Science.gov

Sample records for position monitor upgrade

  1. Tevatron beam position monitor upgrade

    SciTech Connect

    Wolbers, Stephen; Banerjee, B.; Barker, B.; Bledsoe, S.; Boes, T.; Bowden, M.; Cancelo, G.; Forster, B.; Duerling, G.; Haynes, B.; Hendricks, B.; Kasza, T.; Kutschke, R.; Mahlum, R.; Martens, M.; Mengel, M.; Olson, M.; Pavlicek, V.; Pham, T.; Piccoli, L.; Steimel, J.; /Fermilab

    2005-05-01

    The Tevatron Beam Position Monitor (BPM) readout electronics and software have been upgraded to improve measurement precision, functionality and reliability. The original system, designed and built in the early 1980's, became inadequate for current and future operations of the Tevatron. The upgraded system consists of 960 channels of new electronics to process analog signals from 240 BPMs, new front-end software, new online and controls software, and modified applications to take advantage of the improved measurements and support the new functionality. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton position measurements. Measurements using the new system are presented that demonstrate its improved resolution and overall performance.

  2. Commissioning results of the narrow-band beam position monitor system upgrade in the APS storage ring.

    SciTech Connect

    Singh, O.

    1999-04-20

    When using a low emittance storage ring as a high brightness synchrotron radiation source, it is critical to maintain a very high degree of orbit stability, both for the short term and for the duration of an operational fill. A fill-to-fill reproducibility is an additional important requirement. Recent developments in orbit correction algorithms have provided tools that are capable of achieving a high degree of orbit stability. However, the performance of these feedback systems can be severely limited if there are errors in the beam position monitors (BPMs). The present orbit measurement and correction system at the APS storage ring utilizes 360 broad-band-type BPMs that provide turn-by-turn diagnostics and an ultra-stable orbit: < 1.8 micron rms vertically and 4.5 microns rms horizontally in a frequency band of 0.017 to 30 Hz. The effects of beam intensity and bunch pattern dependency on these BPMs have been significantly reduced by employing offset compensation correction. Recently, 40 narrow-band switching-type BPMs have been installed in the APS storage ring, two in each of 20 operational insertion device straight sections, bringing the total number of beam position monitors to 400. The use of narrow-band BPM electronics is expected to reduce sensitivity to beam intensity, bunch pattern dependence, and long-term drift. These beam position monitors are used for orbit correction/feedback and machine protection interlocks for the insertion device beamlines. The commissioning results and overall performance for orbit stability are provided.

  3. Upgrade of Apatity Neutron Monitor

    NASA Astrophysics Data System (ADS)

    Balabin, Yu; Vashenyuk, E.; Gvozdevsky, B.; Germanenko, A.

    2015-08-01

    The neutron monitor (NM) in Apatity has been deeply upgraded in the end of 2013. We developed and installed new amplifier-discriminators. The detecting tubes of NM were tested and calibrated with additionally using of a pulse-amplitude analyzer. Due to this operation electric noise and interfering pulses are reduced. The NM was equipped with a new rapid data acquisition system. The system registers each NM pulse with time accuracy of 1 microsecond. This gives a possibility to investigate such fast phenomena as, for example, multiplicities in NM. Moreover, using these detailed data, it is possible to produce not only a standard NM count rate (number of pulses per minute) but (if necessary) a count rate with any high time resolution. Based on the detailed data we implemented the software calculation of so called "large dead time" data, which previously was done by hardware.

  4. Project W-420 stack monitoring system upgrades

    SciTech Connect

    CARPENTER, K.E.

    1999-02-25

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420.

  5. NSLS Control Monitor and its upgrade

    SciTech Connect

    Ramamoorthy, S.; Smith, J.D.

    1993-07-01

    The NSLS Control Monitor is a real-time operating system designed for the microprocessor subsystems that control the machine hardware in the NSLS facility. Its major functions are to control the hardware in response to the commands from the host computers, monitor hardware status and report errors to the alarm handler. The software originally developed for the Multibus micros has been upgraded to run on the VME-based systems. The upgraded monitor provides ethernet communication with the new system and serial link with the old system. The dual link is the key feature for a smooth and nondisruptive transition at all levels of the control system. This paper describes the functions of the various modules of the monitor and future plans.

  6. GPS Monitor Station Upgrade Program at the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Galysh, Ivan J.; Craig, Dwin M.

    1996-01-01

    One of the measurements made by the Global Positioning System (GPS) monitor stations is to measure the continuous pseudo-range of all the passing GPS satellites. The pseudo-range contains GPS and monitor station clock errors as well as GPS satellite navigation errors. Currently the time at the GPS monitor station is obtained from the GPS constellation and has an inherent inaccuracy as a result. Improved timing accuracy at the GPS monitoring stations will improve GPS performance. The US Naval Research Laboratory (NRL) is developing hardware and software for the GPS monitor station upgrade program to improve the monitor station clock accuracy. This upgrade will allow a method independent of the GPS satellite constellation of measuring and correcting monitor station time to US Naval Observatory (USNO) time. THe hardware consists of a high performance atomic cesium frequency standard (CFS) and a computer which is used to ensemble the CFS with the two CFS's currently located at the monitor station by use of a dual-mixer system. The dual-mixer system achieves phase measurements between the high-performance CFS and the existing monitor station CFS's to within 400 femtoseconds. Time transfer between USNO and a given monitor station is achieved via a two way satellite time transfer modem. The computer at the monitor station disciplines the CFS based on a comparison of one pulse per second sent from the master site at USNO. The monitor station computer is also used to perform housekeeping functions, as well as recording the health status of all three CFS's. This information is sent to the USNO through the time transfer modem. Laboratory time synchronization results in the sub nanosecond range have been observed and the ability to maintain the monitor station CFS frequency to within 3.0 x 10 (sup minus 14) of the master site at USNO.

  7. Photon beam position monitor

    DOEpatents

    Kuzay, Tuncer M.; Shu, Deming

    1995-01-01

    A photon beam position monitor for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade "shadowing". Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation.

  8. Photon beam position monitor

    DOEpatents

    Kuzay, T.M.; Shu, D.

    1995-02-07

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  9. Magnetic beam position monitor

    SciTech Connect

    Varfolomeev, A.A.; Ivanchenkov, S.N.; Khlebnikov, A.S.

    1995-12-31

    Many nondestructive beam position monitors are known. However, these devices can not be used for DC particle beam diagnostics. We investigated a method of beam diagnostics applicable for the operative control of DC high power e-beam inside closed waveguide. A design of the detector for determination of{open_quote} center of mass {close_quote} position of DC particle beam was developed. It was shown that the monitor can be used as a nondestructive method for the beam position control in resonators. Magnetic field of the particle beam outside a resonator is used. The detector consists of the steel yokes and magnetic field sensors. The sensors measure magnetic fluxes in the steel yokes fixed outside the resonator. When the particle beam changes its position, these magnetic fluxes also change. Beam displacement sensitivity of the monitor depends on the steel yoke dimensions. The detector sensitivity is equal to 1 Gauss/mm for the conditions adequate to the FOM-FEM project.

  10. Project W-420 Stack Monitoring system upgrades conceptual design report

    SciTech Connect

    TUCK, J.A.

    1998-11-06

    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  11. Beam position monitor

    DOEpatents

    Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

    2003-07-22

    An apparatus for determining the position of an x-ray beam relative to a desired beam axis. Where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in an a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

  12. Timing and control monitor system upgrade design document. Version 4

    SciTech Connect

    Brandt, J.J.

    1984-01-24

    This is a design document for the Timing and Control Monitor System Upgrade Project. This project is intended to provide a replacement system for the existing user Encoder Monitor Systems and Varian 72 Control Room computer systems. All of these systems reside at the Nevada Test Site. The function of the T and C Monitor System is to gather real-time statistics and data on user defined key variables from control, communication, data acquistion systems, and from the monitoring system itself. The control, communication, and data acquisition systems each operate separately from the monitor system. The T and C Monitor System gathers this data in order to verify the readiness of an event to begin countdown. This includes setup, verification, calibration, and peripheral services, report any failures that may occur during the countdown, verify detonation and containment, and assist reentry activities after the event.

  13. Upgrading, monitoring and operation of a dome drive system

    NASA Astrophysics Data System (ADS)

    Bauman, Steven E.; Cruise, Bill; Look, Ivan; Matsushige, Grant; Roberts, Larry; Salmon, Derrick; Taroma, Ralph; Vermeulen, Tom; Richards, Krieg

    2014-08-01

    CFHT's decision to move away from classical observing prompted the development of a remote observing environment aimed at producing science observations from headquarters facility in Waimea, HI. This remote observing project commonly referred to as the Observatory Automation Project (OAP ) was completed at the end of January 2011 and has been providing the majority of science data ever since. A comprehensive feasibility study was conducted to determine the options available to achieve remote operations of the observatory dome drive system. After evaluation, the best option was to upgrade the original hydraulic system to utilize variable frequency drive (VFD) technology. The project upgraded the hydraulic drive system, which initially utilized a hydraulic power unit and three (3) identical drive units to rotate the dome. The new electric drive system replaced the hydraulic power unit with electric motor controllers, and each drive unit reuses the original drive and swaps one for one the original hydraulic motors with an electric motor. The motor controllers provide status and monitoring parameters for each drive unit which convey the functionality and health of the system. This paper will discuss the design upgrades to the dome drive rotation system, as well as some benefits, control, energy savings, and monitoring.

  14. Fast beam condition monitor for CMS: Performance and upgrade

    NASA Astrophysics Data System (ADS)

    Leonard, Jessica L.; Bell, Alan; Burtowy, Piotr; Dabrowski, Anne; Hempel, Maria; Henschel, Hans; Lange, Wolfgang; Lohmann, Wolfgang; Odell, Nathaniel; Penno, Marek; Pollack, Brian; Przyborowski, Dominik; Ryjov, Vladimir; Stickland, David; Walsh, Roberval; Warzycha, Weronika; Zagozdzinska, Agnieszka

    2014-11-01

    The CMS beam and radiation monitoring subsystem BCM1F (Fast Beam Condition Monitor) consists of 8 individual diamond sensors situated around the beam pipe within the pixel detector volume, for the purpose of fast bunch-by-bunch monitoring of beam background and collision products. In addition, effort is ongoing to use BCM1F as an online luminosity monitor. BCM1F will be running whenever there is beam in LHC, and its data acquisition is independent from the data acquisition of the CMS detector, hence it delivers luminosity even when CMS is not taking data. A report is given on the performance of BCM1F during LHC run I, including results of the van der Meer scan and on-line luminosity monitoring done in 2012. In order to match the requirements due to higher luminosity and 25 ns bunch spacing, several changes to the system must be implemented during the upcoming shutdown, including upgraded electronics and precise gain monitoring. First results from Run II preparation are shown.

  15. Upgrade of the D0 luminosity monitor readout system

    SciTech Connect

    Anderson, John; Bridges, Lloyd; Casey, Brendan; Enari, Yuji; Green, Johnny; Johnson, Marvin; Kwarciany, Rick; Miao, Chyi-Chiang; Partridge, Richard; Yoo, Hwi Dong; Wang, Jigang; /Brown U. /Fermilab

    2006-12-01

    We describe upgrades to the readout system for the D0 Luminosity Monitor. The D0 Luminosity Monitor consists of plastic scintillation detectors with fine-mesh photomultiplier readout that cover the pseudorapidity range 2.7 < |{eta}| < 4.4. The detector is designed to provide a precise measurement of the rate for non-diffractive inelastic collisions that is used to calculate the TeVatron luminosity at D0. The new readout system is based on custom VME electronics that make precise time-of-flight and charge measurements for each luminosity counter. These measurements are used to identify beam crossings with non-diffractive interactions by requiring in-time hits in both the forward and backward luminosity counters. We have also significantly increased signal/noise for the photomultiplier signals by developing a new front-end preamplifier and improving the grounding scheme.

  16. MULTI - MILLION - TURN BEAM POSITION MONITORS FOR RHIC.

    SciTech Connect

    SATOGATA,T.CAMERON,P.CERNIGLIA,P.CUPOLO,J.DAWSON,CDEGEN,CMEAD,JVETTER,K

    2003-05-12

    During the RHIC 2003 run, two beam position monitors (BPMs) in each transverse plane in the RHIC blue ring were upgraded with high-capacity mezzanine cards. This upgrade provided these planes with the capability to digitize up to 128 million consecutive turns of RHIC beam, or almost 30 minutes of continuous beam centroid phase space evolution for a single RHIC bunch. This paper describes necessary hardware and software changes and initial system performance. We discuss early uses and results for diagnosis of coherent beam oscillations, turn-by-turn (TBT) acquisition through a RHIC acceleration ramp, and ac-dipole nonlinear dynamics studies.

  17. Beam Position and Phase Monitor - Wire Mapping System

    SciTech Connect

    Watkins, Heath A; Shurter, Robert B.; Gilpatrick, John D.; Kutac, Vincent G.; Martinez, Derwin

    2012-04-10

    The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded for the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.

  18. The new Tevatron beam position monitor front-end software

    SciTech Connect

    Piccoli, Luciano; Votava, Margaret; Zhang, Dehong; /Fermilab

    2005-05-01

    The Tevatron is a proton anti-proton accelerator collider operating at the Fermi National Accelerator Laboratory. The machine is currently delivering beam for the CDF and D0 experiments, which expect increasing luminosity until the conclusion of Run II, planned for 2009. The Laboratory defined a plan for achieving higher luminosity, and one of the tasks is the upgrade of the accelerator's beam position monitor (BPM). The Tevatron was built during the early eighties and some of its control systems, including the BPMs, are still the original ones. This paper describes the front-end software of the Tevatron BPM upgrade, from the requirements to the implementation, and the underlying hardware setup. The front-end software designed is presented, emphasizing its modularity and reusability, allowing it to be applied to other Fermilab machines.

