labeled antibody, and (3) various tumors directly injected With {sup 32}P.

  1. The Effect of Registration Surrogate and Patient Factors on the Interobserver Variability of Electronic Portal Image Guidance During Prostate Radiotherapy

    SciTech Connect

    Kong, Vickie Lockwood, Gina; Yan Jing; Catton, Charles; Chung, Peter; Bayley, Andrew; Rosewall, Tara

    2011-01-01

    Intraprostatic fiducial markers (IPM) and electronic portal imaging (EPI) are commonly used to identify and correct for prostate motion during radiotherapy. However, little data is available on the precision of this image-guidance technique. This study quantified impact of different registration surrogates and patient factors on the interobserver variability of manual EPI alignment during prostate radiotherapy. For 50 prostate radiotherapy patients previously implanted with 3 IPM, five observers manually aligned 150 pairs of orthogonal EPI to the reference digital reconstructed radiograph using Varian Vision EPI analysis software. Images were aligned using: Bony anatomy (BA), single mid-prostate IPM (SM); and 2 strategies using 3 IPM: center of mass (COM) and rotate and translate (R and T). Intraclass correlation coefficients (ICCs) were calculated to quantify interobserver variability. The absolute displacements measured using SM and R and T were compared with those using COM. The impact of patients' pelvic diameter and adjuvant hormone therapy on interobserver variability were also evaluated. Twelve thousand displacement values were collected for analysis. The maximum discrepancy between the 5 observers was >2 mm in 47% of measurements using BA, 5% using SM, 4% using R and T, and 3% using COM. Both of the 3 IPM alignment strategies demonstrated lower interobserver variability than the single IPM strategy (ICC 0.94-0.97 vs. 0.82-0.94). BA had the highest interobserver variability (ICC = 0.43-0.90). Pelvic diameter and hormone therapy had no discernible impact on interobserver variability. Compared with COM, the absolute displacements measured using the other IPM strategies were statistically different (p < 0.001), but 95% of the absolute magnitude of differences between the strategies were {<=}1 mm. The high reproducibility among the observers demonstrated the precision of prostate localization using multiple IPM and EPI, which was not influenced by the patient

  2. SU-E-T-438: Commissioning of An In-Vivo Quality Assurance Method Using the Electronic Portal Imaging Device

    SciTech Connect

    Morin, O; Held, M; Pouliot, J

    2014-06-01

    Purpose: Patient specific pre-treatment quality assurance (QA) using arrays of detectors or film have been the standard approach to assure the correct treatment is delivered to the patient. This QA approach is expensive, labor intensive and does not guarantee or document that all remaining fractions were treated properly. The purpose of this abstract is to commission and evaluate the performance of a commercially available in-vivo QA software using the electronic portal imaging device (EPID) to record the daily treatments. Methods: The platform EPIgray V2.0.2 (Dosisoft), which machine model compares ratios of TMR with EPID signal to predict dose was commissioned for an Artiste (Siemens Oncology Care Systems) and a Truebeam (Varian medical systems) linear accelerator following the given instructions. The systems were then tested on three different phantoms (homogeneous stack of solid water, anthropomorphic head and pelvis) and on a library of patient cases. Simple and complex fields were delivered at different exposures and for different gantry angles. The effects of the table attenuation and the EPID sagging were evaluated. Gamma analysis of the measured dose was compared to the predicted dose for complex clinical IMRT cases. Results: Commissioning of the EPIgray system for two photon energies took 8 hours. The difference between the dose planned and the dose measured with EPIgray was better than 3% for all phantom scenarios tested. Preliminary results on patients demonstrate an accuracy of 5% is achievable in high dose regions for both 3DCRT and IMRT. Large discrepancies (>5%) were observed due to metallic structures or air cavities and in low dose areas. Flat panel sagging was visible and accounted for in the EPIgray model. Conclusion: The accuracy achieved by EPIgray is sufficient to document the safe delivery of complex IMRT treatments. Future work will evaluate EPIgray for VMAT and high dose rate deliveries. This work is supported by Dosisoft, Cachan, France.

  3. Dosimetry tools and techniques for IMRT

    SciTech Connect

    Low, Daniel A.; Moran, Jean M.; Dempsey, James F.; Dong Lei; Oldham, Mark

    2011-03-15

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  4. Dosimetry tools and techniques for IMRT.

    PubMed

    Low, Daniel A; Moran, Jean M; Dempsey, James F; Dong, Lei; Oldham, Mark

    2011-03-01

    Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA) radiation dose distributions. This report provides a comprehensive overview of how dosimeters, phantoms, and dose distribution analysis techniques should be used to support the commissioning and quality assurance requirements of an IMRT program. The proper applications of each dosimeter are described along with the limitations of each system. Point detectors, arrays, film, and electronic portal imagers are discussed with respect to their proper use, along with potential applications of 3D dosimetry. Regardless of the IMRT technique utilized, some situations require the use of multiple detectors for the acquisition of accurate commissioning data. The overall goal of this task group report is to provide a document that aids the physicist in the proper selection and use of the dosimetry tools available for IMRT QA and to provide a resource for physicists that describes dosimetry measurement techniques for purposes of IMRT commissioning and measurement-based characterization or verification of IMRT treatment plans. This report is not intended to provide a comprehensive review of commissioning and QA procedures for IMRT. Instead, this report focuses on the aspects of metrology, particularly the practical aspects of measurements that are unique to IMRT. The metrology of IMRT concerns the application of measurement instruments and their suitability, calibration, and quality control of measurements. Each of the dosimetry measurement tools has limitations that need to be considered when incorporating them into a commissioning process or a comprehensive QA program. For example, routine quality assurance procedures require the use of robust field dosimetry systems. These often exhibit limitations with respect to spatial resolution or energy response and need to themselves be commissioned against more established dosimeters. A chain of

  5. Validation study of ¹³¹I-RRL: assessment of biodistribution, SPECT imaging and radiation dosimetry in mice.

    PubMed

    Zhao, Qian; Yan, Ping; Yin, Lei; Li, Ling; Chen, Xue Qi; Ma, Chao; Wang, Rong Fu

    2013-04-01

    Tumor angiogenesis is important in the growth and metastasis of malignant tumors. In our previous study, we demonstrated that an arginine-arginine-leucine (RRL) peptide is a tumor endothelial cell-specific binding sequence that may be used as a molecular probe for the imaging of malignant tumors in vivo. The aim of the present study was to further explore the characteristics of 131I‑RRL by biodistribution tests, and to estimate the radiation dosimetry of 131I‑RRL for humans using mice data. The RRL peptide was radiolabeled with 131I by a chloramine-T (CH-T) method. The radiolabeling efficiency and radiochemical purity were then characterized in vitro. 131I‑RRL was injected intravenously into B16 xenograft-bearing Kunming mice. Biodistribution analysis and in vivo imaging were performed periodically. The radiation dosimetry in humans was calculated according to the organ distribution and the standard medical internal radiation dose (MIRD) method in mice. All data were analyzed by statistical and MIRDOSE 3.1 software. The labeling efficiency of 131I‑RRL reached 70.0±2.91% (n=5), and the radiochemical purity exceeded 95% following purification. In mice bearing B16 xenografts, 131I‑RRL rapidly cleared from the blood and predominantly accumulated in the kidneys, the stomach and the tumor tissue. The specific uptake of 131I‑RRL in the tumor increased over time and was significantly higher than that of the other organs, 24-72 h following injection (P<0.05). The ratio of tumor-to-skeletal muscle (T/SM) tissue exceeded 4.75, and the ratio of the tumor-to-blood (T/B) tissue peaked at 3.36. In the single-photon emission computed tomography (SPECT) imaging of Kunming mice bearing B16 xenografts, the tumors were clearly identifiable at 6 h, and significant uptake was evident 24-72 h following administration of 131I‑RRL. The effective dose for the adult male dosimetric model was estimated to be 0.0293 mSv/MBq. Higher absorbed doses were estimated for the stomach

  6. IDL Grid Web Portal

    NASA Astrophysics Data System (ADS)

    Massimino, P.; Costa, A.

    2008-08-01

    Image Data Language is a software for data analysis, visualization and cross-platform application development. The potentiality of IDL is well-known in the academic scientific world, especially in the astronomical environment where thousands of procedures are developed by using IDL. The typical use of IDL is the interactive mode but it is also possible to run IDL programs that do not require any interaction with the user, submitting them in batch or background modality. Through the interactive mode the user immediately receives images or other data produced in the running phase of the program; in batch or background mode, the user will have to wait for the end of the program, sometime for many hours or days to obtain images or data that IDL produced as output: in fact in Grid environment it is possible to access to or retrieve data only after completion of the program. The work that we present gives flexibility to IDL procedures submitted to the Grid computer infrastructure. For this purpose we have developed an IDL Grid Web Portal to allow the user to access the Grid and to submit IDL programs granting a full job control and the access to images and data generated during the running phase, without waiting for their completion. We have used the PHP technology and we have given the same level of security that Grid normally offers to its users. In this way, when the user notices that the intermediate program results are not those expected, he can stop the job, change the parameters to better satisfy the computational algorithm and resubmit the program, without consuming the CPU time and other Grid resources. The IDL Grid Web Portal allows you to obtain IDL generated images, graphics and data tables by using a normal browser. All conversations from the user and the Grid resources occur via Web, as well as authentication phases. The IDL user has not to change the program source much because the Portal will automatically introduce the appropriate modification before

  7. A computerized framework for monitoring four-dimensional dose distributions during stereotactic body radiation therapy using a portal dose image-based 2D/3D registration approach.

    PubMed

    Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki

    2015-03-01

    A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The mean±standard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.25±4.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment. PMID:25592290

  8. The role of three-dimensional imaging in optimizing diagnosis, classification and surgical treatment of hepatocellular carcinoma with portal vein tumor thrombus☆

    PubMed Central

    Wei, Xu-Biao; Xu, Jie; Li, Nan; Yu, Ying; Shi, Jie; Guo, Wei-Xing; Cheng, Hong-Yan; Wu, Meng-Chao; Lau, Wan-Yee; Cheng, Shu-Qun

    2015-01-01

    Background Accurate assessment of characteristics of tumor and portal vein tumor thrombus is crucial in the management of hepatocellular carcinoma. Aims Comparison of the three-dimensional imaging with multiple-slice computed tomography in the diagnosis and treatment of hepatocellular carcinoma with portal vein tumor thrombus. Method Patients eligible for surgical resection were divided into the three-dimensional imaging group or the multiple-slice computed tomography group according to the type of preoperative assessment. The clinical data were collected and compared. Results 74 patients were enrolled into this study. The weighted κ values for comparison between the thrombus type based on preoperative evaluation and intraoperative findings were 0.87 for the three-dimensional reconstruction group (n = 31) and 0.78 for the control group (n = 43). Three-dimensional reconstruction was significantly associated with a higher rate of en-bloc resection of tumor and thrombus (P = 0.025). Using three-dimensional reconstruction, significant correlation existed between the predicted and actual volumes of the resected specimens (r = 0.82, P < 0.01), as well as the predicted and actual resection margins (r = 0.97, P < 0.01). Preoperative three-dimensional reconstruction significantly decreased tumor recurrence and tumor-related death, with hazard ratios of 0.49 (95% confidential interval, 0.27–0.90) and 0.41 (95% confidential interval, 0.21–0.78), respectively. Conclusion For hepatocellular carcinoma with portal vein tumor thrombus, three-dimensional imaging was efficient in facilitating surgical treatment and benefiting postoperative survivals. PMID:27017169

  9. Comparison of Combined X-Ray Radiography and Magnetic Resonance (XMR) Imaging-Versus Computed Tomography-Based Dosimetry for the Evaluation of Permanent Prostate Brachytherapy Implants

    SciTech Connect

    Acher, Peter Rhode, Kawal; Morris, Stephen; Gaya, Andrew; Miquel, Marc; Popert, Rick; Tham, Ivan; Nichol, Janette; McLeish, Kate; Deehan, Charles; Dasgupta, Prokar; Beaney, Ronald; Keevil, Stephen F.

    2008-08-01

    Purpose: To present a method for the dosimetric analysis of permanent prostate brachytherapy implants using a combination of stereoscopic X-ray radiography and magnetic resonance (MR) imaging (XMR) in an XMR facility, and to compare the clinical results between XMR- and computed tomography (CT)-based dosimetry. Methods and Materials: Patients who had received nonstranded iodine-125 permanent prostate brachytherapy implants underwent XMR and CT imaging 4 weeks later. Four observers outlined the prostate gland on both sets of images. Dose-volume histograms (DVHs) were derived, and agreement was compared among the observers and between the modalities. Results: A total of 30 patients were evaluated. Inherent XMR registration based on prior calibration and optical tracking required a further automatic seed registration step that revealed a median root mean square registration error of 4.2 mm (range, 1.6-11.4). The observers agreed significantly more closely on prostate base and apex positions as well as outlining contours on the MR images than on those from CT. Coefficients of variation were significantly higher for observed prostate volumes, D90, and V100 parameters on CT-based dosimetry as opposed to XMR. The XMR-based dosimetry showed little agreement with that from CT for all observers, with D90 95% limits of agreement ranges of 65, 118, 79, and 73 Gy for Observers 1, 2, 3, and 4, respectively. Conclusions: The study results showed that XMR-based dosimetry offers an alternative to other imaging modalities and registration methods with the advantages of MR-based prostate delineation and confident three-dimensional reconstruction of the implant. The XMR-derived dose-volume histograms differ from the CT-derived values and demonstrate less interobserver variability.

  10. Evaluation of an edge method for computed radiography and an electronic portal imaging device in radiotherapy: Image quality measurements

    NASA Astrophysics Data System (ADS)

    Son, Soon-Yong; Choe, Bo-Young; Lee, Jeong-Woo; Kim, Jung-Min; Jeong, Hoi-Woun; Kim, Ham-Gyum; Kim, Wha-Sun; Lyu, Kwang-Yeul; Min, Jung-Whan; Kim, Ki-Won

    2014-12-01

    Regular quality assurance (QA) of image quality is essential for reasonable patient dose and accurate treatment. Thus, QA should be performed as a routine for correction. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) of the computed radiography (CR) system and the digital radiography (DR) system by using the edge method in megavoltage X-ray imaging (MVI). We used an edge block, which consisting of tungsten with dimensions of 19 (thickness) × 10 (length) × 1 (width) cm3 and measured the pre-sampling MTF by using a 6-megavolt (MV) energy. Computed radiography with an image plate (CR-IP) showed the values of 0.4 mm-1 and 1.19 mm-1 for MTF 0.5 and 0.1. In the DR group, Elekta iViewGT showed the highest value of 0.27 mm-1 for MTF 0.5, and Siemens BEAMVIEW PLUS showed the highest value of 0.98 mm-1 for MTF 0.1. In CR, the NPS of CR-IP showed a favorable noise distribution. Thus, in the DR group, the NPS of Elekta iViewGT showed the highest noise distribution. CR-IP showed values at peak DQE and 1 mm-1 DQE of 0.0013 and 0.00011, respectively. In the DR group, Elekta iViewGT showed the best efficiency at a peak DQE of 0.0009, and Siemens BEAMVIEW PLUS showed the best efficiency at a 1-mm-1 DQE of 0.000008. The edge method produced fast assessments of the MTF and the DQE. We could validate the evaluation of the edge method by comparing of the CR system to the DR system. This study demonstrated that the edge method can be used for not only traditional QA imaging but also quantitative MTF, NPS and DQE measurements in detector development.

  11. Computational dosimetry

    SciTech Connect

    Siebert, B.R.L.; Thomas, R.H.

    1996-01-01

    The paper presents a definition of the term ``Computational Dosimetry`` that is interpreted as the sub-discipline of computational physics which is devoted to radiation metrology. It is shown that computational dosimetry is more than a mere collection of computational methods. Computational simulations directed at basic understanding and modelling are important tools provided by computational dosimetry, while another very important application is the support that it can give to the design, optimization and analysis of experiments. However, the primary task of computational dosimetry is to reduce the variance in the determination of absorbed dose (and its related quantities), for example in the disciplines of radiological protection and radiation therapy. In this paper emphasis is given to the discussion of potential pitfalls in the applications of computational dosimetry and recommendations are given for their avoidance. The need for comparison of calculated and experimental data whenever possible is strongly stressed.

  12. Portal hypertension complicating myelofibrosis: reversal following splenectomy.

    PubMed Central

    Lukie, B. E.; Card, R. T.

    1977-01-01

    Portal hypertension occurs in approximately 10% of patients with myelofibrosis. Increased portal blood flow secondary to splenomegaly has been proposed to explain its development. In a 60-year-old woman with proven myelofibrosis of 10 years' duration and gross splenomegaly, portal hypertension developed with esophageal varices and ascites. There was no demonstrable obstruction to portal blood flow. Following splenectomy the ascites and esophageal varices disappeared. Despite the presence of splenic myeloid metaplasia, splenectomy did not impair the patient's hematologic status. Portal hypertension complicating myelofibrosis has a poor prognosis, so careful attention should be given to its detection. Splenectomy may be preferable to portal-systemic shunting in the management of this complication. Images FIG. 1 FIG. 2 PMID:907949

  13. In aqua vivo EPID dosimetry

    SciTech Connect

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Olaciregui-Ruiz, Igor; Pecharroman-Gallego, Raul; Sonke, Jan-Jakob; Stroom, Joep; Herk, Marcel J.; Mijnheer, Ben van

    2012-01-15

    Purpose: At the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital in vivo dosimetry using an electronic portal imaging device (EPID) has been implemented for almost all high-energy photon treatments of cancer with curative intent. Lung cancer treatments were initially excluded, because the original back-projection dose-reconstruction algorithm uses water-based scatter-correction kernels and therefore does not account for tissue inhomogeneities accurately. The aim of this study was to test a new method, in aqua vivo EPID dosimetry, for fast dose verification of lung cancer irradiations during actual patient treatment. Methods: The key feature of our method is the dose reconstruction in the patient from EPID images, obtained during the actual treatment, whereby the images have been converted to a situation as if the patient consisted entirely of water; hence, the method is termed in aqua vivo. This is done by multiplying the measured in vivo EPID image with the ratio of two digitally reconstructed transmission images for the unit-density and inhomogeneous tissue situation. For dose verification, a comparison is made with the calculated dose distribution with the inhomogeneity correction switched off. IMRT treatment verification is performed for each beam in 2D using a 2D {gamma} evaluation, while for the verification of volumetric-modulated arc therapy (VMAT) treatments in 3D a 3D {gamma} evaluation is applied using the same parameters (3%, 3 mm). The method was tested using two inhomogeneous phantoms simulating a tumor in lung and measuring its sensitivity for patient positioning errors. Subsequently five IMRT and five VMAT clinical lung cancer treatments were investigated, using both the conventional back-projection algorithm and the in aqua vivo method. The verification results of the in aqua vivo method were statistically analyzed for 751 lung cancer patients treated with IMRT and 50 lung cancer patients treated with VMAT. Results: The improvements by

  14. An empirical model of electronic portal imager response implemented within a commercial treatment planning system for verification of intensity-modulated radiation therapy fields.

    PubMed

    Khan, Rao F H; Ostapiak, Orest Z; Szabo, Joe J

    2008-01-01

    Quality assurance (QA) of an intensity-modulated radiation therapy (IMRT) plan is more complex than that of a conventional plan. To improve the efficiency of QA, electronic portal imaging devices (EPIDs) can be used. The major objective of the present work was to use a commercial treatment planning system to model EPID response for the purpose of pre-treatment IMRT dose verification. Images were acquired with an amorphous silicon flat panel portal imager (aS500: Varian Medical Systems, Palo Alto, CA) directly irradiated with a 6-MV photon beam from a Clinac 21EX linear accelerator (Varian Medical Systems). Portal images were acquired for a variety of rectangular fields, from which profiles and relative output factors were extracted. A dedicated machine model was created using the physics tools of the Pinnacle3 (Philips Medical Systems, Madison, WI) treatment planning system to model the data. Starting with the known photon spectrum and assuming an effective depth of 7 cm, machine model parameters were adjusted to best fit measured profile and output factors. The machine parameters of a second model, which assumed a 0.8 MeV monoenergetic photon spectrum and an effective depth in water of 3 cm, were also optimized. The second EPID machine model was used to calculate planar dose maps of simple geometric IMRT fields as well as a 9-field IMRT plan developed for clinical trials credentialing purposes. The choice of energy and depth for an EPID machine model influenced the best achievable fit of the optimized machine model to the measured data. When both energy and depth were reduced by a significant amount, a better overall fit was achieved. In either case, the secondary source size and strength could be adjusted to give reasonable agreement with measured data. The gamma evaluation method was used to compare planar dose maps calculated using the second EPID machine model with the EPID images of small IMRT fields. In each case, more than 95% of points fell within 3% of

  15. Registration of serial SPECT/CT images for three-dimensional dosimetry in radionuclide therapy.

    PubMed

    Sjögreen-Gleisner, K; Rueckert, D; Ljungberg, M

    2009-10-21

    For radionuclide therapy, individual patient pharmacokinetics can be measured in three dimensions by sequential SPECT imaging. Accurate registration of the time series of images is central for voxel-based calculations of the residence time and absorbed dose. In this work, rigid and non-rigid methods are evaluated for registration of 6-7 SPECT/CT images acquired over a week, in anatomical regions from the head-and-neck region down to the pelvis. A method for calculation of the absorbed dose, including a voxel mass determination from the CT images, is also described. Registration of the SPECT/CT images is based on a CT-derived spatial transformation. Evaluation is focused on the CT registration accuracy, and on its impact on values of residence time and absorbed dose. According to the CT evaluation, the non-rigid method produces a more accurate registration than the rigid one. For images of the residence time and absorbed dose, registration produces a sharpening of the images. For volumes-of-interest, the differences between rigid and non-rigid results are generally small. However, the non-rigid method is more consistent for regions where non-rigid patient movements are likely, such as in the head-neck-shoulder region. PMID:19794243

  16. Methodology and dosimetry in adrenal medullary imaging with iodine-131 MIBG

    SciTech Connect

    Lindberg, S.; Fjaelling, M.J.; Jacobsson, L.; Jansson, S.; Tisell, L.E.

    1988-10-01

    Iodine-131 MIBG scans were performed in 59 patients in order to localize intra- or extra-adrenal pheochromocytomas (pheos), or to visualize hyperplastic adrenal medulla. Images were obtained from the pelvis to the base of the skull on Days 1, 4, and 7 after tracer injection. The 15 patients with histopathologic confirmation of adrenal medullary disease had positive scans. In three of these, the pheos were visible only on images obtained on Day 7. One scan was false negative. After excluding patients with a predisposition to adrenal medullary disease, nine subjects (28%) without verification of pheo displayed adrenal uptake of the radionuclide. Late images produce a low rate of false-negative scans; the background activity diminishes and even small pheos can be detected. In order to increase the quality of late images, 40 MBq (/sup 131/I)MIBG was used instead of 20 MBq. The dosimetric considerations are discussed.

  17. Pulsed light imaging for wide-field dosimetry of photodynamic therapy in the skin

    NASA Astrophysics Data System (ADS)

    Davis, Scott C.; Sexton, Kristian; Chapman, Michael Shane; Maytin, Edward; Hasan, Tayyaba; Pogue, Brian W.

    2014-03-01

    Photodynamic therapy using aminoluvelinic acid (ALA) is an FDA-approved treatment for actinic keratoses, pre-cancerous skin lesions which pose a significant risk for immunocompromised individuals, such as organ transplant recipients. While PDT is generally effective, response rates vary, largely due to variations in the accumulation of the photosensitizer protoporphyrin IX (PpIX) after ALA application. The ability to quantify PpIX production before treatment could facilitate the use of additional interventions to improve outcomes. While many groups have demonstrated the ability to image PpIX in the clinic, these systems generally require darkening the room lights during imaging, which is unpopular with clinicians. We have developed a novel wide-field imaging system based on pulsed excitation and gated acquisition to image photosensitizer activity in the skin. The tissue is illuminated using four pulsed LED's to excite PpIX, and the remitted light acquired with a synchronized ICCD. This approach facilitates real-time background subtraction of ambient light, precluding the need to darken the exam room. Delivering light in short bursts also allows the use of elevated excitation intensity while remaining under the maximum permissible exposure limits, making the modality more sensitive to photosensitizer fluorescence than standard approaches. Images of tissue phantoms indicate system sensitivity down to 250nM PpIX and images of animals demonstrate detection of PpIX fluorescence in vivo under normal room light conditions.

  18. Are Lateral Electronic Portal Images Adequate for Accurate On-Line Daily Targeting of the Prostate? Results of a Prospective Study

    SciTech Connect

    Lometti, Michael W. Thurston, Damon; Aubin, Michele; Bock, Andrea; Verhey, Lynn; Lockhart, James M.; Bland, Roger; Pouliot, Jean; Roach, Mack

    2008-04-01

    The purpose of this report was to evaluate the magnitude of the error that would be introduced if only a lateral (LAT) portal image, as opposed to a pair of orthogonal images, was used to verify and correct daily setup errors and organ motion in external beam radiation therapy (EBRT) of prostate cancer. The 3-dimensional (3D) coordinates of gold markers from 12 consecutive prostate patients were reconstructed using a pair of orthogonal images. The data were re-analyzed using only the LAT images. Couch moves from the 2-dimensional (2D)-only data were compared with the complete 3D data set. The 2D-only data provided couch moves that differed on average from the 3D data by 2.3 {+-} 3.0, 0.0 {+-} 0.0, and 0.8 {+-} 1.0 mm in the Lat, AP, and SI directions, respectively. Along AP and SI axes, the LAT image provided positional information similar to the orthogonal pair. The error along the LAT axis may be acceptable provided lateral margins are large enough. A LAT-only setup protocol reduces patient treatment times and increases patient throughput. In most circumstances, with exceptions such as morbidly obese patients, acquisition of only a LAT image for daily targeting of the prostate will provide adequate positional precision.

  19. WE-E-BRE-01: An Image-Based Skeletal Dosimetry Model for the ICRP Reference Adult Female - Internal Electron Sources

    SciTech Connect

    O'Reilly, S; Maynard, M; Marshall, E; Bolch, W; Sinclair, L; Rajon, D; Wayson, M

    2014-06-15

    Purpose: Limitations seen in previous skeletal dosimetry models, which are still employed in commonly used software today, include the lack of consideration of electron escape and cross-fire from cortical bone, the modeling of infinite spongiosa, the disregard of the effect of varying cellularity on active marrow self-irradiation, and the lack of use of the more recent ICRP definition of a 50 micron surrogate tissue region for the osteoprogenitor cells - shallow marrow. These limitations were addressed in the present dosimetry model. Methods: Electron transport was completed to determine specific absorbed fractions to active marrow and shallow marrow of the skeletal regions of the adult female. The bone macrostructure was obtained from the whole-body hybrid computational phantom of the UF series of reference phantoms, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 year-old female cadaver. The target tissue regions were active marrow and shallow marrow. The source tissues were active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume and cortical bone surfaces. The marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or modeled analytically. Results: The method of combining macro- and microstructure absorbed fractions calculated using MCNPX electron transport was found to yield results similar to those determined with the PIRT model for the UF adult male in the Hough et al. study. Conclusion: The calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) and did not follow current models used in nuclear medicine dosimetry at high energies (due to that models use of an infinite expanse of trabecular spongiosa)

  20. TOPICAL REVIEW: Polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Baldock, C.; De Deene, Y.; Doran, S.; Ibbott, G.; Jirasek, A.; Lepage, M.; McAuley, K. B.; Oldham, M.; Schreiner, L. J.

    2010-03-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented.

  1. Topical Review: Polymer gel dosimetry

    PubMed Central

    Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J

    2010-01-01

    Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687

  2. A simple quality assurance test tool for the visual verification of light and radiation field congruent using electronic portal images device and computed radiography

    PubMed Central

    2012-01-01

    Background The radiation field on most megavoltage radiation therapy units are shown by a light field projected through the collimator by a light source mounted inside the collimator. The light field is traditionally used for patient alignment. Hence it is imperative that the light field is congruent with the radiation field. Method A simple quality assurance tool has been designed for rapid and simple test of the light field and radiation field using electronic portal images device (EPID) or computed radiography (CR). We tested this QA tool using Varian PortalVision and Elekta iViewGT EPID systems and Kodak CR system. Results Both the single and double exposure techniques were evaluated, with double exposure technique providing a better visualization of the light-radiation field markers. The light and radiation congruency could be detected within 1 mm. This will satisfy the American Association of Physicists in Medicine task group report number 142 recommendation of 2 mm tolerance. Conclusion The QA tool can be used with either an EPID or CR to provide a simple and rapid method to verify light and radiation field congruence. PMID:22452821

  3. Image guidance during breast radiotherapy: a phantom dosimetry and radiation-induced second cancer risk study

    NASA Astrophysics Data System (ADS)

    Quinn, A.; Holloway, L.; Metcalfe, P.

    2013-06-01

    Imaging procedures utilised for patient position verification during breast radiotherapy can add a considerable dose to organs surrounding the target volume on top of therapeutic scatter dose. This study investigated the dose from a breast kilovoltage cone-beam CT (kV-CBCT), a breast megavoltage fan-beam CT (MV-FBCT), and a TomoDirectTM breast treatment. Thermoluminescent dosimeters placed within a female anthropomorphic phantom were utilised to measure the dose to various organs and tissues. The contralateral breast, lungs and heart received 0.40 cGy, 0.45 cGy and 0.40 cGy from the kV-CBCT and 1.74 cGy, 1.39 cGy and 1.73 cGy from the MV-FBCT. In comparison to treatment alone, daily imaging would increase the contralateral breast, contralateral lung and heart dose by a relative 12%, 24% and 13% for the kV-CBCT, and 52%, 101% and 58% for the MV-FBCT. The impact of the imaging dose relative to the treatment dose was assessed with linear and linear-quadratic radiation-induced secondary cancer risk models for the contralateral breast. The additional imaging dose and risk estimates presented in this study should be taken into account when considering an image modality and frequency for patient position verification protocols in breast radiotherapy.

  4. Image-based dosimetry of an implanted radioactive stent using intravascular ultrasound

    NASA Astrophysics Data System (ADS)

    Peterson, Stephen W.

    Angioplasty has become an increasingly popular and effective treatment for heart disease. Unfortunately, restenosis, a cellular and biological reaction to the procedure, has hindered its effectiveness. Two of the most successful methods of inhibiting restenosis are radiation and stents. The combination of these two components, radioactive stents, is not as common as some of the other methods, yet still has potential of slowing restenosis. Investigation into source characteristics and artery wall radiobiology may illuminate some possible solutions to the problems of restenosis. This work has developed a calculational method to look at in-vivo images of implanted stents and determine the dose to the artery walls in order to test different source characteristics. The images are Intravascular Ultrasound (IVUS) cross-sectional slices of the stent and the artery. From these images, it is possible to determine the implanted stent structure. The pieces of the stent are identified in the images and modeled in a Monte Carlo simulation, using MCNP4c3. The simulation results were combined with the images to give three-dimensional absolute dose contours of the stent. The absolute dose values were verified using radiochromic film and 198Au-plated stents. This work was able to successfully verify the dose results and create a three-dimensional dose map of the implanted stent.

  5. Radioembolization Dosimetry: The Road Ahead

    SciTech Connect

    Smits, Maarten L. J. Elschot, Mattijs; Sze, Daniel Y.; Kao, Yung H.; Nijsen, Johannes F. W.; Iagaru, Andre H.; Jong, Hugo W. A. M. de; Bosch, Maurice A. A. J. van den; Lam, Marnix G. E. H.

    2015-04-15

    Methods for calculating the activity to be administered during yttrium-90 radioembolization (RE) are largely based on empirical toxicity and efficacy analyses, rather than dosimetry. At the same time, it is recognized that treatment planning based on proper dosimetry is of vital importance for the optimization of the results of RE. The heterogeneous and often clustered intrahepatic biodistribution of millions of point-source radioactive particles poses a challenge for dosimetry. Several studies found a relationship between absorbed doses and treatment outcome, with regard to both toxicity and efficacy. This should ultimately lead to improved patient selection and individualized treatment planning. New calculation methods and imaging techniques and a new generation of microspheres for image-guided RE will all contribute to these improvements. The aim of this review is to give insight into the latest and most important developments in RE dosimetry and to suggest future directions on patient selection, individualized treatment planning, and study designs.

  6. Dosimetry of an In-Line Kilovoltage Imaging System and Implementation in Treatment Planning

    SciTech Connect

    Dzierma, Yvonne; Alaei, Parham; Licht, Norbert; Rübe, Christian

    2014-03-15

    Purpose: To present the beam properties of the Siemens 70-kV and 121-kV linear accelerator-mounted imaging modalities and commissioning of the 121-kV beam in the Philips Pinnacle treatment planning system (TPS); measurements in an Alderson phantom were performed for verification of the model and to estimate the cone-beam CT (CBCT) imaging dose in the head and neck, thorax, and pelvis. Methods and Materials: The beam profiles and depth–dose curve were measured in an acrylic phantom using thermoluminescent dosimeters and a soft x-ray ionization chamber. Measurements were imported into the TPS, modeled, and verified by phantom measurements. Results: Modeling of the profiles and the depth–dose curve can be achieved with good quality. Comparison with the measurements in the Alderson phantom is generally good; only very close to bony structures is the dose underestimated by the TPS. For a 200° arc CBCT of the head and neck, a maximum dose of 7 mGy is measured; the thorax and pelvis 360° CBCTs give doses of 4-10 mGy and 7-15 mGy, respectively. Conclusions: Dosimetric characteristics of the Siemens kVision imaging modalities are presented and modeled in the Pinnacle TPS. Thermoluminescent dosimeter measurements in the Alderson phantom agree well with the calculated TPS dose, validating the model and providing an estimate of the imaging dose for different protocols.

