These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

LOWER PORTNEUF RIVER, IDAHO - WATER QUALITY STATUS REPORT, 1977  

EPA Science Inventory

This paper describes the results of a 12 month, bi-weekly water quality sampling program on the Lower Portneuf River, Idaho (17040208). Samples were collected at 7 river stations, 5 effluents, and a major stream. The results indicate that Marsh Creek, a major tributary draining...

2

UPPER PORTNEUF RIVER, CARIBOU COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1985  

EPA Science Inventory

The purposes of this study were to document the water quality status of the Upper Portneuf River, Idaho (17040208), to provide information and education to area farmers and ranchers concerning agricultural non-point sources of pollution, and in combination with the Soil Conservat...

3

SELECTED TRIBUTARIES OF THE LOWER PORTNEUF RIVER, BANNOCK COUNTY, IDAHO- WATER QUALITY STATUS REPORT, 1987  

EPA Science Inventory

The Lower Portneuf River, Idaho (17040208) was identified in the Agricultural Pollution Abatement Plans as a first priority stream segment for the reduction of agriculture related pollutants above Marsh Creek. Below Marsh Creek, it was identified as being moderately affected by ...

4

ASSESSMENT OF POSSIBLE EFFECTS OF POCATELLO'S TREATED WASTEWATER ON THE BIOLOGY AND CHEMISTRY OF THE PORTNEUF RIVER, IDAHO. 1989  

EPA Science Inventory

This report describes results of a study to determine possible effects of Pocatellos Wastewater Treatment Plant (WWTP) on the Portneuf River, Idaho (17040208). The scope of this report includes data collected on water chemistry, macroinvertebrates, and fish during fall 1988 and ...

5

Evaluation of a combined macrophyte-epiphyte bioassay for assessing nutrient enrichment in the Portneuf River, Idaho, USA.  

PubMed

We describe and evaluate a laboratory bioassay that uses Lemna minor L. and attached epiphytes to characterize the status of ambient and nutrient-enriched water from the Portneuf River, Idaho. Specifically, we measured morphological (number of fronds, longest surface axis, and root length) and population-level (number of plants and dry mass) responses of L. minor and community-level (ash-free dry mass [AFDM] and chlorophyll a [Chl a]) responses of epiphytes to nutrient enrichment. Overall, measures of macrophyte biomass and abundance increased with increasing concentrations of dissolved phosphorus (P) and responded more predictably to nutrient enrichment than morphological measures. Epiphyte AFDM and Chl a were also greatest in P-enriched water; enrichments of N alone produced no measurable epiphytic response. The epiphyte biomass response did not directly mirror macrophyte biomass responses, illustrating the value of a combined macrophyte-epiphyte assay to more fully evaluate nutrient management strategies. Finally, the most P-enriched waters not only supported greater standing stocks of macrophyte and epiphytes but also had significantly higher water column dissolved oxygen and dissolved organic carbon concentrations and a lower pH. Advantages of this macrophyte-epiphyte bioassay over more traditional single-species assays include the use of a more realistic level of biological organization, a relatively short assay schedule (~10days), and the inclusion of multiple biological response and water-quality measures. PMID:24549944

Ray, Andrew M; Mebane, Christopher A; Raben, Flint; Irvine, Kathryn M; Marcarelli, Amy M

2014-07-01

6

AN ANALYSIS OF MINIMUM FLOW REQUIREMENTS IN THE SNAKE, BLACKFOOT, AND PORTNEUF RIVERS. 1976  

EPA Science Inventory

This study was done in support of an analysis of the State of Idahos Water Plan. The report analyzes the impact of low flows upon dissolved oxygen in the Snake, Blackfoot, and Portneuf Rivers, Idaho (17040201, 17040206). A steady-state water quality model (Yearsley, 1975) was u...

7

PORTNEUF VALLEY, IDAHO PM-10 DISPERSION MODEL INCLUDING SECONDARY CHEMICAL FORMATION  

EPA Science Inventory

A dispersion modeling effort for the Portneuf Valley, Pocatello, Idaho PM-10 attainment demonstration is underway. The model will treat the secondary chemical formation process, primarily sulfate and nitrate formation under both the aqueous and gas phases. The model will simul...

8

Late Miocene fanglomerates in lower member of Starlight Formation, northern Portneuf Range, Idaho  

SciTech Connect

The lower member of the late Miocene Starlight Formation in the northern Portneuf Range, southeastern Idaho, represents sedimentation influenced by both Basin-and Range faulting and eastern Snake River plain (SRP) volcanism. The lower Starlight contains at least 610 m of fanglomerates and thin, interbedded basalt flows. The formations lower half is interpreted as medial alluvial fan facies and consists of coarse tuffaceous heterolithologic conglomerate lenses and sheets, and interbedded immature tuffaceous pebbly lithic arenites. The fine-grained upper half of the member is interpreted as distal-fan facies. The sandy deposits of the distal facies are cut by numerous gravel-filled channels. On the basis of clast assemblages and preservation of fragile rhyolite tuff grains that could not survive long transport distances, these deposits were likely derived from nearby sources. In addition, paleocurrent data indicate a general westerly transport direction. Individual drainage systems apparently controlled sedimentation, as indicated by different clast assemblages at various locations. The dominant clast type in The Cove, southwest of the Blackfoot River, is Eocene andesitic volcanics. In outcrops 20 km south, Paleozoic and lower Mesozoic sedimentary clasts predominate. Chert pebble conglomerate clasts, found only in southern exposures, may have been derived from distant eastern outcrops of Cretaceous conglomerates. Alluvial fan deposits in the lower member of the Starlight Formation developed as a response to early Basin-and-Range uplift. However, they were also influenced by eastern SRP volcanism, as indicated by the presence of tuffaceous sediments and basaltic lava flows. The fan deposits likely originated from a nearby eastern source that is now covered by Tertiary volcanics of the Blackfoot laval field.

Sevrin, L.A.

1987-08-01

9

Blackfoot River, Southeastern Idaho  

USGS Multimedia Gallery

Sceintists from the U.S. Geological Survey and the Idaho Department of Environmental Quality combined and analyzed data from two separate water-quality monitoring efforts in the upper Blackfoot River of southeastern Idaho. The river receives runoff from 12 phosphate mining opoerations, and waste roc...

10

Big Wood River, Idaho  

USGS Multimedia Gallery

The Big Wood Riverflows through communities of the Wood River Valley of south-central Idaho. It is one of eight sites at which the USGS is conducting an ecological assessment during the summer of 2014. Study results will be published in 2015....

11

WATER QUALITY STATUS REPORT, CROOKED RIVER, IDAHO COUNTY IDAHO, 1987  

EPA Science Inventory

Crooked River (17060305), a primary anadromous fisheries resource, is located approximately 120 miles southeast of Lewiston, Idaho. Dredging operations between 1936 and 1948 left large piles of gravel in the natural watercourse, causing the river to meander. Impoundments of wat...

12

Norrth Fork Big Wood River, Idaho  

USGS Multimedia Gallery

The Big Wood Riverflows through communities of the Wood River Valley of south-central Idaho. It is one of eight sites at which the USGS is conducting an ecological assessment during the summer of 2014. Study results will be published in 2015....

13

Raptor ecology of Raft River Valley, Idaho  

Microsoft Academic Search

Raptor data were gathered in the 988-km² Raft River Valley in southcentral Idaho while conducting a tolerance study on the nesting Ferruginous Hawk (Buteo regalis) near the Department of Energy's Raft River Geothermal Site. Prior research from 1972 to 1977 on the nesting activity of the Ferruginous Hawk population provided a historical information base. These data are combined with new

T. L. Thurow; C. M. White; R. P. Howard; J. F. Sullivan

1980-01-01

14

Raptor ecology of Raft River Valley, Idaho  

SciTech Connect

Raptor data were gathered in the 988-km/sup 2/ Raft River Valley in southcentral Idaho while conducting a tolerance study on the nesting Ferruginous Hawk (Buteo regalis) near the Department of Energy's Raft River Geothermal Site. Prior research from 1972 to 1977 on the nesting activity of the Ferruginous Hawk population provided a historical information base. These data are combined with new Ferruginous Hawk data collected between 1978 and 1980 to give a continuous 9-year breeding survey. Information on the distribution, density, and production of the other raptor species found in the study area during 1978 and 1979 is also provided.

Thurow, T.L.; White, C.M.; Howard, R.P.; Sullivan, J.F.

1980-09-01

15

Ecosystem Structure and Function are Complementary Measures of Water Quality in a Polluted, Spring-Influenced River  

Microsoft Academic Search

We tested how ecosystem structure (macroinvertebrate community and primary producers) and functions (leaf decay and open-water\\u000a metabolism) are related to water quality in the Portneuf River, southeast Idaho. This river is polluted with excess nutrients\\u000a and fine sediment and simultaneously demonstrates a range of hydrologic conditions due to a variety of groundwater and spring\\u000a inputs. Macroinvertebrate abundance, functional feeding group

Jessica M. Hopkins; Amy M. Marcarelli; Heather A. Bechtold

2011-01-01

16

OUTDOOR RECREATION USE AND VALUE: SNAKE RIVER BASIN OF CENTRAL IDAHO  

E-print Network

OUTDOOR RECREATION USE AND VALUE: SNAKE RIVER BASIN OF CENTRAL IDAHO John R. McKean Agricultural Enterprises, Inc. R. G. Taylor University of Idaho Department of Agricultural Economics and Rural Sociology Moscow, Idaho 83844 Idaho Experiment Station Bulletin __-2000 University of Idaho Moscow, Idaho #12;ii

O'Laughlin, Jay

17

SPORT-FISHING USE AND VALUE: SNAKE RIVER BASIN OF CENTRAL IDAHO  

E-print Network

SPORT-FISHING USE AND VALUE: SNAKE RIVER BASIN OF CENTRAL IDAHO John R. McKean Agricultural Enterprises, Inc. R. G. Taylor University of Idaho Department of Agricultural Economics and Rural Sociology Moscow, Idaho 83844 Idaho Experiment Station Bulletin __-2000 University of Idaho Moscow, Idaho #12;ii

O'Laughlin, Jay

18

KOOTENAI RIVER, BOUNDARY COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1977  

EPA Science Inventory

The Kootenai River (17010104) is a major tributary to the Columbia River, draining southern British Columbia, northwestern Montana, and portions of northern Idaho. One-third of the river lies in the United States, its source and mouth are in Canada. The vast majority of the dra...

19

ECOLOGICAL RISK ASSESSMENT FOR THE MIDDLE SNAKE RIVER, IDAHO  

EPA Science Inventory

An ecological risk assessment was completed for the Middle Snake River, Idaho. In this assessment, mathematical simulations and field observations were used to analyze exposure and ecological effects and to estimate risk. The Middle Snake River which refers to a 100 km stret...

20

Sport-Fishing Use and Value: Snake River Above Lewiston, Idaho  

E-print Network

Sport-Fishing Use and Value: Snake River Above Lewiston, Idaho John R. McKean Agricultural Enterprises, Inc. R. G. Taylor University of Idaho Department of Agricultural Economics and Rural Sociology Idaho Experiment Station Bulletin __-2000 University of Idaho Moscow, Idaho March 24, 2000 #12;ii TABLE

O'Laughlin, Jay

21

Document Citation: KTOI (Kootenai Tribe of Idaho) 2010. Kootenai River Native Fish Aquaculture  

E-print Network

of Idaho) 2010. Kootenai River Native Fish Aquaculture Program Master Plan. Bonners Ferry, Idaho. June;Kootenai Tribe of Idaho Kootenai River Native Fish Conservation Aquaculture Program ­ June 2010 i ............................................................................................................... 5 2 OVERVIEW OF THE KOOTENAI RIVER NATIVE FISH CONSERVATION AQUACULTURE PROGRAM

22

UPPER SNAKE RIVER, MAIN STEM (LAKE WALCOTT TO IDAHO-WYOMING BORDER), IDAHO. WATER QUALITY STATUS REPORT 1977  

EPA Science Inventory

This study sampled 17 water quality stations in the Upper Snake River, Idaho (1704) on a bi-weekly basis. The area extended from Heise and Rexburg to the Raft River. Two point sources (Idaho Falls and Blackfoot Sewage Treatment Plants) and 2 tributaries (Blackfoot and Raft Rive...

23

Streamgage 13317000, Salmon River at White Bird, Idaho  

USGS Multimedia Gallery

U.S. Geological Survey hydrographer Doug Ott inspects the gagehouse at streamgage stations13317000, Salmon River at White Bird, Idaho, May 10, 2013. The flow at the gage was approximately 40,000 cubic feet per second at the time of this photo....

24

WEISER RIVER STUDY, ADAMS AND WASHINGTON COUNTIES, IDAHO, 1979  

EPA Science Inventory

During the 1979 water year, a water quality study was conducted on the Weiser and Little Weiser Rivers (17050124) in Washington and Adams Counties, Idaho. The study was completed to obtain background information on effluent limitations for the cities of Cambridge and Council and...

25

BEAR RIVER BASIN, IDAHO - WATER QUALITY INVESTIGATION, 1974  

EPA Science Inventory

The quality of the waters in the Bear River Basin, Idaho (160102) was surveyed from August 27 to August 29, 1974. The purposes of the survey were to determine point and non-point source loading, to determine whether water quality has improved since the adoption of the 1958 Enfor...

26

CUB RIVER, FRANKLIN COUNTY, IDAHO - WATER QUALITY SUMMARY, 1979  

EPA Science Inventory

In Water Year 1979, a water quality study was conducted on the Cub River in Franklin County, Idaho (16010202) to determine the present condition of the stream and to assess the impact of the Del Monte Corporation vegetable processing discharge. The study involved approximately m...

27

[UPPER POTLATCH RIVER STUDY, LATAH COUNTY, IDAHO. 1979  

EPA Science Inventory

In Water Year 1979, a water quality study was conducted on the Upper Potlatch River near Bovill in Latah County, Idaho (17060306) to determine the present water quality of the stream and to obtain background information to determine effluent limitations for the City of Bovill sew...

28

The Idaho Snake-Payette Rivers Hydrologic Unit Area (HUA)Water  

E-print Network

The Idaho Snake-Payette Rivers Hydrologic Unit Area (HUA)Water Quality Project was one of 74 Conservation Service (NRCS; formerly the Soil Conservation Service), the University of Idaho Extension System (ES), and Farm Services Agency (FSA; formerly the ASCS). The Idaho Snake-Payette Rivers (HUA

O'Laughlin, Jay

29

Geology and Wine 11. Terroir of the Western Snake River Plain, Idaho, USA  

Technology Transfer Automated Retrieval System (TEKTRAN)

This article explores unique factors that shape the terroir of Idahos principal wine grape-growing district. Most Idaho wine grape vineyards are located in the Western Snake River Plain (WSRP) rift basin (~43N, ~114W) on soils derived from lake, river, or wind-blown sediments, volcanic events, a...

30

Mineral Chemistry of Basalts Recovered from Hotspot Snake River Scientific Drilling Project, Idaho: Source and Crystallization Characteristics  

E-print Network

Mineral Chemistry of Basalts Recovered from Hotspot Snake River Scientific Drilling Project, Idaho;ABSTRACT Mineral Chemistry of Basalts Recovered from Hotspot: Snake River Scientific Drilling Project recovered by Hotspot: Snake River Scientific Drilling Project, Idaho establish crystallization conditions

Seamons, Kent E.

31

KOOTENAI RIVER WHITE STURGEON CRITICAL HABITAT WITH FREE FLOWING AND BACKWATER CONDITIONS, BOUNDARY COUNTY, IDAHO  

E-print Network

COUNTY, IDAHO: EVALUATION OF WATER DEPTH AND FLOW VELOCITY DURING 2006-09 SPAWNING SEASONS Gary J. Barton1 , Gregory Hoffman2 , Richard R. McDonald3 , and Jonathan M. Nelson3 1 U.S. Geological Survey Idaho, Boundary County, Idaho. Kootenay Lake, British Columbia, Canada, creates backwater conditions in the river

32

Nutrient and Pesticide Management IDAHO SNAKE-PAYETTE RIVERS --HUA WATER QUALITY PROJECT FINAL REPORT  

E-print Network

Nutrient and Pesticide Management in the HUA IDAHO SNAKE-PAYETTE RIVERS -- HUA WATER QUALITY PROJECT FINAL REPORT L. R. Huter, R. L. Mahler, L. E. Brooks and B.A. Lolley BUL 817 The Idaho Snake Service), the University of Idaho Extension System (ES), and Farm Services Agency (FSA; formerly the ASCS

O'Laughlin, Jay

33

Assessing streamflow sensitivity to temperature increases in the Salmon River Basin, Idaho  

E-print Network

Assessing streamflow sensitivity to temperature increases in the Salmon River Basin, Idaho Chunling in the Salmon River Basin (SRB) of Idaho and are anticipated to contin- ue increasing in the future, leading and ecological processes. Published by Elsevier B.V. 1. Introduction Climate changes have occurred in the Salmon

Crosby, Benjamin T.

34

Steelhead Supplementation in Idaho Rivers : 2001 Project Progress Report.  

SciTech Connect

In 2001, Idaho Department of Fish and Game (IDFG) continued an assessment of the Sawtooth Hatchery steelhead Oncorhynchus mykiss stock to reestablish natural populations in Beaver and Frenchman creeks in the upper Salmon River. Crews stocked both streams with 20 pair of hatchery adults, and I estimated the potential smolt production from the 2000 adult outplants. n the Red River drainage, IDFG stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 to assess which life stage produces more progeny when the adults return to spawn. In 2001, IDFG operated the Red River weir to trap adults that returned from these stockings, but none were caught from either group. Wild steelhead populations in the Lochsa and Selway river drainages were assessed and the chinook salmon Oncorhynchus tshawytscha escapement was enumerated in Fish Creek. I estimated that 75 wild adult steelhead and 122 adult chinook salmon returned to Fish Creek in 2001. I estimated that slightly more than 30,000 juvenile steelhead migrated out of Fish Creek. This is the largest number of steelhead to migrate out of Fish Creek in a single year since I began estimating the yearly migration in 1994. Juvenile steelhead densities in Lochsa and Selway tributaries were somewhat higher in 2001 than those observed in 2000. Crews from IDFG collected over 4,800 fin samples from wild steelhead in 74 streams of the Clearwater, Snake, and Salmon river drainages and from five hatchery stocks during the summer of 2000 for a DNA analysis to assess Idaho's steelhead stock structure. The DNA analysis was subcontracted to Dr. Jennifer Nielsen, Alaska Biological Science Center, Anchorage. Her lab developed protocols to use for the analysis in 2001 and is continuing to analyze the samples. Dr. Nielsen plans to have the complete set of wild and hatchery stocks analyzed in 2002.

Byrne, Alan

2002-03-01

35

Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.  

SciTech Connect

Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based on potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.

Cochnauer, Tim; Claire, Christopher [Idaho Department of Fish and Game

2009-05-07

36

Iodine-129 in the Snake River Plain aquifer at the Idaho National Engineering Laboratory, Idaho  

USGS Publications Warehouse

From 1953 to 1983, an estimated 0.01 to 0.136 Ci (curies)/year of iodine-129 were contained in wastewater generated by the ICPP (Idaho Chemical Processing Plant) at the Idaho National Engineering Laboratory. The wastewater was directly discharged to the Snake River Plain aquifer through a deep disposal well until February 9, 1984, when the well was replaced by an unlined infiltration pond; a second pond was put into use on October 17, 1985. For 1984-86, the annual amount of iodine-129 in wastewater discharged to the ponds ranged from 0.0064 to 0.039 Ci. In August 1986, iodine-129 concentrations in water from 35 wells near the ICPP ranged from less than the reporting level to 3.6 +or-0.4 pCi/L (picocuries/L). By comparison, in April 1977 the water from 20 wells contained a maximum of 27 +or-1 pCi/L of iodine-129; in 1981, the maximum concentration in water from 32 wells was 41 +or-2 pCi/L. The average concentrations of iodine-129 in water from 18 wells that were sampled in 1977, 1981 and 1986 were 4.0, 6.7 and 1.3 pCi/L, respectively. The marked decrease in the iodine-129 concentration from 1981 to 1986 is the result of three factors: (1) The amount of iodine-129 disposed annually; (2) a change from the routine use of the disposal well to the infiltration ponds; and (3) a dilution of the iodine-129 in the aquifer by recharge from the Big Lost River. (USGS)

Mann, L.J.; Chew, E.W.; Morton, J.S.; Randolph, R.B.

1988-01-01

37

Salmon Supplementation Studies in Idaho Rivers; Idaho Supplementation Studies, 2000-2001 Annual Report.  

SciTech Connect

This report summarizes brood year 1999 juvenile production and emigration data and adult return information for 2000 for streams studied by the Nez Perce Tribe for the cooperative Idaho Salmon Supplementation Studies in Idaho Rivers (ISS) project. In order to provide inclusive juvenile data for brood year 1999, we include data on parr, presmolt, smolt and yearling captures. Therefore, our reporting period includes juvenile data collected from April 2000 through June 2001 for parr, presmolts, and smolts and through June 2002 for brood year 1999 yearling emigrants. Data presented in this report include; fish outplant data for treatment streams, snorkel and screw trap estimates of juvenile fish abundance, juvenile emigration profiles, juvenile survival estimates to Lower Granite Dam (LGJ), redd counts, and carcass data. There were no brood year 1999 treatments in Legendary Bear or Fishing Creek. As in previous years, snorkeling methods provided highly variable population estimates. Alternatively, rotary screw traps operated in Lake Creek and the Secesh River provided more precise estimates of juvenile abundance by life history type. Juvenile fish emigration in Lake Creek and the Secesh River peaked during July and August. Juveniles produced in this watershed emigrated primarily at age zero, and apparently reared in downstream habitats before detection as age one or older fish at the Snake and Columbia River dams. Over the course of the ISS study, PIT tag data suggest that smolts typically exhibit the highest relative survival to Lower Granite Dam (LGJ) compared to presmolts and parr, although we observed the opposite trend for brood year 1999 juvenile emigrants from the Secesh River. SURPH2 survival estimates for brood year 1999 Lake Creek parr, presmolt, and smolt PIT tag groups to (LGJ) were 27%, 39%, and 49% respectively, and 14%, 12%, and 5% for the Secesh River. In 2000, we counted 41 redds in Legendary Bear Creek, 4 in Fishing Creek, 5 in Slate Creek, 153 in the Secesh River, and 180 in Lake Creek. We recovered 19 carcasses (11 natural 8 hatchery) in Legendary Bear Creek, one hatchery carcass in Fishing Creek, zero carcasses in Slate Creek, 82 carcasses (19 of unknown origin and 63 natural) in the Secesh River, and 178 carcasses (2 hatchery 176 natural) from Lake Creek. In 2000 the majority (82%) of carcasses were recovered in index spawning reaches. Preliminary analysis of brood year 1997 PIT tag return data for the Secesh River and Lake Creek yields LGJ to Lower Granite Dam (LGD) juvenile to adult survival rates of, 0.00% for parr, 0.20% for presmolts, and 3.13% for smolts. LGJ to LGD juvenile to adult return rates for brood year 1997 Legendary Bear Creek were 2.98% for naturally produced PIT tagged smolts and 0.89% for PIT tagged supplementation smolts. No adults were detected at LGD from brood year 1997 parr released in Fishing Creek.

Beasley, Chris; Tabor, R.A.; Kinzer, Ryan (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

2003-04-01

38

Steelhead Supplementation in Idaho Rivers, 2000 Annual Report.  

SciTech Connect

In 2000, we continued our assessment of the Sawtooth Hatchery steelhead stock to reestablish natural populations in Beaver and Frenchman creeks in the upper Salmon River. We stocked both streams with 15 pair of hatchery adults and estimated the potential smolt production from the 1999 outplant. I estimated that about nine smolts per female could be produced in both streams from the 1999 outplant. The smolt-to-adult return would need to exceed 20% to return two adults at this level of production. In the Red River drainage, we stocked Dworshak hatchery stock fingerlings and smolts, from 1993 to 1999, to assess which life-stage produces more progeny when the adults return to spawn. In 2000, we operated the Red River weir to trap adults that returned from these stockings, but none were caught from either group. We continued to monitor wild steelhead populations in the Lochsa and Selway river drainages. We estimated that 26 wild adult steelhead returned to Fish Creek. This is the lowest adult escapement we have documented (when the weir was intact all spring) since we began monitoring Fish Creek in 1992. I estimated that nearly 25,000 juvenile steelhead migrated out of Fish Creek this year. Juvenile steelhead densities in Lochsa and Selway tributaries were similar to those observed in 1999. In 2000, we obtained funding for a DNA analysis to assess Idaho's steelhead stock structure. We collected fin samples from wild steelhead in 70 streams of the Clearwater, Snake, and Salmon River drainages and from our five hatchery stocks. The DNA analysis was subcontracted to Dr. Jennifer Nielsen, Alaska Biological Science Center, Anchorage, and will be completed in 2001.

Byrne, Alan

2001-01-01

39

Erosion Control Progress in the HUA IDAHO SNAKE-PAYETTE RIVERS --HUA WATER QUALITY PROJECT FINAL REPORT  

E-print Network

Erosion Control Progress in the HUA IDAHO SNAKE-PAYETTE RIVERS -- HUA WATER QUALITY PROJECT FINAL HUAWater Quality Project encompassing Canyon, Gem, Payette, and Washington counties in southwestern Idaho. Washington Payette Gem Canyon BUL 808 The Idaho Snake-Payette Rivers Hydrologic Unit Water Quality Project

O'Laughlin, Jay

40

Discovery of a Balkan fresh-water fauna in the Idaho formation of Snake River Valley, Idaho  

USGS Publications Warehouse

In 1866 Gabb described Melania taylori and Lithasia antiqua "from a fresh-water deposit on Snake River, Idaho Territory, on the road from Fort Boise to the Owyhee mining country. Collected by A. Taylor." He states that a small bivalve, perhaps a Sphaerium, was associated with them.

Dall, W.H.

1925-01-01

41

POTLATCH RIVER, LATAH, CLEARWATER, AND NEZ PERCE COUNTIES, IDAHO - PRELIMINARY INVESTIGATION REPORT, 1994  

EPA Science Inventory

The Latah Soil and Water Conservation District requested assistance from the Soil Conservation Service in the development of appropriate criteria for prioritizing subwatersheds in the Potlatch River Basin, Idaho (17060306) for the implementation of a long term watershed treatment...

42

Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho  

SciTech Connect

Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

Glaspey, Douglas J.

2008-01-30

43

Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho, Annual Report 2002.  

SciTech Connect

In 2002 Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork Clearwater River, Lochsa River, Selway River, and Middle Fork Clearwater River subbasins. Five-hundred forty-one ammocoetes were captured electroshocking 70 sites in the South Fork Clearwater River, Lochsa River, Selway River, Middle Fork Clearwater River, Clearwater River, and their tributaries in 2002. Habitat utilization surveys in Red River support previous work indicating Pacific lamprey ammocoete densities are greater in lateral scour pool habitats compared to riffles and rapids. Presence-absence survey findings in 2002 augmented 2000 and 2001 indicating Pacific lamprey macrothalmia and ammocoetes are not numerous or widely distributed. Pacific lamprey distribution was confined to the lower reaches of Red River below rkm 8.0, the South Fork Clearwater River, Lochsa River (Ginger Creek to mouth), Selway River (Race Creek to mouth), Middle Fork Clearwater River, and the Clearwater River (downstream to Potlatch River).

Cochnauer, Tim; Claire, Christopher

2003-10-01

44

WATER QUALITY STATUS REPORT, LOWER WEISER RIVER, WASHINGTON COUNTY, IDAHO, 1983 - 1984  

EPA Science Inventory

The Lower Weiser River, Crane Creek to the mouth at Weiser (17050124), Washington County, Idaho and its tributaries and selected irrigation inflows were the subject of a water quality survey for one year during 1983-84. The Weiser River contributes nearly 260,000 tons of annual ...

45

The Snake River Plain, Idaho - Representative of a new category of volcanism  

Microsoft Academic Search

Studies of the volcanic geology of the Snake River Plain, Idaho, and comparison with other basaltic regions suggest a new category of volcanic activity, termed basaltic plains volcanism. Typified by the Snake River Plain, this style of volcanism is intermediate between basaltic flood (or plateau) eruptions and Hawaiian volcanism. Characteristics that are common to both Hawaiian and plains volcanism are:

Ronald Greeley

1982-01-01

46

LOWER COEUR D'ALENE RIVER, IDAHO. A MANAGEMENT ANALYSIS OF BLM LANDS, 1990  

EPA Science Inventory

This study was intended to provide guidance to BLM for future management of the Lower Coeur dAlene River area, Idaho (17010301, 17010303), giving full consideration to the potential environmental and human health issues in the river and its lateral lakes caused by the presence of...

47

POTLATCH RIVER WATERSHED, LATAH, CLEARWATER, AND NEZ PERCE COUNTIES, IDAHO - BENEFICIAL USE RECONNAISSANCE PROJECT, 1994  

EPA Science Inventory

This study was conducted during the 1994 summer to determine the beneficial uses and status of those uses in the Potlatch River watershed, Idaho (17060306). Data were collected on the mainstem, East Fork and West Fork Potlatch River, Little Potlatch and Middle Potlatch Creeks, B...

48

LIMNOLOGY OF THE LOWER SNAKE RIVER RESERVOIRS IN IDAHO AND WASHINGTON  

EPA Science Inventory

This interim report highlights research completed in 1975 and 1976 on the joint Washington State University-University of Idaho limnological study on the lower Snake River (17050201, 170601). The objective of this study was to describe the aquatic ecology of the Snake River just...

49

Idaho Fires  

Atmospheric Science Data Center

... This view of the Clearwater and Salmon River Mountains in Idaho was acquired on August 5, 2000 (Terra orbit 3370). The body of water to ... August 5, 2000 - Smoke plumes from wildfires in Idaho. project: MISR category: gallery Fires ...

2014-05-15

50

Stratigraphy of the unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho  

SciTech Connect

The unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory (INEL) are made up of at least 178 basalt-flow groups, 103 sedimentary interbeds, 6 andesite-flow groups, and 4 rhyolite domes. Stratigraphic units identified in 333 wells in this 890-mile{sup 2} area include 121 basalt-flow groups, 102 sedimentary interbeds, 6 andesite-flow groups, and 1 rhyolite dome. Stratigraphic units were identified and correlated using the data from numerous outcrops and 26 continuous cores and 328 natural-gamma logs available in December 1993. Basalt flows make up about 85% of the volume of deposits underlying the area.

Anderson, S.R.; Liszewski, M.J.

1997-08-01

51

THE CHANNELS AND WATERS OF THE UPPER SALMON RIVER AREA, IDAHO. (HYDROLOGIC EVALUATION OF THE UPPER SALMON RIVER AREA)  

EPA Science Inventory

The upper 1,800 square miles of the Salmon River drainage basin (17060201) in south-central Idaho is an area of great scenic beauty and little-disturbed natural environment. Proper development and use of this land and its natural resources are contingent on a multifaceted and de...

52

Compilation of references on geology and hydrology of the Snake River drainage basin above Weiser, Idaho  

USGS Publications Warehouse

More than 1,100 references concerning geology and hydrology of the Snake River drainage basin above Weiser, Idaho, are compiled as part of the U.S. Geological Survey 's RASA (Regional Aquifer-System Analysis) study of the Snake River Plain. The list of references is intended as a primary source of information for investigators concerned with previous studies in the basin. Reference numbers correlate with a key-word index to help the user select and locate desired references. (USGS)

Bassick, M.D.

1986-01-01

53

Water-quality data for the Boise River, Boise to Star, Idaho, January to March 1988  

USGS Publications Warehouse

Physical and chemical data were collected at six sites and biological data were collected at five sites on the Boise River between Veterans Memorial Parkway in Boise and Star, Idaho, from January to March 1988. Data were collected to determine the effect of sewage effluent from two Boise wastewater treatment facilities on the water and biological quality of the Boise River. Similar data were collected from October to December 1987. Results of all data analyses will be discussed in an interpretive report.

Frenzel, S.A.; Hansen, T.F.

1988-01-01

54

Heavy metal pollution in the sediments of the Coeur d'Alene River, Idaho  

Microsoft Academic Search

Analysis of sediment samples collected from the Coeur d'Alene River in northern Idaho, USA, indicates that the main stem and\\u000a the south fork of the river are contaminated with heavy metals (Cd, Pb, Mn, and Zn) from the local mining operations. Laboratory\\u000a experiments indicate that these metals in the sediments can be leached and reach saturation concentrations in water in

D. E. Reece; J. R. Felkey; C. M. Wai

1978-01-01

55

Movements of Planted and Wild Trout in an Idaho River System  

Microsoft Academic Search

During 1959-61, 10,000 catchable-sized, hatchery-reared, rainbow trout were jaw-tagged and released in the upper Salmon River, Idaho, and 2,247, 619, and 539 wild cutthroat trout, Dolly Varden, and rainbow trout, respectively, were caught on hook and line, tagged, and released in the Middle Fork of the Salmon River. More than 1,500 of the tagged, hatchery-reared, rainbow trout were recovered after

Ted C. Bjornn; Jerry Mallet

1964-01-01

56

A REEXAMINATION OF THE COEUR D'ALENE RIVER, IDAHO, 1971  

EPA Science Inventory

The Environmental Protection Agency has periodically examined the quality of the Coeur dAlene River, Idaho (17010301, 17010303) to determine the effects of mine and mill wastes. This examination was conducted on September 22 and 23, 1971 as a supplement to the examination and re...

57

SOUTH FORK COEUR D'ALENE RIVER, NORTHERN IDAHO. DISTRIBUTION OF HEAVY METAL LOADINGS  

EPA Science Inventory

The purpose of this study is to determine the current distribution of metals loadings to the South Fork Coeur dAlene River, Idaho (17010301, 17010303). Water quality and flow data obtained from EPA Region 10 for September 1986 and September 1987 are used to determine loadings du...

58

Reproduction and early life history of northern squawfish, Ptychocheilus oregonensis , in Idaho's St. Joe River  

Microsoft Academic Search

Synopsis Reproduction and early life history of northern squawfish,Ptychocheilus oregonensis, was investigated in Idaho's St. Joe River from 19801981. Spawning occurs in large aggregations which mill near the substrate to broadcast eggs and milt. Males greatly outnumber females in the aggregations. Males mature at smaller sizes and younger ages, and exhibit slower growth and greater mortality than females, although females

Raymond C. Beamesderfer

1992-01-01

59

LOWER BLACKFOOT RIVER, BINGHAM COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1987  

EPA Science Inventory

The Lower Blackfoot River, Idaho (17040207) was identified in the Agricultural Pollution Abatement Plans as a second priority stream segment for the reduction of agriculture related pollutants. From November 19, 1986 to July 6, 1987 a water quality study was done to observe the ...

60

Evaluation of VICAR software capability for land information support system needs. [Elk River quadrangle, Idaho  

NASA Technical Reports Server (NTRS)

A preliminary evaluation of the processing capability of the VICAR software for land information support system needs is presented. The geometric and radiometric properties of four sets of LANDSAT data taken over the Elk River, Idaho quadrangle were compared. Storage of data sets, the means of location, pixel resolution, and radiometric and geometric characteristics are described. Recommended modifications of VICAR programs are presented.

Yao, S. S. (principal investigator)

1981-01-01

61

DIEL DISSOLVED OXYGEN MONITORING OF THE SPOKANE RIVER DURING EXTREME LOW FLOW. KOOTENAI COUNTY, IDAHO, 1992  

EPA Science Inventory

Diel monitoring of dissolved oxygen and temperature was conducted on an impounded and free-flowing reach of the Spokane River, in north Idaho (17010303) on 2 occasions during an extreme low flow event in water year 1992. The objective was to document excursions from water qualit...

62

LIGHTNING CREEK, PACK RIVER, AND SAND CREEK, BONNER COUNTY, IDAHO - WATER QUALITY SUMMARY, 1978  

EPA Science Inventory

In Water Year 1978, water quality studies were conducted on Lightning Creek, Pack River, and Sand Creek in Bonner County, Idaho (17010214, 17010213) to determine the present status of the streams. Water quality in Lightning Creek was generally very high. No violations of standa...

63

IDAHO SNAKE-PAYETTE RIVERS --HUA WATER QUALITY PROJECT FINAL REPORT L. R. Huter, R. L. Mahler, L. E. Brooks, B.A. Lolley and L. Holloway  

E-print Network

IDAHO SNAKE-PAYETTE RIVERS -- HUA WATER QUALITY PROJECT FINAL REPORT L. R. Huter, R. L. Mahler, L Project encompassing Canyon,Gem, Payette and Washington counties in southwestern Idaho. BUL 811 The Idaho Conservation Service (NRCS; formerly the Soil Conservation Service), the University of Idaho Cooperative

O'Laughlin, Jay

64

High-K alkali basalts of the Western Snake River Plain: Abrupt transition from tholeiitic to mildly alkaline plume-derived basalts, Western Snake River Plain, Idaho  

E-print Network

High-K alkali basalts of the Western Snake River Plain: Abrupt transition from tholeiitic to mildly alkaline plume-derived basalts, Western Snake River Plain, Idaho John W. Shervais a, , Scott K. Vetter b Snake River Plain SRP Yellowstone plume hotspots Basaltic volcanism in the western Snake River Plain

Shervais, John W.

65

Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho: Annual Report 2001.  

SciTech Connect

Recent decline of Pacific lamprey Lampetra tridentata adult migrants to the Snake River drainage has focused attention on the species. Adult Pacific lamprey counted passing Ice Harbor Dam fishway averaged 18,158 during 1962-69 and 361 during 1993-2000. Human resource manipulations in the Snake River and Clearwater River drainages have altered ecosystem habitat in the last 120 years, likely impacting the productive potential of Pacific lamprey habitat. Timber harvest, stream impoundment, road construction, grazing, mining, and community development have dominated habitat alteration in the Clearwater River system and Snake River corridor. Hydroelectric projects in the Snake River corridor impact juvenile/larval Pacific lamprey outmigrants and returning adults. Juvenile and larval lamprey outmigrants potentially pass through turbines, turbine bypass/collection systems, and over spillway structures at the four lower Snake River hydroelectric dams. Clearwater River drainage hydroelectric facilities have impacted Pacific lamprey populations to an unknown degree. The Pacific Power and Light Dam on the Clearwater River in Lewiston, Idaho, restricted chinook salmon Oncorhynchus tshawytscha passage in the 1927-1940 period, altering the migration route of outmigrating Pacific lamprey juveniles/larvae and upstream adult migrants (1927-1972). Dworshak Dam, completed in 1972, eliminated Pacific lamprey spawning and rearing in the North Fork Clearwater River drainage. Construction of the Harpster hydroelectric dam on the South Fork of the Clearwater River resulted in obstructed fish passage 1949-1963. Through Bonneville Power Administration support, the Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage in 2001. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork Clearwater River drainage. Forty-three sites in Red River, South Fork Clearwater River, and their tributaries were electrofished in 2001. Sampling yielded a total of 442 juvenile/larval Pacific lamprey. Findings indicate Pacific lamprey juveniles/larvae are not numerous or widely distributed. Pacific lamprey distribution in the South Fork of the Clearwater River drainage was confined to lower reaches of Red River and the South Fork Clearwater River.

Cochnauer, Tim; Claire, Christopher

2002-12-01

66

Evaluation of seepage and discharge uncertainty in the middle Snake River, southwestern Idaho  

USGS Publications Warehouse

The U.S. Geological Survey, in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources, evaluated seasonal seepage gains and losses in selected reaches of the middle Snake River, Idaho, during November 2012 and July 2013, and uncertainty in measured and computed discharge at four Idaho Power Company streamgages. Results from this investigation will be used by resource managers in developing a protocol to calculate and report Adjusted Average Daily Flow at the Idaho Power Company streamgage on the Snake River below Swan Falls Dam, near Murphy, Idaho, which is the measurement point for distributing water to owners of hydropower and minimum flow water rights in the middle Snake River. The evaluated reaches of the Snake River were from King Hill to Murphy, Idaho, for the seepage studies and downstream of Lower Salmon Falls Dam to Murphy, Idaho, for evaluations of discharge uncertainty. Computed seepage was greater than cumulative measurement uncertainty for subreaches along the middle Snake River during November 2012, the non-irrigation season, but not during July 2013, the irrigation season. During the November 2012 seepage study, the subreach between King Hill and C J Strike Dam had a meaningful (greater than cumulative measurement uncertainty) seepage gain of 415 cubic feet per second (ft3/s), and the subreach between Loveridge Bridge and C J Strike Dam had a meaningful seepage gain of 217 ft3/s. The meaningful seepage gain measured in the November 2012 seepage study was expected on the basis of several small seeps and springs present along the subreach, regional groundwater table contour maps, and results of regional groundwater flow model simulations. Computed seepage along the subreach from C J Strike Dam to Murphy was less than cumulative measurement uncertainty during November 2012 and July 2013; therefore, seepage cannot be quantified with certainty along this subreach. For the uncertainty evaluation, average uncertainty in discharge measurements at the four Idaho Power Company streamgages in the study reach ranged from 4.3 percent (Snake River below Lower Salmon Falls Dam) to 7.8 percent (Snake River below C J Strike Dam) for discharges less than 7,000 ft3/s in water years 200711. This range in uncertainty constituted most of the total quantifiable uncertainty in computed discharge, represented by prediction intervals calculated from the discharge rating of each streamgage. Uncertainty in computed discharge in the Snake River below Swan Falls Dam near Murphy was 10.1 and 6.0 percent at the Adjusted Average Daily Flow thresholds of 3,900 and 5,600 ft3/s, respectively. All discharge measurements and records computed at streamgages have some level of uncertainty that cannot be entirely eliminated. Knowledge of uncertainty at the Adjusted Average Daily Flow thresholds is useful for developing a measurement and reporting protocol for purposes of distributing water to hydropower and minimum flow water rights in the middle Snake River.

Wood, Molly S.; Williams, Marshall L.; Evetts, David M.; Vidmar, Peter J.

2014-01-01

67

Provenance study and environments of deposition of the Pennslyvanian-Permian Wood River Formation, south-central Idaho, and the paleotectonic character of the Wood River basin  

E-print Network

PROVENANCE STUDY AND ENVIRONMENTS OF DEPOSITION OF THE PENNSYLVANIAN-PERMIAN WOOD RIVER FORMATION, SOUTH-CENTRAL IDAHO, AND THE PALEOTECTONIC CHARACTER OF THE WOOD RIVER BASIN A 'Ihesis by CHRISTOPHER WILLIAM DEAN Submitted to the Graduate..., SOUTH-CENTRAL IDAHO, AND THE PALEOTECTONIC CHARACTER OF THE WOOD RIVER BASIN A Thesis by CHRISTOPHER WILLIAM DEAN Approved as to style and content by: (Chairman of Co ittee) (Member) (Member) (H of Dep tment) December, 1982 ABSTRACT Provenance...

Dean, Christopher William

1982-01-01

68

Iodine-129 in the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho, 1990-91  

USGS Publications Warehouse

From 1953 to 1990, an estimated 0.56 to 1.18 curies of iodine-129 were contained in wastewater generated by the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. The waste- water was discharged directly to the Snake River Plain aquifer through a deep disposal well prior to February 1984 and through unlined disposal ponds in 1984-90. The wastewater did not contain measurable concentrations of iodine-129 in 1989-90. Samples were collected from 51 wells that obtain water from the Snake River Plain aquifer and 1 well that obtains water from a perched ground-water zone. The samples were analyzed for iodine-129 using an accelerator mass spectrometer which is two to six orders of magnitude more sensitive than neutron- activation methods. Therefore, iodine-129 was detectable in samples from a larger number of wells distributed over a larger area than previously was possible. Ground-water flow velocities calculated using iodine-129 data are estimated to be at least 6 feet per day. These velocities compare favorably with those of 4 to 10 feet per day calculated from tritium data and tracer studies at wells down- gradient from the ICPP. In 1990-91, concentrations of iodine-129 in water samples from wells that obtain water from the Snake River Plain aquifer ranged from less than 0.0000006+0.0000002 to 3.82.+0.19 picocuries per liter (pCi/L). The mean concentration in water from 18 wells was 0.81+0.19 pCi/L as compared with 1.30+0.26 pCi/L in 1986. The decrease in the iodine-l29 concentrations from 1986 to 1990-91 chiefly was the result of a decrease in the amount of iodine-129 disposed of annually, and changes in disposal techniques.

Mann, L.J.; Beasley, T.M.

1994-01-01

69

BOISE RIVER STUDY IN ADA COUNTY IDAHO, 1978  

EPA Science Inventory

The purpose of this study was to assess the impact of present point sources on the river and to obtain background information to develop effluent limitations for the City of Boise wastewater treatment facilities. The study was conducted on the Boise River (Ada County, ID) from L...

70

PALOUSE RIVER STUDY, LETAH COUNTY, IDAHO, WATER YEAR 1979  

EPA Science Inventory

During water year 1979, a water quality study was conducted on the Palouse River in Latah County (17060108) to determine the present water quality status of the river at Princeton and to obtain background information for the development of effluent limitations for the Hampton-Pr...

71

Bathymetric surveys of the Kootenai River near Bonners Ferry, Idaho, water year 2011  

USGS Publications Warehouse

In 2009, the Kootenai Tribe of Idaho released and implemented the Kootenai River Habitat Restoration Master Plan. This plan aimed to restore, enhance, and maintain the Kootenai River habitat and landscape to support and sustain habitat conditions for aquatic species and animal populations. In support of these restoration efforts, the U.S. Geological Survey, in cooperation with the Kootenai Tribe of Idaho, conducted high-resolution multibeam echosounder bathymetric surveys in May, June, and July 2011, as a baseline bathymetric monitoring survey on the Kootenai River near Bonners Ferry, Idaho. Three channel patterns or reaches exist in the study areabraided, meander, and a transitional zone connecting the braided and meander reaches. Bathymetric data were collected at three study areas in 2011 to provide: (1) surveys in unmapped portions of the meander reach; (2) monitoring of the presence and extent of sand along planned lines within a section of the meander reach; and (3) monitoring aggradation and degradation of the channel bed at specific cross sections within the braided reach and transitional zone. The bathymetric data will be used to update and verify flow models, calibrate and verify sediment transport modeling efforts, and aid in the biological assessment in support of the Kootenai River Habitat Restoration Master Plan. The data and planned lines for each study reach were produced in ASCII XYZ format supported by most geospatial software.

Fosness, Ryan L.

2013-01-01

72

Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho  

USGS Publications Warehouse

The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

2012-01-01

73

Resource partitioning among forest owls in the River of No Return Wilderness, Idaho  

Microsoft Academic Search

We studied resource partitioning among the forest owls in the River of No Return Wilderness, Idaho, during the winter and spring of 1980 and 1981. The owl assemblage consisted of five abundant species: pygmy (Glaucidium gnoma), saw-whet (Aegolius acadicus), boreal (A. funereus), western screech (Otus kennicottii), and great-horned (Bubo virginianus). Long-eared (Asio otus) and flammulated (O. flammeolus) owls were rarely

G. D. Hayward; E. O. Garton

1988-01-01

74

Water-quality data for the Boise River, Boise to Star, Idaho, October to December 1987  

USGS Publications Warehouse

Chemical and physical data were collected at six and biological data at five sites on the Boise River between Veterans Memorial Parkway in Boise and Star, Idaho, from October to December 1987. Data were collected to determine the impact of sewage effluent from two Boise wastewater treatment plants on the water and biological quality of the Boise River. Similar data will be collected from January to March 1988 and will be published in a second noninterpretive report. Results of all data analyses will be discussed in a final interpretive report. (USGS)

Frenzel, S.A.; Hansen, T.F.

1988-01-01

75

Fish communities and related environmental conditions of the lower Boise River, southwestern Idaho, 1974-2004  

USGS Publications Warehouse

Within the last century, the lower Boise River has been transformed from a meandering, braided, gravel-bed river that supported large runs of salmon to a channelized, regulated, urban river that provides flood control and irrigation water to more than 1,200 square miles of land. An understanding of the current status of the river's fish communities and related environmental conditions is important to support the ongoing management of the Boise River. Therefore, fish community data from the U.S. Geological Survey and the Idaho Department of Fish and Game collected since 1974 were analyzed to describe the status of fish communities in the lower Boise River. Each set of data was collected to address different study objectives, but is combined here to provide an overall distribution of fish in the lower Boise River over the last 30 years. Twenty-two species of fish in 7 families have been identified in the lower Boise River-3 salmonidae, trout and whitefish; 2 cottidae, sculpins; 3 catostomidae, suckers; 7 cyprinidae, minnows; 4 centrarchidae, sunfish; 2 ictaluridae, catfish; and 1 cobitidae, loach. Analysis of fish community data using an Index of Biotic Integrity (IBI) for Northwest rivers shows a decrease in the biotic integrity in a downstream direction, with the lowest IBI near the mouth of the Boise River. The number of tolerant and introduced fish were greater in the lower reaches of the river. Changes in land use, habitat, and water quality, as well as regulated streamflow have affected the lower Boise River fish community. IBI scores were negatively correlated with maximum instantaneous water temperature, specific conductance, and suspended sediment; as well as the basin land-use metrics, area of developed land, impervious surface area, and the number of major diversions upstream of a site. Fish communities in the upstream reaches were dominated by piscivorous fish, whereas the downstream reaches were dominated by tolerant, omnivorous fish. The percentage of sculpin in the river decreased in a downstream direction, and sculpin disappear completely at sites downstream of Glenwood Bridge. The sculpin population increased downstream of the Lander wastewater-treatment facility within the last decade, possibly as a result of improved wastewater treatment. The condition of the mountain whitefish (Prosopium williamsoni) throughout the lower Boise River was good and was similar both to the condition of mountain whitefish from least-disturbed rivers in southern Idaho and to the North American standard weight for mountain whitefish.

MacCoy, Dorene E.

2006-01-01

76

WATER QUALITY STUDY: MIDDLE SNAKE RIVER, IDAHO, 1970  

EPA Science Inventory

A water quality study of the Middle Snake River (17060103, 17060101, 17050201) was initiated in July 1968 to gather data in support of Department of the interior testimony presented before the Federal Power Commission license application hearings on High Mountain Sheep Dam. Unus...

77

WATER QUALITY STATUS REPORT, PALOUSE RIVER, IDAHO, 1975-1976  

EPA Science Inventory

The Palouse River (17060108) was surveyed during low and high stream flow conditions of September 1975 and April 1976. The purpose of the study was to assist in the development of effluent limitations for point sources and to identify and evaluate nonpoint sources. While water ...

78

Bimodal basalt-rhyolite magmatism in the central and western Snake River Plain, Idaho and Oregon  

USGS Publications Warehouse

The purpose of this trip is to examine Miocene to Pleistocene basalt and rhyolite flows, ignimbrites and hypabyssal intrusions in a transect from the western Snake River Plain graben across the older part of the Snake River Plain "hot-spot-track." The earlier, dominantly explosive rhyolitic phase of volcanism will be examined primarily in the Cassia Mountains, near Twin Falls, Idaho. The second day of the field trip will focus on the Graveyard Point intrusion, a strongly differentiated diabase sill in easternmost Oregon. This late Tertiary sill is well exposed from floor to roof in sections up to 150 m thick, and is an example of the type of solidified shallow magma chamber that may be present beneath some Snake River Plain basalt volcanoes. The field trip will conclude with an examination of the diverse styles of effusive and explosive basaltic volcanism in the central and western Snake River Plain.

McCurry, M.; Bonnichsen, B.; White, C.; Godchaux, M.M.; Hughes, S.S.

1997-01-01

79

Iodine-129 in the Snake River Plain Aquifer at and Near the Idaho National Laboratory, Idaho, 2003 and 2007  

USGS Publications Warehouse

From 1953 to 1988, wastewater containing approximately 0.94 curies of iodine-129 (129I) was generated at the Idaho National Laboratory (INL) in southeastern Idaho. Almost all of this wastewater was discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC) on the INL site. Most of the wastewater was discharged directly into the eastern Snake River Plain aquifer through a deep disposal well until 1984; however, some wastewater also was discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. In 2003, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, collected samples for 129I from 36 wells used to monitor the Snake River Plain aquifer, and from one well used to monitor a perched zone at the INTEC. Concentrations of 129I in the aquifer ranged from 0.0000066 +- 0.0000002 to 0.72 +- 0.051 picocuries per liter (pCi/L). Many wells within a 3-mile radius of the INTEC showed decreases of as much as one order of magnitude in concentration from samples collected during 1990-91, and all of the samples had concentrations less than the Environmental Protection Agency's Maximum Contaminant Level (MCL) of 1 pCi/L. The average concentration of 129I in 19 wells sampled during both collection periods decreased from 0.975 pCi/L in 1990-91 to 0.249 pCi/L in 2003. These decreases are attributed to the discontinuation of disposal of 129I in wastewater after 1988 and to dilution and dispersion in the aquifer. Although water from wells sampled in 2003 near the INTEC showed decreases in concentrations of 129I compared with data collected in 1990-91, some wells south and east of the Central Facilities Area, near the site boundary, and south of the INL showed slight increases. These slight increases may be related to variable discharge rates of wastewater that eventually moved to these well locations as a mass of water from a particular disposal period. In 2007, the USGS collected samples for 129I from 36 wells that are used to monitor the aquifer south of INTEC and from 2 wells that are used to monitor perched zones at INTEC. Concentrations of 129I in the eastern Snake River Plain aquifer ranged from 0.000026 +- 0.000002 to 1.16 +- 0.04 pCi/L, and the concentration at one well exceeded the maximum contaminant level (1 pCi/L) for public drinking water supplies. The average concentration of 19 wells sampled in 2003 and 2007 did not differ; however, slight increases and decreases of concentrations in several areas around the INTEC were evident in the aquifer. The decreases are attributed to the discontinued disposal and to dilution and dispersion in the aquifer. The increases may be due to the movement into the aquifer of remnant perched water below the INTEC. In 2007, the USGS also collected samples from 31 zones in 6 wells equipped with multi-level WestbayTM packer sampling systems to help define the vertical distribution of 129I in the aquifer. Concentrations ranged from 0.000011 +- 0.0000005 to 0.0167 +- 0.0007 pCi/L. For three wells, concentrations of 129I between zones varied one to two orders of magnitude. For two wells, concentrations varied for one zone by more than an order of magnitude from the wells' other zones. Similar concentrations were measured from all five zones sampled in one well. All of the 31 zones had concentrations two or more magnitudes below the maximum contaminant level.