  19. Applying EVM principles to Tevatron Beam Position Monitor Project

    SciTech Connect

    Banerjee, Bakul; /Fermilab

    2005-08-01

    At Fermi National Accelerator Laboratory (Fermilab), the Tevatron high energy particle collider must meet the increasing scientific demand of higher beam luminosity. To achieve this higher luminosity goal, U. S. Department of Energy (DOE) sponsored a major upgrade of capabilities of Fermilab's accelerator complex that spans five years and costs over fifty million dollars. Tevatron Beam Position Monitor (BPM) system upgrade is a part of this project, generally called RunII upgrade project. Since the purpose of the Tevatron collider is to detect the smashing of proton and anti-protons orbiting the circular accelerator in opposite directions, capability to detect positions of both protons and antiprotons at a high resolution level is a desirable functionality of the monitoring system. The original system was installed during early 1980s, along with the original construction of the Tevatron. However, electronic technology available in 1980s did not allow for the detection of significantly smaller resolution of antiprotons. The objective of the upgrade project is to replace the existing BPM system with a new system utilizing capabilities of modern electronics enhanced by a front-end software driven by a real-time operating software. The new BPM system is designed to detect both protons and antiprotons with increased resolution of up to an order of magnitude. The new system is capable of maintaining a very high-level of data integrity and system reliability. The system consists of 27 VME crates installed at 27 service buildings around the Tevatron ring servicing 236 beam position monitors placed underground, inside the accelerator tunnel. Each crate consists of a single Timing Generator Fanout module, custom made by Fermilab staff, one MVME processor card running VxWorks 5.5, multiple Echotek Digital Receiver boards complimented by custom made Filter Board. The VxWorks based front-end software communicates with the Main Accelerator Control software via a special

  20. REVIEW OF THE RADNET AIR MONITORING NETWORK UPGRADE AND EXPANSION

    EPA Science Inventory

    RadNet, formerly known as ERAMS, has been operating since the 1970's, monitoring environmental radiation across the country, supporting responses to radiological emergencies, and providing important information on background levels of radiation in the environment. The original ...

  1. A Prototype Wire Position Monitoring System

    SciTech Connect

    Wang, Wei

    2010-12-07

    The Wire Position Monitoring System (WPM) will track changes in the transverse position of LCLS Beam Position Monitors (BPMs) to 1{micro}m over several weeks. This position information will be used between applications of beam based alignment to correct for changes in component alignment. The WPM system has several requirements. The sensor range must be large enough so that precision sensor positioning is not required. The resolution needs to be small enough so that the signal can be used to monitor motion to 1{micro}m. The system must be stable enough so that system drift does not mimic motion of the component being monitored. The WPM sensor assembly consists of two parts, the magnetic sensor and an integrated lock-in amplifier. The magnetic sensor picks up a signal from the alternating current in a stretched wire. The voltage v induced in the sensor is proportional to the wire displacement from the center of the sensor. The integrated lock-in amplifier provides a DC output whose magnitude is proportional to the AC signal from the magnetic sensor. The DC output is either read on a digital voltmeter or digitized locally and communicated over a computer interface.

  2. Point Positioning Service for Natural Hazard Monitoring

    NASA Astrophysics Data System (ADS)

    Bar-Sever, Y. E.

    2014-12-01

    In an effort to improve natural hazard monitoring, JPL has invested in updating and enlarging its global real-time GNSS tracking network, and has launched a unique service - real-time precise positioning for natural hazard monitoring, entitled GREAT Alert (GNSS Real-Time Earthquake and Tsunami Alert). GREAT Alert leverages the full technological and operational capability of the JPL's Global Differential GPS System [www.gdgps.net] to offer owners of real-time dual-frequency GNSS receivers: Sub-5 cm (3D RMS) real-time, absolute positioning in ITRF08, regardless of location Under 5 seconds turnaround time Full covariance information Estimates of ancillary parameters (such as troposphere) optionally provided This service enables GNSS networks operators to instantly have access to the most accurate and reliable real-time positioning solutions for their sites, and also to the hundreds of participating sites globally, assuring inter-consistency and uniformity across all solutions. Local authorities with limited technical and financial resources can now access to the best technology, and share environmental data to the benefit of the entire pacific region. We will describe the specialized precise point positioning techniques employed by the GREAT Alert service optimized for natural hazard monitoring, and in particular Earthquake monitoring. We address three fundamental aspects of these applications: 1) small and infrequent motion, 2) the availability of data at a central location, and 3) the need for refined solutions at several time scales

  3. Upgrade of the ALICE TPC FEE online radiation monitoring system

    NASA Astrophysics Data System (ADS)

    RØed, K.; Alme, J.; Askeland, E.; David, E.; Gunji, T.; Helstrup, H.; Kiss, T.; Lippmann, C.; Rehman, A.; Röhrich, D.; Ullaland, K.; Velure, A.; Zhao, C.

    2015-12-01

    This paper presents the radiation monitoring system on the Readout Control Unit (RCU) of the the ALICE TPC Front End Electronics. In Run 1, Single Event Upsets (SEUs) in the configuration memory of an SRAM based FPGA were counted, and the results from different run periods with stable beam conditions are presented. For Run 2, a new RCU, the RCU2, has been designed in order to achieve higher data readout rates and increase radiation tolerance. The RCU2 also includes a new radiation monitor solution with increased sensitivity, which is based on counting the number of SEUs in dedicated SRAM memories. The paper presents this new solution together with the results from the targeted irradiation campaigns.

  4. New Beam Loss Monitor for 12 GeV Upgrade

    SciTech Connect

    Jianxun Yan, Kelly Mahoney

    2009-10-01

    This paper describes a new VME based machine protection Beam Loss Monitor (BLM) signal processing board designed at Jefferson Lab to replace the current CAMAC based BLM board. The new eight-channel BLM signal processor has linear, logarithmic, and integrating amplifiers that simultaneously provide the optimal signal processing for each application. Amplified signals are digitized and then further processed through a Field Programmable Gate Array (FPGA). Combining both the diagnostic and machine protection functions in each channel allows the operator to tune-up and monitor beam operations while the machine protection is integrating the same signal. Other features include extensive built-in-self-test, fast shutdown interface (FSD), and 16-Mbit buffers for beam loss transient play-back. The new VME BLM board features high sensitivity, high resolution, and low cost per channel.

  5. SSC Linac Beam Position Monitor System

    NASA Astrophysics Data System (ADS)

    Aiello, G. Roberto; Jones, Alan A.; Mills, Mark R.

    1994-10-01

    The Superconducting Super Collider (SSC), Linac Beam Position Monitor System is designed to measure beam position and phase. Forty-three monitors will be installed in the Linac and Transfer Line. The position measurement provides information on the transverse beam position in the beam pipe with respect to a mechanical reference. The phase measurement provides information on the difference between the longitudinal phase of the beam and the radio frequency reference signal (rf reference), to be used for phase scanning and time of flight measurement. The system design and the prototypes are complete, and the series is under fabrication. The signals to be processed are extracted from four striplines, down-converted to a convenient intermediate frequency and fed into position and phase electronics. The position electronics is realized with the log-ratio technique, and the phase electronics uses a new digital technique that overcomes most of the problems of existing systems. Both position and phase analog electronics are mounted on identical VXI motherboards, containing analog-to-digital converters (ADC's) and digital circuitry.

  6. SSC Linac Beam Position Monitor System

    SciTech Connect

    Aiello, G.R.; Jones, A.A.; Mills, M.R. )

    1994-10-10

    The Superconducting Super Collider (SSC), Linac Beam Position Monitor System is designed to measure beam position and phase. Forty-three monitors will be installed in the Linac and Transfer Line. The position measurement provides information on the transverse beam position in the beam pipe with respect to a mechanical reference. The phase measurement provides information on the difference between the longitudinal phase of the beam and the radio frequency reference signal (rf reference), to be used for phase scanning and time of flight measurement. The system design and the prototypes are complete, and the series is under fabrication. The signals to be processed are extracted from four striplines, down-converted to a convenient intermediate frequency and fed into position and phase electronics. The position electronics is realized with the log-ratio technique, and the phase electronics uses a new digital technique that overcomes most of the problems of existing systems. Both position and phase analog electronics are mounted on identical VXI motherboards, containing analog-to-digital converters (ADC's) and digital circuitry.

  7. Correlation study of a beam-position monitor and a photon-beam-position monitor in the PLS-II

    NASA Astrophysics Data System (ADS)

    Kim, Changbum; Shin, Seunghwan; Hwang, Ilmoon; Lee, Byung-Joon; Joo, Young-Do; Ha, Taekyun; Yoon, Jong Chel; Kim, Ghyung Hwa; Kim, Mungyung; Lee, Eun Hee; Kim, Ilyou; Huang, Jung-Yun

    2015-01-01

    The beam stability is one of the most important issues for the user service of the synchrotron radiation facility. After the upgrade of the Pohang Light Source (PLS-II), the electron-beam orbit is maintained within a root-mean-squred (rms) 1- μm range by using an orbit feedback system. However, that does not guarantee the radiation stability at the end of the beamline because unknown factors, such as focusing mirrors and double-crystal monocrometers, are present in the beamline. As a first step to solve this problem, photon-beam-position monitors (PBPMs) are installed in the front ends of the beamline to monitor the radiation stability. If the radiation is stable at the starting point of the beamline, we can move to the other components downstream that make the radiation unstable. In this paper, a correlation study will be presented between the beam-position monitor (BPM) and the PBPM. In addition, the effect of the orbit feedback system on the correlation will be described.

  8. Cavity Beam Position Monitor System for ATF2

    SciTech Connect

    Boogert, Stewart; Boorman, Gary; Swinson, Christina; Ainsworth, Robert; Molloy, Stephen; Aryshev, Alexander; Honda, Yosuke; Tauchi, Toshiaki; Terunuma, Nobuhiro; Urakawa, Junji; Frisch, Josef; May, Justin; McCormick, Douglas; Nelson, Janice; Smith, Tonee; White, Glen; Woodley, Mark; Heo, Ae-young; Kim, Eun-San; Kim, Hyoung-Suk; Kim, Youngim; /Kyungpook Natl. U. /University Coll. London /Kyungpook Natl. U. /Fermilab /Pohang Accelerator Lab.

    2012-07-09

    The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a future high energy lepton linear collider. The ATF2 beam-line is instrumented with a total of 38 C and S band resonant cavity beam position monitors (CBPM) with associated mixer electronics and digitizers. The current status of the BPM system is described, with a focus on operational techniques and performance. The ATF2 C-band system is performing well, with individual CBPM resolution approaching or at the design resolution of 50 nm. The changes in the CBPM calibration observed over three weeks can probably be attributed to thermal effects on the mixer electronics systems. The CW calibration tone power will be upgraded to monitor changes in the electronics gain and phase. The four S-band CBPMs are still to be investigated, the main problem associated with these cavities is a large cross coupling between the x and y ports. This combined with the large design dispersion in that degion makes the digital signal processing difficult, although various techniques exist to determine the cavity parameters and use these coupled signals for beam position determination.

  9. An interactive beam position monitor system simulator

    SciTech Connect

    Ryan, W.A.; Shea, T.J.

    1993-03-01

    A system simulator has been implemented to aid the development of the RHIC position monitor system. Based on the LabVIEW software package by National Instruments, this simulator allows engineers and technicians to interactively explore the parameter space of a system during the design phase. Adjustable parameters are divided into three categories: beam, pickup, and electronics. The simulator uses these parameters in simple formulas to produce results in both time-domain and frequencydomain. During the prototyping phase, these simulated results can be compared to test data acquired with the same software package. The RHIC position monitor system is presented as an example, but the software is applicable to several other systems as well.

  10. The AGS Booster Beam Position Monitor system

    SciTech Connect

    Ciardullo, D.J.; Abola, A.; Beadle, E.R.; Smith, G.A.; Thomas, R.; Van Zwienen, W.; Warkentien, R.; Witkover, R.L.

    1991-01-01

    To accelerate both protons and heavy ions, the AGS Booster requires a broadband (multi-octave) beam position monitoring system with a dynamic range spanning several orders of magnitude (2 {times} 10{sup 10} to 1.5 {times} 10{sup 13} particles per pulse). System requirements include the ability to acquire single turn trajectory and average orbit information with {plus minus} 0.1 mm resolution. The design goal of {plus minus} 0.5 mm corrected accuracy requires that the detectors have repeatable linear performance after periodic bakeout at 300 {degree}C. The system design and capabilities of the Booster Beam Position Monitor will be described, and initial results presented. 7 refs., 5 figs.

  11. LEDA BEAM DIAGNOSTICS INSTRUMENTATION: BEAM POSITION MONITORS

    SciTech Connect

    D. BARR; ET AL

    2000-05-01

    The Low Energy Demonstration Accelerator (LEDA) facility located at Los Alamos National Laboratory (LANL) accelerates protons to an energy of 6.7-MeV and current of 100-mA operating in either a pulsed or cw mode. Of key importance to the commissioning and operations effort is the Beam Position Monitor system (BPM). The LEDA BPM system uses five micro-stripline beam position monitors processed by log ratio processing electronics with data acquisition via a series of custom TMS32OC40 Digital Signal Processing (DSP) boards. Of special interest to this paper is the operation of the system, the log ratio processing, and the system calibration technique. This paper will also cover the DSP system operations and their interaction with the main accelerator control system.

  12. Beam Position Monitor System for PEP II

    SciTech Connect

    Smith, Stephen R.; Aiello, G.Roberto; Hendrickson, Linda J.; Johnson, Ronald G.; Mills, Mark R.; Olsen, Jeff J.; /SLAC

    2011-09-12

    We describe the beam position monitor system built for PEP-II, the B-factory at SLAC. The system reports beam position for bunches of between 5 x 10{sup 8} and 8 x 10{sup 10} electron charges, either singly or as continuous streams of bunches every 4.2 ns. Resolution at full charge is to be better than 10 microns in a single turn. Higher resolution is available via on-board multi-turn averaging. The position signal is processed in a 20 MHz bandwidth around 952 MHz. This bandwidth, rather broader than that typical of RF position monitors, allows good resolution for low charge single bunches. Additional novel features include stringent control of return losses in order to minimize cross-talk between nearby bunches which may contain very different charges. The digitizing electronics is multiplexed between the two PEP-II storage rings. Design, construction, and installation experience, as well as first results with beam are presented.