  7. Dosimetry of exendin-4 based radiotracer for glucagonlike peptide-1 receptor imaging: an initial report

    NASA Astrophysics Data System (ADS)

    Tomaszuk, M.; Sowa-Staszczak, A.; Lenda-Tracz, W.; Glowa, B.; Pach, D.; Buziak-Bereza, M.; Stefanska, A.; Janota, B.; Pawlak, D.; Mikolajczak, R.; Hubalewska-Dydejczyk, A. B.

    2011-09-01

    Overexpression of glucagonlike peptide-1 (GLP-1) receptors in human tumours is a potential target for future imaging and therapy. The GLP-1 receptor imaging using [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 could be useful in the localization of unknown insulinoma focus. The aim of this study was to present the first experience of our unit with the new radiopharmaceutical and its dose estimates. Imaging studies and dose assessment, according to the MIRD schema and MIRD Pamphlet No.11, were performed for 3 patients (2 with suspicion of insulinoma, 1 with suspected insulinoma recurrence). In the first case suspicion of insulinoma was not confirmed. In the second case localized accumulation of tracer in the pancreas was removed by surgery and the clinical symptoms of insulinoma receded. In the third case, pathological accumulation of tracer was localized and recurrence of insulinoma was confirmed in fusion with CT images. The biological half-time did not exceed 2.7.h. The effective half-time did not exceed 4.8 h. The total-body radiation dose did not exceed 0.0038 mGy/MBq and is comparable with the radiation dose to patient after somatostatin receptor scintigraphy. The highest radiation dose was calculated for kidneys (~ 0.070 mGy/MBq). [Lys40(Ahx-HYNIC-99mTc/EDDA)NH2]-exendin-4 is a good candidate for clinical GLP-1 receptor imaging studies and appears safe for the patient from radiological safety point of view.

  8. aSi EPIDs for the in-vivo dosimetry of static and dynamic beams

    NASA Astrophysics Data System (ADS)

    Piermattei, A.; Cilla, S.; Azario, L.; Greco, F.; Russo, M.; Grusio, M.; Orlandini, L.; Fidanzio, A.

    2015-10-01

    Portal imaging by amorphous silicon (aSi) photodiode is currently the most applied technology for in-vivo dosimetry (IVD) of static and dynamic radiotherapy beams. The strategy, adopted in this work to perform the IVD procedure by aSi EPID, is based on: in patient reconstruction of the isocenter dose and day to day comparison between 2D-portal images to verify the reproducibility of treatment delivery. About 20.000 tests have been carried out in this last 3 years in 8 radiotherapy centers using the SOFTDISO program. The IVD results show that: (i) the procedure can be implemented for linacs of different manufacturer, (ii) the IVD analysis can be obtained on a computer screen, in quasi real time (about 2 min after the treatment delivery) and (iii) once the causes of the discrepancies were eliminated, all the global IVD tests for single patient were within the acceptance criteria defined by: ±5% for the isocenter dose, and Pγ<1≥90% of the checked points for the 2D portal image γ-analysis. This work is the result of a project supported by the Istituto Nazionale di Fisica Nucleare (INFN) and Università Cattolica del S.Cuore (UCSC).

  9. Characterization of the homogeneous tissue mixture approximation in breast imaging dosimetry

    SciTech Connect

    Sechopoulos, Ioannis; Bliznakova, Kristina; Qin Xulei; Fei Baowei; Feng, Steve Si Jia

    2012-08-15

    Purpose: To compare the estimate of normalized glandular dose in mammography and breast CT imaging obtained using the actual glandular tissue distribution in the breast to that obtained using the homogeneous tissue mixture approximation. Methods: Twenty volumetric images of patient breasts were acquired with a dedicated breast CT prototype system and the voxels in the breast CT images were automatically classified into skin, adipose, and glandular tissue. The breasts in the classified images underwent simulated mechanical compression to mimic the conditions present during mammographic acquisition. The compressed thickness for each breast was set to that achieved during each patient's last screening cranio-caudal (CC) acquisition. The volumetric glandular density of each breast was computed using both the compressed and uncompressed classified images, and additional images were created in which all voxels representing adipose and glandular tissue were replaced by a homogeneous mixture of these two tissues in a proportion corresponding to each breast's volumetric glandular density. All four breast images (compressed and uncompressed; heterogeneous and homogeneous tissue) were input into Monte Carlo simulations to estimate the normalized glandular dose during mammography (compressed breasts) and dedicated breast CT (uncompressed breasts). For the mammography simulations the x-ray spectra used was that used during each patient's last screening CC acquisition. For the breast CT simulations, two x-ray spectra were used, corresponding to the x-ray spectra with the lowest and highest energies currently being used in dedicated breast CT prototype systems under clinical investigation. The resulting normalized glandular dose for the heterogeneous and homogeneous versions of each breast for each modality was compared. Results: For mammography, the normalized glandular dose based on the homogeneous tissue approximation was, on average, 27% higher than that estimated using the

  10. Dosimetry and Image Quality in Control Studies in Computerised Tomography Realized to Paediatric Patients

    SciTech Connect

    Hernandez, M. R.; Gamboa-deBuen, I.; Dies, P.; Rickards, J.; Ruiz, C.

    2008-08-11

    Computerised tomography (CT) is a favourite method of medical diagnosis. Its use has thus increased rapidly throughout the world, particularly in studies relating to children. However to avoid administering unnecessarily high doses of radiation to paediatric patients it is important to have correct dose reference levels to minimize risk. The research is being developed within the public health sector at the Hospital Infantil de Mexico 'Dr. Federico Gomez.' We measured the entrance surface air kerma (K{sub P}) in paediatric patients, during the radiological studies of control in CT (studies of head, thorax and abdomen). Phantom was used to evaluate image quality as the tomograph requires a high resolution image in order to operate at its optimum level.

  11. Cherenkov radiation dosimetry in water tanks - video rate imaging, tomography and IMRT & VMAT plan verification

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Glaser, Adam K.; Zhang, Rongxiao; Gladstone, David J.

    2015-01-01

    This paper presents a survey of three types of imaging of radiation beams in water tanks for comparison to dose maps. The first was simple depth and lateral profile verification, showing excellent agreement between Cherenkov and planned dose, as predicted by the treatment planning system for a square 5cm beam. The second approach was 3D tomography of such beams, using a rotating water tank with camera attached, and using filtered backprojection for the recovery of the 3D volume. The final presentation was real time 2D imaging of IMRT or VMAT treatments in a water tank. In all cases the match to the treatment planning system was within what would be considered acceptable for clinical medical physics acceptance.

  12. Dosimetry and Image Quality in Control Studies in Computerised Tomography Realized to Paediatric Patients

    NASA Astrophysics Data System (ADS)

    Hernández, M. R.; Dies, P.; Gamboa-deBuen, I.; Rickards, J.; Ruiz, C.

    2008-08-01

    Computerised tomography (CT) is a favourite method of medical diagnosis. Its use has thus increased rapidly throughout the world, particularly in studies relating to children. However to avoid administering unnecessarily high doses of radiation to paediatric patients it is important to have correct dose reference levels to minimize risk. The research is being developed within the public health sector at the Hospital Infantil de México "Dr. Federico Gómez." We measured the entrance surface air kerma (KP) in paediatric patients, during the radiological studies of control in CT (studies of head, thorax and abdomen). Phantom was used to evaluate image quality as the tomograph requires a high resolution image in order to operate at its optimum level.

  13. SU-E-J-215: Towards MR-Only Image Guided Identification of Calcifications and Brachytherapy Seeds: Application to Prostate and Breast LDR Implant Dosimetry

    SciTech Connect

    Elzibak, A; Fatemi-Ardekani, A; Soliman, A; Mashouf, S; Safigholi, H; Ravi, A; Morton, G; Song, WY; Han, D

    2015-06-15

    Purpose: To identify and analyze the appearance of calcifications and brachytherapy seeds on magnitude and phase MRI images and to investigate whether they can be distinguished from each other on corrected phase images for application to prostate and breast low dose rate (LDR) implant dosimetry. Methods: An agar-based gel phantom containing two LDR brachytherapy seeds (Advantage Pd-103, IsoAid, 0.8mm diameter, 4.5mm length) and two spherical calcifications (large: 7mm diameter and small: 4mm diameter) was constructed and imaged on a 3T Philips MR scanner using a 16-channel head coil and a susceptibility weighted imaging (SWI) sequence (2mm slices, 320mm FOV, TR/ TE= 26.5/5.3ms, 15 degree flip angle). The phase images were unwrapped and corrected using a 32×32, 2D Hanning high pass filter to remove background phase noise. Appearance of the seeds and calcifications was assessed visually and quantitatively using Osirix (http://www.osirix-viewer.com/). Results: As expected, calcifications and brachytherapy seeds appeared dark (hypointense) relative to the surrounding gel on the magnitude MRI images. The diameter of each seed without the surrounding artifact was measured to be 0.1 cm on the magnitude image, while diameters of 0.79 and 0.37 cm were measured for the larger and smaller calcifications, respectively. On the corrected phase images, the brachytherapy seeds and the calcifications appeared bright (hyperintense). The diameter of the seeds was larger on the phase images (0.17 cm) likely due to the dipole effect. Conclusion: MRI has the best soft tissue contrast for accurate organ delineation leading to most accurate implant dosimetry. This work demonstrated that phase images can potentially be useful in identifying brachytherapy seeds and calcifications in the prostate and breast due to their bright appearance, which helps in their visualization and quantification for accurate dosimetry using MR-only. Future work includes optimizing phase filters to best identify

  14. Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images

    NASA Astrophysics Data System (ADS)

    Botta, F.; Mairani, A.; Hobbs, R. F.; Vergara Gil, A.; Pacilio, M.; Parodi, K.; Cremonesi, M.; Coca Pérez, M. A.; Di Dia, A.; Ferrari, M.; Guerriero, F.; Battistoni, G.; Pedroli, G.; Paganelli, G.; Torres Aroche, L. A.; Sgouros, G.

    2013-11-01

    Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 108 primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3-4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image

  15. Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images*

    PubMed Central

    Botta, F; Mairani, A; Hobbs, R F; Vergara Gil, A; Pacilio, M; Parodi, K; Cremonesi, M; Coca Pérez, M A; Di Dia, A; Ferrari, M; Guerriero, F; Battistoni, G; Pedroli, G; Paganelli, G; Torres Aroche, L A; Sgouros, G

    2014-01-01

    Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 108 primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3–4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image

  16. Comparison of daily megavoltage electronic portal imaging or kilovoltage imaging with marker seeds to ultrasound imaging or skin marks for prostate localization and treatment positioning in patients with prostate cancer

    SciTech Connect

    Serago, Christopher F. . E-mail: serago.christopher@mayo.edu; Buskirk, Steven J.; Igel, Todd C.; Gale, Ashley A.; Serago, Nicole E.; Earle, John D.

    2006-08-01

    Purpose: To compare the accuracy of imaging modalities, immobilization, localization, and positioning techniques in patients with prostate cancer. Methods and Materials: Thirty-five patients with prostate cancer had gold marker seeds implanted transrectally and were treated with fractionated radiotherapy. Twenty of the 35 patients had limited immobilization; the remaining had a vacuum-based immobilization. Patient positioning consisted of alignment with lasers to skin marks, ultrasound or kilovoltage X-ray imaging, optical guidance using infrared reflectors, and megavoltage electronic portal imaging (EPI). The variance of each positioning technique was compared to the patient position determined from the pretreatment EPI. Results: With limited immobilization, the average difference between the skin marks' laser position and EPI pretreatment position is 9.1 {+-} 5.3 mm, the average difference between the skin marks' infrared position and EPI pretreatment position is 11.8 {+-} 7.2 mm, the average difference between the ultrasound position and EPI pretreatment position is 7.0 {+-} 4.6 mm, the average difference between kV imaging and EPI pretreatment position is 3.5 {+-} 3.1 mm, and the average intrafraction movement during treatment is 3.4 {+-} 2.7 mm. For the patients with the vacuum-style immobilization, the average difference between the skin marks' laser position and EPI pretreatment position is 10.7 {+-} 4.6 mm, the average difference between kV imaging and EPI pretreatment position is 1.9 {+-} 1.5 mm, and the average intrafraction movement during treatment is 2.1 {+-} 1.5 mm. Conclusions: Compared with use of skin marks, ultrasound imaging for positioning provides an increased degree of agreement to EPI-based positioning, though not as favorable as kV imaging fiducial seeds. Intrafraction movement during treatment decreases with improved immobilization.

  17. Portal radiation monitor

    DOEpatents

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  18. Cirrhosis and Portal Hypertension

    MedlinePlus

    MENU Return to Web version Cirrhosis and Portal Hypertension Overview What is cirrhosis? In people who have ... lead to coma and death. What is portal hypertension? Normally, blood is carried to the liver by ...

  19. Portal radiation monitor

    DOEpatents

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  20. Nd: YAG interstitial laser phototherapy guided by magnetic resonance imaging in an ex vivo model: Dosimetry of laser-MR-tissue interaction

    SciTech Connect

    Anzai, Y.; Lufkin, R.B.; Saxton, R.E.; Fetterman, H.; Farahani, K.; Layfield, L.J.; Jolesz, F.C.; Hanafee, W.H.; Castro, D.J. )

    1991-07-01

    Interstitial laser phototherapy (ILP) is a promising technique in which laser energy is delivered percutaneously to various depths of tumors. This technique will become clinically useful only when efficient, sensitive, and noninvasive monitoring systems are developed. In this study, the spatial distribution of ILP in bovine liver tissue, induced by a Nd: YAG laser with an interstitial sapphire-frosted contact probe, was evaluated by magnetic resonance imaging (MRI). Tissue was exposed to three energy densities of the Nd:YAG laser by a reproducible method of dosimetry. Thermal profiles were measured with a probe inserted 5 mm from the laser tip. T1-weighted magnetic resonance images were taken after the laser exposure. Tissue specimens were then evaluated for standard quantification of laser-induced damages. A linear correlation between the level of laser energy, induced temperature change, lesion size on T1 magnetic resonance image, and volume of histological damage was observed. Further improvement of this technique of dosimetry in an in vivo model should allow the development of software for MRI which will correlate the above parameters and render this technique of ILP clinically useful.

  1. The Advent of Portals.

    ERIC Educational Resources Information Center

    Jackson, Mary E.

    2002-01-01

    Explains portals as tools that gather a variety of electronic information resources, including local library resources, into a single Web page. Highlights include cross-database searching; integration with university portals and course management software; the ARL (Association of Research Libraries) Scholars Portal Initiative; and selected vendors…

  2. Evaluating Open Source Portals

    ERIC Educational Resources Information Center

    Goh, Dion; Luyt, Brendan; Chua, Alton; Yee, See-Yong; Poh, Kia-Ngoh; Ng, How-Yeu

    2008-01-01

    Portals have become indispensable for organizations of all types trying to establish themselves on the Web. Unfortunately, there have only been a few evaluative studies of portal software and even fewer of open source portal software. This study aims to add to the available literature in this important area by proposing and testing a checklist for…

  3. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  4. Evaluation of spatial resolution in image acquisition by optical flatbed scanners for radiochromic film dosimetry

    NASA Astrophysics Data System (ADS)

    Asero, G.; Greco, C.; Gueli, A. M.; Raffaele, L.; Spampinato, S.

    2016-03-01

    Introduction: Radiochromic films are two-dimensional dosimeters that do not require developing and give values of absorbed dose with accuracy and precision. Since this dosimeter colours directly after irradiation, it can be digitized with commercial optical flatbed scanners to obtain a calibration curve that links blackening of the film with dose. Although the film has an intrinsic high spatial resolution, the scanner determines the actual resolution of this dosimeter, in particular the "dot per inch" (dpi) parameter. The present study investigates the effective spatial resolution of a scanner used for Gafchromic® XR-QA2 film (designed for radiology Quality Assurance) analysis. Material and methods: The quantitative evaluation of the resolution was performed with the Modulation Transfer Function (MTF) method, comparing the nominal resolution with the experimental one. The analysis was performed with two procedures. First, the 1951 USAF resolution test chart, a tool that tests the performance of optical devices, was used. Secondly, a combined system of mammography X-ray tube, XR-QA2 film and a bar pattern object was used. In both cases the MTF method has been applied and the results were compared. Results: The USAF and the film images have been acquired with increasing dpi and a standard protocol for radiochromic analysis, to evaluate horizontal and vertical and resolution. The effective resolution corresponds to the value of the MTF at 50%. In both cases and for both procedures, it was verified that, starting from a dpi value, the effective resolution saturates. Conclusion: The study found that, for dosimetric applications, the dpi of the scanner have to be adjusted to a reasonable value because, if too high, it requires high scanning and computational time without providing additional information.

  5. Classification of cryo electron microscopy images, noisy tomographic images recorded with unknown projection directions, by simultaneously estimating reconstructions and application to an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the bacteriophage P22

    NASA Astrophysics Data System (ADS)

    Lee, Junghoon; Zheng, Yili; Yin, Zhye; Doerschuk, Peter C.; Johnson, John E.

    2010-08-01

    Cryo electron microscopy is frequently used on biological specimens that show a mixture of different types of object. Because the electron beam rapidly destroys the specimen, the beam current is minimized which leads to noisy images (SNR substantially less than 1) and only one projection image per object (with an unknown projection direction) is collected. For situations where the objects can reasonably be described as coming from a finite set of classes, an approach based on joint maximum likelihood estimation of the reconstruction of each class and then use of the reconstructions to label the class of each image is described and demonstrated on two challenging problems: an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the bacteriophage P22.

  6. Preoperative Estimation of Future Remnant Liver Function Following Portal Vein Embolization Using Relative Enhancement on Gadoxetic Acid Disodium-Enhanced Magnetic Resonance Imaging

    PubMed Central

    Matsushima, Shigeru; Inaba, Yoshitaka; Sano, Tsuyoshi; Yamaura, Hidekazu; Kato, Mina; Shimizu, Yasuhiro; Senda, Yoshiki; Ishiguchi, Tsuneo

    2015-01-01

    Objective To retrospectively evaluate relative enhancement (RE) in the hepatobiliary phase of gadoxetic acid disodium-enhanced magnetic resonance (MR) imaging as a preoperative estimation of future remnant liver (FRL) function in a patients who underwent portal vein embolization (PVE). Materials and Methods In 53 patients, the correlation between the indocyanine green clearance (ICG-K) and RE imaging was analyzed before hepatectomy (first analysis). Twenty-three of the 53 patients underwent PVE followed by a repeat RE imaging and ICG test before an extended hepatectomy and their results were further analyzed (second analysis). Whole liver function and FRL function were calculated on the MR imaging as follows: RE x total liver volume (RE Index) and FRL-RE x FRL volume (Rem RE Index), respectively. Regarding clinical outcome, posthepatectomy liver failure (PHLF) was evaluated in patients undergoing PVE. Results Indocyanine green clearance correlated with the RE Index (r = 0.365, p = 0.007), and ICG-K of FRL (ICG-Krem) strongly correlated with the Rem RE Index (r = 0.738, p < 0.001) in the first analysis. Both the ICG-Krem and the Rem RE Index were significantly correlated after PVE (r = 0.508, p = 0.013) at the second analysis. The rate of improvement of the Rem RE Index from before PVE to after PVE was significantly higher than that of ICG-Krem (p = 0.014). Patients with PHLF had a significantly lower Rem RE Index than patients without PHLF (p = 0.023). Conclusion Relative enhancement imaging can be used to estimate FRL function after PVE. PMID:25995681

  7. Noncirrhotic Portal Hypertension

    PubMed Central

    Rajekar, Harshal; Vasishta, Rakesh K; Chawla, Yogesh K; Dhiman, Radha K

    2011-01-01

    Portal hypertension is characterized by an increase in portal pressure (> 10 mmHg) and could be a result of cirrhosis of the liver or of noncirrhotic diseases. When portal hypertension occurs in the absence of liver cirrhosis, noncirrhotic portal hypertension (NCPH) must be considered. The prognosis of this disease is much better than that of cirrhosis. Noncirrhotic diseases are the common cause of portal hypertension in developing countries, especially in Asia. NCPH is a heterogeneous group of diseases that is due to intrahepatic or extrahepatic etiologies. In general, the lesions in NCPH are vascular in nature and can be classified based on the site of resistance to blood flow. In most cases, these disorders can be explained by endothelial cell lesions, intimal thickening, thrombotic obliterations, or scarring of the intrahepatic portal or hepatic venous circulation. Many different conditions can determine NCPH through the association of these various lesions in various degrees. Many clinical manifestations of NCPH result from the secondary effects of portal hypertension. Patients with NCPH present with upper gastrointestinal bleeding, splenomegaly, ascites after gastrointestinal bleeding, features of hypersplenism, growth retardation, and jaundice due to portal hypertensive biliopathy. Other sequelae include hyperdynamic circulation, pulmonary complications, and other effects of portosystemic collateral circulation like portosystemic encephalopathy. At present, pharmacologic and endoscopic treatments are the treatments of choice for portal hypertension. The therapy of all disorders causing NCPH involves the reduction of portal pressure by pharmacotherapy or portosystemic shunting, apart from prevention and treatment of complications of portal hypertension. PMID:25755321

  8. Neutron personnel dosimetry

    SciTech Connect

    Griffith, R.V.

    1981-06-16

    The current state-of-the-art in neutron personnel dosimetry is reviewed. Topics covered include dosimetry needs and alternatives, current dosimetry approaches, personnel monitoring devices, calibration strategies, and future developments. (ACR)

  9. WE-E-18A-08: Towards a Next-Generation Electronic Portal Device for Simultaneous Imaging and Dose Verification in Radiotherapy

    SciTech Connect

    Blake, S; Vial, P; Holloway, L; Kuncic, Z

    2014-06-15

    Purpose: This work forms part of an ongoing study to develop a next-generation electronic portal imaging device (EPID) for simultaneous imaging and dose verification in radiotherapy. Monte Carlo (MC) simulations were used to characterize the imaging performance of a novel EPID that has previously been demonstrated to exhibit a water-equivalent response. The EPID ' s response was quantified in several configurations and model parameters were empirically validated against experimental measurements. Methods: A MC model of a novel a-Si EPID incorporating an array of plastic scintillating fibers was developed. Square BCF-99-06A scintillator fibers with PMMA cladding (Saint-Gobain Crystals) were modelled in a matrix with total area measuring 150×150 mm{sup 2}. The standard electromagnetic and optical physics Geant4 classes were used to simulate radiation transport from an angled slit source (6 MV energy spectrum) through the EPID and optical photons reaching the photodiodes were scored. The prototype's modulation transfer function (MTF) was simulated and validated against experimental measurements. Several optical transport parameters, fiber lengths and thicknesses of an air gap between the scintillator and photodiodes were investigated to quantify their effects on the prototype's detection efficiency, sensitivity and MTF. Results: Simulated EPID response was more sensitive to variations in geometry than in the optical parameters studied. The MTF was particularly sensitive to the introduction of a 0.5–1.0 mm air gap between the scintillator and photodiodes, which lowered the MTF relative to that simulated without the gap. As expected, increasing the fiber length increased the detector efficiency and sensitivity while decreasing the MTF. Conclusion: A model of a novel water-equivalent EPID has been developed and benchmarked against measurements using a physical prototype. We have demonstrated the feasibility of this new device and are continuing to optimize the design

  10. Radiation dosimetry.

    PubMed Central

    Cameron, J

    1991-01-01

    This article summarizes the basic facts about the measurement of ionizing radiation, usually referred to as radiation dosimetry. The article defines the common radiation quantities and units; gives typical levels of natural radiation and medical exposures; and describes the most important biological effects of radiation and the methods used to measure radiation. Finally, a proposal is made for a new radiation risk unit to make radiation risks more understandable to nonspecialists. PMID:2040250

  11. Development and implementation in the Monte Carlo code PENELOPE of a new virtual source model for radiotherapy photon beams and portal image calculation.

    PubMed

    Chabert, I; Barat, E; Dautremer, T; Montagu, T; Agelou, M; Croc de Suray, A; Garcia-Hernandez, J C; Gempp, S; Benkreira, M; de Carlan, L; Lazaro, D

    2016-07-21

    This work aims at developing a generic virtual source model (VSM) preserving all existing correlations between variables stored in a Monte Carlo pre-computed phase space (PS) file, for dose calculation and high-resolution portal image prediction. The reference PS file was calculated using the PENELOPE code, after the flattening filter (FF) of an Elekta Synergy 6 MV photon beam. Each particle was represented in a mobile coordinate system by its radial position (r s ) in the PS plane, its energy (E), and its polar and azimuthal angles (φ d and θ d ), describing the particle deviation compared to its initial direction after bremsstrahlung, and the deviation orientation. Three sub-sources were created by sorting out particles according to their last interaction location (target, primary collimator or FF). For each sub-source, 4D correlated-histograms were built by storing E, r s , φ d and θ d values. Five different adaptive binning schemes were studied to construct 4D histograms of the VSMs, to ensure histogram efficient handling as well as an accurate reproduction of E, r s , φ d and θ d distribution details. The five resulting VSMs were then implemented in PENELOPE. Their accuracy was first assessed in the PS plane, by comparing E, r s , φ d and θ d distributions with those obtained from the reference PS file. Second, dose distributions computed in water, using the VSMs and the reference PS file located below the FF, and also after collimation in both water and heterogeneous phantom, were compared using a 1.5%-0 mm and a 2%-0 mm global gamma index, respectively. Finally, portal images were calculated without and with phantoms in the beam. The model was then evaluated using a 1%-0 mm global gamma index. Performance of a mono-source VSM was also investigated and led, as with the multi-source model, to excellent results when combined with an adaptive binning scheme. PMID:27353090

  12. Development and implementation in the Monte Carlo code PENELOPE of a new virtual source model for radiotherapy photon beams and portal image calculation

    NASA Astrophysics Data System (ADS)

    Chabert, I.; Barat, E.; Dautremer, T.; Montagu, T.; Agelou, M.; Croc de Suray, A.; Garcia-Hernandez, J. C.; Gempp, S.; Benkreira, M.; de Carlan, L.; Lazaro, D.

    2016-07-01

    This work aims at developing a generic virtual source model (VSM) preserving all existing correlations between variables stored in a Monte Carlo pre-computed phase space (PS) file, for dose calculation and high-resolution portal image prediction. The reference PS file was calculated using the PENELOPE code, after the flattening filter (FF) of an Elekta Synergy 6 MV photon beam. Each particle was represented in a mobile coordinate system by its radial position (r s ) in the PS plane, its energy (E), and its polar and azimuthal angles (φ d and θ d ), describing the particle deviation compared to its initial direction after bremsstrahlung, and the deviation orientation. Three sub-sources were created by sorting out particles according to their last interaction location (target, primary collimator or FF). For each sub-source, 4D correlated-histograms were built by storing E, r s , φ d and θ d values. Five different adaptive binning schemes were studied to construct 4D histograms of the VSMs, to ensure histogram efficient handling as well as an accurate reproduction of E, r s , φ d and θ d distribution details. The five resulting VSMs were then implemented in PENELOPE. Their accuracy was first assessed in the PS plane, by comparing E, r s , φ d and θ d distributions with those obtained from the reference PS file. Second, dose distributions computed in water, using the VSMs and the reference PS file located below the FF, and also after collimation in both water and heterogeneous phantom, were compared using a 1.5%–0 mm and a 2%–0 mm global gamma index, respectively. Finally, portal images were calculated without and with phantoms in the beam. The model was then evaluated using a 1%–0 mm global gamma index. Performance of a mono-source VSM was also investigated and led, as with the multi-source model, to excellent results when combined with an adaptive binning scheme.

  13. Dosimetry for Radiopharmaceutical Therapy

    PubMed Central

    Sgouros, George; Hobbs, Robert F.

    2014-01-01

    Radiopharmaceutical therapy (RPT) involves the use of radionuclides that are either conjugated to tumor-targeting agents (eg, nanoscale constructs, antibodies, peptides, and small molecules) or concentrated in tissue through natural physiological mechanisms that occur predominantly in neoplastic or otherwise targeted cells (eg, Graves disease). The ability to collect pharmacokinetic data by imaging and use this to perform dosimetry calculations for treatment planning distinguishes RPT from other systemic treatment modalities. Treatment planning has not been widely adopted, in part, because early attempts to relate dosimetry to outcome were not successful. This was partially because a dosimetry methodology appropriate to risk evaluation rather than efficacy and toxicity was being applied to RPT. The weakest links in both diagnostic and therapeutic dosimetry are the accuracy of the input and the reliability of the radiobiological models used to convert dosimetric data to the relevant biologic end points. Dosimetry for RPT places a greater demand on both of these weak links. To date, most dosimetric studies have been retrospective, with a focus on tumor dose-response correlations rather than prospective treatment planning. In this regard, transarterial radioembolization also known as intra-arterial radiation therapy, which uses radiolabeled (90Y) microspheres of glass or resin to treat lesions in the liver holds much promise for more widespread dosimetric treatment planning. The recent interest in RPT with alpha-particle emitters has highlighted the need to adopt a dosimetry methodology that specifically accounts for the unique aspects of alpha particles. The short range of alpha-particle emitters means that in cases in which the distribution of activity is localized to specific functional components or cell types of an organ, the absorbed dose will be equally localized and dosimetric calculations on the scale of organs or even voxels (~5 mm) are no longer sufficient

  14. The Detectability and Localization Accuracy of Implanted Fiducial Markers Determined on In-Room Computerized Tomography (CT) and Electronic Portal Images (EPI)

    SciTech Connect

    Owen, Rebecca Kron, Tomas; Foroudi, Farshad; Cox, Jennifer; Zhu Li; Cramb, Jim; Sparks, Laura; Duchesne, Gillian

    2008-10-01

    Many different methods of image guidance are available for radiotherapy treatment (IGRT). The aims of the study were (1) to determine the optimal diameter of gold markers for IGRT to the prostate; (2) to compare, using the Siemens Primatom, the relative merits of in-room computerized tomography (CT) and electronic portal image (EPI) for locating the marker seeds. Gold markers of differing widths were embedded in 2 phantoms (perspex slabs and anthropomorphic). Images were acquired with an amorphous silicon flat panel detector (Siemens Optivue 500) and with the in-room CT scanner (Siemens Somatom Balance). The EPIs were reviewed independently by 6 operators to determine which diameter marker could be best visualized. The optimal marker technique was determined by comparing the investigators' observed marker co-ordinates with the known locations within the phantom. The visibility of all markers on anterior-posterior EPIs was 100%. On the lateral EPI, of a possible 180 visualizations of 1.2-, 1.0-, and 0.8-mm diameter markers, 176 (97.8%), 151 (83.9%), and 132 (73.3%), respectively, were successful. On EPI, the average deviation of fiducial markers from the known position was less than 0.5 mm in any direction. On CT, the largest deviation (2.17 mm) of markers from the known coordinate position was in the superior-inferior direction, reflecting the 3.0-mm slice thickness used. EPI accurately located internal markers in all dimensions. The availability of 'gold standard' CT imagery at the treatment unit does not improve how accurately the position of markers in a phantom can be defined compared with EPI. However, CT imagery does provide important soft tissue information, the benefits of which are being investigated further.

  15. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for {sup 90}Y microsphere brachytherapy in the treatment of hepatic malignancies

    SciTech Connect

    Dezarn, William A.; Cessna, Jeffery T.; DeWerd, Larry A.; and others

    2011-08-15

    Yttrium-90 microsphere brachytherapy of the liver exploits the distinctive features of the liver anatomy to treat liver malignancies with beta radiation and is gaining more wide spread clinical use. This report provides a general overview of microsphere liver brachytherapy and assists the treatment team in creating local treatment practices to provide safe and efficient patient treatment. Suggestions for future improvements are incorporated with the basic rationale for the therapy and currently used procedures. Imaging modalities utilized and their respective quality assurance are discussed. General as well as vendor specific delivery procedures are reviewed. The current dosimetry models are reviewed and suggestions for dosimetry advancement are made. Beta activity standards are reviewed and vendor implementation strategies are discussed. Radioactive material licensing and radiation safety are discussed given the unique requirements of microsphere brachytherapy. A general, team-based quality assurance program is reviewed to provide guidance for the creation of the local procedures. Finally, recommendations are given on how to deliver the current state of the art treatments and directions for future improvements in the therapy.

  16. Kidney Dosimetry in 177Lu and 90Y Peptide Receptor Radionuclide Therapy: Influence of Image Timing, Time-Activity Integration Method, and Risk Factors

    PubMed Central

    Guerriero, F.; Ferrari, M. E.; Botta, F.; Fioroni, F.; Grassi, E.; Versari, A.; Sarnelli, A.; Pacilio, M.; Amato, E.; Strigari, L.; Bodei, L.; Paganelli, G.; Iori, M.; Pedroli, G.; Cremonesi, M.