Bartholomay, Roy C.

2009-01-01

80

Compressional Wave Velocity Structure of the Upper 350 km Under the Eastern Snake River Plain Near Rexburg, Idaho  

Microsoft Academic Search

Relative travel time residuals for teleseismic P and PKIKP are used to determine the compressional velocity structure under the eastern Snake River Plain at Rexburg, Idaho. Damped least squares inversion of travel time residuals (modified from the method of Aki) indicates a large body of 3.5 +2.5% low relative velocity material centered under the northwest edge of the Snake River

John R. Evans

1982-01-01

81

LOWER COEUR D'ALENE RIVER, IDAHO. TOXICITY AND BIOAVAILABILITY STUDIES OF LEAD AND OTHER ELEMENTS, 1989  

EPA Science Inventory

This study was done following reported high waterfowl deaths and illnesses in the Coeur dAlene River and Lake system, Idaho (17010301, 17010303). Abundant evidence documents extensive contamination of the Lower Coeur dAlene River drainage with mining and milling wastes. The dep...

82

Feeding Response by Northern Squawfish to a Hatchery Release of Juvenile Salmonids in the Clearwater River, Idaho  

Microsoft Academic Search

We collected gut contents from northern squawfish Ptychocheilus oregonensis captured in the Clearwater River, Idaho, 06 km from its confluence with the Snake River, following the release of 1.1 million yearling chinook salmon Oncorhynchus tshawytscha from the Dworshak National Fish Hatchery. Before the hatchery release, northern squawfish gut contents (by weight) in the study area were 38% crayfish Pacifastacus spp.,

Rip S. Shively; Thomas P. Poe; Sally T. Sauter

1996-01-01

83

Dietary Effects of Metals-Contaminated Invertebrates from the Coeur d'Alene River, Idaho, on Cutthroat Trout  

Microsoft Academic Search

Benthic macroinvertebrates with elevated concentrations of metals were collected from the Coeur d'Alene (CDA) River, Idaho, pasteurized, and fed to cutthroat trout Oncorhynchus clarki in the laboratory from start of feeding until 90 d posthatch. Invertebrates were collected from two sites known to contain elevated concentrations of metals: Near Pinehurst in the South Fork of the CDA River and at

A. M. Farag; D. F. Woodward; W. Brumbaugh; J. N. Goldstein; E. MacConnell; C. Hogstrand; F. T. Barrows

1999-01-01

84

Large-volume, low-?18O rhyolites of the central Snake River Plain, Idaho, USA  

NASA Astrophysics Data System (ADS)

The Miocene Bruneau-Jarbidge and adjacent volcanic fields of the central Snake River Plain, southwest Idaho, are dominated by high-temperature rhyolitic tuffs and lavas having an aggregate volume estimated as 7000 km3. Samples from units representing at least 50% of this volume are strongly depleted in 18O, with magmatic feldspar ?18OVSMOW (Vienna standard mean ocean water) values between -1.4 and 3.8. The magnitude of the 18O depletion and the complete lack of any rhyolites with normal values (7 10) combine to suggest that assimilation or melting of a caldera block altered by near- contemporaneous hydrothermal activity is unlikely. Instead, we envisage generation of the high-temperature rhyolites by shallow melting of Idaho Batholith rocks, under the influence of the Yellowstone hotspot, affected by Eocene meteoric-hydrothermal events. The seeming worldwide scarcity of strongly 18O-depleted rhyolites may simply reflect a similar scarcity of suitable crustal protoliths.

Boroughs, Scott; Wolff, John; Bonnichsen, Bill; Godchaux, Martha; Larson, Peter

2005-10-01

85

Lu-Hf garnet geochronology of the Salmon River Suture Zone, West-Central Idaho  

NASA Astrophysics Data System (ADS)

The Salmon River Suture Zone (SRSZ) in west-central Idaho records the accretion of island arc terranes to North America. It is modified by the Western Idaho Shear Zone (WISZ), a high strain zone within the SRSZ, which defines the present-day boundary between old continental North America and the accreted oceanic assemblages. Timing of the onset of deformation on the WISZ is not well established, primarily due to a poorly constrained metamorphic history. Existing garnet geochronologic studies of units within the SRSZ, using the Sm-Nd isotope system, have provided a framework towards a progressive accretion of arc-derived rocks to North America [1,2]. In this study, we report on the application of the Lu-Hf isotope system to provide ages of garnet growth within the suture zone. This system has the advantage of being insensitive to light rare earth element (LREE)-rich inclusions in garnet, which can complicate Sm-Nd geochronology. Samples were taken from several locations from both along and perpendicular to the suture zone. We report results on two of these samples, within and east of the WISZ. First, a garnet bearing leucocratic layer in a gneissic meta-sedimentary screen near Cascade, Idaho, yields a garnet age of 98 2.0 Ma (2SD). The screen occurs completely within the orthogneisses of the WISZ, and displays similar fabrics and kinematics. Second, a biotite quartzo-feldspathic garnet gneiss from Elk City, Idaho, yields an age 100 2.9 Ma (2SD). This location is ~35 km east of the WISZ, on a sub-parallel deformation zone that was active at the same time. Both samples were single-stage garnet fractions consisting of inclusion-free to inclusion-bearing fragments and whole rock pairs. These ages provide two important implications for the Mesozoic evolution of the western edge of North America. First, transpressional deformation in the WISZ occurred simultaneously with deformation on parallel structures in central Idaho, indicating that a wide zone of deformation occurred on North America (and was intruded and thus obscured by the younger Idaho batholith). Second, deformation on these structures occurred during a limited time interval in the mid-Cretaceous, with peak metamorphism at ~100 Ma. [1] Getty et al., 1993, Contrib. Mineral. Petrol, v. 115, p. 45-57. [2] McKay et al., 2011, GSA Abstr w Prog., 2011 Rocky Mountain-Cordilleran section meeting, Paper No. 26-2.

Wilford, D. E.; Vervoort, J. D.; Lewis, R.; Tikoff, B.

2011-12-01

86

Iodine-129 in the eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho, 2010-12  

USGS Publications Warehouse

From 1953 to 1988, approximately 0.941 curies of iodine-129 (129I) were contained in wastewater generated at the Idaho National Laboratory (INL) with almost all of this wastewater discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC). Most of the wastewater containing 129I was discharged directly into the eastern Snake River Plain (ESRP) aquifer through a deep disposal well until 1984; lesser quantities also were discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. During 201012, the U.S. Geological Survey in cooperation with the U.S. Department of Energy collected groundwater samples for 129I from 62 wells in the ESRP aquifer to track concentration trends and changes for the carcinogenic radionuclide that has a 15.7 million-year half-life. Concentrations of 129I in the aquifer ranged from 0.00000130.0000005 to 1.020.04 picocuries per liter (pCi/L), and generally decreased in wells near the INTEC, relative to previous sampling events. The average concentration of 129I in groundwater from 15 wells sampled during four different sample periods decreased from 1.15 pCi/L in 199091 to 0.173 pCi/L in 201112. All but two wells within a 3-mile radius of the INTEC showed decreases in concentration, and all but one sample had concentrations less than the U.S. Environmental Protection Agency maximum contaminant level of 1 pCi/L. These decreases are attributed to the discontinuation of disposal of 129I in wastewater and to dilution and dispersion in the aquifer. The decreases in 129I concentrations, in areas around INTEC where concentrations increased between 2003 and 2007, were attributed to less recharge near INTEC either from less flow in the Big Lost River or from less local snowmelt and anthropogenic sources. Although wells near INTEC sampled in 201112 showed decreases in 129I concentrations compared with previously collected data, some wells south and east of the Central Facilities Area, near the site boundary, and south of the INL showed small increases. These slight increases are attributed to variable discharge rates of wastewater that eventually moved to these well locations as a pulse of water from a particular disposal period. Wells sampled for the first time around the Naval Reactors Facility had 129I concentrations slightly greater than background concentrations in the ESRP aquifer. These concentrations are attributed to possible leakage from landfills at the Naval Reactors Facility or seepage from air emission deposits from INTEC, or both. In 2012, the U.S. Geological Survey collected discrete groundwater samples from 25 zones in 11 wells equipped with multilevel monitoring systems to help define the vertical distribution of 129I in the aquifer. Concentrations ranged from 0.0000060.000004 to 0.0820.003 pCi/L. Two new wells completed in 2012 showed variability of up to one order of magnitude of concentrations of 129I among various zones. Two other wells showed similar concentrations of 129I in all three zones sampled. Concentrations were well less than the maximum contaminant level in all zones.

Bartholomay, Roy C.

2013-01-01

87

Late Quaternary constructional development of the Axial Volcanic Zone, eastern Snake River Plain, Idaho  

E-print Network

, Idaho Wetmore, Paul H. Dept. of Earth Sciences, University of Southern California, Los Angeles, California Hughes, Scott S. Rodgers, David W. Dept. of Geology, Idaho State University, Pocatello, Idaho Anderson, Steve R. U.S. Geological Survey, Idaho Falls, Idaho The axial volcanic zone (AVZ) is a subdued

Wetmore, Paul H.

88

Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1992 through 1995  

SciTech Connect

Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1992--95.

Bartholomay, R.C.; Tucker, B.J.; Ackerman, D.J.; Liszewski, M.J.

1997-04-01

89

Snake River Plain, Idaho: Representative of a new category of volcanism  

SciTech Connect

Studies of the volcanic geology of the Snake River Plain, Idaho, and comparison with other basaltic regions suggest a new category of volcanic activity, termed basaltic plains volcanism. Typified by the Snake River Plain, this style of volcanism is intermediate between basaltic flood (or plateau) eruptions and Hawaiian volcanism. Characteristics that are common to both Hawaiian and plains volcanism are: multiple lava flow units which erupt primarily from point sources, formation of low shields, and frequent emplacement through lava tubes channels. Characteristics that are common to both flood basalts and plains volcanism are: high volume flows, vents aligned along rift zones, and planar surfaces. The recognition of plains in other areas provides a means to interpret the style of eruption and volcanic history.

Greeley, R.

1982-04-10

90

The Snake River Plain, Idaho - Representative of a new category of volcanism  

NASA Technical Reports Server (NTRS)

Studies of the volcanic geology of the Snake River Plain, Idaho, and comparison with other basaltic regions suggest a new category of volcanic activity, termed basaltic plains volcanism. Typified by the Snake River Plain, this style of volcanism is intermediate between basaltic flood (or plateau) eruptions and Hawaiian volcanism. Characteristics that are common to both Hawaiian and plains volcanism are: multiple lava flow units which erupt primarily from point sources, formation of low shields, and frequent emplacement through lava tubes or channels. Characteristics that are common to both flood basalts and plains volcanism are: high volume flows, vents aligned along rift zones, and planar surfaces. The recognition of plains volcanism in other areas provides a means to interpret the style of eruption and volcanic history.

Greeley, R.

1982-01-01

91

Geothermal alteration of basaltic core from the Snake River Plain, Idaho  

NASA Astrophysics Data System (ADS)

The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

Sant, Christopher J.

92

Adult Chinook Salmon Abundance Monitoring in the Secesh River and Lake Creek, Idaho, 2000 Annual Report.  

SciTech Connect

Underwater time-lapse video technology has been used to monitor adult spring and summer chinook salmon (Oncorhynchus tshawytscha) escapement into the Secesh River and Lake Creek, Idaho, since 1998. Underwater time-lapse videography is a passive methodology that does not trap or handle this Endangered Species Act listed species. Secesh River chinook salmon represent a wild spawning aggregate that has not been directly supplemented with hatchery fish. The Secesh River is also a control population under the Idaho Salmon Supplementation study. This project has demonstrated the successful application of underwater video adult salmon abundance monitoring technology in Lake Creek in 1998 and 1999. Emphasis of the project in 2000 was to determine if the temporary fish counting station could be installed early enough to successfully estimate adult spring and summer chinook salmon abundance in the Secesh River (a larger stream). Snow pack in the drainage was 93% of the average during the winter of 1999/2000, providing an opportunity to test the temporary count station structure. The temporary fish counting station was not the appropriate technology to determine adult salmon spawner abundance in the Secesh River. Due to its temporary nature it could not be installed early enough, due to high stream discharge, to capture the first upstream migrating salmon. A more permanent structure used with underwater video, or other technology needs to be utilized for accurate salmon escapement monitoring in the Secesh River. A minimum of 813 adult chinook salmon spawners migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. Of these fish, more than 324 migrated upstream into Lake Creek. The first upstream migrating adult chinook salmon passed the Secesh River and Lake Creek sites prior to operation of the fish counting stations on June 22. This was 17 and 19 days earlier than the first fish arrival at Lake Creek in 1998 and 1999 respectively. Peak net upstream adult movement at the Secesh River site occurred June 28 and at the Lake Creek site on June 27. Peak of total movement was August 16 at Secesh River and August 7 at Lake Creek. The last fish passed through the Lake Creek fish counting station on August 31 and on September 8 at the Secesh River site. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. The first segment of movement was characterized, mainly, by upstream movement only. The second segment consisted of upstream and downstream movement with very little net upstream movement. The fish counting stations did not impede salmon movements, nor was spawning displaced downstream. Fish moved freely upstream and downstream through the fish counting structures. Fish movement was greatest between the period of 5:00 p.m. and 4:00 a.m. There appeared to be a segment of ''nomadic'' males that moved into and out of the spawning area, apparently seeking other mates to spawn with. The downstream movement of salmon allowed by this fish counting station design may be an important factor affecting reproductive success as male salmon seek other females to spawn with. Traditional weirs operated for broodstock collection do not allow for downstream movement of adults. This methodology has the potential to provide more consistent and accurate salmon spawner abundance information than single-pass and multiple-pass spawning ground surveys. Accurate adult abundance would allow managers to determine if recovery actions were benefiting these salmon spawning aggregates and if recovery goals were being met.

Faurot, Dave; Kucera, Paul A.

2001-05-01

93

A statistical model for estimating stream temperatures in the Salmon and Clearwater River basins, central Idaho  

USGS Publications Warehouse

A water-quality standard for temperature is critical for the protection of threatened and endangered salmonids, which need cold, clean water to sustain life. The Idaho Department of Environmental Quality has established temperature standards to protect salmonids, yet little is known about the normal range of temperatures of most Idaho streams. A single temperature standard for all streams does not take into account the natural temperature variation of streams or the existence of naturally warm waters. To address these issues and to help the Idaho Department of Environmental Quality revise the existing State temperature standards for aquatic life, temperature data from more than 200 streams and rivers in the salmon and Clearwater River Basins were collected. From these data, a statistical model was developed for estimating stream temperatures on the basis of subbasin and site characteristics and climatic factors. Stream temperatures were monitored hourly for approximately 58 days during July, August, and September 2000 at relatively undisturbed sites in subbasins in the Salmon and Clearwater River Basins in central Idaho. The monitored subbasins vary widely in size, elevation, drainage area, vegetation cover, and other characteristics. The resulting data were analyzed for statistical correlations with subbasin and site characteristics to establish the most important factors affecting stream temperature. Maximum daily average stream temperatures were strongly correlated with elevation and total upstream drainage area; weaker correlations were noted with stream depth and width and aver-age subbasin slope. Stream temperatures also were correlated with certain types of vegetation cover, but these variables were not significant in the final model. The model takes into account seasonal temperature fluctuations, site elevation, total drainage area, average subbasin slope, and the deviation of daily average air temperature from a 30-year normal daily average air temperature. The goodness-of-fit of the model varies with day of the year. Overall, temperatures can be estimated with 95-percent confidence to within approximately plus or minus 4 degrees Celsius. The model performed well when tested on independent stream-temperature data previously collected by the U.S. Geological Survey and other agencies. Although the model provides insight into the natural temperature potential of a wide variety of streams and rivers in the Salmon and Clearwater River Basins, it has limitations. It is based on data collected in only one summer, during which temperatures were higher and streamflows were lower than normal. The effects of changes in streamflow on the effectiveness of the model are not known. Because the model is based on data from minimally disturbed or undisturbed streams, it should not be applied to streams known to be significantly affected by human activities such as disturbance of the streambed, diversion and return of water by irrigation ditches, and removal of riparian vegetation. Finally, because the model is based on data from streams in the Salmon and Clearwater River Basins and reflects climatological and landscape characteristics of those basins, it should not be applied to streams outside this region.

Donato, Mary M.

2002-01-01

94

Reevalution of background iodine-129 concentrations in water from the Snake River Plain Aquifer, Idaho, 2003  

USGS Publications Warehouse

Background concentrations of iodine-129 (129I, half-life = 15.7 million years) resulting from natural production in the earth?s atmosphere, in situ production in the earth by spontaneous fission of uranium-238(238U), and fallout from nuclear weapons tests conducted in the 1950s and 1960s were reevaluated on the basis of 52 analyses of ground- and surface-water samples collected from the eastern Snake River Plain in southeastern Idaho. The background concentration estimated using the results of a subset of 30 ground-water samples analyzed in this reevaluation is 5.4 attocuries per liter (aCi/L; 1 aCi = 10-18 curies) and the 95-percent nonparametric confidence interval is 5.2 to 10.0 aCi/L. In a previous study, a background 129I concentration was estimated on the basis of analyses of water samples from 16 sites on or tributary to the eastern Snake River Plain. At the 99-percent confidence level, background concentrations of 129I in that study were less than or equal to 8.2 aCi/L. During 1993?94, 34 water samples from 32 additional sites were analyzed for 129I to better establish the background concentrations in surface and ground water from the eastern Snake River Plain that is presumed to be unaffected by wastedisposal practices at the Idaho National Engineering and Environmental Laboratory (INEEL). Surface water contained larger 129I concentrations than water from springs and wells contained. Because surface water is more likely to be affected by anthropogenic fallout and evapotranspiration, background 129I concentrations were estimated in the current research using the laboratory results of ground-water samples that were assumed to be unaffected by INEEL disposal practices.

Cecil, L. DeWayne; Hall, L. Flint; Green, Jaromy R.

2003-01-01

95

Lead accumulation and osprey production near a mining site on the coeur d'Alene River, Idaho  

Microsoft Academic Search

Mining and smelting at Kellogg-Smelterville, Idaho, resulted in high concentrations of lead in Coeur d'Alene (CDA) River sediments 1565 km downstream, where ospreys (Pandion haliaetus) nested. Adult and nestling ospreys living along the CDA River had significantly higher blood lead concentrations than those at Lake Coeur d'Alene (intermediate area) or Pend Oreille and Flathead Lakes (reference areas). Lead concentrations in

Charles J. Henny; Lawrence J. Blus; David J. Hoffman; Robert A. Grove; Jeff S. Hatfield

1991-01-01

96

Lead in hawks, falcons and owls downstream from a mining site on the Coeur d'Alene River, Idaho  

Microsoft Academic Search

Mining and smelting at Kellogg-Smelterville, Idaho, resulted in high concentrations of lead in Coeur d'Alene (CDA) River sediments and the floodplain downstream, where American Kestrels (Falco sparverius), Northern Harriers (Circus cyaneus), Red-tailed Hawks (Buteo jamaicensis), Great Horned Owls (Bubo virginianus), and Western Screech-owls (Otus kennicotti) nested. Nestling American Kestrels contained significantly higher (P=0.0012) blood lead concentrations along the CDA River

Charles J. Henny; Lawrence J. Blus; David J. Hoffman; Robert A. Grove

1994-01-01

97

WATER QUALITY ASSESSMENT OF THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING - ENVIRONMENTAL SETTING, 1980-92.  

EPA Science Inventory

Data summarized in this report are used in companion reports to help define the relations among land use, water use, water quality, and biological conditions. The upper Snake River Basin (1704) is located in southeastern Idaho and northwestern Wyoming and includes small parts of...

98

Changes in Salmon Spawning and Rearing Habitat from Increased Delivery of Fine Sediment to the South Fork Salmon River, Idaho  

Microsoft Academic Search

Levels of surface and subsurface fine sediment (<4.75 mm in diameter) were measured annually from 1965 to 1985 in spawning and rearing areas for chinook salmon Oncorhynchus tschawytscha and steelhead O. mykiss (formerly Salmo gairdneri) in the South Fork Salmon River, Idaho. Between 1950 and 1965, logging and road construction, in combination with large storm events of 1964 and 1965,

William S. Platts; Richard J. Torquemada; Michael L. McHenry; Charles K. Graham

1989-01-01

99

Genetic Monitoring Reveals Genetic Stability within and among Threatened Chinook Salmon Populations in the Salmon River, Idaho  

Microsoft Academic Search

Identifying and understanding temporal genetic changes within fish populations is important for the management of these populations, especially those of conservation concern. Such changes are often the result of genetic drift, which can be exacerbated when the size of a population decreases. Using molecular-genetics techniques, we monitored nine populations of Chinook salmon Oncorhynchus tshawytscha in the Salmon River, Idaho, to

Donald M. Van Doornik; Robin S. Waples; Melissa C. Baird; Paul Moran; Ewann A. Berntson

2011-01-01

100

Distribution of heavy-metal loadings to the South Fork Coeur d'Alene River in northern Idaho. Final report  

Microsoft Academic Search

The purpose of the study is to determine the current distribution of metals loadings to the South Fork Couer d'Alene River in northern Idaho. Water quality and flow data obtained from EPA Region 10 for September 1986 and September 1987 are used to determine loadings during the low-flow season. Data from May of 1988 are used to determine loadings for

Ridolfi

1991-01-01

101

KILLARNEY LAKE, COEUR D'ALENE RIVER SYSTEM IDAHO - PILOT SAMPLING FOR HEAVY METALS IN FISH FLESH, 1990  

EPA Science Inventory

This study sampled largemouth bass, northern pike, black crappie, brown bullhead, and yellow perch from Killarney Lake, a lateral lake on the Coeur dAlene River in northern Idaho (17010301, 17010303) and analyzed edible flesh for concentrations of zinc, lead, mercury, cadmium, co...

102

Home Range Size and Foraging Ecology of Bull Trout and Westslope Cutthroat Trout in the Upper Salmon River Basin, Idaho  

Microsoft Academic Search

We used radiotelemetry to determine how body size, foraging ecology, and seasonal activity influence the home range size of adult bull trout Salvelinus confluentus and westslope cutthroat trout Oncorhynchus clarkii lewisi in the upper Salmon River basin of central Idaho. Stomach samples were collected to determine diet composition and compare foraging strategies between the two species. Contrary to other studies

Gregory P. Schoby; Ernest R. Keeley

2011-01-01

103

Reproductive Ecology of the Sage Thrasher (Oreoscoptes montanus) on the Snake River Plain in South-central Idaho  

Microsoft Academic Search

The Sage Thrasher (Oreoscoptes montanus) is an abundant and conspicuous breeding species through- out the Snake River Plain in south-central Idaho. The paucity of literature regarding this species reflects a lack of interest in this habitat, rather than indicating the Sage Thrasher's abundance or ease with which it may be studied. No published data on incubation time, nesting success, nesting

TIMOTHY D. REYNOLDS; TERRELL D. RtCH

104

LITTLE MALAD RIVER DRAINAGE ABOVE DANIELS RESERVOIR, ONEIDA COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1981-1982  

EPA Science Inventory

Water quality samples were collected from July 1981 to June 1982 in the Upper Little Malad River Drainage, Idaho (16010204) from tributaries above Daniels Reservoir. Important tributaries are Wright Creek, Dairy Creek, and Little Malad Spring. The major land use in the area is ...

105

Summer Use of Side-Channel Thermal Refugia by Salmonids in the North Fork Coeur dAlene River, Idaho  

Microsoft Academic Search

We observed aggregations of westslope cutthroat trout Oncorhynchus clarkii lewisi, mountain whitefish Prosopium williamsoni, and to a lesser extent, rainbow trout Oncorhynchus mykiss moving into cold side channels in the North Fork Coeur dAlene River in northern Idaho during the summer of 2007. The use of cold side channels varied throughout the season, as well as by size-class. Such use

Bryan S. Stevens; Joseph M. DuPont

2011-01-01

106

MAJOR SOURCES OF NITROGEN INPUT AND LOSS IN THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING, 1990.  

EPA Science Inventory

Total nitrogen input and loss from cattle manure, fertilizer, legume crops, precipitation, and domestic septic systems in the upper Snake River Basin, Idaho and western Wyoming (1704), were estimated by county for water year 1990. The purpose of these estimations was to rank inp...

107

Rivers  

NSDL National Science Digital Library

This video segment from IdahoPTV's D4K takes you on a trip down Idaho's Snake River near 1000 Springs and Blur Heart Springs while it explains how rivers are formed, their uses, and how they make valleys, canyons and even plains.

Idaho PTV

2011-09-04

108

The Geology of East Butte, a Rhyolitic Volcanic Dome on the Eastern Snake River Plain, Idaho  

NASA Technical Reports Server (NTRS)

East Butte is a prominent volcanic dome located on the eastern Snake River Plain. It is situated 51 km west of Idaho Fallls in the southeast corner of the Idaho National Engineering facility. East Butte rises 350 meters above the Quaternary basalt flows which encircle its 2.4 kilometer diameter base. Its maximum elevation is 2003 meters above sea level. East Butte is composed dominantly of rhyolite. Armstrong and others (1975) determined a K-Ar age of 0.6 +/- m.y. for a rhyolite sample from East Butte. Detailed geologic mapping revealed East Butte to be a single, large cumulo-dome composed dominantly of rhyolite. Major element geochemical analyses indicate that the rhyolite of East Butte is mildly peralkaline (molecular excess of Na2O and K2O over Al2O3 and compositionally homogeneous. Color variations in the East Butte rhyolite result from varying amounts of chemical and physical weathering and to the degree of devitrification that the glass in the groundmass of the rhyolite underwent.

Bretches, J. E.; King, J. S.

1985-01-01

109

Large-volume, low-??18O rhyolites of the central Snake River Plain, Idaho, USA  

USGS Publications Warehouse

The Miocene Bruneau-Jarbidge and adjacent volcanic fields of the central Snake River Plain, southwest Idaho, are dominated by high-temperature rhyolitic tuffs and lavas having an aggregate volume estimated as 7000 km3. Samples from units representing at least 50% of this volume are strongly depleted in 18O, with magmatic feldspar ??18OVSMOW (Vienna standard mean ocean water) values between -1.4??? and 3.8???. The magnitude of the 18O depletion and the complete lack of any rhyolites with normal values (7???-10???) combine to suggest that assimilation or melting of a caldera block altered by near-contemporaneous hydrothermal activity is unlikely. Instead, we envisage generation of the high-temperature rhyolites by shallow melting of Idaho Batholith rocks, under the influence of the Yellowstone hotspot, affected by Eocene meteoric-hydrothermal events. The seeming worldwide scarcity of strongly 18O-depleted rhyolites may simply reflect a similar scarcity of suitable crustal protoliths. ?? 2005 Geological Society of America.

Boroughs, S.; Wolff, J.; Bonnichsen, B.; Godchaux, M.; Larson, P.

2005-01-01

110

Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry  

SciTech Connect

The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer. We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.

Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood

2014-02-01

111

Bedrock erosion in the lower Big Wood River channel, southcentral Idaho  

SciTech Connect

The Big Wood River, which is fed from the mountains to the north of the Snake River Plain, cuts through 0.8 m.y. old basalt in an area north and east of Shoshone, Idaho. The basalt channel carved by the Big Wood River exhibits remarkable and unusual bedrock erosional features. Approximately 10,000 years ago, nearby Black Butte shield volcano erupted basaltic lave which rerouted the Big Wood River. At the time the new river channel formed 10,000 years ago, alpine glaciers in the mountains were also beginning to melt. High flows of water from the melting glaciers during the next few thousand years carried large sediment loads and were instrumental in developing the spectacular potholes now found in the channel. Most of the scouring agents are pebbles and cobbles derived from quartzite, granitic, and gneissic rocks. As potholes began to develop, they were closely spaced and generally less than 1 m apart. However, as the potholes enlarged and expanded both horizontally and vertically, they coalesced with one another. The merging process occurred when the walls of two or more adjacent potholes were breached by the outward expansion of each pothole. The deeper of the two potholes captured the pebbles of the adjacent pothole. When pebbles are captured, pothole growth is terminated and the more shallow pothole was gradually cannibalized. All of the features within the channel are overprinted with a strong asymmetry caused by the current-driven pebbles against the upstream side of the features. Consequently, the upstream side of the features tends to be smooth, convex and rounded; whereas, the downstream side tends to be concave with the leading edge of the feature pointing in the downstream direction.

Maley, T.S.; Oberlindacher, P. (Bureau of Land Management, Boise, ID (United States))

1993-04-01

112

Hydrothermal Injection Program: Raft River (KGRA) Idaho, 1982 test data index  

SciTech Connect

Presented is an index for the Hydrothermal Injection Program test data collected over a three-month testing and monitoring period, starting September 1, 1982 at the Raft River Geothermal Site located in Southern Idaho. The test program consisted of injecting tracer solutions into a geothermal well, and the withdrawing the fluid from the same well, either immediately, or after a quiescent period. These data, stored on tape at the National Technical Information Service (NTIS), US Department of Commerce, Springfield, Virginia, consist of concentrations of injected tracer solutions, natural water chemistry, wellhead temperature, pressure and flow, downhole temperature and conductivity, caliper and spinner data along with wellhead pressure responses of the monitoring wells. The stored data have been screened to ensure that they are reasonable and internally consistent.

Freiburger, R.M.; Hull, L.C.; Clemo, T.M.

1985-04-01

113

Chemical analyses of ground water related to geothermal investigations in the Teton River area, eastern Idaho  

USGS Publications Warehouse

Water samples from 31 wells and springs in eastern Idaho and western Wyoming were collected to help evaluate the potential geothermal resources in the Teton River area. Water analyses included anions and cations, oxygen-18, deuterium, and several minor elements. Actual temperature of the thermal waters ranged from 23 to 49C. Estimated aquifer temperatures, as derived from geochemical thermometers, ranged from 45 to 145C based on sodium-potassium-calcium ratios. Using the cation thermometer, two analyses indicated aquifer temperatures lower than actual measured temperatures. Using a mixing model method, estimated temperatures ranged from 205 to 320C, the higher being of questionable value. The different methods used showed little correlation. Based on isotope data, the warm waters may be of local meteoric origin and not heated enough to react significantly with aquifer rocks; or, they originated as precipitation at high altitude and great distance from the area. (Woodard-USGS)

Crosthwaite, E.G.

1979-01-01

114

Can superior natural amenities create high-quality employment opportunities? The case of nonconsumptive river recreation in central Idaho  

USGS Publications Warehouse

Central Idaho has superior environmental amenities, as evidenced by exceptionally high-value tourism, such as guided whitewater rafting. The focus of our study concerns the attainment of high-quality jobs in a high-quality natural environment. We estimate cumulative wage rate effects unique to nonconsumptive river recreation in central Idaho for comparison with other sectors. The cumulative effects are based on a detailed survey of recreation spending and a modified synthesized input-output model. Cumulative wage rate effects support using the abundance of environmental amenities to expand and attract high-wage, environmentally sensitive firms, as opposed to expanded tourism to improve employment quality. Copyright ?? 2005 Taylor & Francis Inc.

McKean, J.R.; Johnson, D.M.; Johnson, R.L.; Taylor, R.G.

2005-01-01

115

Digital Map of Surficial Geology, Wetlands, and Deepwater Habitats, Coeur d'Alene River Valley, Idaho  

USGS Publications Warehouse

The Coeur d'Alene (CdA) River channel and its floodplain in north Idaho are mostly covered by metal-enriched sediments, partially derived from upstream mining, milling and smelting wastes. Relative to uncontaminated sediments of the region, metal-enriched sediments are highly enriched in silver, lead, zinc, arsenic, antimony and mercury, copper, cadmium, manganese, and iron. Widespread distribution of metal-enriched sediments has resulted from over a century of mining in the CdA mining district (upstream), poor mine-waste containment practices during the first 80 years of mining, and an ongoing series of over-bank floods. Previously deposited metal-enriched sediments continue to be eroded and transported down-valley and onto the floodplain during floods. The centerpiece of this report is a Digital Map Surficial Geology, Wetlands and Deepwater Habitats of the Coeur d'Alene (CdA) River valley (sheets 1 and 2). The map covers the river, its floodplain, and adjacent hills, from the confluence of the North and South Forks of the CdA River to its mouth and delta front on CdA Lake, 43 linear km (26 mi) to the southwest (river distance 58 km or 36 mi). Also included are the following derivative theme maps: 1. Wetland System Map; 2. Wetland Class Map; 3. Wetland Subclass Map; 4. Floodplain Map; 5. Water Regime Map; 6. Sediment-Type Map; 7. Redox Map; 8. pH Map; and 9. Agricultural Land Map. The CdA River is braided and has a cobble-gravel bottom from the confluence to Cataldo Flats, 8 linear km (5 mi) down-valley. Erosional remnants of up to four alluvial terraces are present locally, and all are within the floodplain, as defined by the area flooded in February of 1996. High-water (overflow) channels and partly filled channel scars braid across some alluvial terraces, toward down-valley marshes and (or) oxbow ponds, which drain back to the river. Near Cataldo Flats, the river gradient flattens, and the river coalesces into a single channel with a large friction-dominated central sand bar at Cataldo Landing. Metal-enriched sediments that were dredged from the central sand bar were deposited on Cataldo Flats, to form extensive dredge-spoil deposits. From the central sand bar to CdA Lake, thick deposits of metal-enriched sand partially fill the middle of the pre-mining-era channel along straight reaches, and form point-bars along the inside margins of meander bends. Metal-enriched sand and silt form oxidized bank-wedge deposits along riverside margins of pre-mining-era levees of gray silty mud. Metal-enriched levee sand deposits extend across bank wedges and natural levees, generally thinning and fining away from the river, toward lateral marshes and lakes, where dark gray metal-enriched silt and mud overlie silty peat, deposited before the mining era. Distributary streams and man-made canals locally diverge from the river, connecting it to lateral marshes and lakes, and metal-enriched sand splays locally fan out across the floodplain. At the mouth of the river, a bouyancy-dominated river-mouth bar crests beyond the ends of the emergent levees. Thick delta-front deposits of metal-enriched sand slope from the river-mouth bar to the bottom of CdA Lake.

Bookstrom, Arthur A.; Box, Stephen E.; Jackson, Berne L.; Brandt, Theodore R.; Derkey, Pamela D.; Munts, Steven R.

1999-01-01

116

Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique  

Microsoft Academic Search

Ferruginous fluvial sediments deposited on the banks and on the floodplain of the Coeur d'Alene River in northern Idaho have been contaminated by trace metals released by mining activities in and around the town of Kellogg, Idaho. These ferruginous sediments are amenable to detection and mapping by remotely sensed data. Data collected by the Airborne Visible\\/Infrared Imaging Spectrometer (AVIRIS) were

William H. Farrand; Joseph C. Harsanyi

1997-01-01

117

Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho  

USGS Publications Warehouse

Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake levels have decreased from as high as 1830 m to 1806 m above sea level since the early Pleistocene due to episodic downcutting by the Bear River. The oldest exposed lacustrine sediments in Bear Lake Valley are probably of Pliocene age. Several high-lake phases during the early and middle Pleistocene were separated by episodes of fluvial incision. Threshold incision was not constant, however, because lake highstands of as much as 8 m above bedrock threshold level resulted from aggradation and possibly landsliding at least twice during the late-middle and late Pleistocene. Abandoned stream channels within the low-lying, fault-bounded region between Bear Lake and the modern Bear River show that Bear River progressively shifted northward during the Holocene. Several factors including faulting, location of the fluvial fan, and channel migration across the fluvial fan probably interacted to produce these changes in channel position. Late Quaternary slip rates on the east Bear Lake fault zone are estimated by using the water-level history of Bear Lake, assuming little or no displacement on dated deposits on the west side of the valley. Uplifted lacustrine deposits representing Pliocene to middle Pleistocene highstands of Bear Lake on the footwall block of the east Bear Lake fault zone provide dramatic evidence of long-term slip. Slip rates during the late Pleistocene increased from north to south along the east Bear Lake fault zone, consistent with the tectonic geomorphology. In addition, slip rates on the southern section of the fault zone have apparently decreased over the past 50 k.y. Copyright ?? 2009 The Geological Society of America.

Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

2009-01-01

118

PHYSICAL AND CHEMICAL WATER QUALITY OF THE SPOKANE RIVER OUTLET REACH OF LAKE COEUR D'ALENE, KOOTENAI COUNTY, IDAHO. 1990 AND 1991  

EPA Science Inventory

The University of Idaho conducted a water quality study on the Spokane River outlet arm of Lake Coeur dAlene (17010305, 17010303) from June 1990 through September 1991. Objectives of the study were: to characterize baseline river water quality; to determine seasonal river water ...

119

Geothermal resource analysis in the Big Wood River Valley, Blaine County, Idaho  

SciTech Connect

A geochemical investigation of both thermal and nonthermal springs in the Wood River area was conducted to determine possible flowpaths, ages of the waters, and environmental implications. Seven thermal springs and five cold springs were sampled for major cations and anions along with arsenic, lithium, boron, deuterium and oxygen-18. Eight rocks, representative of outcrops at or near the thermal occurrences were sampled and analyzed for major and trace elements. The Wood River area hydrothermal springs are dilute Na-HCO{sub 3}-SiO{sub 2} type waters. Calculated reservoir temperatures do not exceed 100{degree}C, except for Magic Hot Springs Landing well (108{degree}C with Mg correction). The isotope data suggest that the thermal water is not derived from present-day precipitation, but from precipitation when the climate was much colder and wetter. Intrusive igneous rocks of the Idaho batholith have reacted with the hydrothermal fluids at depth. The co-location of the thermal springs and mining districts suggests that the structures acting as conduits for the present-day hydrothermal fluids were also active during the emplacement of the ore bodies.

Street, L.V.

1990-10-01

120

Steelhead Supplementation Studies; Steelhead Supplementation in Idaho Rivers, Annual Report 2002.  

SciTech Connect

The Steelhead Supplementation Study (SSS) has two broad objectives: (1) investigate the feasibility of supplementing depressed wild and natural steelhead populations using hatchery populations, and (2) describe the basic life history and genetic characteristics of wild and natural steelhead populations in the Salmon and Clearwater Basins. Idaho Department of Fish and Game (IDFG) personnel stocked adult steelhead from Sawtooth Fish Hatchery into Frenchman and Beaver creeks and estimated the number of age-1 parr produced from the outplants since 1993. On May 2, 2002, both Beaver and Frenchman creeks were stocked with hatchery adult steelhead. A SSS crew snorkeled the creeks in August 2002 to estimate the abundance of age-1 parr from brood year (BY) 2001. I estimated that the yield of age-1 parr per female stocked in 2001 was 7.3 and 6.7 in Beaver and Frenchman creeks, respectively. SSS crews stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 in the Red River drainage to assess which life stage produces more progeny when the adults return to spawn. In 2002, Clearwater Fish Hatchery personnel operated the Red River weir to trap adults that returned from these stockings. Twelve PIT-tagged adults from the smolt releases and one PIT-tagged adult from fingerling releases were detected during their migration up the mainstem Columbia and Snake rivers, but none from either group were caught at the weir. The primary focus of the study has been monitoring and collecting life history information from wild steelhead populations. An adult weir has been operated annually since 1992 in Fish Creek, a tributary of the Lochsa River. The weir was damaged by a rain-on-snow event in April 2002 and although the weir remained intact, some adults were able to swim undetected through the weir. Despite damage to the weir, trap tenders captured 167 adult steelhead, the most fish since 1993. The maximum likelihood estimate of adult steelhead escapement was 242. A screw trap has been operated annually in Fish Creek since 1994 to estimate the number of emigrating parr and smolts. I estimated that 18,687 juvenile steelhead emigrated from Fish Creek in 2002, the lowest number of migrants since 1998. SSS crews snorkeled three streams in the Selway River drainage and 10 streams in the Lochsa River drainage to estimate juvenile steelhead densities. The densities of age-1 steelhead parr declined in all streams compared to the densities observed in 2001. The age-1 densities in Fish Creek and Gedney Creek were the lowest observed since this project began monitoring those populations in 1994. The SSS crews and other cooperators tagged more than 12,000 juvenile steelhead with passive integrated transponder (PIT) tags in 2002. In 2002, technicians mounted and aged steelhead scales that were collected from 1998 to 2001. A consensus was reached among technicians for age of steelhead juveniles from Fish Creek. Scales that were collected in other streams were aged by at least one reader; however, before a final age is assigned to these fish, the age needs to be verified by another reader and any age differences among readers resolved. Dr. Jennifer Nielsen, at the U.S. Geological Survey Alaska Biological Science Center, Anchorage continued the microsatellite analysis of the steelhead tissue samples that were collected from Idaho streams in 2000. Two thousand eighteen samples from 40 populations were analyzed. The analysis of the remaining 39 populations is continuing.

Byrne, Alan

2003-03-01

121

Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho  

SciTech Connect

Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, <0.5 m in height, and from 8 to 14 m in diameter. They are found on flat and sloped surfaces, and appear less frequently in lowland areas. The mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dug to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a {open_quotes}floor{close_quotes} of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief.

Tullis, J.A.

1995-09-01

122

Hydrologic Conditions and Distribution of Selected Constituents in Water, Snake River Plain Aquifer, Idaho National Engineering and Environmental Laboratory, Idaho, 1996 through 1998  

SciTech Connect

Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering and Environmental Laboratory (INEEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEEL to determine hydrologic trends and to delineate the movement to radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1996-98. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEEL decreased or remained constant during 1996-98. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption process, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEEL were variable during 1996-98.

R. C. Bartholomay; B. J. Tucker; L. C. Davis; M. R. Greene

2000-09-01

123

Water Resources of Idaho  

NSDL National Science Digital Library

This United States Geological Survey (USGS) website highlights water resources in the state of Idaho. Details about hydrology programs in the state include ground water data, water quality information, water use in the state of Idaho, surface water, Idaho programs, reports, flood and drought information, and state projects on ice core research and various rivers. There are links to more sites for additional information.

124

Ground-water quality in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho  

USGS Publications Warehouse

Water-quality data were collected from 92 wells in the western Snake River basin, Swan Falls to Glenns Ferry, Idaho. Current data were compiled with pre-1980 data from 116 wells to define water-quality conditions in major aquifers. Factors affecting water quality are composition of aquifer materials, water temperature, and source of recharge. Mixing of water by interaquifer flow, from confined, hot water aquifers (40 degrees Celsius or greater) with water from cold water aquifers (less than 20 degrees Celsius) occurs along regional complex fault systems, and through partially cased boreholes. Cold water generally contains calcium, magnesium, and bicarbonate plus carbonate ions; hot water generally contains sodium, potassium, and bicarbonate plus carbonate ions. Warm water (between 20 degrees and 40 degrees Celsius) has an intermediate chemical composition resulting from mixing. Ground-water quality is acceptable for most uses, although it locally contains chemical constituents or physical properties that may restrict its use. Effects of thermal water used for irrigation on quality of shallow ground water are inconclusive. Long-term increase in concentrations of several constituents in parts of the study area may be due to effects of land- and water-use activities, such as infiltration of septic-tank effluent. (USGS)

Parliman, D.J.

1983-01-01

125

Carbonate pseudomatrix in siliciclastic-carbonate turbidites from the Oquirrh-Wood River basin, southern Idaho  

SciTech Connect

Upper Pennsylvanian to Lower Permian mixed siliciclastic-carbonate sandy turbidites from the Oquirrh-Wood River basin in southern Idaho contain 20 to 60 modal percent microspar and pseudospar. Previous interpretations suggested that neomorphism of detrital lime mud produced the observed carbonate textures. The original detrital lime mud produced the observed carbonate textures. The original detrital lime mud content, based on these interpretations, indicates matrix-rich, poorly sorted turbidite deposits. However, observed turbidite hydrodynamics, and grain-size data from experimental and naturally occurring sandy turbidite deposits, indicate that T[sub n]-T[sub c] intervals of sandy turbidites are generally moderately well sorted, with low matrix content. Fluorescence microscopy reveals that the carbonate fraction of these mixed siliciclastic-carbonate turbidites contains micritized skeletal grains and fusulinids, and algal peloids. These micritized grains and peloids were physically compacted and neomorphosed to form a carbonate pseudomatrix. Formation of carbonate pseudomatrix is analogous to formation of pseudomatrix in siliciclastic lithic sands, which includes crushing and recrystallization of lithic grains. Grain-size analysis of siliciclastic and slightly compacted carbonate grains indicates that these are moderately well sorted turbidite deposits with similar grain-size populations in both fractions. Lack of recognition of carbonate pseudomatrix could lead to erroneous interpretations of carbonate petrology. Identification of carbonate pseudomatrix is important to the study of mixed siliciclastic-carbonate gravity-flow deposits. This study demonstrates the value of fluorescence microscopy in the recognition of carbonate pseudomatrix.

Geslin, J.K. (Univ. of California, Los Angeles, CA (United States). Dept. of Earth and Space Sciences)

1994-01-01

126

Assessing riparian shade for the Lemhi River, Idaho using LiDAR: A point cloud analysis  

NASA Astrophysics Data System (ADS)

Riparian vegetation plays a crucial role in shading streams by reducing the amount of incoming solar insolation that would otherwise reach the water surface, negatively affecting water temperature and photosynthetic organisms within the water column. Unlike incoming solar insolation, riparian shade can be manipulated by adding or removing riparian vegetation, making it attractive for restoration as well as thermal credit trading programs. Before riparian shade can be evaluated in such trading programs, the existing riparian vegetation needs to be quantified. Several studies have investigated the utility of LiDAR derived canopy height models for estimating riparian shade, however, few to no studies have used point cloud data as a direct model input in order to improve the riparian shade estimates. Using point cloud data increases spatial resolution and the ability to extract vegetation shape information without losses due to interpolation/rasterization. In this study, we assessed the ability of LiDAR point cloud data to estimate riparian shade for 32 km of the Lemhi River in north central Idaho. Riparian shade quantification of the point cloud and canopy height models are compared to shade values calculated using established models in practice.

Spaete, L.; Glenn, N. F.; Shrestha, R.; Shumar, M. L.; Mitchell, J.

2012-12-01

127

A Late Pleistocene to Holocene Record of Precipitation Reflected in Margaritifera falcata Shell ? 18O From Three Archaeological Sites in the Lower Salmon River Canyon, Idaho  

Microsoft Academic Search

Oxygen-18 (?18O) concentrations in Margaritifera falcata shells preserved in three archaeological sites in the Lower Salmon River Canyon of Idaho are compared with modern mussel shells. Shell ?18O records show that Late Pleistocene and Early Holocene climates were drier with occasional periods of increased precipitation. After c.4000 years bp, precipitation is higher in the Salmon River basin than at present

Loren G. Davis; Karlis Muehlenbachs

2001-01-01

128

Antioxidant Capacity and Stilbene Contents of Wines Produced in the Snake River Valley of Idaho  

Technology Transfer Automated Retrieval System (TEKTRAN)

Forty-two Idaho cultivated and produced wines were examined in this study. The samples examined were made up of four monovarietal wines (12 Cabernet Sauvignon, 9 Merlot, 7 Riesling, 14 Chardonnay). Wine samples represented twelve wineries that source their fruit from vineyards located within Idaho's...

129

Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho  

USGS Publications Warehouse

The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and metamorphosed to some degree, thus rock types and their relationships vary over distance. Quaternary-age sediment and basalt compose the primary source of groundwater in the Wood River Valley aquifer system. These Quaternary deposits can be divided into three units: a coarse-grained sand and gravel unit, a fine-grained silt and clay unit, and a single basalt unit. The fine- and coarse-grained units were primarily deposited as alluvium derived from glaciation in the surrounding mountains and upper reaches of tributary canyons. The basalt unit is found in the southeastern Bellevue fan area and is composed of two flows of different ages. Most of the groundwater produced from the Wood River Valley aquifer system is from the coarse-grained deposits. The altitude of the pre-Quaternary bedrock surface in the Wood River Valley was compiled from about 1,000 well-driller reports for boreholes drilled to bedrock and about 70 Horizontal-to-Vertical Spectral Ratio (HVSR) ambient-noise measurements. The bedrock surface generally mimics the land surface by decreasing down tributary canyons and the main valley from north to south; it ranges from more than 6,700 feet in Baker Creek to less than 4,600 feet in the central Bellevue fan. Most of the south-central portion of the Bellevue fan is underlain by an apparent topographically closed area on the bedrock surface that appears to drain to the southwest towards Stanton Crossing. Quaternary sediment thickness ranges from less than a foot on main and tributary valley margins to about 350 feet in the central Bellevue fan. Hydraulic conductivity for 81 wells in the study area was estimated from well-performance tests reported on well-driller reports. Estimated hydraulic conductivity for 79 wells completed in alluvium ranges from 1,900 feet per day (ft/d) along Warm Springs Creek to less than 1 ft/d in upper Croy Canyon. A well completed in bedrock had an estimated hydraulic conductivity value of 10 ft/d, one well completed in basalt had a value of 50 ft/d, and three wells completed in the confined system had values ranging from 32 to 52 ft/

Bartolino, James R.; Adkins, Candice B.

2012-01-01

130

Spawning Success of Hatchery Spring Chinook Salmon Outplanted as Adults in the Clearwater River Basin, Idaho, 2001.  

SciTech Connect

The study described in this report evaluated spawning distribution, overlap with naturally-arriving spawners, and pre-spawning mortality of spring chinook salmon, Oncorhynchus tshawytscha, outplanted as adults in the Clearwater River Subbasin in 2001. Returns of spring chinook salmon to Snake River Basin hatcheries and acclimation facilities in 2001 exceeded needs for hatchery production goals in Idaho. Consequently, management agencies including the U.S. Fish and Wildlife Service (FWS), Idaho Department of Fish and Game (IDFG) and Nez Perce Tribe (NPT) agreed to outplant chinook salmon adults as an adaptive management strategy for using hatchery adults. Adult outplants were made in streams or stream sections that have been typically underseeded with spawners. This strategy anticipated that outplanted hatchery chinook salmon would spawn successfully near the areas where they were planted, and would increase natural production. Outplanting of adult spring chinook salmon from hatcheries is likely to be proposed in years when run sizes are similar to those of the 2001 run. Careful monitoring of results from this year's outplanting can be used to guide decisions and methods for future adult outplanting. Numbers of spring chinook salmon outplanted was based on hatchery run size, hatchery needs, and available spawning habitat. Hatcheries involved in outplanting in the Clearwater Basin included Dworshak National Fish Hatchery, Kooskia National Fish Hatchery, Clearwater Anadromous Fish Hatchery, and Rapid River Fish Hatchery. The NPT, IDFG, FWS, and the National Marine Fisheries Service (NMFS) agreed upon outplant locations and a range of numbers of spring chinook salmon to be outplanted (Table 1). Outplanting occurred mainly in the Selway River Subbasin, but additional outplants were made in tributaries to the South Fork Clearwater River and the Lochsa River (Table 1). Actual outplanting activities were carried out primarily by the NPT with supplemental outplanting done in the Lochsa basin by IDFG. Fish were trucked from the hatcheries to outplant sites.

Cramer, Steven P.; Ackerman, Nichlaus; Witty, Kenneth L.

2002-04-16

131

Lead exposure and poisoning of songbirds using the Coeur d'Alene River Basin, Idaho, USA.  

PubMed

Previous studies have found widespread Pb poisoning of waterfowl in the Coeur d'Alene River Basin in northern Idaho, USA, which has been contaminated by mining and smelting activities. We studied the exposure of ground-feeding songbirds to Pb, sampling 204 American robins (Turdus migratorius), song sparrows (Melospiza melodia), and Swainson's thrushes (Catharus ustulatus) throughout the basin. These songbirds had mean blood Pb concentrations (mg/kg, dry weight) of less than 0.19 at a reference area (25 mg Pb/kg soil), 1.09 at moderately contaminated sites (170 to 1300 mg Pb/kg soil), and 2.06 at highly contaminated sites (2000 to 5000 mg Pb/kg soil). Based on guidelines for evaluating blood Pb in birds, 6% of robins from the highly contaminated sites had background concentrations, 24% were subclinically poisoned, 52% were clinically poisoned, and 18% were severely clinically poisoned with Pb. Blood Pb concentrations were lower in song sparrows than in robins and lowest in Swainson's thrushes. More than half of the robins and song sparrows from all contaminated sites and more than half of the Swainson's thrushes from highly contaminated sites showed at least 50% inhibition of the activity of the enzyme ?-aminolevulinic acid dehydratase (ALAD), commonly used as a measure of exposure to Pb. The highest hepatic Pb concentration of 61 mg/kg (dry weight) was detected in a song sparrow. Using Al as a marker for soil in songbird ingesta, we estimated average soil ingestion rates as 20% in robins, 17% in song sparrows, and 0.7% in Swainson's thrushes. Soil Pb in ingesta accounted for almost all of the songbirds' exposure to Pb. Based on these results, it is recommended that ecological risk assessments of ground-feeding songbirds at contaminated sites include soil ingestion as a pathway of exposure to Pb. PMID:21538831

Hansen, James A; Audet, Daniel; Spears, Brian L; Healy, Kate A; Brazzle, Roy E; Hoffman, David J; Dailey, Anne; Beyer, W Nelson

2011-10-01

132

Lead exposure and poisoning of songbirds using the Coeur d'Alene River Basin, Idaho  

USGS Publications Warehouse

Previous studies have found widespread Pb poisoning of waterfowl in the Coeur d'Alene River Basin in northern Idaho, USA, which has been contaminated by mining and smelting activities. We studied the exposure of ground-feeding songbirds to Pb, sampling 204 American robins (Turdus migratorius), song sparrows (Melospiza melodia), and Swainson's thrushes (Catharus ustulatus) throughout the basin. These songbirds had mean blood Pb concentrations (mg/kg, dry weight) of less than 0.19 at a reference area (25 mg Pb/kg soil), 1.09 at moderately contaminated sites (170 to 1300 mg Pb/kg soil), and 2.06 at highly contaminated sites (2000 to 5000 mg Pb/kg soil). Based on guidelines for evaluating blood Pb in birds, 6% of robins from the highly contaminated sites had background concentrations, 24% were subclinically poisoned, 52% were clinically poisoned, and 18% were severely clinically poisoned with Pb. Blood Pb concentrations were lower in song sparrows than in robins and lowest in Swainson's thrushes. More than half of the robins and song sparrows from all contaminated sites and more than half of the Swainson's thrushes from highly contaminated sites showed at least 50% inhibition of the activity of the enzyme ?-aminolevulinic acid dehydratase (ALAD), commonly used as a measure of exposure to Pb. The highest hepatic Pb concentration of 61 mg/kg (dry weight) was detected in a song sparrow. Using Al as a marker for soil in songbird ingesta, we estimated average soil ingestion rates as 20% in robins, 17% in song sparrows, and 0.7% in Swainson's thrushes. Soil Pb in ingesta accounted for almost all of the songbirds' exposure to Pb. Based on these results, it is recommended that ecological risk assessments of ground-feeding songbirds at contaminated sites include soil ingestion as a pathway of exposure to Pb.