  13. Engineering Upgrades to the Radionuclide Aerosol Sampler/Analyzer for the CTBT International Monitoring System

    SciTech Connect

    Forrester, Joel B.; Carty, Fitz; Comes, Laura; Hayes, James C.; Miley, Harry S.; Morris, Scott J.; Ripplinger, Mike D.; Slaugh, Ryan W.; Van Davelaar, Peter

    2013-05-13

    The Radionuclide Aerosol Sampler/Analyzer (RASA) is an automated aerosol collection and analysis system designed by Pacific Northwest National Laboratory in the 1990’s and is deployed in several locations around the world as part of the International Monitoring System (IMS) required under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The utility of such an automated system is the reduction of human intervention and the production of perfectly uniform results. However, maintainability and down time issues threaten this utility, even for systems with over 90% data availability. Engineering upgrades to the RASA are currently being pursued to address these issues, as well as Fukushima lessons learned. Current work includes a new automation control unit, and other potential improvements such as alternative detector cooling and sampling options are under review. This paper presents the current state of upgrades and improvements under investigation

  14. Upgrading of data acquisition software for centralized radiation monitoring system in Malaysian Nuclear Agency

    NASA Astrophysics Data System (ADS)

    Yussup, F.; Ibrahim, M. M.; Haris, M. F.; Soh, S. C.; Hasim, H.; Azman, A.; Razalim, F. A. A.; Yapp, R.; Ramli, A. A. M.

    2016-01-01

    With the growth of technology, many devices and equipments can be connected to the network and internet to enable online data acquisition for real-time data monitoring and control from monitoring devices located at remote sites. Centralized radiation monitoring system (CRMS) is a system that enables area radiation level at various locations in Malaysian Nuclear Agency (Nuklear Malaysia) to be monitored centrally by using a web browser. The Local Area Network (LAN) in Nuclear Malaysia is utilized in CRMS as a communication media for data acquisition of the area radiation levels from radiation detectors. The development of the system involves device configuration, wiring, network and hardware installation, software and web development. This paper describes the software upgrading on the system server that is responsible to acquire and record the area radiation readings from the detectors. The recorded readings are called in a web programming to be displayed on a website. Besides the main feature which is acquiring the area radiation levels in Nuclear Malaysia centrally, the upgrading involves new features such as uniform time interval for data recording and exporting, warning system and dose triggering.

  15. A new measurement method for electrode gain in an orthogonally symmetric beam position monitor

    NASA Astrophysics Data System (ADS)

    Zou, Jun-Ying; Wu, Fang-Fang; Yang, Yong-Liang; Sun, Bao-Gen; Zhou, Ze-Ran; Luo, Qing; Lu, Ping; Xu, Hong-Liang

    2014-12-01

    The new beam position monitor (BPM) system of the injector at the upgrade project of the Hefei Light Source (HLS II) has 19 stripline beam position monitors. Most consist of four orthogonally symmetric stripline electrodes. Differences in electronic gain and mismachining tolerance can cause changes in the beam response of the BPM electrodes. This variation will couple the two measured horizontal positions, resulting in measuring error. To alleviate this effect, a new technique to measure the relative response of the four electrodes has been developed. It is independent of the beam charge, and the related coefficient can be calculated theoretically. The effect of electrode coupling on this technique is analyzed. The calibration data is used to fit the gain for all 19 injector beam position monitors. The results show the standard deviation of the distribution of measured gains is about 5%.

  16. Advanced Light Source beam position monitor

    SciTech Connect

    Hinkson, J.

    1991-10-28

    The Advanced Light Source (ALS) is a synchrotron radiation facility nearing completion at LBL. As a third-generation machine, the ALS is designed to produce intense light from bend magnets, wigglers, and undulators (insertion devices). The facility will include a 50 MeV electron linear accelerator, a 1.5 GeV booster synchrotron, beam transport lines, a 1--2 GeV storage ring, insertion devices, and photon beam lines. Currently, the beam injection systems are being commissioned, and the storage ring is being installed. Electron beam position monitors (BPM) are installed throughout the accelerator and constitute the major part of accelerator beam diagnostics. The design of the BPM instruments is complete, and 50 units have been constructed for use in the injector systems. We are currently fabricating 100 additional instruments for the storage ring. In this paper I discuss engineering fabrication, testing and performance of the beam pickup electrodes and the BPM electronics.

  17. A Two Bunch Beam Position Monitor

    SciTech Connect

    Medvedko, E.; Aiello, R.; Smith, S.; /SLAC

    2011-09-12

    A new beam position monitor digitizer module has been designed, tested and tuned at SLAC. This module, the electron-positron beam position monitor (epBPM), measures position of single electron and positron bunches for the SLC, LINAC, PEPII injections lines and final focus. The epBPM has been designed to improve resolution of beam position measurements with respect to existing module and to speed feedback correction. The required dynamic range is from 5 x 10{sup 8} to 10{sup 11} particles per bunch (46dB). The epBPM input signal range is from {+-}2.5 mV to {+-}500 mV. The pulse-to-pulse resolution is less than 2 {mu}m for 5 x 10{sup 10} particles per bunch for the 12 cm long striplines, covering 30{sup o} at 9 mm radius. The epBPM module has been made in CAMAC standard, single width slot, with SLAC type timing connector. 45 modules have been fabricated. The epBPM module has four input channels X{sup +}, X{sup -}, Y{sup +}, Y{sup -} (Fig. 1), named to correspond with coordinates of four striplines - two in horizontal and two in vertical planes, processing signals to the epBPM inputs. The epBPM inputs are split for eight signal processing channels to catch two bunches, first - the positron, then the electron bunch in one cycle of measurements. The epBPM has internal and external trigger modes of operations. The internal mode has two options - with or without external timing, catching only first bunch in the untimed mode. The epBPM has an on board calibration circuit for measuring gain of the signal processing channels and for timing scan of programmable digital delays to synchronize the trigger and the epBPM input signal's peak. There is a mode for pedestal measurements. The epBPM has 3.6 {mu}s conversion time.

  18. A Bunch Length Monitor for JLab 12 GeV Upgrade

    SciTech Connect

    Ahmad, Mahmoud Mohamad Ali; Freyberger, Arne P.; Gubeli, Joseph F.; Krafft, Geoffrey A.

    2013-12-01

    A continuous non-invasive bunch length monitor for the 12 GeV upgrade of Jefferson Lab will be used to determine the bunch length of the beam. The measurement will be done at the fourth dipole of the injector chicane at 123 MeV using the coherent synchrotron light emitted from the dipole. The estimated bunch length is 333 fs. A vacuum chamber will be fabricated and a Radiabeam real time interferometer will be used. In this paper, background, the estimated calculations and the construction of the chamber will be discussed.

  19. NSLS-II RF BEAM POSITION MONITOR

    SciTech Connect

    Vetter, K.; Della Penna, A. J.; DeLong, J.; Kosciuk, B.; Mead, J.; Pinayev, I.; Singh, O.; Tian, Y.; Ha, K.; Portmann, G.; Sebek J.

    2011-03-28

    An internal R&D program has been undertaken at BNL to develop a sub-micron RF Beam Position Monitor (BPM) for the NSLS-II 3rd generation light source that is currently under construction. The BPM R&D program started in August 2009. Successful beam tests were conducted 15 months from the start of the program. The NSLS-II RF BPM has been designed to meet all requirements for the NSLS-II Injection system and Storage Ring. Housing of the RF BPM's in +-0.1 C thermally controlled racks provide sub-micron stabilization without active correction. An active pilot-tone has been incorporated to aid long-term (8hr min) stabilization to 200nm RMS. The development of a sub-micron BPM for the NSLS-II has successfully demonstrated performance and stability. Pilot Tone calibration combiner and RF synthesizer has been implemented and algorithm development is underway. The program is currently on schedule to start production development of 60 Injection BPM's starting in the Fall of 2011. The production of {approx}250 Storage Ring BPM's will overlap the Injection schedule.

  20. Wire Position Monitoring with FPGA based Electronics

    SciTech Connect

    Eddy, N.; Lysenko, O.; /Fermilab

    2009-01-01

    This fall the first Tesla-style cryomodule cooldown test is being performed at Fermilab. Instrumentation department is preparing the electronics to handle the data from a set of wire position monitors (WPMs). For simulation purposes a prototype pipe with a WMP has been developed and built. The system is based on the measurement of signals induced in pickups by 320 MHz signal carried by a wire through the WPM. The wire is stretched along the pipe with a tensioning load of 9.07 kg. The WPM consists of four 50 {Omega} striplines spaced 90{sup o} apart. FPGA based digitizer scans the WPM and transmits the data to a PC via VME interface. The data acquisition is based on the PC running LabView. In order to increase the accuracy and convenience of the measurements some modifications were required. The first is implementation of an average and decimation filter algorithm in the integrator operation in the FPGA. The second is the development of alternative tool for WPM measurements in the PC. The paper describes how these modifications were performed and test results of a new design. The last cryomodule generation has a single chain of seven WPMs (placed in critical positions: at each end, at the three posts and between the posts) to monitor a cold mass displacement during cooldown. The system was developed in Italy in collaboration with DESY. Similar developments have taken place at Fermilab in the frame of cryomodules construction for SCRF research. This fall preliminary cryomodule cooldown test is being performed. In order to prepare an appropriate electronic system for the test a prototype pipe with a WMP has been developed and built, figure 1. The system is based on the measurement of signals induced in pickups by 320 MHz signal carried by a wire through the WPM. The 0.5 mm diameter Cu wire is stretched along the pipe with a tensioning load of 9.07 kg and has a length of 1.1 m. The WPM consists of four 50 {Omega} striplines spaced 90{sup o} apart. An FPGA based

  1. Upgrading the Digital Electronics of the PEP-II Bunch Current Monitors at the Stanford Linear Accelerator Center

    SciTech Connect

    Kline, Josh; /SLAC

    2006-08-28

    The testing of the upgrade prototype for the bunch current monitors (BCMs) in the PEP-II storage rings at the Stanford Linear Accelerator Center (SLAC) is the topic of this paper. Bunch current monitors are used to measure the charge in the electron/positron bunches traveling in particle storage rings. The BCMs in the PEP-II storage rings need to be upgraded because components of the current system have failed and are known to be failure prone with age, and several of the integrated chips are no longer produced making repairs difficult if not impossible. The main upgrade is replacing twelve old (1995) field programmable gate arrays (FPGAs) with a single Virtex II FPGA. The prototype was tested using computer synthesis tools, a commercial signal generator, and a fast pulse generator.

  2. Photoconducting positions monitor and imaging detector

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    2000-01-01

    A photoconductive, high energy photon beam detector/monitor for detecting x-rays and gamma radiation, having a thin, disk-shaped diamond substrate with a first and second surface, and electrically conductive coatings, or electrodes, of a predetermined configuration or pattern, disposed on the surfaces of the substrate. A voltage source and a current amplifier is connected to the electrodes to provide a voltage bias to the electrodes and to amplify signals from the detector.

  3. Log-ratio technique for beam position monitor systems

    SciTech Connect

    Roberto Aiello, G.; Mills, M.R. )

    1992-07-10

    Recent progress in the development of a beam position monitor system (BPM), based on the log-ratio technique, is described in this paper. A complete electronic analysis is presented, showing linearity, dynamic range, noise, RF burst response, and temperature dependence. A calibration technique has been developed, which corrects the errors due to mismatched channels and electronics drift. This technique is particularly effective because of the log-ratio property for beam position monitoring. This circuit is the most likely candidate for beam position monitor electronics at the SSC.

  4. A photon beam position monitor for SSRL beamline 9

    SciTech Connect

    Cerino, J.A.; Rabedeau, T.; Bowen, W.

    1995-10-01

    We present here the concept of a simple one dimensional photon beam position monitor for use with high power synchrotron radiation beams. It has micron resolution, reasonable linearity in an inexpensive design. Most important, is its insensitivity to diffusely scattered low energy radiation from components upstream of the monitor.

  5. Position calibration methodology for scanning sky monitor for ASTROSAT

    NASA Astrophysics Data System (ADS)

    Ramadevi, M. C.; Ravishankar, B. T.; Seetha, S.

    2011-10-01

    Scanning Sky Monitor (SSM) on ASTROSAT is an X-ray sky monitor which has a large Field of View (FOV) and scans the sky to detect and locate X-ray transient sources in the energy range 2 to 10 keV. Experiments are carried out to calibrate SSM detectors for position response and to verify the calibration constants derived. In this paper we discuss the methodology of position calibration of proportional counters for SSM and results from various experiments.

  6. Prone position craniotomy in pregnancy without fetal heart rate monitoring.

    PubMed

    Jacob, Jean; Alexander, Ashish; Philip, Shoba; Thomas, Anoop

    2016-09-01

    A pregnant patient in second trimester scheduled for posterior fossa craniotomy in prone position is a challenge for the anesthesiologist. Things to consider are physiological changes during pregnancy, non-obstetric surgery in pregnant patients, neuroanesthetic principles, effects of prone positioning, and need for fetal heart rate (FHR) monitoring. We have described the anesthetic management of this case and discussed intra-operative FHR monitoring including controversies about its role, indications, and various options available as per fetal gestational age. In our case we attempted intermittent intra-operative FHR monitoring to optimize maternal positioning and fetal oxygenation even though the fetus was pre-viable. However the attempt was abandoned due to practical difficulties with prone positioning. Patient made good neurological recovery following the procedure and delivered a healthy term baby 4 months later. Decisions regarding fetal monitoring should be individualized based on viability of the fetus and feasibility of emergency cesarean delivery. Good communication between a multidisciplinary team involving neurosurgeon, anesthesiologist, obstetrician, and neonatologist is important for a successful outcome for mother and fetus. We conclude that prone position neurosurgery can safely be carried out in a pregnant patient with pre-viable fetus without FHR monitoring. PMID:27555144

  7. A wire scanning type position monitor for an undulator radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Sugiyama, Hiroshi; Ando, Masami; Xia, Shaojian; Shiwaku, Hideaki

    1995-02-01

    A scanning wire position monitor for insertion devices was designed and installed in an x-ray undulator beam line. It consists of a graphite wire, a copper mesh for electric shielding, and a motor-driven linear guide. The wire of the monitor was tested under the undulator radiation thermal load. It has been found that the signal level of the monitor was proportional to the radiation power density on the wire. Even when the wire crossed the beam during the x-ray experiment, no detectable influence on the experiment was observed.