    2013-01-01

    Kidney dosimetry in 177Lu and 90Y PRRT requires 3 to 6 whole-body/SPECT scans to extrapolate the peptide kinetics, and it is considered time and resource consuming. We investigated the most adequate timing for imaging and time-activity interpolating curve, as well as the performance of a simplified dosimetry, by means of just 1-2 scans. Finally the influence of risk factors and of the peptide (DOTATOC versus DOTATATE) is considered. 28 patients treated at first cycle with 177Lu DOTATATE and 30 with 177Lu DOTATOC underwent SPECT scans at 2 and 6 hours, 1, 2, and 3 days after the radiopharmaceutical injection. Dose was calculated with our simplified method, as well as the ones most used in the clinic, that is, trapezoids, monoexponential, and biexponential functions. The same was done skipping the 6 h and the 3 d points. We found that data should be collected until 100 h for 177Lu therapy and 70 h for 90Y therapy, otherwise the dose calculation is strongly influenced by the curve interpolating the data and should be carefully chosen. Risk factors (hypertension, diabetes) cause a rather statistically significant 20% increase in dose (t-test, P < 0.10), with DOTATATE affecting an increase of 25% compared to DOTATOC (t-test, P < 0.05). PMID:23865075

  17. TH-C-17A-03: Dynamic Visualization and Dosimetry of IMRT and VMAT Treatment Plans by Video-Rate Imaging of Cherenkov Radiation in Pure Water

    SciTech Connect

    Glaser, A; Andreozzi, J; Davis, S; Zhang, R; Fox, C; Gladstone, D; Pogue, B

    2014-06-15

    Purpose: A novel optical dosimetry technique for the QA and verification of intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) radiotherapy plans was investigated for the first time by capturing images of the induced Cherenkov radiation in water. Methods: An intensified CCD camera (ICCD) was used to acquire a two-dimensional (2D) projection image of the Cherenkov radiation induced by IMRT and VMAT plans, based on the Task Group 119 C-Shape geometry. Plans were generated using the Varian Eclipse treatment planning system (TPS) and delivered using 6 MV x-rays from a Varian TrueBeam Linear Accelerator (Linac) incident on a water tank. The ICCD acquisition was gated to the Linac, operated for single pulse imaging, and binned to a resolution of 512×512 pixels. The resulting videos were analyzed temporally for regions of interest (ROI) covering the planning target volume (PTV) and organ at risk (OAR) and summed to obtain an overall light distribution, which was compared to the expected dose distribution from the TPS using a gammaindex analysis. Results: The chosen camera settings resulted in data at 23.5 frames per second. Temporal intensity plots of the PTV and OAR ROIs confirmed the preferential delivery of dose to the PTV versus the OAR, and the gamma analysis yielded 95.2% and 95.6% agreement between the light distribution and expected TPS dose distribution based upon a 3% / 3 mm dose difference and distance-to-agreement criterion for the IMRT and VMAT plans respectively. Conclusion: The results from this initial study demonstrate the first documented use of Cherenkov radiation for optical dosimetry of dynamic IMRT and VMAT treatment plans. The proposed modality has several potential advantages over alternative methods including the real-time nature of the acquisition, and upon future refinement may prove to be a robust and novel dosimetry method with both research and clinical applications. NIH R01CA109558 and R21EB017559.

  18. SU-C-304-02: Robust and Efficient Process for Acceptance Testing of Varian TrueBeam Linacs Using An Electronic Portal Imaging Device (EPID)

    SciTech Connect

    Yaddanapudi, S; Cai, B; Sun, B; Li, H; Noel, C; Goddu, S; Mutic, S; Harry, T; Pawlicki, T

    2015-06-15

    Purpose: The purpose of this project was to develop a process that utilizes the onboard kV and MV electronic portal imaging devices (EPIDs) to perform rapid acceptance testing (AT) of linacs in order to improve efficiency and standardize AT equipment and processes. Methods: In this study a Varian TrueBeam linac equipped with an amorphous silicon based EPID (aSi1000) was used. The conventional set of AT tests and tolerances was used as a baseline guide, and a novel methodology was developed to perform as many tests as possible using EPID exclusively. The developer mode on Varian TrueBeam linac was used to automate the process. In the current AT process there are about 45 tests that call for customer demos. Many of the geometric tests such as jaw alignment and MLC positioning are performed with highly manual methods, such as using graph paper. The goal of the new methodology was to achieve quantitative testing while reducing variability in data acquisition, analysis and interpretation of the results. The developed process was validated on two machines at two different institutions. Results: At least 25 of the 45 (56%) tests which required customer demo can be streamlined and performed using EPIDs. More than half of the AT tests can be fully automated using the developer mode, while others still require some user interaction. Overall, the preliminary data shows that EPID-based linac AT can be performed in less than a day, compared to 2–3 days using conventional methods. Conclusions: Our preliminary results show that performance of onboard imagers is quite suitable for both geometric and dosimetric testing of TrueBeam systems. A standardized AT process can tremendously improve efficiency, and minimize the variability related to third party quality assurance (QA) equipment and the available onsite expertise. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical

  19. SU-E-J-84: Quantitative Dosimetry Assessment of the Impact of Image Artifacts of Metal Implants in Spinal SABR Treatment

    SciTech Connect

    Chen, T; Zhang, M; Hanft, S; Green, R; Yue, N; Goyal, S

    2015-06-15

    Purpose: Metal rods are frequently used to stabilize the spine in patients with metastatic disease. The high Z material causes imaging artifacts in the surrounding tissue in CT scans, which introduces dosimetric uncertainty when inhomogeneity correction is enabled for radiation treatment planning. The purpose of this study is to quantify the dosimetric deviations caused by the imaging artifacts and to evaluate the effectiveness of using Hounsfield units (HU) overwriting to reduce dosimetric uncertainties. Methods: We retrospectively reviewed treatment plans for 4 patients with metal implants who received stereotactic ablative radiation therapy (SABR) for metastatic disease to the spine on Tomotherapy HiArt. For all four patients, the region of imaging artifact surrounding the metal implants was contoured and the pixel HU’s were overwritten to be water equivalent. We then generated adaptive treatment plans for these patients using the MVCT pretreatment set up images and batched beamlets in the original treatment plans. The dosimetry deviation between the adaptive and original plans were compared and quantitatively analyzed. Results: For three out of four patient, the major OAR (spinal cord) dose (0.35cc or 10% according to protocols and fractionation) increased (2.7%, 5.5%, 0%, 3.9%, mean=3.0±2.3%, p=0.04), and the PTV dose (D90 or D95 as per prescription) increased for all four patients ( 2%, 5%, 0.7%, 3.6%, mean=2.8±1.9%, p=0.03) in the adaptive plan with HU overwriting. The average point dose deviation of the Tomotherapy DQA for the same patients was −1.0±1.0%. For plans without HU overwriting, the dose deviation from the treatment plan will increase. Conclusion: The metal implant and the imaging artifacts may cause a significant dosimetric impact on radiation treatment plans for spinal disease. The dose to the PTV and the spinal cord was under-calculated in treatment plans without considering the imaging artifacts. HU overwriting can reduce the dosimetry

  20. Quality assurance of MLC leaf position accuracy and relative dose effect at the MLC abutment region using an electronic portal imaging device

    PubMed Central

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Koizumi, Masahiko; Ogata, Toshiyuki; Takahashi, Yutaka; Yoshioka, Yasuo

    2012-01-01

    We investigated an electronic portal image device (EPID)-based method to see whether it provides effective and accurate relative dose measurement at abutment leaves in terms of positional errors of the multi-leaf collimator (MLC) leaf position. A Siemens ONCOR machine was used. For the garden fence test, a rectangular field (0.2 × 20 cm) was sequentially irradiated 11 times at 2-cm intervals. Deviations from planned leaf positions were calculated. For the nongap test, relative doses at the MLC abutment region were evaluated by sequential irradiation of a rectangular field (2 × 20 cm) 10 times with a MLC separation of 2 cm without a leaf gap. The integral signal in a region of interest was set to position A (between leaves) and B (neighbor of A). A pixel value at position B was used as background and the pixel ratio (A/B × 100) was calculated. Both tests were performed at four gantry angles (0, 90, 180 and 270°) four times over 1 month. For the nongap test the difference in pixel ratio between the first and last period was calculated. Regarding results, average deviations from planned positions with the garden fence test were within 0.5 mm at all gantry angles, and at gantry angles of 90 and 270° tended to decrease gradually over the month. For the nongap test, pixel ratio tended to increase gradually in all leaves, leading to a decrease in relative doses at abutment regions. This phenomenon was affected by both gravity arising from the gantry angle, and the hardware-associated contraction of field size with this type of machine. PMID:22843372

  1. Portal vein thrombosis.

    PubMed

    Chawla, Yogesh K; Bodh, Vijay

    2015-03-01

    Portal vein thrombosis is an important cause of portal hypertension. PVT occurs in association with cirrhosis or as a result of malignant invasion by hepatocellular carcinoma or even in the absence of associated liver disease. With the current research into its genesis, majority now have an underlying prothrombotic state detectable. Endothelial activation and stagnant portal blood flow also contribute to formation of the thrombus. Acute non-cirrhotic PVT, chronic PVT (EHPVO), and portal vein thrombosis in cirrhosis are the three main variants of portal vein thrombosis with varying etiological factors and variability in presentation and management. Procoagulant state should be actively investigated. Anticoagulation is the mainstay of therapy for acute non-cirrhotic PVT, with supporting evidence for its use in cirrhotic population as well. Chronic PVT (EHPVO) on the other hand requires the management of portal hypertension as such and with role for anticoagulation in the setting of underlying prothrombotic state, however data is awaited in those with no underlying prothrombotic states. TIPS and liver transplant may be feasible even in the setting of PVT however proper selection of candidates and type of surgery is warranted. Thrombolysis and thrombectomy have some role. TARE is a new modality for management of HCC with portal vein invasion. PMID:25941431

  2. Portal Vein Thrombosis

    PubMed Central

    Chawla, Yogesh K.; Bodh, Vijay

    2015-01-01

    Portal vein thrombosis is an important cause of portal hypertension. PVT occurs in association with cirrhosis or as a result of malignant invasion by hepatocellular carcinoma or even in the absence of associated liver disease. With the current research into its genesis, majority now have an underlying prothrombotic state detectable. Endothelial activation and stagnant portal blood flow also contribute to formation of the thrombus. Acute non-cirrhotic PVT, chronic PVT (EHPVO), and portal vein thrombosis in cirrhosis are the three main variants of portal vein thrombosis with varying etiological factors and variability in presentation and management. Procoagulant state should be actively investigated. Anticoagulation is the mainstay of therapy for acute non-cirrhotic PVT, with supporting evidence for its use in cirrhotic population as well. Chronic PVT (EHPVO) on the other hand requires the management of portal hypertension as such and with role for anticoagulation in the setting of underlying prothrombotic state, however data is awaited in those with no underlying prothrombotic states. TIPS and liver transplant may be feasible even in the setting of PVT however proper selection of candidates and type of surgery is warranted. Thrombolysis and thrombectomy have some role. TARE is a new modality for management of HCC with portal vein invasion. PMID:25941431

  3. Evaluation of dosimetric uncertainties and transit dosimetry feasibility in pulmonary stereotactic body radiotherapy (SBRT)

    NASA Astrophysics Data System (ADS)

    Hsu, Shu-Hui

    The aims of this dissertation were to develop a method with improved accuracy for various heterogeneous geometries and to evaluate the feasibility of using EPID transit dosimetry for error detection. This dissertation examined phantom geometries with an emphasis on a tumor-in-lung geometry that may occur in hypo-fractionated SBRT treatments. For dose investigation in heterogeneous geometries, a multi-planar film measurement system was used with a measurement accuracy (within 3%) by using specific procedures to reduce the film perturbation in a low density medium. Measurements were used to validate a Monte Carlo (MC) method, and the results indicated that this MC method can be used as a reference to validate other calculation algorithms or to evaluate the doses delivered to patients for lung treatment. For developing an error detection method, a commercial electronic portal imaging device (EPID) composed of amorphous silicon was characterized for dosimetry application. A general calibration method was explored to use this device as a water-equivalent dosimeter, allowing for direct comparison to calculated doses from treatment planning systems. The calibration method was validated for a range of situations, field shapes, and intensities. The EPID transit dosimetry was sensitive to delivery errors, such as variations in treatment field shape, machine output and patient setup. The correlation between in-patient and transit dose variations may be established and used to determine acceptance or rejection criteria when the error is found. This dissertation showed the potential of using EPID dosimetry during treatment for on-line error correction and for estimating the in-patient dose error.

  4. SU-C-12A-04: Diagnostic Imaging Research Using Decedents as a Proxy for the Living: Are Radiation Dosimetry and Tissue Property Measurements Affected by Post-Mortem Changes?

    SciTech Connect

    Sandoval, D; Heintz, P; Weber, W; Melo, D; Adolphi, N; Hatch, P

    2014-06-01

    Purpose: Radiation dose (RD) from diagnostic imaging is a growing public health concern. Implanting dosimeters is a more accurate way to assess organ dose, relative to commonly used mathematical estimations. However, performing accurate dosimetry using live subjects is hindered by patient motion and safety considerations, which limit the RD and placement of implanted dosimeters. Performing multiple scans on the same subject would be the ideal way to assess the impact of dose reduction on image quality; however, performing multiple non-standard-of-care scans on live subjects for dosimetry and image quality measurements is generally prohibited by IRB committees. Our objective is to assess whether RD and tissue property (TP) measurements in post-mortem (PM) subjects are sufficiently similar to those in live subjects to justify the use of deceased subjects in future dosimetry and image quality studies. Methods: 4 MOSFET radiation dosimeters were placed enterically in each subject (2 sedated Rhesus Macaques) to measure the RD at 4 levels (carina, lung, heart, and liver) during CT scanning. The CT protocol was performed ante-mortem (AM) and 2 and 3 hours PM. For TP analysis, additional scans were taken at 24 hours PM. To compare AM and PM TP, regions-of-interest were drawn on selected organs and the average CT density with standard deviation (in units of HU) were taken; additionally, visual comparisons of images were made at each PM interval. Results: No significant difference was observed in 8 of 9 measurements comparing AM and PM RD. Only one measurement (liver of the first subject) showed a significant difference (7% lower on PM measurement), possibly due to subject re-positioning. Initial TP visual and quantitative analyses show little to no change PM. Conclusion: Our results suggest that realistic radiation dosimetry and image quality measurements based on tissue properties can be performed reliably on recently deceased subjects.

  5. Arrival time parametric imaging of the hemodynamic balance changes between the hepatic artery and the portal vein during deep inspiration, using Sonazoid-enhanced ultrasonography: A case of Budd-Chiari syndrome.

    PubMed

    Wakui, Noritaka; Takayama, Ryuji; Matsukiyo, Yasushi; Kamiyama, Naohisa; Kobayashi, Kojiro; Mukozu, Takanori; Nakano, Shigeru; Ikehara, Takashi; Nagai, Hidenari; Igarashi, Yoshinori; Sumino, Yasukiyo

    2013-07-01

    This case report concerns a 40-year-old male who had previously been treated for an esophageal varix rupture, at the age of 30 years. The medical examination at that time revealed occlusion of the inferior vena cava in the proximity of the liver, leading to the diagnosis of the patient with Budd-Chiari syndrome. The progress of the patient was therefore monitored in an outpatient clinic. The patient had no history of drinking or smoking, but had suffered an epileptic seizure in 2004. The patient's family history revealed nothing of note. In February 2012, color Doppler ultrasonography (US) revealed a change in the blood flow in the right portal vein branch, from hepatopetal to hepatofugal, during deep inspiration. Arrival time parametric imaging (At-PI), using Sonazoid-enhanced US, was subsequently performed to examine the deep respiration-induced changes observed in the hepatic parenchymal perfusion. US images captured during deep inspiration demonstrated hepatic parenchymal perfusion predominantly in red, indicating that the major blood supply was the hepatic artery. During deep expiration, the portal venous blood flow remained hepatopetal, and hepatic parenchymal perfusion was displayed predominantly in yellow, indicating that the portal vein was the major source of the blood flow. The original diagnostic imaging results were reproduced one month subsequently by an identical procedure. At-PI enabled an investigation into the changes that were induced in the hepatic parenchymal perfusion by a compensatory mechanism involving the hepatic artery. These changes occurred in response to a reduction in the portal venous blood flow, as is observed in the arterialization of hepatic blood flow that is correlated with the progression of chronic hepatitis C. It has been established that the peribiliary capillary plexus is important in the regulation of hepatic arterial blood flow. However, this case demonstrated that the peribiliary capillary plexus also regulates acute

  6. Quantification of activity by alpha-camera imaging and small-scale dosimetry within ovarian carcinoma micrometastases treated with targeted alpha therapy.

    PubMed

    Chouin, N; Lindegren, S; Jensen, H; Albertsson, P; Bäck, T

    2012-12-01

    Targeted alpha therapy (TAT) a promising treatment for small, residual, and micrometastatic diseases has questionable efficacy against malignant lesions larger than the α-particle range, and likely requires favorable intratumoral activity distribution. Here, we characterized and quantified the activity distribution of an alpha-particle emitter radiolabelled antibody within >100-µm micrometastases in a murine ovarian carcinoma model. Nude mice bearing ovarian micrometastases were injected intra-peritoneally with 211At-MX35 (total injected activity 6 MBq, specific activity 650 MBq/mg). Animals were sacrificed at several time points, and peritoneal samples were excised and prepared for alpha-camera imaging. Spatial and temporal activity distributions within micrometastases were derived and used for small-scale dosimetry. We observed two activity distribution patterns: uniform distribution and high stable uptake (>100% IA/g at all time points) in micrometastases with no visible stromal compartment, and radial distribution (high activity on the edge and poor uptake in the core) in tumor cell lobules surrounded by fibroblasts. Activity distributions over time were characterized by a peak (140% IA/g at 4 h) in the outer tumor layer and a sharp drop beyond a depth of 50 µm. Small-scale dosimetry was performed on a multi-cellular micrometastasis model, using time-integrated activities derived from the experimental data. With injected activity of 400 kBq, tumors exhibiting uniform activity distribution received <25 Gy (EUD=13 Gy), whereas tumors presenting radial activity distribution received mean absorbed doses of <8 Gy (EUD=5 Gy). These results provide new insight into important aspects of TAT, and may explain why micrometastases >100 µm might not be effectively treated by the examined regimen. PMID:23358400

  7. The quail anatomy portal.

    PubMed

    Ruparelia, Avnika A; Simkin, Johanna E; Salgado, David; Newgreen, Donald F; Martins, Gabriel G; Bryson-Richardson, Robert J

    2014-01-01

    The Japanese quail is a widely used model organism for the study of embryonic development; however, anatomical resources are lacking. The Quail Anatomy Portal (QAP) provides 22 detailed three-dimensional (3D) models of quail embryos during development from embryonic day (E)1 to E15 generated using optical projection tomography. The 3D models provided can be virtually sectioned to investigate anatomy. Furthermore, using the 3D nature of the models, we have generated a tool to assist in the staging of quail samples. Volume renderings of each stage are provided and can be rotated to allow visualization from multiple angles allowing easy comparison of features both between stages in the database and between images or samples in the laboratory. The use of JavaScript, PHP and HTML ensure the database is accessible to users across different operating systems, including mobile devices, facilitating its use in the laboratory.The QAP provides a unique resource for researchers using the quail model. The ability to virtually section anatomical models throughout development provides the opportunity for researchers to virtually dissect the quail and also provides a valuable tool for the education of students and researchers new to the field. DATABASE URL: http://quail.anatomyportal.org (For review username: demo, password: quail123). PMID:24715219

  8. Application of the No Action Level (NAL) protocol to correct for prostate motion based on electronic portal imaging of implanted markers

    SciTech Connect

    Boer, Hans C.J. de . E-mail: j.deboer@erasmusmc.nl; Os, Marjolein J.H. van; Jansen, Peter P.; Heijmen, Ben J.M.

    2005-03-15

    Purpose: To evaluate the efficacy of the No Action Level (NAL) off-line correction protocol in the reduction of systematic prostate displacements as determined from electronic portal images (EPI) using implanted markers. Methods and materials: Four platinum markers, two near the apex and two near the base of the prostate, were implanted for localization purposes in patients who received fractionated high dose rate brachytherapy. During the following course of 25 fractions of external beam radiotherapy, the position of each marker relative to the corresponding position in digitally reconstructed radiographs (DRRs) was measured in EPI in 15 patients for on average 17 fractions per patient. These marker positions yield the composite displacements due to both setup error and internal prostate motion, relative to the planning computed tomography scan. As the NAL protocol is highly effective in reducing systematic errors (recurring each fraction) due to setup inaccuracy alone, we investigated its efficacy in reducing systematic composite displacements. The analysis was performed for the center of mass (COM) of the four markers, as well as for the cranial and caudal markers separately. Furthermore, the impact of prostate rotation on the achieved positioning accuracy was determined. Results: In case of no setup corrections, the standard deviations of the systematic composite displacements of the COM were 3-4 mm in the craniocaudal and anterior-posterior directions, and 2 mm in the left-right direction. The corresponding SDs of the random displacements (interfraction fluctuations) were 2-3 mm in each direction. When applying a NAL protocol based on three initial treatment fractions, the SDs of the systematic COM displacements were reduced to 1-2 mm. Displacements at the cranial end of the prostate were slightly larger than at the caudal end, and quantitative analysis showed this originates from left-right axis rotations about the prostate apex. Further analysis revealed

  9. The NOAO NVO Portal: Client-Side VO

    NASA Astrophysics Data System (ADS)

    Gasson, D.; Fuentes, E.; Miller, C. J.

    2007-10-01

    The NOAO National Virtual Observatory (NVO) portal is a recently deployed web application for one-stop discovery, analysis, and access to VO-compliant imaging data and services. The NOAO NVO portal utilizes Simple Image Access Protocol (SIAP) services provided by some astronomical archives. The portal also utilizes a number of SOAP-based VO web services (WESIX, Sesame, etc). We discuss the design decisions and technology choices that were made in the NOAO NVO portal code to facilitate the use of IVOA standards and VO data/services. This includes a new Virtual Observatory library written for Ruby: an interpreted scripting language for quick and easy object-oriented programming. We provide an overview of VORuby and how it is utilized in the NOAO NVO Portal.

  10. Space Development Grid Portal

    NASA Technical Reports Server (NTRS)

    Vaziri, Arsi

    2004-01-01

    This viewgraph presentation provides information on the development of a portal to provide secure and distributed grid computing for Payload Operations Integrated Center and Mission Control Center ground services.

  11. Personnel neutron dosimetry

    SciTech Connect

    Hankins, D.

    1982-04-01

    This edited transcript of a presentation on personnel neutron discusses the accuracy of present dosimetry practices, requirements, calibration, dosemeter types, quality factors, operational problems, and dosimetry for a criticality accident. 32 figs. (ACR)

  12. Development of Fast and Highly Efficient Gas Ionization Chamber For Patient Imaging and Dosimetry in Radiation Therapy

    SciTech Connect

    R. Hinderler; H. Keller; T.R. Mackie; M.L. Corradini

    2003-09-08

    In radiation therapy of cancer, more accurate delivery techniques spur the need for improved patient imaging during treatment. To this purpose, the megavoltage radiation protocol that is used for treatment is also used for imaging.

  13. Skeletal dosimetry for external exposures to photons based on {mu}CT images of spongiosa: Consideration of voxel resolution, cluster size, and medullary bone surfaces

    SciTech Connect

    Kramer, R.; Khoury, H. J.; Vieira, J. W.; Brown, K. A. Robson

    2009-11-15

    Skeletal dosimetry based on {mu}CT images of trabecular bone has recently been introduced to calculate the red bone marrow (RBM) and the bone surface cell (BSC) equivalent doses in human phantoms for external exposure to photons. In order to use the {mu}CT images for skeletal dosimetry, spongiosa voxels in the skeletons were replaced at run time by so-called micromatrices, which have exactly the size of a spongiosa voxel and contain segmented trabecular bone and marrow microvoxels. A cluster (=parallelepiped) of 2x2x2=8 micromatrices was used systematically and periodically throughout the spongiosa volume during the radiation transport calculation. Systematic means that when a particle leaves a spongiosa voxel to enter into a neighboring spongiosa voxel, then the next micromatrix in the cluster will be used. Periodical means that if the particle travels through more than two spongiosa voxels in a row, then the cluster will be repeated. Based on the bone samples available at the time, clusters of up to 3x3x3=27 micromatrices were studied. While for a given trabecular bone volume fraction the whole-body RBM equivalent dose showed converging results for cluster sizes between 8 and 27 micromatrices, this was not the case for the BSC equivalent dose. The BSC equivalent dose seemed to be very sensitive to the number, form, and thickness of the trabeculae. In addition, the cluster size and/or the microvoxel resolution were considered to be possible causes for the differences observed. In order to resolve this problem, this study used a bone sample large enough to extract clusters containing up to 8x8x8=512 micromatrices and which was scanned with two different voxel resolutions. Taking into account a recent proposal, this investigation also calculated the BSC equivalent dose on medullary surfaces of cortical bone in the arm and leg bones. The results showed (1) that different voxel resolutions have no effect on the RBM equivalent dose but do influence the BSC equivalent

  14. Reference dosimetry at the Australian Synchrotron's imaging and medical beamline using free-air ionization chamber measurements and theoretical predictions of air kerma rate and half value layer

    SciTech Connect

    Crosbie, Jeffrey C.; Rogers, Peter A. W.; Stevenson, Andrew W.; Hall, Christopher J.; Lye, Jessica E.; Nordstroem, Terese; Midgley, Stewart M.; Lewis, Robert A.

    2013-06-15

    Purpose: Novel, preclinical radiotherapy modalities are being developed at synchrotrons around the world, most notably stereotactic synchrotron radiation therapy and microbeam radiotherapy at the European Synchrotron Radiation Facility in Grenoble, France. The imaging and medical beamline (IMBL) at the Australian Synchrotron has recently become available for preclinical radiotherapy and imaging research with clinical trials, a distinct possibility in the coming years. The aim of this present study was to accurately characterize the synchrotron-generated x-ray beam for the purposes of air kerma-based absolute dosimetry. Methods: The authors used a theoretical model of the energy spectrum from the wiggler source and validated this model by comparing the transmission through copper absorbers (0.1-3.0 mm) against real measurements conducted at the beamline. The authors used a low energy free air ionization chamber (LEFAC) from the Australian Radiation Protection and Nuclear Safety Agency and a commercially available free air chamber (ADC-105) for the measurements. The dimensions of these two chambers are different from one another requiring careful consideration of correction factors. Results: Measured and calculated half value layer (HVL) and air kerma rates differed by less than 3% for the LEFAC when the ion chamber readings were corrected for electron energy loss and ion recombination. The agreement between measured and predicted air kerma rates was less satisfactory for the ADC-105 chamber, however. The LEFAC and ADC measurements produced a first half value layer of 0.405 {+-} 0.015 and 0.412 {+-} 0.016 mm Cu, respectively, compared to the theoretical prediction of 0.427 {+-} 0.012 mm Cu. The theoretical model based upon a spectrum calculator derived a mean beam energy of 61.4 keV with a first half value layer of approximately 30 mm in water. Conclusions: The authors showed in this study their ability to verify the predicted air kerma rate and x-ray attenuation

  15. Dynamic conformal arc therapy: transmitted signal in vivo dosimetry.

    PubMed

    Piermattei, Angelo; Stimato, Gerardina; Gaudino, Diego; Ramella, Sara; D'Angelillo, Rolando Maria; Cellini, Francesco; Trodella, Lucio; D'Onofrio, Guido; Grimaldi, Luca; Cilla, Savino; Fidanzio, Andrea; Placidi, Elisa; Azario, Luigi

    2008-05-01

    A method for the determination of the in vivo isocenter dose, D(iso), has been applied to the dynamic conformal are therapy (DCAT) for thoracic tumors. The method makes use of the transmitted signal, S(t,alpha), measured at different gantry angles, a, by a small ion chamber positioned on the electronic portal imaging device. The in vivo method is implemented by a set of correlation functions obtained by the ratios between the transmitted signal and the midplane dose in a solid phantom, irradiated by static fields. The in vivo dosimetry at the isocenter for the DCAT requires the convolution between the signals, S(t,alpha), and the dose reconstruction factors, C(alpha), that depend on the patient's anatomy and on its tissue inhomogeneities along the beam central axis in the a direction. The C(alpha) factors are obtained by processing the patient's computed tomography scan. The method was tested by taking measurements in a cylindrical phantom and in a Rando Alderson phantom. The results show that the difference between the convolution calculations and the phantom measurements is within +/-2%. The in vivo dosimetry of the stereotactic DCAT for six lung tumors, irradiated with three or four arcs, is reported. The isocenter dose up to 17 Gy per therapy fraction was delivered on alternating days for three fractions. The agreement obtained in this pilot study between the total in vivo dose D(iso) and the planned dose D(iso,TPS) at the isocenter is +/-4%. The method has been applied on the DCAT obtaining a more extensive monitoring of possible systematic errors, the effect of which can invalidate the current therapy which uses a few high-dose fractions. PMID:18561658

  16. Dynamic conformal arc therapy: Transmitted signal in vivo dosimetry

    SciTech Connect

    Piermattei, Angelo; Stimato, Gerardina; Gaudino, Diego; Ramella, Sara; D'Angelillo, Rolando Maria; Cellini, Francesco; Trodella, Lucio; D'Onofrio, Guido; Grimaldi, Luca; Cilla, Savino; Fidanzio, Andrea; Placidi, Elisa; Azario, Luigi

    2008-05-15

    A method for the determination of the in vivo isocenter dose, D{sub iso}, has been applied to the dynamic conformal arc therapy (DCAT) for thoracic tumors. The method makes use of the transmitted signal, S{sub t,{alpha}}, measured at different gantry angles, {alpha}, by a small ion chamber positioned on the electronic portal imaging device. The in vivo method is implemented by a set of correlation functions obtained by the ratios between the transmitted signal and the midplane dose in a solid phantom, irradiated by static fields. The in vivo dosimetry at the isocenter for the DCAT requires the convolution between the signals , S{sub t,{alpha}}, and the dose reconstruction factors, C{sub {alpha}}, that depend on the patient's anatomy and on its tissue inhomogeneities along the beam central axis in the {alpha} direction. The C{sub {alpha}} factors are obtained by processing the patient's computed tomography scan. The method was tested by taking measurements in a cylindrical phantom and in a Rando Alderson phantom. The results show that the difference between the convolution calculations and the phantom measurements is within {+-}2%. The in vivo dosimetry of the stereotactic DCAT for six lung tumors, irradiated with three or four arcs, is reported. The isocenter dose up to 17 Gy per therapy fraction was delivered on alternating days for three fractions. The agreement obtained in this pilot study between the total in vivo dose D{sub iso} and the planned dose D{sub iso,TPS} at the isocenter is {+-}4%. The method has been applied on the DCAT obtaining a more extensive monitoring of possible systematic errors, the effect of which can invalidate the current therapy which uses a few high-dose fractions.

  17. Spontaneous Resolution of Portal Vein Thrombosis

    PubMed Central

    Banumukala, Vishnu; Babu, Adarsh

    2008-01-01

    A 56-year-old male was admitted with symptoms of belching, abdominal pain and weight loss of 2 weeks duration. Examination revealed hepatosplenomegaly which was confirmed by computed tomography (CT). CT images also revealed filling defects in the portal vein and intrahepatic branches consistent with thrombosis and hepatosplenic infarcts. Alkaline phosphatase was elevated at 688 units, all other investigations, including full blood count, coagulation screen and tumour markers, were normal. Magnetic resonance cholangiopancreatography did not reveal any mass in the porta hepatis. Upper gastrointestinal endoscopy and colonoscopy were normal. Liver biopsy was normal and did not reveal any evidence of lymphoma. The raised alkaline phosphatase settled to reference range over a period of 3 weeks. Thrombophilia screen was negative. Contrast CT of the abdomen performed after 4 weeks displayed revascularisation of the previously thrombosed portal vein and intrahepatic branches. The patient has remained asymptomatic since and we note spontaneous recanalisation of the previously occluded portal vein. PMID:21490872

  18. Spontaneous resolution of portal vein thrombosis.

    PubMed

    Banumukala, Vishnu; Babu, Adarsh

    2008-01-01

    A 56-year-old male was admitted with symptoms of belching, abdominal pain and weight loss of 2 weeks duration. Examination revealed hepatosplenomegaly which was confirmed by computed tomography (CT). CT images also revealed filling defects in the portal vein and intrahepatic branches consistent with thrombosis and hepatosplenic infarcts. Alkaline phosphatase was elevated at 688 units, all other investigations, including full blood count, coagulation screen and tumour markers, were normal. Magnetic resonance cholangiopancreatography did not reveal any mass in the porta hepatis. Upper gastrointestinal endoscopy and colonoscopy were normal. Liver biopsy was normal and did not reveal any evidence of lymphoma. The raised alkaline phosphatase settled to reference range over a period of 3 weeks. Thrombophilia screen was negative. Contrast CT of the abdomen performed after 4 weeks displayed revascularisation of the previously thrombosed portal vein and intrahepatic branches. The patient has remained asymptomatic since and we note spontaneous recanalisation of the previously occluded portal vein. PMID:21490872

  19. Synteny Portal: a web-based application portal for synteny block analysis.

    PubMed

    Lee, Jongin; Hong, Woon-Young; Cho, Minah; Sim, Mikang; Lee, Daehwan; Ko, Younhee; Kim, Jaebum

    2016-07-01

    Recent advances in next-generation sequencing technologies and genome assembly algorithms have enabled the accumulation of a huge volume of genome sequences from various species. This has provided new opportunities for large-scale comparative genomics studies. Identifying and utilizing synteny blocks, which are genomic regions conserved among multiple species, is key to understanding genomic architecture and the evolutionary history of genomes. However, the construction and visualization of such synteny blocks from multiple species are very challenging, especially for biologists with a lack of computational skills. Here, we present Synteny Portal, a versatile web-based application portal for constructing, visualizing and browsing synteny blocks. With Synteny Portal, users can easily (i) construct synteny blocks among multiple species by using prebuilt alignments in the UCSC genome browser database, (ii) visualize and download syntenic relationships as high-quality images, (iii) browse synteny blocks with genetic information and (iv) download the details of synteny blocks to be used as input for downstream synteny-based analyses, all in an intuitive and easy-to-use web-based interface. We believe that Synteny Portal will serve as a highly valuable tool that will enable biologists to easily perform comparative genomics studies by compensating limitations of existing tools. Synteny Portal is freely available at http://bioinfo.konkuk.ac.kr/synteny_portal. PMID:27154270

  20. Synteny Portal: a web-based application portal for synteny block analysis

    PubMed Central

    Lee, Jongin; Hong, Woon-young; Cho, Minah; Sim, Mikang; Lee, Daehwan; Ko, Younhee; Kim, Jaebum

    2016-01-01

    Recent advances in next-generation sequencing technologies and genome assembly algorithms have enabled the accumulation of a huge volume of genome sequences from various species. This has provided new opportunities for large-scale comparative genomics studies. Identifying and utilizing synteny blocks, which are genomic regions conserved among multiple species, is key to understanding genomic architecture and the evolutionary history of genomes. However, the construction and visualization of such synteny blocks from multiple species are very challenging, especially for biologists with a lack of computational skills. Here, we present Synteny Portal, a versatile web-based application portal for constructing, visualizing and browsing synteny blocks. With Synteny Portal, users can easily (i) construct synteny blocks among multiple species by using prebuilt alignments in the UCSC genome browser database, (ii) visualize and download syntenic relationships as high-quality images, (iii) browse synteny blocks with genetic information and (iv) download the details of synteny blocks to be used as input for downstream synteny-based analyses, all in an intuitive and easy-to-use web-based interface. We believe that Synteny Portal will serve as a highly valuable tool that will enable biologists to easily perform comparative genomics studies by compensating limitations of existing tools. Synteny Portal is freely available at http://bioinfo.konkuk.ac.kr/synteny_portal. PMID:27154270

  1. 8. EAST PORTAL AND DECK VIEW, FROM EAST, SHOWING PORTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EAST PORTAL AND DECK VIEW, FROM EAST, SHOWING PORTAL CONFIGURATION AND LATERAL BRACING, STEEL MESH FLOOR, METAL RAILINGS, AND PORTION OF EAST APPROACH - Glendale Road Bridge, Spanning Deep Creek Lake on Glendale Road, McHenry, Garrett County, MD

  2. 7. WEST PORTAL AND DECK VIEW, FROM WEST, SHOWING PORTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. WEST PORTAL AND DECK VIEW, FROM WEST, SHOWING PORTAL CONFIGURATION AND LATERAL BRACING, STEEL MESH FLOOR, AND METAL RAILINGS - Glendale Road Bridge, Spanning Deep Creek Lake on Glendale Road, McHenry, Garrett County, MD

  3. Radioisotopic flow scanning for portal blood flow and portal hypertension

    SciTech Connect

    Hesdorffer, C.S.; Bezwoda, W.R.; Danilewitz, M.D.; Esser, J.D.; Tobias, M.