Hansen, James A.; Audet, Daniel; Spears, Brian L.; Healy, Kate A.; Brazzle, Roy E.; Hoffman, David J.; Dailey, Anne; Beyer, W. Nelson

2011-01-01

133

Seismic Reflection Project Near the Southern Terminations of the Lost River and Lemhi Faults, Eastern Snake River Plain, Idaho  

SciTech Connect

Thirteen seismic reflection lines were processed and interpreted to determine the southern terminations of the Lost River and Lemhi faults along the northwest boundary of the eastern Snake River Plain (ESRP). The southernmost terminations of the Arco and Howe segments were determined to support characterization of the Lost River and Lemhi fault sources, respectively, for the INL probabilistic seismic hazard analysis. Keywords:Keywords are required forExternal Release Review*KeywordsKeywords *Contacts (Type and Name are required for each row) Type ofContactContact Name POC Editor RecordFour commercial seismic reflection lines (Arco lines 81-1 and 81-2; Howe lines 81-3 and 82-2) were obtained from the Montana Power Company. The seismic data were collected in the early 1980s using a Vibroseis source with station and shot point locations that resulted in 12-fold data. Arco lines 81?1 and 81?2 and Howe lines 81?3 and 82?2 are located within the basins adjacent to the Arco and Howe segments, respectively. Seven seismic lines (Arco lines A1, A2, A3, and A4 and Howe lines H1, H2, and H3) were acquired by EG&G Idaho, Inc. Geosciences for this study using multiple impacts with an accelerated weight drop source. Station and shot point locations yielded 12-fold data. The seismic reflection lines are oriented perpendicular to and at locations along the projected extensions of the Arco and Howe fault segments within the ESRP. Two seismic lines (Arco line S2 and Howe line S4) were obtained from Sierra Geophysics. In 1984, they acquired seismic reflection data using an accelerated weight drop source with station and shot point locations that yielded 6-fold data. The two seismic reflection lines are oriented perpendicular to and at locations along the projected extensions of the Arco and Howe fault segments within the ESRP. In 1992 for this study, Geotrace Technologies Inc. processed all of the seismic reflection data using industry standard processing techniques. The southern termination of the Howe segment of the Lemhi fault was placed between Howe lines H1 and H2, 2.2 km south of the faults southernmost surface expression. In the adjacent basin, south-dipping normal faults at the northern end of Howe line 81-3 and two southwest-dipping normal faults at the northeastern end of Howe line 82-2 that can be correlated with Howe segment. South of the surface expression, two southwest-dipping normal faults on Howe line H1 can be correlated with the Howe segment. Further into the ESRP, Howe lines H2, H3, and S4 show continuous flat lying reflectors and indicate no fault offset. The southern termination of the Arco segment of the Lost River fault was placed between Arco lines S2 and A3, a distance of 4.6 km south of the faults southernmost surface expression. Within the basin, west-dipping normal faults interpreted on Arco lines 81-1 and 81-2 can be correlated with the Arco segment. Further south within the Arco volcanic rift zone (VRZ), three seismic lines (Arco lines A2, S2, and A3) permit two interpretations. The west- and south-dipping normal faults on Arco lines A2 and S2 could be associated with slip along the Arco segment. These normal faults have an opposite dip to an east-dipping fault on Arco line A3. The observed small-offsets (< 85 m) along the oppositely dipping normal faults can be interpreted as a graben structure that resulted from dike intrusion within the Arco VRZ. Arco line A4 further south within the Arco VRZ shows flat lyin

S. M. Jackson; G. S. Carpenter; R. P. Smith; J. L. Casper

2006-10-01

134

Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho  

USGS Publications Warehouse

Sediments are believed to comprise as much as 50 percent of the Snake River Plain aquifer thickness in some locations within the Idaho National Laboratory. However, the hydraulic properties of these deep sediments have not been well characterized and they are not represented explicitly in the current conceptual model of subregional scale ground-water flow. The purpose of this study is to evaluate the nature of the sedimentary material within the aquifer and to test the applicability of a site-specific property-transfer model developed for the sedimentary interbeds of the unsaturated zone. Saturated hydraulic conductivity (Ksat) was measured for 10 core samples from sedimentary interbeds within the Snake River Plain aquifer and also estimated using the property-transfer model. The property-transfer model for predicting Ksat was previously developed using a multiple linear-regression technique with bulk physical-property measurements (bulk density [pbulk], the median particle diameter, and the uniformity coefficient) as the explanatory variables. The model systematically underestimates Ksat,typically by about a factor of 10, which likely is due to higher bulk-density values for the aquifer samples compared to the samples from the unsaturated zone upon which the model was developed. Linear relations between the logarithm of Ksat and pbulk also were explored for comparison.

Perkins, Kim S.

2008-01-01

135

Project HOTSPOT: Borehole geophysics log interpretation from the Snake River Plain, Idaho  

NASA Astrophysics Data System (ADS)

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberely, and (3) Mountain Home. The most eastern drill hole is Kimama located along the central volcanic axis of the SRP and documents basaltic volcanism. The Kimberely drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama drill hole and is located near the margin of the plain. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. A suite of ground and borehole geophysical surveys were carried out within the SRP between 2010 and 2012. The borehole geophysics logs included gamma ray (spectral and natural), neutron hydrogen index, electrical resistivity, magnetic susceptibility, ultrasonic borehole televiewer imaging, full waveform sonic, and vertical seismic profile. The borehole geophysics logs were qualitatively assessed through visual interpretation of lithological horizons and quantitatively through physical property specialized software and digital signal processing automated filtering process to identify step functions and high frequency anomalies. Preliminary results were published by Schmitt et al. (2012), Potter et al. (2012), and Shervais et al. (2013). The results are continuously being enhanced as more information is qualitatively and quantitatively delineated from the borehole geophysics logs. Each drill hole encounters three principal units: massive basalt flows, rhyolite, and sediments. Basalt has a low to moderate porosity and is low in the natural gamma ray isotopes uranium, thorium, and potassium, while rhyolites produce high total gamma ray responses. Sediment interbeds become apparent as the radioactivity associated with fine grained minerals is significantly higher than that of the host rock (e.g. basalt) due to high hydrogen concentration within the crystal structure of clays. Basalt lacks conductive minerals and results in high resistivity but moderate magnetic susceptibility. The sediments on the other hand are highly conductive and have a low magnetic susceptibility. The basalt and rhyolite units are relatively massive except for fractures which become apparent in the ultrasonic borehole televiewer. Signal is lost in soft sediments resulting in dark regions when full amplitude is displayed for the ultrasonic borehole televiewer. The massive basalt shows short P- and S-wave travel times and therefore a high sonic velocity, while the sediments display only P-wave first arrivals.

Lee, M. D.; Schmitt, D. R.; Chen, X.; Shervais, J. W.; Liberty, L. M.; Potter, K. E.; Kessler, J. A.

2013-12-01

136

Additional mineral resources assessment of the Battle Creek, Bruneau River, Deep Creek-Owyhee River, Jarbidge River, Juniper Creek, Little Owyhee River, North Fork Owyhee River, Owyhee River Canyon, South Fork Owyhee River, Upper Deep Creek, and Yatahoney Creek Wilderness Study Areas, Owyhee County, Idaho  

USGS Publications Warehouse

From 1984 to 1986, studies were conducted to assess the potential for undiscovered mineral resources in wilderness study areas on the Owyhee Plateau. The results of these studies have been published in a series of U.S. Geological Survey Bulletins. Since that time, low-grade, high-tonnage epithermal hot-spring gold-silver deposits have been recognized in the region north of the wilderness study areas. The recognition that this mineral-deposit model is applicable in the region, coupled with new data that has become available to the U.S. Geological Survey, reinterpretation of existing geochemical data, and known-deposit data suggest that similar deposits may be present elsewhere on the Owyhee Plateau. This report is an additional assessment of the Battle Creek, Bruneau River, Deep Creek-Owyhee River, Jarbidge River, Juniper Creek, Little Owyhee River, North Fork Owyhee River, Owyhee River Canyon, South Fork Owyhee River (ID-016-053), Upper Deep Creek, and Yatahoney Creek Wilderness Study Areas in Idaho Wilderness Study Areas in Idaho in light of those new data.

Diggles, Michael F.; Berger, Byron R.; Vander Meulen, Dean B.; Minor, Scott A.; Ach, Jay A.; Sawlan, Michael G.

1989-01-01

137

Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins  

USGS Publications Warehouse

The Franciscan Complex accretionary prism was assembled during an ?165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 5349 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 5337 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (5047 Ma). Plutonism in the Idaho Batholith spanned 9853 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (5340 Ma) and by major volcanism in the Challis volcanic field (5143 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

2013-01-01

138

Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.  

SciTech Connect

Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

Cegelski, Christine C.; Campbell, Matthew R.

2006-05-30

139

Chemical Constituents in Groundwater from Multiple Zones in the Eastern Snake River Plain Aquifer at the Idaho National Laboratory, Idaho, 2005-08  

USGS Publications Warehouse

From 2005 to 2008, the U.S. Geological Survey's Idaho National Laboratory (INL) Project office, in cooperation with the U.S. Department of Energy, collected water-quality samples from multiple water-bearing zones in the eastern Snake River Plain aquifer. Water samples were collected from six monitoring wells completed in about 350-700 feet of the upper part of the aquifer, and the samples were analyzed for major ions, selected trace elements, nutrients, selected radiochemical constituents, and selected stable isotopes. Each well was equipped with a multilevel monitoring system containing four to seven sampling ports that were each isolated by permanent packer systems. The sampling ports were installed in aquifer zones that were highly transmissive and that represented the water chemistry of the top four to five model layers of a steady-state and transient groundwater-flow model. The model's water chemistry and particle-tracking simulations are being used to better define movement of wastewater constituents in the aquifer. The results of the water chemistry analyses indicated that, in each of four separate wells, one zone of water differed markedly from the other zones in the well. In four wells, one zone to as many as five zones contained radiochemical constituents that originated from wastewater disposal at selected laboratory facilities. The multilevel sampling systems are defining the vertical distribution of wastewater constituents in the eastern Snake River Plain aquifer and the concentrations of wastewater constituents in deeper zones in wells Middle 2051, USGS 132, and USGS 103 support the concept of groundwater flow deepening in the southwestern part of the INL.

Bartholomay, Roy C.; Twining, Brian V.

2010-01-01

140

Distribution of heavy-metal loadings to the South Fork Coeur d'Alene River in northern Idaho. Final report  

SciTech Connect

The purpose of the study is to determine the current distribution of metals loadings to the South Fork Couer d'Alene River in northern Idaho. Water quality and flow data obtained from EPA Region 10 for September 1986 and September 1987 are used to determine loadings during the low-flow season. Data from May of 1988 are used to determine loadings for the high-flow season. Total and dissolved loads of arsenic, cadmium, copper, lead, mercury, and zinc are calculated for the river and tributary streams. For the point-source discharges, loadings are calculated using average flow rates and metals concentrations as recorded on monthly NPDES discharge monitoring reports. Diagrams of the South Fork River basin showing sample locations and total metal loadings for cadmium, lead, and zinc are compiled. Because most of the point sources of metals to the South Fork have been effectively controlled, water quality degradation in the basin is in large part a result of non-point sources and remobilization of floodplain and river bed sediment.

Ridolfi, C.A.

1991-02-01

141

A LITERATURE SEARCH TO DETERMINE THE BASE-LINE CONDITIONS AND EFFECTS OF POLLUTION ON THE BIG WOOD RIVER AND MAGIC RESERVOIR, IDAHO. 1977  

EPA Science Inventory

This report examines existing information concerning the ecology of Magic Reservoir and Big Wood River, Idaho (17040219) to determine the background conditions and effects of pollution on these ecosystems. The area is a popular attraction for outdoor recreationists, which has st...

142

Movement, swimming speed, and oxygen consumption of juvenile white sturgeon in response to changing flows, water temperatures, and light level in the Snake River, Idaho  

Microsoft Academic Search

The flow of the Snake River downstream of Hells Canyon Dam, Idaho, frequently fluctuates as the dam responds to power production requirements. These flow fluctuations have the potential to increase the energy used by individual juvenile white sturgeon (Acipenser transmontanus) that move to avoid unfavorable habitat or that alter their swimming speeds to maintain position over a range of velocities.

David R. Geist; Richard S. Brown; Valerie I. Cullinan; Steve R. Brink; Kenneth B. Lepla; Phil Bates; James A. Chandler

2005-01-01

143

BIOLOGICAL METRIC DEVELOPMENT FOR THE ASSESSMENT OF NONPOINT POLLUTION IN THE SNAKE RIVER ECOREGION OF SOUTHERN IDAHO, 1990-91 FINAL REPORT  

EPA Science Inventory

The purpose of this project was to develop and test a biological assessment program for representative streams in the Snake River Basin ecoregion of southern Idaho. A habitat analysis component was included to provide an independent measure of environmental conditions. The over...

144

Changes in the Species Composition of the Fish Community in a Reach of the Kootenai River, Idaho, after Construction of Libby Dam  

Microsoft Academic Search

I evaluated fish community structure and the density and growth of mountain whitefish (Prosopium williamsoni) downstream of Libby Dam in a 1.0-km reach of the Kootenai River, Idaho, in 1994 and compared the results with those of a similar study in 1980, after closure of the dam. In 1980 seven species of fish were collected; mountain whitefish comprised 70% of

Vaughn L. Paragamian

2002-01-01

145

AN EXAMINATION OF THE NUTRIENT AND HEAVY METALS BUDGET IN THE SPOKANE RIVER BETWEEN POST FALLS AND HANGMANS CREEK, IDAHO. 1979-1981  

EPA Science Inventory

High concentrations of heavy metals and the nutrients nitrogen and phosphorus are major water quality problems in the Spokane River, Idaho (17010305) and its tributaries. Heavy metals are in quantity sufficiently high to exceed the 24-hour average criterion given by the USEPA (1...

146

Steelhead Supplementation Studies; Steelhead Supplementation in Idaho Rivers, Annual Report 2002  

Microsoft Academic Search

The Steelhead Supplementation Study (SSS) has two broad objectives: (1) investigate the feasibility of supplementing depressed wild and natural steelhead populations using hatchery populations, and (2) describe the basic life history and genetic characteristics of wild and natural steelhead populations in the Salmon and Clearwater Basins. Idaho Department of Fish and Game (IDFG) personnel stocked adult steelhead from Sawtooth Fish

Byrne

2003-01-01

147

Physiographic factors defining the Snake River Valley AVA; beyond "Vin de Idaho"  

Technology Transfer Automated Retrieval System (TEKTRAN)

Beginning in 1971 with the first plantings of wine grapes, the wine and wine grape industry in southwest Idaho have grown to become significant contributors to the state economy with an annual impact of $75 million. With around 1600 acres under cultivation in 50 vineyards producing at least 24 varie...

148

Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 200910  

USGS Publications Warehouse

During 2009 and 2010, the U.S. Geological Surveys Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly, depth-discrete measurements of fluid pressure and temperature in nine boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Multilevel monitoring at the Idaho National Laboratory has been ongoing since 2006. This report summarizes data collected from three multilevel monitoring wells installed during 2009 and 2010 and presents updates to six multilevel monitoring wells. Hydraulic heads (heads) and groundwater temperatures were monitored from 9 multilevel monitoring wells, including 120 hydraulically isolated depth intervals from 448.0 to 1,377.6 feet below land surface. Quarterly head and temperature profiles reveal unique patterns for vertical examination of the aquifers complex basalt and sediment stratigraphy, proximity to aquifer recharge and discharge, and groundwater flow. These features contribute to some of the localized variability even though the general profile shape remained consistent over the period of record. Major inflections in the head profiles almost always coincided with low-permeability sediment layers and occasionally thick sequences of dense basalt. However, the presence of a sediment layer or dense basalt layer was insufficient for identifying the location of a major head change within a borehole without knowing the true areal extent and relative transmissivity of the lithologic unit. Temperature profiles for boreholes completed within the Big Lost Trough indicate linear conductive trends; whereas, temperature profiles for boreholes completed within the axial volcanic high indicate mostly convective heat transfer resulting from the vertical movement of groundwater. Additionally, temperature profiles provide evidence for stratification and mixing of water types along the southern boundary of the Idaho National Laboratory. Vertical head and temperature change were quantified for each of the nine multilevel monitoring systems. The vertical head gradients were defined for the major inflections in the head profiles and were as high as 2.1 feet per foot. Low vertical head gradients indicated potential vertical connectivity and flow, and large gradient inflections indicated zones of relatively low vertical connectivity. Generally, zones that primarily are composed of fractured basalt displayed relatively small vertical head differences. Large head differences were attributed to poor vertical connectivity between fracture units because of sediment layering and/or dense basalt. Groundwater temperatures in all boreholes ranged from 10.2 to 16.3?C. Normalized mean hydraulic head values were analyzed for all nine multilevel monitoring wells for the period of record (2007-10). The mean head values suggest a moderately positive correlation among all boreholes, which reflects regional fluctuations in water levels in response to seasonality. However, the temporal trend is slightly different when the location is considered; wells located along the southern boundary, within the axial volcanic high, show a strongly positive correlation.

Twining, Brian V.; Fisher, Jason C.

2012-01-01

149

Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.  

SciTech Connect

In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags) was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.

Gass, Carrie; Olson, Jim M. (US Fish and Wildlife Service, idaho Fishery Resource Office, Ahsahka, ID)

2004-11-01

150

An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer, Idaho National Laboratory, Idaho, Emphasis 1999-2001  

USGS Publications Warehouse

Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from wells in the USGS ground-water monitoring networks during 1999-2001. Water in the Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. Water levels in wells rose in the northern and west-central parts of the INL by 1 to 3 feet, and declined in the southwestern parts of the INL by up to 4 feet during 1999-2001. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 1999-2001. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge. Tritium concentrations in water samples decreased as much as 8.3 picocuries per milliliter (pCi/mL) during 1999-2001, ranging from 0.43?0.14 to 13.6?0.6 pCi/mL in October 2001. Tritium concentrations in five wells near the Idaho Nuclear Technology and Engineering Center (INTEC) increased a few picocuries per milliliter from October 2000 to October 2001. Strontium-90 concentrations decreased or remained constant during 1999-2001, ranging from 2.1?0.6 to 42.4?1.4 pCi/L in October 2001. During 1999-2001, concentrations of cesium-137, plutonium-238, and plutonium-239, -240 (undivided) were less than the reporting level in water samples from all wells sampled at the INL. The concentration of americium-241 in one sample was 0.003?0.001 pCi/L, the reporting level for that constituent. Cobalt-60 was not detected in any samples collected during 1999-2001. Changes in detectable concentrations of nonradioactive chemical constituents in water from the Snake River Plain aquifer at the INL varied during 1999-2001. In October 2001, water from one well south of the Reactor Technology Complex (RTC) [known as the Test Reactor Area (TRA) until 2005] contained 139 micrograms per liter (?g/L) of chromium, a decrease from the concentration of 168 ?g/L detected in October 1998. Other water samples contained from less than 16.7 to 21.3 ?g/L of chromium. In October 2001, concentrations of sodium in water samples from most of the wells in the southern part of the INL were larger than the background concentration of 10 mg/L, but were similar to or slightly less than October 1998 concentrations. The largest sodium concentration was 75 milligrams per liter (mg/L) in water from well USGS 113. In 2001, chloride concentrations in most water samples from the INTEC and the Central Facilities Area (CFA) exceeded ambient concentrations of 10 and 20 mg/L, respectively. Chloride concentrations in water from wells near the RTC were less than 20 mg/L. At the Radioactive Waste Management Complex (RWMC), chloride concentrations in water from wells USGS 88, 89, and 120 were 81, 40, and 23 mg/L, respectively. Concentrations of chloride in all other wells near the RWMC were less than 19 mg/L. During 2001, concentrations of sulfate in water from two wells near the RTC, two wells near the RWMC, and one well near the CFA exceeded 40 mg/L, the estimated background concentration of sulfate in the Snake River

Davis, Linda C.

2006-01-01

151

WATER QUALITY INVESTIGATIONS OF SNAKE RIVER AND PRINCIPAL TRIBUTARIES FROM WALTERS FERRY TO WEISER, IDAHO. 1971  

EPA Science Inventory

Stream surveys conducted from 18 October to 10 November 1971 revealed that water upstream of the Boise River was relatively unpolluted, however, bacterial standards were violated. In the reach of the Snake River between the mouth of the Boise River and Weiser (170501), gross vio...

152

Geologic Controls of Hydraulic Conductivity in the Snake River Plain Aquifer At and Near the Idaho National Engineering and Environmental Laboratory, Idaho  

SciTech Connect

The effective hydraulic conductivity of basalt and interbedded sediment that compose the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL) ranges from about 1.0x10 -2 to 3.2x10 4 feet per day (ft/d). This six-order-of-magnitude range of hydraulic conductivity was estimated from single-well aquifer tests in 114 wells, and is attributed mainly to the physical characteristics and distribution of basalt flows and dikes. Hydraulic conductivity is greatest in thin pahoehoe flows and near-vent volcanic deposits. Hydraulic conductivity is least in flows and deposits cut by dikes. Estimates of hydraulic conductivity at and near the INEEL are similar to those measured in similar volcanic settings in Hawaii. The largest variety of rock types and the greatest range of hydraulic conductivity are in volcanic rift zones, which are characterized by numerous aligned volcanic vents and fissures related to underlying dikes. Three broad categories of hydraulic conductivity corresponding to six general types of geologic controls can be inferred from the distribution of wells and vent corridors. Hydraulic conductivity of basalt flows probably is increased by localized fissures and coarse mixtures of interbedded sediment, scoria, and basalt rubble. Hydraulic conductivity of basalt flows is decreased locally by abundant alteration minerals of probable hydrothermal origin. Hydraulic conductivity varies as much as six orders of magnitude in a single vent corridor and varies from three to five orders of magnitude within distances of 500 to 1,000 feet. Abrupt changes in hydraulic conductivity over short distances suggest the presence of preferential pathways and local barriers that may greatly affect the movement of ground water and the dispersion of radioactive and chemical wastes downgradient from points of waste disposal.

S. R. Anderson; M. A. Kuntz; L. C. Davis

1999-02-01

153

Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2007-08  

USGS Publications Warehouse

During 2007 and 2008, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected quarterly depth-discrete measurements of fluid pressure and temperature in six boreholes located in the eastern Snake River Plain aquifer of Idaho. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Hydraulic heads (head) and water temperatures in boreholes were monitored at 86 hydraulically-isolated depth intervals located 448.0 to 1,377.6 feet below land surface. The calculation of head is most sensitive to fluid pressure and the altitude of the pressure transducer at each port coupling; it is least sensitive to barometric pressure and water temperature. An analysis of errors associated with the head calculation determined the accuracy of an individual head measurement at +/- 2.3 feet. Many of the sources of measurement error are diminished when considering the differences between two closely-spaced readings of head; therefore, a +/- 0.1 foot measurement accuracy was assumed for vertical head differences (and gradients) calculated between adjacent monitoring zones. Vertical head and temperature profiles were unique to each borehole, and were characteristic of the heterogeneity and anisotropy of the eastern Snake River Plain aquifer. The vertical hydraulic gradients in each borehole remained relatively constant over time with minimum Pearson correlation coefficients between head profiles ranging from 0.72 at borehole USGS 103 to 1.00 at boreholes USGS 133 and MIDDLE 2051. Major inflections in the head profiles almost always coincided with low permeability sediment layers. The presence of a sediment layer, however, was insufficient for identifying the location of a major head change in a borehole. The vertical hydraulic gradients were defined for the major inflections in the head profiles and were as much as 2.2 feet per foot. Head gradients generally were downward in boreholes USGS 133, 134, and MIDDLE 2050A, zero in boreholes USGS 103 and 132, and exhibited a reversal in direction in borehole MIDDLE 2051. Water temperatures in all boreholes ranged from 10.2 to 16.3 degrees Celsius. Boreholes USGS 103 and 132 are in an area of concentrated volcanic vents and fissures, and measurements show water temperature decreasing with depth. All other measurements in boreholes show water temperature increasing with depth. A comparison among boreholes of the normalized mean head over time indicates a moderately positive correlation.

Fisher, Jason C.; Twining, Brian V.

2011-01-01

154

Detection of aspen-conifer forest mixes from LANDSAT digital data. [Utah-Idaho Bear River Range  

NASA Technical Reports Server (NTRS)

Aspen, conifer and mixed aspen/conifer forests were mapped for a 15-quadrangle study area in the Utah-Idaho Bear River Range using LANDSAT multispectral scanner data. Digital classification and statistical analysis of LANDSAT data allowed the identification of six groups of signatures which reflect different types of aspen/conifer forest mixing. Photo interpretations of the print symbols suggest that such classes are indicative of mid to late seral aspen forests. Digital print map overlays and acreage calculations were prepared for the study area quadrangles. Further field verification is needed to acquire additional information about the nature of the forests. Single date LANDSAT analysis should be a cost effective means to index aspen forests which are at least in the mid seral phase of conifer invasion. Since aspen canopies tend to obscure understory conifers for early seral forests, a second date analysis, using data taken when aspens are leafless, could provide information about early seral aspen forests.

Jaynes, R. A.; Merola, J. A.

1982-01-01

155

Irrigated acreage in the Bear River Basin as of the 1975 growing season. [Idaho, Utah, and Wyoming  

NASA Technical Reports Server (NTRS)

The irrigated cropland in the Bear River Basin as of the 1975 growing season was inventoried from satellite imagery. LANDSAT color infrared images (scale 1:125,000) were examined for early, mid, and late summer dates, and acreage was estimated by use of township/section overlays. The total basin acreage was estimated to be 573,435 acres, with individual state totals as follows: Idaho 234,370 acres; Utah 265,505 acres; and Wyoming 73,560 acres. As anticipated, wetland areas intermingled among cropland appears to have produced an over-estimation of irrigated acreage. According to a 2% random sample of test sites evaluated by personnel from the Soil Conservation Service such basin-wide over-estimation is 7.5%; individual counties deviate significantly from the basin-wide figure, depending on the relative amount of wetland areas intermingled with cropland.

Ridd, M. K.; Jaynes, R. A.; Landgraf, K. F.; Clark, L. D., Jr. (principal investigators)

1982-01-01

156

An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2006-08  

USGS Publications Warehouse

Since 1952, radiochemical and chemical wastewater discharged to infiltration ponds (also called percolation ponds), evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched groundwater wells in the USGS groundwater monitoring networks during 2006-08. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2005 to March-May 2008, water levels in wells generally remained constant or rose slightly in the southwestern corner of the INL. Water levels declined in the central and northern parts of the INL. The declines ranged from about 1 to 3 feet in the central part of the INL, to as much as 9 feet in the northern part of the INL. Water levels in perched groundwater wells around the Advanced Test Reactor Complex (ATRC) also declined. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2006-08. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In April or October 2008, reportable concentrations of tritium in groundwater ranged from 810 ? 70 to 8,570 ? 190 picocuries per liter (pCi/L), and the tritium plume extended south-southwestward in the general direction of groundwater flow. Tritium concentrations in water from wells completed in shallow perched groundwater at the ATRC were less than the reporting levels. Tritium concentrations in deep perched groundwater exceeded the reporting level in 11 wells during at least one sampling event during 2006-08 at the ATRC. Tritium concentrations from one or more zones in each well were reportable in water samples collected at various depths in six wells equipped with multi-level WestbayTM packer sampling systems. Concentrations of strontium-90 in water from 24 of 52 aquifer wells sampled during April or October 2008 exceeded the reporting level. Concentrations ranged from 2.2 ? 0.7 to 32.7 ? 1.2 pCi/L. Strontium-90 has not been detected within the eastern Snake River Plain aquifer beneath the ATRC partly because of the exclusive use of waste-disposal ponds and lined evaporation ponds rather than using the disposal well for radioactive-wastewater disposal at ATRC. At the ATRC, the strontium-90 concentration in water from one well completed in shallow perched groundwater was less than the reporting level. During at least one sampling event during 2006-08, concentrations of strontium-90 in water from nine wells completed in deep perched groundwater at the ATRC were greater than reporting levels. Concentrations ranged from 2.1?0.7 to 70.5?1.8 pCi/L. At the Idaho Nuclear Technology and Engineering Center (INTEC), the reporting level was exceeded in water from two wells completed in deep perched groundwater. During 2006-08, concentrations of cesium-137, plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all wells and all zones in wells equipped with multi-level WestbayTM packer sampling systems

Davis, Linda C.

2010-01-01

157

Results of 2001 Groundwater Sampling in Support of Conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the Vicinity of the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report summarizes the results of sampling five groundwater monitoring wells in the vicinity of the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory in 2001. Information on general sampling practices, quality assurance practices, parameter concentrations, representativeness of sampling results, and cumulative cancer risk are presented. The information is provided to support a conditional No Longer Contained-In Determination for the Snake River Plain Aquifer in the vicinity of the Idaho Nuclear Technology and Engineering Center.

Meachum, T.R.

2002-04-26

158

ELK CREEK STUDY, IDAHO COUNTY IDAHO, 1979  

EPA Science Inventory

In Water Year 1979, the American River, the Red River, and Elk Creek in Idaho County (17060305) were studied to determine their present water quality and to obtain background information on effluent limitations development for the Elk City sewage treatment plant. Quarterly monit...

159

Escapement Monitoring of Adult Chinook Salmon in the Secesh River and Lake Creek, Idaho, 1999 Annual Report.  

SciTech Connect

Underwater time-lapse video technology was used to monitor adult spring and summer chinook salmon abundance in spawning areas in Lake Creek and the Secesh River, Idaho, in 1999. This technique is a passive methodology that does not trap or handle this Endangered Species Act listed species. This was the third year of testing the remote application of this methodology in the Secesh River drainage. Secesh River chinook salmon represent a wild salmon spawning aggregate that has not been directly supplemented with hatchery fish. Adult chinook salmon spawner abundance was estimated in Lake Creek with the remote time-lapse video application. Adult spawner escapement into Lake Creek in 1999 was 67 salmon. Significant upstream and downstream spawner movement affected the ability to determine the number of fish that contributed to the spawning population. The first passage on Lake Creek was recorded on July 11, two days after installation of the fish counting station. Peak net upstream adult movement occurred at the Lake Creek site on July 20, peak of total movement activity was August 19 with the last fish observed on August 26. A minimum of 133 adult chinook salmon migrated upstream past the Secesh River fish counting station to spawning areas in the Secesh River drainage. The first upstream migrating adult chinook salmon passed the Secesh River site prior to the July 15 installation of the fish counting station. Peak net upstream adult movement at the Secesh River site occurred July 19, peak of total movement was August 15, 17 and 18 and the last fish passed on September 10. Migrating salmon in the Secesh River and Lake Creek exhibited two behaviorally distinct segments of fish movement. Mainly upstream only, movement characterized the first segment. The second segment consisted of upstream and downstream movement with very little net upstream movement. Estimated abundance was compared to single and multiple-pass redd count surveys within the drainage. There were differences between the two methodologies. The fish counting stations did not impede salmon movements, nor was spawning displaced downstream. Fish moved freely upstream and downstream through the fish counting structures. Fish movement was greatest between the period of 10:00 p. m. and 4:00 a. m. There appeared to be a segment of ''nomadic'' males that moved into and out of the spawning area, apparently seeking other mates to spawn with. This methodology has the potential to provide more consistent and accurate salmon spawner abundance information than single-pass and multiple-pass spawning ground surveys. Accurate adult escapement information would allow managers to determine if recovery actions benefited listed chinook salmon in tributary streams.

Faurot, Dave; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

2001-04-01

160

Age of irrigation water in ground water from the Eastern Snake River Plain Aquifer, south-central Idaho  

USGS Publications Warehouse

Stable isotope data (2H and 18O) were used in conjunction with chlorofluorocarbon (CFC) and tritium/helium-3 (3H/3He) data to determine the fraction and age of irrigation water in ground water mixtures from farmed parts of the Eastern Snake River Plain (ESRP) Aquifer in south-central Idaho. Two groups of waters were recognized: (1) regional background water, unaffected by irrigation and fertilizer application, and (2) mixtures of irrigation water from the Snake River with regional background water. New data are presented comparing CFC and 3H/3He dating of water recharged through deep fractured basalt, and dating of young fractions in ground water mixtures. The 3H/3He ages of irrigation water in most mixtures ranged from about zero to eight years. The CFC ages of irrigation water in mixtures ranged from values near those based on 3H/3He dating to values biased older than the 3H/3He ages by as much as eight to 10 years. Unsaturated zone air had CFC-12 and CFC-113 concentrations that were 60% to 95%, and 50% to 90%, respectively, of modern air concentrations and were consistently contaminated with CFC-11. Irrigation water diverted from the Snake River was contaminated with CFC-11 but near solubility equilibrium with CFC-12 and CFC-113. The dating indicates ground water velocities of 5 to 8 m/d for water along the top of the ESRP Aquifer near the southwestern boundary of the Idaho National Engineering and Environmental Laboratory (INEEL). Many of the regional background waters contain excess terrigenic helium with a 3He/4He isotope ratio of 7 x 10-6 to 11 x 10-6 (R/Ra = 5 to 8) and could not be dated. Ratios of CFC data indicate that some rangeland water may contain as much as 5% to 30% young water (ages of less than or equal to two to 11.5 years) mixed with old regional background water. The relatively low residence times of ground water in irrigated parts of the ESRP Aquifer and the dilution with low-NO3 irrigation water from the Snake River lower the potential for NO3 contamination in agricultural areas.

Plummer, L.N.; Rupert, M.G.; Busenberg, E.; Schlosser, P.

2000-01-01

161

Paleomagnetic correlation of the surface and subsurface stratigraphy in the southern part of the Idaho National Laboratory, eastern Snake River Plain, Idaho  

NASA Astrophysics Data System (ADS)

To refine the geologic framework used in conceptual and numerical models of groundwater flow and contaminant transport at and near the Idaho National Laboratory (INL), cross sections of the subsurface stratigraphy have been created using paleomagnetic inclination and polarity measurements on basalt flows from 51 coreholes and 83 surface sites. Paleomagnetic data were used to correlate surface and subsurface basalt stratigraphy, determine relative ages, and, in conjunction with other studies, determine the absolute age of some basalt flows. From stratigraphic top to bottom, key results include: Quaking Aspen Butte flows erupted from Quaking Aspen Butte south of the INL, flowed northeast, and are found in the subsurface in corehole USGS 132. Vent 5206 flows, erupted near the southwestern border of the INL, flowed north and east, and are found in the subsurface in coreholes USGS 132, USGS 129, USGS 131, USGS 127, USGS 130, USGS 128, and STF-AQ-01. Mid Butte flows erupted north of U.S. Highway 20, flowed northwest, and are found in the subsurface at coreholes ARA-COR-005 and STF-AQ-01. High K20 flows erupted from a vent near the Idaho Nuclear Technology and Engineering Center, flowed south and east, and are found in the subsurface in coreholes USGS 131, USGS 127, USGS 130, USGS 128, USGS 123, STF-AQ-01, and ARA-COR-005. Vent 5252 flows erupted just south of U.S. Highway 20 near Middle and East Buttes, flowed northwest and are found in the subsurface in coreholes ARA-COR-005, STF-AQ-01, USGS 130, USGS 128, ICPP 214, USGS 123, ICPP 023, USGS 121, USGS 127, and USGS 131. The Big Lost Reversed Polarity Cryptochron flows erupted from a now-buried vent near the Radioactive Waste Management Complex, flowed southwest to corehole USGS 135, and northeast to coreholes USGS 132, USGS 129, USGS 131, USGS 127, USGS 130, STF-AQ-01, and ARA-COR-005. AEC Butte flows erupted from AEC Butte near the Advanced Test Reactor Complex and flowed south to corehole Middle 1823, northwest to corehole USGS 134, northeast to coreholes USGS 133 and NRF 7P, and south to coreholes USGS 121, ICPP 023, USGS 123, and USGS 128. These results demonstrate that coreholes a few kilometers apart have stratigraphic successions that correlate over tens to hundreds of meters of depth. Correlations between coreholes separated by greater distances are less consistent since some stratigraphic sequences are missing and (or) added, or are at different depths. The Big Lost, AEC Butte, and flows of similar age show subsidence towards the Big Lost Trough. Cross-sections in the southwestern INL, through the unsaturated zone and the top of the saturated zone of the eastern Snake River Plain aquifer show very slight tilting to the southeast towards the Axial Volcanic Zone.

Hodges, M. K.; Davis, L. C.; Champion, D. E.

2010-12-01

162

Data summary report on short-term turbidity monitoring of pipeline river crossings in the Moyie River, Boundary County, Idaho: PGT-PG&E Pipeline Expansion Project  

SciTech Connect

A water-quality monitoring program was implemented for Bechtel Corporation to measure the short-term increases in turbidity in the Moyie River caused by construction activities of the Pacific Gas Transmission-Pacific Gas & Electric Pipeline Expansion Project. Construction of the buried, 42-in.-diameter, steel pipeline, during the summer of 1992, involved eight wet crossings of the Moyie River along the 13-mi section of pipeline immediately south of the Canadian-United States border in Boundary County, Idaho. This report summarizes the sampling and analysis protocol used and gives the results and observations for each of the eight crossings. The data obtained from this monitoring program, in addition to satisfying regulatory requirements for the Pipeline Expansion Project, will contribute to an ongoing long-term study of the Moyie River crossings being performed for the Gas Research Institute by Argonne National Laboratory. The purpose of this document is strictly limited to reporting the results of the monitoring program. Interpretation of the data is not within the scope of this report.

Gowdy, M.J.; Smits, M.P.; Wilkey, P.L.; Miller, S.F.

1994-03-01

163

Digital Geology of Idaho  

NSDL National Science Digital Library

If you have ever wanted to learn about the geology of Idaho, this site is a great way to explore everything from Coeur d'Alene to the Sawtooth Mountains. This digital version of a course offered at Idaho State University systematically divides Idaho geology into a set of different teaching modules. The modules cover topics like the Idaho Batholith, the Columbia River Basalts, and the Lake Bonneville Flood. Each module contains maps, charts, diagrams, and photographs that illuminate the various geological processes that have formed, and continue to form, in each region of the state. Many of the modules also have fly-throughs that superimpose color-coded geology on 3-D topographic maps to provide a graphic visualization Idaho's rivers. Additionally, the site contains slide shows and a set of teaching exercises.

2012-02-17

164

WATER QUALITY STATUS REPORT, SALMON RIVER, MAIN STEM (HEADWATERS TO BELOW MIDDLE FORK), IDAHO, 1977  

EPA Science Inventory

Fifteen water quality stations in the Salmon River Basin (17060201, 17060203) were sampled bi-weekly for a year. Eight of the stations were on the Main Salmon River and the remaining seven represented the major tributaries. This portion of the study extended from Stanley to bel...

165

STREAM CHANNEL SEDIMENT CONDITIONS IN THE SOUTH FORK SALMON RIVER, IDAHO, PROGRESS REPORT IV, JUNE 1974  

EPA Science Inventory

The purpose of the South Fork Salmon River (17060208) studies is to determine the condition of the aquatic environment and provide measures needed to maintain or enhance this environment. Prior to 1965, the South Fork Salmon River steadily degraded in quality, due to acceleratio...

166

Hydraulic geometry and sediment data for the South Fork Salmon River, Idaho, 1985-86  

USGS Publications Warehouse

Hydraulic geometry, suspended-sediment, and bedload samples were collected at three sites in the upper reach of the South Fork Salmon River drainage basin from April 1985 to June 1986. Sites selected were South Fork Salmon River near Krassel Ranger Station, Buckhorn Creek, and North Fork Lick Creek. Results of the data collection are presented in this report.

Williams, Rhea P.; O'Dell, Ivalou; Megahan, Walter F.

1989-01-01

167

New storage on Snake River for irrigation use above Milner, Idaho  

USGS Publications Warehouse

With Palisades reservoir in operation there will be many years when the available water supply on Snake River above Milner will be fully utilized by storage in the then existing reservoirs under their established priority rights. Surplus water spilling to waste in past years is shown by the record of flow at the Milner gaging station on Snake River as follows.

Crandall, Lynn

1955-01-01

168

Lead exposure in passerines inhabiting lead-contaminated floodplains in the Coeur d'Alene River Basin, Idaho, USA  

SciTech Connect

Blood collected from song sparrows (Melospiza melodia) and American robins (Turdus migratorius) captured with mist nets in a lead-contaminated (assessment) area and nearby uncontaminated (reference) areas within the Coeur d'Alene Basin in northern Idaho was analyzed for [delta]-aminolevulinic acid dehydratase activity (ALAD) and hematocrit levels, and livers were analyzed for lead. Mean ALAD inhibition in the assessment area was 51% in song sparrows and 75% in American robins. The proportion of the sampled population with ALAD inhibition > 50% was calculated to be 43% for song sparrows and 83% for American robins. Assessment area hematocrit values for song sparrows and American robins were lower than in reference areas; however, differences were not statistically significant. Significantly higher levels of lead (wet weight) were found in livers from song sparrows captured on the assessment area ([bar x] = 1.93 ppm) than on reference areas. Study results indicate that 43% of the song sparrows and 83% of the American robins inhabiting the floodplain along the Coeur d'Alene River in the assessment area are being exposed to lead at levels sufficient to inhibit ALAD by > 50%. Variability in lead exposure indicators was attributed to high variability in environmental lead concentrations in the Coeur d'Alene River Basin.

Johnson, G.D.; Kern, J.W.; Strickland, M.D.; McDonald, L.L. (Western EcoSystems Technology, Inc., Cheyenne, WY (United States)); Audet, D.J.; LeCaptain, L.J. (Fish and Wildlife Service, Spokane, WA (United States)); Hoffman, D.J. (Geological Survey, Laurel, MD (United States))

1999-06-01

169

Thrust segment from the Antler orogeny identified north of the Snake River Plain, south-central Idaho  

SciTech Connect

A small segment of folded thrust fault places silicified, cleaved, folded, graptolite-bearing black mudstone, sandstone, and minor granule conglomerate of the Ordovician Phi Kappa Formation over unnamed cleaved, yellow, calcareous siltstone and silty limestone of Devonian to Silurian age in the Long Canyon area near Fish Creek Reservoir, within a kilometer of the north-central margin of the Snake River Plain. The thrust fault and rocks of both hanging wall and footwall are overlain by sandy limestone and pebble conglomerate of the Middle Pennsylvanian Hailey Member of the Wood River Formation along a locally faulted unconformable contact. Thus, the age of the thrust is bracketed as post-Devonian and pre-Middle Pennsylvanian, a period that encompasses the Antler orogeny. The Long Canyon thrust fault is the first direct evidence of contraction within rocks of the postulated Mississippian Antler highland in western Idaho. Indirect evidence such as penetrative axial plane cleavage in Devonian argillites of the Milligen Formation, not present in younger argillites, has been recognized for several years. The entire sequence of Ordovician through Pennsylvanian rocks constitutes the southernmost exposure of the hanging wall of the Mesozoic Pioneer thrust fault system. In this area, the footwall of the Pioneer thrust comprises Silurian through Devonian platform carbonate rocks overlain unconformably by Mississippian orogenic detritus derived from the western Antler highland.

Skipp, B. (Geological Survey, Denver, CO (United States))

1993-04-01

170

Verification of Precipitation Enhancement due to Winter Orographic Cloud Seeding in the Payette River Basin of Western Idaho  

NASA Astrophysics Data System (ADS)

The Idaho Power Company (IPCo) is a hydroelectric based utility serving eastern Oregon and most of southern Idaho. Snowpack is critical to IPCo operations and the company has invested in a winter orographic cloud seeding program for the Payette, Boise, and Upper Snake River basins to augment the snowpack. IPCo and the National Center for Atmospheric Research (NCAR) are in the middle of a two-year study to determine precipitation enhancement due to winter orographic cloud seeding in the Payette River basin. NCAR developed a cloud seeding module, as an enhancement to the Weather Research and Forecast (WRF) model, that inputs silver iodide released from both ground based and/or aircraft generators. The cloud seeding module then increases the precipitation as a function of the cloud seeding. The WRF model used for this program is run at the University of Arizona with a resolution of 1.8 kilometers using Thompson microphysics and Mellor-Yamada-Janic boundary layer scheme. Two different types of verification schemes to determine precipitation enhancement is being used for this program; model versus model and model versus precipitation gauges. In the model versus model method, a control model run uses NCAR developed criteria to identify the best times to operate cloud or airborne seeding generators and also establishes the baseline precipitation. The model is then rerun with the cloud seeding module turned on for the time periods determined by the control run. The precipitation enhancement due to cloud seeding is then the difference in precipitation between the control and seeding model runs. The second verification method is to use the model forecast precipitation in the seeded and non-seeded areas, compare against observed precipitation (from mainly SNOTEL gauges), and determine the precipitation enhancement due to cloud seeding. Up to 15 SNOTEL gauges in or near the Payette River basin along with 14 IPCo high resolution rain gauges will be used with this target/control method during future phases of the study. Additionally, the IPCo precipitation gauges record to a hundredth of an inch (vice a tenth of an inch for SNOTELs) and can be used to determine precipitation enhancement from both individual storm systems as well as seasonal precipitation. Results of both the model to model and model to rain gauge comparisons from the first year of the project will be presented.

Holbrook, V. P.; Kunkel, M. L.; Blestrud, D.

2013-12-01

171

Depth to water in the eastern Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988  

USGS Publications Warehouse

The vulnerability of ground water to contamination in Idaho is being assessed by the IDHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Orotection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability or ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantha,, Idaho Department of Health and Welfare, written commun., 1989). A digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a sols data set developed by the SCS (Soil Conservation Service) and IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (Idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) developed digital depth-to-water values for eleven 1:100,000-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

Maupin, Molly A.

1992-01-01

172

Depth to water in the western Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988  

USGS Publications Warehouse

The vulnerability of ground water to contamination in Idaho is being assessed by the ISHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Protection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability of ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantham, Idaho Department of Health and Welfare, written commun., 1989). Digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a soils data set developed by the SCS (Soul Conservation Service) and the IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) has developed digital depth-to-water values for eleven 1:100,00-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

Maupin, Molly A.

1991-01-01

173

Lead in hawks, falcons and owls downstream from a mining site on the Coeur d'Alene River, Idaho.  

PubMed

Mining and smelting at Kellogg-Smelterville, Idaho, resulted in high concentrations of lead in Coeur d'Alene (CDA) River sediments and the floodplain downstream, where American Kestrels (Falco sparverius), Northern Harriers (Circus cyaneus), Red-tailed Hawks (Buteo jamaicensis), Great Horned Owls (Bubo virginianus), and Western Screech-owls (Otus kennicotti) nested. Nestling American Kestrels contained significantly higher (P=0.0012) blood lead concentrations along the CDA River (0.24 g/g, wet wt) than the nearby reference area (0.087 g/g). A 35% inhibition of blood ?-aminolevulinic acid dehydratase (ALAD) in nestling Northern Harriers (P=0.0001), 55% in nestling American Kestrels (P=0.0001) and 81% in adult American Kestrels (P=0.0004) provided additional evidence of lead exposure in the CDA River population. In nestling American Kestrels and Northern Harriers, ALAD activity was negatively correlated with lead in blood. An earlier report on Ospreys (Pandion haliaetus) showed slightly less inhibition of ALAD than in American Kestrels, but no significant reduction in hemoglobin or hematocrit and no negative influence on production rates. The adult and nestling American Kestrels along the CDA River contained about twice as much blood lead as Ospreys during the same years (adult 0.46 vs. 0.20 g/g, and nestling 0.24 vs. 0.09 g/g), but adults showed a 7.5% reduction in hemoglobin (P=0.0356) and nestlings an 8.2% reduction in hemoglobin (P=0.0353) and a 5.8% reduction in hematocrit (P=0.0482). We did not observe raptor deaths related to lead, and although the production rate for American Kestrels was slightly lower along the CDA River, we found no significant negative relation between productivity and lead. Limited data on the other raptors provide evidence of exposure to lead along the CDA River. Several traits of raptors apparently reduce their potential for accumulating critical levels of lead which is primarily stored in bones of prey species. PMID:24221348

Henny, C J; Blus, L J; Hoffman, D J; Grove, R A

1994-02-01

174

IDAHO WATER USER RECOMMENDATIONS MAINSTEM PLAN  

E-print Network

IDAHO WATER USER RECOMMENDATIONS ON THE MAINSTEM PLAN COLUMBIA RIVER BASIN FISH AND WILDLIFE PROGRAM SUBMITTED ON BEHALF OF THE COMMITTEE OF NINE AND THE IDAHO WATER USERS ASSOCIATION JUNE 15, 2001 and Flow Augmentation Policy in the Columbia River Basin #12;1 IDAHO WATER USER RECOMMENDATIONS

175

Mineralogy and grain size of surficial sediment from the Big Lost River drainage and vicinity, with chemical and physical characteristics of geologic materials from selected sites at the Idaho National Engineering Laboratory, Idaho  

USGS Publications Warehouse

The U.S. Geological Survey 's Idaho National Engineering Laboratory project office, in cooperation with the U.S. Department of Energy, collected 35 samples of surficial sediments from the Big Lost River drainage and vicinity from July 1987 through August 1988 for analysis of grain-size distribution, bulk mineralogy, and clay mineralogy. Samples were collected from 11 sites in the channel and 5 sites in overbank deposits of the Big Lost River, 6 sites in the spreading areas that receive excess flow from the Big Lost River during peak flow conditions, 7 sites in the natural sinks and playas of the Big Lost River, 1 site in the Little Lost River Sink, and 5 sites from other small, isolated closed basins. Eleven samples from the Big Lost River channel deposits had a mean of 1.9 and median of 0.8 weight percent in the less than 0.062 mm fraction. The other 24 samples had a mean of 63.3 and median of 63.7 weight percent for the same size fraction. Mineralogy data are consistent with grain-size data. The Big Lost River channel deposits had mean and median percent mineral abundances of total clays and detrital mica of 10 and 10%, respectively, whereas the remaining 24 samples had mean and median values of 24% and 22.5% , respectively. (USGS)

Bartholomay, R.C.; Knobel, L.L.; Davis, L.C.

1989-01-01

176

Multilevel Groundwater Monitoring of Hydraulic Head and Temperature in the Eastern Snake River Plain Aquifer, Idaho National Laboratory, Idaho, 2007 to 2008  

NASA Astrophysics Data System (ADS)

During 2007 and 2008, the U.S. Geological Surveys Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly depth-discrete measurements of fluid pressure and temperature in six boreholes located in the fractured basalts and interbedded sediments of the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Hydraulic heads (head) and groundwater temperatures were monitored in 86 hydraulically-isolated depth intervals located from 448.0 to 1,377.6 ft below land surface. The calculation of head is most sensitive to fluid pressure and the altitude of the pressure transducer at each port coupling, and it is least sensitive to barometric pressure and fluid temperature. An analysis of errors associated with the head calculation determined the accuracy of an individual head measurement to be 2.3 ft. Many of the sources of measurement error are diminished, however, for differences between closely-spaced readings of head; therefore, a 0.1 ft measurement accuracy was assumed for vertical head differences (and gradients) calculated between adjacent monitoring zones. The repeatability of head measurements was evaluated using the maximum head difference between paired ports; a mean difference of 0.04 ft showed excellent agreement between measurements for the 0- to 500-psia pressure transducer used in this study. Vertical head and temperature profiles were unique to each borehole, and they were characteristic of the heterogeneity and anisotropy of the eastern Snake River Plain aquifer. The vertical hydraulic gradients within each borehole remained relatively constant over time, with minimum Pearson correlation coefficients between head profiles ranging from 0.72 at the USGS 103 borehole to 1.00 at boreholes USGS 133 and MIDDLE 2051. Major inflections in the head profiles almost always coincided with low-permeability sediment layers. However, the presence of a sediment layer was insufficient for identifying the location of a major head change within a borehole. The vertical hydraulic gradients were defined for the major inflections in the head profiles and were as high as 2.2 ft ft-1. Gradients were generally downward in the USGS 133, USGS 134, and MIDDLE 2050A boreholes, were zero in the USGS 103 and USGS 132 boreholes, and exhibited a reversal in direction within the MIDDLE 2051 borehole. Groundwater temperatures in all boreholes ranged from 10.2 to 16.3 C. Boreholes USGS 103 and USGS 132 are located in an area of concentrated volcanic vents and fissures, and they showed fluid temperature decreasing with depth. All other boreholes showed fluid temperature increasing with depth. A comparison among boreholes of the normalized mean head over time suggests a strongly positive correlation, which indicates regional fluctuations in the water table due to seasonal changes in recharge conditions.

Fisher, J. C.; Twining, B. V.