  8. Progress on the development of APS beam position monitoring system

    SciTech Connect

    Decker, G.; Chung, Youngjoo.

    1991-01-01

    This paper describes the development status of the beam position monitoring system for the Advanced Photon Source (APS), a third-generation light source now under construction at Argonne National Laboratory. The accelerator complex will consist of an electron linac, a positron linac, a positron accumulator ring (PAR), an injector synchrotron and a storage ring. For beam position measurement, striplines will be used on the linacs, while button-type pickups will be used on the injector synchrotron and the storage ring. A test stand with a prototype injector synchrotron beam position monitor (BPM) unit has been built, and we present the results of position calibration measurements using a wire. Comparison of the results with theoretical calculations will be presented. The current effort on similar storage ring BPM system measurements will also be discussed. 4 refs., 5 figs., 2 tabs.

  9. BEAM POSITION AND PHASE MONITORS FOR THE LANSCE LINAC

    SciTech Connect

    McCrady, Rodney C.; Gilpatrick, John D.; Power, John F.

    2011-01-01

    New beam-position and phase monitors are under development for the linac at the Los Alamos Neutron Science Center (LANSCE). Transducers have been designed and are being fabricated. We are considering many options for the electronic instrumentation to process the signals and provide position and phase data with the necessary precision and flexibility to serve the various required functions. We'll present the various options under consideration for instrumentation along with the advantages and shortcomings of these options.

  10. BEAM POSITION AND PHASE MONITORS FOR THE LANSCE LINAC

    SciTech Connect

    McCrady, Rodney C.; Gilpatrick, John D.; Watkins, Heath A.

    2012-04-11

    New beam-position and phase monitors are under development for the linac at the Los Alamos Neutron Science Center (LANSCE.) Transducers have been designed and are being installed. We are considering many options for the electronic instrumentation to process the signals and provide position and phase data with the necessary precision and flexibility to serve the various required functions. We'll present the various options under consideration for instrumentation along with the advantages and shortcomings of these options.

  11. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-05-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  12. EXPERIMENTAL RESULTS FROM A MICROWAVE CAVITY BEAM POSITION MONITOR.

    SciTech Connect

    BALAKIN,V.; BAZHAN,A.; LUNEV,P.; SOLYAK,N.; VOGEL,V.; ZHOGOLEV,P.; LISITSYN,A.; YAKIMENKO,V.

    1999-03-29

    Future Linear Colliders have hard requirements for the beam transverse position stability in the accelerator. A beam Position Monitor (BPM) with the resolution better than 0.1 micron in the single bunch regime is needed to control the stability of the beam position along the linac. Proposed BPM is based on the measurement of the asymmetrical mode excited by single bunch in the cavity. Four stages of signal processing (space-, time-, frequency- and phase-filtering providing the required signal-to-noise ratio) are used to obtain extremely high resolution. The measurement set-up was designed by BINP and installed at ATF/BNL to test experimentally this concept. The set-up includes three two-coordinates BPM's at the frequency of 13.566 GHz, and reference intensity/phase cavity. BPM's were mounted on support table. The two-coordinates movers allow to move and align BPM's along the straight line, using the signals from the beam. The position of each monitor is controlled by the sensors with the accuracy 0.03 micron. The information from three monitors allows to exclude angle and position jitter of the beam and measure BPM resolution. In the experiments the resolution of about 0.15 micron for 0.25 nC beam intensity was obtained, that is close to the value required.

  13. Comparison of beam-position-transfer functions using circular beam-position monitors

    SciTech Connect

    Gilpatrick, J.D.

    1997-10-01

    A cylindrical beam-position monitor (BPM) used in many accelerator facilities has four electrodes on which beam-image currents induce bunched-beam signals. These probe-electrode signals are geometrically configured to provide beam-position information about two orthogonal axes. An electronic processor performs a mathematical transfer function (TF) on these BPM-electrode signals to produce output signals whose time-varying amplitude is proportional to the beam`s vertical and horizontal position. This paper will compare various beam-position TFs using both pencil beams and will further discuss how diffuse beams interact with some of these TFs.

  14. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, S; Boogert, S; Chung, C; Fitsos, P; Frisch, J; Gronberg, J; Hayano, H; Honda, Y; Kolomensky, Y; Lyapin, A; Malton, S; May, J; McCormick, D; Meller, R; Miller, D; Orimoto, T; Ross, M; Slater, M; Smith, S; Smith, T; Terunuma, N; Thomson, M; Urakawa, J; Vogel, V; Ward, D; White, G

    2006-12-18

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {micro}rad over a dynamic range of approximately {+-} 20 {micro}m.

  15. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Joe; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David John; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; /Fermilab /UC, Berkeley /LBL, Berkeley /Cambridge U. /Royal Holloway, U. of London /Cornell U., LNS /LLNL, Livermore /University Coll. London /SLAC /Caltech /KEK, Tsukuba

    2007-06-08

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {mu}rad over a dynamic range of approximately {+-} 20 {mu}m.

  16. Beam position monitors for the Fermilab recycler ring

    NASA Astrophysics Data System (ADS)

    Barsotti, E.; Lackey, S.; McClure, C.; Meadowcroft, R.

    1998-12-01

    Fermilab's new Recycler Ring will recover and cool "used" antiprotons at the end of a Tevatron store and also accumulate "new" antiprotons from the antiproton source. A wideband rf system based on barrier buckets will result in unbunched beam, grouped in one to three separate partitions throughout the ring. A new beam position monitor system will measure position of any one partition at a time, using low-frequency signals from beam distribution edges. A signal path including an elliptical split-plate detector, radiation-resistant tunnel preamplifiers, and logarithmic amplifiers, will result in a held output voltage nearly proportional to position. The results will be digitized using Industry Pack technology and a Motorola MVME162 processor board. The data acquisition subsystem, including digitization and timing for 80 position channels, will occupy two VME slots. System design will be described, with some additional emphasis on the use of logamp chips.

  17. The SLS Storage Ring Vertical Position Monitoring System

    SciTech Connect

    Zelenika, Sasa

    2004-05-12

    The goal of monitoring the vertical position of the SLS machine was achieved by employing a capacitive gauge-based Hydrostatic Leveling System (HLS). Although all the preliminary results showed that the aimed HLS micrometric range resolutions and accuracies have been reached, the long-time behavior of the system revealed considerable drifts. A satisfactory solution could eventually be reached only by adding to the working fluid a fungicide.

  18. Real-Time Coil Position Monitoring System for Biomagnetic Measurements

    NASA Astrophysics Data System (ADS)

    Oyama, Daisuke; Adachi, Yoshiaki; Higuchi, Masanori; Kawai, Jun; Kobayashi, Koichiro; Uehara, Gen

    In this paper, we propose a new method for monitoring the position of marker coils. The marker coil is used for indicating spatial relationship between subject's body and magnetic sensor arrays in biomagnetic measurements, such as magnetoencephalography (MEG) and magnetocardiography (MCG). We developed a real-time marker coil position monitoring system combined with a conventional MEG system. In order to achieve simultaneous measurement of MEG signals and marker signals, we separated their frequency bands. The frequency bands of flux-locked loop (FLL) circuits were separated into three parts by three integrators; low-band, mid-band, and high-band. The second and third bands were assigned for MEG signals and marker signals, respectively. This method can avoid the crosstalk of the marker signals to MEG signals. Marker signals were generated from five marker coils driven by five independent sinusoidal current generators. These signals were continuously measured by the high-band of FLL, and then the coils were localized by FFT processing and solving inverse problem. We succeeded in displaying the localized coil position on a PC monitor once per second in real-time.

  19. Global positioning system interference and satellite anomalous event monitor

    NASA Astrophysics Data System (ADS)

    Marti, Lukas M.

    Global Positioning System satellite Signal Quality Monitoring (SQM) is required to ensure the integrity of the received signal for aviation safety-critical systems. Failure mitigation is not addressed since failure detection ensures system integrity. The GPS Anomalous Event Monitor (GAEM) is introduced, consisting of a GPS receiver serving as an anomaly sensor, and the Software Defined Radio, allowing for a thorough analysis of signal malfunction modes through advanced signal processing techniques. Algorithms to monitor the GPS signal by the anomaly sensor are developed and in case of possible signal inconsistencies the signal is analyzed by the Software Defined Radio. For the purpose of quality monitoring it is essential to understand the impact of the radio frequency front-end on the received signal, and implicitly onto the signal parameter estimation process; otherwise a signal inconsistency may be flagged which is induced by the monitoring system. Thus, radio frequency front-end induced errors are examined and the statistics for signal parameter estimators are derived. As the statistics of an anomalous signal are unknown, a non-parametric, non-homoscedastic (uncommon variance of sample space) statistical test is developed. Berry-Esseen bounds are introduced to quantify convergence and to establish confidence levels. The algorithm is applied to the detection of signal anomalies, with emphasis on interference detection. The algorithms to detect GPS signal anomalies are verified with experimental data. The performance of the interference detection algorithms is demonstrated through data collection in a shielded measurement chamber. Actual GPS signals in combination with interference sources such as narrowband, wideband and pulsed interference were broadcast in the chamber. Subsequently, case studies from continuous GPS monitoring are included and observed anomalies are discussed. The performance demonstration of the GPS anomalous event monitor is concluded with a

  20. Beam position monitor system for PEP-II

    SciTech Connect

    Aiello, G.R.; Johnson, R.G.; Martin, D.J.; Mills, M.R.; Olsen, J.J.; Smith, S.R.

    1997-01-01

    The beam position monitor (BPM) system for PEP-II, the B-Factory under construction at SLAC, is described in this paper. The system must measure closed orbit for a 3-A multibunch beam and turn-by-turn position for a low-current single bunch injected in a 200-ns gap in the multibunch beam. A system that combines broadband and narrowband capabilities and provides data at high bandwidth was designed. It includes a filter-isolator box (FIB) that selects a harmonic of the bunch spacing (952 MHz) and absorbs the other frequency components; a CAMAC-based wideband I&Q demodulator, ADC, and signal processor that provides beam position information to the control system; and a calibrator that must work even in presence of beam, correcting for electronic measurement errors. This paper describes the system requirements, the electronics design, and the laboratory tests. {copyright} {ital 1997 American Institute of Physics.}

  1. A phase-space beam position monitor for synchrotron radiation

    PubMed Central

    Samadi, Nazanin; Bassey, Bassey; Martinson, Mercedes; Belev, George; Dallin, Les; de Jong, Mark; Chapman, Dean

    2015-01-01

    The stability of the photon beam position on synchrotron beamlines is critical for most if not all synchrotron radiation experiments. The position of the beam at the experiment or optical element location is set by the position and angle of the electron beam source as it traverses the magnetic field of the bend-magnet or insertion device. Thus an ideal photon beam monitor would be able to simultaneously measure the photon beam’s position and angle, and thus infer the electron beam’s position in phase space. X-ray diffraction is commonly used to prepare monochromatic beams on X-ray beamlines usually in the form of a double-crystal monochromator. Diffraction couples the photon wavelength or energy to the incident angle on the lattice planes within the crystal. The beam from such a monochromator will contain a spread of energies due to the vertical divergence of the photon beam from the source. This range of energies can easily cover the absorption edge of a filter element such as iodine at 33.17 keV. A vertical profile measurement of the photon beam footprint with and without the filter can be used to determine the vertical centroid position and angle of the photon beam. In the measurements described here an imaging detector is used to measure these vertical profiles with an iodine filter that horizontally covers part of the monochromatic beam. The goal was to investigate the use of a combined monochromator, filter and detector as a phase-space beam position monitor. The system was tested for sensitivity to position and angle under a number of synchrotron operating conditions, such as normal operations and special operating modes where the photon beam is intentionally altered in position and angle at the source point. The results are comparable with other methods of beam position measurement and indicate that such a system is feasible in situations where part of the synchrotron beam can be used for the phase-space measurement. PMID:26134798

  2. Advance techniques for monitoring human tolerance to positive Gz accelerations

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Sandler, H.; Rositano, S.; Skrettingland, K.; Mancini, R.

    1973-01-01

    Tolerance to positive g accelerations was measured in ten normal male subjects using both standard and advanced techniques. In addition to routine electrocardiogram, heart rate, respiratory rate, and infrared television, monitoring techniques during acceleration exposure included measurement of peripheral vision loss, noninvasive temporal, brachial, and/or radial arterial blood flow, and automatic measurement of indirect systolic and diastolic blood pressure at 60-sec intervals. Although brachial and radial arterial flow measurements reflected significant cardiovascular changes during and after acceleration, they were inconsistent indices of the onset of grayout or blackout. Temporal arterial blood flow, however, showed a high correlation with subjective peripheral light loss.

  3. Beam position monitor readout and control in the SLC linac

    SciTech Connect

    Bogart, J.; Phinney, N.; Ross, M.; Yaffe, D.

    1985-04-01

    A beam position monitoring system has been implemented in the first third of the SLC linac which provides a complete scan of the trajectory on a single beam pulse. The data is collected from the local micro-computers and viewed with an updating display at a console or passed on to application programs. The system must operate with interlaced beams so the scans are also interlaced, providing each user with the ability to select the beam, the update rate, and the attenuation level in the digitizing hardware. In addition each user calibrates the hardware for his beam. A description of the system architecture will be presented. 6 refs., 4 figs.

  4. Simulation of PEP-II beam position monitors

    SciTech Connect

    Ng, C.K.; Weiland, T.; Martin, D.; Smith, S.; Kurita, N.

    1995-05-01

    The authors use MAFIA to analyze the PEP-II button-type beam position monitors (BPMs). Employing proper termination of the BPM into a coaxial cable, the output signal at the BPM can be determined. Thus the issues of sensitivity and power output can be addressed quantitatively, including all transient effects and wakefields. Besides this first quantitative analysis of a true BPM 3D structure, they find that internal resonant modes are a major source of high value narrow-band impedances. These are evaluated and methods are presented to suppress these parasitic resonances below the tolerable limit of multibunch instabilities.