    1987-08-01

    The use of a simple, noninvasive, isotope scanning technique for the determination of relative portal blood flow and detection of portal hypertension is described. Using this technique the presence of portal hypertension was demonstrated in seven of nine patients known to have elevated portal venous pressure. By contrast, esophageal varices were demonstrated in only five of these patients, illustrating the potential value of the method. Furthermore, this technique has been adapted to the study of portal blood flow in patients with myeloproliferative disorders with splenomegaly but without disturbances in hepatic architecture. Results demonstrate that the high relative splenic flow resulting from the presence of splenomegaly may in turn be associated with elevated relative portal blood flow and portal hypertension. The theoretic reasons for the development of flow-related portal hypertension and its relationship to splenic blood flow are discussed.

  4. Perspective view of south portal. Note how portal angles about ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of south portal. Note how portal angles about 5' forward over the approach. - Red Oak Creek Bridge, Spanning (Big) Red Oak Creek, Huel Brown Road (Covered Bridge Road), Woodbury, Meriwether County, GA

  5. Elevation, west portal. Sign on portal reads Watson Mill Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation, west portal. Sign on portal reads Watson Mill Bridge, est. 1885. - Watson Mill Bridge, Spanning South Fork Broad River, Watson Mill Road, Watson Mill Bridge State Park, Comer, Madison County, GA

  6. Nitroglycerine effects on portal vein mechanics and oxidative stress in portal hypertension

    PubMed Central

    Vujanac, Andreja; Jakovljevic, Vladimir; Djordjevic, Dusica; Zivkovic, Vladimir; Stojkovic, Mirjana; Celikovic, Dragan; Andjelkovic, Nebojsa; Skevin, Aleksandra Jurisic; Djuric, Dragan

    2012-01-01

    AIM: Тo examine the effects of nitroglycerine on portal vein haemodynamics and oxidative stress in patients with portal hypertension. METHODS: Thirty healthy controls and 39 patients with clinically verified portal hypertension and increased vascular resistance participated in the study. Liver diameters, portal diameters and portal flow velocities were recorded using color flow imaging/pulsed Doppler detection. Cross-section area, portal flow and index of vascular resistance were calculated. In collected blood samples, superoxide anion radical (O2-), hydrogen peroxide (H2O2), index of lipid peroxidation (measured as TBARS) and nitric oxide (NO) as a marker of endothelial response (measured as nitrite-NO2-) were determined. Time-dependent analysis was performed at basal state and in 10th and 15th min after nitroglycerine (sublingual 0.5 mg) administration. RESULTS: Oxidative stress parameters changed significantly during the study. H2O2 decreased at the end of study, probably via O2- mediated disassembling in Haber Weiss and Fenton reaction; O2- increased significantly probably due to increased diameter and tension and decreased shear rate level. Consequently O2- and H2O2 degradation products, like hydroxyl radical, initiated lipid peroxidation. Increased blood flow was to some extent lower in patients than in controls due to double paradoxes, flow velocity decreased, shear rate decreased significantly indicating non Newtonian characteristics of portal blood flow. CONCLUSION: This pilot study could be a starting point for further investigation and possible implementation of some antioxidants in the treatment of portal hypertension. PMID:22294839

  7. Pregnancy with Portal Hypertension

    PubMed Central

    Aggarwal, Neelam; Negi, Neha; Aggarwal, Aakash; Bodh, Vijay; Dhiman, Radha K.

    2014-01-01

    Even though pregnancy is rare with cirrhosis and advanced liver disease, but it may co-exist in the setting of non-cirrhotic portal hypertension as liver function is preserved but whenever encountered together is a complex clinical dilemma. Pregnancy in a patient with portal hypertension presents a special challenge to the obstetrician as so-called physiological hemodynamic changes associated with pregnancy, needed for meeting demands of the growing fetus, worsen the portal hypertension thereby putting mother at risk of potentially life-threatening complications like variceal hemorrhage. Risks of variceal bleed and hepatic decompensation increase many fold during pregnancy. Optimal management revolves round managing the portal hypertension and its complications. Thus management of such cases requires multi-speciality approach involving obstetricians experienced in dealing with high risk cases, hepatologists, anesthetists and neonatologists. With advancement in medical field, pregnancy is not contra-indicated in these women, as was previously believed. This article focuses on the different aspects of pregnancy with portal hypertension with special emphasis on specific cause wise treatment options to decrease the variceal bleed and hepatic decompensation. Based on extensive review of literature, management from pre-conceptional period to postpartum is outlined in order to have optimal maternal and perinatal outcomes. PMID:25755552

  8. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    SciTech Connect

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish; Minniti, Ronaldo; Parry, Marie I.; Skopec, Marlene

    2013-08-15

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 m

  9. The Cosmos Portal and the IYA2009 Project

    NASA Astrophysics Data System (ADS)

    Haisch, Bernard M.; Sims, M.; Lindblom, J.

    2009-01-01

    In 2007 the non-profit Digital Universe Foundation (DUF) launched the Earth Portal as a comprehensive resource for timely, objective, science-based information about the environment. There are currently over 1000 scholars from 60 countries engaged in this rapidly growing web-based collaboration. The Cosmos Portal is the second major DUF initiative (digitaluniverse.net/cosmos). In support of the IYA2009 effort, the Cosmos Portal is recruiting astronomy professionals to make use of easy online tools to publish articles, blogs, news items, image galleries, class notes, lectures, powerpoint presentations, links to other high quality websites or other educational material. In parallel we intend to bring hundreds of amateur astronomy organizations and thousands of amateur astronomers and telescope makers together in a community of portals (digitaluniverse.net/cosmoscommunity). This will allow vibrant online collaboration and information sharing. We encourage you to start a portal on your favorite topic or join an existing topic as a contributor.

  10. [Portal vein thrombosis].

    PubMed

    Seijo-Ríos, Susana; García-Pagán, Juan Carlos

    2010-03-01

    Thrombosis of the splenoportal axis not associated with liver cirrhosis or tumoral disease is the second cause of portal hypertension in the western world. In up to 60% of cases, an underlying systemic prothrombotic disorder can be identified as an etiological factor. One third of cases are caused by local factors and the coexistence of several entities is not unusual. Therefore, an etiologic diagnosis is essential in these patients. Early anticoagulation therapy in the acute phase of thrombosis of the splenoportal axis significantly affects the probability of recanalization and consequently the prognosis of these patients. In the chronic phase of splenoportal thrombosis (or portal cavernoma), the symptoms are caused by the complications of established portal hypertension. To date, anticoagulation therapy is limited to patients in whom an underlying prothrombotic disorder has been demonstrated. PMID:19733938

  11. Target detection portal

    DOEpatents

    Linker, Kevin L.; Brusseau, Charles A.

    2002-01-01

    A portal apparatus for screening persons or objects for the presence of trace amounts of target substances such as explosives, narcotics, radioactive materials, and certain chemical materials. The portal apparatus can have a one-sided exhaust for an exhaust stream, an interior wall configuration with a concave-shape across a horizontal cross-section for each of two facing sides to result in improved airflow and reduced washout relative to a configuration with substantially flat parallel sides; air curtains to reduce washout; ionizing sprays to collect particles bound by static forces, as well as gas jet nozzles to dislodge particles bound by adhesion to the screened person or object. The portal apparatus can be included in a detection system with a preconcentrator and a detector.

  12. Quasi real time in vivo dosimetry for VMAT

    SciTech Connect

    Fidanzio, A.; Azario, L.; Porcelli, A.; Greco, F.; Cilla, S.; Grusio, M.; Balducci, M.; Valentini, V.; Piermattei, A.

    2014-06-15

    Purpose: Results about the feasibility of a method for quasi real timein vivo dosimetry (IVD) at the isocenter point for volumetric modulated arc therapy (VMAT) are here reported. The method is based on correlations between the EPID signal and the dose on the beam central axis. Moreover, the γ-analysis of EPID images was adopted to verify off-axis reproducibility of fractionated plan delivery. Methods: An algorithm to reconstructin vivo the isocenter dose, D{sub iso}, for RapidArc treatments has been developed. 20 VMAT plans, optimized with two opposite arcs, for prostate, pancreas, and head treatments have been delivered by a Varian linac both to a conic PMMA phantom with elliptical section and to patients. The ratios R between reconstructed D{sub iso} and the planned doses were determined for phantom and patient irradiations adopting an acceptance criterion of ±5%. In total, 40 phantom checks and 400 patient checks were analyzed. Moreover, 3% and 3 mm criteria were adopted for portal image γ-analysis to assess patient irradiation reproducibility. Results: The average ratio R, between reconstructed and planned doses for the PMMA phantom irradiations was equal to 1.007 ± 0.024. When the IVD method was applied to the 20 patients, the average R ratio was equal to 1.003 ± 0.017 and 96% of the tests were within the acceptance criteria. The portal image γ-analysis supplied 88% of the tests within the pass rates γ{sub mean} ≤ 0.4 and P{sub γ<1} ≥ 98%. All the warnings were understood comparing the CT and the cone beam CT images and in one case a patient's setup error was detected and corrected for the successive fractions. Conclusions: This preliminary experience suggests that the method is able to detect dosimetric errors in quasi real time at the end of the therapy session. The authors intend to extend this procedure to other pathologies with the integration of in-room imaging verification by cone beam CT.

  13. Imaging, Biodistribution, and Dosimetry of Radionuclide-Labeled PD-L1 Antibody in an Immunocompetent Mouse Model of Breast Cancer.

    PubMed

    Josefsson, Anders; Nedrow, Jessie R; Park, Sunju; Banerjee, Sangeeta Ray; Rittenbach, Andrew; Jammes, Fabien; Tsui, Benjamin; Sgouros, George

    2016-01-15

    The programmed cell death ligand 1 (PD-L1) participates in an immune checkpoint system involved in preventing autoimmunity. PD-L1 is expressed on tumor cells, tumor-associated macrophages, and other cells in the tumor microenvironment. Anti-PD-L1 antibodies are active against a variety of cancers, and combined anti-PD-L1 therapy with external beam radiotherapy has been shown to increase therapeutic efficacy. PD-L1 expression status is an important indicator of prognosis and therapy responsiveness, but methods to precisely capture the dynamics of PD-L1 expression in the tumor microenvironment are still limited. In this study, we developed a murine anti-PD-L1 antibody conjugated to the radionuclide Indium-111 ((111)In) for imaging and biodistribution studies in an immune-intact mouse model of breast cancer. The distribution of (111)In-DTPA-anti-PD-L1 in tumors as well as the spleen, liver, thymus, heart, and lungs peaked 72 hours after injection. Coinjection of labeled and 100-fold unlabeled antibody significantly reduced spleen uptake at 24 hours, indicating that an excess of unlabeled antibody effectively blocked PD-L1 sites in the spleen, thus shifting the concentration of (111)In-DTPA-anti-PD-L1 into the blood stream and potentially increasing tumor uptake. Clearance of (111)In-DTPA-anti-PD-L1 from all organs occurred at 144 hours. Moreover, dosimetry calculations revealed that radionuclide-labeled anti-PD-L1 antibody yielded tolerable projected marrow doses, further supporting its use for radiopharmaceutical therapy. Taken together, these studies demonstrate the feasibility of using anti-PD-L1 antibody for radionuclide imaging and radioimmunotherapy and highlight a new opportunity to optimize and monitor the efficacy of immune checkpoint inhibition therapy. PMID:26554829

  14. Biodistribution and dosimetry of [123I]iodo-PK 11195: a potential agent for SPET imaging of the peripheral benzodiazepine receptor.

    PubMed

    Versijpt, J; Dumont, F; Thierens, H; Jansen, H; De Vos, F; Slegers, G; Santens, P; Dierckx, R A; Korf, J

    2000-09-01

    The highest concentrations of the peripheral benzodiazepine receptor (PBR) are found in the kidneys and heart. In addition, the PBR has been reported to reflect neuro-inflammatory damage by co-localisation with activated microglia. PK 11195 is a high-affinity ligand for the PBR. The aim of this study was to investigate in humans the biodistribution and dosimetry of [123I]iodoPK 11195, a potential single-photon emission tomography tracer for the PBR. Five healthy volunteers were injected with 112 MBq of [123I]iodo-PK 11195. Sequential whole-body scans were performed up to 72 h post injection. Multiple blood samples were taken, and urine was collected to measure the fraction voided by the renal system. Decay-corrected regions of interest of the whole-body images were analysed, and geometric mean count rates were used to determine organ activity. Organ absorbed doses and effective dose were calculated using the MIRD method. [123I]iodo-PK 11195 was rapidly cleared from the blood, mainly by the hepatobiliary system. Approximately 22% was voided in urine after 48 h. Average organ residence times were 0.74, 0.44 and 0.29 h for the liver, upper large intestine and lower large intestine, respectively. The testes received the highest dose, 109.4 microGy/MBq. All other organs investigated received doses of less than 50 microGy/MBq. The effective dose was 40.3 microSv/MBq. In conclusion, [123I]iodo-PK 11195 is a suitable agent for the visualisation of the PBR and indirectly for the imaging of neuro-inflammatory lesions. Taking into account the radiation burden of 7.46 mSv following an administration of 185 MBq, a [123I]iodo-PK 11195 investigation has to be considered an ICRP risk category IIb investigation. PMID:11007514

  15. A Librarian's Perspective on Portals.

    ERIC Educational Resources Information Center

    Little, John R.

    2001-01-01

    Explains what Web portals are and discusses the benefits of a strategic alliance in portal building among campus information technology, libraries, and other campus groups. Suggests that by using robust channel capabilities, an enterprise portal can provide content from various parts of the university and promote resource discovery. (EV)

  16. Ten Keys to the Portal

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2011-01-01

    Successful web portals help users stay informed, in touch, and up to speed. They are also a telling window into the efficiency of one's institution. To develop a cutting-edge portal takes planning, communication, and research. In this article, the author presents and discusses 10 keys to portal success: (1) make critical info visible; (2) make the…

  17. TU-C-BRE-10: A Streamlined Approach to EPID Transit Dosimetry

    SciTech Connect

    Morris, B; Fontenot, J

    2014-06-15

    Purpose: To investigate the feasibility of a simple and efficient transit dosimetry method using the electronic portal imaging device (EPID) for dose delivery error detection and prevention. Methods: In the proposed method, 2D reference transit images are generated for comparison with online images acquired during treatment. Reference transit images are generated by convolving through-air EPID measurements of each field with pixel-specific kernels selected from a library of pre-calculated Monte Carlo pencil kernels of varying radiological thickness. The kernel used for each pixel is selected based on the calculated radiological thickness of the patient along a line joining the pixel and the virtual source. The accuracy of the technique was evaluated in flat homogeneous and heterogeneous plastic water phantoms, a heterogeneous cylindrical phantom, and an anthropomorphic head phantom. Gamma criteria of 3%/3 mm was used to quantify the accuracy of the technique for the various cases. Results: An average of 99.9% and 99.7% of the points in the comparison between the measured and predicted images passed a 3%/3mm gamma for the homogeneous and heterogeneous plastic water phantoms, respectively. 97.1% of the points passed for the analysis of the heterogeneous cylindrical phantom. For the anthropomorphic head phantom, an average of 97.8% of points passed the 3%/3mm gamma criteria for all field sizes. Failures were observed primarily in areas of drastic thickness or material changes and at the edges of the fields. Conclusion: The data suggest that the proposed transit dosimetry method is a feasible approach to in vivo dose monitoring. Future research efforts could include implementation for more complex fields and sensitivity testing of the method to setup errors and changes in anatomy. Oncology Data Systems provided partial funding support but did not participate in the collection or analysis of data.

  18. Application of the smart portal in transportation

    NASA Astrophysics Data System (ADS)

    Kercel, Stephen W.; Baylor, Vivian M.; Dress, William B.; Hickerson, Tim W.; Jatko, William B.; Labaj, Leo E.; Muhs, Jeffrey D.; Pack, Richard M.

    1997-02-01

    Under a program sponsored by the Department of Energy, the Oak Ridge complex is developing a `Portal-of-the-Future', or `smart portal.' This is a security portal for vehicular traffic which is intended to quickly detect explosives, hidden passengers, etc. It uses several technologies, including microwaves, weigh-in-motion, digital image processing, and electroacoustic wavelet-based heartbeat detection. A novel component of particular interest is the Enclosed Space Detection System (ESDS), which detects the presence of persons hiding in a vehicle. The system operates by detecting the presence of a human ballistocardiographic signature. Each time the heart beats, it generates a small but measurable shock wave that propagates through the body. The wave, whose graph is called a ballistocardiogram, is the mechanical analog of the electrocardiograms, which is routinely used for medical diagnosis. The wave is, in turn, coupled to any surface or object with which the body is in contact. If the body is located in an enclosed space, this will result in a measurable deflection of the surface of the enclosure. Independent testing has shown ESDS to be highly reliable. The technologies used in the smart portal operate in real time and allow vehicles to be checked through the portal in much less time than would be required for human inspection. Although not originally developed for commercial transportation, the smart portal has the potential to solve several transportation problems. It could relieve congestion at international highway border crossings by reducing the time required to inspect each vehicle while increasing the level of security. It can reduce highway congestion at the entrance of secure facilities such as prisons. Also, it could provide security at intermodal transfer points, such as airport parking lots and car ferry terminals.

  19. Application of the smart portal in transportation

    SciTech Connect

    Kercel, S.W.; Baylor, V.M.; Dress, W.B.; Hickerson, T.W.; Jatko, W.B.; Labaj, L.E.; Muhs, J.D.; Pack, R.M.

    1996-12-31

    Under a program sponsored by the Department of Energy, the Oak Ridge complex is developed a ``Portal-of-the-Future``, or ``smart portal``. This is a security portal for vehicular traffic which is intended to quickly detect explosives, hidden passengers, etc. It uses several technologies, including microwaves, weigh-in-motion, digital image processing, and electroacoustic wavelet-based heartbeat detection. A novel component of particular interest is the Enclosed Space Detection System (ESDS), which detects the presence of persons hiding in a vehicle. The system operates by detecting the presence of a human ballistocardiographic signature. Each time the heart beats, it generates a small but measurable shock wave that propagates through the body. The wave, whose graph is called a ballistocardiogram, is the mechanical analog of the electrocardiogram, which is routinely used for medical diagnosis. The wave is, in turn, coupled to any surface or object with which the body is in contact. If the body is located in an enclosed space, this will result in a measurable deflection of the surface of the enclosure. Independent testing has shown ESDS to be highly reliable. The technologies used in the smart portal operate in real time and allow vehicles to be checked through the portal in much less time than would be required for human inspection. Although not originally developed for commercial transportation, the smart portal has the potential to solve several transportation problems. It could relieve congestion at international highway border crossings by reducing the time required to inspect each vehicle while increasing the level of security. It can reduce highway congestion at the entrance of secure facilities such as prisons. Also, it could provide security at intermodal transfer points, such as airport parking lots and car ferry terminals.

  20. Uncertainty in 3D gel dosimetry

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Jirasek, Andrew

    2015-01-01

    Three-dimensional (3D) gel dosimetry has a unique role to play in safeguarding conformal radiotherapy treatments as the technique can cover the full treatment chain and provides the radiation oncologist with the integrated dose distribution in 3D. It can also be applied to benchmark new treatment strategies such as image guided and tracking radiotherapy techniques. A major obstacle that has hindered the wider dissemination of gel dosimetry in radiotherapy centres is a lack of confidence in the reliability of the measured dose distribution. Uncertainties in 3D dosimeters are attributed to both dosimeter properties and scanning performance. In polymer gel dosimetry with MRI readout, discrepancies in dose response of large polymer gel dosimeters versus small calibration phantoms have been reported which can lead to significant inaccuracies in the dose maps. The sources of error in polymer gel dosimetry with MRI readout are well understood and it has been demonstrated that with a carefully designed scanning protocol, the overall uncertainty in absolute dose that can currently be obtained falls within 5% on an individual voxel basis, for a minimum voxel size of 5 mm3. However, several research groups have chosen to use polymer gel dosimetry in a relative manner by normalizing the dose distribution towards an internal reference dose within the gel dosimeter phantom. 3D dosimetry with optical scanning has also been mostly applied in a relative way, although in principle absolute calibration is possible. As the optical absorption in 3D dosimeters is less dependent on temperature it can be expected that the achievable accuracy is higher with optical CT. The precision in optical scanning of 3D dosimeters depends to a large extend on the performance of the detector. 3D dosimetry with X-ray CT readout is a low contrast imaging modality for polymer gel dosimetry. Sources of error in x-ray CT polymer gel dosimetry (XCT) are currently under investigation and include inherent

  1. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  2. Portal annular pancreas: the pancreatic duct ring sign on MRCP.

    PubMed

    Lath, Chinar O; Agrawal, Dilpesh S; Timins, Michael E; Wein, Melissa M

    2015-12-01

    Portal annular pancreas is a rare pancreatic variant in which the uncinate process of the pancreas extends and fuses to the dorsal surface of the body of the pancreas by surrounding the portal vein. It is asymptomatic, but it can be mistaken for a pancreatic head mass on imaging and could also have serious consequences during pancreatic surgery, if unrecognized. We report this case of a 53-year-old female patient who was diagnosed to have portal annular pancreas on the basis of an unusual course (ring appearance) of the main pancreatic duct on magnetic resonance cholangiopancreatography, not described earlier in the radiology literature. PMID:26649117

  3. Portal annular pancreas: the pancreatic duct ring sign on MRCP

    PubMed Central

    Lath, Chinar O.; Agrawal, Dilpesh S.; Timins, Michael E.; Wein, Melissa M.

    2015-01-01

    Portal annular pancreas is a rare pancreatic variant in which the uncinate process of the pancreas extends and fuses to the dorsal surface of the body of the pancreas by surrounding the portal vein. It is asymptomatic, but it can be mistaken for a pancreatic head mass on imaging and could also have serious consequences during pancreatic surgery, if unrecognized. We report this case of a 53-year-old female patient who was diagnosed to have portal annular pancreas on the basis of an unusual course (ring appearance) of the main pancreatic duct on magnetic resonance cholangiopancreatography, not described earlier in the radiology literature. PMID:26649117

  4. A simple backprojection algorithm for 3D in vivo EPID dosimetry of IMRT treatments

    SciTech Connect

    Wendling, Markus; McDermott, Leah N.; Mans, Anton; Sonke, Jan-Jakob; Herk, Marcel van; Mijnheer, Ben J.

    2009-07-15

    Treatment plans are usually designed, optimized, and evaluated based on the total 3D dose distribution, motivating a total 3D dose verification. The purpose of this study was to develop a 2D transmission-dosimetry method using an electronic portal imaging device (EPID) into a simple 3D method that provides 3D dose information. In the new method, the dose is reconstructed within the patient volume in multiple planes parallel to the EPID for each gantry angle. By summing the 3D dose grids of all beams, the 3D dose distribution for the total treatment fraction is obtained. The algorithm uses patient contours from the planning CT scan but does not include tissue inhomogeneity corrections. The 3D EPID dosimetry method was tested for IMRT fractions of a prostate, a rectum, and a head-and-neck cancer patient. Planned and in vivo-measured dose distributions were within 2% at the dose prescription point. Within the 50% isodose surface of the prescribed dose, at least 97% of points were in agreement, evaluated with a 3D {gamma} method with criteria of 3% of the prescribed dose and 0.3 cm. Full 3D dose reconstruction on a 0.1x0.1x0.1 cm{sup 3} grid and 3D {gamma} evaluation took less than 15 min for one fraction on a standard PC. The method allows in vivo determination of 3D dose-volume parameters that are common in clinical practice. The authors conclude that their EPID dosimetry method is an accurate and fast tool for in vivo dose verification of IMRT plans in 3D. Their approach is independent of the treatment planning system and provides a practical safety net for radiotherapy.

  5. Transit dosimetry in IMRT with an a-Si EPID in direct detection configuration

    NASA Astrophysics Data System (ADS)

    Sabet, Mahsheed; Rowshanfarzad, Pejman; Vial, Philip; Menk, Frederick W.; Greer, Peter B.

    2012-08-01

    In this study an amorphous silicon electronic portal imaging device (a-Si EPID) converted to direct detection configuration was investigated as a transit dosimeter for intensity modulated radiation therapy (IMRT). After calibration to dose and correction for a background offset signal, the EPID-measured absolute IMRT transit doses for 29 fields were compared to a MatriXX two-dimensional array of ionization chambers (as reference) using Gamma evaluation (3%, 3 mm). The MatriXX was first evaluated as reference for transit dosimetry. The accuracy of EPID measurements was also investigated by comparison of point dose measurements by an ionization chamber on the central axis with slab and anthropomorphic phantoms in a range of simple to complex fields. The uncertainty in ionization chamber measurements in IMRT fields was also investigated by its displacement from the central axis and comparison with the central axis measurements. Comparison of the absolute doses measured by the EPID and MatriXX with slab phantoms in IMRT fields showed that on average 96.4% and 97.5% of points had a Gamma index<1 in head and neck and prostate fields, respectively. For absolute dose comparisons with anthropomorphic phantoms, the values changed to an average of 93.6%, 93.7% and 94.4% of points with Gamma index<1 in head and neck, brain and prostate fields, respectively. Point doses measured by the EPID and ionization chamber were within 3% difference for all conditions. The deviations introduced in the response of the ionization chamber in IMRT fields were<1%. The direct EPID performance for transit dosimetry showed that it has the potential to perform accurate, efficient and comprehensive in vivo dosimetry for IMRT.

  6. High-precision γ -ray spectroscopy of the cardiac PET imaging isotope 82Rb and its impact on dosimetry

    NASA Astrophysics Data System (ADS)

    Nino, M. N.; McCutchan, E. A.; Smith, S. V.; Lister, C. J.; Greene, J. P.; Carpenter, M. P.; Muench, L.; Sonzogni, A. A.; Zhu, S.

    2016-02-01

    82Rb is a positron-emitting isotope used in cardiac positron emission tomography (PET) imaging which has been reported to deliver a significantly lower effective radiation dose than analogous imaging isotopes like 201Tl and 99 mTc sestamibi. High-quality β -decay data are essential to accurately appraise the total dose received by the patients. A source of 82Sr was produced at the Brookhaven Linac Isotope Producer (BLIP), transported to Argonne National Laboratory, and studied with the Gammasphere facility. Significant revisions have been made to the level scheme of 82Kr including 12 new levels, 50 new γ -ray transitions, and the determination of many new spin assignments through angular correlations. These new high-quality data allow a precise reappraisal of the β -decay strength function and thus the consequent dose received by patients.

  7. Multi-spectral wide-field imaging for PplX PDT dosimetry of skin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    LaRochelle, Ethan; Chun, Hayden H.; Hasan, Tayyaba; Pogue, Brian W.; Maytin, Edward V.; Chapman, Michael S.; Davis, Scott C.

    2016-03-01

    Actinic Kertoses (AK) are common pre-cancerous lesions associated with sun-damaged skin. While generally benign, the condition can progress to squamous cell carcinoma (SCC) and is a particular concern for immunosuppressed patients who are susceptible to uncontrolled AK and SCC. Among the FDA-approved treatment options for AK, ALA-based photodynamic therapy is unique in that it is non-scarring and can be repeated on the same area. However, response rates vary widely due to variations in drug and light delivery, PpIX production, and tissue oxygenation. Thus, developing modalities to predict response is critical to enable patient-specific treatment-enhancing interventions. To that end, we have developed a wide-field spectrally-resolved fluorescence imaging system capable of red and blue light excitation. While blue light excites PpIX efficiently, poor photon penetration limits the image content to superficial layers of skin. Red light excitation, on the other hand, can reveal fluorescence information originating from deeper in tissue, which may provide relevant information about PpIX distribution. Our instrument illuminates the skin via a fiber-based ring illuminator, into which is coupled sequentially a white light source, and blue and red laser diodes. Light emitted from the tissue passes through a high-speed filter wheel with filters selected to resolve the PpIX emission spectrum. This configuration enables the use of spectral fitting to decouple PpIX fluorescence from background signal, improving sensitivity to low concentrations of PpIX. Images of tissue-simulating phantoms and animal models confirm a linear response to PpIX, and the ability to image sub-surface PpIX inaccessible with blue light using red excitation.

  8. Radioisotopic splenoportography in patients with portal hypertension.

    PubMed

    Samejima, N; Ikeda, K; Yokoyama, Y; Hirata, S

    1989-05-01

    Radio-isotopic splenoportography was performed by injecting 99mTcO4- into the spleens of 46 patients with portal hypertension and 14 patients with various disorders not having portal hypertension. No collateral circulation was demonstrated in the 14 patients without portal hypertension whereas some RI-images of portosystemic collaterals were found in 40 (87.0 per cent) of the 46 patients with portal hypertension. Collaterals were divided into an ascending group and a descending group, the appearance rate of ascending collaterals being 80.4 per cent and that of descending collaterals, 41.3 per cent. There were 3 image patterns in the ascending group, namely, an AZ-pattern in which the azygos vein was demonstrated; a SC-pattern in which the RI-bolus ascended along the esophagus to the neck and the subclavian vein; and an EG-pattern which showed stagnation of the RI-bolus in the esophagogastric region. There were 4 patterns in the descending group, namely; a pattern of gastro-renal caval shunt (GR-pattern); reverse flow patterns into the umbilical or paraumbilical veins (UV-pattern); into the superior mesenteric vein (SMV-pattern); and into the inferior mesenteric vein (IMV-pattern). The appearance of the EG-pattern was seen most frequently (74.4 per cent). The usefulness of this method for surveying the collateral circulation in portal hypertension, estimating the risk of esophageal variceal bleeding and evaluating its treatments, was suggested by the results of this study. PMID:2674500

  9. Time dependent pre-treatment EPID dosimetry for standard and FFF VMAT

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; Nijsten, Sebastiaan M. J. J. G.; Persoon, Lucas C. G. G.; Scheib, Stefan G.; Baltes, Christof; Verhaegen, Frank

    2014-08-01

    Methods to calibrate Megavoltage electronic portal imaging devices (EPIDs) for dosimetry have been previously documented for dynamic treatments such as intensity modulated radiotherapy (IMRT) using flattened beams and typically using integrated fields. While these methods verify the accumulated field shape and dose, the dose rate and differential fields remain unverified. The aim of this work is to provide an accurate calibration model for time dependent pre-treatment dose verification using amorphous silicon (a-Si) EPIDs in volumetric modulated arc therapy (VMAT) for both flattened and flattening filter free (FFF) beams. A general calibration model was created using a Varian TrueBeam accelerator, equipped with an aS1000 EPID, for each photon spectrum 6 MV, 10 MV, 6 MV-FFF, 10 MV-FFF. As planned VMAT treatments use control points (CPs) for optimization, measured images are separated into corresponding time intervals for direct comparison with predictions. The accuracy of the calibration model was determined for a range of treatment conditions. Measured and predicted CP dose images were compared using a time dependent gamma evaluation using criteria (3%, 3 mm, 0.5 sec). Time dependent pre-treatment dose verification is possible without an additional measurement device or phantom, using the on-board EPID. Sufficient data is present in trajectory log files and EPID frame headers to reliably synchronize and resample portal images. For the VMAT plans tested, significantly more deviation is observed when analysed in a time dependent manner for FFF and non-FFF plans than when analysed using only the integrated field. We show EPID-based pre-treatment dose verification can be performed on a CP basis for VMAT plans. This model can measure pre-treatment doses for both flattened and unflattened beams in a time dependent manner which highlights deviations that are missed in integrated field verifications.