2010-12-01

177

77 FR 73976 - Nez Perce-Clearwater National Forests; Idaho; Crooked River Valley Rehabilitation Project  

Federal Register 2010, 2011, 2012, 2013, 2014

...Forests is undergoing planning efforts to restore the...Crooked River by reshaping mine tailing piles and reconstruct...forest will decide what design and mitigation measures...and the environmental design arts in any planning and decision making...

2012-12-12

178

HENRY'S FORK AND SNAKE RIVER BASIN, IDAHO - WATER QUALITY REPORT, 1973  

EPA Science Inventory

Reported problems in the Henrys Fork and Snake River Basin (17040202, 17040203, 17040201) include bacteria levels exceeding water quality standards, dissolved oxygen standards violations, and excessive algal blooms resulting in aesthetic problems and contributing to DO depression...

179

Tectonic implications of the heat flow of the western Snake River Plain, Idaho  

Microsoft Academic Search

Heat-flow values within the western Snake River Plain average about 1.7 ..mu..cal\\/cm² sec, but even higher values are measured in granitic rocks along the margins of the Snake River Plain (2.5 ..mu..cal\\/cm² sec or higher). The heat-flow distribution is related to the combined effects of crustal thermal refraction and a large, transient crustal heat source. A regional model consistent with

CHARLES A. BROTT; DAVID D. BLACKWELL; JOHN C. MITCHELL

1978-01-01

180

Dietary effects of metals-contaminated invertebrates from the Coeur d'Alene River, Idaho, on cutthroat trout  

USGS Publications Warehouse

Benthic macroinvertebrates with elevated concentrations of metals were collected from the Coeur d'Alene (CDA) River, Idaho, pasteurized, and fed to cutthroat trout Oncorhynchus clarki in the laboratory from start of feeding until 90 d posthatch. Invertebrates were collected from two sites known to contain elevated concentrations of metals: near Pinehurst in the South Fork of the CDA River and at Cataldo, approximately 5 km below the confluence of the South Fork and the North Fork. Invertebrates collected from a relatively clean site in the North Fork were used as a reference diet. We performed measurements of fish health that indicate reduced fitness of fish fed the South Fork and Cataldo diets. Effects measured were reduced feeding activity, increased number of macrophage aggregates and hyperplasia of cells in the kidney, degeneration of mucosal epithelium in the pyloric caecae, and metallothionein induction. These effects would likely reduce growth and survival of fish in the wild. Vacuolization of glial cells were also observed in fish fed the Cataldo diet. Metals in the water often exacerbated the histological effects observed. Although the invertebrates collected near Cataldo had lower concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) than the invertebrates from the South Fork, fish fed the Cataldo diet had equally high or higher concentrations of all metals except as by day 44. The Cataldo diet also caused the most deleterious effects on survival and growth. These findings are especially important for early life stage fish, whose diet consists wholly of benthic macroinvertebrates. Therefore, fish feeding on invertebrates in the CDA River below the Bunker Hill smelting complex are at risk of reduced fitness.

Farag, A.M.; Woodward, D.F.; Brumbaugh, W.; Goldstein, J.N.; MacConnell, E.; Hogstrand, C.; Barrows, F.T.

1999-01-01

181

Influences of Hatchery Supplementation, Spawner Distribution, and Habitat on Genetic Structure of Chinook Salmon in the South Fork Salmon River, Idaho  

Microsoft Academic Search

We evaluated the genetic influence of hatchery supplementation on distinct naturally spawning populations of Chinook salmon Oncorhynchus tshawytscha in the South Fork Salmon River (SFSR), Idaho. Genetic tissue samples were collected from unmarked natural-origin and McCall Fish Hatchery (MFH)-reared Chinook salmon carcasses, and fish were identified by an adipose fin clip at five main-stem sites located both upstream and downstream

Andrew P. Matala; Shawn R. Narum; William Young; Jason L. Vogel

2012-01-01

182

Movement, Swimming Speed, and Oxygen Consumption of Juvenile White Sturgeon in Response to Changing Flow, Water Temperature, and Light Level in the Snake River, Idaho  

Microsoft Academic Search

The flow of the Snake River downstream of Hells Canyon Dam, Idaho, frequently fluctuates as dam operators alter the amount of electrical load generated in response to moment-to-moment power needs (termed load-following). Flow fluctuations due to load-following have the potential to increase the energy used by juvenile white sturgeon Acipenser transmontanus that move to avoid unfavorable habitat or that alter

David R. Geist; Richard S. Brown; Valerie Cullinan; Steve R. Brink; Ken Lepla; Phil Bates; James A. Chandler

2005-01-01

183

American Rivers * Friends of the Earth * Idaho Rivers United * Institute for Fisheries Resources * National Wildlife Federation * Northwest Sportfishing  

E-print Network

-1248 RE: Addendum to "Improving Federal Performance and Accountability for Salmon Recovery under Potential Changes in Allocation of the Federal Columbia River Power System after 2006" Dear Mr. Wright and Mr changes to the way the federal government markets the power and distributes the costs and benefits

184

American Rivers * Friends of the Earth * Idaho Rivers United *Institute for Fisheries Resources * National Wildlife Federation * Northwest Sportfishing  

E-print Network

Portland, OR 97204-1248 RE: Improving Federal Performance and Accountability for Salmon Recovery under Potential Changes in Allocation of the Federal Columbia River Power System after 2006 Dear Mr. Wright and Mr) have requested public input regarding how the federal government should market the power and distribute

185

ANATOMY OF A RIVER, AN EVALUATION OF WATER REQUIREMENTS FOR THE HELL'S CANYON REACH OF THE SNAKE RIVER, IDAHO, 1973  

EPA Science Inventory

This evaluation began in March 1973, involving more than 30 state and federal agencies and private entities. 79 specialists monitored the effects of 5 controlled flows on the biological community and mans use of the Middle Snake River (17060103, 17060101). The total program inv...

186

Paleomagnetic correlation of the surface and subsurface stratigraphy in the southern part of the Idaho National Laboratory, eastern Snake River Plain, Idaho  

Microsoft Academic Search

To refine the geologic framework used in conceptual and numerical models of groundwater flow and contaminant transport at and near the Idaho National Laboratory (INL), cross sections of the subsurface stratigraphy have been created using paleomagnetic inclination and polarity measurements on basalt flows from 51 coreholes and 83 surface sites. Paleomagnetic data were used to correlate surface and subsurface basalt

M. K. Hodges; L. C. Davis; D. E. Champion

2010-01-01

187

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho  

SciTech Connect

The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

2013-09-01

188

Effects of municipal wastewater discharges on aquatic communities, Boise River, Idaho  

USGS Publications Warehouse

Aquatic communities in the Boise River were examined from October 1987 to March 1988 to determine whether they were adversely affected by trace elements in effluents from two Boise wastewater treatment facilities. Trace-element concentrations in the Boise River were less than or near analytical-detection levels and were less than chronic toxicity criteria when detectable. Insect communities colonizing artificial substrates upstream and downstream from the wastewater treatment facilities were strongly associated, and coefficients of community loss indicated that effluents had benign enriching effects. The distributions of trace-element-intolerant mayflies indicated that trace-element concentrations in effluents did not adversely affect intolerant organisms in the Boise River. Condition factor of whitefish was significantly increased downstream from the Lander Street wastewater treatment facility and was significantly decreased downstream from the West Boise wastewater treatment facility.

Frenzel, S.A.

1990-01-01

189

NON POINT SOURCE BASIN STATUS EVALUATION, LOWER SNAKE RIVER BASIN, IDAHO, JULY 1976  

EPA Science Inventory

Region 10 has developed a nonpoint source assessment approach to assist EPA planners, land agencies, and state and local agencies in identifying probable nonpoint sources and determining their effect upon the fishable-swimmable aspect of Regional streams and rivers. Generally th...

190

Thermal and Tectonic Implications of Heat Flow in the Eastern Snake River Plain, Idaho  

Microsoft Academic Search

Geothermal data from 248 wells and drill holes, a thermal model for the effects of the Snake Plain aquifer on observed heat flow, an estimate of the regional heat flow in the eastern Snake River Plain, a detailed moving source, regional thermal model, and a discussion of the origin and the relationship of the eastern and western halves of the

Charles A. Brott; David D. Blackwell; John P. Ziagos

1981-01-01

191

Evolved lavas from the Snake River Plain: Craters of the Moon National Monument, Idaho  

Microsoft Academic Search

Holocene lavas from Craters of the Moon (COM) National Monument are representative of differentiated lavas which occur around the margins of the Snake River Plains (SRP) and they range serially in composition from alkali- and phosphorous-rich ferrobasalts to ferrolatites. Petrographic study indicates that these lavas evolved primarily by cotectic crystallization of olivine, plagioclase, magnetite and apatite in the mafic members

William P. Leeman; Charles J. Vitaliano; Martin Prinz

1976-01-01

192

Anomalous Geologic Setting of the Spencer-High Point Volcanic Field, Eastern Snake River Plain, Idaho  

Microsoft Academic Search

The Spencer-High Point (SHP) volcanic field comprises an ~1700 sq km mafic volcanic rift zone located near Yellowstone in the eastern Snake River Plain (ESRP). SHP lava flows are both similar to and distinct from typical olivine tholeiite lavas of the ESRP. SHP has unique physical volcanic features characterized by numerous cinder cones and short lava flows; whereas, spatter ramparts,

G. S. Iwahashi; S. S. Hughes

2006-01-01

193

CROOKED RIVER, IDAHO STREAM SURVEY AND IN-SITU TOXICITY RESULTS, 1986  

EPA Science Inventory

This report summarizes results from an investigation of Crooked River (17060305) and adjacent dredge ponds. Chemical and physical water quality parameters and in-situ toxicity were characterized for 9 sites throughout the reach. The work was conducted at the request of ID Depar...

194

LOWER BOISE RIVER DRAINS, WATER QUALITY STATUS, CANYON COUNTY, IDAHO, 1983  

EPA Science Inventory

A water quality monitoring program was established on the irrigation drainage system in the Lower Boise River Valley (17050114) as part of a 208 project to develop a pollution abatement plan for agricultural lands. The 208 project area encompassed irrigated lands along the Boise...

195

LOWER PAYETTE RIVER, IDAHO AGRICULTURE IRRIGATION WATER RETURN STUDY AND GROUND WATER EVALUATION, 1992-1993  

EPA Science Inventory

This report covers the final 17 miles of the Payette River (17050112) and 32,000 acres of irrigated cropland referred to as the Lower Payette State Agricultural Water Quality Project. An in-depth surface and ground water monitoring effort was initiated in June 1992 and completed...

196

MIDDLE SNAKE RIVER, IDAHO WATER QUALITY STUDY, PHASE I. 1990-1991  

EPA Science Inventory

Water quality samples from 55 stations in the Middle Snake River (17060103, 17060101) for the period June 1990 through July 1991 were successfully obtained and field and laboratory data entered into the database. Weekly sampling on aquaculture facilities, and biweekly sampling o...

197

BACTERIOLOGY AND ALGAL ASSAYS, LOWER SNAKE RIVER RESERVOIRS, IDAHO AND WASHINGTON, 1977  

EPA Science Inventory

The purpose of this portion of the study is to determine 1) the overall water quality of the impoundment area, and 2) to determine the effect of impoundment on bacterial water quality. Data from the pre-impoundment study indicated that the Snake and Clearwater Rivers (17060103) ...

198

Integrated geophysical studies of the Fort Worth Basin (Texas), Harney Basin (Oregon), and Snake River Plain (Idaho)  

NASA Astrophysics Data System (ADS)

Geophysical methods such as seismic, gravity, magnetics, electric, and electromagnetics are capable of identifying subsurface features but each has a different spatial resolution. Although, each of these methods are stand-alone tools and have produced wonderful and reliable results for decades to solve geological problems, integrating geophysical results from these different methods with geological and geospatial data, adds an extra dimension towards solving geological problems. Integration techniques also involve comparing and contrasting the structural and tectonic evolution of geological features from different tectonic and geographic provinces. I employed 3D and 2D seismic data, passive seismic data, and gravity and magnetic data in three studies and integrated these results with geological, and geospatial data. Seismic processing, and interpretation, as well as filtering techniques applied to the potential filed data produced many insightful results. Integrated forward models played an important role in the interpretation process. The three chapters in this dissertation are stand-alone separate scientific papers. Each of these chapters used integrated geophysical methods to identify the subsurface features and tectonic evolution of the study areas. The study areas lie in the southeast Fort Worth Basin, Texas, Harney Basin, Oregon, and Snake River Plain, Idaho. The Fort Worth Basin is one of the most fully developed shale gas fields in North America. With the shallow Barnett Shale play in place, the Precambrian basement remains largely unknown in many places with limited published work on the basement structures underlying the Lower Paleozoic strata. In this research, I show how the basement structures relate to overlying Paleozoic reservoirs in the Barnett Shale and Ellenburger Group. I used high quality, wide-azimuth, 3D seismic data near the southeast fringe of the Fort Worth Basin. The seismic results were integrated with gravity, magnetic, well log, and geospatial data to understand the basement and sub-basement structures in the study area. Major tectonic features including the Ouachita thrust-fold belt, Lampasas arch, Llano uplift, and Bend arch surround the southeast Fort Worth Basin. The effects of these tectonic units in the basement were imaged in form of faulted and folded basement and sub-basement layers. Euler deconvolution and integrated forward gravity modeling were employed to extend the interpretations beyond the 3D seismic survey into a regional context. The Harney Basin is a relatively flat lying depression in the northeast portion of the enigmatic High Lava Plains volcanic province in eastern Oregon. In addition to the High Lava Plains active source seismic data, I also employed gravity, magnetic, digital elevation, geologic maps, and other geospatial data in this integrated study. I generated an upper crustal 3D seismic tomographic model of the Harney Basin and surrounding area using the active source seismic data. I then integrated it with gravity, magnetic, and geologic data to produce a geophysical model of the upper crustal structure, which reveals that the basin reaches as deep as 6 km in the central areas. I observed two major caldera shaped features within the basin. These calderas reveal seismic low velocity areas along with low gravity and magnetic anomalies. I interpreted the extent of these calderas with the help of integrated geophysical results. I propose a nested caldera complex in the northern Harney Basin and another caldera in the southern part. The Snake River Plain is an arcuate-shaped topographic low that lies in southern Idaho. This rifted valley is filled by large volume of mafic magma with numerous exposures of silicic volcanic centers. The scientific discussion on the structural complexities and evolution of the Snake River Plain and the role of extension in its formation has been going on for decades. Similarly, high gravity and magnetic anomalies are associated with the Snake River Plains, and their possible causes are still the subject of many studies. Numerous recent

Khatiwada, Murari

199

Biological assessment of the lower Boise River, October 1995 through January 1998, Ada and Canyon Counties, Idaho  

USGS Publications Warehouse

The lower Boise River, between Lucky Peak Dam and the mouth of the river near Parma, Idaho, is adversely affected by various land- and water-use activities. To assess the biotic integrity of the river and the effects of environmental perturbations on aquatic community structure, and to provide a baseline from which to identify future changes in habitat conditions, biological data were collected from October 1995 through January 1998 and evaluated using protocols developed for the U.S. Geological Survey National Water-Quality Assessment Program. Aquatic biological communities were sampled according to the following schedule: epilithic periphyton were collected in October 1995, October 1996, and August 1997; benthic macroinvertebrates were collected in October 1995, 1996, and 1997; and fish were collected in December 1996 and August 1997. Qualitative measurements of instream and riparian habitat indicated an overall decrease in instream habitat quality in a downstream direction. Embeddedness was high at all sites but was lower at the Eckert Road site than at the downstream sites near Middleton and Parma. Silt/sand substrate increased from 17 percent at the Eckert Road site to 49 percent near the mouth of the river. The Eckert Road site had a mix of geomorphic channel units (pool/riffle/run), whereas the Middleton and Parma sites were dominated by runs with very little pool or riffle habitat. Epilithic periphyton chlorophyll-a and ashfree dry weight values tended to increase downstream to the Middleton site and decrease from Middleton to the downstream sites near Caldwell and near Parma. Benthic index of biotic integrity (B-IBI) scores for macroinvertebrates collected in 1995, 1996, and 1997 were highest at the Eckert Road site and decreased at sites downstream. IBI scores for fish collected in 1996 were similar at the Glenwood Bridge and Middleton sites (17 and 16, respectively) and were indicative of a low to moderate level of disturbance. In contrast, the IBI score of 6 at the site near Parma was markedly lower and was indicative of more degraded conditions.

Mullins, William H.

1999-01-01

200

Lead exposure in passerines inhabiting lead-contaminated floodplains in the Coeur d'Alene River Basin, Idaho, USA  

USGS Publications Warehouse

Blood collected from song sparrows (Melospiza melodia) and American robins (Turdus migratorius) captured with mist nets in a lead-contaminated (assessment) area and nearby uncontaminated (reference) areas within the Coeur d'Alene Basin in northern Idaho was analyzed for d-aminolevulinic acid dehydratase activity (ALAD) and hematocrit levels, and livers were analyzed for lead. Mean ALAD inhibition in the assessment area was 51% in song sparrows and 75% in American robins. The proportion of the sampled population with ALAD inhibition >50% was calculated to be 43% for song sparrows and 83% for American robins. Assessment area hematocrit values for song sparrows (0 = 39.9) and American robins (0 = 39.5) were lower than in reference areas (0 = 42.4 for song sparrows and 40.2 for American robins); however, differences were not statistically significant (p > 0.05). Significantly higher levels of lead (wet weight) were found in livers from song sparrows captured on the assessment area (0 = 1.93 ppm) than on reference areas (0 = 0.10 ppm) (p = 0.0079). Study results indicate that 43% (95% confidence interval [CI] = 12.9-77.5%) of the song sparrows and 83% (95% CI = 41.8-99.2%) of the American robins inhabiting the floodplain along the Coeur d'Alene River in the assessment area are being exposed to lead at levels sufficient to inhibit ALAD by > 50%. Variability in lead exposure indicators was attributed to high variability in environmental lead concentrations in the Coeur d'Alene River Basin.

Johnson, G.D.; Audet, D.J.; Kern, J.W.; LeCaptain, L.J.; Strickland, M.D.; Hoffman, D.J.; McDonald, L.L.

1999-01-01

201

Lead-rich sediments, Coeur d'Alene River Valley, Idaho: area, volume, tonnage, and lead content  

USGS Publications Warehouse

In north Idaho, downstream from the Coeur d?Alene (CdA) silver-lead-zinc mining district, lead-rich sediments, containing at least 1,000 ppm of lead, cover approximately 61 km2 (or 73 percent) of the 84-km2 floor of the CdA River valley, from the confluence of its North and South Forks to the top of its delta-front slope, in CdA Lake. Concentrations of lead (Pb) in surface sediments range from 15 to about 38,500 ppm, and average 3,370 ppm, which is 112 times the mean background concentration (30 ppm) of Pb in uncontaminated sediments of the CdA and St. Joe River valleys. Most of the highest concentrations of Pb are in sediments within or near the river channel, or near the base of the stratigraphic section of Pb-rich sediments. Ranges of Pb concentration in Pb-rich sediments gradually decrease with increasing distance from the river and its distributaries. Ranges of thickness of Pb-rich sediments generally decrease abruptly with increasing distance from the river, from about 3 + 3 m in the river channel to about 1 + 1m on upland riverbanks, levees and sand splays, to about 0.3 + 0.3 m in back-levee marshes and lateral lakes. Thickness of Pb-rich dredge spoils (removed from the river and deposited on Cataldo-Mission Flats) is mostly in the range 4 + 4 m, thinning away from an outfall zone north and west of the river, near the formerly dredged channel reach near Cataldo Landing. We attribute lateral variation in ranges of thickness and Pb content of Pb-rich sediments to the dynamic balance between decreasing floodwater flow velocity with increasing distance from the river and the quantity, size, density, and Pb content of particles mobilized, transported, and deposited. We present alternative median- and mean-based estimates of the volume of Pbrich sediments, their wet and dry tonnage, and their tonnage of contained Pb. We calculate separate pairs of estimates for 23 Estimation Units, each of which corresponds to a major depositional environment, divided into down-valley segments. We favor median-based estimates of the thickness and thickness-interval weighted-average Pb concentration, because uncommonly thick and Pb-rich sections may excessively influence mean estimates. Nevertheless, data from partial sections of Pb-rich sediments are included in most estimates, and these tend to reduce both median- and mean-based estimates. Median-based estimates indicate a volume of 32 M m3 of Pb-rich sediments in the CdA River valley, with a dry tonnage of 47 + 4 M t, containing 250 + 75 kt of Pb (considering analytical uncertainties only). An equivalent tonnage of dry CdA River valley sediments of the pre-mining era, with the mean background concentration of 30 ppm of Pb, would contain about 1.4 kt of Pb. Thus, the amount of Pb added to CdA River valley sediments deposited since the onset of mining is estimated as 249 + 75 kt of Pb, or about 99.5 percent of the estimated Pb contained. Of an estimated 850 + 10 kt of Pb lost to streams as a result of mining-related activities, an estimated total of 739 + 319 kt of Pb has been deposited in sediments of the South Fork drainage basin, the CdA River valley, and the bottom of CdA Lake (combined). Based on mid-range values from a set of preferred estimates with uncertainty ranges up to + 50 percent, roughly 24 percent of the 850 + 10 kt of mining-derived Pb lost to streams has been added to sediments of the South Fork drainage basin, 29 percent to sediments of the CdA River valley floor, and 34 percent to sediments on the bottom of CdA Lake. This amounts to roughly 87 percent of the Pb lost to streams, not including Pb contained in sediments of the North Fork drainage basin and the Spokane River valley, the tonnages of which have not yet estimated.

Bookstrom, Arthur A.; Box, Stephen E.; Campbell, Julie K.; Foster, Kathryn I.; Jackson, Berne L.

2001-01-01

202

Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho  

SciTech Connect

The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. A total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout.

Teuscher, D.

1996-05-01

203

Ground water in the Raft River Basin, Idaho, with special reference to irrigation use, 1956-60  

USGS Publications Warehouse

In the Raft River basin in south-central Idaho, ground-water withdrawals for irrigation have more than doubled since 1955, when data were compiled for a comprehensive report on the area. The present report summerizes data on the ground-water use and changes in the water regimen during the intervening 5 years. Water levels have declined 10 to 20 feet in the areas of heaviest pumping and 3 to 5 feet throughout the remainder of the area. These water-level declines are related to increased ground-water pumpage and below-normal precipitation in the basin. The total pumpage during the 1960 irrigation season is estimated to be about 127,000 acre-feet, of which about half was consumed by crops or evaporated. The remainder returned to the aquifer. Irrigation development is acting to reduce the amount of underflow out of the basin. The water table can be lowered considerably more before underflow from the basin would be reduced substantially.

Mundorff, Maurice John; Sisco, H.G.

1963-01-01

204

Biotic integrity of the Boise River upstream and downstream from two municipal wastewater treatment facilities, Boise, Idaho, 1995-96  

USGS Publications Warehouse

Aquatic biological communities were used to assess the biotic integrity of the Boise River upstream and downstream from the Lander Street and West Boise municipal wastewater treatment facilities (WTFs) in Boise, Idaho. Samples of epilithic periphyton, benthic macroinvertebrates, and fish were collected in late February and early March 1995, in late October 1996, and in early December 1996. Epilithic periphyton biomass, expressed as chlorophyll-a and ash-free dry weight, declined substantially between 1995 and 1996. Chlorophyll-a concentrations were higher at sites downstream from WTFs in both years, but differences in concentrations between sites upstream and downstream from WTFs were not statistically significant. High withinsite variance suggests that greater sampling intensity would improve statistical comparison. Index of Biotic Integrity (IBI) scores calculated for benthic macroinvertebrates were higher for the sites upstream from WTFs in 1995 and were the same for all sites in 1996. Similarly, IBI scores calculated for fish were higher for the sites upstream from WTFs in 1995, were higher for the site upstream from the Lander Street WTF in 1996, and were the same for sites upstream and downstream from the West Boise WTF in 1996. Two species of sculpin (Cottus) were abundant at the site upstream from both WTFs but were absent at all other sites downstream from WTFs in 1995 and composed only 2 percent of the total number of fish collected downstream from the Lander Street WTF in 1996.

Mullins, William H.

1999-01-01

205

Radiocarbon studies of latest Pleistocene and Holocene lava flows of the Snake River Plain, Idaho: Data, lessons, interpretations  

USGS Publications Warehouse

Latest Pleistocene-Holocene basaltic lava fields of the Snake River Plain, Idaho, have been dated by the radiocarbon method. Backhoe excavations beneath lava flows typically yielded carbon-bearing, charred eolian sediment. This material provided most of the samples for this study; the sediment typically contains less than 0.2% carbon. Charcoal fragments were obtained from tree molds but only from a few backhoe excavations. Contamination of the charred sediments and charcoal by younger carbon components is extensive; the effects of contamination were mitigated but appropriate pretreatment of samples using acid and alkali leaches. Twenty of the more than 60 lava flows of the Craters of the Moon lava field have been dated; their ages range from about 15,000 to about 2000 yr B.P. The ages permit assignment of the flows to eight distinct eruptive periods with an average recurrence interval of about 2000 yr. The seven other latest Pleistocene-Holocene lava fields were all emplaced in short eruptive bursts. Their 14C ages (yr B.P.) are: Kings Bowl (2222?? 100), Wapi (2270 ?? 50), Hells Half Acre (5200 ?? 150), Shoshone (10,130 ?? 350), North Robbers and South Robbers (11.980 ?? 300), and Cerro Grande (13,380 ?? 350). ?? 1986.

Kuntz, M.A.; Spiker, E. C.; Rubin, M.; Champion, D.E.; Lefebvre, R.H.

1986-01-01

206

Basic data from five core holes in the Raft River geothermal area, Cassia County, Idaho  

USGS Publications Warehouse

meters) were completed in the area (Crosthwaite, 1974), and the Aerojet Nuclear Company, under the auspices of the U.S. Energy Research and Development Administration, was planning some deep drilling 4,000 to 6,000 feet (1,200 to 1,800 meters) (fig. 1). The purpose of the core drilling was to provide information to test geophysical interpretations of the subsurface structure and lithology and to provide hydrologic and geologic data on the shallow part of the geothermal system. Samples of the core were made available to several divisions and branches of the Geological Survey and to people and agencies outside the Survey. This report presents the basic data from the core holes that had been collected to September 1, 1975, and includes lithologic and geophysical well logs, chemical analyses of water (table 1), and laboratory analyses of cores (table 2) that were completed as of the above date. The data were collected by the Idaho District office, Hydrologic Laboratory, Borehole Geophysics Research Project, and Drilling, Sampling, and Testing Section, all of the Water Resources Division, and the Branch of Central Environmental Geology of the Geologic Divison.

Crosthwaite, E. G., (compiler)

1976-01-01

207

Characterize and Quantify Residual Steelhead in the Clearwater River, Idaho, 1999 Annual Report.  

SciTech Connect

Although sample sizes were small during the 1999 field season, we were able to verify at least some residual steelhead survive the winter to persist in the Clearwater River. Hatchery steelhead were found in low numbers migrating up tributaries of the Clearwater River where wild A-run steelhead spawn. Data from this first year did not indicate differences in survival due to size, release site, or rearing system for steelhead reared at Dworshak National Fish Hatchery. This information needs to be compared over several (at least three) years for meaningful analysis. Final analysis will also include influences of water flow and temperature in emigration success. Based on one year of data, the majority of steelhead which do not emigrate during the first couple of weeks after release, are unlikely to emigrate at all.

Bigelow, Patricia E.; Larsen, Chris A. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

2003-03-01

208

Distribution and mobilization of arsenic and antimony species in the Coeur d'Alene River, Idaho  

Microsoft Academic Search

Sediments from the Main Stem and the South Fork of the Coeur d'Alene River are contaminated with As, Sb, and other heavy metals from the local mining operations. Water samples from the South Fork and the Main Stem showed high levels of As (0.11-1.64 μg\\/L) and Sb (0.23-8.25 μg\\/L) relative to those from the North Fork (0.26 μg\\/O As and

Waiman Mok; C. M. Wal

1990-01-01

209

Characterize and Quantify Residual Steelhead in the Clearwater River, Idaho, 2000 Annual Report.  

SciTech Connect

We tagged 4,507 hatchery steelhead from Dworshak National Fish Hatchery (NFH), with Passive Integrated Transponder (PIT) tags to evaluate factors contributing to residualism. Steelhead lengths from typical growth ponds (System I) averaged 7mm less than those in faster growth ponds (System II) and travel times were 2 days faster. Steelhead were released into Clear Creek, South Fork Clearwater River, and from Dworshak NFH, and detection rates were 54.8%, 60.0% and 58.8%, respectively. The mean detection rates of steelhead analyzed by rearing system were, 51.5%, 59.8%, and 61.8% for System III, System I, and System II, respectively. We PIT tagged an additional 1,302 hatchery steelhead in the North Fork and mainstem Clearwater rivers between April 10 and August 28. Only 73 of these PIT-tagged steelhead were detected at a downstream dam and none were detected after June 14. In the 4 tributaries sampled, 77 steelhead were PIT tagged and released, 35.1% of which were detected emigrating downstream. Steelhead which were sacrificed for coded-wire tag information were also checked for sexual maturity. A total of 302 coded-wire tags were recovered; 87 from the Clearwater River, 119 from the North Fork Clearwater River, 80 from the Dworshak NFH adult return ladder, and 77 from the 4 tributaries. The precocious rate in males was 83.3% to 1.5% in females and the gender ratio was 79.8% males to 20.2% females. Although sample sizes were small, we were able to verify that at least one residual steelhead survived the winter to persist in the Clearwater River. Based on this years data, the majority of steelhead, which do not emigrate during the first couple of weeks after release, are unlikely to emigrate. Final analysis will also include influences of water flow and temperature in emigration success. This information needs to be compared over several years (at least three) for meaningful analysis.

Larsen, Chris A.; Bigelow, Patricia E.; Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

2003-03-01

210

Aquifer-test results, direction of ground-water flow, and 1984-90 annual ground-water pumpage for irrigation, lower Big Lost River Valley, Idaho  

USGS Publications Warehouse

The study area (see index map of Idaho), part of the Big Lost River drainage basin, is at the northern side of the eastern Snake River Plain. The lower Big Lost River Valley extends from the confluence of Antelope Creek and the Big Lost River to about 4 mi south of Arco and encompasses about 145 mi2 (see map showing water-level contours). The study area is about 18 mi long and, at its narrowest, 4 mi wide. Arco, Butte City, and Moore, with populations of 1,016, 59, and 190, respectively, in 1990, are the only incorporated towns. The entire study area, except the extreme northwestern part, is in Butte City. The study area boundary is where alluvium and colluvium pinch out and abut against the White Knob Mountains (chiefly undifferentiated sedimentary rock with lesser amounts of volcanic rock) on the west and the Lost River Range (chiefly sedimentary rock) on the east. Gravel and sand in the valley fill compose the main aquifer. The southern boundary is approximately where Big Lost River valley fill intercalates with or abuts against basalt of the Snake River Group. Spring ground-water levels and flow in the Big Lost River depend primarily on temperature and the amount and timing of precipitation within the entire drainage basin. Periods of abundant water supply and water shortages are, therefore, related to the amount of annual precipitation. Surface reservoir capacity in the valley (Mackay Reservoir, about 20 mi northwest of Moore) is only 20 percent of the average annual flow of the Big Lost River (Crosthwaite and others, 1970, p. 3). Stored surface water is generally unavailable for carryover from years of abundant water supply to help relieve drought conditions in subsequent years. Many farmers have drilled irrigation wells to supplement surface-water supplies and to increase irrigated acreage. Average annual flow of the Big Lost River below Mackay Reservoir near Mackay (gaging station 13127000, not shown) in water years 1905, 1913-14, and 1920-90 was about 224,600 acre-ft; average annual flow of the Big Lost River near Arco (gaging station 13132500; see map showing water-level contours) in water years 1947-61, 1967-80, and 1983-90 was about 79,000 acre-ft (Harenberg and others, 1991, p. 254-255). Moore Canal and East Side Ditch divert water from the Big Lost River at the Moore Diversion, 3 mi north of Moore (see map showing water-level contours) and supply water for irrigation near the margins of the valley. When water supply is average or greater, water in the Big Lost River flows through the study area and onto the Snake River Plain, where it evaporates or infiltrates into the Snake River Plain aquifer. When water supply is below average, water in the Big Lost River commonly does not reach Arco; rather, it is diverted for irrigation in the interior of the valley, evaporates, or infiltrates to the valley-fill aquifer. This report describes the results of a study by the U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources, to collect hydrologic data needed to help address water-supply problems in the Big Lost River Valley. Work involved (1) field inventory of 81 wells, including 46 irrigation wells; (2) measurement of water levels in 154 wells in March 1991; (3) estimation of annual ground-water pumpage for irrigation from 1984 through 1990; and (4) analysis of results of an aquifer test conducted southwest of Moore. All data obtained during this study may be inspected at the U.S. Geological Survey, Idaho District office, Boise.

Bassick, M.D.; Jones, M.L.

1992-01-01

211

Solute geochemistry of the Snake River plain regional aquifer system, Idaho and eastern Oregon  

USGS Publications Warehouse

Geothermometry calculations of selected ground-water samples from known geothermal areas throughout the basin suggest that the geother- mal system is large in areal extent but has relatively low temperatures. Approximately half of the silica-quartz calculated water temperatures are greater than 90 C. Radiocarbon dating of geothermal water in the Salmon Falls and Bruneau-Grand View areas in the south central part of the Snake River basin suggests that residence time of the geother- mal water is about 17,700 years.

Wood, Warren W.; Low, Walton H.

1988-01-01

212

Tests of ground-penetrating radar and induced polarization for mapping fluvial mine tailings on the floor of the Couer d'Alene River, Idaho  

USGS Publications Warehouse

In order to investigate sequences of toxic mine tailings that have settled in the bed of the Coeur d'Alene River, Idaho, (see figure 1) we improvised ways to make geophysical measurements on the river floor. To make ground penetrating radar (GPR) profiles, we mounted borehole antennas on a skid that was towed along the river bottom. To make induced polarization (IP) profiles, we devised a bottom streamer from a garden hose, lead strips, PVC standoffs, and insulated wire. Each approach worked and provided uniquely different information about the buried toxic sediments. GPR showed shallow stratigraphy, but did not directly detect the presence of contaminating metals. IP showed a zone of high chargeability that is probably due to pockets of relatively higher metal content. Neither method was able to define the base of the fluvial tailings section, at least in part because the IP streamer was deliberately designed to sample only the top three meters of sediments to maximize horizontal resolution.

Campbell, David L.; Wynn, Jefferey C.; Box, Stephen E.; Bookstrom, Arthur A.; Horton, Robert J.

1997-01-01

213

Age dating ground water by use of chlorofluorocarbons (CCl{sub 3}F and CCl{sub 2}F{sub 2}), and distribution of chlorofluorocarbons in the unsaturated zone, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho  

SciTech Connect

Detectable concentrations of chlorofluorocarbons (CFC`s) were observed in ground water and unsaturated-zone air at the Idaho National Engineering Laboratory (INEL) and vicinity. The recharge ages of waters were determined to be from 4 to more than 50 years on the basis of CFC concentrations and other environmental data; most ground waters have ages of 14 to 30 years. These results indicate that young ground water was added at various locations to the older regional ground water (greater than 50 years) within and outside the INEL boundaries. The wells drilled into the Snake River Plain aquifer at INEL sampled mainly this local recharge. The Big Lost River, Birch Creek, the Little Lost River, and the Mud Lake-Terreton area appear to be major sources of recharge of the Snake River Plain aquifer at INEL. An average recharge temperature of 9.7{plus_minus}1.3{degrees}C (degrees Celsius) was calculated from dissolved nitrogen and argon concentrations in the ground waters, a temperature that is similar to the mean annual soil temperature of 9{degrees}C measured at INEL. This similarity indicates that the aquifer was recharged at INEL and not at higher elevations that would have cooler soil temperatures than INEL. Soil-gas concentrations at Test Area North (TAN) are explained by diffusion theory.

Busenberg, E.; Weeks, E.P.; Plummer, L.N.; Bartholomay, R.C.

1993-04-01

214

Streamflow monitoring and statistics for development of water rights claims for Wild and Scenic Rivers, Owyhee Canyonlands Wilderness, Idaho, 2012  

USGS Publications Warehouse

The U.S. Geological Survey, in cooperation with the Bureau of Land Management (BLM), collected streamflow data in 2012 and estimated streamflow statistics for stream segments designated "Wild," "Scenic," or "Recreational" under the National Wild and Scenic Rivers System in the Owyhee Canyonlands Wilderness in southwestern Idaho. The streamflow statistics were used by BLM to develop and file a draft, federal reserved water right claim in autumn 2012 to protect federally designated "outstanding remarkable values" in the stream segments. BLM determined that the daily mean streamflow equaled or exceeded 20 and 80 percent of the time during bimonthly periods (two periods per month) and the bankfull streamflow are important streamflow thresholds for maintaining outstanding remarkable values. Prior to this study, streamflow statistics estimated using available datasets and tools for the Owyhee Canyonlands Wilderness were inaccurate for use in the water rights claim. Streamflow measurements were made at varying intervals during FebruarySeptember 2012 at 14 monitoring sites; 2 of the monitoring sites were equipped with telemetered streamgaging equipment. Synthetic streamflow records were created for 11 of the 14 monitoring sites using a partial?record method or a drainage-area-ratio method. Streamflow records were obtained directly from an operating, long-term streamgage at one monitoring site, and from discontinued streamgages at two monitoring sites. For 10 sites analyzed using the partial-record method, discrete measurements were related to daily mean streamflow at a nearby, telemetered index streamgage. Resulting regression equations were used to estimate daily mean and annual peak streamflow at the monitoring sites during the full period of record for the index sites. A synthetic streamflow record for Sheep Creek was developed using a drainage-area-ratio method, because measured streamflows did not relate well to any index site to allow use of the partial-record method. The synthetic and actual daily mean streamflow records were used to estimate daily mean streamflow that was exceeded 80, 50, and 20 percent of the time (80-, 50-, and 20-percent exceedances) for bimonthly and annual periods. Bankfull streamflow statistics were calculated by fitting the synthetic and actual annual peak streamflow records to a log Pearson Type III distribution using Bulletin 17B guidelines in the U.S. Geological Survey PeakFQ program. The coefficients of determination (R2) for the regressions between the monitoring and index sites ranged from 0.74 for Wickahoney Creek to 0.98 for the West Fork Bruneau River and Deep Creek. Confidence in computed streamflow statistics is highest among other sites for the East Fork Owyhee River and the West Fork Bruneau River on the basis of regression statistics, visual fit of the related data, and the range and number of streamflow measurements. Streamflow statistics for sites with the greatest uncertainty included Big Jacks, Little Jacks, Cottonwood, Wickahoney, and Sheep Creeks. The uncertainty in computed streamflow statistics was due to a number of factors which included the distance of index sites relative to monitoring sites, relatively low streamflow conditions that occurred during the study, and the limited number and range of streamflow measurements. However, the computed streamflow statistics are considered the best possible estimates given available datasets in the remote study area. Streamflow measurements over a wider range of hydrologic and climatic conditions would improve the relations between streamflow characteristics at monitoring and index sites. Additionally, field surveys are needed to verify if the streamflows selected for the water rights claims are sufficient for maintaining outstanding remarkable values in the Wild and Scenic rivers included in the study.

Wood, Molly S.; Fosness, Ryan L.

2013-01-01

215

Bimodal magmatism, basaltic volcanic styles, tectonics, and geomorphic processes of the eastern Snake River Plain, Idaho  

USGS Publications Warehouse

Geology presented in this field guide covers a wide spectrum of internal and surficial processes of the eastern Snake River Plain, one of the largest components of the combined late Cenozoic igneous provinces of the western United States. Focus is on widespread Quaternary basaltic plains volcanism that produced coalescent shields and complex eruptive centers that yielded compositionally evolved magmas. The guide is constructed in several parts beginning with discussion sections that provide an overview of the geology followed by road directions, with explanations, for specific locations. The geology overview briefly summarizes the collective knowledge gained, and petrologic implications made, over the past few decades. The field guide covers plains volcanism, lava flow emplacement, basaltic shield growth, phreatomagmatic eruptions, and complex and evolved eruptive centers. Locations and explanations are also provided for the hydrogeology, groundwater contamination, and environmental issues such as range fires and cataclysmic floods associated with the region.

Hughes, S.S.; Smith, R.P.; Hackett, W.R.; McCurry, M.; Anderson, S.R.; Ferdock, G.C.

1997-01-01

216

Gas Bubble Trauma Monitoring in the Clearwater River Drainage, Idaho 1998.  

SciTech Connect

Select portions of the Clearwater and North Fork of the Clearwater rivers were electroshocked to estimate the incidence of gas bubble trauma (GBT) occurring in resident fish populations for the spring and summer months of 1998. The study area was divided into four sections and sampled weekly during periods of spill and non-spill from Dworshak Dam. Five thousand five hundred and forty one fish, representing 22 different species, were captured and examined for GBT. Two fish were detected with signs of GBT; exhibiting the lowest incidence of GBT in the last four years (0.04%). Reduced discharge and lower levels of total dissolved gases may have resulted in lower incidence of GBT in the 1998 monitoring period.

Cochnauer, Tim

1998-12-01

217

Geothermal Systems In The Snake River Plain Idaho Characterized By The Hotspot Project  

NASA Astrophysics Data System (ADS)

The Snake River Plain (SRP) is potentially the largest geothermal province in the world. It is postulated that the SRP results from passage of the North American Plate over the Yellowstone mantle plume. This has resulted in felsic, caldera-related volcanism followed by voluminous eruptions of basalt. Compilations of subsurface temperature data demonstrate the masking effect of the Snake River Aquifer. As a consequence, here has been little serious geothermal exploration within the center of the plain; although there are numerous examples of low-temperature fluids, as well as the Raft River geothermal system, on the southern flanks of the SRP. Project Hotspot was designed to investigate the geothermal potential of the SRP through the coring and subsequent scientific evaluation of three holes, each representing a different geothermal environment. These are located at Kimama, north of Burley, in the center of the plain; at Kimberly near Twin Falls on the southern margin of the plain; and at Mountain Home Air Force base in the central part of the western SRP. Both the Kimberly and Mountain Home sites are located in areas that have warm wells and hot springs, whereas, the Kimama site has neither surface nor subsurface thermal manifestations. All of the sites studied here were sampled using slim hole coring techniques in conjunction with a bottom hole temperature probe developed by DOSECC. Our first hole at Kimama in the center of the eastern SRP was cored to a depth of 1,912 m. Temperature measurements showed the SRP fresh water aquifer extends to a depth of 965 m and masks the underlying high temperature gradient of 74.5oC/Km. The core hole at Kimberly reached a depth of 1,959 m and demonstrated a large low-temperature resource of >50oC below 800 m. A core hole at Mountain Home AFB in the eastern SRP reached a depth of 1,821 m and demonstrated the presence of an intermediate- to high-temperature artesian resource that has a clear magmatic association, with measured temperatures of up to 140oC and extrapolated equilibrium temperatures of 150oC. Calculated equilibrium temperatures of the artesian water samples vary from ~134oC to 154oC (Lachmar et al 2012; GRC Transactions). The Kimama hole greatly expanded the depth extent of the Snake River aquifer. However, beneath the masking effect of the aquifer, high temperature gradients were encountered suggesting that high-temperature resources could be present, but their identification could be difficult. The Kimberly hole demonstrated that low-temperature resources along the southern flank of the SRP can have considerable depth extent and are higher volume than previously anticipated. The overall architecture of this large low-temperature system deserves further investigation. Hole MH-2 Mountain Home AFB in the central part of the western SRP has encountered the upper part of a high temperature geothermal resource that also remains to be fully evaluated.

Nielson, D. L.; Delahunty, C.; Shervais, J. W.

2012-12-01

218

Application of a parameter-estimation technique to modeling the regional aquifer underlying the eastern Snake River plain, Idaho  

USGS Publications Warehouse

A nonlinear, least-squares regression technique for the estimation of ground-water flow model parameters was applied to the regional aquifer underlying the eastern Snake River Plain, Idaho. The technique uses a computer program to simulate two-dimensional, steady-state ground-water flow. Hydrologic data for the 1980 water year were used to calculate recharge rates, boundary fluxes, and spring discharges. Ground-water use was estimated from irrigated land maps and crop consumptive-use figures. These estimates of ground-water withdrawal, recharge rates, and boundary flux, along with leakance, were used as known values in the model calibration of transmissivity. Leakance values were adjusted between regression solutions by comparing model-calculated to measured spring discharges. In other simulations, recharge and leakance also were calibrated as prior-information regression parameters, which limits the variation of these parameters using a normalized standard error of estimate. Results from a best-fit model indicate a wide areal range in transmissivity from about 0.05 to 44 feet squared per second and in leakance from about 2.2x10 -9 to 6.0 x 10 -8 feet per second per foot. Along with parameter values, model statistics also were calculated, including the coefficient of correlation between calculated and observed head (0.996), the standard error of the estimates for head (40 feet), and the parameter coefficients of variation (about 10-40 percent). Additional boundary flux was added in some areas during calibration to achieve proper fit to ground-water flow directions. Model fit improved significantly when areas that violated model assumptions were removed. It also improved slightly when y-direction (northwest-southeast) transmissivity values were larger than x-direction (northeast-southwest) transmissivity values. The model was most sensitive to changes in recharge, and in some areas, to changes in transmissivity, particularly near the spring discharge area from Milner Dam to King Hill.

Garabedian, Stephen P.

1986-01-01

219

Climate-driven changes in scour regime and potential risks to salmonid survival in the Middle Fork Salmon River, Idaho  

NASA Astrophysics Data System (ADS)

The timing and magnitude of streamflow in the Pacific Northwest show measurable changes to twentieth century climate change. How the physical characteristics of fluvial systems in this region will respond, and how such changes will affect salmonid species remain unresolved questions. Flow and sediment transport conditions during the spawning and incubation periods are of particular concern. To enhance survival, the depth of egg burial must exceed the depth to which the bed scours during flows within the incubation period. Here, we investigate whether climate-driven shifts in the timing and depth of bed scour will impact salmonid spawning success in the Middle Fork Salmon River (MFSR), Idaho. The MFSR is a snowmelt-dominated system that supports federally listed salmonids, and is the largest unregulated basin in the conterminous US. As a first-order analysis, we ask whether changes in the magnitude and timing of the typical annual flood (i.e., bankfull) will affect scour risk for incubating salmonids. The spatial distribution of critical scour (that which exceeds egg burial depths for different salmonid populations of interest) is predicted at basin scales using current bed material grain size and bankfull shear stress. Grain size and bankfull shear stress are predicted from empirical functions of drainage area and slope determined from field surveys of 121 channel reaches, coupled with digital elevation models to extrapolate these relationships across the landscape. The spatial distribution of critical scour for predicted changes in bankfull flow (altered magnitude and timing) are compared to known salmonid spawning sites within the basin to assess location of scour risk. Future work will examine predicted changes in the magnitude and variability of flows during the incubation period, as well as differences in predicted impacts across a range of hydroclimates (snowmelt- vs. rainfall-dominated basins) in the western US and Europe.

Goode, J.; Buffington, J. M.; Isaak, D.; Tonina, D.; Tetzlaff, D.; Soulsby, C.; Tockner, K.; Thurow, R.; McKean, J. A.; Luce, C.; Wenger, S.; Nagel, D.

2010-12-01

220

Patterns of hybridization of nonnative cutthroat trout and hatchery rainbow trout with native redband trout in the Boise River, Idaho  

USGS Publications Warehouse

Hybridization is one of the greatest threats to native fishes. Threats from hybridization are particularly important for native trout species as stocking of nonnative trout has been widespread within the ranges of native species, thus increasing the potential for hybridization. While many studies have documented hybridization between native cutthroat trout Oncorhynchus clarkii and nonnative rainbow trout O. mykiss, fewer have focused on this issue in native rainbow trout despite widespread threats from introductions of both nonnative cutthroat trout and hatchery rainbow trout. Here, we describe the current genetic (i.e., hybridization) status of native redband trout O. mykiss gairdneri populations in the upper Boise River, Idaho. Interspecific hybridization was widespread (detected at 14 of the 41 sampled locations), but high levels of hybridization between nonnative cutthroat trout and redband trout were detected in only a few streams. Intraspecific hybridization was considerably more widespread (almost 40% of sampled locations), and several local populations of native redband trout have been almost completely replaced with hatchery coastal rainbow trout O. mykiss irideus; other populations exist as hybrid swarms, some are in the process of being actively invaded, and some are maintaining genetic characteristics of native populations. The persistence of some redband trout populations with high genetic integrity provides some opportunity to conserve native genomes, but our findings also highlight the complex decisions facing managers today. Effective management strategies in this system may include analysis of the specific attributes of each site and population to evaluate the relative risks posed by isolation versus maintaining connectivity, identifying potential sites for control or eradication of nonnative trout, and long-term monitoring of the genetic integrity of remaining redband trout populations to track changes in their status.

Neville, Helen M.; Dunham, Jason B.

2011-01-01

221

Oxygen and strontium isotopic studies of basaltic lavas from the Snake River plain, Idaho  

USGS Publications Warehouse

The Snake Creek-Williams Canyon pluton of the southern Snake Range crops out over an area of about 30 km2, about 60 km southeast of Ely, Nev. This Jurassic intrusion displays large and systematic chemical and mineralogical zonation over a horizontal distance of 5 km. Major-element variations compare closely with Dalyls average andesite-dacite-rhyolite over an SiO2 range of 63 to 76 percent. For various reasons it was originally thought that assimilation played a dominant role in development of the Snake Creek-Williams Canyon pluton. However, based on modeling of more recently obtained trace element and isotopic data, we have concluded that the zonation is the result of in-situ fractional crystallization, with little assimilation at the level of crystallization. This report summarizes data available for each of the mineral species present in the zoned intrusion. Special attention has been paid to trends We present oxygen and strontium isotopic data for olivine tholeiites, evolved (that is, differentiated and (or) contaminated) lavas, rhyolites, and crustal- derived xenoliths from the Snake River Plain. These data show that the olivine tholeiites are fairly uniform in d80 (5.1 to 6.2) and 87Sr/86Sr (0.7056 to 0.7076) and reveal no correlation between these ratios. The tholeiites are considered representative of mantle-derived magmas that have not interacted significantly with crustal material or meteoric water. The evolved lavas display a wider range in d 80 (5.6 to 7.6) and 87Sr/86Sr (0.708 to 0.717) with positive correlations between these ratios in some suites but not in others. Crustal xenoliths have high and variable 8?Sr/86Sr (0.715 to 0.830) and d80 values that vary widely (6.7 to 9.2) and are a few permil greater than d80 values of the Snake River basalts. Thus, isotopic data for the evolved lavas are permissive of small degrees of contamination by crustal rocks similar to the most d80-depleted xenoliths. The d80 enrichments in some evolved lavas also are consistent with crystal fractionation processes and do not necessarily require bulk interaction with crustal rocks. Enrichment in d80 but not in 87Sr/86Sr in one suite of evolved lavas suggests that crustal contamination may not be essential to the petrogenesis of those lavas. Other suites of evolved lavas display large variations in 87Sr/86Sr that reflect at least some selective contamination with 87St. Bulk solid/liquid oxygen-isotope fractionation factors (a's) calculated for the evolved lavas from Craters of the Moon National Monument are comparatively large. These a's are dependent upon the nature and proportions of phases removed by crystal fractionation; basaltic lava a's differ from latitic lava a?s in accordance with different phenocryst assemblages in these rocks. Snake River Plain rhyolites are isotopically distinct from both the analyzed crustal xenoliths and olivine tholeiites. Their origin remains poorly understood, but crustal or sub-crustal sources may be viable. In the first case, they must be derived by anatexis of material distinct from the analyzed crustal xenoliths. In the second case, they must be derived from material unlike the source for tholeiites. No cogenetic relation with the tholeiites seems likely on the basis of available data. that might relate to the variation in the chemical petrology of the pluton.

Leeman, William P.; Whelan, Joseph F.

1983-01-01

222

Radionuclide concentrations in streams in the upper Blackfoot River basin, southeastern Idaho  

USGS Publications Warehouse

Data on radionuclide concentrations in water and sediment material in the phosphate-mining area of the upper Blackfoot River basin were collected from May to October 1979. Maximum measured uranium and radium-226 concentrations dissolved in water were 3.7 micrograms per liter and 1.8 picocuries per liter , respectively. Maximum measured uranium and radium-226 concentrations in stream-bottom material were 5.5 micrograms per gram and 1.8 picocuries per gram, respectively. Maximum measured uranium and radium-226 concentrations on bottom material were 9.9 micrograms per gram and 3.9 picocuries per gram, respectively, in sediment-retention ponds, and 17 micrograms per gram and 3.5 picocuries per gram, respectively, in a mine pit. Maximum observed radon-222 concentration was 120 picocuries per liter in surface water and averaged 550 picocuries per liter at Formation Springs (site 10). All radionuclide concentrations were within existing State and Federal water-quality standards. Radionuclide concentrations were not significantly increased downstream from active mining sites. (USGS)

Low, Walton H.

1981-01-01

223

Statistical tables and charts showing geochemical variation in the Mesoproterozoic Big Creek, Apple Creek, and Gunsight formations, Lemhi group, Salmon River Mountains and Lemhi Range, central Idaho  

USGS Publications Warehouse

The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.

Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E., Jr.