  5. Beam position monitor design for a third generation light source

    NASA Astrophysics Data System (ADS)

    Chen, Zhichu; Leng, Yongbin; Ye, Kairong; Zhao, Guobi; Yuan, Renxian

    2014-11-01

    The measurement of the beam orbit plays a very important role in particle accelerators. The button-type beam position monitor (BPM) was designed for the Shanghai Synchrotron Radiation Facility to reduce the impedances and to guarantee a high resolution of the measurement. Position resolution, beam impedance, higher-order mode, and impedance matching have been studied during the design based on the physical parameters of the storage ring at the Shanghai Synchrotron Radiation Facility. Meanwhile, an analytic formula of the BPM broadband impedance was derived based on a resistor-capacitor equivalent circuit. Thus, the impedance of the BPM could be analyzed quantitatively by simply measuring the capacitance of the electrode. This formula had been verified by comparing the results of the calculations of the formula and the simulations in MAFIA.

  6. Noise estimation of beam position monitors at RHIC

    SciTech Connect

    Shen, X.; Bai, M.; Lee, S. Y.

    2014-02-10

    Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable optics measurement and beam dynamics analysis based on turn-by-turn data.

  7. Resolution of a High Performance Cavity Beam Position Monitor System

    SciTech Connect

    Walston, S; Chung, C; Fitsos, P; Gronberg, J; Ross, M; Khainovski, O; Kolomensky, Y; Loscutoff, P; Slater, M; Thomson, M; Ward, D; Boogert, S; Vogel, V; Meller, R; Lyapin, A; Malton, S; Miller, D; Frisch, J; Hinton, S; May, J; McCormick, D; Smith, S; Smith, T; White, G; Orimoto, T; Hayano, H; Honda, Y; Terunuma, N; Urakawa, J

    2005-09-12

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved - ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. A metrology system for the three BPMs was recently installed. This system employed optical encoders to measure each BPM's position and orientation relative to a zero-coefficient of thermal expansion carbon fiber frame and has demonstrated that the three BPMs behave as a rigid-body to less than 5 nm. To date, we have demonstrated a BPM resolution of less than 20 nm over a dynamic range of +/- 20 microns.

  8. Position Stability Monitoring of THEthe LCLS Undulator Quadrupoles

    SciTech Connect

    Nuhn, Heinz Dieter; Gassner, Georg; Peters, Franz; /SLAC

    2012-03-26

    X-ray FELs demand that the positions of undulator components be stable to less than 1 {mu}m per day. Simultaneously, the undulator length increases significantly in order to saturate at x-ray wavelengths. To minimize the impact of the outside environment, the Linac Coherent Light Source (LCLS) undulator is placed underground, but reliable data about ground motion inside such a tunnel was not available in the required stability range during the planning phase. Therefore, a new position monitor system had been developed and installed with the LCLS undulator. This system is capable of measuring x, y, roll, pitch and yaw of each of the 33 undulator quadrupoles with respect to stretched wires. Instrument resolution is about 10 nm and instrument drift is negligible. Position data of individual quadrupoles can be correlated along the entire 132-m long undulator. The system has been under continuous operation since 2009. This report describes long term experiences with the running system and the observed positional stability of the undulator quadrupoles.

  9. A two-bunch beam position monitor performance evaluation

    SciTech Connect

    Traller, R.; Medvedko, E.; Smith, S.; Aiello, R.

    1998-12-01

    New beam position processing electronics for the Linear Accelerator allow faster feedback and processing of both positron and electron bunch positions in a single machine pulse. More than 30 electron-positron beam position monitors (epBPMs) have been installed at SLAC in various applications and have met all design requirements. The SLC production electron bunch follows the positron bunch down the linac separated by 58.8 nS. The epBPM measures the position of both bunches with an accuracy of better than 5 {mu}m at nominal operating intensities. For SLC, the epBPMs have measured the position of bunches consisting of from 1 to 8{times}10{sup 10} particles per bunch. For PEP-II ({ital B} Factory) injection, epBPMs have been used with larger electrodes and several BPMs have been combined on a single cable set. The signals are separated for measurement in the epBPM by timing. In PEP-II injection we have measured the position of bunches of as little as 2{times}10{sup 9} particles per bunch. To meet the demands of SLC and PEP-II injection, the epBPM has been designed with three triggering modes: 1. As a self-triggering detector, it can trigger off the beam and hold the peak signal until read out by the control program. 2. The gated mode uses external timing signals to gate the beam trigger. 3. The external trigger mode uses the external timing signals offset with internal vernier delays to precisely catch peak signals in noisy environments. Finally, the epBPM also has built-in timing verniers capable of nulling errors in cable set fabrication and differences in channel-to-channel signal delay. Software has made all this functionality available through the SLC control system. {copyright} {ital 1998 American Institute of Physics.}

  10. A two-bunch beam position monitor performance evaluation

    SciTech Connect

    Traller, Robert; Medvedko, Evgeny; Smith, Steve; Aiello, Roberto

    1998-12-10

    New beam position processing electronics for the Linear Accelerator allow faster feedback and processing of both positron and electron bunch positions in a single machine pulse. More than 30 electron-positron beam position monitors (epBPMs) have been installed at SLAC in various applications and have met all design requirements. The SLC production electron bunch follows the positron bunch down the linac separated by 58.8 nS. The epBPM measures the position of both bunches with an accuracy of better than 5 {mu}m at nominal operating intensities. For SLC, the epBPMs have measured the position of bunches consisting of from 1 to 8x10{sup 10} particles per bunch. For PEP-II (B Factory) injection, epBPMs have been used with larger electrodes and several BPMs have been combined on a single cable set. The signals are separated for measurement in the epBPM by timing. In PEP-II injection we have measured the position of bunches of as little as 2x10{sup 9} particles per bunch. To meet the demands of SLC and PEP-II injection, the epBPM has been designed with three triggering modes: 1. As a self-triggering detector, it can trigger off the beam and hold the peak signal until read out by the control program. 2. The gated mode uses external timing signals to gate the beam trigger. 3. The external trigger mode uses the external timing signals offset with internal vernier delays to precisely catch peak signals in noisy environments. Finally, the epBPM also has built-in timing verniers capable of nulling errors in cable set fabrication and differences in channel-to-channel signal delay. Software has made all this functionality available through the SLC control system.

  11. Volcano monitoring using the Global Positioning System: Filtering strategies

    USGS Publications Warehouse

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  12. Video-based beam position monitoring at CHESS

    NASA Astrophysics Data System (ADS)

    Revesz, Peter; Pauling, Alan; Krawczyk, Thomas; Kelly, Kevin J.

    2012-10-01

    CHESS has pioneered the development of X-ray Video Beam Position Monitors (VBPMs). Unlike traditional photoelectron beam position monitors that rely on photoelectrons generated by the fringe edges of the X-ray beam, with VBPMs we collect information from the whole cross-section of the X-ray beam. VBPMs can also give real-time shape/size information. We have developed three types of VBPMs: (1) VBPMs based on helium luminescence from the intense white X-ray beam. In this case the CCD camera is viewing the luminescence from the side. (2) VBPMs based on luminescence of a thin (~50 micron) CVD diamond sheet as the white beam passes through it. The CCD camera is placed outside the beam line vacuum and views the diamond fluorescence through a viewport. (3) Scatter-based VBPMs. In this case the white X-ray beam passes through a thin graphite filter or Be window. The scattered X-rays create an image of the beam's footprint on an X-ray sensitive fluorescent screen using a slit placed outside the beam line vacuum. For all VBPMs we use relatively inexpensive 1.3 Mega-pixel CCD cameras connected via USB to a Windows host for image acquisition and analysis. The VBPM host computers are networked and provide live images of the beam and streams of data about the beam position, profile and intensity to CHESS's signal logging system and to the CHESS operator. The operational use of VBPMs showed great advantage over the traditional BPMs by providing direct visual input for the CHESS operator. The VBPM precision in most cases is on the order of ~0.1 micron. On the down side, the data acquisition frequency (50-1000ms) is inferior to the photoelectron based BPMs. In the future with the use of more expensive fast cameras we will be able create VBPMs working in the few hundreds Hz scale.

  13. Beam position monitor system of J-PARC RCS

    NASA Astrophysics Data System (ADS)

    Hayashi, N.; Kawase, M.; Hatakeyama, S.; Hiroki, S.; Saeki, R.; Takahashi, H.; Teruyama, Y.; Toyokawa, R.; Arakawa, D.; Hiramatsu, S.; Lee, S.; Satou, K.; Tejima, M.; Toyama, T.

    2012-06-01

    The J-PARC RCS is a 25 Hz Rapid-Cycling proton Synchrotron and its designed beam power is 1 MW. The beam position monitor (BPM) system at J-PARC RCS is described in this paper. The pre-defined diameter of the BPM detectors is larger than 250 mm, however, the system has to measure the beam position very accurately. In addition, it is necessary to have a large dynamic range. The system should work not only for the high intensity but also for low intensity, such as during beam commissioning, when the intensity is below 1% of the design intensity. There are 54 BPM detectors around the ring and most of them are placed inside steering magnets because of quite limited space. The BPM detector is an electro-static type and it has four electrodes, and a pair of electrodes gives a good linear response with a diagonal cut shape to detect the charge center precisely. The signal processing units, which are equipped with 14-bit 40 MS/s ADC and 600 MHz DSP, have been developed. They are accessed via shared memory space and controlled by EPICS. Such a processing unit is capable of recording the full 25 Hz pulse data for the so-called "COD mode" (averaged beam position calculation) and it can also store the whole waveform data for further analysis, like turn-by-turn position calculation. The resolution was estimated to be 20 μm for "COD mode" and to be 0.3 mm for the turn-by-turn mode with relatively low intensity of 8×1011 ppp. The position accuracy is estimated to be about 0.5 mm using a newly developed Beam Based Alignment (BBA) method.

  14. New generation electronics applied to beam position monitors

    SciTech Connect

    Unser, K.B.

    1997-01-01

    Cellular telephones and global positioning system (GPS) satellite receivers are examples of modern rf engineering. Taking some inspiration from those designs, a precision signal-processor module for beam position monitors was developed. It features a heterodyne receiver (100 MHz to 1 GHz) with more than 90 dB dynamic range. Four multiplexed input channels are able to resolve signal differences lower than 0.0005 dB with good long-term stability. This corresponds to sub-micron resolution when used with a beam position pick-up with 40 mm free aperture. The paper concentrates on circuit design and modern dynamic testing methods, used first during development and later for production tests. The frequency synthesizer of the local oscillator, the phase-locked synchronous detector, and the low-noise preamplifier with automatic gain control are discussed. Other topics are design for immunity to electromagnetic interference to ensure reliable operation in an accelerator environment. {copyright} {ital 1997 American Institute of Physics.}

  15. Digital Beam Position Monitor for the Happex Experiment

    SciTech Connect

    S.R. Kauffman; H. Dong; A. Freyberger; L. Kaufman; J. Musson

    2005-05-16

    The proposed HAPPEX experiment at CEBAF employs a three cavity monitor system for high-precision (1 mm), high-bandwidth (100 kHz) position measurements. This is performed using a cavity triplet consisting of two TM110-mode cavities (one each for X and Y planes) combined with a conventional TM-010-mode cavity for a phase and magnitude reference. Traditional systems have used the TM010 cavity output to directly down convert the BPM cavity signals to base band. The Multi-channel HAPPEX digital receiver simultaneously I/Q samples each cavity and extracts position using a CORDIC algorithm. The hardware design consists of a digital receiver daughter board and digital processor motherboard that resides in a VXI crate. The daughter board down converts 1.497 GHz signals from the TM010 cavity and X and Y signals from the TM110 cavities to 4 MHz, and extracts the quadrature digital signals. The motherboard processes this data and computes beam intensity and X-Y positions with a resolution of one mm, 100 kHz output bandwidth, and overall latency of ten microseconds. The results are available in both analog and digital format.

  16. Digital beam position monitor for the HAPPEX experiment

    SciTech Connect

    Sherlon Kauffman; John Musson; Hai Dong; Lisa Kaufman; Arne Freyberger

    2005-05-01

    The proposed HAPPEX experiment at CEBAF employs a three cavity monitor system for high precision (1um), high bandwidth (100 kHz) position measurements. This is performed using a cavity triplet consisting of two TM110-mode cavities (one each for X and Y planes) combined with a conventional TM010-mode cavity for a phase and magnitude reference. Traditional systems have used the TM010 cavity output to directly down convert the BPM cavity signals to base band. The multi-channel HAPPEX digital receiver simultaneously I/Q samples each cavity and extracts position using a CORDIC algorithm. The hardware design consists of a RF receiver daughter board and a digital processor motherboard that resides in a VXI crate. The daughter board down converts 1.497 GHz signals from the TM010 cavity and X and Y signals from the TM110 cavities to 3 MHz and extracts the quadrature digital signals. The motherboard processes this data and computes beam intensity and X-Y positions with resolution of 1um, 100 kHz output bandwidth, and overall latency of 1us. The results are available in both the analog and digital format.

  17. Contributions to the building and upgrading of the Greenland Ice Sheet Monitoring Network (GLISN)

    NASA Astrophysics Data System (ADS)

    Reusch, A. M.; Childs, D.; Anderson, K. R.

    2011-12-01

    The GLISN project began in 2009 and is now a 10-nation collaborative project (Canada, Denmark, France, Germany, Italy, Japan, Norway, Poland, Switzerland and the USA) with a long-term goal of establishing a real-time broadband seismic network of 25 stations within and around Greenland. The GLISN project provides publicly available data distributed by the IRIS Data Management Center that researchers can use in the characterization of tectonic and glacial earthquakes as well as other cryo-seismic phenomena (e.g. iceberg calving events, seiches, tidal patterns, and the draining of supra-glacial lakes). Cooperation among the 10 nations has provided a wealth of material and knowledge resources, contributing to the success of the project as a whole. At the same time, involving multiple intra-national and international organizations has also required increased efforts in coordination and shared decision-making. As of August 2011, the IRIS PASSCAL Instrument Center has contributed to the effort by building, installing and maintaining 6 new and upgrading 5 existing broadband seismic stations at both coastal and interior sites. Three of the 11 GLISN stations were installed along the main ice divide. Two of these ridge sites are equipped with borehole sensors in addition to the standard surface sensor, and all 3 stations have real-time geodetic-quality GPS receivers. The GLISN stations take advantage of the latest methods and technologies field-tested in Antarctica and other high-latitude regions by the PASSCAL Instrument Center. All stations are designed to operate year-round with cold-rated instrumentation, autonomous power generation (solar and wind) or protected AC power delivery systems when grid power is available. Data and state of health communication is through the Internet, when available, or via Iridium modem. The latter currently provides daily station state of health information along with a 10s data segment on an hourly basis. Development of an Iridium link is

  18. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  19. Architecture of a Silicon Strip Beam Position Monitor

    SciTech Connect

    Angstadt, R.; Cooper, W.; Demarteau, M.; Green, J.; Jakubowski, S.; Prosser, A.; Rivera, R.; Turqueti, M.; Utes, M.; Cai, X.; /Beijing, Inst. High Energy Phys.