  10. The impact of MLC transmitted radiation on EPID dosimetry for dynamic MLC beams

    SciTech Connect

    Vial, Philip; Greer, Peter B.; Hunt, Peter; Oliver, Lyn; Baldock, Clive

    2008-04-15

    The purpose of this study was to experimentally quantify the change in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to dynamic multileaf collimator (dMLC) beams with varying MLC-transmitted dose components and incorporate the response into a commercial treatment planning system (TPS) EPID prediction model. A combination of uniform intensity dMLC beams and static beams were designed to quantify the effect of MLC transmission on EPID response at the central axis of 10x10 cm{sup 2} beams, at off-axis positions using wide dMLC beam profiles, and at different field sizes. The EPID response to MLC transmitted radiation was 0.79{+-}0.02 of the response to open beam radiation at the central axis of a 10x10 cm{sup 2} field. The EPID response to MLC transmitted radiation was further reduced relative to the open beam response with off-axis distance. The EPID response was more sensitive to field size changes for MLC transmitted radiation compared to open beam radiation by a factor of up to 1.17 at large field sizes. The results were used to create EPID response correction factors as a function of the fraction of MLC transmitted radiation, off-axis distance, and field size. Software was developed to apply the correction factors to each pixel in the TPS predicted EPID image. The corrected images agreed more closely with the measured EPID images in areas of intensity modulated fields with a large fraction of MLC transmission and, as a result the accuracy of portal dosimetry with a-Si EPIDs can be improved. Further investigation into the detector response function and the radiation source model are required to achieve improvements in accuracy for the general case.

  11. Patient-Specific Dosimetry Using Pretherapy [124I]m-iodobenzylguanidine ([124I]mIBG) Dynamic PET/CT Imaging Before [131I]mIBG Targeted Radionuclide Therapy for Neuroblastoma

    PubMed Central

    Huang, Shih-ying; Bolch, Wesley E.; Lee, Choonsik; Van Brocklin, Henry F.; Pampaloni, Miguel H.; Hawkins, Randall A.; Sznewajs, Aimee; DuBois, Steven G.; Matthay, Katherine K.; Seo, Youngho

    2014-01-01

    Purpose Iodine-131-m-iodobenzylguanidine ([131I]mIBG) targeted radionuclide therapy (TRT) is a standard treatment for recurrent or refractory neuroblastoma with response rates of 30–40%. The aim of this study is to demonstrate patient-specific dosimetry using quantitative [124I]mIBG PET/CT imaging with a Geant4-based Monte Carlo method for better treatment planning. Procedures A Monte Carlo dosimetry method was developed using the Geant4 toolkit with voxelized anatomical geometry and source distribution as input. The pre-segmented hybrid computational human phantoms developed by the University of Florida and the National Cancer Institute (UF/NCI) were used as a surrogate to characterize the anatomy of a given patient. S-values for I-131 were estimated by the phantoms coupled with Geant4 and compared with those estimated by OLINDA|EXM and MCNPX for the newborn model. To obtain patient-specific biodistribution of [131I]mIBG, a 10-year-old girl with relapsed neuroblastoma was imaged with [124I]mIBG PET/CT at four time points prior to the planned [131I]mIBG TRT. The organ and tumor absorbed dose of the clinical case were estimated with the Geant4 method using the modified UF/NCI 10-year-old phantom with tumors and the patient-specific residence time. Results For the newborn model, the Geant4 S-values were consistent with the MCNPX S- values. The S-value ratio of the Geant4 method to OLINDA|EXM ranged from 0.08 to 6.5 of all major organs. The [131I]mIBG residence time quantified from the pretherapy [124I]mIBG PET/CT imaging of the 10-year-old patient was mostly comparable to those previously reported. Organ absorbed dose for the salivary glands were 98.0 Gy, heart wall, 36.5 Gy, and liver, 34.3 Gy; while tumor absorbed dose ranged from 143.9 Gy to 1641.3 Gy in different sites. Conclusions Patient-specific dosimetry for [131I]mIBG targeted radionuclide therapy was accomplished using pretherapy [124I]mIBG PET/CT imaging and a Geant4-based Monte Carlo dosimetry method

  12. Commissioning and Implementation of an EPID Based IMRT QA System "Dosimetry Check" for 3D Absolute Dose Measurements and Quantitative Comparisons to MapCheck

    NASA Astrophysics Data System (ADS)

    Patel, Jalpa A.

    The software package "Dosimetry Check" by MathResolutions, LLC, provides an absolute 3D volumetric dose measurement for IMRT QA using the existing Electronic Portal Imaging Device (EPID) mounted on most linear accelerators. This package provides a feedback loop using the patient's treatment planning CT data as the phantom for dose reconstruction. The aim of this work is to study the difference between point, planar and volumetric doses with MapCheck and Dosimetry Check via the use of the EPID and the diode array respectively. Evaluating tools such as point doses at isocenter, 1-D profiles, gamma volume histograms, and dose volume histograms are used for IMRT dose comparison in three types of cases: head and neck, prostate, and lung. Dosimetry Check can be a valuable tool for IMRT QA as it uses patient specific attenuation corrections and the superiority of the EPID as compared to the MapCheck diode array. This helps reduce the uncertainty in dose for less variability in delivery and a more realistic measured vs computed dose verification system as compared to MapCheck.

  13. International Reactor Dosimetry Data.

    Energy Science and Technology Software Center (ESTSC)

    1982-06-28

    Version 00 IRDF-82 contains 620 neutron group cross sections (SAND-II format) based on the ENDF/B-V Special Purpose Dosimetry File as well as other reaction cross sections important for dosimetry applications. In addition, multigroup spectra for ten reference benchmarks are also provided.

  14. Portal Annular Pancreas

    PubMed Central

    Harnoss, Jonathan M.; Harnoss, Julian C.; Diener, Markus K.; Contin, Pietro; Ulrich, Alexis B.; Büchler, Markus W.; Schmitz-Winnenthal, Friedrich H.

    2014-01-01

    Abstract Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF). On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered. In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery). Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option. PMID:25207658

  15. Dosimetry of 18F-Labeled Tyrosine Kinase Inhibitor SKI-249380, a Dasatinib-Tracer for PET Imaging

    PubMed Central

    Dunphy, Mark P. S.; Zanzonico, Pat; Veach, Darren; Somwar, Romel; Pillarsetty, Nagavarakishore; Lewis, Jason; Larson, Steven

    2011-01-01

    Purpose To obtain estimates of human normal-organ radiation doses of 18F-SKI-249380, as a prerequisite step towards first-in-human trial. 18F-SKI-249380 is a first-of-its-kind PET tracer for imaging the in vivo pharmacokinetics of dasatinib, an investigational targeted therapy for solid malignancies. Procedures Isoflurane-anesthetized mice received tracer dose via tail vein. Organ time-integrated activity coefficients, fractional urinary and hepatobiliary excretion, and total-body clearance kinetics were derived from PET data, with allometric extrapolation to the Standard Man anatomic model and normal-organ-absorbed dose calculations using OLINDA/EXM software. Results The human effective dose was 0.031 mSv/MBq. The critical organ was the upper large intestine, with a dose equivalent of 0.25 mSv/MBq. A 190-MBq administered activity of 18F-SKI-249380 is thus predicted to expose an adult human to radiation doses generally comparable to those of routinely used diagnostic radiopharmaceuticals. Conclusions Animal-based human dose estimates support first-in-human testing of 18F-SKI-249380. PMID:21161687

  16. 29 CFR 785.24 - Principles noted in Portal-to-Portal Bulletin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Principles noted in Portal-to-Portal Bulletin. 785.24... of Principles Preparatory and Concluding Activities § 785.24 Principles noted in Portal-to-Portal Bulletin. In November, 1947, the Administrator issued the Portal-to-Portal Bulletin (part 790 of...

  17. 29 CFR 785.24 - Principles noted in Portal-to-Portal Bulletin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Principles noted in Portal-to-Portal Bulletin. 785.24... of Principles Preparatory and Concluding Activities § 785.24 Principles noted in Portal-to-Portal Bulletin. In November, 1947, the Administrator issued the Portal-to-Portal Bulletin (part 790 of...

  18. 29 CFR 785.24 - Principles noted in Portal-to-Portal Bulletin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Principles noted in Portal-to-Portal Bulletin. 785.24... of Principles Preparatory and Concluding Activities § 785.24 Principles noted in Portal-to-Portal Bulletin. In November, 1947, the Administrator issued the Portal-to-Portal Bulletin (part 790 of...

  19. 29 CFR 785.24 - Principles noted in Portal-to-Portal Bulletin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Principles noted in Portal-to-Portal Bulletin. 785.24... of Principles Preparatory and Concluding Activities § 785.24 Principles noted in Portal-to-Portal Bulletin. In November, 1947, the Administrator issued the Portal-to-Portal Bulletin (part 790 of...

  20. COMPUTED TOMOGRAPHIC AND ULTRASONOGRAPHIC CHARACTERISTICS OF CAVERNOUS TRANSFORMATION OF THE OBSTRUCTED PORTAL VEIN IN SMALL ANIMALS.

    PubMed

    Specchi, Swan; Pey, Pascaline; Ledda, Gianluca; Lustgarten, Meghann; Thrall, Donald; Bertolini, Giovanna

    2015-01-01

    In humans, the process of development of collateral vessels with hepatopetal flow around the portal vein in order to bypass an obstruction is called "cavernous transformation of the portal vein." The purpose of this retrospective, cross-sectional, multicentric study was to describe presumed cavernous transformation of the portal vein in small animals with portal vein obstruction using ultrasound and multidetector-row computed tomography (MDCT). Databases from three different institutions were searched for patients with an imaging diagnosis of cavernous transformation of the portal vein secondary to portal vein obstruction of any cause. Images were retrieved and reanalyzed. With MDCT-angiography, two main portoportal collateral pathways were identified: short tortuous portoportal veins around/inside the thrombus and long portoportal collaterals bypassing the site of portal obstruction. Three subtypes of the long collaterals, often coexisting, were identified. Branches of the hepatic artery where involved in collateral circulation in nine cases. Concomitant acquired portosystemic shunts were identified in six patients. With ultrasound, cavernous transformation of the portal vein was suspected in three dogs and one cat based on visualization of multiple and tortuous vascular structures corresponding to periportal collaterals. In conclusion, the current study provided descriptive MDCT and ultrasonographic characteristics of presumed cavernous transformation of the portal vein in a sample of small animals. Cavernous transformation of the portal vein could occur as a single condition or could be concurrent with acquired portosystemic shunts. PMID:25877678

  1. On the usefulness of portal monitor unit subtraction in radiation therapy

    NASA Astrophysics Data System (ADS)

    Kuperman, Vadim Y.; Lubich, Leslie M.

    2003-08-01

    In order to avoid additional dose to patients caused by portal imaging with megavoltage x-rays, portal monitor units (MUs) are frequently subtracted from the actual treatment MUs. This study examines the usefulness of portal MU subtraction in radiation therapy. For 11 prostate cancer patients treated with 23 MV photons, dose to prostate due to portal filming with 6 MV photons was determined. In all 11 patients subtraction of portal MU values from the actual treatment MUs resulted in a small underdosing of the prostate with an average treatment error of -0.5%. Portal filming without MU subtraction would cause small overdosing of the prostate with an average treatment error of 1.2%. The results of this study indicate that the benefits of portal MU subtraction are in doubt if (a) the energy of treatment x-rays is much higher than that of the portal x-rays and/or (b) when radiotherapy is performed with physical wedges. Based on the obtained results, we argue against unconditional use of the portal MU subtraction method to eliminate the dose from portal imaging.

  2. Collateral Pathways in Portal Hypertension

    PubMed Central

    Sharma, Malay; Rameshbabu, Chittapuram S.

    2012-01-01

    Presence of portosystemic collateral veins (PSCV) is common in portal hypertension due to cirrhosis. Physiologically, normal portosystemic anastomoses exist which exhibit hepatofugal flow. With the development of portal hypertension, transmission of backpressure leads to increased flow in these patent normal portosystemic anastomoses. In extrahepatic portal vein obstruction collateral circulation develops in a hepatopetal direction and portoportal pathways are frequently found. The objective of this review is to illustrate the various PSCV and portoportal collateral vein pathways pertinent to portal hypertension in liver cirrhosis and EHPVO. PMID:25755456

  3. Optical tomography for radiation dosimetry and treatment plan verification by videographic imaging of ferrous sulphate xylenol orange gelatin dosimeters

    NASA Astrophysics Data System (ADS)

    Wolodzko, John George

    1999-08-01

    Recent advances in computer and radiation delivery technologies have led to new and complex methods in radiotherapy which involve the deposition of radiation in the human body at high doses or dose rates. Both these and more traditional approaches to radiotherapy would benefit from a means to provide detailed information about the distribution of radiation dose in multiple dimensions for the purposes of treatment planning and verification. Several investigations have been carried out over the past few years to evaluate the utility of various formulations of ferrous sulphate, or Fricke, get dosimeters in the measurement of radiation fields. These have been proposed to be of particular value in the determination of three-dimensional radiation dose distributions associated with emerging and complex approaches to cancer treatment such as `gamma knife', pencil beam, stereotactic, or conformal radiotherapies. Hitherto, the emphasis in the majority of approaches has been on measuring the difference in effect on paramagnetic properties between the initial ferrous ion concentration of the solution, and the ferric ions which a produced following irradiation. Although many positive and confirmative results have been published regarding this method, it relies on access to clinical MRI units for imaging the irradiated gel; an expensive and logistical challenge for the majority of potential users. We report here a study carried out to determine the feasibility of analyzing one form of this dosimeter through tomographic reconstruction of two-dimensional optical projections acquired using an ordinary, diffuse light source, video camera, standard tomographic reconstruction software, and other components designed and/or assembled by the author. Qualitative, quantitative and statistical analyses yield highly linear and reproducible results with r2 from regression analyses typically on the order of 0.98. Comparisons of the measured dose distribution patterns to the treatment plan

  4. PREFACE: Third International Conference on Radiotherapy Gel Dosimetry

    NASA Astrophysics Data System (ADS)

    DeDeene, Yves; Baldock, Clive

    2004-01-01

    Gel dosimetry is not merely another dosimetry technique. Gel dosimeters are integrating dosimeters that enable dose verification in three dimensions. The application of a 3D dosimetry technique in the clinic would give a real push to the implementation of advanced high-precision radiotherapy technologies in many institutes. It can be expected that with the recent developments in the field towards more user-friendly gel systems and imaging modalities, gel dosimetry will become a vital link in the chain of high-precision radiation cancer therapy in the near future. Many researchers all over the world have contributed to the emerging technology of gel dosimetry. The research field of gel dosimetry is recognized to be very broad from polymer and analytical chemistry and material research to imaging technologies. The DOSGEL conferences in the past have proven to be an important forum at which material scientists, chemists, medical physicists, magnetic resonance imaging and radiation specialists brought together a critical mass of thoughts, findings and considerations. DOSGEL 2004 has been endorsed by many international, supra-national and national medical physics organizations and publishers. These proceedings contain 51 papers that cover various aspects of gel dosimetry.

  5. 8. Detail, skewed portal bracing at west portal, also showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail, skewed portal bracing at west portal, also showing boxed endposts, latticed upper transverse and diagonal sway bracing, laced vertical members, view to northeast, 210mm lens. - Southern Pacific Railroad Shasta Route, Bridge No. 301.85, Milepost 301.85, Pollard Flat, Shasta County, CA

  6. Portal Vein Thrombosis in Cirrhosis

    PubMed Central

    Raja, Kaiser; Jacob, Mathew; Asthana, Sonal

    2013-01-01

    Portal vein thrombosis (PVT) is being increasingly recognized in patients with advanced cirrhosis and in those undergoing liver transplantation. Reduced flow in the portal vein is probably responsible for clotting in the spleno-porto-mesenteric venous system. There is also increasing evidence that hypercoagulability occurs in advanced liver disease and contributes to the risk of PVT. Ultrasound based studies have reported a prevalence of PVT in 10–25% of cirrhotic patients without hepatocellular carcinoma. Partial thrombosis of the portal vein is more common and may not have pathophysiological consequences. However, there is high risk of progression of partial PVT to complete PVT that may cause exacerbation of portal hypertension and progression of liver insufficiency. It is thus, essential to accurately diagnose and stage PVT in patients waiting for transplantation and consider anticoagulation therapy. Therapy with low molecular weight heparin and vitamin K antagonists has been shown to achieve complete and partial recanalization in 33–45% and 15–35% of cases respectively. There are however, no guidelines to help determine the dose and therapeutic efficacy of anticoagulation in patients with cirrhosis. Anticoagulation therapy related bleeding is the most feared complication but it appears that the risk of variceal bleeding is more likely to be dependent on portal pressure rather than solely related to coagulation status. TIPS has also been reported to restore patency of the portal vein. Patients with complete PVT currently do not form an absolute contraindication for liver transplantation. Thrombectomy or thromboendovenectomy is possible in more than 75% of patients followed by anatomical end-to-end portal anastomosis. When patency of the portal vein and/or superior mesenteric vein is not achieved, only non-anatomical techniques (reno-portal anastomosis or cavo-portal hemitransposition) can be performed. These techniques, which do not fully reverse portal

  7. Of Portals, Policies, and Poets

    ERIC Educational Resources Information Center

    Bunt, Rick; Pennock, Lea

    2006-01-01

    Universities are drawn to portals as an effective way of organizing and delivering campus services and information. In a university environment, where the desire for local autonomy and the impetus for centralization are in constant tension, a portal seems especially appealing because it allows local solutions through a shared medium. But the fact…

  8. All Roads Lead to Portal

    ERIC Educational Resources Information Center

    Heid, Susan D.

    2007-01-01

    Portals are taking off on campuses nationwide. According to "Campus Computing 2006," the Campus Computing Project's survey of 540 two- and four-year public and private colleges and universities across the US, portal deployment for four-year public residential universities jumped from 28 to 74 percent of responding institutions between the…

  9. The Power in the Portal

    ERIC Educational Resources Information Center

    Chamberlain, Cathy

    2005-01-01

    Educational portals put together links to sites and resources educators would be interested in viewing. They eliminate the hours of searching that might be invested if typical search engines were used. Educational portals feature lessons, units, printable resources, creative ideas, and more. Many of these sites are free, while others are…

  10. NSTA Portal to Science Safety

    ERIC Educational Resources Information Center

    Roy, Ken

    2010-01-01

    The National Science Teachers Association's (NSTA) Science Safety Advisory Board recently launched the Safety in the Science Classroom portal. This portal serves as a gateway to safety resources for teachers, supervisors, and administrators. It also contains an evolving list of safety resources for elementary, middle, and high schools. The list…

  11. Practical CT dosimetry

    SciTech Connect

    Yoshizumi, T.T.; Suneja, S.K.; Teal, J.S. )

    1989-07-01

    The dose from computed tomography (CT) examinations is not negligible from a radiation safety standpoint. Occasionally, one encounters a case in which an unsuspected pregnant woman undergoes a CT pelvic scan, and the radiologist is required to estimate the dose to the fetus. This article addresses practical methods of CT dosimetry with a specific discussion on fetal dose estimate. Three methods are described: (1) the use of a dose chart, (2) the pencil ionization chamber method, and (3) the thermoluminescence dosimetry (TLD) method.

  12. Clinical experience with EPID dosimetry for prostate IMRT pre-treatment dose verification.

    PubMed

    McDermott, L N; Wendling, M; van Asselen, B; Stroom, J; Sonke, J J; van Herk, M; Mijnheer, B J

    2006-10-01

    The aim of this study was to demonstrate how dosimetry with an amorphous silicon electronic portal imaging device (a-Si EPID) replaced film and ionization chamber measurements for routine pre-treatment dosimetry in our clinic. Furthermore, we described how EPID dosimetry was used to solve a clinical problem. IMRT prostate plans were delivered to a homogeneous slab phantom. EPID transit images were acquired for each segment. A previously developed in-house back-projection algorithm was used to reconstruct the dose distribution in the phantom mid-plane (intersecting the isocenter). Segment dose images were summed to obtain an EPID mid-plane dose image for each field. Fields were compared using profiles and in two dimensions with the y evaluation (criteria: 3%/3 mm). To quantify results, the average gamma (gamma avg), maximum gamma (gamma max), and the percentage of points with gamma < 1(P gamma < 1) were calculated within the 20% isodose line of each field. For 10 patient plans, all fields were measured with EPID and film at gantry set to 0 degrees. The film was located in the phantom coronal mid-plane (10 cm depth), and compared with the back-projected EPID mid-plane absolute dose. EPID and film measurements agreed well for all 50 fields, with (gamma avg) =0.16, (gamma max)=1.00, and (P gamma < 1)= 100%. Based on these results, film measurements were discontinued for verification of prostate IMRT plans. For 20 patient plans, the dose distribution was re-calculated with the phantom CT scan and delivered to the phantom with the original gantry angles. The planned isocenter dose (plan(iso)) was verified with the EPID (EPID(iso)) and an ionization chamber (IC(iso)). The average ratio, (EPID(iso)/IC(iso)), was 1.00 (0.01 SD). Both measurements were systematically lower than planned, with (EPID(iso)/plan(iso)) and (IC(iso)/plan(iso))=0.99 (0.01 SD). EPID mid-plane dose images for each field were also compared with the corresponding plane derived from the three dimensional

  13. Health literacy and patient portals.

    PubMed

    Gu, Yulong; Orr, Martin; Warren, Jim

    2015-06-01

    Health literacy has been described as the capacity to obtain, process, and understand basic health information and services needed to make appropriate health decisions. Improving health literacy may serve to promote concordance with therapy, engage patients in their own health care, and improve health outcomes. Patient portal technology aims at enabling patients and families to have easy access to key information in their own medical records and to communicate with their health care providers electronically. However, there is a gap in our understanding of how portals will improve patient outcome. The authors believe patient portal technology presents an opportunity to improve patient concordance with prescribed therapy, if adequate support is provided to equip patients (and family/carers) with the knowledge needed to utilise the health information available via the portals. Research is needed to understand what a health consumer will use patient portals for and how to support a user to realise the technology's potential. PMID:26125067

  14. Radiation dosimetry of the fibrin-binding probe 64Cu-FBP8 and its feasibility for positron emission tomography imaging of deep vein thrombosis and pulmonary embolism in rats

    PubMed Central

    Blasi, Francesco; Oliveira, Bruno L; Rietz, Tyson A; Rotile, Nicholas J; Day, Helen; Naha, Pratap C; Cormode, David P; Izquierdo-Garcia, David; Catana, Ciprian; Caravan, Peter

    2016-01-01

    The diagnosis of deep venous thromboembolic disease is still challenging despite the progress of current thrombus imaging modalities and new diagnostic algorithms. We recently reported the high target uptake and thrombus imaging efficacy of the novel fibrin-specific positron emission tomography probe 64Cu-FBP8. Here, we tested the feasibility of 64Cu-FBP8-PET to detect source thrombi and culprit emboli after deep vein thrombosis and pulmonary embolism (DVT-PE). To support clinical translation of 64Cu-FBP8, we performed a human dosimetry estimation using time-dependent biodistribution in rats. Methods Sprague-Dawley rats (n=7) underwent ferric chloride application on the femoral vein to trigger thrombosis. Pulmonary embolism was induced 30 min or 2 days after deep vein thrombosis by intrajugular injection of a preformed blood clot labeled with 125I-Fibrinogen. PET imaging was performed to detect the clots, and single-photon emission tomography (SPECT) was used to confirm in vivo the location of the pulmonary emboli. Ex vivo gamma-counting and histopathology were used to validate the imaging findings. Detailed biodistribution was performed in healthy rats (n=30) at different time-points after 64Cu-FBP8 administration to estimate human radiation dosimetry. Longitudinal whole-body PET/MR imaging (n=2) was performed after 64Cu-FBP8 administration to further assess radioactivity clearance. Results 64Cu-FBP8-PET imaging detected the location of lung emboli and venous thrombi after DVT-PE, revealing significant differences in uptake between target and background tissues (P<0.001). In vivo SPECT imaging and ex vivo gamma-counting confirmed the location of the lung emboli. PET quantification of the venous thrombi revealed that probe uptake was greater in younger clots than in older ones, a result confirmed by ex vivo analyses (P<0.001). Histopathology revealed an age-dependent reduction of thrombus fibrin content (P=0.006), further supporting the imaging findings

  15. Implementation of EPID transit dosimetry based on a through-air dosimetry algorithm

    SciTech Connect

    Berry, Sean L.; Sheu, Ren-Dih; Polvorosa, Cynthia S.; Wuu, Cheng-Shie

    2012-01-15

    Purpose: A method to perform transit dosimetry with an electronic portal imaging device (EPID) by extending the commercial implementation of a published through-air portal dose image (PDI) prediction algorithm Van Esch et al.[Radiother. Oncol. 71, 223-234 (2004)] is proposed and validated. A detailed characterization of the attenuation, scattering, and EPID response behind objects in the beam path is used to convert through-air PDIs into transit PDIs. Methods: The EPID detector response beyond a range of water equivalent thicknesses (0-35 cm) and field sizes (3x3 to 22.2x29.6 cm{sup 2}) was analyzed. A constant air gap between the phantom exit surface and the EPID was utilized. A model was constructed that accounts for the beam's attenuation along the central axis, the presence of phantom scattered radiation, the detector's energy dependent response, and the difference in EPID off-axis pixel response relative to the central pixel. The efficacy of the algorithm was verified by comparing predicted and measured PDIs for IMRT fields delivered through phantoms of increasing complexity. Results: The expression that converts a through-air PDI to a transit PDI is dependent on the object's thickness, the irradiated field size, and the EPID pixel position. Monte Carlo derived narrow-beam linear attenuation coefficients are used to model the decrease in primary fluence incident upon the EPID due to the object's presence in the beam. This term is multiplied by a factor that accounts for the broad beam scatter geometry of the linac-phantom-EPID system and the detector's response to the incident beam quality. A 2D Gaussian function that models the nonuniformity of pixel response across the EPID detector plane is developed. For algorithmic verification, 49 IMRT fields were repeatedly delivered to homogeneous slab phantoms in 5 cm increments. Over the entire set of measurements, the average area passing a 3%/3mm gamma criteria slowly decreased from 98% for no material in the beam

  16. The Portuguese Climate Portal

    NASA Astrophysics Data System (ADS)

    Gomes, Sandra; Deus, Ricardo; Nogueira, Miguel; Viterbo, Pedro; Miranda, Miguel; Antunes, Sílvia; Silva, Alvaro; Miranda, Pedro

    2016-04-01

    The Portuguese Local Warming Website (http://portaldoclima.pt) has been developed in order to support the society in Portugal in preparing for the adaptation to the ongoing and future effects of climate change. The climate portal provides systematic and easy access to authoritative scientific data ready to be used by a vast and diverse user community from different public and private sectors, key players and decision makers, but also to high school students, contributing to the increase in knowledge and awareness on climate change topics. A comprehensive set of regional climate variables and indicators are computed, explained and graphically presented. Variables and indicators were built in agreement with identified needs after consultation of the relevant social partners from different sectors, including agriculture, water resources, health, environment and energy and also in direct cooperation with the Portuguese National Strategy for Climate Change Adaptation (ENAAC) group. The visual interface allows the user to dynamically interact, explore, quickly analyze and compare, but also to download and import the data and graphics. The climate variables and indicators are computed from state-of-the-art regional climate model (RCM) simulations (e.g., CORDEX project), at high space-temporal detail, allowing to push the limits of the projections down to local administrative regions (NUTS3) and monthly or seasonal periods, promoting local adaptation strategies. The portal provides both historical data (observed and modelled for the 1971-2000 period) and future climate projections for different scenarios (modelled for the 2011-2100 period). A large effort was undertaken in order to quantify the impacts of the risk of extreme events, such as heavy rain and flooding, droughts, heat and cold waves, and fires. Furthermore the different climate scenarios and the ensemble of RCM models, with high temporal (daily) and spatial (~11km) detail, is taken advantage in order to

  17. Direct dose to water dosimetry for pretreatment IMRT verification using a modified EPID

    SciTech Connect

    Gustafsson, Helen; Vial, Philip; Kuncic, Zdenka; Baldock, Clive; Denham, James W.; Greer, Peter B.

    2011-11-15

    Purpose: Electronic portal imaging devices (EPIDs) are high resolution systems that produce electronic dose maps with minimal time required for equipment setup, and therefore potentially present a time-saving alternative for intensity modulated radiation therapy (IMRT) pretreatment verification. A modified commercial EPID was investigated operated with an opaque sheet blocking the optical signal produced in the phosphor layer as a precursor to a switched mode dual dosimetry-imaging EPID system. The purpose of this study was to investigate the feasibility of using this system for direct dose to water dosimetry for pretreatment IMRT verification. Methods: A Varian amorphous silicon EPID was modified by placing an opaque sheet between the Gd{sub 2}S{sub 2}O:Tb phosphor layer and the photodiode array to block the optical photons. The EPID was thus converted to a direct-detecting system (dEPID), in which the high energy radiation deposits energy directly in the photodiode array. The copper build-up was replaced with d{sub max} solid water. Sixty-one IMRT beams of varying complexity were delivered to the EPID, to EDR2 dosimetric film and to a 2D ion chamber array (MapCheck). EPID data was compared to film and MapCheck data using gamma analysis with 3%, 3mm pass criteria. Results: The fraction of points that passed the gamma test was on average 98.1% and 98.6%, for the EPID versus film and EPID versus MapCheck comparisons, respectively. In the case of comparison with film, the majority of observed discrepancies were associated with problems related to film sensitivity or processing. Conclusions: The very close agreement between EPID and both film and MapCheck data demonstrates that the modified EPID is suitable for direct dose to water measurement for pretreatment IMRT verification. These results suggest a reconfigured EPID could be an efficient and accurate dosimeter. Alternatively, optical switching methods could be developed to produce a dual-mode EPID with both

  18. Kidney dosimetry in ¹⁷⁷Lu and ⁹⁰Y peptide receptor radionuclide therapy: influence of image timing, time-activity integration method, and risk factors.

    PubMed

    Guerriero, F; Ferrari, M E; Botta, F; Fioroni, F; Grassi, E; Versari, A; Sarnelli, A; Pacilio, M; Amato, E; Strigari, L; Bodei, L; Paganelli, G; Iori, M; Pedroli, G; Cremonesi, M

    2013-01-01

    Kidney dosimetry in (177)Lu and (90)Y PRRT requires 3 to 6 whole-body/SPECT scans to extrapolate the peptide kinetics, and it is considered time and resource consuming. We investigated the most adequate timing for imaging and time-activity interpolating curve, as well as the performance of a simplified dosimetry, by means of just 1-2 scans. Finally the influence of risk factors and of the peptide (DOTATOC versus DOTATATE) is considered. 28 patients treated at first cycle with (177)Lu DOTATATE and 30 with (177)Lu DOTATOC underwent SPECT scans at 2 and 6 hours, 1, 2, and 3 days after the radiopharmaceutical injection. Dose was calculated with our simplified method, as well as the ones most used in the clinic, that is, trapezoids, monoexponential, and biexponential functions. The same was done skipping the 6 h and the 3 d points. We found that data should be collected until 100 h for (177)Lu therapy and 70 h for (90)Y therapy, otherwise the dose calculation is strongly influenced by the curve interpolating the data and should be carefully chosen. Risk factors (hypertension, diabetes) cause a rather statistically significant 20% increase in dose (t-test, P < 0.10), with DOTATATE affecting an increase of 25% compared to DOTATOC (t-test, P < 0.05). PMID:23865075

  19. The parallel virtual file system for portals.

    SciTech Connect

    Schutt, James Alan

    2004-04-01

    This report presents the result of an effort to re-implement the Parallel Virtual File System (PVFS) using Portals as the transport. This report provides short overviews of PVFS and Portals, and describes the design and implementation of PVFS over Portals. Finally, the results of performance testing of both stock PVFS and PVFS over Portals are presented.

  20. 29 CFR 785.34 - Effect of section 4 of the Portal-to-Portal Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Effect of section 4 of the Portal-to-Portal Act. 785.34 Section 785.34 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR... of Principles Traveltime § 785.34 Effect of section 4 of the Portal-to-Portal Act. The Portal...

  1. 29 CFR 785.34 - Effect of section 4 of the Portal-to-Portal Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Effect of section 4 of the Portal-to-Portal Act. 785.34 Section 785.34 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR... of Principles Traveltime § 785.34 Effect of section 4 of the Portal-to-Portal Act. The Portal...

  2. 29 CFR 785.34 - Effect of section 4 of the Portal-to-Portal Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Effect of section 4 of the Portal-to-Portal Act. 785.34 Section 785.34 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR... of Principles Traveltime § 785.34 Effect of section 4 of the Portal-to-Portal Act. The Portal...

  3. Experimental verification of a portal dose prediction model

    SciTech Connect

    Elmpt, W.J.C. van; Nijsten, S.M.J.J.G.; Mijnheer, B.J.; Minken, A.W.H.