2002-01-01

224

Geology of the Arco-Big Southern Butte area, eastern Snake River Plain, and volcanic hazards to the radioactive waste management complex, and other waste storage and reactor facilities at the Idaho National Engineering Laboratory, Idaho  

USGS Publications Warehouse

The Arco-Big Southern Butte area of the eastern Snake River Plain, Idaho, includes a volcanic rift zone and more than 70 Holocene and late Quaternary basalt volcanoes. The Arco volcanic rift zone extends southeast for 50 km from Arco to about 10 km southeast of Big Southern Butte. The rift zone is the locus of extensional faults, graben, fissure basaltic volcanic vents, several rhyolite domes at Big Southern Butte, and a ferrolatite volcano at Cedar Butte. Limited radiometric age data and geological field criteria suggest that all volcanism in the area is younger than 700,000 years; at least 67 separate basaltic eruptions are estimated to have occurred within the last 200,000 years. The average volcanic recurrence interval for the Arco-Big Southern Butte area is approximately one eruption per 3,000 years. Radioactive waste storage and reactor facilities at the Idaho National Engineering Laboratory may be subject to potential volcanic hazards. The geologic history and inferred past volcanic events in the Arco-Big Southern Butte area provide a basis for assessing the volcanic hazard. It is recommended that a radiometric age-dating study be performed on rocks in cored drill holes to provide a more precise estimate of the eruption recurrence interval for the region surrounding and including the Radioactive Waste Management Complex. It is also recommended that several geophysical monitoring systems (dry tilt and seismic) be installed to provide adequate warning of future volcanic eruptions.

Kuntz, Mel A.; Kork, John O.

1978-01-01

225

Petrogenesis of Parental and Evolved Olivine Tholeiite Magmas, Eastern Snake River Plain, Idaho  

NASA Astrophysics Data System (ADS)

Geochemical variations in over 500 whole-rock corehole and surface samples representing ~40 individual eruptions of olivine tholeiites on the eastern Snake River Plain (ESRP) portray a system with two major mechanisms of petrogenesis and possibly several magmatic sources in the mantle. Parental liquids, those with high MgO and low incompatible elements (MgO ~7.5-11.2 wt. %; La ~7-19 ppm; Ba ~100-290 ppm), generally follow fractionation paths involving ol pl, while evolved compositions (MgO ~4.6-8.6 wt. %; La ~18-68 ppm; Ba ~250-820 ppm) follow linear mixing trends. Nearly all of the evolved magmatic chemical trends can be produced by two component mixing of liquids represented by high-Mg parental magmas and very low-Mg liquids in the middle to lower crust. The low-Mg endmember liquids are either residual melts generated by extreme equilibrium crystallization of mafic magmas, or they result from small degrees of melting of mafic intrusions. Low-degree melts may be generated during interaction with hotter parental melts as they ascend into the crust. Thermodynamic calculations using MELTS (Ghiorso and Sack, 1995) and constrained by empirical olivine equilibrium temperatures and Fe-Ti oxide oxygen fugacity data were used to predict mineral proportions and major-element liquid compositions for cooling magma reservoirs. Trace element models were then constrained by the predicted mineral proportions and appropriate partition coefficients. The combined models support mixing scenarios involving up to 20% addition of low degree melt (F ranges ~1-4) with a high-MgO parent. Some anomalous ESRP basalts (for example those with Ba ~1240-2170 ppm) represent even higher relative proportions of added evolved low F liquids. Thus, as depicted in recent publications (Geist et al., 2002; Hughes et al., 2002; Shervais et al., 2006), an extensive system of evolving mafic reservoirs beneath the ESRP may be currently active in the lower to middle crust. The petrologic scenario is consistent with isotopic constraints for magma genesis from enriched subcontinental lithosphere and meager AFC differentiation involving older crust. Moreover, it is consistent with chemical stratigraphic constraints that imply magma evolution, i.e., increased mixing with low- F melting components during a single eruptive cycle.

Hughes, S. S.; Geist, D. J.; McCurry, M.

2006-12-01

226

Response of Ponderosa Pine to Variable Scale Climate Influences, Salmon River Canyon, Idaho  

NASA Astrophysics Data System (ADS)

Growth of trees in sparse stands on low-productivity sites is often strongly controlled by climate variation. We examined tree rings in cores collected from 73 ponderosa pine trees (Pinus ponderosa) at a dry upland site near the confluence of French Creek and the main fork of the Salmon River. Cores were mounted, processed, and visually and statistically cross-dated following standard dendrochronological methods. Ultimately, 41 tree-ring measurement series with a continuous time span of 278 years were used to create ring-width indices of tree growth for the site. These indices were tested against annual and monthly climatic variables. Simultaneous dating of fires scars from trees and snags at the site enabled reconstruction of a 160-year fire history. There were strong (p<0.01) positive correlations between ring width indices and annual Palmer Drought Severity Index (PDSI) and precipitation, indicating trees grew best in wet years. Strongest correlations with monthly climate variables were for prior-year fall and winter temperature and precipitation, as well as November to April snow water equivalent (SWE). The seasonal variable found most strongly correlated with tree growth was September-January total precipitation, most of which falls as snow at this site, which explained 34 percent of the total variance in annual ring widths. The strong relationship with monthly SWE is corollary to the relationship observed in the fall-winter precipitation, but high correlation with SWE in April and May underscores the positive influence of late season snowpack on current year summer growth. The occurrence of fires was greater during years with low precipitation and high PDSI, but growth responses to climate variables were not affected by fires. Although no significant correlation existed between tree growth and Pacific Decadal Oscillation Index, teleconnections with oceanic climatic influences were present in a positive relationship with the Atlantic Multidecadal Oscillation Index. The AMO was also correlated to fire recurrence at the site; all fires occurred during the AMO negative (cool) phase. The warm phase of the AMO was also correlated warmer winter temperatures that could lead to greater winter precipitation. Variance in tree ring growth indices was lower during the 20th century than in earlier years, suggesting greater amplitude in the AMO before about 1850.

Wilkins, D. E.; Kaplan, S. W.; Keim, R.; Grissino-Mayer, H.

2005-12-01

227

Movement of bull trout in the upper Jarbidge River watershed, Idaho and Nevada, 2008-09--A supplement to Open-File Report 2010-1033  

USGS Publications Warehouse

We monitored bull trout (Salvelinus confluentus) in 2008 and 2009 as a continuation of our work in 2006 and 2007, which involved the tagging of 1,536 bull trout with passive integrated transponder (PIT) tags in the East Fork Jarbidge River and West Fork Jarbidge River and their tributaries in northeastern Nevada and southern Idaho. We installed PIT tag interrogation systems (PTISs) at established locations soon after ice-out, and maintained the PTISs in order to collect information on bull trout movements through December of each year. We observed a marked increase of movement in 2008 and 2009. Bull trout tagged in the uppermost portions of the East Fork Jarbidge River at altitudes greater than 2,100 meters moved to the confluence of the East Fork Jarbidge River and West Fork Jarbidge River in summer and autumn. Ten bull trout tagged upstream of the confluence of Pine Creek and the West Fork Jarbidge River moved downstream and then upstream in the East Fork Jarbidge River, and then past the PTIS at Murphy Hot Springs (river kilometer [rkm] 4.1). Two of these fish ascended Dave Creek, a tributary of the East Fork Jarbidge River, past the PTIS at rkm 0.4. One bull trout that was tagged at rkm 11 in Dave Creek on June 28, 2007 moved downstream to the confluence of the East Fork Jarbidge River and West Fork Jarbidge River (rkm 0) on July 28, 2007, and it was then detected in the West Fork Jarbidge River moving past our PTIS at rkm 15 on May 4, 2008. Combined, the extent and types of bull trout movements observed indicated that the primarily age-1 and age-2 bull trout that we tagged in 2006 and 2007 showed increased movement with age and evidence of a substantial amount of fluvial life history. The movements suggest strong connectivity between spawning areas and downstream mainstem areas, as well as between the East Fork Jarbidge River and West Fork Jarbidge River.

Munz, Carrie S.; Allen, M. Brady; Connolly, Patrick J.

2011-01-01

228

Analysis of steady-state flow and advective transport in the eastern Snake River Plain aquifer system, Idaho  

USGS Publications Warehouse

Quantitative estimates of ground-water flow directions and traveltimes for advective flow were developed for the regional aquifer system of the eastern Snake River Plain, Idaho. The work included: (1) descriptions of compartments in the aquifer that function as intermediate and regional flow systems, (2) descriptions of pathlines for flow originating at or near the water table, and (3) quantitative estimates of traveltimes for advective transport originating at or near the water table. A particle-tracking postprocessing program was used to compute pathlines on the basis of output from an existing three-dimensional steady-state flow model. The flow model uses 1980 conditions to approximate average annual conditions for 1950-80. The advective transport model required additional information about the nature of flow across model boundaries, aquifer thickness, and porosity. Porosity of two types of basalt strata has been reported for more than 1,500 individual cores from test holes, wells, and outcrops near the south side of the Idaho National Engineering Laboratory. The central 80 percent of samples had porosities of 0.08 to 0.25, the central 50 percent of samples, O. 11 to 0.21. Calibration of the model involved choosing a value for porosity that yielded the best solution. Two radiologic contaminants, iodine-129 and tritium, both introduced to the flow system about 40 years ago, are relatively conservative tracers. Iodine- 129 was considered to be more useful because of a lower analytical detection limit, longer half-life, and longer flow path. The calibration value for porosity was 0.21. Most flow in the aquifer is contained within a regional-scale compartment and follows paths that discharge to the Snake River downstream from Milner Dam. Two intermediate-scale compartments exist along the southeast side of the aquifer and near Mud Lake.One intermediate-scale compartment along the southeast side of the aquifer discharges to the Snake River near American Fails Reservoir and covers an area of nearly 1,000 square miles. This compartment, which receives recharge from an area of intensive surface-water irrigation, is apparently fairly stable. The other intermediate-scale compartment near Mud Lake covers an area of 300 square miles. The stability and size of this compartment are uncertain, but are assumed to be in a state of change. Traveltimes for advective flow from the water table to discharge points in the regional compartment ranged from 12 to 350 years for 80 percent of the particles; in the intermediate-scale flow compartment near American Falls Reservoir, from 7 to 60 years for 80 percent of the particles; and in the intermediate-scale compartment near Mud Lake, from 25 to 100 years for 80 percent of the particles. Traveltimes are sensitive to porosity and assumptions regarding the importance of the strength of internal sinks, which represent ground-water pumpage. A decrease in porosity results in shorter traveltimes but not a uniform decrease in traveltime, because the porosity and thickness is different in each model layer. Most flow was horizontal and occurred in the top 500 feet of the aquifer. An important limitation of the model is the assumption of steady-state flow. The most recent trend in the flow system has been a decrease in recharge since 1987 because of an extended drought and changes in land use. A decrease in flow through the system will result in longer traveltimes than those predicted for a greater flow. Because the interpretation of the model was limited to flow on a larger scale, and did not consider individual wells or well fields, the interpretations were not seriously limited by the discretization of well discharge. The interpretations made from this model also were limited by the discretization of the major discharge areas. Near discharge areas, pathlines might not be representative at the resolution of the grid. Most improvement in the estimates of ground-waterflow directions and travelt

Ackerman, D.J.

1995-01-01

229

High-precision provenance determination using detrital-zircon ages and petrography of Quaternary sands on the eastern Snake River Plain, Idaho  

SciTech Connect

The Big Lost trough is an upper Pliocene to Holocene sedimentary basin containing volcanic sills in the northeastern Snake River Plain, Idaho. The basin receives sediment primarily from Basin and Range fluvial systems of the Big Lost River, Little Lost River, and Birch Creek. The Big Lost trough contains a >200-m-thick succession of lacustrine, fluvial, eolian, and playa sediments, recording high-frequency Quaternary climatic fluctuations interbedded with basalt flows. Alternating deposition of clay-rich lacustrine sediments and sandy fluvial and eolian sediments in the central part of the basin was in response to the interaction of fluvial and eolian systems with Pleistocene Lake Terreton. The source areas for modern sands from the fluvial systems can be differentiated by using both petrography and U/Pb age spectra from detrital-zircon populations. Provenance data from subsurface sands indicate that the Big Lost trough was supplied with sand largely deposited by the Big Lost River, with local redeposition by eolian processes, similar to the modern depositional system. Provenance and stratigraphic data suggest that during Pleistocene wet climate cycles, the center of the basin was dominated by lacustrine sedimentation; during dry climate cycles, the base level dropped, the Big Lost River prograded across the basin, and the eolian system became active. At least seven climate oscillations are recorded in strata deposited between {approximately}140 and {approximately}1250 ka.

Geslin, J.K.; Link, P.K. [Idaho State Univ., Pocatello, ID (United States). Dept. of Geology] [Idaho State Univ., Pocatello, ID (United States). Dept. of Geology; Fanning, C.M. [Australian National Univ., Canberra (Australia). Research School of Earth Sciences] [Australian National Univ., Canberra (Australia). Research School of Earth Sciences

1999-04-01

230

Idaho Water Resources Research Institute Annual Technical Report  

E-print Network

. It is through education that the public can make informed public policy decisions concerning water. It is also in Idaho's Eastern Snake River Plain in southern Idaho; the impacts that climate change may haveIdaho Water Resources Research Institute Annual Technical Report FY 2008 Idaho Water Resources

231

Predicted climate change effects on streambed scour and risks to Chinook salmon survival in the Middle Fork Salmon River, Idaho  

NASA Astrophysics Data System (ADS)

In response to recent climate warming trends in the Pacific Northwest, the frequency and magnitude of winter floods is expected to increase in some areas where rain-on-snow events occur. Eggs of fall spawning salmonids are incubating in the streambed at this time of year and may be at risk if streambed scour exceeds typical egg burial depths. We investigated how projected trends in streamflow associated with climate change may alter the probability of streambed scour below documented egg burial depths (15-50 cm) for Chinook salmon (Oncorhynchus tshawytscha) in the Middle Fork Salmon River (MFSR), central Idaho. Predictions are made for the magnitude and timing of current and future bankfull flows (approximated by the 2-year flood, Q2) at the basin scale by coupling digital elevation models with empirical predictions of grain size and bankfull shear stress, determined from field surveys of 120 channel reaches distributed throughout the basin. Historic and future values of Q2 were derived from the Variable Infiltration Capacity (VIC) hydrologic model at the scale of 1/16th degree cells. Future predictions of Q2 were derived from the VIC model using output from an ensemble of Global Climate Models under an A1B emissons scenario for the 2040s and 2080s. Predicted changes in both bankfull flow and the probability of scour to egg burial depths were examined at recent spawning sites (1995-2004 surveys) to assess ecological risk. We found that in the low gradient reaches (Slope <3%) where most spawning occurs, the probability of critical scour was consistently <0.1 under the historic scenario. Future scenarios indicated only a small increase in the length of streams subject to scour in the MFSR, and suggested that this high-elevation system could be largely resistant to climate-driven changes in flow, except under extreme warming scenarios. We are currently extending these analyses to lower elevation basins in rain-dominated and transitional (rain and snow) hydroclimates to assess relative scour sensitivities over a wider range of environmental conditions across the Pacific Northwest.

Goode, J.; Buffington, J. M.; Tonina, D.; Isaak, D.; Tetzlaff, D.; Soulsby, C.; Wenger, S.; Thurow, R.; Nagel, D.; Luce, C.

2011-12-01

232

Warm Springs Creek, Idaho  

USGS Multimedia Gallery

Warm Springs Creek is a tributary of the Big Wood River in south-central Idaho. It is one of eight sites at which the USGS is conducting an ecological assessment during the summer of 2014. Study results will be published in 2015....

233

Scaling the Geomorphic and Ecological Consequences of Contemporary Climate Change Within the Salmon River Watershed, Central Idaho: A View From Taylor Ranch Field Station  

NASA Astrophysics Data System (ADS)

Established in 1970 by the University of Idaho, Taylor Ranch Field Station is located in the Frank Church Wilderness of No Return, along Big Creek, a 1445 km2 tributary to the Middle Fork of the Salmon River. The field station has provided a stable center for terrestrial and aquatic ecological studies within the Salmon River for almost 40 years. Dr. Wayne Minshall began monitoring aquatic ecology indices at numerous sites in the Salmon River basin in the late 1970's. This rare continuum of roughly 30 years of field data can be coupled with publically available hydrologic, geomorphic and meteorological data sets to reveal a rich record of how recent demonstrable changes in climate have affected this wilderness watershed. As a consequence of improved access and automated and telemetered sensors of water quality and quantity, contemporary studies continue through out the watershed at an increasing temporal and spatial resolution. The impetuous is upon current researchers to understand both the role of the basin as a major water source to the Snake and Columbia River systems and also the function of the basin as ideal habitat for threatened native fish. Beyond these applied questions that directly impact management decisions, the pristine nature of much of the Salmon River basin also favors studies of fundamental feedbacks between the physical and biological systems. These interdisciplinary studies are augmented by increasing collections of high resolution spatial data sets such as Hyperspectral Imagery, Distributed Sensor Networks and LiDAR topography. We present a study that explicitly examines the feedbacks between wildfire, sediment production, basin hydrology and aquatic ecosystem function. Because the tributaries to the Salmon River span discrete ranges in elevation across the snow- to rainfall-dominated hydrologic regimes, these studies reveal how sensitive different portions of the Salmon River system are to projected changes in temperature. Depending on the elevation range within a give catchment, these changes will result in different responses in hillslope stability, wildfire susceptibility, stream ecology and channel form.

Crosby, B. T.; Baxter, C. V.

2008-12-01

234

Estimated 100-year peak flows and flow volumes in the Big Lost River and Birch Creek at the Idaho National Engineering Laboratory, Idaho  

SciTech Connect

The purpose of this report is to provide estimates of the 100-year peak flows and flow volumes that could enter the INEL area from the Big Lost River and Brich Creek are needed as input data for models that will be used to delineate the extent of the 100-year flood plain at the INEL. The methods, procedures and assumptions used to estimate the 100-year peak flows and flow volumes are described in this report.

Kjelstrom, L.C.; Berenbrock, C.

1996-12-31

235

Idaho Yesterdays  

NSDL National Science Digital Library

Idaho is a state of many different moods and climates, and since 1957 Idaho Yesterdays has documented the state's history and transformation through articles, book reviews, and commentary. In 2009, the journal switched to life as a digital peer-reviewed publication. Today, visitors can read the digital issues of the journal, and they will find a range of articles here. Visitors can find full-length articles like "Idaho and the Development of the JCPenney Chain" and "Virgin Forest to Modern Farm: Picturing Ecological Change in Northern Idaho's Cutover Land". Finally, visitors can also register on the site, read announcements, and learn about the Idaho State Historical Society.

236

Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho  

NASA Astrophysics Data System (ADS)

The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and composition of alteration products. The lithologic variability in this area leads to differing water-rock interactions occurring in different parts of the drainage basin. Anthropogenic influences also affect the water; at the far downgradient end of the drainage basin, increased levels of chloride and sulfate in the groundwater suggest an increased influence of irrigation recharge. Results from both water and rock analyses are combined in geochemical modeling software to determine plausible reactions that occur in groundwater collected at the sampling sites.

Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.

2012-12-01

237

Effect of activities at the Idaho National Engineering and Environmental Laboratory on the water quality of the Snake River Plain aquifer in the Magic Valley study  

USGS Publications Warehouse

Radiochemical and chemical constituents in wastewater generated at facilities of the Idaho National Engineering and Environmental Laboratory (INEEL) (figure 1) have been discharged to waste-disposal ponds and wells since the early 1950 s. Public concern has been expressed that some of these constituents could migrate through the Snake River Plain aquifer to the Snake River in the Twin Falls-Hagerman area Because of these concerns the U.S. Department of Energy (DOE) requested that the U.S. Geological Survey (USGS) conduct three studies to gain a greater understanding of the chemical quality of water in the aquifer. One study described a one-time sampling effort for radionuclides, trace elements, and organic compounds in the eastern part of the A&B Irrigation District in Minidoka County (Mann and Knobel, 1990). Another ongoing study involves sampling for tritium from 19 springs on the north side of the Snake River in the Twin Falls-Hagerman area (Mann, 1989; Mann and Low, 1994). A third study an ongoing annual sampling effort in the area between the southern boundary of the INEEL and Hagerman (figure 1) (hereafter referred to as the Magic Valley study area), is being conducted with the Idaho Department of Water Resources in cooperation with the DOE. Data for a variety of radiochemical and chemical constituents from this study have been published by Wegner and Campbell (1991); Bartholomay, Edwards, and Campbell (1992, 1993, 1994a, 1994b); and Bartholomay, Williams, and Campbell (1995, 1996, 1997b). Data discussed in this fact sheet were taken from these reports. An evaluation of data collected during the first four years of this study (Bartholomay Williams, and Campbell, 1997a) showed no pattern of water-quality change for radionuclide data as concentrations randomly increased or decreased. The inorganic constituent data showed no statistical change between sample rounds.

Bartholomay, Roy C.

1998-01-01

238

A Journey of Surprises: Rivers Reveal Their Secrets to Idaho Students Researching Water Quality through Rigorous Scientific Inquiry.  

ERIC Educational Resources Information Center

Idaho secondary students learn the scientific method through outdoor environmental projects related to water quality monitoring. A program trains teachers to design project-based learning and provides extensive followup support. Five-day summer workshops immerse teachers in the types of projects they will orchestrate with their own students.

Boss, Suzie

2002-01-01

239

Impacts of Fire and Mass Wasting on Channel Morphology and Stream Temperature in Mountain Rivers of Central Idaho  

Microsoft Academic Search

Debris flows and hyperconcentrated flows immediately impact streams by changing channel morphology, grain size, sediment storage and transport, amount of incision, riparian vegetation, large woody debris dynamics, and extirpating fish, amphibian, and insect populations. In central Idaho, these disturbances are commonly triggered by intense thunderstorms or rain-on-snow events, and are exacerbated by wildfires which alter basin hydrology and sediment supply

C. W. Welcker; J. M. Buffington; B. E. Rieman; C. H. Luce; J. McKean

2004-01-01

240

Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2011-13  

USGS Publications Warehouse

Normalized mean head values were analyzed for all 11 multilevel monitoring wells for the period of record (200713). The mean head values suggest a moderately positive correlation among all boreholes and generally reflect regional fluctuations in water levels in response to seasonal climatic changes. Boreholes within volcanic rift zones and near the southern boundary (USGS 103, USGS 105, USGS 108, USGS 132, USGS 135, USGS 137A) display a temporal correlation that is strongly positive. Boreholes in the Big Lost Trough display some variations in temporal correlations that may result from proximity to the mountain front to the northwest and episodic flow in the Big Lost River drainage system. For example, during June 2012, boreholes MIDDLE 2050A and MIDDLE 2051 showed head buildup within the upper zones when compared to the June 2010 profile event, which correlates to years when surface water was reported for the Big Lost River several months preceding the measurement period. With the exception of borehole USGS 134, temporal correlation between MLMS wells completed within the Big Lost Trough is generally positive. Temporal correlation for borehole USGS 134 shows the least agreement with other MLMS boreholes located within the Big Lost Trough; however, borehole USGS 134 is close to the mountain front where tributary valley

Twining, Brian V.; Fisher, Jason C.

2015-01-01

241

128. COTTONWOOD CUT, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

128. COTTONWOOD CUT, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; NORTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

242

107. MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

107. MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; WEST VIEW OF LAKE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

243

Availability of ground water for large-scale use in the Malad Valley-Bear River areas of southeastern Idaho: an initial assessment  

USGS Publications Warehouse

Five areas within the Bear River drainage of southeastern Idaho offer potential for further development of ground water--the valley north of Bear Lake, north of Soda Springs, Gem Valley, Cache Valley in Idaho, and Malad Valley in Idaho. Saturated deposits north of Bear Lake are too fine-textured to yield large quantities to wells; the areas north of Soda Springs and in Gem Valley would provide large yields, but at the expense of current beneficial discharge. Northern Cache Valley has small areas of high yield in the northwestern part, but total annual yield would be only about 20,000 acre-feet and seasonal water-level fluctuation would be large. Malad Valley contains a large aquifer system within valley fill underlying about 75 square miles. The aquifer system is several hundred feet thick, and contains about 1.8 million acre-feet of water in storage in the top 300 feet of saturated thickness. Average annual recharge to the valley-fill aquifer is about 64,000 acre-feet. Lowering of the water level 100 feet uniformly over the valley area would theoretically yield about 300,000 acre-feet from storage and salvage a present-day large nonbeneficial discharge. Sufficient water to irrigate all lands in a planned project near Samaria could be pumped with a maximum 200-foot pumping lift and then delivered by gravity flow. Such pumping would cause water-level lowering of a few feet to a few tens of feet in present artesian areas, and would cause many present-day artesian wells to cease flowing at land surface. Chemical-quality problems in Malad Valley seem not to be sufficient to prohibit development and use of the ground-water resource.

Burnham, W.L.; Harder, A.H.; Dion, N.P.

1969-01-01

244

Mineralogic variations in fluvial sediments contaminated by mine tailings as determined from AVIRIS data, Coeur D'Alene River Valley, Idaho  

NASA Technical Reports Server (NTRS)

The success of imaging spectrometry in mineralogic mapping of natural terrains indicates that the technology can also be used to assess the environmental impact of human activities in certain instances. Specifically, this paper describes an investigation into the use of data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) for mapping the spread of, and assessing changes in, the mineralogic character of tailings from a major silver and base metal mining district. The area under investigation is the Coeur d'Alene River Valley in northern Idaho. Mining has been going on in and around the towns of Kellogg and Wallace, Idaho since the 1880's. In the Kellogg-Smelterville Flats area, west of Kellogg, mine tailings were piled alongside the South Fork of the Coeur d'Alene River. Until the construction of tailings ponds in 1968 much of these waste materials were washed directly into the South Fork. The Kellogg-Smelterville area was declared an Environmental Protection Agency (EPA) Superfund site in 1983 and remediation efforts are currently underway. Recent studies have demonstrated that sediments in the Coeur d'Alene River and in the northern part of Lake Coeur d'Alene, into which the river flows, are highly enriched in Ag, Cu, Pb, Zn, Cd, Hg, As, and Sb. These trace metals have become aggregated in iron oxide and oxyhydroxide minerals and/or mineraloids. Reflectance spectra of iron-rich tailing materials are shown. Also shown are spectra of hematite and goethite. The broad bandwidth and long band center (near 1 micron) of the Fe(3+) crystal-field band of the iron-rich sediment samples combined with the lack of features on the Fe(3+) -O(2-) charge transfer absorption edge indicates that the ferric oxide and/or oxyhydroxide in these sediments is poorly crystalline to amorphous in character. Similar features are seen in poorly crystalline basaltic weathering products (e.g., palagonites). The problem of mapping and analyzing the downriver occurrences of iron rich tailings in the Coeur d'Alene (CDA) River Valley using remotely sensed data is complicated by the full vegetation cover present in the area. Because exposures of rock and soil were sparse, the data processing techniques used in this study were sensitive to detecting materials at subpixel scales. The methods used included spectral mixture analysis and a constrained energy minimization technique.

Farrand, W. H.; Harsanyi, Joseph C.

1995-01-01

245

Final Environmental Assessment and Finding of No Significant Impact: Idaho Department of Fish and Game Captive Rearing Initiative for Salmon River Chinook Salmon  

SciTech Connect

Bonneville Power Administration (BPA), Department of Energy (DOE), is proposing to fund the Idaho Department of Fish and Game (IDFG) Captive Rearing Initiative for Salmon River Chinook Salmon Program (IDFG Program). The IDFG Program is a small-scale research and production initiative designed to increase numbers of three weak but recoverable populations of spring/summer chinook salmon in the Salmon River drainage. This would increase numbers of spring/summer chinook salmon within the Snake River Spring/Summer Chinook Salmon Evolutionarily Significant Unit (ESU), and reduce population fragmentation within the ESU. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1301) evaluating the proposed IDFG Program. Based on the analysis in the EA, BPA has determined that the Proposed Action is not a major Federal action significantly affecting the quality of the human environment, as defined within the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI).

N /A

2000-10-12

246

Field and Geochemical Study of Table Legs Butte and Quaking Aspen Butte, Eastern Snake River Plain, Idaho: An Analog to the Morphology of Small Shield Volcanoes on Mars  

NASA Technical Reports Server (NTRS)

Mars Orbiter Laser Altimeter (MOLA) data allows insight to Martian features in great detail, revealing numerous small shields in the Tempe region, consisting of low profiles and a prominent summit caps . Terrestrial examples of this shield morphology are found on the Eastern Snake River Plain (ESRP), Idaho. This plains-style volcanism [2] allows an analog to Martian volcanism based on topographic manifestations of volcanic processes . Recent studies link the slope and morphology of Martian volcanoes to eruptive process and style . The ESRP, a 400km long, 100km wide depression, is host to hundreds of tholeiitic basalt shields, which have low-profiles built up over short eruptive periods of a few months or years . Many of these smaller scale shields (basal diameters rarely exceed 5km) display morphology similar to the volcanoes in the Tempe region of Mars . Morphological variations within these tholeiitic shields are beautifully illustrated in their profiles.

Brady, S. M.; Hughes, S. S.; Sakimoto, S. E. H.; Gregg, T. K. P.

2004-01-01

247

Lead exposure in passerines inhabiting lead-contaminated floodplains in the Coeur d'Alene River Basin, Idaho, USA  

Microsoft Academic Search

Blood collected from song sparrows (Melospiza melodia) and American robins (Turdus migratorius) captured with mist nets in a lead-contaminated (assessment) area and nearby uncontaminated (reference) areas within the Coeur d'Alene Basin in northern Idaho was analyzed for [delta]-aminolevulinic acid dehydratase activity (ALAD) and hematocrit levels, and livers were analyzed for lead. Mean ALAD inhibition in the assessment area was 51%

Gregory D. Johnson; J. W. Kern; M. D. Strickland; L. L. McDonald; D. J. Audet; L. J. LeCaptain; D. J. Hoffman

1999-01-01

248

IDAHO WILDERNESS, IDAHO.  

USGS Publications Warehouse

Mineral surveys conducted in the Idaho Wilderness identified 28 areas with probable or substantiated mineral-resource potential, and 5 mines with demonstrated or inferred resources. Metals including gold, silver, copper, lead, zinc, and tungsten, have been extracted from deposits inside the wilderness. Current studies indicate additional areas of probable mineral-resource potential for gold, tungsten, mercury, rare-earth elements, and base metals related to intrusive rocks that follow structures formed by cauldron subsidence. These on-going studies also indicate that there is probable and substantiated resource potential for cobalt with copper, silver, and gold in the Precambrian rocks in the northeastern part of the wilderness in a geologic environment similar to that of the Blackbird mine that lies outside the area. The nature of the geologic terrane precludes the potential for organic fuels.

Cater, Fred W.; Weldin, R.D.

1984-01-01

249

Stream-sediment geochemistry in mining-impacted streams : sediment mobilized by floods in the Coeur d'Alene-Spokane River system, Idaho and Washington  

USGS Publications Warehouse

Environmental problems associated with the dispersion of metal-enriched sediment into the Coeur d'Alene-Spokane River system downstream from the Coeur d'Alene Mining District in northern Idaho have been a cause of litigation since 1903, 18 years after the initiation of mining for lead, zinc, and silver. Although direct dumping of waste materials into the river by active mining operations stopped in 1968, metal-enriched sediment continues to be mobilized during times of high runoff and deposited on valley flood plains and in Coeur d'Alene Lake (Horowitz and others, 1993). To gauge the geographic and temporal variations in the metal contents of flood sediment and to provide constraints on the sources and processes responsible for those variations, we collected samples of suspended sediment and overbank deposits during and after four high-flow events in 1995, 1996, and 1997 in the Coeur d'Alene-Spokane River system with estimated recurrence intervals ranging from 2 to 100 years. Suspended sediment enriched in lead, zinc, silver, antimony, arsenic, cadmium, and copper was detected over a distance of more than 130 mi (the downstream extent of sampling) downstream of the mining district. Strong correlations of all these elements in suspended sediment with each other and with iron and manganese are apparent when samples are grouped by reach (tributaries to the South Fork of the Coeur d'Alene River, the South Fork of the Coeur d'Alene River, the main stem of the Coeur d'Alene River, and the Spokane River). Elemental correlations with iron and manganese, along with observations by scanning electron microscopy, indicate that most of the trace metals are associated with Fe and Mn oxyhydroxide compounds. Changes in elemental correlations by reach suggest that the sources of metal-enriched sediment change along the length of the drainage. Metal contents of suspended sediment generally increase through the mining district along the South Fork of the Coeur d'Alene River, decrease below the confluence of the North and South Forks, and then increase again downstream of the gradient flattening below Cataldo. Metal contents of suspended sediment in the Spokane River below Coeur d'Alene Lake were comparable to those of suspended sediment in the main stem of the Coeur d'Alene River above the lake during the 1997 spring runoff, but with somewhat higher Zn contents. Daily suspended-sediment loads were about 100 times larger in the 1996 flood (50-100-year recurrence interval) than in the smaller 1997 floods (2-5-year recurrence intervals). Significant differences in metal ratios and contents are also apparent between the two flood types. The predominant source of suspended sediment in the larger 1996 flood was previously deposited, metal-enriched flood-plain sediment, identified by its Zn/Pb ratio less than 1. Suspended sediment in the smaller 1997 floods had metal ratios distinct from those of the flood-plain deposits and was primarily derived from metal-enriched sediment stored within the stream channel, identified by a Zn/Pb ratio greater than 1. Sediment deposited during overbank flooding on the immediate streambank or natural levee of the river typically consists of sandy material with metal ratios and contents similar to those of the sandy streambed sediment in the adjacent river reach. Samples of overbank deposits in backlevee marshes collected after the 1996 flood have metal ratios similar to those of peak-flow suspended sediment in the same river reach, but generally lower metal contents.

Box, Stephen E.; Bookstrom, Arthur A.; Ikramuddin, Mohammed

2005-01-01

250

Movements of Fluvial Bonneville Cutthroat Trout in the Thomas Fork of the Bear River, IdahoWyoming  

Microsoft Academic Search

The majority of interior subspecies of cutthroat trout Oncorhynchus clarkii have been extirpated from large rivers by anthropogenic activities that have fragmented habitats and introduced nonnative competitors. Selective pressures against migratory behaviors and main-stem river occupation, coupled with conservation strategies that isolate genetically pure populations above barriers, have restricted gene flow and prevented expression of the fluvial life history in

Warren T. Colyer; Jeffrey L. Kershner; Robert H. Hilderbrand

2005-01-01

251

Development of a regional groundwater flow model for the area of the Idaho National Engineering Laboratory, Eastern Snake River Plain Aquifer  

SciTech Connect

This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model was developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study.

McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M. [and others

1995-03-01

252

In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility  

SciTech Connect

The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water.

L. D. Cecil; L. L. Knobel; J. R. Green (USGS); S. K. Frape (University of Waterloo)

2000-06-01

253

Sedimentation of the Late Triassic Higham Grit in a south Saskatchewan/Platte River-type braided stream complex, southeastern Idaho and western Wyoming  

SciTech Connect

The Late Triassic Higham Grit in southeastern Idaho and western Wyoming is comprised predominantly of coarse to medium-grained sandstone and pebble conglomerate with minor mudstone. Lithofacies present include: massive to crudely horizontally bedded pebbly conglomerate (Gm), trough crossbedded sandstone (St), planar crossbedded sandstone (Sp), horizontally stratified sandstone (Sh), ripple crosslaminated sandstone (Sr), and finely laminated sandstone and mudstone (Fl). Deposition occurred in a South Saskatchewan/Platte River-type braided fluvial complex with the development of longitudinal bars and gravel lags (Gm), straight-crested transverse bars (Sp), and sinuous-crested transverse bars and dunes (St). Periodic, high-velocity flow resulted in development of upper flow regime plane beds (Sh). Minor episodes of flood plain inundation produced overbank deposits (Fl). Application of the South Saskatchewan and Platte River braided stream models to the Higham Grit is in good agreement with provenance studies (Schmitt and Hazen, in preparation) which postulate a sediment source area in the Ancestral Rocky Mountains uplift, a distance of 500-700 km to the southeast. Sediment transport distances in both the South Saskatchewan and Platte braided fluvial systems closely approximate this distance.

Schmitt, J.G.; Hazen, D.R.

1987-01-01

254

Water information bulletin No. 30, part 13: geothermal investigations in Idaho. Preliminary geologic reconnaissance of the geothermal occurrences of the Wood River Drainage Area  

SciTech Connect

Pre-tertiary sediments of the Milligen and Wood River Formations consisting primarily of argillite, quartzite, shale and dolomite are, for the most part, exposed throughout the area and are cut locally by outliers of the Idaho Batholith. At some locations, Tertiary-age Challis Volcanics overlay these formations. Structurally the area is complex with major folding and faulting visible in many exposures. Many of the stream drainages appear to be fault controlled. Hydrologic studies indicate hot spring occurrences are related to major structural trends, as rock permeabilities are generally low. Geochemical studies using stable isotopes of hydrogen and oxygen indicate the thermal water in the Wood River region to be depleted by about 10 0/00 in D and by 1 to 2 0/00 in /sup 18/0 relative to cold water. This suggests the water could be meteoric water that fell during the late Pleistocene. The geological data, as well as the chemical data, indicate the geothermal waters are heated at depth, and subsequently migrate along permeable structural zones. In almost all cases the chemical data suggest slightly different thermal histories and recharge areas for the water issuing from the hot springs. Sustained use of the thermal water at any of the identified springs is probably limited to flow rates approximating the existing spring discharge. 28 refs., 16 figs., 3 tabs.

Anderson, J.E.; Bideganeta, K.; Mitchell, J.C.

1985-04-01

255

EFFECTS OF WASTE DISCHARGES ON WATER QUALITY OF THE SNAKE RIVER AND ROCK CREEK, TWIN FALLS AREA, IDAHO. 1971  

EPA Science Inventory

Comprehensive water quality investigations in the Snake River Basin, Twin Falls Area (17040212) were conducted from November 2 to 17, 1971. Studies included an evaluation of municipal and industrial wastewater treatment facilities. Subsequently, stream surveys were conducted on...

256

Depth of emplacement of the Payette River tonalite and tectonic implications for the arc-continent boundary in west-central Idaho  

SciTech Connect

A major lithospheric boundary known as the Salmon River Suture Zone (SRSZ), trends north-south through west-central Idaho, juxtaposing Paleozoic and Proterozoic cratonally-derived sedimentary material to the east against phanerozoic arc-derived material to the west. This boundary zone is the subject of complex and disputed tectonic history. A field, petrographic and geothermobarometric study of a cratonally-derived metasedimentary unit of migmatized pods within the Payette River tonalite (PRT) sheds light on the compressional history and P-T conditions to the east of the SRSZ relative to the time of PRT emplacement as 90[+-]5Ma (Manduca, 1988). The migmitized material is composed of pelitic and calc-silicate metamorphosed sediments of upper amphibolite grade, and quartzite. The migmatites within the PRT show structural evidence of east-west compression both during and after emplacement of the tonalite. Pressure and temperature conditions preserved by the pelitic migmatites at the time of PRT emplacement are at least 5.8 kbar and 700 C, according to GASP barometry and garnet-biotite thermometry coupled with petrographic information. The work of Selverstone et al. (1991) on the Pollack Mountain and Rapid River plates to the west of the suture zone indicates that these units were at pressures less than 4 kbar at 90 Ma. Pressures of >5.8 kbar at 90 Ma determined from rocks east of the suture indicates that the east side of the SRSZ moved upward relative to the west side after 90 Ma. Rocks on both sides of the suture are believed to have reached near-surface conditions by 65 Ma.

Weston, P.; Manduca, C.A. (Carleton College, Northfield, MN (United States)); Selverstone, J. (Univ. of Colorado, Boulder, CO (United States). Dept. of Geological Sciences)

1993-04-01

257

Forcing, properties, structure, and antecedent synoptic climatology of the Snake River Plain Convergence Zone of eastern Idaho: Analyses of observations and numerical simulations  

NASA Astrophysics Data System (ADS)

The Snake River Plain Convergence Zone (SPCZ) is a convergent shear zone generated by synoptic-scale post cold-frontal winds in the planetary boundary layer (PBL) interacting with the complex topography of eastern Idaho. The SPCZ produces clouds and occasional precipitation over time scales of 6--12 hours in a significant area of mesoscale dimensions (10--50 x 10 3 km2). This meso-beta-scale feature also contributes to the precipitation climatology in a semi-arid plain. The SPCZ is climatologically linked to the passage of synoptic-scale cold fronts and typically occurs in the fall and winter months with the highest frequencies in October, November, and January. The Snake River Plain of eastern Idaho is covered by a dense surface mesonetwork of towers with sensible weather measurements, single Doppler weather radar, regional soundings, and operational model sources. The ability of numerical weather prediction models to simulate the SPCZ depends on several factors: the accuracy of the large scale flow upstream of the zone, terrain resolution, grid scale, boundary layer parameterizations of stability, cumulus parameterizations, and microphysics schemes. This dissertation explores several of these issues with the aforementioned observations and with the Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) model simulations of selected SPCZ events. This dissertation first explains the conceptual models of the flow patterns related to the genesis of the SPCZ in light of other well-documented topographically-generated zones. The study then explores the links between the theoretical models and observations of the SPCZ in several episodes. With this foundation, the dissertation then tests several hypotheses relating to the horizontal and vertical zone structure, topographic sensitivity on the zone structure, and boundary layer evolution of the zone through the use of high resolution nested grid numerical simulations. The SPCZ consists of windward and leeward flow regimes in Idaho which form under low Froude number (stable blocked flow) in a post cold-frontal environment. The SPCZ is a weak baroclinic feature. The formation of the zone is independent of the vertical wind shear in the middle to upper troposphere. With a grid scale of 4 km, the WRF-ARW model adequately reproduces the post cold-frontal environment, windward and leeward convergence zones, relative vertical vorticity belts, and precipitation bands in several SPCZ cases. The vertical structure of the SPCZ reveals upright reflectivity towers with circulations that tilt slightly with height into the colder air aloft. Topographic sensitivity analyses of the SPCZ indicate that the terrain-driven circulations and resulting snow bands are more defined at the finer terrain scales. The ambient horizontal wind shear in the tributary valleys of the Central Mountains creates potential vorticity (PV) banners. The PV banner maintenance and strength are directly tied to the terrain resolution. An environment of convective instability sometimes occurs as a layer of air is lifted along the gentle elevation rise of the eastern Magic Valley and lower plain. An environment of inertial instability forms within the anticyclonic (negative) vorticity belts in the upper plain. Potential symmetric instability (PSI) may be released in a moist environment near the vorticity banners. The planetary boundary layer perturbed by the SPCZ inside the Snake River Plain is characterized by a deeper mixed layer with stronger vertical motions relative to a PBL in a sheltered valley outside the plain. Finally, a 10-year antecedent synoptic climatology of 78 SPCZ events reveals two pattern types: Type N (wet and warm) and Type S (dry and cold). The 40 N parallel divides these two synoptic patterns.

Andretta, Thomas A.

258

Relationships between Water, Otolith, and Scale Chemistries of Westslope Cutthroat Trout from the Coeur d'Alene River, Idaho: The Potential Application of Hard-Part Chemistry to Describe Movements in Freshwater  

Microsoft Academic Search

We quantified Mg:Ca, Mn:Ca, Sr:Ca, and Ba:Ca molar ratios from an area representing the summer 2000 growth season on otoliths and scales from 1-year-old westslope cutthroat trout Oncorhyncus clarki lewisicollected from three streams in the Coeur d'Alene River, Idaho, system. We also quantified Mg:Ca, Sr:Ca, and Ba:Ca molar ratios in the water during summer 2000 and used regressions to model

Brian K. Wells; Bruce E. Rieman; James L. Clayton; Dona L. Horan; Cynthia M. Jones

2003-01-01

259

Geographic patterns of introgressive hybridization between native Yellowstone cutthroat trout ( Oncorhynchus clarkii bouvieri) and introduced rainbow trout ( O. mykiss ) in the South Fork of the Snake River watershed, Idaho  

Microsoft Academic Search

Throughout its native range, the Yellowstone cutthroat trout (YCT), Oncorhynchus clarkii bouvieri, is declining dramatically in both abundance and distribution as a result of introgression with introduced rainbow trout\\u000a (RBT), O. mykiss. We sampled over 1,200 trout from the South Fork of the Snake River (SFSR) watershed, in southeastern Idaho and western Wyoming,\\u000a and measured the extent of introgression of

Kelly Gunnell; Michelle K. Tada; Felicia A. Hawthorne; Ernest R. Keeley; Margaret B. Ptacek

2008-01-01

260

Remote sensing research for agricultural applications. [San Joaquin County, California and Snake River Plain and Twin Falls area, Idaho  

NASA Technical Reports Server (NTRS)

Materials and methods used to characterize selected soil properties and agricultural crops in San Joaquin County, California are described. Results show that: (1) the location and widths of TM bands are suitable for detecting differences in selected soil properties; (2) the number of TM spectral bands allows the quantification of soil spectral curve form and magnitude; and (3) the spatial and geometric quality of TM data allows for the discrimination and quantification of within field variability of soil properties. The design of the LANDSAT based multiple crop acreage estimation experiment for the Idaho Department of Water Resources is described including the use of U.C. Berkeley's Survey Modeling Planning Model. Progress made on Peditor software development on MIDAS, and cooperative computing using local and remote systems is reported as well as development of MIDAS microcomputer systems.

Colwell, R. N. (principal investigator); Wall, S. L.; Beck, L. H.; Degloria, S. D.; Ritter, P. R.; Thomas, R. W.; Travlos, A. J.; Fakhoury, E.

1984-01-01

261

Liver lead burden in hunter-killed ducks from the Coeur d'Alene River Valley of northern Idaho  

SciTech Connect

Liver lead burden was evaluated in ducks from an area in northern Idaho contaminated with mining waste and lead shot. Hunter-killed ducks with lead shot in their gizzard had a mean liver lead concentration of 15.18 {plus minus} 2.51 micrograms/g wet-weight (N = 23) and ducks without lead shot had a mean liver lead concentration of 4.21 {plus minus} 0.47 micrograms/g wet-weight (N = 85). The most hazardous source of lead for waterfowl in this area has been thought to be mining waste-contaminated soils and sediments. Three sediment samples had a mean concentration of 4,520 micrograms lead/g wet-weight.

Casteel, S.W.; Nigh, J.; Neufeld, J.; Thomas, B.R. (Department of Veterinary Science, University of Idaho, Moscow (USSR))

1991-06-01

262

Idaho Trails  

NSDL National Science Digital Library

Interested in exploring Idaho? This engaging site from the Idaho State Parks is perfect for explorers, hikers, and anyone with an interest in this beautiful state. Visitors can zoom in and out, investigate different Layers, such as regional and state boundaries, and even explore the map according to topography, National Geographic cultural and historical data, and street views. It's a great way to learn more about the state and visitors even have the ability to print out their own cartographic creations.

263

Impacts of Fire and Mass Wasting on Channel Morphology and Stream Temperature in Mountain Rivers of Central Idaho  

NASA Astrophysics Data System (ADS)

Debris flows and hyperconcentrated flows immediately impact streams by changing channel morphology, grain size, sediment storage and transport, amount of incision, riparian vegetation, large woody debris dynamics, and extirpating fish, amphibian, and insect populations. In central Idaho, these disturbances are commonly triggered by intense thunderstorms or rain-on-snow events, and are exacerbated by wildfires which alter basin hydrology and sediment supply by removing vegetation and creating hydrophobic soils. While the immediate effect of these flows is dramatic, the time to recovery of the physical habitat is poorly understood and the long-term significance of these disturbances to aquatic organisms is unknown. Stream temperature is a key variable of stream ecosystems and has been shown to control the distribution of salmonids in our study area of the Idaho Batholith. Previous research in 10 recently disturbed streams shows a systematic increase in stream temperature across three stream types representing progressively greater disturbance: undisturbed; burned; and those impacted by both fire and mass-wasting events. Here, we test the hypothesis that the observed pattern of warming is due to increased solar radiation loading caused by wider, shallower streams and the removal of vegetative shade by fires and mass-wasting events. We examine channel conditions across several treatment classes (undisturbed, post-fire debris flow, debris flow without fire) and time since disturbance (1964 to present). In 32 streams, 200-600 meter reaches were surveyed and upstream and downstream temperatures were monitored throughout the summer, the solar load was estimated as a function of shading (measured with hemispherical photo analysis), stream width and depth, and average velocity estimated with salt tracers. Preliminary results indicate that while recent disturbances (1995-2003) significantly increase the solar load and stream temperatures, older disturbances (1964) are similar to undisturbed streams.

Welcker, C. W.; Buffington, J. M.; Rieman, B. E.; Luce, C. H.; McKean, J.

2004-12-01

264

An Update of Hydrologic Conditions and Distribution of Selected Constituents in Water, Snake River Plain Aquifer and Perched-Water Zones, Idaho National Laboratory, Idaho, Emphasis 2002-05  

USGS Publications Warehouse

Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer and perched-water zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched-water zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched-water wells in the USGS ground-water monitoring networks during 2002-05. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged primarily from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2001 to March-May 2005, water levels in wells declined throughout the INL area. The declines ranged from about 3 to 8 feet in the southwestern part of the INL, about 10 to 15 feet in the west central part of the INL, and about 6 to 11 feet in the northern part of the INL. Water levels in perched water wells declined also, with the water level dropping below the bottom of the pump in many wells during 2002-05. For radionuclides, concentrations that equal 3s, wheres s is the sample standard deviation, represent a measurement at the minimum detectable concentration, or 'reporting level'. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2002-05. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In October 2005, reportable concentrations of tritium in ground water ranged from 0.51+or-0.12 to 11.5+or-0.6 picocuries per milliliter and the tritium plume extended south-southwestward in the general direction of ground-water flow. Tritium concentrations in water from several wells southwest of the Idaho Nuclear Technology and Engineering Center (INTEC) decreased or remained constant as they had during 1998-2001, with the exception of well USGS 47, which increased a few picocuries per milliliter. Most wells completed in shallow perched water at the Reactor Technology Complex (RTC) were dry during 2002---05. Tritium concentrations in deep perched water exceeded the reporting level in nine wells at the RTC. The tritium concentration in water from one deep perched water well exceeded the reporting level at the INTEC. Concentrations of strontium-90 in water from 14 of 34 wells sampled during October 2005 exceeded the reporting level. Concentrations ranged from 2.2+or-0.7 to 33.1+or-1.2 picocuries per liter. However, concentrations from most wells remained relatively constant or decreased since 1989. Strontium-90 has not been detected within the eastern Snake River Plain aquifer beneath the RTC partly because of the exclusive use of waste-disposal ponds and lined evaporation ponds rather than the disposal well for radioactive-wastewater disposal at RTC. At the RTC, strontium-90 concentrations in water from six wells completed in deep perched ground water exceeded the reporting level during 2002-05. At the INTEC, the reporting level was exceeded in water from three wells completed in deep perched ground water. During 2002-05, concentrations of plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all wells sampled at the INL. During 2002-05, concentrations of cesium-137 in water from all wells sa

Davis, Linda C.

2008-01-01

265

Hydraulic Characteristics of Bedrock Constrictions and Evaluation of One- and Two-Dimensional Models of Flood Flow on the Big Lost River at the Idaho National Engineering and Environmental Laboratory, Idaho  

USGS Publications Warehouse

A 1.9-mile reach of the Big Lost River, between the Idaho National Engineering and Environmental Laboratory (INEEL) diversion dam and the Pioneer diversion structures, was investigated to evaluate the effects of streambed erosion and bedrock constrictions on model predictions of water-surface elevations. Two one-dimensional (1-D) models, a fixed-bed surface-water flow model (HEC-RAS) and a movable-bed surface-water flow and sediment-transport model (HEC-6), were used to evaluate these effects. The results of these models were compared to the results of a two-dimensional (2-D) fixed-bed model [Transient Inundation 2-Dimensional (TRIM2D)] that had previously been used to predict water-surface elevations for peak flows with sufficient stage and stream power to erode floodplain terrain features (Holocene inset terraces referred to as BLR#6 and BLR#8) dated at 300 to 500 years old, and an unmodified Pleistocene surface (referred to as the saddle area) dated at 10,000 years old; and to extend the period of record at the Big Lost River streamflow-gaging station near Arco for flood-frequency analyses. The extended record was used to estimate the magnitude of the 100-year flood and the magnitude of floods with return periods as long as 10,000 years. In most cases, the fixed-bed TRIM2D model simulated higher water-surface elevations, shallower flow depths, higher flow velocities, and higher stream powers than the fixed-bed HEC-RAS and movable-bed HEC-6 models for the same peak flows. The HEC-RAS model required flow increases of 83 percent [100 to 183 cubic meters per second (m3/s)], and 45 percent (100 to 145 m3/s) to match TRIM2D simulations of water-surface elevations at two paleoindicator sites that were used to determine peak flows (100 m3/s) with an estimated return period of 300 to 500 years; and an increase of 13 percent (150 to 169 m3/s) to match TRIM2D water-surface elevations at the saddle area that was used to establish the peak flow (150 m3/s) of a paleoflood with a return period of 10,000 years. A field survey of the saddle area, however, indicated that the elevation of the lowest point on the saddle area was 1.2 feet higher than indicated on the 2-ft contour map that was used in the TRIM2D model. Because of this elevation discrepancy, HEC-RAS model simulations indicated that a peak flow of at least 210 m3/s would be needed to initiate flow across the 10,000-year old Pleistocene surface. HEC-6 modeling results indicated that to compensate for the effects of streambed scour, additional flow increases would be needed to match HEC-RAS and TRIM2D water-surface elevations along the upper and middle reaches of the river, and to compensate for sediment deposition, a slight decrease in flows would be needed to match HEC-RAS water-surface elevations along the lower reach of the river. Differences in simulated water-surface elevations between the TRIM2D and the HEC-RAS and HEC-6 models are attributed primarily to differences in topographic relief and to differences in the channel and floodplain geometries used in these models. Topographic differences were sufficiently large that it was not possible to isolate the effects of these differences on simulated water-surface elevations from those attributable to the effects of supercritical flow, streambed scour, and sediment deposition.

Berenbrock, Charles; Rousseau, Joseph P.; Twining, Brian V.