    2010-10-01

    A collaboration between Fermilab and the Institute for High Energy Physics (IHEP), Beijing, has developed a beam position monitor for the IHEP test beam facility. This telescope is based on 5 stations of silicon strip detectors having a pitch of 60 microns. The total active area of each layer of the detector is about 12 x 10 cm{sup 2}. Readout of the strips is provided through the use of VA1 ASICs mounted on custom hybrid printed circuit boards and interfaced to Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards amplify and level-shift the signal for input to the Fermilab CAPTAN data acquisition nodes for data readout and channel configuration. These nodes deliver readout and temperature data from triggered events to an analysis computer over gigabit Ethernet links.

  20. Performance of a reentrant cavity beam position monitor

    NASA Astrophysics Data System (ADS)

    Simon, Claire; Luong, Michel; Chel, Stéphane; Napoly, Olivier; Novo, Jorge; Roudier, Dominique; Rouvière, Nelly; Baboi, Nicoleta; Mildner, Nils; Nölle, Dirk

    2008-08-01

    The beam-based alignment and feedback systems, essential operations for the future colliders, require high resolution beam position monitors (BPMs). In the framework of the European CARE/SRF program, a reentrant cavity BPM with its associated electronics was developed by the CEA/DSM/Irfu in collaboration with DESY. The design, the fabrication, and the beam test of this monitor are detailed within this paper. This BPM is designed to be inserted in a cryomodule, work at cryogenic temperature in a clean environment. It has achieved a resolution better than 10μm and has the possibility to perform bunch to bunch measurements for the x-ray free electron laser (X-FEL) and the International Linear Collider (ILC). Its other features are a small size of the rf cavity, a large aperture (78 mm), and an excellent linearity. A first prototype of a reentrant cavity BPM was installed in the free electron laser in Hamburg (FLASH), at Deutsches Elektronen-Synchrotron (DESY) and demonstrated its operation at cryogenic temperature inside a cryomodule. The second, installed, also, in the FLASH linac to be tested with beam, measured a resolution of approximately 4μm over a dynamic range ±5mm in single bunch.

  1. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    SciTech Connect

    Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.; /Fermilab

    2011-11-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  2. Evaluation of alternatives for upgrading double shell tank corrosion monitoring at Hanford

    SciTech Connect

    Nelson, J.L.

    1996-02-23

    Recent discovery of low hydroxide conditions in Double Shell Tanks have demonstrated that the current corrosion control system of waste sampling and analysis is inadequate to monitor and maintain specified chemistries for dilute and low volume waste tanks. Moreover, waste sampling alone cannot provide adequate information to resolve the questions raised regarding tank corrosion. This report evaluates available technologies which could be used to improve on the existing corrosion control system. The evaluation concludes that a multi-technique corrosion monitoring system is necessary, utilizing ultrasonic and visual examinations for direct evaluation of tank liner condition, probes for rapid detection (alarm) of corrosive conditions, and waste sampling and analysis for determination of corrective action. The probes would incorporate electrochemical noise and linear polarization resistance techniques. When removed from the waste tank, the probe electrodes would be physically examined as corrosion coupons. The probes would be used in addition to a modified regimen of waste sampling and the existing schedule for ultrasonic examination of the tank liners. Supporting information would be obtained by examination of in-tank equipment as it is removed.

  3. Upgrading wet granulation monitoring from hand squeeze test to mixing torque rheometry

    PubMed Central

    Sakr, Walid F.; Ibrahim, Mohamed A.; Alanazi, Fars K.; Sakr, Adel A.

    2011-01-01

    With over 50 years of research in granulation technology, however more research is required to elucidate this widely applicable technology. Wetting phenomena could influence redistribution of individual ingredients within a granule according their solubility and also could affect the drying processes. Binder selection for a particular system is quite often empirical and dependent on the skills and experience of the formulator. Hand squeeze test was and still the main way for determination of wet granulation end point, but it is subjected to individual variation. It depends mainly on operator experience, so it is not possible to be validated. Literature reveals a variety of advanced monitoring techniques following up different wet massing stages. Torque measurement has been proved to be the most reliable control method as its tight relation to mass resistance. Many reports showed successful applications of mixing torque rheometer (MTR) for monitoring the wet massing procedure and scale up in addition to some preformulation applications. MTR as a new approach allows formulators to select a liquid addition range where the granule growth behavior is more predictable. PMID:23960772

  4. Monitoring the ionospheric positioning error with a GNSS dense network

    NASA Astrophysics Data System (ADS)

    Wautelet, Gilles; Lejeune, Sandrine; Warnant, René

    2010-05-01

    MSTID and an "ionospheric wall" (TEC depletion) caused by an extreme geomagnetic storm. In both cases, equatorwards direction of propagation was clearly visible on polar plots. Indeed, baselines oriented parallel to the direction of propagation of disturbances are more affected by TEC gradients than others. SoDIPE-RTK is therefore a tool which allows not only to assess the effect of ionospheric disturbances on relative positioning but also to monitor propagation patterns of such disturbances while run through a GPS dense network. Finally, we propose a service dedicated to GNSS relative positioning users based on SoDIPE-RTK. Every 15 minutes, each AGN baseline is mapped in a given color ranging from green (quiet conditions) to red (extreme conditions). This easy-to-use application allows registered users to access to local information about current ionospheric conditions on the field.

  5. Analysis of the Reactor Position Independent Monitor (PIM) Diagnostic

    SciTech Connect

    Hayes-Sterbenz, Anna Catherine

    2014-07-17

    In this note I analyze the physics determining the proposed reactor position independent monitor (PIM), which is the ratio (240Pu/239Pu)1/3 × (135Cs/137Cs)1/2. The PIM ratios in any reactor fuel is shown to increase monotonically with the time over which the fuel is irradiated. This is because the Cs ratio determines the neutron flux, while the Pu isotopic ratio is determined by the flux times the irradiation time. If the irradiation time for all fuel rods across the reactor is fixed, the PIM ratio is approximately constant in all rods. However, no information can be extracted from the PIM ratio on Pu isotopics unless both the flux (or Cs ratio) and the irradiation time (from, say, Ru isotopics) are known separately, i.e., the PIM ratio is not a fundamental parameter of any reactor. Thus, unless the PIM ratio has been measured for the specific fuel under interrogation, no information can be deduced from measurements or reactor simulations of PIM ratios in different fuel from the same reactor. However, if a PIM measurement has been in one spent fuel rod from a given reactor, all other rods that are known to have been in the reactor for the same irradiation period can be assumed to have approximately the same PIM ratio.

  6. Beam position monitor electronics using DC coupled demodulating logarithmic amplifiers

    SciTech Connect

    Aiello, G.R.; Mills, M.R.

    1992-03-01

    An electronics circuit operating up to 120 MHz suitable for Beam Position Monitor signal processing is described. Two different channels process signals from the electrodes. Each channel is realized with two cascaded DC coupled demodulating logarithmic amplifiers, providing an output voltage proportional to the logarithm of the input signal amplitude. The outputs from the two channels are processed by differential and summing amplifiers. The difference output produces a voltage proportional to the beam displacement between the electrodes, but both the difference and sum outputs are digitized in order to allow for a software correction of the gain and offset mismatches. The electronics show better characteristics than previous implementations utilizing log-amp circuits. The dynamic range has been increased, keeping the linearity error smaller than 1% over a 65 dB input signal range. The noise characteristics have been improved providing good resolution at low currents. The RF burst response has also been tested showing good characteristics for use on a Linac or Transfer Line. One prototype, working at 60 MHz, has been built and is planned for use on one or more machines at the SSC.

  7. Global positioning system measurements over a strain monitoring network in the eastern two-thirds of the United States

    SciTech Connect

    Strange, W.E.

    1991-09-01

    A 45-station geodetic network was established in 1987 using global positioning system (GPS) technology to provide a means of monitoring strain and deformation in the central and eastern United States. Reduction of the initial epoch data showed that accuracies of 1 to 3 cm can be achieved for horizontal position, provided sufficient observations are available and there are four or more fiducial stations whose positions are known a priori, for example from Very Long Baseline Interferometry measurements. Accuracies obtained provide the ability to determine strain at the 1:10{sup 7} to 1:10{sup 8} level. Vertical positions are less accurate because of problems in modeling refraction and are determined at the 5 to 7 cm level. It is planned to remeasure this network at regular intervals in the coming years to place bounds on the strain occurring in the central and eastern United States. This network is also expected to serve as a reference network for more detailed monitoring networks in areas of high risk such as the New Madrid area. Future measurements are expected to provide more accurate results because of increased numbers of GPS satellites available and improved computation software. The improved software will also allow future upgrading of the accuracy of the 1987 observations. 3 figs., 5 tabs.

  8. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    SciTech Connect

    Not Available

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  9. Transmission-mode diamond white-beam position monitor at NSLS

    SciTech Connect

    Muller E. M.; Heroux A.; Smedley, J.; Bohon, J.; Yang, X.; Gaowei, M.; Skinner, J.; De Geronimo, G.; Sullivan, M.; Allaire, M.; Keister, J. W.; Berman, L.

    2012-05-01

    Two transmission-mode diamond X-ray beam position monitors installed at National Synchrotron Light Source (NSLS) beamline X25 are described. Each diamond beam position monitor is constructed around two horizontally tiled electronic-grade (p.p.b. nitrogen impurity) single-crystal (001) CVD synthetic diamonds. The position, angle and flux of the white X-ray beam can be monitored in real time with a position resolution of 500 nm in the horizontal direction and 100 nm in the vertical direction for a 3 mm x 1 mm beam. The first diamond beam position monitor has been in operation in the white beam for more than one year without any observable degradation in performance. The installation of a second, more compact, diamond beam position monitor followed about six months later, adding the ability to measure the angular trajectory of the photon beam.

  10. Design and development of a long-travel positioning actuator and tandem constant force actuator safety system for the Hobby Eberly Telescope wide-field upgrade

    NASA Astrophysics Data System (ADS)

    Mollison, Nicholas T.; Mock, Jason R.; Soukup, Ian M.; Beets, Timothy A.; Good, John M.; Beno, Joseph H.; Kriel, Herman J.; Hinze, Sarah E.; Wardell, Douglas R.; Heisler, James T.

    2010-07-01

    The Wide Field Upgrade presents a five-fold increase in mass for the Hobby-Eberly Telescope's* tracker system. The design of the Hobby-Eberly Telescope places the Prime Focus Instrument Package (PFIP) at a thirty-five degree angle from horizontal. The PFIP and its associated hardware have historically been positioned along this uphill axis (referred to as the telescope's Y-axis) by a single screw-type actuator. Several factors, including increased payload mass and design for minimal light obscuration, have led to the design of a new and novel configuration for the Y-axis screw-drive as part of the tracker system upgrade. Typical screw-drive designs in this load and travel class (approximately 50 kilonewtons traveling a distance of 4 meters) utilize a stationary screw with the payload translating with the moving nut component. The new configuration employs a stationary nut and translating roller screw affixed to the moving payload, resulting in a unique drive system design. Additionally, a second cable-actuated servo drive (adapted from a system currently in use on the Southern African Large Telescope) will operate in tandem with the screw-drive in order to significantly improve telescope safety through the presence of redundant load-bearing systems. Details of the mechanical design, analysis, and topology of each servo drive system are presented in this paper, along with discussion of the issues such a configuration presents in the areas of controls, operational and failure modes, and positioning accuracy. Findings and results from investigations of alternative telescope safety systems, including deformable crash barriers, are also included.

  11. Stereo optical tracker for standoff monitoring of position and orientation

    NASA Astrophysics Data System (ADS)

    Sherman, W. D.; Houk, T. L.; Saint Clair, J. M.; Sjoholm, P. F.; Voth, M. D.

    2009-01-01

    A Precision Optical Measurement System (POMS) has been designed, constructed and tested for tracking the position (x, y, z) and orientation (roll, pitch, yaw) of models in Boeing's 9-77 Compact Radar Range. A stereo triangulation technique is implemented using two remote sensor units separated by a known baseline. Each unit measures pointing angles (azimuth and elevation) to optical targets on a model. Four different reference systems are used for calibration and alignment of the system's components and two platforms. Pointing angle data and calibration corrections are processed at high rates to give near real-time feedback to the mechanical positioning system of the model. The positional accuracy of the system is +/- .010 inches at a distance of 85 feet while using low RCS reflective tape targets. The precision measurement capabilities and applications of the system are discussed.

  12. Support means for a particle beam position monitor

    DOEpatents

    VanZwienen, W.H.

    1991-01-29

    A support means is disclosed for a plurality of thermally deformable component parts that are concentrically mounted within a thermally expandable housing. The support means includes a plurality of pins that are mounted in relatively fixed or sliding relationship to either one of the concentrically positioned components or to the housing, and the pins are positioned to extend through aligned apertures in the remaining components or the housing in a manner such that the pins are free to slide in a snug relationship relative to the sides of the holes through those components or the housing. The support means enables the concentrically mounted components and the housing to undergo expansion and contraction movement, radially and longitudinally relative to one another, while maintaining concentricity of the components and the housing relative to one another. 3 figures.

  13. Support means for a particle beam position monitor

    DOEpatents

    VanZwienen, William H.

    1991-01-01

    A support means for a plurality of thermally deformable component parts that are concentrically mounted within a thermally expandable housing. The support means includes a plurality of pins that are mounted in relatively fixed or sliding relationship to either one of the concentrically positioned components or to the housing, and the pins are positioned to extend through aligned apertures in the remaining components or the housing in a manner such that the pins are free to slide in a snug relationship relative to the sides of the holes through those components or the housing. The support means enables the concentrically mounted components and the housing to undergo expansion and contraction movement, radially and longitudinally relative to one another, while maintaining concentricity of the components and the housing relative to one another.