    2005-09-15

    Electronic portal imaging devices (EPIDs) can be used to measure a two-dimensional (2D) dose distribution behind a patient, thus allowing dosimetric treatment verification. For this purpose we experimentally assessed the accuracy of a 2D portal dose prediction model based on pencil beam scatter kernels. A straightforward derivation of these pencil beam scatter kernels for portal dose prediction models is presented based on phantom measurements. The model is able to predict the 2D portal dose image (PDI) behind a patient, based on a PDI without the patient in the beam in combination with the radiological thickness of the patient, which requires in addition a PDI with the patient in the beam. To assess the accuracy of portal dose and radiological thickness values obtained with our model, various types of homogeneous as well as inhomogeneous phantoms were irradiated with a 6 MV photon beam. With our model we are able to predict a PDI with an accuracy better than 2% (mean difference) if the radiological thickness of the object in the beam is symmetrically situated around the isocenter. For other situations deviations up to 3% are observed for a homogeneous phantom with a radiological thickness of 17 cm and a 9 cm shift of the midplane-to-detector distance. The model can extract the radiological thickness within 7 mm (maximum difference) of the actual radiological thickness if the object is symmetrically distributed around the isocenter plane. This difference in radiological thickness is related to a primary portal dose difference of 3%. It can be concluded that our model can be used as an easy and accurate tool for the 2D verification of patient treatments by comparing predicted and measured PDIs. The model is also able to extract the primary portal dose with a high accuracy, which can be used as the input for a 3D dose reconstruction method based on back-projection.

  4. The NUCLEONICA Nuclear Science Portal

    SciTech Connect

    Magill, Joseph; Dreher, Raymond

    2009-08-19

    NUCLEONICA (www.nucleonica.net) is a new nuclear science web portal which provides a customisable, integrated environment and collaboration platform using the latest internet 'Web 2.0' technology. NUCLEONICA is aimed at professionals, academics and students working in nuclear power, health physics and radiation protection, nuclear and radio-chemistry, and astrophysics. A unique feature of the portal is the wide range of user friendly web-based nuclear science applications. The portal is also ideal for education and training purposes and as a knowledge management platform to preserve nuclear knowledge built up over many decades.

  5. Direct-detection EPID dosimetry: investigation of a potential clinical configuration for IMRT verification.

    PubMed

    Vial, Philip; Gustafsson, Helen; Oliver, Lyn; Baldock, Clive; Greer, Peter B

    2009-12-01

    The routine use of electronic portal imaging devices (EPIDs) as dosimeters for radiotherapy quality assurance is complicated by the non-water equivalence of the EPID's dose response. A commercial EPID modified to a direct-detection configuration was previously demonstrated to provide water-equivalent dose response with d(max) solid water build-up and 10 cm solid water backscatter. Clinical implementation of the direct EPID (dEPID) requires a design that maintains the water-equivalent dose response, can be incorporated onto existing EPID support arms and maintains sufficient image quality for clinical imaging. This study investigated the dEPID dose response with different configurations of build-up and backscatter using varying thickness of solid water and copper. Field size output factors and beam profiles measured with the dEPID were compared with ionization chamber measurements of dose in water for both 6 MV and 18 MV. The dEPID configured with d(max) solid water build-up and no backscatter (except for the support arm) was within 1.5% of dose in water data for both energies. The dEPID was maintained in this configuration for clinical dosimetry and image quality studies. Close agreement between the dEPID and treatment planning system was obtained for an IMRT field with 98.4% of pixels within the field meeting a gamma criterion of 3% and 3 mm. The reduced sensitivity of the dEPID resulted in a poorer image quality based on quantitative (contrast-to-noise ratio) and qualitative (anthropomorphic phantom) studies. However, clinically useful images were obtained with the dEPID using typical treatment field doses. The dEPID is a water-equivalent dosimeter that can be implemented with minimal modifications to the standard commercial EPID design. The proposed dEPID design greatly simplifies the verification of IMRT dose delivery. PMID:19904032

  6. Direct-detection EPID dosimetry: investigation of a potential clinical configuration for IMRT verification

    NASA Astrophysics Data System (ADS)

    Vial, Philip; Gustafsson, Helen; Oliver, Lyn; Baldock, Clive; Greer, Peter B.

    2009-12-01

    The routine use of electronic portal imaging devices (EPIDs) as dosimeters for radiotherapy quality assurance is complicated by the non-water equivalence of the EPID's dose response. A commercial EPID modified to a direct-detection configuration was previously demonstrated to provide water-equivalent dose response with dmax solid water build-up and 10 cm solid water backscatter. Clinical implementation of the direct EPID (dEPID) requires a design that maintains the water-equivalent dose response, can be incorporated onto existing EPID support arms and maintains sufficient image quality for clinical imaging. This study investigated the dEPID dose response with different configurations of build-up and backscatter using varying thickness of solid water and copper. Field size output factors and beam profiles measured with the dEPID were compared with ionization chamber measurements of dose in water for both 6 MV and 18 MV. The dEPID configured with dmax solid water build-up and no backscatter (except for the support arm) was within 1.5% of dose in water data for both energies. The dEPID was maintained in this configuration for clinical dosimetry and image quality studies. Close agreement between the dEPID and treatment planning system was obtained for an IMRT field with 98.4% of pixels within the field meeting a gamma criterion of 3% and 3 mm. The reduced sensitivity of the dEPID resulted in a poorer image quality based on quantitative (contrast-to-noise ratio) and qualitative (anthropomorphic phantom) studies. However, clinically useful images were obtained with the dEPID using typical treatment field doses. The dEPID is a water-equivalent dosimeter that can be implemented with minimal modifications to the standard commercial EPID design. The proposed dEPID design greatly simplifies the verification of IMRT dose delivery.

  7. Dosimetry in radiotherapy using a-Si EPIDs: Systems, methods, and applications focusing on 3D patient dose estimation

    NASA Astrophysics Data System (ADS)

    McCurdy, B. M. C.

    2013-06-01

    An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.

  8. The NOAO NVO Portal: Overall Design & Implementation

    NASA Astrophysics Data System (ADS)

    Fuentes, E.; Miller, C. J.; Gasson, D.

    2007-10-01

    We present an overview and design of the NOAO National Virtual Observatory (NVO) Portal. This is a web application providing one-stop discovery, analysis, and access to VO-compliant imaging data and services. It strictly follows the Model-View-Controller (MVC) design pattern and relies heavily on Asynchronous Javascript And XML (AJAX) in the browser. Because of the heavy use of AJAX, the relatively simple database schemas, and, most importantly, the rapid development/iteration schedule, Ruby-on-Rails (RoR) was chosen as the implementation language and PostgreSQL as the database engine.

  9. Hidden Magnetic Portals Around Earth

    NASA Video Gallery

    A NASA-sponsored researcher at the University of Iowa has developed a way for spacecraft to hunt down hidden magnetic portals in the vicinity of Earth. These gateways link the magnetic field of our...

  10. TG-69: radiographic film for megavoltage beam dosimetry.

    PubMed

    Pai, Sujatha; Das, Indra J; Dempsey, James F; Lam, Kwok L; Losasso, Thomas J; Olch, Arthur J; Palta, Jatinder R; Reinstein, Lawrence E; Ritt, Dan; Wilcox, Ellen E

    2007-06-01

    TG-69 is a task group report of the AAPM on the use of radiographic film for dosimetry. Radiographic films have been used for radiation dosimetry since the discovery of x-rays and have become an integral part of dose verification for both routine quality assurance and for complex treatments such as soft wedges (dynamic and virtual), intensity modulated radiation therapy (IMRT), image guided radiation therapy (IGRT), and small field dosimetry like stereotactic radiosurgery. Film is convenient to use, spatially accurate, and provides a permanent record of the integrated two dimensional dose distributions. However, there are several challenges to obtaining high quality dosimetric results with film, namely, the dependence of optical density on photon energy, field size, depth, film batch sensitivity differences, film orientation, processing conditions, and scanner performance. Prior to the clinical implementation of a film dosimetry program, the film, processor, and scanner need to be tested to characterize them with respect to these variables. Also, the physicist must understand the basic characteristics of all components of film dosimetry systems. The primary mission of this task group report is to provide guidelines for film selection, irradiation, processing, scanning, and interpretation to allow the physicist to accurately and precisely measure dose with film. Additionally, we present the basic principles and characteristics of film, processors, and scanners. Procedural recommendations are made for each of the steps required for film dosimetry and guidance is given regarding expected levels of accuracy. Finally, some clinical applications of film dosimetry are discussed. PMID:17654924

  11. A global calibration model for a-Si EPIDs used for transit dosimetry.

    PubMed

    Nijsten, S M J J G; van Elmpt, W J C; Jacobs, M; Mijnheer, B J; Dekker, A L A J; Lambin, P; Minken, A W H

    2007-10-01

    Electronic portal imaging devices (EPIDs) are not only applied for patient setup verification and detection of organ motion but are also increasingly used for dosimetric verification. The aim of our work is to obtain accurate dose distributions from a commercially available amorphous silicon (a-Si) EPID for transit dosimetry applications. For that purpose, a global calibration model was developed, which includes a correction procedure for ghosting effects, field size dependence and energy dependence of the a-Si EPID response. In addition, the long-term stability and additional buildup material for this type of EPID were determined. Differences in EPID response due to photon energy spectrum changes have been measured for different absorber thicknesses and field sizes, yielding off-axis spectrum correction factors based on transmission measurements. Dose measurements performed with an ionization chamber in a water tank were used as reference data, and the accuracy of the dosimetric calibration model was determined for a large range of treatment conditions. Gamma values using 3% as dose-difference criterion and 3 mm as distance-to-agreement criterion were used for evaluation. The field size dependence of the response could be corrected by a single kernel, fulfilling the gamma evaluation criteria in case of virtual wedges and intensity modulated radiation therapy fields. Differences in energy spectrum response amounted up to 30%-40%, but could be reduced to less than 3% using our correction model. For different treatment fields and (in)homogeneous phantoms, transit dose distributions satisfied in almost all situations the gamma criteria. We have shown that a-Si EPIDs can be accurately calibrated for transit dosimetry purposes. PMID:17985633

  12. Introducing gel dosimetry in a clinical environment: Customization of polymer gel composition and magnetic resonance imaging parameters used for 3D dose verifications in radiosurgery and intensity modulated radiotherapy

    SciTech Connect

    Crescenti, Remo A.; Scheib, Stefan G.; Schneider, Uwe; Gianolini, Stefano

    2007-04-15

    Radiation sensitive gels have been used as dosimeters for clinical dose verification of different radiation therapy modalities. However, the use of gels is not widespread, because careful techniques are required to achieve the dose precision and accuracy aimed for in clinical dose verification. Here, the introduction of gel dosimetry in a clinical environment is described, including the whole chain of customizations and preparations required to introduce magnetic resonance (MR) based gel dosimetry into clinical routine. In order to standardize gel dosimetry in dose verifications for radiosurgery and intensity modulated radiotherapy (IMRT), we focused on both the customization of the gel composition and of the MR imaging parameters to increase its precision. The relative amount of the components of the normoxic, methacrylic acid based gel (MAGIC) was changed to obtain linear and steep dose response relationships. MR imaging parameters were customized for the different dose ranges used in order to lower the relative standard deviation of the measured transversal relaxation rate (R{sub 2}). An optimization parameter was introduced to quantify the change in the relative standard deviation of R{sub 2} ({sigma}{sub R2,rel}) taking the increase in MR time into account. A 9% methacrylic acid gel customized for radiosurgery was found to give a linear dose response up to 40 Gy with a slope of 0.94 Gy{sup -1} s{sup -1}, while a 6% methacrylic acid gel customized for IMRT had a linear range up to 3 Gy with a slope of 1.86 Gy{sup -1} s{sup -1}. With the help of an introduced optimization parameter, the mean {sigma}{sub R2,rel} was improved by 13% for high doses and by 55% for low doses, without increasing MR time to unacceptable values. A mean dose resolution of less than 0.13 Gy has been achieved with the gel and imaging parameters customized for IMRT and a dose resolution from 0.97 Gy (at 5 Gy) to 2.15 Gy (at 40 Gy) for the radiosurgery dose range. The comparisons of

  13. Introducing gel dosimetry in a clinical environment: customization of polymer gel composition and magnetic resonance imaging parameters used for 3D dose verifications in radiosurgery and intensity modulated radiotherapy.

    PubMed

    Crescenti, Remo A; Scheib, Stefan G; Schneider, Uwe; Gianolini, Stefano

    2007-04-01

    Radiation sensitive gels have been used as dosimeters for clinical dose verification of different radiation therapy modalities. However, the use of gels is not widespread, because careful techniques are required to achieve the dose precision and accuracy aimed for in clinical dose verification. Here, the introduction of gel dosimetry in a clinical environment is described, including the whole chain of customizations and preparations required to introduce magnetic resonance (MR) based gel dosimetry into clinical routine. In order to standardize gel dosimetry in dose verifications for radiosurgery and intensity modulated radiotherapy (IMRT), we focused on both the customization of the gel composition and of the MR imaging parameters to increase its precision. The relative amount of the components of the normoxic, methacrylic acid based gel (MAGIC) was changed to obtain linear and steep dose response relationships. MR imaging parameters were customized for the different dose ranges used in order to lower the relative standard deviation of the measured transversal relaxation rate (R2). An optimization parameter was introduced to quantify the change in the relative standard deviation of R2 (sigma(R2,rel)) taking the increase in MR time into account. A 9% methacrylic acid gel customized for radiosurgery was found to give a linear dose response up to 40 Gy with a slope of 0.94 Gy(-1) s(-1), while a 6% methacrylic acid gel customized for IMRT had a linear range up to 3 Gy with a slope of 1.86 Gy(-1) s(-1). With the help of an introduced optimization parameter, the mean sigma(R2,rel) was improved by 13% for high doses and by 55% for low doses, without increasing MR time to unacceptable values. A mean dose resolution of less than 0.13 Gy has been achieved with the gel and imaging parameters customized for IMRT and a dose resolution from 0.97 Gy (at 5 Gy) to 2.15 Gy (at 40 Gy) for the radiosurgery dose range. The comparisons of calculated and measured relative 3D dose

  14. Internal dosimetry of tritium

    SciTech Connect

    LaBone, T.R.

    1992-01-01

    Tritium is an interesting radionuclide from the perspective of internal dosimetry because of the wide variety of chemical compounds in which it can appear, its unusual routes of entry into the body, and its ability to exchange with stable hydrogen in surrounding material. In this report the internal dosimetry of tritium compounds is reviewed, with emphasis on methods of evaluating bioassay data following chronic and acute intakes. The assumptions and models used in the derivation of Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) for tritium are also discussed.

  15. Internal dosimetry of tritium

    SciTech Connect

    LaBone, T.R.

    1992-06-01

    Tritium is an interesting radionuclide from the perspective of internal dosimetry because of the wide variety of chemical compounds in which it can appear, its unusual routes of entry into the body, and its ability to exchange with stable hydrogen in surrounding material. In this report the internal dosimetry of tritium compounds is reviewed, with emphasis on methods of evaluating bioassay data following chronic and acute intakes. The assumptions and models used in the derivation of Annual Limits on Intake (ALI) and Derived Air Concentrations (DAC) for tritium are also discussed.

  16. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  17. Initial clinical experience with Epid-based in-vivo dosimetry for VMAT treatments of head-and-neck tumors.

    PubMed

    Cilla, Savino; Meluccio, Daniela; Fidanzio, Andrea; Azario, Luigi; Ianiro, Anna; Macchia, Gabriella; Digesù, Cinzia; Deodato, Francesco; Valentini, Vincenzo; Morganti, Alessio G; Piermattei, Angelo

    2016-01-01

    We evaluated an EPID-based in-vivo dosimetry algorithm (IVD) for complex VMAT treatments in clinical routine. 19 consecutive patients with head-and-neck tumors and treated with Elekta VMAT technique using Simultaneous Integrated Boost strategy were enrolled. In-vivo tests were evaluated by means of (i) ratio R between daily in-vivo isocenter dose and planned dose and (ii) γ-analysis between EPID integral portal images in terms of percentage of points with γ-value smaller than one (γ%) and mean γ-values (γmean), using a global 3%-3 mm criteria. Alert criteria of ±5% for R ratio, γ% < 90% and γmean > 0.67 were chosen. A total of 350 transit EPID images were acquired during the treatment fractions. The overall mean R ratio was equal to 1.002 ± 0.019 (1 SD), with 95.9% of tests within ±5%. The 2D portal images of γ-analysis showed an overall γmean of 0.42 ± 0.16 with 93.3% of tests within alert criteria, and a mean γ% equal to 92.9 ± 5.1% with 85.9% of tests within alert criteria. Relevant discrepancies were observed in three patients: a set-up error was detected for one patient and two patients showed major anatomical variations (weight loss/tumor shrinkage) in the second half of treatment. The results are supplied in quasi real-time, with IVD tests displayed after only 1 minute from the end of arc delivery. This procedure was able to detect when delivery was inconsistent with the original plans, allowing physics and medical staff to promptly act in case of major deviations between measured and planned dose. PMID:26511150

  18. The SmartGeo Portal: A retrospective

    NASA Astrophysics Data System (ADS)

    Heilmann, Zeno; Satta, Guido; Bonomi, Ernesto

    2016-04-01

    The SmartGeo portal was created in a follow-up project that evolved from the geophysical data imaging services of a Grid computing portal for Geoscience, called GRIDA3. The scope of the project was to support commercial geotechnical service providers as well as academic researchers working in near-surface geoscience. Starting from the existing services, the SmartGeo portal was set up on new hardware, using the latest version of the grid portal environment EnginFrame. After a first working version was established, the services were reviewed, updated and accompanied by new services according to the feedback we received from our partners. One partner for instance experienced large difficulties in a project that aimed at delineating the aquifer for finding water pollutant substances in an industrial area of Basel. The seismic imaging service inherited from the previous portal was employing a data-driven algorithm optimized to provide, directly during data acquisition, nearly in real-time a first image of the subsurface structure. Different to this, our user needed for his data from a geologically very complex and noisy urban environment the maximum lateral resolution and noise reduction possible. For this purpose we added two cutting edge data imaging algorithms able to deliver such high precision results by simultaneously optimizing, for every single image point, all parameters of the mathematical model---a procedure which increased the computational effort by one or two magnitudes, respectively. Thus, parallel computing on grid infrastructure served for maximizing the image resolution instead for generating real-time results. This proved also very useful for the data of an academic partner, recorded for imaging the structure of a shallow sedimentary basin, where we could obtain strongly improved seismic velocity information using these new algorithms. A general user request was to implement interactive data visualization tools. To fulfill this demand we took

  19. TU-C-BRE-11: 3D EPID-Based in Vivo Dosimetry: A Major Step Forward Towards Optimal Quality and Safety in Radiation Oncology Practice

    SciTech Connect

    Mijnheer, B; Mans, A; Olaciregui-Ruiz, I; Rozendaal, R; Spreeuw, H; Herk, M van

    2014-06-15

    Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is done offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.

  20. Portal to the Future

    NASA Astrophysics Data System (ADS)

    Gates, Evalyn

    2011-04-01

    Museums are a portal connecting us to a deeper understanding of the world in which we live, from our own backyards to the most distant galaxies; an access point to the incredible discoveries we have made about the natural world and a flashpoint for inspiring the next generation of explorers. The Cleveland Museum of Natural History is poised to redefine what a natural history museum can be, offering visitors an opportunity to travel through space and time to explore the origins of our planet, follow the evolution of life on Earth and project into -- and plan for -- the future. The Museum will launch visitors into the future this summer via SmartHome Cleveland -- an extremely energy-efficient "passive house" that will demonstrate the future of green building technology. This unique exhibit is part of a special series of exhibits, programs and workshops on sustainability, including a major exhibit on Climate Change, which will be featured at the Museum this summer and fall.

  1. Audits for advanced treatment dosimetry

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.; Thwaites, D. I.

    2015-01-01

    Radiation therapy has advanced rapidly over the last few decades, progressing from 3D conformal treatment to image-guided intensity modulated therapy of several different flavors, both 3D and 4D and to adaptive radiotherapy. The use of intensity modulation has increased the complexity of quality assurance and essentially eliminated the physicist's ability to judge the validity of a treatment plan, even approximately, on the basis of appearance and experience. Instead, complex QA devices and procedures are required at the institutional level. Similarly, the assessment of treatment quality through remote and on-site audits also requires greater sophistication. The introduction of 3D and 4D dosimetry into external audit systems must follow, to enable quality assurance systems to perform meaningful and thorough audits.

  2. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  3. Ion storage dosimetry

    NASA Astrophysics Data System (ADS)

    Mathur, V. K.

    2001-09-01

    The availability of a reliable, accurate and cost-effective real-time personnel dosimetry system is fascinating to radiation workers. Electronic dosimeters are contemplated to meet this demand of active dosimetry. The development of direct ion storage (DIS) dosimeters, a member of the electronic dosimeter family, for personnel dosimetry is also an attempt in this direction. DIS dosimeter is a hybrid of the well-established technology of ion chambers and the latest advances in data storage using metal oxide semiconductor field effect transistor (MOSFET) analog memory device. This dosimeter is capable of monitoring legal occupational radiation doses of gamma, X-rays, beta and neutron radiation. Similar to an ion chamber, the performance of the dosimeter for a particular application can be optimized through the selection of appropriate wall materials. The use of the floating gate of a MOSFET as one of the electrodes of the ion chamber allows the miniaturization of the device to the size of a dosimetry badge and avoids the use of power supplies during dose accumulation. The concept of the device, underlying physics and the design of the DIS dosimeter are discussed. The results of preliminary testing of the device are also provided.

  4. Portal hypertensive biliopathy: A single center experience and literature review.

    PubMed

    Suárez, Vanessa; Puerta, Andrés; Santos, Luisa Fernanda; Pérez, Juan Manuel; Varón, Adriana; Botero, Rafael Claudino

    2013-03-27

    Portal hypertensive biliopathy (PHB) is characterized by anatomical and functional abnormalities of the intrahepatic, extrahepatic and pancreatic ducts, in patients with portal hypertension associated to extrahepatic portal vein obstruction and less frequently to cirrhosis. These morphological changes, consisting in dilatation and stenosis of the biliary tree, are due to extensive venous collaterals occurring in an attempt to decompress the portal venous blockage. It is usually asymptomatic until it progresses to more advanced stages with cholestasis, jaundice, biliary sludge, gallstones, cholangitis and finally biliary cirrhosis. Imaging modalities of the biliary tree such as Doppler ultrasound, computed tomography, magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography are essential to establish the diagnosis and the need of therapeutical interventions. Once the diagnosis is established, treatment with ursodesoxycholic acid seems to be beneficial. Decompression of the biliary tree to dilate, remove stones or implant biliary prosthesis by endoscopic or surgical procedures (hepato-yeyunostomy) usually resolves the cholestatic picture and prevents septic complications. The ideal treatment is the decompression of the portal system, with transjugular intrahepatic porto-systemic shunt or a surgical porto-systemic shunt. Unfortunately, few patients will be candidates for these procedures due to the extension of the thrombotic process. The purpose of this paper is to report the first 3 cases of PHB seen in a Colombian center and to review the literature. PMID:23556047

  5. Comparison of Real-Time Intraoperative Ultrasound-Based Dosimetry With Postoperative Computed Tomography-Based Dosimetry for Prostate Brachytherapy

    SciTech Connect

    Nag, Subir; Shi Peipei; Liu Bingren; Gupta, Nilendu; Bahnson, Robert R.; Wang, Jian Z.

    2008-01-01

    Purpose: To evaluate whether real-time intraoperative ultrasound (US)-based dosimetry can replace conventional postoperative computed tomography (CT)-based dosimetry in prostate brachytherapy. Methods and Materials: Between December 2001 and November 2002, 82 patients underwent {sup 103}Pd prostate brachytherapy. An interplant treatment planning system was used for real-time intraoperative transrectal US-guided treatment planning. The dose distribution was updated according to the estimated seed position to obtain the dose-volume histograms. Postoperative CT-based dosimetry was performed a few hours later using the Theraplan-Plus treatment planning system. The dosimetric parameters obtained from the two imaging modalities were compared. Results: The results of this study revealed correlations between the US- and CT-based dosimetry. However, large variations were found in the implant-quality parameters of the two modalities, including the doses covering 100%, 90%, and 80% of the prostate volume and prostate volumes covered by 100%, 150%, and 200% of the prescription dose. The mean relative difference was 38% and 16% for doses covering 100% and 90% of the prostate volume and 10% and 21% for prostate volumes covered by 100% and 150% of the prescription dose, respectively. The CT-based volume covered by 200% of the prescription dose was about 30% greater than the US-based one. Compared with CT-based dosimetry, US-based dosimetry significantly underestimated the dose to normal organs, especially for the rectum. The average US-based maximal dose and volume covered by 100% of the prescription dose for the rectum was 72 Gy and 0.01 cm{sup 3}, respectively, much lower than the 159 Gy and 0.65 cm{sup 3} obtained using CT-based dosimetry. Conclusion: Although dosimetry using intraoperative US-based planning provides preliminary real-time information, it does not accurately reflect the postoperative CT-based dosimetry. Until studies have determined whether US-based dosimetry

  6. The Higgs portal above threshold

    NASA Astrophysics Data System (ADS)

    Craig, Nathaniel; Lou, Hou Keong; McCullough, Matthew; Thalapillil, Arun

    2016-02-01

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. We systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14 TeV LHC and a prospective 100 TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an off-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy in association with vector boson fusion, monojets, and top pairs. We forecast the sensitivity of searches in these channels at √{s}=14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.

  7. Web Portal for Multicast Delivery Management.

    ERIC Educational Resources Information Center

    Mannaert, H.; De Gruyter, B.; Adriaenssens, P.

    2003-01-01

    Presents a Web portal for multicast communication management, which provides fully automatic service management with integrated provisioning of hardware equipment. Describes the software architecture, the implementation, and the application usage of the Web portal for multicast delivery. (Author/AEF)

  8. In vivo dosimetry for IMRT

    SciTech Connect

    Vial, Philip

    2011-05-05

    In vivo dosimetry has a well established role in the quality assurance of 2D radiotherapy and 3D conformal radiotherapy. The role of in vivo dosimetry for IMRT is not as well established. IMRT introduces a range of technical issues that complicate in vivo dosimetry. The first decade or so of IMRT implementation has largely relied upon pre-treatment phantom based dose verification. During that time, several new devices and techniques for in vivo dosimetry have emerged with the promise of providing the ultimate form of IMRT dose verification. Solid state dosimeters continue to dominate the field of in vivo dosimetry in the IMRT era. In this report we review the literature on in vivo dosimetry for IMRT, with an emphasis on clinical evidence for different detector types. We describe the pros and cons of different detectors and techniques in the IMRT setting and the roles that they are likely to play in the future.

  9. 29 CFR 785.50 - Section 4 of the Portal-to-Portal Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Section 4 of the Portal-to-Portal Act. 785.50 Section 785.50 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR... Provisions § 785.50 Section 4 of the Portal-to-Portal Act. Section 4 of this Act provides that: (a) Except...

  10. 29 CFR 785.50 - Section 4 of the Portal-to-Portal Act.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Section 4 of the Portal-to-Portal Act. 785.50 Section 785.50 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR... Provisions § 785.50 Section 4 of the Portal-to-Portal Act. Section 4 of this Act provides that: (a) Except...

  11. 29 CFR 785.50 - Section 4 of the Portal-to-Portal Act.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Section 4 of the Portal-to-Portal Act. 785.50 Section 785.50 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR... Provisions § 785.50 Section 4 of the Portal-to-Portal Act. Section 4 of this Act provides that: (a) Except...

  12. 29 CFR 785.50 - Section 4 of the Portal-to-Portal Act.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Section 4 of the Portal-to-Portal Act. 785.50 Section 785.50 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR... Provisions § 785.50 Section 4 of the Portal-to-Portal Act. Section 4 of this Act provides that: (a) Except...

  13. 29 CFR 785.50 - Section 4 of the Portal-to-Portal Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Section 4 of the Portal-to-Portal Act. 785.50 Section 785.50 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR... Provisions § 785.50 Section 4 of the Portal-to-Portal Act. Section 4 of this Act provides that: (a) Except...

  14. ODISEES Data Portal Announcement

    Atmospheric Science Data Center

    2015-11-13

    ... larger image The Ontology-Driven Interactive Search Environment for Earth Science, developed at the Atmospheric Science Data Center ... The Ontology-Driven Interactive Search Environment for Earth Science, developed at the Atmospheric Science Data Center ...

  15. Unusual Tumors Causing Extrahepatic Portal Venous Obstruction

    PubMed Central

    Sharma, B. C.; Dhiman, R. K.; Ghoshal, U. C.; Puri, A. S.; Sikora, S. S.

    1996-01-01

    Extrahepatic portal vein obstruction has been reported to be associated with tumors of liver, bile ducts and pancreas. We report two cases, one with gastric leiomyosarcoma and another with Non Hodgkin’s lymphoma, complicated by portal vein block and presenting with gastric variceal bleeding. Portal vein block in both cases was due to direct vascular infiltration. Development of portal hypertension posed difficulties in management. PMID:8725458

  16. Electron Paramagnetic Resonance Retrospective Dosimetry

    SciTech Connect

    Romanyukha, Alex; Trompier, Francois

    2011-05-05

    Necessity for, principles of, and general concepts of the electron paramagnetic resonance (EPR) retrospective dosimetry are presented. Also presented and given in details are examples of EPR retrospective dosimetry applications in tooth enamel, bone, and fingernails with focus on general approaches for solving technical and methodological problems. Advantages, drawbacks, and possible future developments are discussed and an extensive bibliography on EPR retrospective dosimetry is provided.

  17. Hanford External Dosimetry Program

    SciTech Connect

    Fix, J.J.

    1990-10-01

    This document describes the Hanford External Dosimetry Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy (DOE) and its Hanford contractors. Program services include administrating the Hanford personnel dosimeter processing program and ensuring that the related dosimeter data accurately reflect occupational dose received by Hanford personnel or visitors. Specific chapters of this report deal with the following subjects: personnel dosimetry organizations at Hanford and the associated DOE and contractor exposure guidelines; types, characteristics, and procurement of personnel dosimeters used at Hanford; personnel dosimeter identification, acceptance testing, accountability, and exchange; dosimeter processing and data recording practices; standard sources, calibration factors, and calibration processes (including algorithms) used for calibrating Hanford personnel dosimeters; system operating parameters required for assurance of dosimeter processing quality control; special dose evaluation methods applied for individuals under abnormal circumstances (i.e., lost results, etc.); and methods for evaluating personnel doses from nuclear accidents. 1 ref., 14 figs., 5 tabs.

  18. Neutron beam measurement dosimetry

    SciTech Connect

    Amaro, C.R.

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  19. Prostate PDT dosimetry

    PubMed Central

    Zhu, Timothy C.; Finlay, Jarod C.

    2015-01-01

    Summary We provide a review of the current state of dosimetry in prostate photodynamic therapy (PDT). PDT of the human prostate has been performed with a number of different photosensitizers and with a variety of dosimetry schemes. The simplest clinical light dose prescription is to quantify the total light energy emitted per length (J/cm) of cylindrical diffusing fibers (CDF) for patients treated with a defined photosensitizer injection per body weight. However, this approach does not take into account the light scattering by tissue and usually underestimates the local light fluence rate, and consequently the fluence. Techniques have been developed to characterize tissue optical properties and light fluence rates in vivo using interstitial measurements during prostate PDT. Optical methods have been developed to characterize tissue absorption and scattering spectra, which in turn provide information about tissue oxygenation and drug concentration. Fluorescence techniques can be used to quantify drug concentrations and photobleaching rates of photosensitizers. PMID:25046988

  20. From EGEE Operations Portal towards EGI Operations Portal

    NASA Astrophysics Data System (ADS)

    Cordier, Hélène; L'Orphelin, Cyril; Reynaud, Sylvain; Lequeux, Olivier; Loikkanen, Sinikka; Veyre, Pierre

    Grid operators in EGEE have been using a dedicated dashboard as their central operational tool, stable and scalable for the last 5 years despite continuous upgrade from specifications by users, monitoring tools or data providers. In EGEE-III, recent regionalisation of operations led the Operations Portal developers to conceive a standalone instance of this tool. We will see how the dashboard reorganization paved the way for the re-engineering of the portal itself. The outcome is an easily deployable package customized with relevant information sources and specific decentralized operational requirements. This package is composed of a generic and scalable data access mechanism, Lavoisier; a renowned php framework for configuration flexibility, Symfony and a MySQL database. VO life cycle and operational information, EGEE broadcast and Downtime notifications are next for the major reorganization until all other key features of the Operations Portal are migrated to the framework. Features specifications will be sketched at the same time to adapt to EGI requirements and to upgrade. Future work on feature regionalisation, on new advanced features or strategy planning will be tracked in EGI- Inspire through the Operations Tools Advisory Group, OTAG, where all users, customers and third parties of the Operations Portal are represented from January 2010.

  1. Portal Monitor Future Development Work: Hardware Improvements

    SciTech Connect

    Browne, Michael C.

    2012-07-03

    LANL portal monitor was a modification of a previously installed (permanent) unattended monitoring system (UMS). Modifications to the UMS to make the portal were sometimes based on mistaken assumptions about exercise-specific installation and access. Philosophical approach to real-time portal differs in some areas from UMS.

  2. Cosmic Ray Dosimetry

    NASA Astrophysics Data System (ADS)

    Si Belkhir, F.; Attallah, R.

    2010-10-01

    Radiation levels at aircraft cruising altitudes are twenty times higher than at sea level. Thus, on average, a typical airline pilot receives a larger annual radiation dose than some one working in nuclear industry. The main source of this radiation is from galactic cosmic radiation, high energy particles generated by exploding stars within our own galaxy. In this work we study cosmic rays dosimetry at various aviation altitudes using the PARMA model.