2007-01-01

266

NRC Waste Incidental to Reprocessing Program: Overview of Consultation and Monitoring Activities at the Idaho National Laboratory and the Savannah River Site - What We Have Learned - 12470  

SciTech Connect

In 2005 the U.S. Nuclear Regulatory Commission (NRC) began to implement a new set of responsibilities under the Ronald W. Reagan National Defense Authorization Act (NDAA) of Fiscal Year 2005. Section 3116 of the NDAA requires the U.S. Department of Energy (DOE) to consult with the NRC for certain non-high level waste determinations and also requires NRC to monitor DOE's disposal actions related to those determinations. In Fiscal Year 2005, the NRC staff began consulting with DOE and completed reviews of draft waste determinations for salt waste at the Savannah River Site. In 2006, a second review was completed on tank waste residuals including sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center Tank Farm at the Idaho National Laboratory. Monitoring Plans were developed for these activities and the NRC is actively monitoring disposal actions at both sites. NRC is currently in consultation with DOE on the F-Area Tank Farm closure and anticipates entering consultation on the H-Area Tank Farm at the Savannah River Site. This paper presents, from the NRC perspective, an overview of how the consultation and monitoring process has evolved since its conception in 2005. It addresses changes in methods and procedures used to collect and develop information used by the NRC in developing the technical evaluation report and monitoring plan under consultation and the implementation the plan under monitoring. It will address lessons learned and best practices developed throughout the process. The NDAA has presented significant challenges for the NRC and DOE. Past and current successes demonstrate that the NDAA can achieve its intended goal of facilitating tank closure at DOE legacy defense waste sites. The NRC believes many of the challenges in performing the WD reviews have been identified and addressed. Lessons learned have been collected and documented throughout the review process. Future success will be contingent on each agencies commitment to consistently apply the lessons learned and continue to create an open and collaborative work environment to maintain the process of continuous improvement. (authors)

Suber, Gregory [Nuclear Regulatory Commission (United States)

2012-07-01

267

Digital modeling of radioactive and chemical waste transport in the aquifer underlying the Snake River Plain at the National Reactor Testing Station, Idaho  

USGS Publications Warehouse

Industrial and low-level radioactive liquid wastes at the National Reactor Testing Station (NRTS) in Idaho have been disposed to the Snake River Plain aquifer since 1952. Monitoring studies have indicated that tritium and chloride have dispersed over a 15-square mile (39-square kilometer) area of the aquifer in low but detectable concentrations and have only migrated as far as 5 miles (8 kilometers) downgradient from discharge points. The movement of cationic waste solutes, particularly 90Sr and 137Cs, has been significantly retarded due to sorption phenomena, principally ion exchange. 137Cs has shown no detectable migration in the aquifer and 90Sr has migrated only about 1.5 miles (2 kilometers) from the Idaho Chemical Processing Plant (ICPP) discharge well, and is detectable over an area of only 1.5 square miles ( 4 square kilometers) of the aquifer. Digital modeling techniques have been applied successfully to the analysis of the complex waste-transport system by utilizing numerical solution of the coupled equations of groundwater motion and mass transport. The model includes the effects of convective transport, flow divergence, two-dimensional hydraulic dispersion, radioactive decay, and reversible linear sorption. The hydraulic phase of the model uses the iterative, alternating direction, implicit finite-difference scheme to solve the groundwater flow equations, while the waste-transport phase uses a modified method of characteristics to solve the solute transport equations simulated by the model. The modeling results indicate that hydraulic dispersion (especially transverse) is a much more significant influence than previously suggested by earlier studies. The model has been used to estimate future waste migration patterns for varied assumed hydrological and waste conditions up through the year 2000. The hydraulic effects of recharge from the Big Lost River have an important (but not predominant) influence on the simulated future migration patterns. For the assumed conditions, the model indicates that detectable concentrations of waste chloride and tritium could move as much as 15 miles (24 kilometers) downgradient from the original discharge points by the year 2000. However, the model shows 90Sr moving only 2 to 3 miles (3 to 5 kilometers) downgradient in the same time. The model may also be used to estimate the effects of the various future waste disposal practices and hydrologic conditions on subsequent migration of waste products.

Robertson, J.B.

1974-01-01

268

Probability of detecting atrazine/desethyl-atrazine and elevated concentrations of nitrate plus nitrate as nitrogen in ground water in the Idaho part of the western Snake River Plain  

USGS Publications Warehouse

As ground water continues to provide an ever-growing proportion of Idaho?s drinking water, concerns about the quality of that resource are increasing. Pesticides (most commonly, atrazine/desethyl-atrazine, hereafter referred to as atrazine) and nitrite plus nitrate as nitrogen (hereafter referred to as nitrate) have been detected in many aquifers in the State. To provide a sound hydrogeologic basis for atrazine and nitrate management in southern Idahothe largest region of land and water use in the Statethe U.S. Geological Survey produced maps showing the probability of detecting these contaminants in ground water in the upper Snake River Basin (published in a 1998 report) and the western Snake River Plain (published in this report). The atrazine probability map for the western Snake River Plain was constructed by overlaying ground-water quality data with hydrogeologic and anthropogenic data in a geographic information system (GIS). A data set was produced in which each well had corresponding information on land use, geology, precipitation, soil characteristics, regional depth to ground water, well depth, water level, and atrazine use. These data were analyzed by logistic regression using a statistical software package. Several preliminary multivariate models were developed and those that best predicted the detection of atrazine were selected. The multivariate models then were entered into a GIS and the probability maps were produced. Land use, precipitation, soil hydrologic group, and well depth were significantly correlated with atrazine detections in the western Snake River Plain. These variables also were important in the 1998 probability study of the upper Snake River Basin. The effectiveness of the probability models for atrazine might be improved if more detailed data were available for atrazine application. A preliminary atrazine probability map for the entire Snake River Plain in Idaho, based on a data set representing that region, also was produced. In areas where this map overlaps the 1998 map of the upper Snake River Basin, the two maps show broadly similar probabilities of detecting atrazine. Logistic regression also was used to develop a preliminary statistical model that predicts the probability of detecting elevated nitrate in the western Snake River Plain. A nitrate probability map was produced from this model. Results showed that elevated nitrate concentrations were correlated with land use, soil organic content, well depth, and water level. Detailed information on nitrate input, specifically fertilizer application, might have improved the effectiveness of this model.

Donato, Mary M.

2000-01-01

269

Field evaluation of lead effects on Canada geese and mallards in the Coeur d'Alene River Basin, Idaho  

USGS Publications Warehouse

Hatch year (HY) mallards (Anas platyrhynchos) in the Coeur d'Alene (CDA) River Basin had higher concentrations of lead in their blood than HY Western Canada geese (Branta canadensis moffitti) (geometric means 0.98 versus 0.28 I?g/g, wet weight). The pattern for adults of both species was similar, although geometric means (1.77 versus 0.41 I?g/g) were higher than in HY birds. HY mallards captured in the CDA River Basin in 1987 contained significantly lower lead concentrations in their blood than in 1994a??95 (0.36 versus 0.98 I?g/g); however, some very young mallards were sampled in 1987, and concentrations in adults were not significantly different in 1987, 1994, or 1995 (1.52, 2.07, 1.55 I?g/g, respectively). Both species in the CDA River Basin in 1994a??95 showed significantly reduced red blood cell delta-aminolevulinic acid dehydratase (ALAD) activity compared to the reference areas: Canada geese (HY a??65.4 to a??86.0%, adults a??82.3%), and mallards (HY a??90.7 to a??95.5%, adults a??94.1%). Canada goose goslings were divided into size classes, and the two smaller classes from the CDA River Basin had significantly elevated free erythrocyte protoporphyrin (protoporphyrin) levels compared to the reference area (15.2?? and 6.9??). HY and adult mallards both had significantly elevated protoporphyrin (5.9?? and 7.5??). Recognizing that interspecific differences exist in response and sensitivity to lead, it appears (at least for hemoglobin and hematocrit) that Canada geese were more sensitive to lead than mallards, i.e., adverse hematologic effects occur at lower blood lead concentrations. Only Canada geese from the CDA River Basin, in spite of lower blood lead concentrations, had significantly reduced mean hemoglobin and hematocrit values. No euthanized Canada geese (all HYs) from CDA River Basin were classified as clinically lead poisoned, but 38 Canada geese found dead in the CDA River Basin during a concurrent study succumbed to lead poisoning between 1992 and 1997. Only 6 (15.8%) of these 38 contained ingested lead shot, which contrasts greatly with the 75a??94% incidence of ingested lead shot when mortality was due to lead shot ingestion. Lead from other contaminated sources (i.e., sediments and vegetation) in the CDA River Basin was strongly implicated in most Canada goose deaths. Based on the 31 live mallards and Canada geese collected in the CDA River Basin, which were representative of the live populations blood sampled only, the prevalence of subclinical and clinical lead poisoning (as determined by liver lead concentrations, excluding birds with ingested lead shot) was higher in mallards: subclinical (4 of 8, 50% HYs and 6 of 11, 55% adults); clinical (0% HYs and 4 of 11, 36% adults), with less data available for Canada geese (only 1 of 9, 11% HYs marginally subclinical). The clinically lead-poisoned mallards had extremely high concentrations of lead in blood (2.69a??8.82 I?g/g) and liver (6.39a??17.89 I?g/g). Eight mallards found dead in the CDA River Basin during a concurrent study were diagnosed as lead poisoned, and only one (12.5%) contained ingested lead shot, which again strongly implicates other lead sources. The finding of dead lead poisoned Canada geese together with the high percentage of live mallards classified as subclinically or clinically lead poisoned, in combination with the low incidence of ingested lead shot causes us concern for both of these species, which live in association with lead-contaminated sediment in the CDA River Basin.

Henny, Charles J.; Blus, L.J.; Hoffman, D.J.; Sileo, L.; Audet, Daniel J.; Snyder, Mark R.

2000-01-01

270

Field evaluation of lead effects on Canada geese and mallards in the Coeur d'Alene River Basin, Idaho.  

PubMed

Hatch year (HY) mallards (Anas platyrhynchos) in the Coeur d'Alene (CDA) River Basin had higher concentrations of lead in their blood than HY Western Canada geese (Branta canadensis moffitti) (geometric means 0.98 versus 0.28 microg/g, wet weight). The pattern for adults of both species was similar, although geometric means (1.77 versus 0. 41 microg/g) were higher than in HY birds. HY mallards captured in the CDA River Basin in 1987 contained significantly lower lead concentrations in their blood than in 1994-95 (0.36 versus 0.98 microg/g); however, some very young mallards were sampled in 1987, and concentrations in adults were not significantly different in 1987, 1994, or 1995 (1.52, 2.07, 1.55 microg/g, respectively). Both species in the CDA River Basin in 1994-95 showed significantly reduced red blood cell delta-aminolevulinic acid dehydratase (ALAD) activity compared to the reference areas: Canada geese (HY -65.4 to -86.0%, adults -82.3%), and mallards (HY -90.7 to -95.5%, adults -94. 1%). Canada goose goslings were divided into size classes, and the two smaller classes from the CDA River Basin had significantly elevated free erythrocyte protoporphyrin (protoporphyrin) levels compared to the reference area (15.2x and 6.9x). HY and adult mallards both had significantly elevated protoporphyrin (5.9x and 7. 5x). Recognizing that interspecific differences exist in response and sensitivity to lead, it appears (at least for hemoglobin and hematocrit) that Canada geese were more sensitive to lead than mallards, i.e., adverse hematologic effects occur at lower blood lead concentrations. Only Canada geese from the CDA River Basin, in spite of lower blood lead concentrations, had significantly reduced mean hemoglobin and hematocrit values. No euthanized Canada geese (all HYs) from CDA River Basin were classified as clinically lead poisoned, but 38 Canada geese found dead in the CDA River Basin during a concurrent study succumbed to lead poisoning between 1992 and 1997. Only 6 (15.8%) of these 38 contained ingested lead shot, which contrasts greatly with the 75-94% incidence of ingested lead shot when mortality was due to lead shot ingestion. Lead from other contaminated sources (i.e., sediments and vegetation) in the CDA River Basin was strongly implicated in most Canada goose deaths. Based on the 31 live mallards and Canada geese collected in the CDA River Basin, which were representative of the live populations blood sampled only, the prevalence of subclinical and clinical lead poisoning (as determined by liver lead concentrations, excluding birds with ingested lead shot) was higher in mallards: subclinical (4 of 8, 50% HYs and 6 of 11, 55% adults); clinical (0% HYs and 4 of 11, 36% adults), with less data available for Canada geese (only 1 of 9, 11% HYs marginally subclinical). The clinically lead-poisoned mallards had extremely high concentrations of lead in blood (2.69-8. 82 microg/g) and liver (6.39-17.89 microg/g). Eight mallards found dead in the CDA River Basin during a concurrent study were diagnosed as lead poisoned, and only one (12.5%) contained ingested lead shot, which again strongly implicates other lead sources. The finding of dead lead poisoned Canada geese together with the high percentage of live mallards classified as subclinically or clinically lead poisoned, in combination with the low incidence of ingested lead shot causes us concern for both of these species, which live in association with lead-contaminated sediment in the CDA River Basin. PMID:10790508

Henny, C J; Blus, L J; Hoffman, D J; Sileo, L; Audet, D J; Snyder, M R

2000-07-01

271

WATER QUALITY CONDITIONS IN THE MILNER REACH, SNAKE RIVER, SOUTH-CENTRAL IDAHO, OCTOBER 18-21 1977  

EPA Science Inventory

During late October 1977, water discharge form Minidoka Dam into the Milner reach of the Snake River was less than 22 cubic meters per second, compared to normal flows for that time of year of about 42 cubic meters per second or more. To determine if impared water-wquality condi...

272

WATER QUALITY MONITORING NETWORK STATION TRANSECT STUDY, PALOUSE RIVER NEAR IDAHO-WASHINGTON BOUNDARY, JANUARY 21-22, 1979  

EPA Science Inventory

This field study was conducted to validate the location of sampling, in cross section and depth, for the Palouse River near Palouse, Washington (17060108); to determine association of total coliform counts with coliform from a fecal source; to collect data for future comparison w...

273

Subsidence of a volcanic basin by flexure and lower crustal flow: The eastern Snake River Plain, Idaho  

Microsoft Academic Search

The Eastern Snake River Plain (ESRP) is a linear volcanic basin interpreted by many workers to reflect late Cenozoic migration of North America over the Yellowstone hotspot. Thermal subsidence of this volcanic province with respect to Yellowstone has been documented by several workers, but no one has characterized subsidence with respect to the adjacent Basin and Range Province. This paper

Nadine McQuarrie; David W. Rodgers

1998-01-01

274

An energy budget for the Kootenai River, Idaho (USA), with application for management of the Kootenai white sturgeon, Acipenser transmontanus  

Microsoft Academic Search

An energy budget provides a useful tool for examining the exchange of energy between trophic levels. In this study we examined the potential for autotrophic productivity and organic material to support higher trophic levels in three distinct geomorphic segments of the Kootenai River, USA. This approach is particularly important given that several species of fish, including the endangered Kootenai white

Eric B. Snyder; G. Wayne Minshall

2005-01-01

275

Age, Growth, and Movement of Mountain Whitefish, Prosopium williamsoni (Girard), in the North Fork Clearwater River, Idaho  

Microsoft Academic Search

The growth and age structure of mountain whitefish, Prosopium willlamsoni, was compared from three sample locations in the North Fork Clearwater River, and a tagging study initiated to assess movement and migratory behavior. No difference was detected in growth or age structure of whitefish in two streams of the upper drainage, and juveniles representing age groups I and II were

Stephen W. Pettit; Richard L. Wallace

1975-01-01

276

Methods to estimate annual mean spring discharge to the Snake River between Milner Dam and King Hill, Idaho  

USGS Publications Warehouse

Many individual springs and groups of springs discharge water from volcanic rocks that form the north canyon wall of the Snake River between Milner Dam and King Hill. Previous estimates of annual mean discharge from these springs have been used to understand the hydrology of the eastern part of the Snake River Plain. Four methods that were used in previous studies or developed to estimate annual mean discharge since 1902 were (1) water-budget analysis of the Snake River; (2) correlation of water-budget estimates with discharge from 10 index springs; (3) determination of the combined discharge from individual springs or groups of springs by using annual discharge measurements of 8 springs, gaging-station records of 4 springs and 3 sites on the Malad River, and regression equations developed from 5 of the measured springs; and (4) a single regression equation that correlates gaging-station records of 2 springs with historical water-budget estimates. Comparisons made among the four methods of estimating annual mean spring discharges from 1951 to 1959 and 1963 to 1980 indicated that differences were about equivalent to a measurement error of 2 to 3 percent. The method that best demonstrates the response of annual mean spring discharge to changes in ground-water recharge and discharge is method 3, which combines the measurements and regression estimates of discharge from individual springs.

Kjelstrom, L.C.

1995-01-01

277

Estimation of total nitrogen and total phosphorus in streams of the Middle Columbia River Basin (Oregon, Washington, and Idaho) using SPARROW models, with emphasis on the Yakima River Basin, Washington  

USGS Publications Warehouse

The watershed model SPARROW (Spatially Related Regressions on Watershed attributes) was used to predict total nitrogen (TN) and total phosphorus (TP) loads and yields for the Middle Columbia River Basin in Idaho, Oregon, and Washington. The new models build on recently published models for the entire Pacific Northwest, and provide revised load predictions for the arid interior of the region by restricting the modeling domain and recalibrating the models. Results from the new TN and TP models are provided for the entire region, and discussed with special emphasis on the Yakima River Basin, Washington. In most catchments of the Yakima River Basin, the TN and TP in streams is from natural sources, specifically nitrogen fixation in forests (TN) and weathering and erosion of geologic materials (TP). The natural nutrient sources are overshadowed by anthropogenic sources of TN and TP in highly agricultural and urbanized catchments; downstream of the city of Yakima, most of the load in the Yakima River is derived from anthropogenic sources. Yields of TN and TP from catchments with nearly uniform land use were compared with other yield values and export coefficients published in the scientific literature, and generally were in agreement. The median yield of TN was greatest in catchments dominated by agricultural land and smallest in catchments dominated by grass and scrub land. The median yield of TP was greatest in catchments dominated by forest land, but the largest yields (90th percentile) of TP were from agricultural catchments. As with TN, the smallest TP yields were from catchments dominated by grass and scrub land.

Johnson, Henry M.; Black, Robert W.; Wise, Daniel R.

2013-01-01

278

Biological and Physical Inventory of Clear Creek, Orofino Creek, and the Potlatch River, Tributary Streams of the Clearwater River, Idaho, 1984 Technical Report.  

SciTech Connect

Clear Creek, Orofino Creek, and Potlatch Creek, three of the largest tributaries of the lower Clearwater River Basin, were inventoried during 1984. The purpose of the inventory was to identify where anadromous salmonid production occurs and to recommend enhancement alternatives to increase anadromous salmonid habitat in these streams. Anadromous and fluvial salmonids were found in all three drainages. The lower reach of Clear Creek supported a low population of rainbow-steelhead, while the middle reach supported a much greater population of rainbow-steelhead. Substantial populations of cutthroat trout were also found in the headwaters of Clear Creek. Rainbow-steelhead and brook trout were found throughout Orofino Creek. A predominant population of brook trout was found in the headwaters while a predominant population of rainbow-steelhead was found in the mainstem and lower tributaries of Orofino Creek. Rainbow-steelhead and brook trout were also found in the Potlatch River. Generally, the greatest anadromous salmonid populations in the Potlatch River were found within the middle reach of this system. Several problems were identified which would limit anadromous salmonid production within each drainage. Problems affecting Clear Creek were extreme flows, high summer water temperature, lack of riparian habitat, and high sediment load. Gradient barriers prevented anadromous salmonid passage into Orofino Creek and they are the main deterrent to salmonid production in this system. Potlatch River has extreme flows, high summer water temperature, a lack of riparian habitat and high sediment loads. Providing passage over Orofino Falls is recommended and should be considered a priority for improving salmonid production in the lower Clearwater River Basin. Augmenting flows in the Potlatch River is also recommended as an enhancement measure for increasing salmonid production in the lower Clearwater River Basin. 18 refs., 5 figs., 85 tabs.

Johnson, David B.

1985-05-01

279

Evaluation of LiDAR-Acquired Bathymetric and Topographic Data Accuracy in Various Hydrogeomorphic Settings in the Lower Boise River, Southwestern Idaho, 2007  

USGS Publications Warehouse

Elevation data in riverine environments can be used in various applications for which different levels of accuracy are required. The Experimental Advanced Airborne Research LiDAR (Light Detection and Ranging) - or EAARL - system was used to obtain topographic and bathymetric data along the lower Boise River, southwestern Idaho, for use in hydraulic and habitat modeling. The EAARL data were post-processed into bare earth and bathymetric raster and point datasets. Concurrently with the EAARL data collection, real-time kinetic global positioning system and total station ground-survey data were collected in three areas within the lower Boise River basin to assess the accuracy of the EAARL elevation data in different hydrogeomorphic settings. The accuracies of the EAARL-derived elevation data, determined in open, flat terrain, to provide an optimal vertical comparison surface, had root mean square errors ranging from 0.082 to 0.138 m. Accuracies for bank, floodplain, and in-stream bathymetric data had root mean square errors ranging from 0.090 to 0.583 m. The greater root mean square errors for the latter data are the result of high levels of turbidity in the downstream ground-survey area, dense tree canopy, and horizontal location discrepancies between the EAARL and ground-survey data in steeply sloping areas such as riverbanks. The EAARL point to ground-survey comparisons produced results similar to those for the EAARL raster to ground-survey comparisons, indicating that the interpolation of the EAARL points to rasters did not introduce significant additional error. The mean percent error for the wetted cross-sectional areas of the two upstream ground-survey areas was 1 percent. The mean percent error increases to -18 percent if the downstream ground-survey area is included, reflecting the influence of turbidity in that area.

Skinner, Kenneth D.

2009-01-01

280

Assessment of the sand and gravel resources of the Lower Boise River Valley area, Idaho: part one: geological framework of the sand and gravel deposits  

USGS Publications Warehouse

The USGS has undertaken a first order evaluation of sand & gravel resources in the Lower Boise River Valley in response to rapid urban expansion in the Boise-Nampa-Caldwell corridor in southwest Idaho. The study is intended to provide land-use planners and managers, particularly in the Bureau of Land Management, with a foundation of knowledge that will allow them to anticipate and plan for demand for and development of sand and gravel resources on public lands in response to the urban growth. Attributes under study include: regional geology of both alluvial source areas as well as deposits; fluvial processes that led to deposition of the sand and gravel deposits; spatial distribution of the deposits; quantity and quality of materials in the deposits; and the suitability of the deposits for a range of applications. The study will also examine and attempt to model the association between fluvial processes, deposit characteristics, and physical specifications for various applications of sand and gravel. The results will be presented in a series of sand and gravel assessment reports of which this is the first.

Bliss, James D.; Moyle, Phillip R.

2001-01-01

281

Geothermal resources of southern Idaho  

SciTech Connect

The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150 C. Water from many of these systems is valuable for direct heat applications. A majority of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. The largest hydrothermal system in Idaho is in the Bruneau-Grang View area of the western Snake River Plain with a calculated reservoir temperature of 107 C and an energy of 4.5 x 10 to the 20th power joules. No evidence of higher temperature water associated with this system was found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures was not found. Large volumes of water at temperatures between 90 and 150 C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain.

Mabey, D.R.

1983-01-01

282

Operation Plans for Anadromous Fish Production Facilities in the Columbia River Basin : Annual Report 1995, Volume I - Idaho.  

SciTech Connect

Clearwater Hatchery is located on the north bank of the North Fork of the Clearwater River, downstream from Dworshak Dam. It is approximately 72 miles from Lower Granite Dam, and 504 miles from the mouth of the Columbia River. Site elevation is approximately 994 feet above sea level. The hatchery is staffed with 8 FTE`s. Clearwater Hatchery has two pipelines from Dworshak Reservoir. One is attached to a floating platform and is capable of providing various temperatures at varying depths. The other is a stationary intake about 245 feet below the top of the dam. All water is gravity fed to the hatchery. An 18-inch intake pipe provides an estimated 10 cfs with temperature remaining constant at approximately 40T. The primary 42-inch intake pipe can draw water from 5 to 45 feet in depth with temperatures ranging from 55{degrees} to 60{degrees}F and 70 cfs of flow. This report describes the operations of the hatchery.

Idaho Department of Fish and Game; US Fish and Wildlife Service; Nez Perce Tribe

1996-06-01

283

Field Evaluation of Lead Effects on Canada Geese and Mallards in the Coeur d'Alene River Basin, Idaho  

Microsoft Academic Search

Hatch year (HY) mallards (Anas platyrhynchos) in the Coeur d'Alene (CDA) River Basin had higher concentrations of lead in their blood than HY Western Canada geese (Branta canadensis moffitti) (geometric means 0.98 versus 0.28 ?g\\/g, wet weight). The pattern for adults of both species was similar, although geometric\\u000a means (1.77 versus 0.41 ?g\\/g) were higher than in HY birds. HY

C. J. Henny; L. J. Blus; D. J. Hoffman; L. Sileo; D. J. Audet; M. R. Snyder

2000-01-01

284

Distribution of metals during digestion by cutthroat trout fed benthic invertebrates contaminated in the Clark Fork River, Montana and the Coeur d'Alene River, Idaho, U.S.A., and fed artificially contaminated Artemia  

USGS Publications Warehouse

The concentrations of essential amino acids in three, undigested invertebrate diets collected from the Clark Fork River (CFR) for cutthroat trout were similar to each other, but were c. 25-75% less than Artemia that were exposed to a mixture of arsenic, copper, cadmium, lead and zinc in the laboratory. The Artemia diet appeared less palatable and the texture, quantity and appearance of the intestinal contents differed between fish fed the Artemia and CFR diets. The Pb% in the fluid fraction of the intestinal contents was greater for the Artemia (29%) than for the CFR diets (10-17%), and the Cu% in the amino acid plus metal fraction of the intestinal contents was greater for the Artemia (78%) than for two of the three CFR diets (67% and 70%). Intestinal contents of fish fed invertebrate diets collected from various sites on the Coeur d'Alene River (CDA), Idaho, were similar in texture, quantity, and appearance. For fish fed the CDA diets, differences in the distribution of metals among fractions of the digestive fluids appeared to be related to concentrations of metals in the invertebrate diets. Pb% was lowest of all metals in the fluid portion of the intestinal contents. However, >80% of all metals in the hind gut were associated with the particulate fraction where they may still be available for uptake through pinocytosis. (C) 2000 The Fisheries Society of the British Isles.

Farag, A.M.; Suedkamp, M.J.; Meyer, J.S.; Barrows, R.; Woodward, D.F.

2000-01-01

285

History of Snake River Canyon Indicated by Revised Stratigraphy of Snake River Group Near Hagerman and King Hill, Idaho: With a Section on Paleomagnetism  

USGS Publications Warehouse

A discovery that debris left by the Bonneville Flood (Melon Gravel) overlies McKinney Basalt about 200 feet above the Snake River near King Hill requires that the stratigraphy of the Snake River Group be revised. In former usage, the McKinney Basalt and its immediately older companion, the Wendell Grade Basalt, were considered on the basis of equivocal field relations to be younger than the Melon Gravel and were assigned to the Recent. These lava flows are here reclassified as Pleistocene. The Bancroft Springs Basalt, which consists of both subaerial lava and pillow lava in a former Snake River canyon, was previously separated from the McKinney but is now combined with the McKinney. Accordingly, the name Bancroft Springs Basalt is here abandoned. This revised stratigraphy is first described from geomorphic relations of the McKinney Basalt near King Hill and is then discussed in the light of drainage changes caused by local lava flows during entrenchment of the Snake River. Near King Hill, a former Snake River canyon was completely filled by McKinney Basalt at the place called Bancroft Springs, hut the depth of this lava in the next several miles of the canyon downstream (along a route that approximately coincides with the present canyon) steadily decreased. This ancestral geomorphology is inferred from the former canyon route and, also, from the continuity in gradient of the McKinney lava surface downstream from Bancroft Springs. The drainage history recorded by various lava flows and river deposits of the Snake River Group indicates that the McKinney and Wendell Grade Basalts erupted after the Snake River canyon had reached its present depth of about 500 feet. The Snake River of that time, as far downstream as Bliss, flowed approximately along its present route. The Wood River of that time, however, skirted the north flank of Gooding Butte and joined the ancestral Snake at a junction, now concealed by lava, north of the present canyon about 3 miles west of Bliss. From that place the former Snake River canyon, also now concealed by lava, continued west to Bancroft Springs and thence along a route close to the present canyon to King Hill. To become entrenched in a canyon 500 feet deep, the Snake River downstream from Hagerman became progressively more incised while its upstream route was pushed south in several earlier canyons by intermittent lava flows. Distinctive gravel deposits help to establish the episodes of progressive canyon cutting and to determine the routes of ancestral drainage, including the former position of the Wood River. As canyon cutting continued, springs began to emerge where lavas had filled the earlier canyons. When the Snake River canyon eventually attained its approximate present depth, the Wendell Grade Basalt erupted near Shoshone and, as several tongues, spread west to the canyon rim opposite Hagerman. One tongue crossed the future route of the Wood River, and another covered an upland area of Sand Springs Basalt that had previously reached the canyon floor at Hagerman. The McKinney Basalt then erupted from McKinney Butte northeast of Bliss and spread southward as a subaerial flow, covering part of the Wendell Grade Basalt. It filled the ancestral Wood River canyon and the Snake River canyon of that time west of Bliss as far downstream as King Hill. The resulting dam of lava impounded a deep lake, which extended upstream in the canyon beyond Hagerman. Copious amounts of the McKinney spilled into this temporary lake and produced pillow lava. About 2 miles west of Bliss, pillow lava 500 feet thick completely fills the former canyon and is protected by rimrock of the subaerial McKinney Basalt. From Bliss, the pillow facies extends upstream as far as the McKinney rimrock - about 5 miles. Eruption of the McKinney Basalt diverted the Wood River to a course along the southeast edge of this lava flow. The temporary lake that was dammed by McKinney Basalt west of Bliss spilled along the sou

Malde, Harold E.; Cox, Allan

1971-01-01

286

CONANT CREEK, FREMONT COUNTY, IDAHO WATER QUALITY STATUS REPORT, 1986  

EPA Science Inventory

Conant Creek, Idaho (17040203) is a major tributary of the Falls River and is implicated as a major contributor of sediment. The 1983 Idaho Agricultural Pollution Abatement Plan identified the Falls River as being moderately affected by sediment from agricultural lands. The pur...

287

Origin and stratigraphy of phreatomagmatic deposits at the Pleistocene Sinker Butte Volcano, Western Snake River Plain, Idaho  

NASA Astrophysics Data System (ADS)

Sinker Butte is the erosional remnant of a very large basaltic tuff cone of middle Pleistocene age located at the southern edge of the western Snake River Plain. Phreatomagmatic tephras are exposed in complete sections up to 100 m thick in the walls of the Snake River Canyon, creating an unusual opportunity to study the deposits produced by this volcano through its entire sequence of explosive eruptions. The main objectives of the study were to determine the overall evolution of the Sinker Butte volcano while focusing particularly on the tephras produced by its phreatomagmatic eruptions. Toward this end, twenty-three detailed stratigraphic sections ranging from 20 to 100 m thick were examined and measured in canyon walls exposing tephras deposited around 180 of the circumference of the volcano. Three main rock units are recognized in canyon walls at Sinker Butte: a lower sequence composed of numerous thin basaltic lava flows, an intermediate sequence of phreatomagmatic tephras, and a capping sequence of welded basaltic spatter and more lava flows. We subdivide the phreatomagmatic deposits into two main parts, a series of reworked, mostly subaqueously deposited tephras and a more voluminous sequence of overlying subaerial surge and fall deposits. Most of the reworked deposits are gray in color and exhibit features such as channel scour and fill, planar-stratification, high and low angle cross-stratification, trough cross-stratification, and Bouma-turbidite sequences consistent with their being deposited in shallow standing water or in braided streams. The overlying subaerial deposits are commonly brown or orange in color due to palagonitization. They display a wide variety of bedding types and sedimentary structures consistent with deposition by base surges, wet to dry pyroclastic fall events, and water saturated debris flows. Proximal sections through the subaerial tephras exhibit large regressive cross-strata, planar bedding, and bomb sags suggesting deposition by wet base surges and tephra fallout. Medial and distal deposits consist of a thick sequence of well-bedded tephras; however, the cross-stratified base-surge deposits are thinner and interbedded within the fallout deposits. The average wavelength and amplitude of the cross strata continue to decrease with distance from the vent. These bedded surge and fall deposits grade upward into dominantly fall deposits containing 75-95% juvenile vesiculated clasts and localized layers of welded spatter, indicating a greatly reduced water-melt ratio. Overlying these "dryer" deposits are massive tuff breccias that were probably deposited as water saturated debris flows (lahars). The first appearance of rounded river gravels in these massive tuff breccias indicates downward coring of the diatreme and entrainment of country rock from lower in the stratigraphic section. The "wetter" nature of these deposits suggests a renewed source of external water. The massive deposits grade upward into wet fallout tephras and the phreatomagmatic sequence ends with a dry scoria fall deposit overlain by welded spatter and lava flows. Field observations and two new 40Ar- 39Ar incremental heating dates suggest the succession of lavas and tephra deposits exposed in this part of the Snake River canyon may all have been erupted from a closely related complex of vents at Sinker Butte. We propose that initial eruptions of lava flows built a small shield edifice that dammed or disrupted the flow of the ancestral Snake River. The shift from effusive to explosive eruptions occurred when the surface water or rising ground water gained access to the vent. As the river cut a new channel around the lava dam, water levels dropped and the volcano returned to an effusive style of eruption.

Brand, Brittany D.; White, Craig M.

2007-02-01

288

Sr Isotopic Variation in Plagioclase Phenocrysts of the Heise Volcanic Field, Eastern Snake River Plain, Idaho USA  

NASA Astrophysics Data System (ADS)

Feldspars within single eruptive units of rhyolites of the central Snake River Plain are tightly grouped into unimodal Sr isotope populations. Wolff et al. (2011) suggested that this Sr isotopic homogeneity is characteristic of Snake River-type rhyolitic volcanism, and reflects unusually high magma temperatures and low water contents. We test this hypothesis with new Sr data from plagioclase phenocrysts from the Heise Volcanic Field, a large nested caldera complex in the eastern Snake River Plain. We sampled the oldest unit (Tuff of Blacktail Creek, 6.6 Ma) and youngest unit (Kilgore Tuff, 4.5 Ma) at their type sections. To assess within unit variability, we also sampled widely separated exposures of the units across the caldera complex. Plagioclase crystals were separated magnetically and by hand-picking. Sr isotopes were analyzed in 9 to 66 grains per sample by LA-MC-ICPMS at the Washington State University GeoAnalytical Lab. Blacktail Creek samples have tight unimodal distributions with 87Sr/86Sr modes between 0.7126 and 0.7128 that support the Wolff et al. hypothesis. The Kilgore samples show considerably more variability. While all Kilgore samples have a similar principal mode between 0.7116 and 0.7118, additional minor modes are generally present. The Kilgore results are surprising given oxygen isotope evidence for magma homogeneity prior to eruption, crystal residence times of ~110 kyr, and magma temperatures of ~800-900C (Watts et al., 2011). Under such temperatures, Sr isotopic homogeneity in plagioclase is likely achieved in 5 mm grains within <10 kyr. The observed Sr isotope heterogeneity in Kilgore may result from isolation of magma batches until shortly before eruption. References: Wolff et al., 2011, Geology 39(10), 931-934; Watts et al. 2011, J. Petrology 52(5), 857-890.

Phillips, W. M.; Schwartz, D. M.; Ellis, B. S.

2012-12-01

289

An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 200911  

USGS Publications Warehouse

Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 200911. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From MarchMay 2009 to MarchMay 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 200911. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 20060 to 7,000260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or equal to reporting levels in water samples collected at various depths. Tritium concentrations in water from wells completed in shallow perched groundwater at the Advanced Test Reactor Complex (ATR Complex) were less than the reporting levels. Tritium concentrations in deep perched groundwater at the ATR Complex equaled or exceeded the reporting level in 12 wells during at least one sampling event during 200911 at the ATR Complex. Concentrations of strontium-90 in water from 20 of 76 aquifer wells sampled during April or October 2011 exceeded the reporting level. Strontium-90 was not detected within the ESRP aquifer beneath the ATR Complex. During at least one sampling event during 200911, concentrations of strontium-90 in water from 10 wells completed in deep perched groundwater at the ATR Complex equaled or exceeded the reporting levels. During 200911, concentrations of plutonium-238, and plutonium-239, -240 (undivided), and americium-241 were less than the reporting level in water samples from all aquifer wells and in all wells equipped with MLMS. Concentrations of cesium-137 were equal to or slightly above the reporting level in 8 aquifer wells and from 2 wells equipped with MLMS. The concentration of chromium in water from one well south of the ATR Complex was 97 micrograms per liter (?g/L) in April 2011, just less than the maximum contaminant level (MCL) of 100 ?g/L. Concentrations of chromium in water samples from 69 other wells sampled ranged from 0.8 ?g/L to 25 ?g/L. During 200911, dissolved chromium was detected in water from 15 wells completed in perched groundwater at the ATR Complex. In 2011, concentrations of sodium in water from most wells in the southern part of the INL were greater than the background concentration of 10 milligrams per liter (mg/L); the highest concentrations were at or near the Idaho Nuclear Engineering and Technology Center (INTEC). After the newpercolation ponds were put into service in 2002 southwest of the INTEC, concentrations of sodium in water samples from the Rifle Range well rose steadily until 2008, w

Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.

2013-01-01

290

Streamflow statistics for development of water rights claims for the Jarbidge Wild and Scenic River, Owyhee Canyonlands Wilderness, Idaho, 2013-14: a supplement to Scientific Investigations Report 2013-5212  

USGS Publications Warehouse

The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management (BLM), estimated streamflow statistics for stream segments designated Wild, Scenic, or Recreational under the National Wild and Scenic Rivers System in the Owyhee Canyonlands Wilderness in southwestern Idaho. The streamflow statistics were used by the BLM to develop and file a draft, federal reserved water right claim to protect federally designated outstanding remarkable values in the Jarbidge River. The BLM determined that the daily mean streamflow equaled or exceeded 20, 50, and 80 percent of the time during bimonthly periods (two periods per month) and the bankfull (66.7-percent annual exceedance probability) streamflow are important thresholds for maintaining outstanding remarkable values. Although streamflow statistics for the Jarbidge River below Jarbidge, Nevada (USGS 13162225) were published previously in 2013 and used for the draft water right claim, the BLM and USGS have since recognized the need to refine streamflow statistics given the approximate 40 river mile distance and intervening tributaries between the original point of estimation (USGS 13162225) and at the mouth of the Jarbidge River, which is the downstream end of the Wild and Scenic River segment. A drainage-area-ratio method was used in 2013 to estimate bimonthly exceedance probability streamflow statistics at the mouth of the Jarbidge River based on available streamgage data on the Jarbidge and East Fork Jarbidge Rivers. The resulting bimonthly streamflow statistics were further adjusted using a scaling factor calculated from a water balance on streamflow statistics calculated for the Bruneau and East Fork Bruneau Rivers and Sheep Creek. The final, adjusted bimonthly exceedance probability and bankfull streamflow statistics compared well with available verification datasets (including discrete streamflow measurements made at the mouth of the Jarbidge River) and are considered the best available estimates for streamflow statistics in the Jarbidge Wild and Scenic River segment.

Wood, Molly S.

2014-01-01

291

Methods to determine pumped irrigation-water withdrawals from the Snake River between Upper Salmon Falls and Swan Falls Dams, Idaho, using electrical power data, 1990-95  

USGS Publications Warehouse

Pumped withdrawals compose most of the irrigation-water diversions from the Snake River between Upper Salmon Falls and Swan Falls Dams in southwestern Idaho. Pumps at 32 sites along the reach lift water as high as 745 feet to irrigate croplands on plateaus north and south of the river. The number of pump sites at which withdrawals are being continuously measured has been steadily decreasing, from 32 in 1990 to 7 in 1998. A cost-effective and accurate means of estimating annual irrigation-water withdrawals at pump sites that are no longer continuously measured was needed. Therefore, the U.S. Geological Survey began a study in 1998, as part of its Water-Use Program, to determine power-consumption coeffi- cients (PCCs) for each pump site so that withdrawals could be estimated by using electrical powerconsumption and total head data. PCC values for each pump site were determined by using withdrawal data that were measured by the U.S. Geological Survey during 199092 and 199495, energy data reported by Idaho Power Company during the same period, and total head data collected at each site during a field inventory in 1998. Individual average annual withdrawals for the 32 pump sites ranged from 1,120 to 44,480 acre-feet; average PCC values ranged from 103 to 1,248 kilowatthours per acre-foot. During the 1998 field season, power demand, total head, and withdrawal at 18 sites were measured to determine 1998 PCC values. Most of the 1998 PCC values were within 10 percent of the 5-year average, which demonstrates that withdrawals for a site that is no longer continuously measured can be calculated with reasonable accuracy by using the PCC value determined from this study and annual power-consumption data. K-factors, coefficients that describe the amount of energy necessary to lift water, were determined for each pump site by using values of PCC and total head and ranged from 1.11 to 1.89 kilowatthours per acre-foot per foot. Statistical methods were used to define the relations among PCC values and selected pumpsite characteristics. Multiple correlation analysis between average PCC values and total head, total horsepower, and total number of pumps revealed the strongest correlation was between average PCC and total head. Linear regression of these two variables resulted in a strong coefficient of determination R2=0 .9 86) and a representative K-factor of 1.463. Pump sites were subdivided into two groups on the basis of total head0 to 300 feet and greater than 300 feet. Regression of average PCC values for eight pump sites with total head less than 300 feet produced a good correlation of determination (R2=0.870) and a representative K-factor of 1.682. The second group consisted of 10 pump sites with total head greater than 300 feet; regression produced a correlation of R2=0.939 and a representative K-factor of 1.405. Data on pump-site characteristics were successfully used to determine individual PCC and K-factor values. Statistical relations between pumpsite characteristics and PCC values were defined and used to determine regression equations that resulted in good coefficients of determination and representative K-factors. The individual PCC values will be used in the future to calculate irrigation- water withdrawals at sites that are no longer continuously measured. The representative K-factors and regression equations will be used to calculate irrigation-water withdrawals at sites that have not been previously measured and where total head and power consumption are known.

Maupin, Molly A.

1999-01-01

292

The Raft River Basin, Idaho-Utah as of 1966: A reappraisal of the water resources and effects of ground-water development  

USGS Publications Warehouse

The Raft River basin, mostly in south-central Idaho and partly in Utah, is a drainage basin of approximately 1,510 square miles. Much arable land in the basin lacks water for irrigation, and the potentially irrigable acreage far exceeds the amount that could be irrigated with the 140,000 acre-feet estimated annual water yield. Therefore, the amount of uncommitted water that could be intercepted and used within the basin is the limiting factor in further development of agriculture irrigated with water derived from within the basin; Water for additional irrigation might be obtained by pumping more ground water, but only if large additional ground-water storage depletion can be tolerated. Alternatively, supplemental water might be imported. The Raft River basin is an area of rugged mountain ranges, aggraded alluvial plains, and intermontane valleys. Topography and geologic structure strongly influence the climate and hydrology. The Raft River rises in the Goose Creek Range of northwestern Utah and flows generally northeastward and northward, joining the Snake River in the backwater of Lake Walcott. The climate ranges from cool subhumid in the mountains to semiarid on the floor of the Raft River valley. Precipitation ranges from less than l0 inches on the valley floor to more than 30 inches at some places in the mountains. Rainfall is light during the growing season of about 100 days, and irrigation is necessary for most cultivated crops. About 87,000 acres of land was irrigated in the 1960's, on the average, and most of that is in the lower Raft River valley. Nearly all usable surface water in the basin is diverted for irrigation and as of 1966 less than 20,000 acres were irrigated exclusively with surface water. Most stock, farm, and domestic water is from wells. Irrigation with ground water is Widely practiced and about 69,000 acres were irrigated partly or wholly with ground water in, 1966. In 1963 the valley was closed to further issuance of permits to appropriate ground-water because of declining water levels. Geologic structure, lithology, and physiographic history control the surface-drainage pattern as well as the occurrence and movement of ground water. The principal water-bearing formations are the Salt Lake Formation of Pliocene age, consisting mainly of weakly consolidated sandy sediments and some layers of volcanic rock; the Raft Formation of Pleistocene age consisting of sand and gravel, lake sediments, and thin beds of silt and clay; and alluvial deposits of Holocene age that form aquifers beneath the bottom lands of the valleys. Good yields from wells, ranging upward to several thousand gallons a minute, are obtained from the water-bearing formations. Basalt lavas of the Snake River Group yield water where they occur below the water table of the valley. A few wells that penetrate limestone obtain substantial supplies from crevices. Thickness of the composite aquifer ranges from 0 to more than 1,500 feet. Transmissivity of the composite aquifer is estimated to vary from about 10,000 gpd/ft (gallons per day per foot) along the basin margins to more than 450,000 gpd/ft. Permeability of the water-bearing deposits is highly variable, but is estimated to average about 300 gpd/ft2 for the basin as a whole. The ground-water storage capacity of the basin is large; in the lower Raft Rive subbasin alone, the upper 200 feet of saturated deposits contain an estimated 9,000,000 acre-feet of water. The average specific yield of the shallow deposits is estimated to be 20 percent. The water yield of the Raft River basin is estimated to average about 140,000 acre-feet per year as compared to 183,600 acre-feet estimated by Nace and others (1961) and 320,000 acre-feet estimated by Mundorff and Sisco (1963). Surface outflow of the Raft River to the Snake River now amounts to only about 1,900 acre-feet per year, a decline of about 15,000 acre-feet a year from the estimated original average outflow prior to ir

Walker, E.H.; Dutcher, L.C.; Decker, S.O.; Dyer, K.L.

1970-01-01

293

Comparison of Plains Volcanism in the Tempe Terra Region of Mars to the Eastern Snake River Plains, Idaho with Implications for Geochemical Constraints  

NASA Technical Reports Server (NTRS)

The Eastern Snake River Plains (ESRP) in Idaho have long been considered a terrestrial analog for the plains volcanism like that evident in Syria Planum and Tempe Terra, Mars. Both the ESRP and Tempe Terra are sediment-blanketed volcanic fields in areas with significant extensional faulting. Similar volcanic features can be observed throughout both study areas using field analysis and DEMs of the ESRP and the Mars Global Surveyor (MGS) data from Mars. These features include flow fields, low shields, shields with steep summits, and fissure eruptions. A few other volcanic features, such as cinder cones, which suggest variable compositions, volatile interactions, and multiple volcanic events can be seen in both areas. The eruptions in both the ESRP and Tempe Terra generally originate from the fissures creating elongate, multi-vent shields as well as isolated or aligned single vent shields. Many of these show evidence of radial flow patterns from summit craters as well as lava tube fed flows. The volcanoes of Tempe Terra display some of the global latitudinal parameter trends of small volcanoes on Mars. Some of these trends may be explained by the variation of volatile content and compositional variation across Mars. However, within Tempe Terra no significant local latitudinal trends can be seen in edifice attributes and not all variations are explained by global trends. This study builds upon previous studies of the Tempe Terra region and the ESRP in order to develop a more detailed representation of features and topographic data. Using these data we attempt to help constrain the composition and eruptive style of the Tempe Terra volcanoes by correlating them with the similar and quantified ESRP variations.

Weren, S. L.; Sakimoto, S. E. H.; Hughes, S. S.; Gregg, T. K. P.

2004-01-01

294

Straddle-packer determination of the vertical distribution of hydraulic properties in the Snake River Plain Aquifer at well USGS-44, Idaho Chemical Processing Plant, INEL  

SciTech Connect

Many of the monitor wells that penetrate the upper portion of the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL) are open over large intervals that include multiple water-bearing zones. Most of these wells are equipped with dedicated submersible pumps. Water of varying quality from different water-bearing zones is mixed within the wells. The hydrologic properties of individual water bearing zones are difficult to determine. Water quality and water-level data on organic, heavy metal, and radioactive contaminants have been collected, reported, and interpreted from these monitor wells for more than forty years. The problems associated with well completions over large intervals through multiple water-bearing zones raise significant questions about the data. A straddle-packer system was developed and applied at the INEL site to investigate the monitor well network. The straddle-packer system, hydraulic testing methods, data analysis procedures, and testing results are described in this report. The straddle-packer system and the straddle-packer testing and data evaluation procedures can be improved for future testing at the INEL site. Recommended improvements to the straddle-packer system are: (1) improved transducer pressure sensing systems, (2) faster opening riser valve, and (3) an in-line flowmeter in the riser pipe. Testing and data evaluation recommended improvements are: (1) simultaneous valve opening during slug tests, (2) analysis of the ratio of the times for head change and recovery to occur, (3) constant-drawdown tests of high transmissivity intervals, (4) multiple-well aquifer tests, and (5) long term head monitoring.

Monks, J.I.

1994-09-23

295

Coolwater culmination: Sensitive high-resolution ion microprobe (SHRIMP) U-Pb and isotopic evidence for continental delamination in the Syringa Embayment, Salmon River suture, Idaho  

USGS Publications Warehouse

During dextral oblique translation along Laurentia in western Idaho, the Blue Mountains superterrane underwent clockwise rotation and impinged into the Syringa embayment at the northern end of the Salmon River suture. Along the suture, the superterrane is juxtaposed directly against western Laurentia, making this central Cordilleran accretionary-margin segment unusually attenuated. In the embayment, limited orthogonal contraction produced a crustal wedge of oceanic rocks that delaminated Laurentian crust. The wedge is exposed through Laurentian crust in the Coolwater culmination as documented by mapping and by sensitive high-resolution ion microprobe U-Pb, Sri, and ??Nd data for gneisses that lie inboard of the suture. The predominant country rock is Mesoproterozoic paragneiss overlying Laurentian basement. An overlying Neoproterozoic (or younger) paragneiss belt in the Syringa embayment establishes the form of the Cordilleran miogeocline and that the embayment is a relict of Rodinia rifting. An underlying Cretaceous paragneiss was derived from arc terranes and suture-zone orogenic welt but also from Laurentia. The Cretaceous paragneiss and an 86-Ma orthogneiss that intruded it formed the wedge of oceanic rocks that were inserted into the Laurentian margin between 98 and 73 Ma, splitting supracrustal Laurentian rocks from their basement. Crustal thickening, melting and intrusion within the wedge, and folding to form the Coolwater culmination continued until 61 Ma. The embayment formed a restraining bend at the end of the dextral transpressional suture. Clockwise rotation of the impinging superterrane and overthrusting of Laurentia that produced the crustal wedge in the Coolwater culmination are predicted by oblique collision into the Syringa embayment. Copyright 2008 by the American Geophysical Union.

Lund, K.; Aleinikoff, J.N.; Yacob, E.Y.; Unruh, D.M.; Fanning, C.M.

2008-01-01

296

Mercury and Selenium Concentrations in Biofilm, Macroinvertebrates, and Fish Collected in the Yankee Fork of the Salmon River, Idaho, USA, and Their Potential Effects on Fish Health  

USGS Publications Warehouse

The Yankee Fork is a large tributary of the Salmon River located in central Idaho, USA, with an extensive history of placer and dredge-mining activities. Concentrations of selenium (Se) and mercury (Hg) in various aquatic trophic levels were measured in the Yankee Fork during 2001 and 2002. Various measurements of fish health were also performed. Sites included four on the mainstem of the Yankee Fork and two off-channel sites in partially reclaimed dredge pools used as rearing habitat for cultured salmonid eggs and fry. Hg concentrations in whole mountain whitefish and shorthead sculpin ranged from 0.28 to 0.56 ?g/g dry weight (dw), concentrations that are generally less than those reported to have significant impacts on fish. Biofilm and invertebrates ranged from 0.05 to 0.43 ?g Hg/g dw. Se concentrations measured in biota samples from the Yankee Fork were greater than many representative samples collected in the Snake and Columbia watersheds and often exceeded literature-based toxic thresholds. Biofilm and invertebrates ranged from 0.58 to 4.66 ?g Se/g dw. Whole fish ranged from 3.92 to 7.10 ?g Se/g dw, and gonads ranged from 6.91 to 31.84 ?g Se/g dw. Whole-body Se concentrations exceeded reported toxicological thresholds at three of four sites and concentrations in liver samples were mostly greater than concentrations shown to have negative impacts on fish health. Histological examinations performed during this study noted liver abnormalities, especially in shorthead sculpin, a bottom-dwelling species.

Rhea, Darren T.; Farag, Aida M.; Harper, David D.; McConnell, Elizabeth; Brumbaugh, William G.

2013-01-01

297

Mercury and selenium concentrations in biofilm, macroinvertebrates, and fish collected in the Yankee Fork of the Salmon River, Idaho, USA, and their potential effects on fish health.  