  14. A major upgrade of the global Mercator Océan ocean monitoring and forecasting system and corresponding product quality improvements

    NASA Astrophysics Data System (ADS)

    Dombrowsky, Eric; Drillet, Yann; Legalloudec, Olivier; Lellouche, Jean Michel; Regnier, Charly

    2013-04-01

    Mercator Océan (the French ocean forecast service provider) was setup in France about 10 years ago by all the French organizations holding stakes in ocean forecasting. It has since then constantly developed and is currently operating operational ocean forecasting systems based on state-of-the-art Ocean General Circulation Models (OGCM, we use the NEMO code) assimilating the observations of the Global Ocean Observing System (remote sensing + in situ). The mandate of Mercator Océan is to cover the global ocean at a resolution sufficient to both simulate the physics including the eddies (eddy resolving) and take the maximum benefit from the GOOS via data assimilation. To do so, Mercator Océan is strongly connected to the ocean modeling and data assimilation research communities, at French, European and international levels. Mercator Océan is engaged in the Global Monitoring for Environment and Security (GMES) European initiative and is currently coordinating a European consortium (~60 partners) gathering all the European skills in ocean monitoring and forecasting to build the Marine forecast component of the GMES service. This is currently done in the MyOcean II EU funded project (project started in 2012). Within the MyOcean consortium, among other commitments, Mercator Océan is the operator of the global ocean forecasting system, and one of the providers of global ocean reanalysis products. In this context (MyOcean V3 service), we have implemented a major upgrade of the systems operated at Mercator Océan ., including improvements in the model configurations, in data assimilation and product elaboration and serving. This concerns especially the global eddy resolving system (1/12° global) which is operational providing daily service. We focus our presentation on product quality, showing how these upgrades correspond to product improvements, and illustrating how the users are served with better quality products, thanks to this upgrade.

  15. Evoked Potential Monitoring Identifies Possible Neurological Injury During Positioning for Craniotomy

    PubMed Central

    Anastasian, Zirka H.; Ramnath, Brian; Komotar, Ricardo J.; Bruce, Jeffrey N.; Sisti, Michael B.; Gallo, Edward J.; Emerson, Ronald G.; Heyer, Eric J.

    2009-01-01

    Somatosensory evoked potential (SSEP) monitoring is commonly used to detect changes in nerve conduction and prevent impending nerve injury. We present a case series of 2 patients who had SSEP monitoring for their surgical craniotomy procedure, and who, upon positioning supine with their head tilted 30–45 degrees, developed unilateral upper extremity SSEP changes. These SSEP changes were reversed when the patients were repositioned. These cases indicate the clinical usefulness of monitoring SSEPs while positioning the patient and adjusting position accordingly to prevent injury. PMID:19690251

  16. Development of position sensitive proportional counters for hot particle detection in laundry and portal monitors

    SciTech Connect

    Shonka, J.J.; Schwahn, S.O.; Bennett, T.E.; Misko, D.J.

    1992-09-01

    This report summarizes research which demonstrates the use of position sensitive proportional counters in contamination monitoring systems. Both laundry monitoring and portal monitoring systems were developed. The laundry monitor was deployed at a nuclear power plant where it was used to monitor clothing during an outage. Position sensitive proportional counter based contamination monitoring systems were shown to have significant advantages over systems using conventional proportional counters. These advantages include the ability to directly measure the area and quantity of contamination. This capability permits identification of hot particles. These systems are also capable of self calibration via internal check sources. Systems deployed with this technology should benefit from reduced complexity, cost and maintenance. The inherent reduction of background that occurs when the counter is electronically divided into numerous detectors permits operation in high background radiation fields and improves detection limits over conventional technology.

  17. Compact integrated X-ray intensity and beam position monitor based on rare gas scintillation

    SciTech Connect

    Revesz, Peter; Ruff, Jacob; Dale, Darren; Krawczyk, Thomas

    2013-05-15

    We have created and tested a compact integrated X-ray beam intensity and position monitor using Ar-gas scintillation. The light generated inside the device's cavity is detected by diametrically opposed PIN diodes located above and below the beam. The intensity is derived from the sum of the top and bottom signals, while the beam position is calculated from the difference-over-sum of the two signals. The device was tested at Cornell High Energy Synchrotron Source with both 17 keV and 59 keV x-rays. For intensity monitoring, the Ar-scintillation monitor performance is comparable to standard ion chambers in terms of precision. As an X-ray beam position monitor the new device response is linear with vertical beam position over a 2 mm span with a precision of 2 {mu}m.

  18. Continuous non-invasive monitoring improves blood pressure stability in upright position: randomized controlled trial.

    PubMed

    Benes, Jan; Simanova, Alena; Tovarnicka, Tereza; Sevcikova, Silvie; Kletecka, Jakub; Zatloukal, Jan; Pradl, Richard; Chytra, Ivan; Kasal, Eduard

    2015-02-01

    Intermittent blood pressure (BP) monitoring is the standard-of-care during low and intermediate risk anaesthesia, yet it could lead to delayed recognition of BP fluctuations. Perioperative hypotension is known to be associated with postoperative complications. Continuous, non-invasive methods for BP monitoring have been developed recently. We have tested a novel non-invasive, continuous monitor (using the volume clamp method) to assist with maintaining BP in safe ranges for patients undergoing surgery in a beach chair position. Forty adult patients undergoing thyroid gland surgery in an upright position were included in this prospective randomised controlled trial. Patients were equally allocated to the group with continuous monitoring of BP using the CNAP® Monitor and to the control group managed using an intermittent oscillometric BP cuff. The absolute and proportional time spent outside the range of ±20% of the target BP along with other hemodynamic and clinical parameters were evaluated. The continuous monitoring decreased the anaesthesia time spent below -20% pressure range [absolute: 12 min (4-20) vs. 27 min (16-34); p=0.001; relative to procedure length: 14% (7-20) vs. 33.5% (17.5-53); p=0.003]. No significant differences were observed in postoperative morbidity or in hospital length of stay. Continuous non-invasive BP monitoring via the CNAP® Monitor allows for better BP management in patients undergoing surgery in a beach chair position. In our randomised trial the time spent in hypotension was significantly shorter using continuous monitoring. PMID:24841333

  19. RHIC BPM SYSTEM PERFORMANCE, UPGRADES, AND TOOLS.

    SciTech Connect

    SATOGATA,T.; CAMERON,P.; CERNIGLIA,P.; CUPOLO,J.; DAWSON,C.; DEGEN,C.; MEAD,J.; PTITSYN,V.; SIKORA,R.

    2002-06-02

    During the RHIC 2001-2 run, the beam position monitor (BPM) system provided independent average orbit and turn-by-turn (TBT) position measurements at 162 locations in each measurement plane and RHIC ring. TBT acquisition was successfully upgraded from 128 turns to 1024 turns per trigger, including injection. Closed orbits were acquired and automatically archived every two seconds through each acceleration ramp for orbit analysis and feed-forward orbit correction. This paper presents the overall system performance during this run, including precision, reproducibility, radiation damage, and analysis tools. We also summarize future plans, including million-turn TBT acquisition for nonlinear dynamics studies.

  20. Diagnostic Systems Plan for the Advanced Light Source Top-OffUpgrade

    SciTech Connect

    Barry, Walter; Chin, Mike; Robin, David; Sannibale, Fernando; Scarvie, Tom; Steier, Christoph

    2005-05-10

    The Advanced Light Source (ALS) will soon be upgraded to enable top-off operations [1], in which electrons are quasi-continuously injected to produce constant stored beam current. The upgrade is structured in two phases. First, we will upgrade our injector from 1.5 GeV to 1.9 GeV to allow full energy injection and will start top-off operations. In the second phase, we will upgrade the Booster Ring (BR) with a bunch cleaning system to allow high bunch purity top-off injection. A diagnostics upgrade will be crucial for success in both phases of the top-off project, and our plan for it is described in this paper. New booster ring diagnostics will include updated beam position monitor (BPM) electronics, a tune monitoring system, and a new scraper. Two new synchrotron light monitors and a beam stop will be added to the booster-to-storage ring transfer line (BTS), and all the existing beam current monitors along the accelerator chain will be integrated into a single injection efficiency monitoring application. A dedicated bunch purity monitor will be installed in the storage ring (SR). Together, these diagnostic upgrades will enable smooth commissioning of the full energy injector and a quick transition to high quality top-off operation at the ALS.

  1. High resolution upgrade of the ATF damping ring BPM system

    SciTech Connect

    Terunuma, N.; Urakawa, J.; Frisch, J.; May, J.; McCormick, D.; Nelson, J.; Seryi, A.; Smith, T.; Woodley, M.; Briegel, C.; Dysert, R.; /Fermilab

    2008-05-01

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished in its first stage, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital downconversion techniques, digital signal processing, and also tests a new automatic gain error correction schema. The technical concept and realization, as well as preliminary results of beam studies are presented.

  2. Status of the ATF Damping Ring BPM Upgrade Project

    SciTech Connect

    Briegel, C.; Eddy, N.; Haynes, B.; May, J.; McCormick, D.; Nelson, J.; Nicklaus, D.; Prieto, P.; Rechenmacher, R.; Smith, T.; Teranuma, N.; Urakawa, J.; Voy, D.; Wendt, M.; Woodley, M.; /SLAC

    2011-12-01

    A substantial upgrade of the beam position monitors (BPM) at the ATF (Accelerator Test Facility) damping ring is currently in progress. Implementing digital read-out signal processing techniques in line with an optimized, low-noise analog downconverter, a resolution well below 1 mum could be demonstrated at 20 (of 96) upgraded BPM stations. The narrowband, high resolution BPM mode permits investigation of all types of non-linearities, imperfections and other obstacles in the machine which may limit the very low target aimed vertical beam emittance of < 2 pm. The technical status of the project, first beam measurements and an outlook to it's finalization are presented.

  3. Method and apparatus for optically monitoring the angular position of a rotating mirror

    NASA Technical Reports Server (NTRS)

    Lansing, J. C., Jr.; Cline, R. W. (Inventor)

    1974-01-01

    An optical system monitors the angular position of a rotating scanning mirror to indicate the effective start and end of each scan. At a certain angular position, a ray of energy transmitted to the mirror is reflected a plurality of times between the reflectors associated with the optical system and the line on the mirror parallel to the axis, and then to a detector to sense that angular position. A single optical system may be arranged to sense a plurality of different angular positions for each revolution of the mirror.

  4. Optoacoustic technique for noninvasive monitoring of endotracheal tube placement and positioning

    NASA Astrophysics Data System (ADS)

    Prough, Donald S.; Petrov, Yuriy; Petrov, Irene; Kinsky, Michael; Esenaliev, Rinat O.

    2011-03-01

    Improper placement or positioning of an endotracheal tube may be lethal. Correct placement and positioning of endotracheal tubes is an essential component of life support during resuscitation from cardiac arrest or severe multiple trauma, during mechanical ventilatory support and during most surgical procedures under general anesthesia. To properly ventilate the lungs, endotracheal tubes must be inserted into the trachea rather than the esophagus, must be properly positioned in the mid-trachea and must remain properly positioned. We proposed to use optoacoustic technique for noninvasive monitoring of endotracheal tube placement and positioning. In this work we developed a compact, near infrared optoacoustic system for this application and performed in vitro tests of the system. The tests were performed in tissue phantoms (simulating overlying tissue) with an endotracheal tube. The optoacoustic measurements were noninvasively performed from the skin surface using custom-made optoacoustic probes. The placement and positioning of the endotracheal tubes were monitored with submillimeter axial and millimeter lateral resolution using the optoacoustic system. The obtained data indicate that optoacoustics can provide real-time, precise, cost-effective monitoring of placement and positioning of endotracheal tubes.

  5. Beam position monitoring in the AGS Linac to Booster transfer line

    SciTech Connect

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-12-31

    A beam position monitor system has been developed and used in the commissioning of Brookhaven`s Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper will provide a system overview and report results from the commissioning experience.

  6. Beam position monitoring in the AGS Linac to Booster transfer line

    SciTech Connect

    Shea, T.J.; Brodowski, J.; Witkover, R.

    1991-01-01

    A beam position monitor system has been developed and used in the commissioning of Brookhaven's Linac to Booster transfer line. This line transports a chopped, RF modulated H- beam from the 200 MeV Linac to the AGS Booster. Over a 15dB dynamic range in beam current, the position monitor system provides a real-time, normalized position signal with an analog bandwidth of about 20 MHz. Seven directional coupler style pickups are installed in the line with each pickup sensing both horizontal and vertical position. Analog processing electronics are located in the tunnel and incorporate the amplitude modulation to phase modulation normalization technique. To avoid interference from the 200 MHz linac RF system, processing is performed at 400 MHz. This paper will provide a system overview and report results from the commissioning experience.

  7. Design Updates of the X-ray Beam Position Monitor for Beamline Front Ends

    NASA Astrophysics Data System (ADS)

    Shu, Deming; Singh, Om; Hahne, Michael; Decker, Glenn

    2007-01-01

    At the Advanced Photon Source (APS), each insertion device (ID) beamline front end has two x-ray beam position monitors (XBPMs) to monitor the x-ray beam position in both the vertical and horizontal directions. The XBPMs measure photoelectrons generated from the CVD-diamond-based sensory blades and deduce the beam position by comparison of the relative signals from the blades. Using the method proposed by G. Decker, which involves the introduction of a chicane into the accelerator lattice that directs unwanted x-rays away from the photosensitive XBPM blades, the photon source stability has been improved by addition of XBPMs in the storage ring global orbit feedback. In recent years, design updates for the XBPM mechanical structure and geometric configuration have been made to improve its performance. We present these design updates in this paper. Test results of the XBPM design updates are also discussed here.

  8. Resolving two beams in beam splitters with a beam position monitor

    SciTech Connect

    Kurennoy, S.