  3. 29 CFR 790.5 - Effect of Portal-to-Portal Act on determination of hours worked.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Effect of Portal-to-Portal Act on determination of hours... GENERAL STATEMENT AS TO THE EFFECT OF THE PORTAL-TO-PORTAL ACT OF 1947 ON THE FAIR LABOR STANDARDS ACT OF... Effect of Portal-to-Portal Act on determination of hours worked. (a) In the application of the...

  4. 29 CFR 790.5 - Effect of Portal-to-Portal Act on determination of hours worked.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Effect of Portal-to-Portal Act on determination of hours... GENERAL STATEMENT AS TO THE EFFECT OF THE PORTAL-TO-PORTAL ACT OF 1947 ON THE FAIR LABOR STANDARDS ACT OF... Effect of Portal-to-Portal Act on determination of hours worked. (a) In the application of the...

  5. 29 CFR 790.5 - Effect of Portal-to-Portal Act on determination of hours worked.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Effect of Portal-to-Portal Act on determination of hours... GENERAL STATEMENT AS TO THE EFFECT OF THE PORTAL-TO-PORTAL ACT OF 1947 ON THE FAIR LABOR STANDARDS ACT OF... Effect of Portal-to-Portal Act on determination of hours worked. (a) In the application of the...

  6. 29 CFR 790.5 - Effect of Portal-to-Portal Act on determination of hours worked.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Effect of Portal-to-Portal Act on determination of hours... GENERAL STATEMENT AS TO THE EFFECT OF THE PORTAL-TO-PORTAL ACT OF 1947 ON THE FAIR LABOR STANDARDS ACT OF... Effect of Portal-to-Portal Act on determination of hours worked. (a) In the application of the...

  7. Development of a fast Monte Carlo code for dose calculation in treatment planning and feasibility study of high contrast portal imaging

    NASA Astrophysics Data System (ADS)

    Jabbari, Keivan

    general purpose MCNPX code. The proton energy range was 20, 40, ...100, 110, ...200 MeV with ECUT=200 keV. Protons produce many different secondary particles such as neutrons, deuterons, tritons, alphas, secondary protons, etc and they are handled in three categories: (1) Secondary protons: treated like a primary protons and transported using a track picked up from pre-calculated tracks; (2) Neutrons: The energy of the neutron are deposited far from the initial point and neglected. (3) All other secondaries: Since other secondaries have a very short range their energy is deposited locally. In comparison of the code with MCNPX as the reference the difference is generally between 2-4% and it runs 100 times faster than MCNPX. Pre-calculated Monte Carlo codes are accurate, fast and physics-independent and therefore applicable to different radiation types including heavy-charged particles. In another project, we worked on Monte Carlo feasibility study to use orthogonal bremsstrahlung beams for imaging in radiation therapy. The basic characteristics of orthogonal bremsstrahlung beams are studied and the feasibility of improved contrast imaging in linear accelerator with such a beam is evaluated. In the context of this work orthogonal bremsstrahlung beams represent the component of the bremsstrahlung distribution perpendicular to the electron beam impinging on an accelerator target. In this set up the bending magnet of the linac is turned off and the primary electron beam directly hits a target from the side and the orthogonal beam in downward direction is used for imaging purposes. Monte Carlo modeling (BEAM code) is used to design the shape of different targets and to obtain the energy spectrum and the relative intensity of the orthogonal beams. After optimizing the shape of the target, two different target and a collimator was designed and built. The CLINAC 18 in Montreal General Hospital was used for the experiments. The simple lucite objects one of which with 1 cm steps was

  8. 29 CFR 785.34 - Effect of section 4 of the Portal-to-Portal Act.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Effect of section 4 of the Portal-to-Portal Act. 785.34... of Principles Traveltime § 785.34 Effect of section 4 of the Portal-to-Portal Act. The Portal Act... it. (See Tennessee Coal, Iron & RR. Co. v. Musecoda Local, 321 U.S. 590 (1946); Anderson v....

  9. 29 CFR 785.34 - Effect of section 4 of the Portal-to-Portal Act.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Effect of section 4 of the Portal-to-Portal Act. 785.34... of Principles Traveltime § 785.34 Effect of section 4 of the Portal-to-Portal Act. The Portal Act... even if the employer agrees to pay for it. (See Tennessee Coal, Iron & RR. Co. v. Musecoda Local, 321...

  10. [Clinical study of radioisotopic splenoportography in portal hypertension].

    PubMed

    Yokoyama, Y

    1990-02-01

    Radioisotopic splenoportography was performed in 55 patients with portal hypertension, in whom 52 had various degrees of esophagogastric varices, and in 20 patients without portal hypertension. In the patients with varices, collateral images were obtained in 50 patients (96%) by this method and no image was obtained in the patients without varices. The rate of positively imaged collaterals was as follows: Esophageal varices 69%, the left gastric vein 85%, the short gastric veins 48%, RI stasis in esophagogastric region 65%, the azygos vein 46%, the subclavian vein 25%, the para-umbilical veins 46%, splenorenal /gastrorenal shunts 19%, the inferior mesenteric vein 17%, the left intercostal veins 6%, and Arantius's duct 4%. These rates were superior to that obtained from the conventional transarterial portography. There were some correlations between RI-images by this method and clinical and laboratory findings; patients with ascending collaterals alone tended to have extensive and severe varices and higher rate of bleeding, on the other hand, variceal bleeding was not found and episodes of portosystemic encephalopathy frequently occurred in patients with descending collaterals alone. After successful sclerotherapy, RI-images of esophageal varices disappeared in 92% of the patients. Radioisotopic splenoportography appears to be a useful diagnostic and follow-up modality for patients with portal hypertension and esophagogastric varices. PMID:2325608

  11. Dose calibration of EPIDs for segmented IMRT dosimetry.

    PubMed

    Deshpande, Shrikant; Xing, Aitang; Holloway, Lois; Metcalfe, Peter; Vial, Philip

    2014-01-01

    The purpose of this study was to investigate the dose response of amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) under different acquisi- tion settings for both open jaw defined fields and segmented intensity-modulated radiation therapy (IMRT) fields. Four different EPIDs were used. Two Siemens and one Elekta plus a standalone Perkin Elmer research EPID. Each was operated with different acquisition systems and settings. Dose response linearity was measured for open static jaw defined fields and 'simple' segmented IMRT fields for a range of equipment and system settings. Six 'simple' segmented IMRT fields were used. The segments of each IMRT field were fixed at 10 × 10 cm2 field size with equal MU per segment, each field having a total of 20 MU. Simultaneous measurements with an ionization chamber array (ICA) and EPID were performed to separate beam and detector response characteristics. Three different pixel calibration meth- ods were demonstrated and compared for an example 'clinical IMRT field'. The dose response with the Elekta EPID for 'simple' segmented IMRT fields versus static fields agreed to within 2.5% for monitor unit (MU) ≥ 2. The dose response for the Siemens systems was difficult to interpret due to the poor reproducibility for segmented delivery, at MU ≤ 5, which was not observed with the standalone research EPID nor ICA on the same machine. The dose response measured under different acquisition settings and different linac/EPID combinations matched closely (≤ 1%), except for the Siemens EPID. Clinical IMRT EPID dosimetry implemented with the different pixel-to-dose calibration methods indicated that calibration at 20 MU provides equivalent results to implementing a ghosting correction model. The nonlinear dose response was consistent across both clinical EPIDs and the standalone research EPID, with the exception of the poor reproducibility seen with Siemens EPID images of IMRT fields. The nonlinear dose response was

  12. Reduction of the effect of non-uniform backscatter from an E-type support arm of a Varian a-Si EPID used for dosimetry

    NASA Astrophysics Data System (ADS)

    Rowshanfarzad, Pejman; Sabet, Mahsheed; O'Connor, Daryl J.; Greer, Peter B.

    2010-11-01

    Backscatter from the metallic components in the support arm is one of the sources of inaccuracy in dosimetry with Varian amorphous silicon electronic portal imaging devices (a-Si EPIDs). In this study, the non-uniform arm backscatter is blocked by adding lead sheets between the EPID and an E-type support arm. By comparing the EPID responses on and off the arm, with and without lead and considering the extra weight on the imager, 2 mm of lead was determined as the optimum thickness for both 6 and 18 MV beam energies. The arm backscatter at the central axis with the 2 mm lead in place decreased to 0.1% and 0.2% for the largest field size of 30 × 30 cm2 using 6 and 18 MV beams, from 2.3% and 1.3% without lead. Changes in the source-to-detector distance (SDD) did not affect the backscatter component more than 1%. The symmetry of the in-plane profiles improved for all field sizes for both beam energies. The addition of lead decreased the contrast-to-noise ratio and resolution by 1.3% and 0.84% for images taken in 6 MV and by 0.5% and 0.38% for those in 18 MV beams. The displacement of the EPID central pixel was measured during a 360° gantry rotation with and without lead which was 1 pixel different. While the backscatter reduces with increasing lead thickness, a 2 mm lead sheet seems sufficient for acceptable dosimetry results without any major degradation to the routine performance of the imager. No increase in patient skin dose was detected.

  13. Portosystemic shunting in portal hypertension: evaluation with portal scintigraphy with transrectally administered I-123 IMP

    SciTech Connect

    Kashiwagi, T.; Azuma, M.; Ikawa, T.; Takehara, T.; Matsuda, H.; Yoshioka, H.; Mitsutani, N.; Koizumi, T.; Kimura, K.

    1988-10-01

    Portosystemic shunting was evaluated with rectal administration of iodine-123 iodoamphetamine (IMP) in seven patients without liver disease and 53 patients with liver cirrhosis. IMP (2-3 mCi (74-111 MBq)) was administered to the rectum through a catheter. Images of the chest and abdomen were obtained for up to 60 minutes with a scintillation camera interfaced with a computer. In all patients, images of the liver and/or lungs were observed within 5-10 minutes and became clear with time. In patients without liver disease, only liver images could be obtained, whereas the lung was visualized with or without the liver in all patients with liver cirrhosis. The portosystemic shunt index was calculated by dividing counts of lungs by counts of liver and lung. These values were significantly higher in liver cirrhosis, especially in the decompensated stage. Transrectal portal scintigraphy with IMP appears to be a useful method for noninvasive and quantitative evaluation of portosystemic shunting in portal hypertension.

  14. SU-E-T-291: Sensitivity of a Simple 2D EPID in Vivo Dosimetry

    SciTech Connect

    Peca, S; Brown, D

    2014-06-01

    Purpose: As radiotherapy (RT) increases in complexity, so does motivation for in vivo dosimetry (IVD), which may detect errors such as: setup, beam shaping and dose delivered. We have recently developed an easy-toimplement method for two-dimensional IVD based on images taken with the electronic portal imaging device (EPID) in cine mode during treatment. The purpose of this work is to characterize its sensitivity to possible RT delivery errors. Methods: We introduced a series of modifications to a simple RT field (10×10, 100MU, 300RR, 20cm homogeneous phantom) to simulate errors. These modifications included multi-leaf collimator (MLC) position, number of MUs, and collimator angle. We quantified the sensitivity to inhomogeneities by inserting variable amounts of solid lung and bone. Finally we delivered realistic fields to an anthropomorphic phantom to estimate sensitivity to gantry angle and setup errors. Results: Our EPIDIVD is sensitive to MLC positioning errors of 1mm and 3mm in the closed and open directions respectively, and to 3% MU variations. Sensitivity to collimator angle depends on field shape irregularity; in the case of a 10x10 field, we are sensitive to errors of 0.8°. The sensitivity to inhomogeneities is limited by the nature of MV imaging: approximately 1% signal change is noted when switching 5cm of water to equal amounts of bone or lung. This suggests that the EPID-IVD is likely not sensitive to small setup or gantry angle errors, as confirmed by anthropomorphic tests. Conclusion: We have characterized a simple method of 2D dose reconstruction at isocenter depth inside the patient, which is sensitive to possible RT delivery errors. This method may be useful as a secondary safety check, to prevent large errors from being carried on to following fractions, and to record delivered dose. By using readily available hardware, it is easily implemented and may prove especially useful in centers with limited resources.

  15. The new IAGOS Database Portal

    NASA Astrophysics Data System (ADS)

    Boulanger, Damien; Gautron, Benoit; Thouret, Valérie; Fontaine, Alain

    2016-04-01

    IAGOS (In-service Aircraft for a Global Observing System) is a European Research Infrastructure which aims at the provision of long-term, regular and spatially resolved in situ observations of the atmospheric composition. IAGOS observation systems are deployed on a fleet of commercial aircraft. The IAGOS database is an essential part of the global atmospheric monitoring network. It contains IAGOS-core data and IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) data. The IAGOS Database Portal (http://www.iagos.fr, damien.boulanger@obs-mip.fr) is part of the French atmospheric chemistry data center AERIS (http://www.aeris-data.fr). The new IAGOS Database Portal has been released in December 2015. The main improvement is the interoperability implementation with international portals or other databases in order to improve IAGOS data discovery. In the frame of the IGAS project (IAGOS for the Copernicus Atmospheric Service), a data network has been setup. It is composed of three data centers: the IAGOS database in Toulouse; the HALO research aircraft database at DLR (https://halo-db.pa.op.dlr.de); and the CAMS data center in Jülich (http://join.iek.fz-juelich.de). The CAMS (Copernicus Atmospheric Monitoring Service) project is a prominent user of the IGAS data network. The new portal provides improved and new services such as the download in NetCDF or NASA Ames formats, plotting tools (maps, time series, vertical profiles, etc.) and user management. Added value products are available on the portal: back trajectories, origin of air masses, co-location with satellite data, etc. The link with the CAMS data center, through JOIN (Jülich OWS Interface), allows to combine model outputs with IAGOS data for inter-comparison. Finally IAGOS metadata has been standardized (ISO 19115) and now provides complete information about data traceability and quality.

  16. Developing Interoperable Air Quality Community Portals

    NASA Astrophysics Data System (ADS)

    Falke, S. R.; Husar, R. B.; Yang, C. P.; Robinson, E. M.; Fialkowski, W. E.

    2009-04-01

    Web portals are intended to provide consolidated discovery, filtering and aggregation of content from multiple, distributed web sources targeted at particular user communities. This paper presents a standards-based information architectural approach to developing portals aimed at air quality community collaboration in data access and analysis. An important characteristic of the approach is to advance beyond the present stand-alone design of most portals to achieve interoperability with other portals and information sources. We show how using metadata standards, web services, RSS feeds and other Web 2.0 technologies, such as Yahoo! Pipes and del.icio.us, helps increase interoperability among portals. The approach is illustrated within the context of the GEOSS Architecture Implementation Pilot where an air quality community portal is being developed to provide a user interface between the portals and clearinghouse of the GEOSS Common Infrastructure and the air quality community catalog of metadata and data services.

  17. Portal biliopathy treated with endoscopic biliary stenting

    PubMed Central

    Jeon, Sung Jin; Min, Jae Ki; Kwon, So Young; Kim, Jun Hyun; Moon, Sun Young; Lee, Kang Hoon; Kim, Jeong Han; Choe, Won Hyeok; Cheon, Young Koog; Kim, Tae Hyung; Park, Hee Sun

    2016-01-01

    Portal biliopathy is defined as abnormalities in the extra- and intrahepatic ducts and gallbladder of patients with portal hypertension. This condition is associated with extrahepatic venous obstruction and dilatation of the venous plexus of the common bile duct, resulting in mural irregularities and compression of the biliary tree. Most patients with portal biliopathy remain asymptomatic, but approximately 10% of them advance to symptomatic abdominal pain, jaundice, and fever. Magnetic resonance cholangiopancreatography and endoscopic retrograde cholangiopancreatography are currently used as diagnostic tools because they are noninvasive and can be used to assess the regularity, length, and degree of bile duct narrowing. Management of portal biliopathy is aimed at biliary decompression and reducing the portal pressure. Portal biliopathy has rarely been reported in Korea. We present a symptomatic case of portal biliopathy that was complicated by cholangitis and successfully treated with biliary endoscopic procedures. PMID:27044769

  18. Image-Guided Stereotactic Spine Radiosurgery on a Conventional Linear Accelerator

    SciTech Connect

    Wang Jiazhu Rice, Roger; Mundt, Arno; Sandhu, Ajay; Murphy, Kevin

    2010-04-01

    Stereotactic radiosurgery for spinal metastasis consists of a high radiation dose delivered to the tumor in 1 to 5 fractions. Due to the high radiation dose in a single or fewer treatments, the precision of tumor localization and dose delivery is of great concern. Many groups have published their experiences of spinal radiosurgery with the use of CyberKnife System (Accuray Inc.). In this study, we report in detail our approach to stereotactic spine radiosurgery (SSRS) using a conventional linear accelerator (Varian Trilogy), utilizing the features of kilovolt on-board imaging (kV-OBI) and cone beam computed tomography (CBCT) for image guidance. We present our experience in various aspects of the SSRS procedure, including patient simulation and immobilization, intensity-modulated radiation treatment (IMRT) planning and beam selection, portal dosimetry for patient planning quality assurance (QA), and the use of image guidance in tumor localization prior to and during treatment delivery.

  19. The International Reactor Dosimetry File.

    Energy Science and Technology Software Center (ESTSC)

    1994-01-19

    Version 01 The International Reactor Dosimetry File (IRDF-90) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation. It also contains selected recommended values for radiation damage cross-sections and benchmark neutron spectra. This library supersedes all earlier versions of IRDF.

  20. Dual Panal Planar Portal

    Energy Science and Technology Software Center (ESTSC)

    2000-12-01

    The D3P system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The complete vision of the D3P system is to have two array systems facing each other. Version 2.3 of the software is designed to control and process data from a single panel. A second panel is expected to be added at a future date and the software will be modified atmore » that time to integrate the images from two panels at one time. The D3P software can be segmented into three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver-array to send data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 1 to 2 seconds. At the completion of the array movement the second software task reconstructs the high-resolution image from the radar data utilizing the integrated DSP board. The third task displays the result to the computer screen for user review and analysis.« less

  1. Dual Panal Planar Portal

    SciTech Connect

    Hall, Thomas E.

    2000-12-01

    The D3P system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The complete vision of the D3P system is to have two array systems facing each other. Version 2.3 of the software is designed to control and process data from a single panel. A second panel is expected to be added at a future date and the software will be modified at that time to integrate the images from two panels at one time. The D3P software can be segmented into three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver-array to send data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 1 to 2 seconds. At the completion of the array movement the second software task reconstructs the high-resolution image from the radar data utilizing the integrated DSP board. The third task displays the result to the computer screen for user review and analysis.

  2. Portal hypertension in kala-azar

    PubMed Central

    Datta, D. V.; Saha, S.; Grover, S. L.; Singh, Samant A.; Chakravarti, R. N.; Chhuttani, P. N.

    1972-01-01

    The present study records haemodynamic studies in three patients with kala-azar, a parasitic disease. All the three patients had high intrasplenic pressure, mild to moderate elevation of wedged hepatic vein pressure, and increased or normal estimated hepatic blood flow. Liver histology showed marked proliferation and swelling of Kupffer cells in the sinusoids. One patient was studied serially for nine months following treatment which showed persistent elevation of intrasplenic pressure though wedge pressure and liver blood flow touched normal levels. Liver biopsy was essentially normal at this stage. These findings may have some relevance to the role of different parasitic infections in the pathogenesis of a heterogeneous group of non-cirrhotic portal fibroses. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 6 PMID:5045707

  3. 1. West portal of the mudshed abutting the west portal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West portal of the mudshed abutting the west portal of Tunnel 5, view to the northwest, 135mm lens. The flat-roofed reinforced concrete mudsheds, rocksheds, and snowsheds are a common feature of the Natron Cutoff over the summit of the Cascades. With the railroad located on a sidehill bench cut into the precipitous slopes, the sheds protect the track from rock and mud slides, as well as from avalanches. With a solid wall on the uphill side and a series of columns on the downhill side, they form a gallery-like effect from within. This mudshed was built concurrent with the tunnel, in 1927. Though none of the mudsheds on the line are scheduled to be modified, this shed was documented as an integral element of Tunnel 5. - Southern Pacific Railroad Natron Cutoff, Tunnel 5, Milepost 545.2, McCredie Springs, Lane County, OR

  4. The Cosmos Portal and the IYA2009 Project

    NASA Astrophysics Data System (ADS)

    Haisch, Bernard M.; Sims, M.; Lindblom, J.

    2009-05-01

    In 2007 the non-profit Digital Universe Foundation (DUF) launched the Earth Portal (earthportal.org) as a comprehensive resource for timely, objective, science-based information about the environment. There are currently over 1000 scholars from 60 countries engaged in this rapidly growing web-based collaboration. The Cosmos Portal is the second major DUF initiative (cosmosportal.org). In support of the IYA2009 effort, the Cosmos Portal is recruiting astronomy professionals to make use of easy online tools to publish articles, blogs, news items, image galleries, class notes, lectures, powerpoint presentations, links to other high quality websites or other educational material. A major difference between the Digital Universe and Wikipedia is that educational material is produced by identified experts, not anonymous contributors with unknown qualifications. The Digital Universe is a 501(c)(3) public charity whose goal is to evolve into a worldwide online community (a social network) whose centerpiece is an ever growing Asimov-Sagan Encyclopedia Galactica created by experts. We encourage you to write an encylopedia article or start a portal on your favorite topic or join an existing topic as an expert contributor.

  5. Evaluation of an a-Si EPID in direct detection configuration as a water-equivalent dosimeter for transit dosimetry

    SciTech Connect

    Sabet, Mahsheed; Menk, Frederick W.; Greer, Peter B.

    2010-04-15

    Purpose: A major problem associated with amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) for transit dosimetry is the presence of a phosphor layer, which can introduce large deviations from water-equivalent behavior due to energy-dependent response and visible light scattering. In this study, an amorphous silicon EPID was modified to a direct detection configuration by removing the phosphor layer, and the accuracy of using it for transit dosimetry measurements was investigated for 6 and 18 MV treatment beams by comparison to ion-chamber in water measurements. Methods: Solid water and copper were both evaluated as buildup materials. Using the optimum buildup thickness in each case, effects of changes in radiation field size, source to detector distance, and patient/phantom thickness were investigated by comparison to reference measurements made by an ionization chamber on the central axis. The off-axis response of the imager was also investigated by comparison of EPID image profiles to dose profiles obtained by a scanning ionization chamber in a water tank with various thicknesses of slab phantoms, and an anthropomorphic phantom in the beam using Gamma evaluation (3%, 3 mm criteria). The imaging characteristics of the direct EPID were investigated by comparison to a commercial EPID using QC3V phantom, and by taking images of an anthropomorphic pelvic phantom containing fiducial gold markers. Results: Either 30 mm of solid water or 3.3 mm of copper were found to be the most suitable buildup thicknesses with solid water providing more accurate results. Using solid water buildup, the EPID response compared to the reference dosimeter within 2% for all conditions except phantom thicknesses larger than 25 cm in 6 MV beams, which was up to 6.5%. Gamma evaluation results comparing EPID profiles and reference ionization chamber profiles showed that for 6 and 18 MV beams, at least 91.8% and 90.9% of points had a Gamma<1 for all phantoms, respectively. But

  6. Radiation dosimetry for images/0031-9155/41/10/006/img1.gif"/> therapy of neuroblastoma

    NASA Astrophysics Data System (ADS)

    Flower, Maggie A.; Fielding, Sue L.

    1996-10-01

    This paper describes the methodology which can be used to determine whole-body, red marrow, blood, bladder, liver, and tumour doses delivered during images/0031-9155/41/10/006/img6.gif" ALIGN="TOP"/> therapy of neuroblastoma. The methodology is based on the Physics Protocol used in a multi-centre study undertaken by the United Kingdom Children's Cancer Study Group (UKCCSG). In this study, the estimates of the doses delivered, using 2.4 - 12.1 GBq images/0031-9155/41/10/006/img6.gif" ALIGN="TOP"/>, were in the following ranges: whole body, images/0031-9155/41/10/006/img8.gif" ALIGN="TOP"/>; red marrow, images/0031-9155/41/10/006/img9.gif" ALIGN="TOP"/>; blood, images/0031-9155/41/10/006/img10.gif" ALIGN="TOP"/>; bladder, images/0031-9155/41/10/006/img11.gif" ALIGN="TOP"/>; liver, images/0031-9155/41/10/006/img12.gif" ALIGN="TOP"/>; and tumour, images/0031-9155/41/10/006/img13.gif" ALIGN="TOP"/>.

  7. Heavy-ion dosimetry

    SciTech Connect

    Schimmerling, W.

    1980-03-01

    This lecture deals with some of the more important physical characteristics of relativistic heavy ions and their measurement, with beam delivery and beam monitoring, and with conventional radiation dosimetry as used in the operation of the BEVALAC biomedical facility for high energy heavy ions (Lyman and Howard, 1977; BEVALAC, 1977). Even so, many fundamental aspects of the interaction of relativistic heavy ions with matter, including important atomic physics and radiation chemical considerations, are not discussed beyond the reminder that such additional understanding is required before an adequte perspective of the problem can be attained.

  8. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  9. Fast neutron dosimetry

    SciTech Connect

    DeLuca, P.M. Jr.; Pearson, D.W.

    1992-01-01

    This progress report concentrates on two major areas of dosimetry research: measurement of fast neutron kerma factors for several elements for monochromatic and white spectrum neutron fields and determination of the response of thermoluminescent phosphors to various ultra-soft X-ray energies and beta-rays. Dr. Zhixin Zhou from the Shanghai Institute of Radiation Medicine, People's Republic of China brought with him special expertise in the fabrication and use of ultra-thin TLD materials. Such materials are not available in the USA. The rather unique properties of these materials were investigated during this grant period.

  10. Uranium Dispersion & Dosimetry Model.

    Energy Science and Technology Software Center (ESTSC)

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for applicationmore » to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.« less

  11. Vertical flow chemical detection portal

    DOEpatents

    Linker, Kevin L.; Hannum, David W.; Conrad, Frank James

    1999-01-01

    A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.

  12. Vertical flow chemical detection portal

    DOEpatents

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  13. The Portal to the Universe an IYA2009 Cornerstone Project

    NASA Astrophysics Data System (ADS)

    Lindberg Christensen, Lars; Gay, P.; IYA2009 TPTTU Cornerstone Task Group

    2008-05-01

    The science of astronomy is extremely fast moving, and delivers new results on a daily basis, often in the form of spectacular news, images of forms and shapes not seen anywhere else, enhanced by illustrations and animations. Public astronomy communication has to develop apace with the other players in the mass market for electronic information such as the gaming and entertainment industries. The problem today is not so much the availability of excellent astronomy multimedia resources for use in education, outreach and the like, but rather finding and accessing these materials. The Portal to the Universe (TPTTU) seeks to fix this problem. The Portal to the Universe (TPTTU) is an IYA2009 Cornerstone project that will feature a comprehensive directory of observatories, facilities, astronomical societies, amateur astronomy societies, space artists, science communication universities, as well as news-, image-, event- and video- aggregators and Web 2.0 collaborative tools for astronomy multimedia community interaction. The Portal will enable innovative access to, and vastly multiply the use of, astronomy multimedia resources - including news, images, videos, events, podcasts, vodcasts etc. as a selective aggregator with a non-painful editorial mechanism in place. This talk will discuss the plans for the TPTTU content as well as the technology and editorial choices behind the scenes.

  14. Endoscopic Management of Portal Hypertension

    PubMed Central

    Al-Busafi, Said A.; Ghali, Peter; Wong, Philip; Deschenes, Marc

    2012-01-01

    Cirrhosis is the leading cause of portal hypertension worldwide, with the development of bleeding gastroesophageal varices being one of the most life-threatening consequences. Endoscopy plays an indispensible role in the diagnosis, staging, and prophylactic or active management of varices. With the expected future refinements in endoscopic technology, capsule endoscopy may one day replace traditional gastroscopy as a diagnostic modality, whereas endoscopic ultrasound may more precisely guide interventional therapy for gastric varices. PMID:22830037

  15. Liquid radiochromic dosimetry

    NASA Astrophysics Data System (ADS)

    Rativanich, N.; Radak, B. B.; Miller, A.; Uribe, R. M.; McLaughlin, W. L.

    By strategic combination of weak acid, mild oxidizing agent, and polar organic solvents containing millimolar concentrations of leucocyanides of certain triphenylmethane dyes, fairly broad ranges of absorbed doses of ionizing radiation can be determined. The yield of dye ions as determined by spectrophotometry can be made essentially constant with dose (i.e. linear response) from 0.01 to 30 kGy and it does not vary with dose rate upto 10 11 Gy·s -1. The radiation-induced color is stable and offers fast-retrieval dosimetry if N-vinyl-2-pyrrolidone is used as solvent. Other possible polar solvents are 2-propanol, 2-methoxy ethanol, N, N-dimethyl formamide, dimethyl sulfoxide, and triethyl phosphate. Dimethyl sulfoxide is found to give the widest and most linear response. Suitable dye precursors are leucocyanides of pararosaniline, new fuchsin, hexa (hydroxyethyl) pararosaniline, crystal violet, malachite green, setoglaucine, ethyl violet, helvetia green, basic violet-14, and formyl violet. Low concentrations of carboxylic acids contribute stability to the system. Typical mild oxidizing agents are nitrobenzene, and atmospheric oxygen, or oxygen released radiolytically from the solvents. The dosimetry systems do not require high-purity of ingredients or ultracleanliness of containers, although, for reproducibility of dye yields (G-values), thoroughly purified and uniform dye derivates are recommended.

  16. A High Circulating Tumor Cell Count in Portal Vein Predicts Liver Metastasis From Periampullary or Pancreatic Cancer: A High Portal Venous CTC Count Predicts Liver Metastases.

    PubMed

    Tien, Yu Wen; Kuo, Hsun-Chuan; Ho, Be-Ing; Chang, Ming-Chu; Chang, Yu-Ting; Cheng, Mei-Fang; Chen, Huai-Lu; Liang, Ting-Yung; Wang, Chien-Fang; Huang, Chia-Yi; Shew, Jin-Yuh; Chang, Ying Chih; Lee, Eva Y H P; Lee, Wen-Hwa

    2016-04-01

    Circulating tumor cells (CTCs) released from a periampullary or pancreatic cancer can be more frequently detected in the portal than the systemic circulation and potentially can be used to identify patients with liver micrometastases. Aims of this study is to determine if CTCs count in portal venous blood of patients with nonmetastatic periampullary or pancreatic adenocarcinoma can be used as a predictor for subsequent liver metastases. CTCs were quantified in portal and peripheral venous blood samples collected simultaneously during pancreaticoduodenectomy in patients with presumed periampullary or pancreatic adenocarcinoma without image-discernible metastasis. Postoperatively patients were monitored for liver metastasis by abdominal magnetic resonance imaging or computed tomography every 3 months for 1 year. Sixty patients with a pathological diagnosis of periampullary or pancreatic adenocarcinoma were included in the study. Multivariate analysis indicated that portal CTC count was a significant predictor for liver metastases within 6 months after surgery. Eleven of 13 patients with a high portal CTCs count (defined as >112 CMx Platform estimated CTCs in 2 mL blood) developed liver metastases within 6 months after surgery. In contrast, only 6 of 47 patients with a low portal CTC count developed liver metastases (P < 0.0001). A value of 112 CMx Platform estimated CTCs had 64.7% sensitivity and 95.4% specificity to predict liver metastases within 6 months after surgery. We concluded that a high CTC count in portal venous blood collected during pancreaticoduodenectomy in patients with periampullary or pancreatic adenocarcinoma without metastases detected by currently available imaging tools is a significant predictor for liver metastases within 6 months after surgery. PMID:27100430

  17. SU-E-T-294: Simulations to Investigate the Feasibility of ‘dry’ Optical-CT Imaging for 3D Dosimetry

    SciTech Connect

    Chisholm, K; Rankine, L; Oldham, M

    2014-06-01

    Purpose: To perform simulations investigating the feasibility of “dry” optical-CT, and determine optimal design and scanning parameters for a novel dry tank telecentric optical-CT 3D dosimetry system. Such a system would have important advantages in terms of practical convenience and reduced cost. Methods: A Matlab based ray-tracing simulation platform, ScanSim, was used to model a telecentric system with a polyurethane dry tank, cylindrical dosimeter, and surrounding fluid. This program's capabilities were expanded for the geometry and physics of dry scanning. To categorize the effects of refractive index (RI) mismatches, simulations were run for several dosimeter (RI = 1.5−1.48) and fluid (RI = 1.55−1.33) combinations. Additional simulations examined the effect of increasing gap size (1–5mm) between the dosimeter and tank wall, and of changing the telecentric lens tolerance (0.5°−5°). The evaluation metric is the usable radius; the distance from the dosimeter center where the measured and true doses differ by less than 2%. Results: As the tank/dosimeter RI mismatch increases from 0–0.02, the usable radius decreases from 97.6% to 50.2%. The fluid RI for matching is lower than either the tank or dosimeter RI. Changing gap sizes has drastic effects on the usable radius, requiring more closely matched fluid at large gap sizes. Increasing the telecentric tolerance through a range from 0.5°–5.0° improved the usable radius for every combination of media. Conclusion: Dry optical-CT with telecentric lenses is feasible when the dosimeter and tank RIs are closely matched (<0.01 difference), or when data in the periphery is not required. The ScanSim tool proved very useful in situations when the tank and dosimeter have slight differences in RI by enabling estimation of the optimal choice of RI of the small amount of fluid still required. Some spoiling of the telecentric beam and increasing the tolerance helps recover the usable radius.