PubMed

The Yankee Fork is a large tributary of the Salmon River located in central Idaho, USA, with an extensive history of placer and dredge-mining activities. Concentrations of selenium (Se) and mercury (Hg) in various aquatic trophic levels were measured in the Yankee Fork during 2001 and 2002. Various measurements of fish health were also performed. Sites included four on the mainstem of the Yankee Fork and two off-channel sites in partially reclaimed dredge pools used as rearing habitat for cultured salmonid eggs and fry. Hg concentrations in whole mountain whitefish and shorthead sculpin ranged from 0.28 to 0.56 ?g/g dry weight (dw), concentrations that are generally less than those reported to have significant impacts on fish. Biofilm and invertebrates ranged from 0.05 to 0.43 ?g Hg/g dw. Se concentrations measured in biota samples from the Yankee Fork were greater than many representative samples collected in the Snake and Columbia watersheds and often exceeded literature-based toxic thresholds. Biofilm and invertebrates ranged from 0.58 to 4.66 ?g Se/g dw. Whole fish ranged from 3.92 to 7.10 ?g Se/g dw, and gonads ranged from 6.91 to 31.84 ?g Se/g dw. Whole-body Se concentrations exceeded reported toxicological thresholds at three of four sites and concentrations in liver samples were mostly greater than concentrations shown to have negative impacts on fish health. Histological examinations performed during this study noted liver abnormalities, especially in shorthead sculpin, a bottom-dwelling species. PMID:23080409

Rhea, Darren T; Farag, Ada M; Harper, David D; McConnell, Elizabeth; Brumbaugh, William G

2013-01-01

298

The timing of tertiary metamorphism and deformation in the Albion-Raft River-Grouse Creek metamorphic core complex, Utah and Idaho  

USGS Publications Warehouse

The Albion-Raft River-Grouse Creek metamorphic core complex of southern Idaho and northern Utah exposes 2.56-Ga orthogneisses and Neoproterozoic metasedimentary rocks that were intruded by 32-25-Ma granitic plutons. Pluton emplacement was contemporaneous with peak metamorphism, ductile thinning of the country rocks, and top-to-thewest, normal-sense shear along the Middle Mountain shear zone. Monazite and zircon from an attenuated stratigraphic section in the Middle Mountain were dated with U-Pb, using a SHRIMP-RG (reverse geometry) ion microprobe. Zircons from the deformed Archean gneiss preserve a crystallization age of 2532 ?? 33 Ma, while monazites range from 32.6 ?? 0.6 to 27.1 ?? 0.6 Ma. In the schist of the Upper Narrows, detrital zircons lack metamorphic overgrowths, and monazites produced discordant U-Pb ages that range from 52.8 ?? 0.6 to 37.5 ?? 0.3 Ma. From the structurally and stratigraphically highest unit sampled, the schist of Stevens Spring, narrow metamorphic rims on detrital zircons yield ages from 140-110 Ma, and monazite grains contained cores that yield an age of 141 ??2 Ma, whereas rims and some whole grains ranged from 35.5 ?? 0.5 to 30.0 ?? 0.4 Ma. A boudinaged pegmatite exposed in Basin Creek is deformed by the Middle Mountains shear zone and yields a monazite age of 27.6 ?? 0.2 Ma. We interpret these data to indicate two periods of monazite and metamorphic zircon growth: a poorly preserved Early Cretaceous period (???140 Ma) that is strongly overprinted by Oligocene metamorphism (???32-27 Ma) related to regional plutonism and extension. ?? 2011 by The University of Chicago.

Strickland, A.; Miller, E.L.; Wooden, J.L.

2011-01-01

299

The Influence of Climate Change and Fire on Sediment Transport and Aquatic Habitat: a Case Study of the South Fork of Salmon River Basin, Idaho  

NASA Astrophysics Data System (ADS)

In the western United States, climate change is predicted to increase fire severity and frequency, decrease snowpack, and alter the timing and volume of runoff. Wildfire often increases hillslope erosion rates, which alter the timing, quantity and grain-size distribution of sediment supplied to streams. In addition, extreme flood events may become more frequent with climate change and will impact the channel morphology, grain-size distributions and aquatic habitat. To understand the influence of climatically induced alterations in flow hydrographs and hillslope erosion rates, a one-dimensional bedload transport model is used to calculate sediment and flow routing through the South Fork of the Salmon River. The model includes a channel network with drainage areas between 1.5 to 125 square kilometers. To understand the impact of increased hillslope erosion rates, we varied the amount and grain size distribution of supplied sediment between model runs while holding the flow hydrograph constant (rain vs. snow dominated). We also use data collected from an extreme flood event in June 2010, which was the highest recorded flow on record, as a proxy for the impact of climate change. We measured the grain size distributions, and channel dimensions in seventeen channels before and after this event. These parameters only changed significantly in channels with large sediment inputs from landslides. We also model the following two scenarios: 1) pre-event channel and sediment supply conditions combined with a snowmelt dominated hydrograph and 2) post-event channel and sediment supply conditions combined with the extreme event hydrograph. We compare the predicted channel slopes, grain size distributions, flow hydraulics (e.g. flow velocity, shear stress) and bedload fluxes between each model run and throughout the channel network. Such calculations are used to better understand the impact of sediment supply and flow hydrographs on channel stability, and aquatic habitat suitability (e.g. grain size, flow hydraulics) for a number of threatened and endangered species in Idaho.

Neupane, S.; Yager, E. M.

2010-12-01

300

Idaho's Energy Options  

SciTech Connect

This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idahos energy options, and for developing and implementing Idahos energy direction and policies.

Robert M. Neilson

2006-03-01

301

Characterization of Elastic Properties in Basalts of the Western Snake River Plain, Idaho: a Mechanostratigraphic Analysis of a Potential Geothermal Reservoir  

NASA Astrophysics Data System (ADS)

The western Snake River Plain is a region of high crustal heat flow and has the potential for commercial geothermal energy development. High-temperature crystalline reservoirs commonly have connected fracture networks and other discontinuities that provide the primary fluid storage and permeability (Type I fractures). A borehole was drilled during the DOE/ICDP Snake River Scientific Drilling Program near Mountain Home, Idaho to a depth of ~1,800 m (6,000 ft) with 85 - 90% slimhole core recovery to assess the potential for geothermal energy development. A high-temperature artesian flow zone was encountered in basalt at a depth of 1,745 m (5,726 ft) in the MH-2 borehole with fluid temperatures above 140C (240F). Analysis of geomechanical behavior of rocks requires an understanding of basic physical and elastic properties under dynamic in-situ stress conditions. Here we conduct unconfined uniaxial compressive stress experiments on core samples to measure static elastic properties and compressive strength over a ~305 m (1,000 ft) interval of the borehole above and including the geothermal reservoir. Acoustic velocities are measured under pressure and temperature scenarios to calculate dynamic elastic properties and describe the anisotropy of elastic moduli and compressive strength. Dynamic elastic properties are calculated from dipole sonic borehole log data and compare the results to the previous dynamic and static interpretations. The comparison demonstrates that the calculation of dynamic elastic properties from borehole data is an effective method to interpret and describe mechanical stratigraphy and elastic properties in the case that core is not available for analysis in this area. Natural fractures, induced fractures, and breakouts are mapped in acoustic televiewer data. Fracture density is calculated and compared to lithological and mechanical stratigraphy, defined by the physical properties, elastic properties, and strength measurements. The stratigraphic relationships indicate that a ~15 m (50 ft) section of weak, non-brittle, low-permeability, highly altered basalt may act as a caprock to the geothermal reservoir at depth. Lithological descriptions of core show that the basalt in MH-2 has been altered and reworked in many cases. The alternating zones of ductile rocks and brittle basalts affect fracture density and can control fracture permeability. The induced fracture and breakout data are used to identify the direction of each of the two horizontal principal stresses. Interpretation of breakout data and induced fracture data indicate that the maximum horizontal principal stress (Shmax) is oriented 50 + 15. This direction is antithetical to the expected Shmax direction based on the orientation of the normal fault-bounded basin that is oriented approximately 320.

Kessler, J. A.; Evans, J. P.; Schmitt, D. R.; Shervais, J. W.

2013-12-01

302

Project Hotspot: Linear accumulation rates of late Cenozoic basalt at Kimama, Idaho, and implications for crustal strain and subsidence rates of the central Snake River Plain  

NASA Astrophysics Data System (ADS)

Project Hotspot's Kimama drill hole on the Snake River Plain, Idaho recovered a 1912 m thick section of basalt core that ranges in age from ~700 ka to at least 6.14 Ma, based on five 40Ar/39Ar analyses and twenty paleomagnetic age assignments. Fifty-four flow groups comprising 510 individual flows were defined, yielding an average recurrence interval of ~11,400 years between flows. Age-depth analysis indicate that, over thicknesses >150 m and age spans >500 k.y., accumulation rates were constant at 30 m/100 k.y. The existence and persistence of this linear accumulation rate for greater than 5 m.y. documents an external tectonic control on eruption dynamics. One conceptual model relates accumulation rates to horizontal crustal strain, such that far-field extension rate controls the periodicity of dikes that feed basalt flows. In this model, each of the 54 flow groups would have a deep-seated, relatively wide (1-10m) dike that branches upward into a network of narrow (10-100 cm) dikes feeding individual lava flows. Assuming an east-west lateral lava flow extent of up to 50 km, the Kimama data record a steady-state crustal strain rate of 10-9 to 10-10 y-1. This rate is comparable to modern, decadal strain rates measured with GPS in the adjacent Basin & Range province, but exceeds decadal strain rates of zero measured in the eastern Snake River Plain. Linear accumulation rates also provide insight into basalt subsidence history. In this model, the middle-upper crust subsides due to the added weight of lava flows, the added weight of mid-crustal sills/dikes, and thermal contraction in the wake of the Yellowstone hot spot. Isostatic compensation would occur in the (nearly) molten lower crust. Assuming constant surface elevation and a basalt density of 2.6 g/cm3, the lava flow weight would account for 87% of the burial through time, yielding a steady-state "tectonic" subsidence rate of 4 m/100 k.y. attributed to the driving forces of mid-crustal injection and/or thermal contraction. An even faster tectonic rate is likely, given the evidence for decreasing surface elevation through time. We propose that tectonic subsidence was a necessary condition for maintaining basalt eruption over such a long duration -- it would inhibit the growth of a topographic plateau and maintain an appropriate level of neutral buoyancy for the periodically ascending mantle-derived magma

Rodgers, D. W.; Potter, K. E.; Shervais, J. W.; Champion, D. E.; Duncan, R. A.

2013-12-01

303

Mechanics of brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho  

NASA Astrophysics Data System (ADS)

The Menan Volcanic Complex consists of phreatomagmatic tuff cones that were emplaced as part of the regional volcanic activity in the Snake River Plain during the late Pleistocene. These tuff cones, the ';Menan Buttes', resulted from the eruption of basaltic magma through water-saturated alluvium and older basalts along the Snake River. The tuffs are composed primarily of basaltic glass with occasional plagioclase and olivine phenocrysts. The tuff is hydrothermally altered to a massive palagonitic tuff at depth but is otherwise poorly welded. Mass movements along the flanks of the cones were contemporaneous with tuff deposition. These slope failures are manifest as cm- to meter-scale pure folds, faults and fault-related folds, as well as larger slumps that are tens to a few hundred meters wide. Previous investigations classified the structural discontinuities at North Menan Butte based on orientation and sense of displacement, and all were recognized as opening-mode or shear fractures (Russell and Brisbin, 1990). This earlier work also used a generalized model of static (i.e., aseismic) gravity-driven shear failure within cohesionless soils to infer a possible origin for these fractures through slope failure. Recent work at North Menan Butte has provided novel insight into the styles of brittle deformation present, the effect of this deformation on the circulation of subsurface fluids within the tuff cone, as well as the mechanisms of the observed slope failures. Field observations reveal that the brittle deformation, previously classified as fractures, is manifest as deformation bands within the non-altered, poorly welded portions of the tuff. Both dilational and compactional bands, with shear, are observed. Slumps are bounded by normal faults, which are found to have developed within clusters of deformation bands. Deformation bands along the down-slope ends of these failure surfaces are predominantly compactional in nature. These bands have a ~3800 millidarcy permeability, a decrease from the ~9400 millidarcy permeability typical of the non-deformed, poorly-welded tuff. As such, these bands would have acted to slow to the circulation of local fluids through the tuff cone, possibly reducing the slopes' stability further. Future work will employ slope stability models to investigate the tendency for slumping of these tuffs shortly after their emplacement, accounting for water-saturated conditions and the effects of eruption-related seismicity. These results will improve current understanding of the mechanics of fault growth within basaltic tuff and enable more rigorous assessments of the hazards posed by slope instability on active phreatomagmatic tuff cones.

Okubo, C. H.

2013-12-01

304

Magma Flow and the Redistribution of Crystals in Shallow Intrusions at Sinker Butte Volcano, Western Snake River Plain, Idaho  

NASA Astrophysics Data System (ADS)

Sinker Butte is the erosional remnant of one of the largest tholeiitic volcanoes in the western Snake River Plain. Because the edifice was dissected by the Snake River, a nearly complete record of its eruptions is exposed in the walls and alcoves of the canyon. The stratigraphy indicates that initial eruptions produced a shield cone composed of many thin pahoehoe flows. The effusive phase was followed by a series of phreatomagmatic explosions that built a very large tuff cone with a summit crater complex up to 1 km across. A final series of magmatic eruptions filled the tuff cone crater with lava and produced at least 20 radial dikes and other small intrusions, some of which appear to have fed late stage flank eruptions. About 80 oriented drill cores collected from 7 of the radial dikes were analyzed for anisotropy of magnetic susceptibility (AMS). Average magnetic lineations, which are assumed to reflect flow directions, are nearly horizontal for two of the dikes; the others plunge downward and away from the crater area at angles of 45o to 70o. The AMS data are consistent with the propagation of radial dikes outward from a column of magma in the upper part of the edifice, possibly beneath a lava lake. Steeply dipping flow directions in some of the dikes may indicate late downward flow in response to draining of magma during breakouts on the lower flanks of the tuff cone. Crystal clots composed of plagioclase and olivine are abundant in many of the lavas and intrusive sheets, and chemical variations throughout the suite can be attributed to the redistribution of these minerals. Microprobe analyses of olivines in samples in known stratigraphic order indicate at least one recharge event took place during the life of the volcano. It is suggested here that pulses of ascending magma disrupted mushy cumulates along the walls and floors of the shallow plumbing system. Crystal clots in the lavas and dikes are interpreted to be fragments of these cumulates. High abundances of clots in the interiors of some of the radial dikes suggest they were concentrated by flowage differentiation. This process, operating in small conduits throughout the edifice, may have contributed to the overall chemical diversity observed in the suite of lavas and tephras at Sinker Butte.

White, C. M.; Kurz, K. R.

2007-12-01

305

Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain  

E-print Network

Plain Aquifer Sediments at the Idaho National Laboratory, Idaho Scientific Investigations Report 2008 Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho By Kim S. Perkins saturated hydraulic conductivity of Snake River Plain aquifer sediments at the Idaho National Laboratory

306

Brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho  

USGS Publications Warehouse

The manifestation of brittle deformation within inactive slumps along the North Menan Butte, a basaltic tuff cone in the Eastern Snake River Plain, is investigated through field and laboratory studies. Microstructural observations indicate that brittle strain is localized along deformation bands, a class of structural discontinuity that is predominant within moderate to high-porosity, clastic sedimentary rocks. Various subtypes of deformation bands are recognized in the study area based on the sense of strain they accommodate. These include dilation bands (no shear displacement), dilational shear bands, compactional shear bands and simple shear bands (no volume change). Measurements of the host rock permeability between the deformation bands indicate that the amount of brittle strain distributed throughout this part of the rock is negligible, and thus deformation bands are the primary means by which brittle strain is manifest within this tuff. Structural discontinuities that are similar in appearance to deformation bands are observed in other basaltic tuffs. Therefore deformation bands may represent a common structural feature of basaltic tuffs that have been widely misclassified as fractures. Slumping and collapse along the flanks of active volcanoes strongly influence their eruptive behavior and structural evolution. Therefore characterizing the process of deformation band and fault growth within basaltic tuff is key to achieving a more complete understanding of the evolution of basaltic volcanoes and their associated hazards.

Okubo, Chris H.

2014-01-01

307

Is the PDO or AMO the climate driver of soil moisture in the Salmon River Basin, Idaho?  

NASA Astrophysics Data System (ADS)

Current droughts and increasing water demands are straining water resources in the Salmon River Basin (SRB) and are anticipated to continue in the future. As a robust drought indictor, soil moisture plays an important role in characterizing prolonged droughts. The current study investigates the impacts of two oceanic-atmospheric patterns, i.e. the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO), on soil moisture and identify the most complete driver (PDO/AMO) of soil moisture in the SRB. Using wavelet analysis tools, we found that: 1) soil moisture in both Stanley station (a snow-dominated region) and White Bird station (a rain-dominated region) in the SRB are linked to the variations of the PDO and AMO; 2) both the PDO and AMO have less significant impacts on soil moisture in Stanley station; and 3) the PDO produces, with respect to AMO, a stronger correlation with soil moisture in the SRB. Given the importance of the soil moisture to the drought, the results could allow an estimation of drought availability under forecasted oceanic-atmospheric patterns, which will provide useful information for water resources management in the SRB.

Tang, Chunling; Chen, Dong; Crosby, Benjamin T.; Piechota, Thomas C.; Wheaton, Joseph M.

2014-09-01

308

Brittle deformation and slope failure at the North Menan Butte tuff cone, Eastern Snake River Plain, Idaho  

NASA Astrophysics Data System (ADS)

The manifestation of brittle deformation within inactive slumps along the North Menan Butte, a basaltic tuff cone in the Eastern Snake River Plain, is investigated through field and laboratory studies. Microstructural observations indicate that brittle strain is localized along deformation bands, a class of structural discontinuity that is predominant within moderate to high-porosity, clastic sedimentary rocks. Various subtypes of deformation bands are recognized in the study area based on the sense of strain they accommodate. These include dilation bands (no shear displacement), dilational shear bands, compactional shear bands and simple shear bands (no volume change). Measurements of the host rock permeability between the deformation bands indicate that the amount of brittle strain distributed throughout this part of the rock is negligible, and thus deformation bands are the primary means by which brittle strain is manifest within this tuff. Structural discontinuities that are similar in appearance to deformation bands are observed in other basaltic tuffs. Therefore deformation bands may represent a common structural feature of basaltic tuffs that have been widely misclassified as fractures. Slumping and collapse along the flanks of active volcanoes strongly influence their eruptive behavior and structural evolution. Therefore characterizing the process of deformation band and fault growth within basaltic tuff is key to achieving a more complete understanding of the evolution of basaltic volcanoes and their associated hazards.

Okubo, Chris H.

2014-05-01

309

Occurrence and flux of selected pesticides in surface water of the upper snake River Basin, Idaho and western Wyoming  

USGS Publications Warehouse

During May and June 1994, 37 water samples were collected at 31 sites in the upper Snake River Basin and analyzed for 83 pesticides and pesticide metabolites. EPTC, atrazine, and the atrazine metabolite deethylated atrazine were the most frequently detected and were found in 30, 20, and 13 of the samples, respectively. Fifteen additional pesticides were detected at least once. All the compounds detected were at concentrations of less than 1 microgram per liter. Total annual applications of EPTC and atrazine within subbasins and their instantaneous instream fluxes have a logarithmic relation with coefficients of determination (R2 values) of 0.55 and 0.62, respectively. At the time of sampling, the median daily flux of EPTC was about O. 0001% of the annual amount applied in a subbasin, whereas the median daily flux of atrazine was between 0.001 and 0.01%. The difference in fluxes between EPTC and atrazine probably results from differences in their physical properties and in the method and timing of application.

Clark, G.M.

1997-01-01

310

Rhyolites in the Kimberly Drill Core, Project Hotspot: First Intracaldera Ignimbrite from the Central Snake River Plain, Idaho?  

NASA Astrophysics Data System (ADS)

The rhyolites on the track of the Yellowstone hotspot are the classic examples of continental hotspot volcanism and the study of surface outcrops is maturing rapidly. However, in the central part of the track, where silicic volcanism is most voluminous, compositionally distinctive, and isotopically most anomalous, study of these large magma systems has been hindered because eruptive sources are buried. The 2 km Kimberly core helps fill that gap; it penetrates through surficial basalt, deep into the rhyolitic underpinnings on the southern margin of the province. The Kimberly core is dominated by thick sections of rhyolite lava and welded ignimbrite, with basalt-sediment intercalations between 241 m and 424 m depth. We tentatively interpret the core to include a thick intracaldera tuff. Our preliminary studies suggest that there are three major rhyolite units in the core. Rhyolite 3, the uppermost unit, is a nearly 130 m thick, low-silica rhyolite lava. Rhyolite 2 is the most highly evolved with ~75% silica and distinctively resorbed quartz. Rhyolite 1 is at least 1,340 m thick (the base was not cut by the core), has no apparent flow contacts or cooling breaks, and may represent a single, thick intracaldera ignimbrite. Paleomagnetic inclinations form a curious V-shaped profile, shallowing by about 18? between 700 and 1700 m depth. We interpret this to be the result of slower cooling of the mid-part of the thick intracaldera ignimbrite. The lower unit is a low-silica rhyolite with high concentrations of Fe2O3 and TiO2--among the highest of any known ignimbrite on the SRP. It is chemically distinct from the upper units, very homogeneous, not vertically zoned, and lacks multiple populations of phenocrysts. It somewhat resembles the regionally extensive ~10 Ma outflow tuff of Wooden Shoe Butte. However, this is one of several large, petrologically similar ignimbrites as young as 8.6 Ma exposed in the Cassia Mountains south of the hole, so further work is needed. Like most rhyolites from the Snake River Plain, all 3 units have the characteristics of A-type rhyolites with high concentrations of alkalies, high Fe/Mg and TiO2/MgO ratios, as well as high concentrations Nb, Y, Zr and Ga. Initial analyses of plag, cpx, and qtz show that all three units are low ?18O rhyolites, like most from the Central Snake River Plain-- ?18O in feldspar ranges from 1 in Rhyolite 1 to 3 in Rhyolites 2 and 3. In the thick lower ignimbrite, whole-rock ?18O increases systematically from the base upward (0.5 to as much as 9 in the altered top and ?D ranges from -140 to -180). Whole rock variations correlate with water content, apparently controlled by secondary clay. We suggest that these characteristics were largely imposed by their derivation from partial melting of basaltic sills and surrounding older crust. The low ?18O values reflect recycling of hydrothermally altered crustal rocks and indicate progressive incorporation of more hydrothermally altered material into the younger magmas. More work is needed to establish correlation with regional units, understand the emplacement of the rhyolites and their volcanic setting, and ascertain the origin of these distinctive low ?18O, A-type rhyolites.

Christiansen, E. H.; McCurry, M. O.; Champion, D. E.; Bolte, T.; Holtz, F.; Knott, T.; Branney, M. J.; Shervais, J. W.

2013-12-01

311

The Idaho Update recent trends in salmon and steelhead  

E-print Network

information for Snake River sp/su Chinook, fall Chinook, sockeye, and steelhead 2.Snake River sockeye salmon program update 3.2009 sp/su Chinook, sockeye and steelhead forecasts (Snake River) The Idaho Update Clearwater Dworshak NPTH Kooskia Rapid Riv. SFSR Sawtooth Pahsimeroi Snake, Clearwater, and Salmon River

312

Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report  

SciTech Connect

A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leads to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits.

Black, B.A.

1980-09-01

313

The Digital Atlas of Idaho  

NSDL National Science Digital Library

The Digital Atlas of Idaho was created in order to convey the "integration of data on geology, hydrology, biology, climatology, and anthropology onto a common digital map base", and is the result of collaboration between Idaho State University, Boise State University, and the Idaho Museum of Natural History. Visitors to the site can view the areas of study on the home page, which include "Geology", "Biology", and "Geography". By scrolling over each area they can see the topics these areas cover. For example scrolling over "Geology" will show a number of topics including "Rocks of Idaho", "Snake River Plain", "Fossils", "Geology Basics", and "Geology of SE Idaho". Users interested in teaching about some of the topics covered by the Digital Atlas should check out the "Teaching Resources" link for lesson plans available for grades K-12. There are also "Digital Exercises", "Charts", "Images", and "Glossaries" to further inform the lessons. Visitors can find such digital exercises as "Butterfly Identification Exercise", "Name That Cloud", and "Geographic Processes and the Visible Landscape".

314

Evaluation of LiDAR-acquired bathymetric and topographic data accuracy in various hydrogeomorphic settings in the Deadwood and South Fork Boise Rivers, West-Central Idaho, 2007  

USGS Publications Warehouse

High-quality elevation data in riverine environments are important for fisheries management applications and the accuracy of such data needs to be determined for its proper application. The Experimental Advanced Airborne Research LiDAR (Light Detection and Ranging)-or EAARL-system was used to obtain topographic and bathymetric data along the Deadwood and South Fork Boise Rivers in west-central Idaho. The EAARL data were post-processed into bare earth and bathymetric raster and point datasets. Concurrently with the EAARL surveys, real-time kinematic global positioning system surveys were made in three areas along each of the rivers to assess the accuracy of the EAARL elevation data in different hydrogeomorphic settings. The accuracies of the EAARL-derived raster elevation values, determined in open, flat terrain, to provide an optimal vertical comparison surface, had root mean square errors ranging from 0.134 to 0.347 m. Accuracies in the elevation values for the stream hydrogeomorphic settings had root mean square errors ranging from 0.251 to 0.782 m. The greater root mean square errors for the latter data are the result of complex hydrogeomorphic environments within the streams, such as submerged aquatic macrophytes and air bubble entrainment; and those along the banks, such as boulders, woody debris, and steep slopes. These complex environments reduce the accuracy of EAARL bathymetric and topographic measurements. Steep banks emphasize the horizontal location discrepancies between the EAARL and ground-survey data and may not be good representations of vertical accuracy. The EAARL point to ground-survey comparisons produced results with slightly higher but similar root mean square errors than those for the EAARL raster to ground-survey comparisons, emphasizing the minimized horizontal offset by using interpolated values from the raster dataset at the exact location of the ground-survey point as opposed to an actual EAARL point within a 1-meter distance. The average error for the wetted stream channel surface areas was -0.5 percent, while the average error for the wetted stream channel volume was -8.3 percent. The volume of the wetted river channel was underestimated by an average of 31 percent in half of the survey areas, and overestimated by an average of 14 percent in the remainder of the survey areas. The EAARL system is an efficient way to obtain topographic and bathymetric data in large areas of remote terrain. The elevation accuracy of the EAARL system varies throughout the area depending upon the hydrogeomorphic setting, preventing the use of a single accuracy value to describe the EAARL system. The elevation accuracy variations should be kept in mind when using the data, such as for hydraulic modeling or aquatic habitat assessments.

Skinner, Kenneth D.

2011-01-01

315

Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli  

Microsoft Academic Search

At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the

D. A. Neitzel; T. J. Frest

1992-01-01

316

Movement, swimming speed, and oxygen consumption of juvenile white sturgeon in response to changing flows, water temperatures, and light level in the Snake River, Idaho  

SciTech Connect

The flow of the Snake River downstream of Hells Canyon Dam, Idaho, frequently fluctuates as the dam responds to power production requirements. These flow fluctuations have the potential to increase the energy used by individual juvenile white sturgeon (Acipenser transmontanus) that move to avoid unfavorable habitat or that alter their swimming speeds to maintain position over a range of velocities. Following swimming respirometry experiments, a field study using electromyogram (EMG) and sonic telemetry evaluated whether sturgeon were being negatively affected by operations of Hells Canyon Dam during three study periods where flows were artificially fluctuated (247 to 856 m3/s), held high and stable (438 to 600 m3/s), or held low and stable (275 to 284 m3/s). Respirometry results confirmed that oxygen consumption of juvenile sturgeon increased with swim speed and was temperature dependent, and when corrected for fish mass, ranged from 140.2 to 306.5 mg O2 kg-1 h-1. The telemetry study showed that movements and activity levels, as measured by swimming speeds and oxygen consumption, of sturgeon were variable among fish and across study periods. When flows were held low and stable, sturgeon movement increased while activity levels decreased when compared to the study periods when flows were variable or were high and stable. Although the overall trend was for activity levels to be less during the study period when flows were low and stable, the majority of differences between study periods appeared to be due to differences in water temperature and light levels that changed during the three-month investigation. The results suggest high flows, even those of relatively short durations such as what occurs during load-following operations, restrict the movement of juvenile sturgeon, but do not result in an increase of energy expenditure, possibly because of morphological and behavioral adaptations to living in a high-velocity environment. This may have significant implications to sturgeon survival by altering foraging behavior or inter and intra-specific competition.

Geist, David R.; Brown, Richard S.; Cullinan, Valerie I.; Brink, Steve R.; Lepla, Kenneth B.; Bates, Phil; Chandler, James A.

2005-07-01

317

Holocene ecological change in relation to hydroclimate variability and post-landslide landscape processes in semi-arid watersheds, Lost River Range, Idaho, USA  

NASA Astrophysics Data System (ADS)

Lake sediment cores were collected from two landslide formed lakes in the Lost River Range, central Idaho. Grouse Creek Lake (2 m deep) is in a basin that was formed when a drainage was impounded by a debris slide, likely more than 10,000 yr BP. Under present conditions Grouse Creek Lake is closed to surface water outflow. Since the deposition of the Mazama tephra (c.a., 7,550 yr BP) 2.5 m of sediment containing authigenic carbonate has accumulated in this lake. Modern lake water dD and d18O displays an evaporative signal indicating that oxygen isotopes from Grouse Creek Lake authigenic carbonates should record a signal that is sensitive to past changes in precipitation and evaporation. This core was sampled at 1 cm intervals and sieved at 20 um to remove detrital and biogenic carbonate in preparation for analysis of the fine-grained, authigenic carbonate fraction. The oxygen isotope signal recovered has a range of 5 over the length of the record, with several major fluctuations since the deposition of the Mazama tephra. While the d18O generally increases over this period indicating decreasing effective precipitation (P - E), we are modeling the affects of changes in lake hypsometry due to sediment infilling on the isotopic composition of lake water to quantify the hydroclimate signal in the isotopic data. Carlson Lake (10 m deep) formed in the source area of a middle Holocene mudflow. Modern lake water chemistry indicates that Carlson Lake is sensitive to evaporative processes, however sediments from Carlson Lake do not contain enough carbonate for oxygen isotope analysis. A multiproxy effort (C and N isotopes, biogenic silica) is underway to understand how the landscape around Carlson Lake responded to changes in hydroclimate (as determined by the record from Grouse Creek Lake) and post-landslide soil and geomorphic processes. These records are from a region with sparse long-term hydroclimate data, and ultimately will help improve our understanding of past atmospheric circulation in the Northern Rocky Mountains.

Krueger, C. R.; Finney, B.; Shapley, M.

2013-12-01

318

Annual trace-metal load estimates and flow-weighted concentrations of cadmium, lead, and zinc in the Spokane River basin, Idaho and Washington, 1999-2004  

USGS Publications Warehouse

Streamflow and trace-metal concentration data collected at 10 locations in the Spokane River basin of northern Idaho and eastern Washington during 1999-2004 were used as input for the U.S. Geological Survey software, LOADEST, to estimate annual loads and mean flow-weighted concentrations of total and dissolved cadmium, lead, and zinc. Cadmium composed less than 1 percent of the total metal load at all stations; lead constituted from 6 to 42 percent of the total load at stations upstream from Coeur d'Alene Lake and from 2 to 4 percent at stations downstream of the lake. Zinc composed more than 90 percent of the total metal load at 6 of the 10 stations examined in this study. Trace-metal loads were lowest at the station on Pine Creek below Amy Gulch, where the mean annual total cadmium load for 1999-2004 was 39 kilograms per year (kg/yr), the mean estimated total lead load was about 1,700 kg/yr, and the mean annual total zinc load was 14,000 kg/yr. The trace-metal loads at stations on North Fork Coeur d'Alene River at Enaville, Ninemile Creek, and Canyon Creek also were relatively low. Trace-metal loads were highest at the station at Coeur d'Alene River near Harrison. The mean annual total cadmium load was 3,400 kg/yr, the mean total lead load was 240,000 kg/yr, and the mean total zinc load was 510,000 kg/yr for 1999-2004. Trace-metal loads at the station at South Fork Coeur d'Alene River near Pinehurst and the three stations on the Spokane River downstream of Coeur d'Alene Lake also were relatively high. Differences in metal loads, particularly lead, between stations upstream and downstream of Coeur d'Alene Lake likely are due to trapping and retention of metals in lakebed sediments. LOADEST software was used to estimate loads for water years 1999-2001 for many of the same sites discussed in this report. Overall, results from this study and those from a previous study are in good agreement. Observed differences between the two studies are attributable to streamflow differences in the two regression models, 1999-2001 and 1999-2004. Flow-weighted concentrations (FWCs) calculated from the estimated loads for 1999-2004 were examined to aid interpretation of metal load estimates, which were influenced by large spatial and temporal variations in streamflow. FWCs of total cadmium ranged from 0.04 micrograms per liter (?g/L) at Enaville to 14 ?g/L at Ninemile Creek. Total lead FWCs were lowest at Long Lake (1.3 ?g/L) and highest at Ninemile Creek (120 ?g/L). Elevated total lead FWCs at Harrison confirmed that the high total lead loads at this station were not simply due to higher streamflow. Conversely, relatively low total lead loads combined with high total lead FWCs at Ninemile and Canyon Creeks reflected low streamflow but high concentrations of total lead. Very low total lead FWCs (1.3 to 2.7 ?g/L) at the stations downstream of Coeur d'Alene Lake are a result both of deposition of lead-laden sediments in the lake and dilution by additional streamflow. Total zinc FWCs also demonstrated the effect of streamflow on load calculations, and highlighted source areas for zinc in the basin. Total zinc FWCs at Canyon and Ninemile Creeks, 1,600 ?g/L and 2,200 ?g/L, respectively, were by far the highest in the basin but contributed among the lowest total zinc loads due to their relatively low streamflow. Total zinc FWCs ranged from 38 to 67 ?g/L at stations downstream of Coeur d'Alene Lake, but total zinc load estimates at these stations were relatively high because of high mean streamflow compared to other stations in the basin. Long-term regression models for 1991 to 2003 or 2004 were developed and annual trace-metal loads and FWCs were estimated for Pinehurst, Enaville, Harrison, and Post Falls to better understand the variability of metal loading with time. Long-term load estimates are similar to the results for 1999-2004 in terms of spatial distribution of metal loads throughout the basin. LOADEST results for 1991-2004 indicated that statistically significant downward temporal trends for dissolved and total cadmium, dissolved zinc,

Donato, Mary M.

2006-01-01

319

......... em o Moscow, Idaho  

E-print Network

#12;#12;#12;#12;#12;......... em o #12;'"''!.. . ' I The UNIVERSITY of IDAHO Moscow, Idaho Editors Donald W. Samuelson, who strode purposefully out of the North, became Idaho's leading gentle- man will determine his place in Idaho history. Perhaps no governor of a Western state has more complex

O'Laughlin, Jay

320

Grain-size distribution and selected major and trace element concentrations in bed-sediment cores from the Lower Granite Reservoir and Snake and Clearwater Rivers, eastern Washington and northern Idaho, 2010  

USGS Publications Warehouse

Lower Granite Dam impounds the Snake and Clearwater Rivers in eastern Washington and northern Idaho, forming Lower Granite Reservoir. Since 1975, the U.S. Army Corps of Engineers has dredged sediment from the Lower Granite Reservoir and the Snake and Clearwater Rivers in eastern Washington and northern Idaho to keep navigation channels clear and to maintain the flow capacity. In recent years, other Federal agencies, Native American governments, and special interest groups have questioned the negative effects that dredging might have on threatened or endangered species. To help address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected and analyzed bed-sediment core samples (hereinafter cores) in Lower Granite Reservoir and impounded or backwater affected parts of the Snake and Clearwater Rivers. Cores were collected during the spring and fall of 2010 from submerged sampling locations in the Lower Granite Reservoir, and Snake and Clearwater Rivers. A total of 69 cores were collected by using one or more of the following corers: piston, gravity, vibrating, or box. From these 69 cores, 185 subsamples were removed and submitted for grain size analyses, 50 of which were surficial-sediment subsamples. Fifty subsamples were also submitted for major and trace elemental analyses. Surficial-sediment subsamples from cores collected from sites at the lower end of the reservoir near the dam, where stream velocities are lower, generally had the largest percentages of silt and clay (more than 80 percent). Conversely, all of the surficial-sediment subsamples collected from sites in the Snake River had less than 20 percent silt and clay. Most of the surficial-sediment subsamples collected from sites in the Clearwater River contained less than 40 percent silt and clay. Surficial-sediment subsamples collected near midchannel at the confluence generally had more silt and clay than most surficial-sediment subsamples collected from sites on the Snake and Clearwater Rivers or even sites further downstream in Lower Granite Reservoir. Two cores collected at the confluence and all three cores collected on the Clearwater River immediately upstream from the confluence were extracted from a thick sediment deposit as shown by the cross section generated from the bathymetric surveys. The thick sediment deposits at the confluence and on the Clearwater River may be associated with floods in 1996 and 1997 on the Clearwater River. Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).

Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.

2012-01-01

321

Fire, storms, and erosional events in the Idaho batholith  

Microsoft Academic Search

In late December 1996, the South Fork Payette River basin in west-central Idaho experienced a prolonged storm that culminated on January 1, 1997, with intense rain on melting snow that triggered slide failures, producing debris flows and sediment-charged floods. Failures occurred in saturated, cohesionless, grussy colluvium derived from weathered Idaho batholith granitic rocks. Many failures along the South Fork Payette

G. A. Meyer; J. L. Pierce; S. H. Wood; A. J. T. Jull

2001-01-01

322

122. MCMULLEN CREEK, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

122. MCMULLEN CREEK, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; INLET SIDE OF THE CREEK, ENTRANCE INTO THE HIGH LINE CANAL, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

323

105. MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

105. MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; NORTHWEST VIEW OF LAKE AND HEADGATES. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

324

Idaho:naturally yours Jdaho. The very name conjures up differing thoughts and  

E-print Network

#12;#12;#12;#12;#12;Idaho:naturally yours Jdaho. The very name conjures up differing thoughts River, spuds, deserts, and of course, the capital. Images of Northern Idaho are substantially different, and beautiful deep Nordic lakes. Virtually every image of Idaho involves the outdoors. Many Idahoans make

O'Laughlin, Jay

325

Origin of magmatic sulfides in a Proterozoic island arcan example from the Portneuf-Mauricie Domain, Grenville Province, Canada  

NASA Astrophysics Data System (ADS)

The Portneuf-Mauricie Domain (PMD), located in the south-central part of the Grenville province, contains Mesoproterozoic Ni-Cu platinum-group element (PGE) prospects hosted in a variety of plutonic intrusions (layered, with simple structures, or zoned) and emplaced in a mature island arc setting. A two-stage model is envisaged to explain the formation of magmatic sulfides. An early loss of a small amount of sulfides in the conduits of primitive, hydrous mantle-derived melts under high fO2, resulted in depletion of the magmas in chalcophile and precious metals (Cu/Pd ratios vary from initial mantle values up to 1.6 106). Then, nearer the mineralized zones, the magmas interacted with sulfide-bearing country rocks, resulting in felsification of the magmas, assimilation of crustal sulfur ( ? 34S values up to +5.5), and the formation of an immiscible sulfide liquid. Liquid-sulfide formation was followed by variable interactions between the silicate and sulfide magmas, which were responsible for the enrichment of sulfides in Ni, Cu, and, locally, PGE. Indeed, low R factors are found for prospects hosted in intrusions with a simple internal structure and in layered intrusions whereas high R factors are found for prospects hosted in zoned intrusions. Finally, sulfide melt may have been partly incorporated into later pulses of magma and injected into shallow magma chambers to form the PMD prospects. The PMD prospects share common characteristics with other well-known deposits (Aguablanca, Vammala, Stormyrplunen, and deposits in Alaskan/Ural-type intrusions), attesting to the Ni, Cu, and PGE potential of deposits associated with subduction-zone settings.

Sappin, Anne-Aurlie; Constantin, Marc; Clark, Thomas

2011-03-01

326

A conceptual model of ground-water flow in the eastern Snake River Plain aquifer at the Idaho National Laboratory and vicinity with implications for contaminant transport  

USGS Publications Warehouse

Ground-water flow in the west-central part of the eastern Snake River Plain aquifer is described in a conceptual model that will be used in numerical simulations to evaluate contaminant transport at the Idaho National Laboratory (INL) and vicinity. The model encompasses an area of 1,940 square miles (mi2) and includes most of the 890 mi2 of the INL. A 50-year history of waste disposal associated with research activities at the INL has resulted in measurable concentrations of waste contaminants in the aquifer. A thorough understanding of the fate and movement of these contaminants in the subsurface is needed by the U.S. Department of Energy to minimize the effect that contaminated ground water may have on the region and to plan effectively for remediation. Three hydrogeologic units were used to represent the complex stratigraphy of the aquifer in the model area. Collectively, these hydrogeologic units include at least 65 basalt-flow groups, 5 andesite-flow groups, and 61 sedimentary interbeds. Three rhyolite domes in the model area extend deep enough to penetrate the aquifer. The rhyolite domes are represented in the conceptual model as low permeability, vertical pluglike masses, and are not included as part of the three primary hydrogeologic units. Broad differences in lithology and large variations in hydraulic properties allowed the heterogeneous, anisotropic basalt-flow groups, andesite-flow groups, and sedimentary interbeds to be grouped into three hydrogeologic units that are conceptually homogeneous and anisotropic. Younger rocks, primarily thin, densely fractured basalt, compose hydrogeologic unit 1; younger rocks, primarily of massive, less densely fractured basalt, compose hydrogeologic unit 2; and intermediate-age rocks, primarily of slightly-to-moderately altered, fractured basalt, compose hydrogeologic unit 3. Differences in hydraulic properties among adjacent hydrogeologic units result in much of the large-scale heterogeneity and anisotropy of the aquifer in the model area, and differences in horizontal and vertical hydraulic conductivity in individual hydrogeologic units result in much of the small-scale heterogeneity and anisotropy of the aquifer in the model area. The inferred three-dimensional geometry of the aquifer in the model area is very irregular. Its thickness generally increases from north to south and from west to east and is greatest south of the INL. The interpreted distribution of older rocks that underlie the aquifer indicates large changes in saturated thickness across the model area. The boundaries of the model include physical and artificial boundaries, and ground-water flows across the boundaries may be temporally constant or variable and spatially uniform or nonuniform. Physical boundaries include the water-table boundary, base of the aquifer, and northwest mountain-front boundary. Artificial boundaries include the northeast boundary, southeast-flowline boundary, and southwest boundary. Water flows into the model area as (1) underflow (1,225 cubic feet per second (ft3/s)) from the regional aquifer (northeast boundary-constant and nonuniform), (2) underflow (695 ft3/s) from the tributary valleys and mountain fronts (northwest boundary-constant and nonuniform), (3) precipitation recharge (70 ft3/s) (constant and uniform), streamflow-infiltration recharge (95 ft3/s) (variable and nonuniform), wastewater return flows (6 ft3/s) (variable and nonuniform), and irrigation-infiltration recharge (24 ft3/s) (variable and nonuniform) across the water table (water-table boundary-variable and nonuniform), and (4) upward flow across the base of the aquifer (44 ft3/s) (uniform and constant). The southeast-flowline boundary is represented as a no-flow boundary. Water flows out of the model area as underflow (2,037 ft3/s) to the regional aquifer (southwest boundary-variable and nonuniform) and as ground-water withdrawals (45 ft3/s) (water table boundary-variable and nonuniform). Ground-water flow i

Ackerman, Daniel J.; Rattray, Gordon W.; Rousseau, Joseph P.; Davis, Linda C.; Orr, Brennon R.

2006-01-01

327

Variation of the fractal dimension anisotropy of two major Cenozoic normal fault systems over space and time around the Snake River Plain, Idaho and SW Montana  

NASA Astrophysics Data System (ADS)

The interaction of the thermally induced stress field of the Yellowstone hotspot (YHS) with existing Basin and Range (BR) fault blocks, over the past 17 m.y., has produced a new, spatially and temporally variable system of normal faults around the Snake River Plain (SRP) in Idaho and Wyoming-Montana area. Data about the trace of these new cross faults (CF) and older BR normal faults were acquired from a combination of satellite imageries, DEM, and USGS geological maps and databases at scales of 1:24,000, 1:100,000, 1:250,000, 1:1000, 000, and 1:2,500, 000, and classified based on their azimuth in ArcGIS 10. The box-counting fractal dimension (Db) of the BR fault traces, determined applying the Benoit software, and the anisotropy intensity (ellipticity) of the fractal dimensions, measured with the modified Cantor dust method applying the AMOCADO software, were measured in two large spatial domains (I and II). The Db and anisotropy of the cross faults were studied in five temporal domains (T1-T5) classified based on the geologic age of successive eruptive centers (12 Ma to recent) of the YHS along the eastern SRP. The fractal anisotropy of the CF system in each temporal domain was also spatially determined in the southern part (domain S1), central part (domain S2), and northern part (domain S3) of the SRP. Line (fault trace) density maps for the BR and CF polylines reveal a higher linear density (trace length per unit area) for the BR traces in the spatial domain I, and a higher linear density of the CF traces around the present Yellowstone National Park (S1T5) where most of the seismically active faults are located. Our spatio-temporal analysis reveals that the fractal dimension of the BR system in domain I (Db=1.423) is greater than that in domain II (Db=1.307). It also shows that the anisotropy of the fractal dimension in domain I is less eccentric (axial ratio: 1.242) than that in domain II (1.355), probably reflecting the greater variation in the trend of the BR system in domain I. The CF system in the S1T5 domain has the highest fractal dimension (Db=1.37) and the lowest anisotropy eccentricity (1.23) among the five temporal domains. These values positively correlate with the observed maxima on the fault trace density maps. The major axis of the anisotropy ellipses is consistently perpendicular to the average trend of the normal fault system in each domain, and therefore approximates the orientation of extension for normal faulting in each domain. This fact gives a NE-SW and NW-SE extension direction for the BR system in domains I and II, respectively. The observed NE-SW orientation of the major axes of the anisotropy ellipses in the youngest T4 and T5 temporal domains, oriented perpendicular to the mean trend of the normal faults in the these domains, suggests extension along the NE-SW direction for cross faulting in these areas. The spatial trajectories (form lines) of the minor axes of the anisotropy ellipses, and the mean trend of fault traces in the T4 and T5 temporal domains, define a large parabolic pattern about the axis of the eastern SRP, with its apex at the Yellowstone plateau.

Davarpanah, A.; Babaie, H. A.

2012-12-01

328

THE UNIVERSITY OF IDAHO, MOSCOW, IDAHO The University  

E-print Network

#12;#12;#12;#12;THE UNIVERSITY OF IDAHO, MOSCOW, IDAHO #12;The University of Idaho Moscow, Idaho and citizens of the state of Idaho who have had the fore- sight to further the development and progress of our," is surrounded by beautiful grounds and lasting scenic beauty. From spring to winter students at Idaho assemble

O'Laughlin, Jay

329

33 CFR 117.385 - Snake River.  

Code of Federal Regulations, 2012 CFR

...BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Idaho 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile 140.0, between Lewiston, Idaho, and Clarkston, Washington, operates as follows:...

2012-07-01

330

33 CFR 117.385 - Snake River.  

Code of Federal Regulations, 2010 CFR

...BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Idaho 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile 140.0, between Lewiston, Idaho, and Clarkston, Washington, operates as follows:...

2010-07-01

331

33 CFR 117.385 - Snake River.  

Code of Federal Regulations, 2011 CFR

...BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Idaho 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile 140.0, between Lewiston, Idaho, and Clarkston, Washington, operates as follows:...

2011-07-01

332

33 CFR 117.385 - Snake River.  

Code of Federal Regulations, 2013 CFR

...BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Idaho 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile 140.0, between Lewiston, Idaho, and Clarkston, Washington, operates as follows:...

2013-07-01

333

33 CFR 117.385 - Snake River.  

Code of Federal Regulations, 2014 CFR

...BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Idaho 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile 140.0, between Lewiston, Idaho, and Clarkston, Washington, operates as follows:...

2014-07-01

334

4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROPOSED SECTION OF DIVERSION DAM ACROSS SNAKE RIVER, SHEET 1 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

335

3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROFILE AND ALIGNMENT OF DAM ACROSS WEST CHANNEL OF SNAKE RIVER, SHEET 3 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

336

CURRICULUM VITAE University of Idaho  

E-print Network

CURRICULUM VITAE University of Idaho NAME: Walden, Von P. DATE: April 2013 RANK OR TITLE: Full Appointments: Professor, University of Idaho, Moscow, Idaho, 2012 - current Associate Professor, University of Idaho, Moscow, Idaho, 2005 ­ 2012 Interim Project Director for Idaho EPSCoR/IDeA, September 2009

Walden, Von P.

337

CURRICULUM VITAE University of Idaho  

E-print Network

CURRICULUM VITAE University of Idaho NAME: Wall, Richard Wayne DATE: August 25, 2006 RANK OR TITLE of Idaho, Moscow, Idaho, 1989, EE M.Engr., Electrical Engineering, University of Idaho, Moscow, Idaho, 1989, EE Certificates and Licenses: Professional Registration: State of Idaho Professional Engineer

Kyte, Michael

338

Idaho Fish Screening Improvements Final Status Report.  

SciTech Connect

This project funds two Idaho Department of Fish and Game (IDFG) fish habitat biologists to develop, secure funding for, and implement on-the-ground fish habitat improvement projects in the lower Clearwater River drainage and the upper Salmon River drainage. This report summarizes project activity during the first year of funding. The Clearwater Region fish habitat biologist began work on January 28, 2008 and the Salmon Region habitat biologist began on February 11, 2008.

Leitzinger, Eric J.

2008-11-12

339

Impeller flow-meter logging of vertical cross flow between basalt aquifers through wells at the Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho. Progress report, June 22, 1992  

SciTech Connect

An impeller flowmeter was used with a COLOG digital acquisition system to determine existing borehole flows, to compare with previous logging results, and to acquire flow measurements of vertical cross-flow of water in the wells between permeable zones in the open-hole intervals. The direction of flow found was predominantly downward with velocities ranging from 0-30 ft/min. Some flow reversals were noted and attributed to nearby pumping wells. USGS wells 44 and 46 were studied in September, 1991 near the Idaho Chemical Processing Plant (ICPP). The results showed a usual overall flow direction downward with flow entering the wells at around 510 to 600 ft. below the land surface. Water exited these wells at lower levels around 550 to 580 ft. Flow velocities ranged up to 24 ft/min. Using published aquifer parameters, the rate of propagation of a pressure change in an aquifer was calculated for the well CPP-2 turning on and off, at 3100 gpm.

Bennecke, W.M.; Wood, S.H.

1992-12-31

340

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

SciTech Connect

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01

341

WEISER-LOWER PAYETTE WATER QUALITY SURVEYS, IDAHO, AUGUST - DECEMBER 1975  

EPA Science Inventory

In 1975, cooperative water quality surveys were conducted on the Weiser and Payette Rivers (17050122, 17050124) by Idaho Department of Health and Welfare and the Environmental Protection Agency. The area is located in the Middle Snake River Basin in Idaho. Surveys were done dur...

342

Petrology of mafic and ultramafic intrusions from the Portneuf-Mauricie Domain, Grenville Province, Canada: Implications for plutonic complexes in a Proterozoic island arc  

NASA Astrophysics Data System (ADS)

The Portneuf-Mauricie Domain (PMD), located in the south-central part of the Grenville Province, comprises several mafic and ultramafic intrusions hosting Ni-Cu platinum-group element (PGE) prospects and a former small mining operation (Lac douard mine). These meter- to kilometer-scale, sulfide-bearing intrusions display diverse forms, such as layered and tabular bodies with no particular internal structure, and zoned plutons. They were injected ~ 1.40 Ga into a mature oceanic arc, before and during accretion of the arc to the Laurentian margin. The pressure-temperature conditions of the magmas at the beginning of their emplacement were 3 kbar and 1319-1200 C (according to the petrologic modeling results from this study). The PMD mineralized intrusions are interpreted to represent former magma chambers or magma conduits in the roots of the oceanic arc. The parent magmas of the mineralized intrusions resulted mainly from the partial melting of a mantle source composed of spinel-bearing lherzolite. Petrologic modeling and the occurrence of primary amphibole in the plutonic rocks indicate that these parent melts were basaltic and hydrous. In addition, fractional crystallization modeling and Mg/Fe ratios suggest that most of the intrusions may have formed from evolved magmas, with Mg# = 60, resulting from the fractionation of more primitive magmas (primary magmas, with Mg# = 68). Petrologic modeling demonstrates that 30% fractional crystallization resulted in the primitive to evolved characteristics of the studied intrusive rocks (as indicated by the crystallization sequences and mineral chemistry). Exceptions are the Rservoir Blanc, Boivin, and Rochette West parent magmas, which may have undergone more extensive fractional crystallization, since these intrusions contain pyroxenes that are more iron rich and have lower Mg numbers than pyroxenes in the other PMD intrusions. The PMD mafic and ultramafic intrusions were intruded into an island arc located offshore from the Laurentian continent. Thus, their presence confirms the existence of a well-developed magmatic network (responsible of the fractionation processes) beneath the Proterozoic arc, which resulted in the wide range of compositions observed in the various plutons.

Sappin, A.-A.; Constantin, M.; Clark, T.

2012-12-01

343

Characteristics of fish assemblages and related environmental variables for streams of the upper Snake River basin, Idaho and western Wyoming, 1993-95  

USGS Publications Warehouse

limited designation for the middle reach of the Snake River between Milner Dam and King Hill and provide a framework for developing indices of biotic integrity by using fish assemblages to evaluate water quality of streams in the upper Snake River Basin.

Maret, Terry R.

1997-01-01

344

Summary of analytical results for hydrologic studies of wells open through large intervals of the Snake River plain aquifer at the Idaho National Engineering Laboratory, project 1  

SciTech Connect

This report summarizes results of groundwater analyses for samples collected from wells USGS-44, -45, -46 and -59 in conjunction with the INEL Oversight Program straddle-packer project between 1992 and 1995. The purpose of this project was to develop and deploy a high-quality straddle-packer system for characterization of the three-dimensional geometry of solute plumes and aquifer hydrology near the Idaho Chemical Processing Plant (ICPP). Principle objectives included (1) characterizing vertical variations in aquifer chemistry; (2) documenting deviations in aquifer chemistry from that monitored by the existing network, and (3) making recommendations for improving monitoring efforts.

McCurry, M.; Welhan, J.A.

1996-07-01

345

Chemical composition of selected core samples, Idaho National Engineering Laboratory, Idaho  

SciTech Connect

This report presents chemical compositions determined from 84 subsamples and 5 quality-assurance split subsamples of basalt core from the eastern Snake River Plain. The 84 subsamples were collected at selected depths from 5 coreholes located on the Idaho National Engineering Laboratory, Idaho. This report was jointly prepared by Lockheed Idaho Technologies Company and the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, Idaho Operations Office. Ten major elements and as many as 32 trace elements were determined for each subsample either by wavelength dispersive X-ray fluorescence spectrometry, inductively coupled plasma mass spectrometry, or by both methods. Descriptive statistics for each element were calculated and tabulated by analytical method for each corehole.

Knobel, L.L.; Cecil, L.D.; Wood, T.R.

1995-11-01

346

THE UNIVERSITY OF IDAHO, MOSCOW, IDAHO The University  

E-print Network

#12;#12;#12;#12;THE UNIVERSITY OF IDAHO, MOSCOW, IDAHO #12;#12;The University of Idaho Moscow, Idaho Editors WARREN D. REYNOLDS DANA ANDREWS AssociateEditors VIRGINIA CoPE JULIE STRICKLING #12;hc at the University of ldaho, it is found that the school indeed stands tall. The University of Idaho has become known

O'Laughlin, Jay

347

Influence of the diversion of Bear River into Bear Lake (Utah and Idaho) on the environment of deposition of carbonate minerals  

Microsoft Academic Search

Bear River, the largest river in the Great Basin, had some of its flow diverted into Bear Lake through a series of canals constructed between 1911 and 1918, turning Bear Lake into a reservoir. The prediversion lake had an unusually high Mg2+ :C a2+ ratio (38 by weight), which resulted in precipitation of CaCO3 as aragonite. The amount and mineralogy

Walter E. Dean; Richard M. Forester; Jordon Bright; Roger Y. Anderson

2007-01-01

348

Agricultural land-use classification using landsat imagery data, and estimates of irrigation water use in Gooding, Jerome, Lincoln, and Minidoka counties, 1992 water year, Upper Snake River basin, Idaho and western Wyoming  

USGS Publications Warehouse

As part of the U.S. Geological Survey's National Water-Quality Assessment Program in the upper Snake River Basin study unit, land- and water-use data were used to describe activities that have potential effects on water quality, including biological conditions, in the basin. Land-use maps and estimates of water use by irrigated agriculture were needed for Gooding, Jerome, Lincoln, and Minidoka Counties (south-central Idaho), four of the most intensively irrigated counties in the study unit. Land use in the four counties was mapped from Landsat Thematic Mapper imagery data for the 1992 water year using the SPECTRUM computer program. Land-use data were field verified in 108 randomly selected sections (640 acres each); results compared favorably with land-use maps from other sources. Water used for irrigation during the 1992 water year was estimated using land-use and ancillary data. In 1992, a drought year, estimated irrigation withdrawals in the four counties were about 2.9 million acre-feet of water. Of the 2.9 million acre-feet, an estimated 2.12 million acre-feet of water was withdrawn from surface water, mainly the Snake River, and nearly 776,000 acre-feet was withdrawn from ground water. One-half of the 2.9 million acre-feet of water withdrawn for irrigation was considered to be lost during conveyance or was returned to the Snake River; the remainder was consumptively used by crops during the growing season.

Maupin, Molly A.

1997-01-01

349

2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF DRAWING, PLAN, SHEET 5 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

350

A Long-Term Comparison of Redband Trout Distribution, Density, and Size Structure in Southwestern Idaho  

Microsoft Academic Search

During 19932003, we reexamined the density and size structure of populations of Columbia River redband trout Oncorhynchus mykiss gairdneri at 43 sites in sagebrush desert basins of southwestern Idaho. Trout density had originally been sampled at these sites during 19771982. Populations were sampled in four major drainages of the Snake River basin: Bruneau River, Jordan Creek, Owyhee River, and Snake

Bruce W. Zoellick; Dale B. Allen; Brian J. Flatter

2005-01-01

351

Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 December 2008.  

SciTech Connect

Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population. The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860 optical camera identified salmon passage observations were identical to DIDSON target counts. However, optical cameras identified eight jack salmon (3 upstream, 5 downstream) less than 55 cm in length that DIDSON did not count as salmon because of the length criteria employed ({ge} 55 cm). Precision of the DIDSON technology was evaluated by comparing estimated net upstream salmon escapement and associated 95% confidence intervals between two DIDSON sonar units operated over a five day period. The DIDSON 1 salmon escapement was 145.7 fish ({+-} 2.3), and the DIDSON 2 escapement estimate was 150.5 fish ({+-} 5). The overlap in the 95% confidence intervals suggested that the two escapement estimates were not significantly different from each other. Known length salmon carcass trials were conducted in 2008 to examine the accuracy of manually measured lengths, obtained using DIDSON software, on high frequency files at a 5 m window length. Linear regression demonstrated a highly significant relationship between known lengths and manually measured salmon carcass lengths (p < 0.0001). A positive bias in manual length measurement of 6.8% to 8% existed among the two observers in the analysis. Total Secesh River salmon escapement (natural origin and hatchery) in 2008 was 912 fish. Natural origin salmon escapement in the entire Secesh River drainage was 847 fish. The estimated natural origin spawner abundance was 836 fish. Salmon spawner abundance in 2008 increased by three fold compared to 2007 abundance levels. The 10 year geometric mean natural origin spawner abundance was 538 salmon and was below the recommended viable population threshold level established by the ICTRT (2007). One additional Snake River basin salmon population was assessed for comparison of natural origin salmon spawner abundance. The Johnson Creek/EFSF Salmon River population had a 10 year geometric mean natural origin spawner abundance of 254 salmon. Salmon spawner abundance levels in both streams were below viable population thresholds. DIDSON technology has been used in the Secesh River to determine salmo

Kucera, Paul A. [Nez Perce Tribe Department of Fisheries Resources Management

2009-06-26

352

Contaminant Pathways and Metal Sequestration Patterns in the Lower Coeur d'Alene River Valley, Idaho: Mechanics of Trace Metal Mobility  

NASA Astrophysics Data System (ADS)

Remediating fluvial systems impacted by sulfide mining requires characterization of contaminant mobility and the pathways of trace metal transport. Variations in sediment mobility, mineral stability, organic content, redox conditions, microbial activity and other factors between fluvial subenvironments leads to complex metal sequestration patterns. Precise characterization of contaminants requires a detailed assessment of the physical characteristics of mineral species together with an understanding of the chemical stability of these species under various conditions. An integrated analytical methodology including calibrated sequential extraction and electron microscopy (SEM and TEM) provides unprecedented insight into metal speciation and behavior in different fluvial subenvironments. Three transects, including river channel, levee, wetland and lacustrine environments, along the 30km length of the lower Coeur d'Alene (CdA) River valley demonstrate both the lateral consistency within various fluvial subenvironments and the dramatic variations between subenvironments. The lower CdA River valley is a low gradient (<5m/km) meandering stream with a well-developed river channel contained by 1-3m levees. The combination of low gradient and an artificially controlled base level results in a quiescent, stratified water mass and anaerobic river channel sediments. The river channel sediments contain abundant detrital and authigenic sulfide minerals (PbS, FeS2, ZnS) and carbonates (PbCO3, FeCO3) and locally, sulfide encrusted organic matter. The river is the main conduit of contaminated sediment derived from the mining district upstream, but more importantly, remobilized anoxic river bottom sediments are responsible for ongoing trace metal contamination throughout the fluvial system. Sulfide rich channel sediments are remobilized during flood events, and redistributed into adjacent levee, wetland, and lacustrine environments. Detrital and authigenic sulfides are rapidly oxidized within the levee environment, resulting in extensive precipitation of Zn-Pb-Mn-Fe oxy-hydroxides on stable silicate substrates. On levees, carbonate minerals (primarily PbCO3, FeCO3) undergo dissolution coincident with the oxidation of FeS2. Oxy-hydroxides are then easily remobilized and transported into adjacent wetland and lacustrine environments during subsequent high flow events, where they are rapidly dissociated under anoxic conditions. Both detrital and authigenic sulfides from the river channel and oxy-hydroxides from the levee supply trace metals to the wetland and lacustrine environments during washover events. The low oxygen values, high organic content and high microbial activity produce anaerobic conditions yielding abundant microcrystalline, nanocrystalline, and amorphous sulfides (ZnS, PbS, FeS2, mixed sulfides). The degree of crystallinity, and therefore the degree of bioavailability, seems to be a function of recharge intervals and periodic changes in the redox conditions. Analysis of three transects along the length of the lower CdA system indicates that there is minimal downstream variation within any single fluvial subenvironment. Trace metal mobility is primarily a function of flood-generated remobilization of anoxic river channel sediments, and subsequent oxidation-reduction reactions occurring during episodic transport across the flood plain. Lacustrine environments display differences in speciation patterns resulting from the relative degree of isolation from flood recharge. Effective remediation in the lower CdA river valley requires limiting the disturbance of river bottom sediments during flood events.

Strumness, L. A.; Hooper, R. L.; Mahoney, J. B.

2004-05-01

353

Chinook Salmon Adult Abundance Monitoring; Hydroacoustic Assessment of Chinook Salmon Escapement to the Secesh River, Idaho, 2002-2004 Final Report.  

SciTech Connect

Accurate determination of adult salmon spawner abundance is key to the assessment of recovery actions for wild Snake River spring/summer Chinook salmon (Onchorynchus tshawytscha), a species listed as 'threatened' under the Endangered Species Act (ESA). As part of the Bonneville Power Administration Fish and Wildlife Program, the Nez Perce Tribe operates an experimental project in the South Fork of the Salmon River subbasin. The project has involved noninvasive monitoring of Chinook salmon escapement on the Secesh River between 1997 and 2000 and on Lake Creek since 1998. The overall goal of this project is to accurately estimate adult Chinook salmon spawning escapement numbers to the Secesh River and Lake Creek. Using time-lapse underwater video technology in conjunction with their fish counting stations, Nez Perce researchers have successfully collected information on adult Chinook salmon spawner abundance, run timing, and fish-per-redd numbers on Lake Creek since 1998. However, the larger stream environment in the Secesh River prevented successful implementation of the underwater video technique to enumerate adult Chinook salmon abundance. High stream discharge and debris loads in the Secesh caused failure of the temporary fish counting station, preventing coverage of the early migrating portion of the spawning run. Accurate adult abundance information could not be obtained on the Secesh with the underwater video method. Consequently, the Nez Perce Tribe now is evaluating advanced technologies and methodologies for measuring adult Chinook salmon abundance in the Secesh River. In 2003, the use of an acoustic camera for assessing spawner escapement was examined. Pacific Northwest National Laboratory, in a collaborative arrangement with the Nez Perce Tribe, provided the technical expertise to implement the acoustic camera component of the counting station on the Secesh River. This report documents the first year of a proposed three-year study to determine the efficacy of using an acoustic camera to count adult migrant Chinook salmon as they make their way to the spawning grounds on the Secesh River and Lake Creek. A phased approach to applying the acoustic camera was proposed, starting with testing and evaluation in spring 2003, followed by a full implementation in 2004 and 2005. The goal of this effort is to better assess the early run components when water clarity and night visibility preclude the use of optical techniques. A single acoustic camera was used to test the technology for enumerating adult salmon passage at the Secesh River. The acoustic camera was deployed on the Secesh at a site engineered with an artificial substrate to control the river bottom morphometry and the passage channel. The primary goal of the analysis for this first year of deployment was to validate counts of migrant salmon. The validation plan involved covering the area with optical video cameras so that both optical and acoustic camera images of the same viewing region could be acquired simultaneously. A secondary test was contrived after the fish passage was complete using a controlled setting at the Pacific Northwest National Laboratory in Richland, Washington, in which we tested the detectability as a function of turbidity levels. Optical and acoustic camera multiplexed video recordings of adult Chinook salmon were made at the Secesh River fish counting station from August 20 through August 29, 2003. The acoustic camera performed as well as or better than the optical camera at detecting adult Chinook salmon over the 10-day test period. However, the acoustic camera was not perfect; the data reflected adult Chinook salmon detections made by the optical camera that were missed by the acoustic camera. The conditions for counting using the optical camera were near ideal, with shallow clear water and good light penetration. The relative performance of the acoustic camera is expected to be even better than the optical camera in early spring when water clarity and light penetration are limited. Results of the laboratory tests at the Pacific North

Johnson, R.; McKinstry, C.; Mueller, R.

2004-01-01

354

ASSESSMENT OF SELECTED CONSTITUENTS IN THE SURFACE WATER OF THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING, WATER YEARS 1975-1989.  

EPA Science Inventory

In 1991, a water-quality investigation of the upper Snake River Basin (1704) was initiated as part of the USGS National Water-Quality Assessment Program. Nearly 9,000 analyses of nutrients and suspended sediment from more than 450 stations were retrieved from the U.S. Environmen...

355

WATER QUALITY ASSESSMENT OF THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING - SUMMARY OF AQUATIC BIOLOGICAL DATA FOR SURFACE WATER THROUGH 1992  

EPA Science Inventory

The initial phase of this study involved compiling data to describe the current (1992) and historical aquatic biological conditions of surface water in the Snake River Basin (1704). To assess water quality of the basin, at least 26 different macroinvertebrate and fish community ...

356

Evidence for Fractionation and Recharge of Basaltic Magma Chambers: Kimama Butte, Snake River Plain, Idaho Michelle Hurst1 and Eric H. Christiansen2  

E-print Network

Evidence for Fractionation and Recharge of Basaltic Magma Chambers: Kimama Butte, Snake River Plain-z ) + F-z = z = (r * D - 1)/(r - 1) r = ratio of recharge rate to fractionation rate Kimama Butte Basalts,and Differentiation Phase 1:Voluminous eruption of unevolved magma Voluminous eruption of unevolved basalt accumulates

Seamons, Kent E.

357

ANALYSIS OF DATA ON NUTRIENTS AND ORGANIC COMPOUNDS IN GROUND WATER IN THE UPPER SNAKE RIVER BASIN, IDAHO AND WESTERN WYOMING, 1980-91  

EPA Science Inventory

Nutrient and organic compound data from the U.S. Geological Survey and the U.S. Environmental Protection Agency STORET data bases provided information for development of a preliminary conceptual model of spatial and temporal ground-water quality in the upper Snake River Basin (17...

358

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program  

SciTech Connect

The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

Not Available

1994-06-01

359

An evaluation of ISOCLS and CLASSY clustering algorithms for forest classification in northern Idaho. [Elk River quadrange of the Clearwater National Forest  

NASA Technical Reports Server (NTRS)

Both the iterative self-organizing clustering system (ISOCLS) and the CLASSY algorithms were applied to forest and nonforest classes for one 1:24,000 quadrangle map of northern Idaho and the classification and mapping accuracies were evaluated with 1:30,000 color infrared aerial photography. Confusion matrices for the two clustering algorithms were generated and studied to determine which is most applicable to forest and rangeland inventories in future projects. In an unsupervised mode, ISOCLS requires many trial-and-error runs to find the proper parameters to separate desired information classes. CLASSY tells more in a single run concerning the classes that can be separated, shows more promise for forest stratification than ISOCLS, and shows more promise for consistency. One major drawback to CLASSY is that important forest and range classes that are smaller than a minimum cluster size will be combined with other classes. The algorithm requires so much computer storage that only data sets as small as a quadrangle can be used at one time.

Werth, L. F. (principal investigator)

1981-01-01

360

Assessment of selected constituents in surface water of the upper Snake River basin, Idaho and western Wyoming, water years 1975-89  

USGS Publications Warehouse

A more extensive data-collection program in the upper Snake River Basin is needed to address a number of water-quality issues. These include an analysis of effects of land use on the quality of surface water; quantification of mass movement of nutrients and suspended sediment at key locations in the basin; distribution of aquatic organisms; and temporal and spatial distribution of pesticides in surface water, bottom sediment, and biota.

Clark, Gregory M.

1994-01-01

361

Estimates of gains and losses for reservoirs on the Snake River from Blackfoot to Milner, Idaho, for selected periods, 1912 to 1983  

USGS Publications Warehouse

Croplands in the semiarid central part of the Snake River Plain are dependent on the availability of irrigation water, most of which comes from the Snake River. Allocation of irrigation water from the river requires that gains and losses be determined for American Falls Reservoir, Lake Walcott, and Milner Lake. From 1912 to 1983, average ungaged inflow to American Falls Reservoir , determined from monthly water budgets, was 2,690 cu ft/sec. About 94% of this inflow was spring discharge and groundwater seepage; the remainder was from small tributaries and irrigation-return flow. Ungaged inflow estimated from water budgets for various periods correlated favorably with measured discharge of two springs and water levels in two wells. Discharge of Spring Creek was a better indicator of ungaged inflow than groundwater levels. Therefore, correlation with Spring Creek discharge was used in estimating ungaged inflow to American Falls Reservoir in 1983. Daily water budget calculations of ungaged inflow to American Falls Reservoir are less variable when storage changes are determined by using three stage-recording stations rather than one. Water budgets do not indicate large amounts of leakage from American Falls Reservoir, but small amounts of leakage are indicated because flow in downstream springs increased about 25% after reservoir storage began in 1926. Water budgets for Lake Walcott and Milner Lake show average annual net gains (1951-83) to Lake Walcott and Milner Lake of 245 and 290 cu ft/sec. These amounts are verified by monthly water budgets when discharge in the Snake River is low, and measured and estimated sources of inflow. Gains and losses estimated from daily water budgets are variable, owing to inadequate determination of (1) changes in reservoir storage, (2) streamflow, (3) lake surface precipitation, and (4) lake surface evaporation. Backwater effects are accounted for in the process used to determine storage in Milner Lake. (Author 's abstract)

Kjelstrom, L.C.

1988-01-01

362

Concentrations of Metals Associated with Mining Waste in Sediments, Biofilm, Benthic Macroinvertebrates, and Fish from the Coeur d'Alene River Basin, Idaho  

Microsoft Academic Search

. Arsenic, Cd, Cu, Pb, Hg, and Zn were measured in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur\\u000a d'Alene (CDA) River to characterize the pathway of metals transfer between these components. Metals enter the CDA Basin via\\u000a tributaries where mining activities have occurred. In general, the ranking of food-web components from the greatest to smallest\\u000a concentrations of metals

A. M. Farag; D. F. Woodward; J. N. Goldstein; W. Brumbaugh; J. S. Meyer

1998-01-01

363

Activities of the National Water-Quality Assessment Program in the upper Snake River Basin, Idaho and western Wyoming, 1991-2001  

USGS Publications Warehouse

In 1991, the U.S. Geological Survey (USGS) began a full-scale National Water-Quality Assessment (NAWQA) Program. The long-term goals of the NAWQA Program are to describe the status and trends in the water quality of a large part of the Nation's rivers and aquifers and to improve understanding of the primary natural and human factors that affect water-quality conditions. In meeting these goals, the program will produce water-quality, ecological, and geographic information that will be useful to policy makers and managers at the national, State, and local levels. A major component of the program is study-unit investigations, upon which national-level assessment activities are based. The program's 60 study-unit investigations are associated with principal river basins and aquifer systems throughout the Nation. Study units encompass areas from 1,200 to more than 65,000 mi2 (square miles) and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the upper Snake River Basin was among the first 20 NAWQA study units selected for implementation. From 1991 to 1995, a high-intensity data-collection phase of the upper Snake River Basin study unit (fig. 1) was implemented and completed. Components of this phase are described in a report by Gilliom and others (1995). In 1997, a low-intensity phase of data collection began, and work continued on data analysis, report writing, and data documentation and archiving activities that began in 1996. Principal data-collection activities during the low-intensity phase will include monitoring of surface-water and ground-water quality, assessment of aquatic biological conditions, and continued compilation of environmental setting information.

Low, Walton H.

1997-01-01

364

Physical, chemical, and biological characteristics of the Boise River from Veterans Memorial Parkway, Boise to Star, Idaho, October 1987 to March 1988  

USGS Publications Warehouse

Physical, chemical, and biological characteristics of the Boise River were examined from October 1987 to March 1988 to determine whether trace elements in effluents from two Boise wastewater treatment facilities were detrimental to aquatic communities. Cadmium, chromium, hexavalent chromium, cyanide, lead, nickel, and silver concentrations in the Boise River were less than or near analytical detection levels and were less than chronic toxicity criteria when detectable. Arsenic, copper, and zinc were detected in concentrations less than chronic toxicity criteria. Concentrations of trace elements in bottom material generally were small and could not be attributed to effluents from wastewater treatment facilities. From October to December 1987, mean density of benthic invertebrates colonizing artificial substrates was from 6,100 individuals/substrate downstream from the West Boise wastewater treatment facility to 14,000 individuals per substrate downstream from the Lander Street wastewater treatment facility. From January to March 1988 , mean density of benthic invertebrates colonizing artificial substrates was from 7,100 individuals per substrate downstream from the West Boise facility to 10,000 individuals per substrate near Star. Insect communities upstream and downstream from the wastewater treatment facilities were strongly associated, and coeffients of community loss indicated that effluents had benign enriching effects. Distribution of mayflies indicates that trace-element concentrations in effluents did not adversely affect intolerant organisms in the Boise River. Condition factor of whitefish was significantly increased downstream from the Lander Street wastewater treatment facility and was significantly decreased downstream from the West Boise wastewater treatment facility.

Frenzel, S.A.

1988-01-01

365

Tritium, stable isotopes and nitrogen in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho, 1990-93  

SciTech Connect

In 1990-93, tritium concentrations in water from 19 springs along the north side of the Snake River near Twin Falls and Hagerman ranged from 9.2{+-}0.6 to 78.4{+-}5.1 picocuries per liter (pCi/L). The springs were placed into three categories on the basis of their locations and tritium concentrations: Category I springs are the farthest upstream and contained from 52.8{+-}3.2 to 78.4{+-}5.1 pCi/L of tritium; Category It springs are downstream from those in Category I and contained from 9.2{+-}0.6 to 18.5{+-}1.2 pCi/L; and Category III springs are the farthest downstream and contained from 28.3{+-}1.9 to 47.7{+-}3.2 pCi/L. Tritium concentrations in precipitation and in the Snake River were relatively large in the 1950`s and 1960`s owing to atmospheric testing of nuclear weapons. Conversely, tritium concentrations in ground water with a residence time of several tens to a few hundred years, as occurs in the Snake River Plain aquifer hydraulically upgradient from the Category II springs, are comparatively small because of the 12.4-year half-life of tritium. The conclusion that recharge from excess applied-irrigation water from the Snake River has affected tritium in the Snake River Plain aquifer is supported by differences in the deuterium (2H) and oxygen-18 (180) ratios of water. These ratios indicate that water discharged by the springs is recharged by waters of different origins. Irrigation recharge is more enriched in 2H and 180 than the regional ground water. Water from Category I springs is more enriched in 2H and 180 than is water from Category II or III springs because a large proportion of irrigation recharge mixes with the regional ground water in Category I springs. Nitrite plus nitrate as nitrogen concentrations also are greater in water from Category I springs than in water from Category II springs.

Mann, L.J.; Low, W.H.

1994-12-01

366

Assessment of nutrients, suspended sediment, and pesticides in surface water of the upper Snake River basin, Idaho and western Wyoming, water years 1991-95  

USGS Publications Warehouse

Quality Assessment Program. As part of the investigation, intensive monitoring was conducted during water years 1993 through 1995 to assess surface-water quality in the basin. Sampling and analysis focused on nutrients, suspended sediments, and pesticides because of nationwide interest in these constituents. Concentrations of nutrients and suspended sediment in water samples from 19 sites in the upper Snake River Basin, including nine on the main stem, were assessed. In general, concentrations of nutrients and suspended sediment were smaller in water from the 11 sites upstream from American Falls Reservoir than in water from the 8 sites downstream from the reservoir where effects from land-use activities are most pronounced. Median concentrations of dissolved nitrite plus nitrate as nitrogen at the 19 sites ranged from less than 0.05 to 1.60 milligrams per liter; total phosphorus as phosphorus, less than 0.01 to 0.11 milligrams per liter; and suspended sediment, 4 to 72 milligrams per liter. Concentrations of nutrients and suspended sediment in the main stem of the Snake River, in general, increased downstream. The largest concentrations in the main stem were in the middle reach of the Snake River between Milner Dam and the outlet of the upper Snake River Basin at King Hill. Significant differences (p Nutrient and suspended sediment inputs to the middle Snake reach were from a variety of sources. During water year 1995, springs were the primary source of water and total nitrogen to the river and accounted for 66 and 60 percent of the total input, respectively. Isotope and water-table information indicated that the springs derived most of their nitrogen from agricultural activities along the margins of the Snake River. Aquacultural effluent was a major source of ammonia (82 percent), organic nitrogen (30 percent), and total phosphorus (35 percent). Tributary streams were a major source of organic nitrogen (28 percent) and suspended sediment (58 percent). In proportion to its discharge (less than 1 percent), the Twin Falls sewage-treatment plant was a major source of total phosphorus (13 percent). A comparison of discharge and loading in water year 1995 with estimates of instream transport showed a good correlation (relative difference of less than 15 percent) for discharge, total organic nitrogen, dissolved nitrite plus nitrate, total nitrogen, and total phosphorus. Estimates of dissolved ammonia and suspended sediment loads correlated poorly with instream transport; relative differences were about 79 and 61 percent, respectively. The pesticides EPTC, atrazine, desethylatrazine, metolachlor, and alachlor were the most commonly detected in the upper Snake River Basin and accounted for about 75 percent of all pesticide detections. All pesticides detected were at concentrations less than 1 microgram per liter and below water-quality criteria established by the U.S. Environmental Protection Agency. In samples collected from two small agriculturally dominated tributary basins, the largest number and concentrations of pesticides were detected in May and June following early growing season applications. At one of the sites, the pesticide atrazine and its metabolite desethylatrazine were detected throughout the year. On the basis of 37 samples collected basinwide in May and June 1994, total annual subbasin applications and instantaneous instream fluxes of EPTC and atrazine showed logarithmic relations with coefficients of determination (R2 values) of 0.55 and 0.62, respectively. At the time of sampling, the median daily flux of EPTC was about 0.0001 percent of the annual quantity applied, whereas the median daily flux of atrazine was between 0.001 and 0.01 percent.

Clark, Gregory M.

1997-01-01

367

Boise State University College of Southern Idaho  

E-print Network

· Boise State University · College of Southern Idaho · College of Western Idaho IDAHO DUAL CREDIT PROGRAM PARTICIPATING IDAHO COLLEGES AND UNIVERSITIES · Northwest Nazarene University · University of Idaho · Idaho State University · Lewis-Clark State College · North Idaho College COLLEGE CREDIT FOR HIGH

Barrash, Warren

368

Idaho bats: Yuma bat (Myotis yumanensis) Idaho bats: little brown bat (Myotis lucifugus) Idaho bats: California bat (Myotis californicus) Idaho bats: long-legged bat (Myotis volans)  

E-print Network

9/26/12 1 Idaho bats: Yuma bat (Myotis yumanensis) Idaho bats: little brown bat (Myotis lucifugus) Idaho bats: California bat (Myotis californicus) Idaho bats: long-legged bat (Myotis volans) #12;9/26/12 2 Idaho bats: fringed bat (Myotis thysanodes) Idaho bats: long-eared bat (Myotis evotis) Idaho bats

Sullivan, Jack

369

Chemical and light-stable isotope characteristics of waters from the raft river geothermal area and environs, cassia county, idaho; box elder county, Utah  

USGS Publications Warehouse

Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and environs. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed with cold water. The non-mixed waters have essentially a constant value of light-stable isotopes but show a large variation in chloride content. The variation of chloride composition is not the usual pattern for deep geothermal waters, where it is normally assumed that the deep water has a single chloride composition. Different mixed waters also have hot-water sources of varying chloride composition. Plots of chloride values on cross-sections show that water circulation patterns are confused, with non-mixed waters having different chloride concentrations located in close proximity. Three models can explain the characteristics of the deep geothermal water: (1) in addition to near-surface mixing of cold and hot water, there is deep mixing of two hot waters with the same enthalpy and isotopic composition but differing chloride concentrations to produce the range of chloride concentrations found in the deep geothermal water; (2) there is a single deep hot water, and the range of chloride concentrations is produced by the water passing through a zone of highly soluble materials (most likely in the sedimentary section above the basement) in which waters have different residence times or slightly different circulation paths; (3) the varying chloride concentrations in space have been caused by varying chloride concentrations in the deep feed water through time. Some of this older water has not been flushed from the system by the natural discharge. Although one model may seem more plausible than the others, the available data do not rule out any of them. Data for water samples from the Raft River and Jim Sage Mountains show that water from these areas is probably the source for the cold mixing water determined from end-members on mixing lines. Data for water samples in the Upper Raft River Valley show that the thermal anomaly found at Almo 1 is probably not related to the Raft River geothermal area. The water is different in type as shown by its placement on a trilinear plot, and the isotopes are different enough to show that it is probably a different water. Isotopic compositions of samples from a wide area around the Raft River geothermal system indicate that the likely source of the recharge water is the southern Albion Mountains and western Raft River Mountains. The recharge area is at one end of the Narrows zone, and the geothermal area is along the Narrows zone; thus it is likely that the Narrows zone defines the circulation path. ?? 1982.

Nathenson, M.; Nehring, N.L.; Crosthwaite, E.G.; Harmon, R.S.; Janik, C.; Borthwick, J.

1982-01-01

370

Subsurface information from eight wells drilled at the Idaho National Engineering Laboratory, southeastern Idaho  

USGS Publications Warehouse

The Idaho National Engineering Laboratory (INEL) covers about 890 square miles of the eastern Snake River Plain, in southeastern Idaho. The eastern Snake River Plain is a structural basin which has been filled with thin basaltic lava flows, rhyolitic deposits, and interbedded sediments. These rocks form an extensive ground-water reservoir known as the Snake River Plain aquifer. Six wells were drilled and two existing wells were deepened at the INEL from 1969 through 1974. Interpretation of data from the drilling program confirms that the subsurface is dominated by basalt flows interbedded with layers of sediment, cinders, and silicic volcanic rocks. Water levels in the wells show cyclic seasonal fluctuations of maximum water levels in winter and minimum water levels in mid-summer. Water levels in three wells near the Big Lost River respond to changes in recharge to the Snake River Plain aquifer from the Big Lost River. Measured water levels in multiple piezometers in one well indicate increasing pressure heads with depth. A marked decline in water levels in the wells since 1977 is attributed to a lack of recharge to the Snake River Plain aquifer.

Goldstein, F.J.; Weight, W.D.

1982-01-01

371

Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d'Alene River Basin, Idaho  

USGS Publications Warehouse

Arsenic, Cd, Cu, Pb, Hg, and Zn were measured in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d'Alene (CDA) River to characterize the pathway of metals transfer between these components. Metals enter the CDA Basin via tributaries where mining activities have occurred. In general, the ranking of food-web components from the greatest to smallest concentrations of metals was as follows: biofilm (the layer of abiotic and biotic material on rock surfaces) and sediments > invertebrates > whole fish. Elevated Pb was documented in invertebrates, and elevated Cd and Zn were documented in sediment and biofilm approximately 80 km downstream to the Spokane River. The accumulation of metals in invertebrates was dependent on functional feeding group and shredders-scrapers that feed on biofilm accumulated the largest concentrations of metals. Although the absolute concentrations of metals were the largest in biofilm and sediments, the metals have accumulated in fish approximately 50 km downstream from Kellogg, near the town of Harrison. While metals do not biomagnify between trophic levels, the metals in the CDA Basin are bioavailable and do biotransfer. Trout less than 100 mm long feed exclusively on small invertebrates, and small invertebrates accumulate greater concentrations of metals than large invertebrates. Therefore, early-lifestage fish may be exposed to a larger dose of metals than adults.

Farag, A.M.; Woodward, D.F.; Goldstein, J.N.; Brumbaugh, W.; Meyer, J.S.

1998-01-01

372

Influence of the diversion of Bear River into Bear Lake (Utah and Idaho) on the environment of deposition of carbonate minerals  

USGS Publications Warehouse

Bear River, the largest river in the Great Basin, had some of its flow diverted into Bear Lake through a series of canals constructed between 1911 and 1918, turning Bear Lake into a reservoir. The prediversion lake had an unusually high Mg2+ : Ca2+ ratio (38 by weight), which resulted in precipitation of CaCO3 as aragonite. The amount and mineralogy of the carbonate did not change immediately after the diversion, but during the middle of the 20th century, high-Mg calcite began to precipitate. In contrast, at the time of diversion there were very distinct changes in the isotopic composition of the carbonate that clearly define the time of diversion within the sediments. Sediment-trap studies show that the CaCO3 polymorph that precipitates in the epilimnion of the lake today is high-Mg calcite. Samples in sediment traps placed 2 m above the bottom of the lake in 45 m of water (bottom traps) contain predominantly aragonite and quartz, with lesser amounts of high-Mg and low-Mg calcite and dolomite. Isotopic evidence from the sediments shows that the aragonite that accumulated in the bottom sediment traps and that constitutes the bulk of postdiversion sediments is reworked and redistributed from shallow sites to deep sites. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

Dean, W.E.; Forester, R.M.; Bright, Jordon; Anderson, R.Y.

2007-01-01

373

UPPER SNAKE BASIN, IDAHO WATER QUALITY MONITORING ASSESSMENT REPORT, PHASE I. 1971  

EPA Science Inventory

The Upper Snake River Basin, Idaho (17040104, 170402) was studied in an effort to establish a monitoring network from above Idaho Falls to Milner Dam. The object was to provide timely data and information pertaining to the priority problems of the basin and to be responsive to t...

374

2.-A PRELIMINARY REPORT UPON SALMON INVESTIGATIONS IN IDAHO By BARTON W. EVERMANN, PH. D.,  

E-print Network

2.-A PRELIMINARY REPORT UPON SALMON INVESTIGATIONS IN IDAHO IN 1894. By BARTON W. EVERMANN, PH. D, distribution, and spawning habits of the species of salmon which have spawning- grounds in the waters of the State of Idaho. . , The alarming'decrease in the salmon catch of the Columbia River within recent years

375

Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks  

Microsoft Academic Search

The network architecture of streams and rivers constrains evolutionary, demographic and ecological processes of freshwater organisms. This consistent architecture also makes stream networks useful for testing general models of population genetic structure and the scaling of gene flow. We examined genetic structure and gene flow in the facultatively paedomorphic Idaho giant salamander, Dicamptodon aterrimus, in stream networks of Idaho and

LINDY B. M ULLEN; H. A RTHUR; W OODS; AEL K. S CHWARTZ; DAM J. S EPULVEDA; H. L OWE

2010-01-01

376

Nest-site selection by sage thrashers in southeastern Idaho. [Oreoscoptes montanus  

Microsoft Academic Search

Nest sites selected by Sage Thrashers (Oreoscoptes montanus) were characterized and compared with available habitat. The study area, consisting of 25 ha of sagebrush shrubsteppe on the upper Snake River plain 11 km south of Howe, Idaho, is administered by the U.S. Department of Energy as part of the Idaho National Engineering Laboratory (INEL). Microhabitats within 5 m of nests

K. L. Petersen; L. B. Best

1991-01-01

377

Response of RRGI 6 and RRGI 7 to injection during the 5-MW plant operations, March 25 to June 15, 1982, at Raft River, Idaho  

SciTech Connect

Injection testing conducted between March 25 and June 15, 1982 at the Raft River Site generated a substantial quantity of non-isothermal and various temperature transient pressure data. Injection pressure build-up measured at the wellhead strongly responds to temperature changes of the injected fluid. An increase in the fluid temperature results in an injection pressure increase while a temperature decrease is followed by an injection pressure decline. Data analyses indicate that changes in fluid viscosity and density due to temperature changes do not explain pressure build-up responses. The pressure build-up behaviors are attributed to the reservoir transmissivity changes. The absolute wellhead pressure value are significantly lower than predicted for the cold fluid injection.

Skiba, P.A.

1982-01-01

378

Geologic framework for the national assessment of carbon dioxide storage resources: Greater Green River Basin, Wyoming, Colorado, and Utah, and Wyoming-Idaho-Utah Thrust Belt: Chapter E in Geologic framework for the national assessment of carbon dioxide storage resources  

USGS Publications Warehouse

The 2007 Energy Independence and Security Act (Public Law 110140) directs the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2). The methodology used by the USGS for the national CO2 assessment follows up on previous USGS work. The methodology is non-economic and intended to be used at regional to subbasinal scales. This report identifies and contains geologic descriptions of 14 storage assessment units (SAUs) in Ordovician to Upper Cretaceous sedimentary rocks within the Greater Green River Basin (GGRB) of Wyoming, Colorado, and Utah, and eight SAUs in Ordovician to Upper Cretaceous sedimentary rocks within the Wyoming-Idaho-Utah Thrust Belt (WIUTB). The GGRB and WIUTB are contiguous with nearly identical geologic units; however, the GGRB is larger in size, whereas the WIUTB is more structurally complex. This report focuses on the characteristics, specified in the methodology, that influence the potential CO2 storage resource in the SAUs. Specific descriptions of the SAU boundaries, as well as their sealing and reservoir units, are included. Properties for each SAU, such as depth to top, gross thickness, porosity, permeability, groundwater quality, and structural reservoir traps, are typically provided to illustrate geologic factors critical to the assessment. This geologic information was employed, as specified in the USGS methodology, to calculate a probabilistic distribution of potential storage resources in each SAU. Figures in this report show SAU boundaries and cell maps of well penetrations through sealing units into the top of the storage formations. The cell maps show the number of penetrating wells within one square mile and are derived from interpretations of variably attributed well data and a digital compilation that is known not to include all drilling.

Buursink, Marc L.; Slucher, Ernie R.; Brennan, Sean T.; Doolan, Colin A.; Drake, Ronald M.; Merrill, Matthew D.; Warwick, Peter D.; Blondes, Madalyn S.; Freeman, Philip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

2014-01-01

379

A monoclinic, pseudo-orthorhombic Au-Hg mineral of potential economic significance in Pleistocene Snake River alluvial deposits of southeastern Idaho  

USGS Publications Warehouse

A mineral with the approximate composition of Au94Hg6 - Au88Hg12 (atomic %) has been identified in Pleistocene Snake River alluvial deposits. The gold-mercury mineral occurs as very small grains or as polycrystalline masses composed of subhedral to nearly euhedral attached crystals. Vibratory cold-polishing techniques with 0.05-??m alumina abrasive for polished sections revealed a porous internal texture for most subhedral crystals after 48-72 hours of treatment. Thus, optical character (isotropic or anisotropic) could not be determined by reflected-light microscopy, and pore-free areas were too small for measurement of reflectance. X-ray-diffraction lines rather than individual reflections (spots), on powder camera X-ray films of unrotated spindles of single grains that morphologically appear to be single crystals, indicate that individual subhedral or euhedral crystals are composed of domains in random orientation. Thus, no material was found suitable for single-crystal X-ray diffraction studies. -from Authors

Desborough, G.A.; Foord, E.E.

1992-01-01

380

Secular variation of the middle and late Miocene geomagnetic field recorded by the Columbia River Basalt Group in Oregon, Idaho and Washington, USA  

NASA Astrophysics Data System (ADS)

This study of 118 discrete volcanic flows from the Columbia River Basalt Group is aimed to determine their distribution of geomagnetic field directions and virtual geomagnetic poles (VGPs) and to compare the inherent secular variation parameters with those from other studies. The magnetic signature of these rocks is uniformly carried by primary titanomagnetite, indicating that magnetic changes are due to variations in the magnetic field. Although most flows are flat lying, those that are tilted pass the Tauxe and Watson tilt test. Sequential flows with statistically similar site means were grouped, and directions that were considered outliers were evaluated and removed using the Vandamme cut-off method. Three normal-polarity (N-polarity) and three reversed-polarity (R-polarity) intervals are revealed by the stratigraphically ordered flows and have mean directions of N polarity (dec/inc = 6.6/+61.2, k = 29.3, ?95 = 4.2), and R polarity (dec/inc = 178.2/-59.2, k = 16, ?95 = 5.5). Regression analysis indicates that the secular variation analysis has not been affected by regional rotation, and that apparent polar wander is negligible. The VGP distribution is almost perfectly circular and supports the preference of VGP positions for the dispersion analysis. Dispersion parameters with corrections for within-site scatter (Sb) show a range of 14.3-25.5, including error limits, and were consistently higher for R-polarity results than for those of N polarity. Published dispersion parameters for extrusives <5 Ma show Sb values slightly lower than ours, yielding values of 16-19, although the difference is not statistically significant. In contrast, published dispersion parameters from high quality data from the Cretaceous Normal Superchron are lower than those for the Neogene, which suggests that the noisiness of the magnetic field correlates with the frequency of reversals. Our new results allow us to extend the Plio-Pleistocene palaeosecular variation database to the bottom of the middle Miocene. Many Miocene formations on a variety of continents are suitable targets for future analysis. Furthermore, the significant difference between the reversed and N-polarity dispersion parameters is intriguing and needs substantiation.

Dominguez, Ada R.; Van der Voo, Rob

2014-06-01

381

WATER QUALITY STUDY OF THE ISLAND PARK WATERWAYS, IDAHO 1970  

EPA Science Inventory

This study was initiated to examine some chemical, physical, and bacteriological aspects of the waterways of the Island Park recreational area, Idaho (17040202) in an effort to initiate local water quality standards, to identify sources of river abuse, and where possible, to lear...

382

ROCK CREEK, IDAHO WATER QUALITY STATUS REPORT, 1970-1984  

EPA Science Inventory

The study was designed to determine the characteristics and amounts of industrial and municipal wastes discharged to Rock Creek, Idaho (17040212) and subsequently into the Snake River and to evaluate the effects of these wastes on the biota and water quality of Rock Creek. Indus...

383

Probability of detecting atrazine/desethyl-atrazine and elevated concentrations of nitrate (NO2+NO3-N) in ground water in the Idaho part of the upper Snake River basin  

USGS Publications Warehouse

Draft Federal regulations may require that each State develop a State Pesticide Management Plan for the herbicides atrazine, alachlor, cyanazine, metolachlor, and simazine. This study developed maps that the Idaho State Department of Agriculture might use to predict the probability of detecting atrazine and desethyl-atrazine (a breakdown product of atrazine) in ground water in the Idaho part of the upper Snake River Basin. These maps can be incorporated in the State Pesticide Management Plan and help provide a sound hydrogeologic basis for atrazine management in the study area. Maps showing the probability of detecting atrazine/desethyl-atrazine in ground water were developed as follows: (1) Ground-water monitoring data were overlaid with hydrogeologic and anthropogenic data using a geographic information system to produce a data set in which each well had corresponding data on atrazine use, depth to ground water, geology, land use, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Individual (univariate) relations between atrazine/desethyl-atrazine in ground water and atrazine use, depth to ground water, geology, land use, precipitation, soils, and well depth data were evaluated to identify those independent variables significantly related to atrazine/ desethyl-atrazine detections. (3) Several preliminary multivariate models with various combinations of independent variables were constructed. (4) The multivariate models which best predicted the presence of atrazine/desethyl-atrazine in ground water were selected. (5) The multivariate models were entered into the geographic information system and the probability maps were constructed. Two models which best predicted the presence of atrazine/desethyl-atrazine in ground water were selected; one with and one without atrazine use. Correlations of the predicted probabilities of atrazine/desethyl-atrazine in ground water with the percent of actual detections were good; r-squared values were 0.91 and 0.96, respectively. Models were verified using a second set of groundwater quality data. Verification showed that wells with water containing atrazine/desethyl-atrazine had significantly higher probability ratings than wells with water containing no atrazine/desethylatrazine (p <0.002). Logistic regression also was used to develop a preliminary model to predict the probability of nitrite plus nitrate as nitrogen concentrations greater than background levels of 2 milligrams per liter. A direct comparison between the atrazine/ desethyl-atrazine and nitrite plus nitrate as nitrogen probability maps was possible because the same ground-water monitoring, hydrogeologic, and anthropogenic data were used to develop both maps. Land use, precipitation, soil hydrologic group, and well depth were significantly related with atrazine/desethyl-atrazine detections. Depth to water, land use, and soil drainage were signifi- cantly related with elevated nitrite plus nitrate as nitrogen concentrations. The differences between atrazine/desethyl-atrazine and nitrite plus nitrate as nitrogen relations were attributed to differences in chemical behavior of these compounds in the environment and possibly to differences in the extent of use and rates of their application.

Rupert, Michael G.

1998-01-01

384

Idaho: A Portrait  

NSDL National Science Digital Library

Divided into five sections, this site, the companion to Idaho Public Television's show by the same name, is the place for readers to go to learn all about the state: its landscape, history, recreation, and more. The first section, About Idaho, is divided into three subsections, Geology, People (which features interviews with a number of residents), and History. Those who want to find out more about a particular region can click the map in Tour the State to bring up a page of information. Idaho Adventures provides details on recreational activities (skiing, hunting, etc.) and Lewis and Clark's expedition, together with links to relevant sites. Four Photographers' Views offers a handful of breath-taking shots from each photographer, and the Resources section rounds out the site with downloadable wallpaper, a quiz, a list of related links, and more. RealPlayer clips are available throughout the site.

385

Idaho Landscapes & Gardens  

NSDL National Science Digital Library

From tomatoes to pesky (and helpful) insects, the Idaho Landscapes & Gardens website has information for a wide range of interested parties, and not just persons who live in Idaho either. Created and maintained by the University of Idaho's Extension program, the site is divided into areas like "Gardening Basics", "Lawn & Turf", "Herbaceous Ornamentals", and "Wildlife in the Garden". For those with a budding green thumb, the "Gardening Basics" section offers some practical information on gardening equipment, composting, soil preparation, and irrigation methods. More advanced gardeners may wish to skip over to the "Plant Your Landscape" area. Here they will find resources on how to create a general landscape plan and how to install different elements of the basic plan. The site is rounded out by the "Seasonal Topics" area, which contains up-to-the minute details on summer pruning and fall lawn care.

386

CUSTOM RATES for Idaho Agricultural  

E-print Network

CUSTOM RATES for Idaho Agricultural Operations 2010­2011 by Paul E. Patterson and Kathleen Painter with the Department of Agricultural Economics and Rural Sociology, University of Idaho. Acknowledgments The authors (Jerome County). Special thanks go to the southern Idaho Cereal Schools for providing funds

O'Laughlin, Jay

387

CURRICULUM VITAE University of Idaho  

E-print Network

CURRICULUM VITAE University of Idaho NAME: Abdel-Rahim, Ahmed DATE: December 15, 2005 RANK OR TITLE) Certificates and Licenses: Professional Engineer (PE), State of Idaho EXPERIENCE: Teaching, Extension and Research Appointments: Assistant Professor, Civil Engineering Department, University of Idaho, Moscow

Kyte, Michael

388

Rivers  

NSDL National Science Digital Library

This site features pages to more than twenty NASA radar images of the world's major river systems. The image pages contain a brief description of the respective processes and setting, and are available for download. The images were created with the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) as part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing.

Rich Pavlovsky

389

Central Idaho Debris Flow  

USGS Multimedia Gallery

During August 2013, the Beaver Creek wildfire burned more than 114,000 acres in south-central Idaho. Shortly after the fire was contained, heavy rainfall triggered numerous debris flows, including this one in Badger Gulch. USGS hydrologists Dave Evetts (left) and Jake Jacobson examine the debris flo...

390

Active Faulting in Idaho  

NSDL National Science Digital Library

This lesson introduces students to faulting from the Quaternary Period and the Holocene Epoch in the State of Idaho. They will examine a map showing the distribution of these faults and answer questions concerning groundwater circulation and earthquake potential, and determine which geologic province has the most neotectonically active faults (15,000 years or younger).

391

IDAHO FLUVIAL GEOLOGY  

EPA Science Inventory

Restricted availability. Major Attributes: Polygons described by geologic type codes & descriptions. May be incorporated into maps at the state/county/basin scale. Probably too coarse for use at the site scale. Scale: 1:500:000. Extent: Idaho. Projection: Albers. Source: ...

392

Idaho Steelhead Monitoring and Evaluation Studies : Annual Progress Report 2007.  

SciTech Connect

The goal of Idaho Steelhead Monitoring and Evaluation Studies is to collect monitoring data to evaluate wild and natural steelhead populations in the Clearwater and Salmon river drainages. During 2007, intensive population data were collected in Fish Creek (Lochsa River tributary) and Rapid River (Little Salmon River tributary); extensive data were collected in other selected spawning tributaries. Weirs were operated in Fish Creek and Rapid River to estimate adult escapement and to collect samples for age determination and genetic analysis. Snorkel surveys were conducted in Fish Creek, Rapid River, and Boulder Creek (Little Salmon River tributary) to estimate parr density. Screw traps were operated in Fish Creek, Rapid River, Secesh River, and Big Creek to estimate juvenile emigrant abundance, to tag fish for survival estimation, and to collect samples for age determination and genetic analysis. The estimated wild adult steelhead escapement in Fish Creek was 81 fish and in Rapid River was 32 fish. We estimate that juvenile emigration was 24,127 fish from Fish Creek; 5,632 fish from Rapid River; and 43,674 fish from Big Creek. The Secesh trap was pulled for an extended period due to wildfires, so we did not estimate emigrant abundance for that location. In cooperation with Idaho Supplementation Studies, trap tenders PIT tagged 25,618 steelhead juveniles at 18 screw trap sites in the Clearwater and Salmon river drainages. To estimate age composition, 143 adult steelhead and 5,082 juvenile steelhead scale samples were collected. At the time of this report, 114 adult and 1,642 juvenile samples have been aged. Project personnel collected genetic samples from 122 adults and 839 juveniles. We sent 678 genetic samples to the IDFG Eagle Fish Genetics Laboratory for analysis. Water temperature was recorded at 37 locations in the Clearwater and Salmon river drainages.

Copeland, Timothy; Putnam, Scott

2008-12-01

393

Quality of ground water in Idaho  

USGS Publications Warehouse

The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.

Yee, Johnson J.; Souza, William R.

1987-01-01

394

Rapid River Hatchery - Spring Chinook, Final Report  

SciTech Connect

This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection, egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

Watson, M.

1996-05-01

395

Lithospheric structure in the Eastern Oregon and Western Idaho across the Western Idaho Shear Zone and Idaho Batholith from teleseismic receiver functions  

NASA Astrophysics Data System (ADS)

We present new P-to-S receiver functions at 86 broadband seismic stations that we deployed in Eastern Oregon and Western Idaho as part of the IDOR (IDaho-ORegon) Earthscope project. We obtained a 3D lithospheric image detailing the crustal structure and architecture of the Idaho Batholith and Salmon River suture/Western Idaho Shear Zone (WISZ) at depth. The suture marks the sharp ~110-90 Ma contact between the accreted oceanic terranes (Blue Mountains province) and the North American Craton and is characterized largely by the near vertical dextral transpressional system of the WISZ, which closely follows the Sr 0.706 isopleth. The Idaho Batholith (Atlanta and Bitterroot lobes) is characterized by long-lived magmatism ranging between 108 and 50 Ma occurring during and after the deformation in the WISZ. To understand the evolution of this portion of the western North American plate boundary and the transition from Mesozoic transpressional tectonics west of the Idaho batholith to current basin-and-range-like tectonics to the east, we analyzed more than 350 teleseismic events generated at epicentral distances between 30 and 95 degrees. We constructed receiver functions using a modified version of the Ligorria and Ammon (1999) iterative deconvolution technique, and then applied the H-k stacking procedure of Zhu and Kanamori (2000) for each station to estimate Vp/Vs ratios and depths to different boundary interfaces. In addition we applied the common conversion point stacking method (CCP) of Dueker and Sheehan (1997) for bins of receiver functions. Preliminary results show an important variation of the crustal thickness beneath the IDOR area, with a thicker crust beneath the Atlanta lobe of the Idaho Batholith.

Stanciu, A. C.; Russo, R. M.; Mocanu, V. I.; Bremner, P. M.; Torpey, M.; Hongsresawat, S.

2013-12-01

396

IDAHO AQUIFER TYPES  

EPA Science Inventory

Five aquifer types are presented: Unconsolidated alluvium, Snake River Plain alluvium, Snake River Plain basalt, Columbia River basalt, Sedimentary / volcanic rock. Should only be used for page-sized maps of state, due to the very generalized source materials & digitizing proce...

397

Idaho Asphalt Conference Attendance List Andy Abrams  

E-print Network

51st Idaho Asphalt Conference ­ Attendance List Andy Abrams STRATA, Inc. 1428 S. Main St. Moscow, Idaho 83843 208-882-1006 ajabrams@stratageotech.com John Arambarri Idaho Transportation Department - District 3 999 West Main St Boise, Idaho 83702 Paul Archibald Idaho Transportation Department PO Box 4700

Kyte, Michael

398

Idaho Natural Areas Network: Chuck Wellner's Legacy  

E-print Network

Idaho Natural Areas Network: Chuck Wellner's Legacy Idaho Native Plant Society, Sage Notes, Volume dedicated enormous energy toward protecting natural areas in Idaho. I have had the good fortune of becoming a brief account of Chuck's remarkable involvement with Idaho natural areas. Idaho has the most extensive

Wellner, Jon A.

399

Idaho Explosives Detection System  

SciTech Connect

The Idaho Explosives Detection System (IEDS) was developed at the Idaho National Laboratory (INL) to respond to threats imposed by delivery trucks carrying explosives into military bases. A full-scale prototype system has been built and is currently undergoing testing. The system consists of two racks, one on each side of a subject vehicle. Each rack includes a neutron generator and an array of NaI detectors. The two neutron generators are pulsed and synchronized. A laptop computer controls the entire system. The control software is easily operable by minimally trained staff. The system was developed to detect explosives in a medium size truck within a 5-minute measurement time. System performance was successfully demonstrated with explosives at the INL in June 2004 and at Andrews Air Force Base in July 2004.

Edward L. Reber; J. Keith Jewell; Larry G. Blackwood; Andrew J. Edwards; Kenneth W. Rohde; Edward H. Seabury

2004-10-01

400

ANTELOPE-PINE CREEK AREA, IDAHO - WATER QUALITY STATUS REPORT. 1988-1989  

EPA Science Inventory

The Antelope-Pine Creek study area consists of the drainage which flows into the portion of the South Fork, Snake River between Heise and the Palisades Dam, Idaho (17040104). The South Fork of the Snake River was identified in the Agricultural Nonpoint Pollution Abatement Plan a...