  18. Two-portal dark matter

    NASA Astrophysics Data System (ADS)

    Ghorbani, Karim; Ghorbani, Hossein

    2015-06-01

    We propose a renormalizable dark matter model in which a fermionic dark matter (DM) candidate communicates with the standard model particles through two distinct portals: Higgs and vector portals. The dark sector is charged under a U (1 )' gauge symmetry while the standard model has a leptophobic interaction with the dark vector boson. The leading contribution of the DM-nucleon elastic scattering cross section begins at one-loop level. The model meets all the constraints imposed by direct detection experiments provided by LUX and XENON100, observed relic abundance according to WMAP and Planck, and the invisible Higgs decay width measured at the LHC. It turns out that the dark matter mass in the viable parameter space can take values from a few GeV up to 1 TeV. This is a new feature which is absent in the models with only one portal. In addition, we can find in the constrained regions of the parameter space a DM mass of ˜34 GeV annihilating into b quark pair, which explains the Fermi-LAT gamma-ray excess.

  19. Z-portal dark matter

    SciTech Connect

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois

    2015-03-11

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ}≳200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio that respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV. The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sub χn}{sup SD}≃10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.

  20. [Mexican consensus on portal hypertension].

    PubMed

    Narváez-Rivera, R M; Cortez-Hernández, C A; González-González, J A; Tamayo-de la Cuesta, J L; Zamarripa-Dorsey, F; Torre-Delgadillo, A; Rivera-Ramos, J F J; Vinageras-Barroso, J I; Muneta-Kishigami, J E; Blancas-Valencia, J M; Antonio-Manrique, M; Valdovinos-Andraca, F; Brito-Lugo, P; Hernández-Guerrero, A; Bernal-Reyes, R; Sobrino-Cossío, S; Aceves-Tavares, G R; Huerta-Guerrero, H M; Moreno-Gómez, N; Bosques-Padilla, F J

    2013-01-01

    The aim of the Mexican Consensus on Portal Hypertension was to develop documented guidelines to facilitate clinical practice when dealing with key events of the patient presenting with portal hypertension and variceal bleeding. The panel of experts was made up of Mexican gastroenterologists, hepatologists, and endoscopists, all distinguished professionals. The document analyzes themes of interest in the following modules: preprimary and primary prophylaxis, acute variceal hemorrhage, and secondary prophylaxis. The management of variceal bleeding has improved considerably in recent years. Current information indicates that the general management of the cirrhotic patient presenting with variceal bleeding should be carried out by a multidisciplinary team, with such an approach playing a major role in the final outcome. The combination of drug and endoscopic therapies is recommended for initial management; vasoactive drugs should be started as soon as variceal bleeding is suspected and maintained for 5 days. After the patient is stabilized, urgent diagnostic endoscopy should be carried out by a qualified endoscopist, who then performs the corresponding endoscopic variceal treatment. Antibiotic prophylaxis should be regarded as an integral part of treatment, started upon hospital admittance and continued for 5 days. If there is treatment failure, rescue therapies should be carried out immediately, taking into account that interventional radiology therapies are very effective in controlling refractory variceal bleeding. These guidelines have been developed for the purpose of achieving greater clinical efficacy and are based on the best evidence of portal hypertension that is presently available. PMID:23664429

  1. Uzbekistan Radiation Portal Monnitoring System

    SciTech Connect

    Richardson, J; Knapp, R; Loshak, A; Yuldashev, B; Petrenko, V

    2005-06-10

    The work proposed in this presentation builds on the foundation set by the DTRA funded demonstration project begun in 2000 and completed in December of 2003. This previous work consisted of two phases whose overall objective was to install portal radiation monitors at four select ports-of-entry in Uzbekistan (Tashkent International Airport, Gisht-Kuprik (Kazakhstan border), Alat (Turkmenistan border), and Termez (Afghanistan border)) in order to demonstrate their effectiveness in preventing the illicit trafficking of nuclear materials. The objectives also included developing and demonstrating capabilities in the design, installation, operation, training, and maintenance of a radiation portal monitoring system. The system and demonstration project has proved successful in many ways. An effective working relationship among the Uzbekistan Customs Services, Uzbekistan Border Guards, and Uzbekistan Institute of Nuclear Physics has been developed. There has been unprecedented openness with the sharing of portal monitor data with Lawrence Livermore National Laboratory. The system has proved to be effective, with detection of illicit trafficking, and, at Alat, an arrest of three persons illegally transporting radioactive materials into Turkmenistan. The demonstration project has made Uzbekistan a model nonproliferation state in Central Asia and, with an expanded program, places them in a position to seal a likely transit route for illicit nuclear materials. These results will be described. In addition, this work is currently being expanded to include additional ports-of-entry in Uzbekistan. The process for deciding on which additional ports-of-entry to equip will also be described.

  2. Evaluation of dosimetry and image of very low-dose computed tomography attenuation correction for pediatric positron emission tomography/computed tomography: phantom study

    NASA Astrophysics Data System (ADS)

    Bahn, Y. K.; Park, H. H.; Lee, C. H.; Kim, H. S.; Lyu, K. Y.; Dong, K. R.; Chung, W. K.; Cho, J. H.

    2014-04-01

    In this study, phantom was used to evaluate attenuation correction computed tomography (CT) dose and image in case of pediatric positron emission tomography (PET)/CT scan. Three PET/CT scanners were used along with acryl phantom in the size for infant and ion-chamber dosimeter. The CT image acquisition conditions were changed from 10 to 20, 40, 80, 100 and 160 mA and from 80 to 100, 120 and 140 kVp, which aimed at evaluating penetrate dose and computed tomography dose indexvolume (CTDIvol) value. And NEMA PET Phantom™ was used to obtain PET image under the same CT conditions in order to evaluate each attenuation-corrected PET image based on standard uptake value (SUV) value and signal-to-noise ratio (SNR). In general, the penetrate dose was reduced by around 92% under the minimum CT conditions (80 kVp and 10 mA) with the decrease in CTDIvol value by around 88%, compared with the pediatric abdomen CT conditions (100 kVp and 100 mA). The PET image with its attenuation corrected according to each CT condition showed no change in SUV value and no influence on the SNR. In conclusion, if the minimum dose CT that is properly applied to body of pediatric patient is corrected for attenuation to ensure that the effective dose is reduced by around 90% or more compared with that for adult patient, this will be useful to reduce radiation exposure level.

  3. Noncirrhotic portal fibrosis after Wilms' tumor therapy

    SciTech Connect

    Barnard, J.A.; Marshall, G.S.; Neblett, W.W.; Gray, G.; Ghishan, F.K.

    1986-04-01

    A 9-yr-old girl developed massive hemorrhage from esophageal varices 2 yr after combined modality therapy for Wilms' tumor. Evaluation showed a patent extrahepatic portal venous system and an elevated splenic pulp pressure. In contrast to previous reports of hepatopathy after irradiation injury, histologic sections of the liver did not demonstrate occlusion of the central veins, but rather a diffuse obliteration of intrahepatic portal venous radicles. This pattern of noncirrhotic portal fibrosis has not been described following antitumor therapy.

  4. Preduodenal portal vein: its surgical significance.

    PubMed

    Makey, D A; Bowen, J C

    1978-11-01

    Preduodenal portal vein is a rare anatomical variant which may be one of many anomalies in the neonate with duodenal "atresia." Preduodenal portal vein also may be an occasional finding in an adult undergoing biliary, gastric, or pancreatic surgery. Awareness and recognition of the anomaly are essential for the avoidance of injury during such operations. We report here a symptomless patient whose preduodenal portal vein was discovered at cholecystectomy. PMID:715684

  5. Diffused transmission of laser beam and image processing tools for alpha-particle track-etch dosimetry in PM-355 SSNTDs

    NASA Astrophysics Data System (ADS)

    Salman, Thaer M.; AL-Ahmad, Alaa Y.; Badran, Hussain A.; Emshary, Chassib A.

    2015-08-01

    The present study introduces an optical as well as image processing method that is effective in the study of PM-355 solid state nuclear track detector (SSNTDs) irradiated with α-particles at different times. Laser light with Gaussian extent and 635 nm wavelength is used to accomplish this goal. An imaging processing technique is utilized for the study of the nature and characteristics of a transmitted laser beam through PM-355 SSNTDs. Semi-empirical formulas are obtained which can be used as guide lines to calculate unknown dose. The present method is effective and simple and demands no sophisticated tool methods.

  6. Portal hypertension: pathophysiology, diagnosis, and treatment.

    PubMed

    Buob, S; Johnston, A N; Webster, C R L

    2011-01-01

    Portal hypertension (PH) is the result of increased vascular resistance in the portal circulation, increased portal venous blood flow, or both. In veterinary medicine, where portal pressure is seldom measured directly, the diagnosis of PH often is inferred from identification of associated complications including multiple acquired portosystemic shunts, ascites, and hepatic encephalopathy. Likewise, treatment of PH primarily is aimed at controlling these complications. The goal of this review is to provide an update on the pathophysiology, diagnosis, and treatment of PH. The review draws from information in the veterinary hepatology literature, reviews, and consensus statements in human hepatology and the literature on experimental models of PH. PMID:21382073

  7. Web-based Service Portal in Healthcare

    NASA Astrophysics Data System (ADS)

    Silhavy, Petr; Silhavy, Radek; Prokopova, Zdenka

    Information delivery is one the most important task in healthcare. The growing sector of electronic healthcare has an important impact on the information delivery. There are two basic approaches towards information delivering. The first is web portal and second is touch-screen terminal. The aim of this paper is to investigate the web-based service portal. The most important advantage of web-based portal in the field of healthcare is an independent access for patients. This paper deals with the conditions and frameworks for healthcare portals

  8. The design and fabrication of two portal vein flow phantoms by different methods

    SciTech Connect

    Yunker, Bryan E. Lanning, Craig J.; Shandas, Robin; Hunter, Kendall S.; Chen, S. James

    2014-02-15

    Purpose: This study outlines the design and fabrication techniques for two portal vein flow phantoms. Methods: A materials study was performed as a precursor to this phantom fabrication effort and the desired material properties are restated for continuity. A three-dimensional portal vein pattern was created from the Visual Human database. The portal vein pattern was used to fabricate two flow phantoms by different methods with identical interior surface geometry using computer aided design software tools and rapid prototyping techniques. One portal flow phantom was fabricated within a solid block of clear silicone for use on a table with Ultrasound or within medical imaging systems such as MRI, CT, PET, or SPECT. The other portal flow phantom was fabricated as a thin walled tubular latex structure for use in water tanks with Ultrasound imaging. Both phantoms were evaluated for usability and durability. Results: Both phantoms were fabricated successfully and passed durability criteria for flow testing in the next project phase. Conclusions: The fabrication methods and materials employed for the study yielded durable portal vein phantoms.

  9. Internal dosimetry technical basis manual

    SciTech Connect

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  10. Medical dosimetry in Hungary

    NASA Astrophysics Data System (ADS)

    Turák, O.; Osvay, M.; Ballay, L.

    2012-09-01

    Radiation exposure of medical staff during cardiological and radiological procedures was investigated. The exposure of medical staff is directly connected to patient exposure. The aim of this study was to determine the distribution of doses on uncovered part of body of medical staff using LiF thermoluminescent (TL) dosimeters in seven locations. Individual Kodak film dosimeters (as authorized dosimetry system) were used for the assessment of medical staff's effective dose. Results achieved on dose distribution measurements confirm that wearing only one film badge under the lead apron does not provide enough information on the personal dose. The value of estimated annual doses on eye lens and extremities (fingers) were in good correlation with international publications.

  11. Fundamentals of Radiation Dosimetry

    SciTech Connect

    Bos, Adrie J. J.

    2011-05-05

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  12. Fundamentals of Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Bos, Adrie J. J.

    2011-05-01

    The basic concepts of radiation dosimetry are reviewed on basis of ICRU reports and text books. The radiation field is described with, among others, the particle fluence. Cross sections for indirectly ionizing radiation are defined and indicated is how they are related to the mass energy transfer and mass energy absorption coefficients. Definitions of total and restricted mass stopping powers of directly ionizing radiation are given. The dosimetric quantities, kerma, absorbed dose and exposure together with the relations between them are discussed in depth. Finally it is indicated how the absorbed dose can be measured with a calorimeter by measuring the temperature increase and with an ionisation chamber measuring the charge produced by the ionizing radiation and making use of the Bragg-Gray relation.

  13. Patient portals - An online tool for your health

    MedlinePlus

    A patient portal is a website for your personal health care. The online tool helps you to keep track of ... questions through the portal. Many providers now offer patient portals. For access, you will need to set up ...

  14. Cell detection in phase-contrast images used for alpha-particle track-etch dosimetry: a semi-automated approach

    NASA Astrophysics Data System (ADS)

    Altman, Michael B.; Wang, Steven J.; Whitlock, Jenny L.; Roeske, John C.

    2005-01-01

    A novel alpha-particle irradiator has recently been developed that provides the ability to characterize cell response. The irradiator is comprised of a collimated, planar alpha-particle source which, from below, irradiates cells cultured on a track-etch material. Cells are imaged using phase-contrast microscopy before and following irradiation to obtain geometric information and survival rates; these can be used with data from alpha-particle track images to assess cell response. A key step in this process is determining cell location within the pre-irradiation images. Although this can be done completely by a human observer, the number of images requiring analysis makes the process time-consuming and tedious. To reduce the potential human error and decrease user interaction time, a semi-automated, computer-aided method of cell detection has been developed. The method employs a two-level adaptive thresholding technique to obtain size and position information about potential cell cytoplasms and nuclei. Proximity and geometry-based thresholds are then used to mark structures as cells. False-positive detections from the automated algorithm are due mostly to imperfections in the track-etch background, camera effects and cellular residue. To correct for these, a human observer reviews all detected structures, discarding false positives. When analysing two randomly selected cell dish image databases, the semi-automated method detected 92-94% of all cells and 94-97% of cells with a well-defined cytoplasm and nucleus while reducing human workload by 32-83%.

  15. Midline Dose Verification with Diode In Vivo Dosimetry for External Photon Therapy of Head and Neck and Pelvis Cancers During Initial Large-Field Treatments

    SciTech Connect

    Tung, Chuan-Jong; Yu, Pei-Chieh; Chiu, Min-Chi; Yeh, Chi-Yuan; Lee, Chung-Chi; Chao, Tsi-Chian

    2010-01-01

    During radiotherapy treatments, quality assurance/control is essential, particularly dose delivery to patients. This study was designed to verify midline doses with diode in vivo dosimetry. Dosimetry was studied for 6-MV bilateral fields in head and neck cancer treatments and 10-MV bilateral and anteroposterior/posteroanterior (AP/PA) fields in pelvic cancer treatments. Calibrations with corrections of diodes were performed using plastic water phantoms; 190 and 100 portals were studied for head and neck and pelvis treatments, respectively. Calculations of midline doses were made using the midline transmission, arithmetic mean, and geometric mean algorithms. These midline doses were compared with the treatment planning system target doses for lateral or AP (PA) portals and paired opposed portals. For head and neck treatments, all 3 algorithms were satisfactory, although the geometric mean algorithm was less accurate and more uncertain. For pelvis treatments, the arithmetic mean algorithm seemed unacceptable, whereas the other algorithms were satisfactory. The random error was reduced by using averaged midline doses of paired opposed portals because the asymmetric effect was averaged out. Considering the simplicity of in vivo dosimetry, the arithmetic mean and geometric mean algorithm should be adopted for head/neck and pelvis treatments, respectively.

  16. Laser heated thermoluminescence dosimetry

    SciTech Connect

    Justus, B.L.; Huston, A.L.

    1996-06-01

    We report a novel laser-heated thermoluminescence dosimeter that is radically different from previous laser-heated dosimeters. The dosimeter is a semiconductor and metal ion doped silica glass that has excellent optical transparency. The high optical quality of the glass essentially eliminates laser power loss due to light scattering. This efficient utilization of the laser power permits operation of the dosimeter without strong absorption of the laser, as is required in traditional laser-heated dosimetry. Our laser-heated dosimeter does not rely on the diffusion of heat from a separate, highly absorbing substrate, but operates via intimate, localized heating within the glass dosimeter due to the absorption of the laser light by rare earth ion dopants in the glass. Following absorption of the laser light, the rare earth ions transfer energy to the surrounding glass via nonradiative relaxation processes, resulting in rapid, localized temperature increases sufficient to release all the filled traps near the ions. As the heat diffuses radially away from the rare earth ions the temperature plummets dramatically on a manometer distance scale and the release of additional filled traps subsides. A key distinguishing feature of this laser-heated dosimeter is the ability to read the dose information more than once. While laser-heating provides complete information about the radiation exposure experienced by the glass due to the release of locally heated traps, the process leaves the remaining filled bulk traps undisturbed. The bulk traps can be read using traditional bulk heating methods and can provide a direct determination of an accumulated dose, measured following any number of laser-heated readouts. Laser-heated dosimetry measurements have been performed using a solid state diode laser for the readout following radiation exposure with a {sup 60}Co source.

  17. Fifth international radiopharmaceutical dosimetry symposium

    SciTech Connect

    Watson, E.E.; Schlafke-Stelson, A.T.

    1992-05-01

    This meeting was held to exchange information on how to get better estimates of the radiation absorbed dose. There seems to be a high interest of late in patient dosimetry; discussions were held in the light of revised risk estimates for radiation. Topics included: Strategies of Dose Assessment; Dose Estimation for Radioimmunotherapy; Dose Calculation Techniques and Models; Dose Estimation for Positron Emission Tomography (PET); Kinetics for Dose Estimation; and Small Scale Dosimetry and Microdosimetry. (VC)

  18. The International Reactor Dosimetry File.

    Energy Science and Technology Software Center (ESTSC)

    2008-08-07

    Version 01 The International Reactor Dosimetry File (IRDF-2002) contains recommended neutron cross-section data to be used for reactor neutron dosimetry by foil activation and subsequent neutron spectrum unfolding. It also contains selected recom�mended values for radiation damage cross-sections and benchmark neutron spectra. Two related programs available from NEADB and RSICC are: SPECTER-ANL (PSR-263) & STAY’SL (PSR-113).

  19. Hanford internal dosimetry program manual

    SciTech Connect

    Carbaugh, E.H.; Sula, M.J.; Bihl, D.E.; Aldridge, T.L.

    1989-10-01

    This document describes the Hanford Internal Dosimetry program. Program Services include administrating the bioassay monitoring program, evaluating and documenting assessments of internal exposure and dose, ensuring that analytical laboratories conform to requirements, selecting and applying appropriate models and procedures for evaluating internal radionuclide deposition and the resulting dose, and technically guiding and supporting Hanford contractors in matters regarding internal dosimetry. 13 refs., 16 figs., 42 tabs.

  20. Digital subtraction angiography of the portal venous system

    SciTech Connect

    Foley, W.D.; Stewart E.T.; Milbrath, J.R.; SanDretto, M.; Milde, M.

    1983-03-01

    Venous-phase arteriography after celiac or superior mesenteric artery injection is the most common technique used to demonstrate portal venous anatomy, flow direction, and portal systemic shunts. Large-volume contrast material injections and intraarterial vasodilators or balloon occlusion technique are required for optimal examinations using film-screen recording. A technique for performing venous-phase arteriography with digital subtraction imaging after celiac and superior mesenteric artery injection is described. The major advantage of intraarterial digital subtraction technique in comparison to film-screen recording is sensitivity to intravascular iodine with a consequent reduction in contrast material load and examination time. Technical success is limited only by motion artifact and should approximate the 80%-90% figure achieved for intravenous digital subtraction angiography of the aortorenal vessels.

  1. [Portal thrombosis: the diagnostic and therapeutic aspects and clinical cases].

    PubMed

    Giordano, G; Angelelli, G; Margari, A; Mustacchio, N; Scattarella, M; Macarini, L; Cannone, G; Ialongo, P

    1994-05-01

    The authors report their experience, from 1983 to 1992, in the treatment of portal vein thrombosis and discuss various aetiological factor of obstruction also underlining the frequent and important association with portal hypertension. The authors emphasize the crucial role of the modern diagnostic techniques such as endoscopy and imaging radiology (U.S., C.T., angiography). Although these techniques not always allow a conclusive evidence in relation to aetiology, however, it is possible to have a rationale for the treatment, i.e. medical, sclerotherapeutic or surgical. As related to the surgical procedures, the authors--based on their personal experience--believe the best are the non-derivative ones. PMID:7524597

  2. [Diagnosis and treatment of portal thrombosis in liver cirrhosis].

    PubMed

    Seijo, Susana; García-Criado, Angeles; Darnell, Anna; García-Pagán, Juan Carlos

    2012-11-01

    Improved imaging techniques and the routine use of color Doppler ultrasound in the follow-up of patients with liver cirrhosis has increased diagnosis of portal vein thrombosis (PVT) in these patients. The extension of PVT should be evaluated with computed tomography angiography or magnetic resonance angiography. The natural history of PVT in cirrhosis and its impact on liver disease is unknown but it seems clear that PVT could increase the morbidity and mortality associated with liver transplantation and can even be a contraindication to this procedure when the thrombus extends to the superior mesenteric vein. Anticoagulation is a relatively safe and effective treatment in achieving recanalization of the splenoportal axis or in preventing progression of thrombosis and is therefore frequently used. The use of transjugular intrahepatic portosystemic shunts (TIPS) is reserved for patients unresponsive to anticoagulation or in those with severe complications of portal hypertension. PMID:22534116

  3. Acquisition of Portal Venous Circulating Tumor Cells From Patients With Pancreaticobiliary Cancers by Endoscopic Ultrasound

    PubMed Central

    Catenacci, Daniel V. T.; Chapman, Christopher G.; Xu, Peng; Koons, Ann; Konda, Vani J.; Siddiqui, Uzma D.; Waxman, Irving

    2016-01-01

    BACKGROUND & AIMS Tumor cells circulate in low numbers in peripheral blood; their detection is used predominantly in metastatic disease. We evaluated the feasibility and safety of sampling portal venous blood via endoscopic ultrasound (EUS) to count portal venous circulating tumor cells (CTCs), compared with paired peripheral CTCs, in patients with pancreaticobiliary cancers (PBCs). METHODS In a single-center cohort study, we evaluated 18 patients with suspected PBCs. Under EUS guidance, a 19-gauge EUS fine needle was advanced transhepatically into the portal vein and as many as four 7.5-mL aliquots of blood were aspirated. Paired peripheral blood samples were obtained. Epithelial-derived CTCs were sorted magnetically based on expression of epithelial cell adhesion molecules; only those with a proper morphology and found to be CD45 negative and positive for cytokeratins 8, 18, and/ or 19 and 4′,6-diamidino-2-phenylindole were considered to be CTCs. For 5 samples, CTCs also were isolated by flow cytometry and based on CD45 depletion. ImageStream was used to determine the relative protein levels of P16, SMAD4, and P53. DNA was extracted from CTCs for sequencing of select KRAS codons. RESULTS There were no complications from portal vein blood acquisition. We detected CTCs in portal vein samples from all 18 patients (100%) vs peripheral blood samples from only 4 patients (22.2%). Patients with confirmed PBCs had a mean of 118.4 ± 36.8 CTCs/7.5 mL portal vein blood, compared with a mean of 0.8 ± 0.4 CTCs/7.5 mL peripheral blood (P < .01). The 9 patients with nonmetastatic, resectable, or borderline-resectable PBCs had a mean of 83.2 CTCs/7.5 mL portal vein blood (median, 62.0 CTCs/7.5 mL portal vein blood). In a selected patient, portal vein CTCs were found to carry the same mutations as those detected in a metastatic lymph node and expressed similar levels of P16, SMAD4, and P53 proteins. CONCLUSIONS It is feasible and safe to collect portal venous blood from

  4. NEWT, a new taxonomy portal.

    PubMed

    Phan, I Q H; Pilbout, S F; Fleischmann, W; Bairoch, A

    2003-07-01

    NEWT is a new taxonomy portal to the SWISS-PROT protein sequence knowledgebase. It contains taxonomy data, which is updated daily, for the complete set of species represented in SWISS-PROT, as well as those stored at the NCBI. Users can navigate through the taxonomy tree and access corresponding SWISS-PROT protein entries. In addition, a manually curated selection of external links allows access to specific information on selected species. NEWT is available at http://www.ebi.ac.uk/newt/. PMID:12824428

  5. NEWT, a new taxonomy portal

    PubMed Central

    Phan, I. Q. H.; Pilbout, S. F.; Fleischmann, W.; Bairoch, A.

    2003-01-01

    NEWT is a new taxonomy portal to the SWISS-PROT protein sequence knowledgebase. It contains taxonomy data, which is updated daily, for the complete set of species represented in SWISS-PROT, as well as those stored at the NCBI. Users can navigate through the taxonomy tree and access corresponding SWISS-PROT protein entries. In addition, a manually curated selection of external links allows access to specific information on selected species. NEWT is available at http://www.ebi.ac.uk/newt/. PMID:12824428

  6. Portal hypertensive polyps, a new entity?

    PubMed

    Martín Domínguez, Verónica; Díaz Méndez, Ariel; Santander, Cecilio; García-Buey, Luisa

    2016-05-01

    We present a case of a 62 year old woman with history of liver cirrhosis secondary to autoimmune hepatitis, with portal hypertension and coagulopathy. Gastroscopy findings were a polypoid and polylobed lesions in the gastric antrum. These were removed and the pathological study described hyperplastic polyps with edema, vascular congestion and hyperplasia of smooth muscle, corresponding to "portal hypertensive polyps" (PHP). PMID:27188590

  7. Factors Affecting Faculty Web Portal Usability

    ERIC Educational Resources Information Center

    Bringula, Rex P.; Basa, Roselle S.

    2011-01-01

    The study investigated the factors that might significantly affect web portal usability. Results of the study were intended to serve as inputs for faculty web portal development of the University of the East-Manila. Descriptive statistics utilized questionnaire data from 82 faculty members. The data showed that most of the respondents were…

  8. Pancreatic pseudocyst rupture into the portal vein.

    PubMed

    Dawson, Brian C; Kasa, David; Mazer, Mark A

    2009-07-01

    A patient with a pancreatic pseudocyst rupture into the portal vein with a resultant noninfectious systemic inflammatory response syndrome and subsequent portal vein thrombosis diagnosed by computed tomography and ultrasonography is reported. A review of the existing English literature on this rare complication is also provided. PMID:19561436

  9. Dosimetry for audit and clinical trials: challenges and requirements

    NASA Astrophysics Data System (ADS)

    Kron, T.; Haworth, A.; Williams, I.

    2013-06-01

    Many important dosimetry audit networks for radiotherapy have their roots in clinical trial quality assurance (QA). In both scenarios it is essential to test two issues: does the treatment plan conform with the clinical requirements and is the plan a reasonable representation of what is actually delivered to a patient throughout their course of treatment. Part of a sound quality program would be an external audit of these issues with verification of the equivalence of plan and treatment typically referred to as a dosimetry audit. The increasing complexity of radiotherapy planning and delivery makes audits challenging. While verification of absolute dose delivered at a reference point was the standard of external dosimetry audits two decades ago this is often deemed inadequate for verification of treatment approaches such as Intensity Modulated Radiation Therapy (IMRT) and Volumetric Modulated Arc Therapy (VMAT). As such, most dosimetry audit networks have successfully introduced more complex tests of dose delivery using anthropomorphic phantoms that can be imaged, planned and treated as a patient would. The new challenge is to adapt this approach to ever more diversified radiotherapy procedures with image guided/adaptive radiotherapy, motion management and brachytherapy being the focus of current research.

  10. Digital video system for on-line portal verification

    NASA Astrophysics Data System (ADS)

    Leszczynski, Konrad W.; Shalev, Shlomo; Cosby, N. Scott

    1990-07-01

    A digital system has been developed for on-line acquisition, processing and display of portal images during radiation therapy treatment. A metal/phosphor screen combination is the primary detector, where the conversion from high-energy photons to visible light takes place. A mirror angled at 45 degrees reflects the primary image to a low-light-level camera, which is removed from the direct radiation beam. The image registered by the camera is digitized, processed and displayed on a CRT monitor. Advanced digital techniques for processing of on-line images have been developed and implemented to enhance image contrast and suppress the noise. Some elements of automated radiotherapy treatment verification have been introduced.

  11. Idiopathic noncirrhotic portal hypertension: current perspectives.

    PubMed

    Riggio, Oliviero; Gioia, Stefania; Pentassuglio, Ilaria; Nicoletti, Valeria; Valente, Michele; d'Amati, Giulia

    2016-01-01

    The term idiopathic noncirrhotic portal hypertension (INCPH) has been recently proposed to replace terms, such as hepatoportal sclerosis, idiopathic portal hypertension, incomplete septal cirrhosis, and nodular regenerative hyperplasia, used to describe patients with a hepatic presinusoidal cause of portal hypertension of unknown etiology, characterized by features of portal hypertension (esophageal varices, nonmalignant ascites, porto-venous collaterals), splenomegaly, patent portal, and hepatic veins and no clinical and histological signs of cirrhosis. Physicians should learn to look for this condition in a number of clinical settings, including cryptogenic cirrhosis, a disease known to be associated with INCPH, drug administration, and even chronic alterations in liver function tests. Once INCPH is clinically suspected, liver histology becomes mandatory for the correct diagnosis. However, pathologists should be familiar with the histological features of INCPH, especially in cases in which histology is not only requested to exclude liver cirrhosis. PMID:27555800

  12. Idiopathic noncirrhotic portal hypertension: current perspectives

    PubMed Central

    Riggio, Oliviero; Gioia, Stefania; Pentassuglio, Ilaria; Nicoletti, Valeria; Valente, Michele; d’Amati, Giulia

    2016-01-01

    The term idiopathic noncirrhotic portal hypertension (INCPH) has been recently proposed to replace terms, such as hepatoportal sclerosis, idiopathic portal hypertension, incomplete septal cirrhosis, and nodular regenerative hyperplasia, used to describe patients with a hepatic presinusoidal cause of portal hypertension of unknown etiology, characterized by features of portal hypertension (esophageal varices, nonmalignant ascites, porto-venous collaterals), splenomegaly, patent portal, and hepatic veins and no clinical and histological signs of cirrhosis. Physicians should learn to look for this condition in a number of clinical settings, including cryptogenic cirrhosis, a disease known to be associated with INCPH, drug administration, and even chronic alterations in liver function tests. Once INCPH is clinically suspected, liver histology becomes mandatory for the correct diagnosis. However, pathologists should be familiar with the histological features of INCPH, especially in cases in which histology is not only requested to exclude liver cirrhosis. PMID:27555800

  13. Isocurvature constraints on portal couplings

    NASA Astrophysics Data System (ADS)

    Kainulainen, Kimmo; Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo; Vaskonen, Ville

    2016-06-01

    We consider portal models which are ultraweakly coupled with the Standard Model, and confront them with observational constraints on dark matter abundance and isocurvature perturbations. We assume the hidden sector to contain a real singlet scalar s and a sterile neutrino ψ coupled to s via a pseudoscalar Yukawa term. During inflation, a primordial condensate consisting of the singlet scalar s is generated, and its contribution to the isocurvature perturbations is imprinted onto the dark matter abundance. We compute the total dark matter abundance including the contributions from condensate decay and nonthermal production from the Standard Model sector. We then use the Planck limit on isocurvature perturbations to derive a novel constraint connecting dark matter mass and the singlet self coupling with the scale of inflation: mDM/GeV lesssim 0.2λs3/8 (H*/1011 GeV)‑3/2. This constraint is relevant in most portal models ultraweakly coupled with the Standard Model and containing light singlet scalar fields.

  14. Straddle carrier radiation portal monitoring

    NASA Astrophysics Data System (ADS)

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O. Dennis

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) booth concept that uses logical lighting schemes for traffic control, cameras, Optical Character Recognition, and wireless technology.

  15. Araport: the Arabidopsis information portal.

    PubMed

    Krishnakumar, Vivek; Hanlon, Matthew R; Contrino, Sergio; Ferlanti, Erik S; Karamycheva, Svetlana; Kim, Maria; Rosen, Benjamin D; Cheng, Chia-Yi; Moreira, Walter; Mock, Stephen A; Stubbs, Joseph; Sullivan, Julie M; Krampis, Konstantinos; Miller, Jason R; Micklem, Gos; Vaughn, Matthew; Town, Christopher D

    2015-01-01

    The Arabidopsis Information Portal (https://www.araport.org) is a new online resource for plant biology research. It houses the Arabidopsis thaliana genome sequence and associated annotation. It was conceived as a framework that allows the research community to develop and release 'modules' that integrate, analyze and visualize Arabidopsis data that may reside at remote sites. The current implementation provides an indexed database of core genomic information. These data are made available through feature-rich web applications that provide search, data mining, and genome browser functionality, and also by bulk download and web services. Araport uses software from the InterMine and JBrowse projects to expose curated data from TAIR, GO, BAR, EBI, UniProt, PubMed and EPIC CoGe. The site also hosts 'science apps,' developed as prototypes for community modules that use dynamic web pages to present data obtained on-demand from third-party servers via RESTful web services. Designed for sustainability, the Arabidopsis Information Portal strategy exploits existing scientific computing infrastructure, adopts a practical mixture of data integration technologies and encourages collaborative enhancement of the resource by its user community. PMID:25414324

  16. Straddle Carrier Radiation Portal Monitoring

    SciTech Connect

    Andersen, Eric S.; Samuel, Todd J.; Mullen, O Dennis

    2005-08-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation’s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. The U.S. ports of entry include the following vectors: land border crossings, seaports, airports, rail crossings, and mail and express consignment courier facilities. U.S. Customs and Border Protection (CBP) determined that a screening solution was needed for Seaport cargo containers being transported by Straddle Carriers (straddle carriers). A stationary Radiation Portal Monitor (RPM) for Straddle Carriers (SCRPM) is needed so that cargo containers can be scanned while in transit under a Straddle Carrier. The Straddle Carrier Portal operational impacts were minimized by conducting a time-motion study at the Port, and adaptation of a Remotely Operated RPM (RO-RPM) boot