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device. In the Advanced Hydrotest Facility (AHF), 20-ns beam pulses (bunches) are extracted from the 50-GeV main proton synchrotron and then are transported to the target by an elaborated transport system. The beam transport system splits the beam bunches into equal parts in its splitting sections so that up to 12 synchronous beam pulses can be delivered to the target for the multi-axis proton radiography. Information about the transverse positions of the beams in the splitters, and possibly the bunch longitudinal profile, should be delivered by some diagnostic devices. Possible candidates are the circular wall current monitors in the circular pipes connecting the splitter elements, or the conventional stripline BPMs. In any case, we need some estimates on how well the transverse positions of the two beams can be resolved by these monitors.

  9. Uncovering beam position monitor noise at the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Shen, X.; Lee, S. Y.; Bai, M.

    2015-01-01

    We apply the independent component analysis (ICA) algorithm to uncover intrinsic noise in the beam position monitor (BPM) system. Numerical simulations found that ICA is efficient in the BPM noise estimation. The ICA algorithm is applied to the turn-by-turn data at the Relativistic Heavy Ion Collider. We found the distribution of the BPM noise level, which is consistent with the Johnson-Nyquist thermal noise model. The ICA analysis of turn-by-turn data can be used in neuronetwork feasibility of monitoring a storage ring parasitically.

  10. Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array

    PubMed Central

    Guo, Xiaoliang; Zhu, Rong

    2016-01-01

    This paper reports a novel microarray chip for in-situ, real-time and selective electroporation on individual cells integrated with cell positioning and impedance monitoring. An array of quadrupole-electrode units (termed positioning electrodes) and pairs of planar center electrodes located at the centers of each quadrupole-electrode unit were fabricated on the chip. The positioning electrodes are used to trap and position living cells onto the center electrodes based on negative dielectrophoresis (nDEP). The center electrodes are used for in-situ cell electroporation, and also used to measure cell impedance for monitoring cellular dynamics in real time. Controllably selective electroporation and electrical measurement on the cells in array are realized. We present an evidence of selective electroporation through use of fluorescent dyes. Subsequently we use in-situ and real-time impedance measurement to monitor the process, which demonstrates the dynamic behavior of the cell electroporation. Finally, we show the use of this device to perform successful transfection onto individual HeLa cells with vector DNA encoding a green fluorescent. PMID:27507603

  11. A Method for Monitoring the Underground Mining Position Based on the Blasting Source Location

    NASA Astrophysics Data System (ADS)

    Meng, Xiu-zhi; Wang, Zong-sheng; Zhang, Zeng-zhi; Wang, Feng-qian

    2013-01-01

    Some small and medium-sized coal mines are mining beyond their mining boundary driven by profit. The illegal activities cause many mine disasters but effective supervision is very hard to achieve, especially for underground coal mining. Nowadays, artificial blasting operation is widely used in tunneling or mining in small and medium-sized coal mines. A method for monitoring the underground mining position by monitoring the blasting source position is firstly introduced in this paper. The blasting vibration waves are picked up by the detectors and dealt by the signal acquisition sub-station, and then sent to the principal computer. The blasting source is located by the principal computer and displayed in the mine’s electronic map. The blasting source position is located in 10 seconds after the first P wave reaching the detector, whose error is registered within 20 meters by field-proven method. Auto-monitoring of the underground mining position in real-time is solved better and management level is improved using this method.

  12. Controllable in-situ cell electroporation with cell positioning and impedance monitoring using micro electrode array.

    PubMed

    Guo, Xiaoliang; Zhu, Rong

    2016-01-01

    This paper reports a novel microarray chip for in-situ, real-time and selective electroporation on individual cells integrated with cell positioning and impedance monitoring. An array of quadrupole-electrode units (termed positioning electrodes) and pairs of planar center electrodes located at the centers of each quadrupole-electrode unit were fabricated on the chip. The positioning electrodes are used to trap and position living cells onto the center electrodes based on negative dielectrophoresis (nDEP). The center electrodes are used for in-situ cell electroporation, and also used to measure cell impedance for monitoring cellular dynamics in real time. Controllably selective electroporation and electrical measurement on the cells in array are realized. We present an evidence of selective electroporation through use of fluorescent dyes. Subsequently we use in-situ and real-time impedance measurement to monitor the process, which demonstrates the dynamic behavior of the cell electroporation. Finally, we show the use of this device to perform successful transfection onto individual HeLa cells with vector DNA encoding a green fluorescent. PMID:27507603

  13. Residual Gas X-ray Beam Position Monitor Development for PETRA III

    SciTech Connect

    Ilinski, P.; Hahn, U.; Schulte-Schrepping, H.; Degenhardt, M.

    2007-01-19

    The development effort is driven by the need for a new type of x-ray beam position monitor (XBPM), which will detect the centre of gravity of the undulator beam. XBPMs based on the ionization of a residual gas are considered being the candidate for this future ''white'' undulator beam XBPMs. A number of residual gas XBPM prototypes for the PETRA III storage ring were developed and tested. Tests were performed at DESY and the ESRF, resolution of beam position up to 5 {mu}m is reported. The further development of the RGXBPMs will be focused on improvements of resolution, readout speed and reliability.

  14. Positioning.

    ERIC Educational Resources Information Center

    Conone, Ruth M.

    The key to positioning is the creation of a clear benefit image in the consumer's mind. One positioning strategy is creating in the prospect's mind a position that takes into consideration the company's or agency's strengths and weaknesses as well as those of its competitors. Another strategy is to gain entry into a position ladder owned by…

  15. Evaluation and Correction of the Non-linear Distortion of CEBAF Beam Position Monitors

    SciTech Connect

    M. Spata, T.L. Allison, K.E. Cole, J. Musson, J. Yan

    2011-09-01

    The beam position monitors at CEBAF have four antenna style pickups that are used to measure the location of the beam. There is a strong nonlinear response when the beam is far from the electrical center of the device. In order to conduct beam experiments at large orbit excitation we need to correct for this nonlinearity. The correction algorithm is presented and compared to measurements from our stretched wire BPM test stand.

  16. Beam Position and Phase Monitors Characterized and Installed in the LANSCE CCL

    SciTech Connect

    Gilpatrick, John D; Kutac, Vincent G.; Martinez, Derwin; McCrady, Rodney C.; O'Hara, James F.; Olivas, Felix R.; Shurter, Robert B.; Watkins, Heath A.

    2012-04-11

    The Los Alamos Neutron Science Center - Risk Mitigation Project is in the process of replacing older Coupled-Cavity-Linac (CCL) Beam-Position Monitors (BPMs) with newer Beam Position and Phase Monitors (BPPMs) and their associated electronics and cable plants. In many locations, these older BPMs include a separate Delta-T loop for measuring the beam's central phase and energy. Thirty-one BPPMs have been installed and many have monitored the charged particle beam. The installation of these newer BPPMs is the first step to installing complete BPPM measurement systems. Prior to the installation, a characterization of each BPPM took place. The characterization procedure includes a mechanical inspection, a vacuum testing, and associated electrical tests. The BPPM electrical tests for all four electrodes include contact resistance measurements, Time Domain Reflectometer (TDR) measurements, relative 201.25-MHz phase measurements, and finally a set of position-sensitive mapping measurements were performed which included associated fitting routines. This paper will show these data for a typical characterized BPPM.

  17. Self-Monitoring across Age and Ability Levels: Teaching Students to Implement Their Own Positive Behavioral Interventions

    ERIC Educational Resources Information Center

    Ganz, Jennifer B.

    2008-01-01

    The author aims to provide practitioners (e.g., teachers, clinicians, parents) with a review of the research on the use of self-monitoring, a positive behavioral support, with children with disabilities. The author includes a description of the steps used to implement self-monitoring; examples of the implementation of self-monitoring with children…

  18. A national upgrade of the climate monitoring grid in Sri Lanka. The place of Open Design, OSHW and FOSS.

    NASA Astrophysics Data System (ADS)

    Chemin, Yann; Bandara, Niroshan; Eriyagama, Nishadi

    2015-04-01

    The National Climate Observatory of Sri lanka is a proposition designed for the Government of Sri Lanka in September and discussed with private and public stakeholders in November 2014. The idea was initially to install a networked grid of weather instruments from locally-made open source hardware technology, on land and seas, that report live the state of climate. After initial stakeholder meetings, it was agreed to first try to connect any existing weather stations from different governmental and private sector agencies. This would bring existing information to a common ground through the Internet. At this point, it was realized that extracting information from various vendors set up would take a large amount of efforts, that is still the best and fastest anyway, as considerations from ownership and maintenance are the most important issues in a tropical humid country as Sri Lanka. Thus, the question of Open Design, open source hardware (OSHW) and free and open source software (FOSS) became a pivotal element in considering operationalization of any future elements of a national grid. Reasons range from ownership, to low-cost and customization, but prominently it is about technology ownership, royalty-free and local availability. Building on previous work from (Chemin and Bandara, 2014) we proposed to open design specifications and prototypes for weather monitoring for various kinds of needs, the Meteorological Department clearly specified that the highest variability observed spatially in Sri Lanka is rainfall, and their willingness to investigate OSHW electronics using their new team of electronics and sensors specialists. A local manufacturer is providing an OSHW micro-controller product, a start up is providing additional sensor boards under OSHW specifications and local manufacture of the sensors (tipping-bucket and other wind sensors) is under development and blueprints have been made available in the Public Domain for CNC machine, 3D printing or Plastic

  19. Online monitoring of alpine slope instabilities with L1 GPS Real Time Kinematic Positions

    NASA Astrophysics Data System (ADS)

    Su, Zhenzhong; Geiger, Alain; Limpach, Philippe; Beutel, Jan; Gsell, Tonio; Buchli, Bernhard; Gruber, Stephan; Wirz, Vanessa; Sutton, Felix

    2014-05-01

    Real time (RT) monitoring the kinematic displacement of moving landforms is of great interest to geologists and geomorphologists. Differential GPS carrier phase processing is able to compute real time kinematic (RTK) positions with an accuracy of several centimeters. The accurate kinematic position means better temporal resolution compare to static daily solution. Cost-effective L1 GPS units make deployment of higher density network affordable, which means better spatial resolution. Moreover, the real time capability is critical in the context of early warning scenarios. In this work, we present an online system for monitoring of alpine slope instabilities developed in the framework of the X-Sense project. First, a short introduction about the system will be given, from RT data transfer to RT GPS data processing and the online visualization of results. Second, we demonstrate the real time solutions and we show that GPS signal delay induced by None-Line-of-Sight (NLOS) propagation (like diffraction and reflection delays) is the major error source degrading the accuracy of computed RTK positions in short baseline process. For static stations, we model the error based on the solutions of previous days, and use the model to correct present and future solutions. For stations in motion, we propose to make use of carrier-to-noise ratio (C/N0) to appropriate dilute or correct NLOS error. By doing so, the standard deviation and especially the maximum deviation of computed RTK positions are significantly reduced.

  20. The data quality monitoring system of non-cable self-positioning seismographs

    NASA Astrophysics Data System (ADS)

    Zheng, F.; Lin, J.; Linhang, Z.; Hongyuan, Y.; Zubin, C.; Huaizhu, Z.; Sun, F.

    2013-12-01

    Seismic exploration is the most effective and promising geophysical exploration methods, it inverts underground geological structure by recording crust vibration caused by nature or artificial means. In order to get rid of the long-term dependence on imported seismographs, China pays more and more attention to the independent research and development of seismic exploration equipment. This study is based on the self-invented non-cable self-positioning seismographs of Jilin University. Non-cable seismographs have many advantages such as simple arrangement, light, easy to move, easy to maintain, low price, large storage space and high-quality data, they especially apply to complex terrain and field construction environment inconvenient laying big lines. The built-in integration of GPS realizes precise clock synchronization, fast and accurate self-positioning for non-cable seismographs. The low power design and the combination of built-in rechargeable battery and external power can effectively improve non-cable seismographs` working time, which ensures the stability of exploration and construction. In order to solve the problem that the non-cable seismographs are difficult to on-site data monitor and also to provide non-cable seismographs` ability of real-time data transmission, We integrate the wireless communication technology into non-cable seismographs, combing instrument, electronic, communication, computer and many other subject knowledge, design and develop seismic exploration field work control system and seismic data management system. Achieve two research objectives which are real-time data quality monitoring in the resource exploration field and status monitoring of large trace spacing long-term observations for seismographs. Through several field experiments in different regions, we accumulate a wealth of experience, and the experiments effectively prove the good practical performance of non-cable self-positioning seismographs and data quality monitoring

  1. A real-time applicator position monitoring system for gynecologic intracavitary brachytherapy

    SciTech Connect

    Xia, Junyi Waldron, Timothy; Kim, Yusung

    2014-01-15

    Purpose: To develop a real-time applicator position monitoring system (RAPS) for intracavitary brachytherapy using an infrared camera and reflective markers. Methods: 3D image-guided brachytherapy requires high accuracy of applicator localization; however, applicator displacement can happen during patient transfer for imaging and treatment delivery. No continuous applicator position monitoring system is currently available. The RAPS system was developed for real-time applicator position monitoring without additional radiation dose to patients. It includes an infrared camera, reflective markers, an infrared illuminator, and image processing software. After reflective markers are firmly attached to the applicator and the patient body, applicator displacement can be measured by computing the relative change in distance between the markers. The reflective markers are magnetic resonance imaging (MRI) compatible, which is suitable for MRI-guided HDR brachytherapy paradigm. In our prototype, a Microsoft Kinect sensor with a resolution of 640 by 480 pixels is used as an infrared camera. A phantom study was carried out to compare RAPS' measurements with known displacements ranging from −15 to +15 mm. A reproducibility test was also conducted. Results: The RAPS can achieve 4 frames/s using a laptop with Intel{sup ®} Core™2 Duo processor. When the pixel size is 0.95 mm, the difference between RAPS' measurements and known shift values varied from 0 to 0.8 mm with the mean value of 0.1 mm and a standard deviation of 0.44 mm. The system reproducibility was within 0.6 mm after ten reposition trials. Conclusions: This work demonstrates the feasibility of a real-time infrared camera based gynecologic intracavitary brachytherapy applicator monitoring system. Less than 1 mm accuracy is achieved when using an off-the-shelf infrared camera.

  2. Beam position and total current monitor for heavy ion fusion beams

    SciTech Connect

    Berners, D.; Reginato, L.L.

    1992-10-01

    Heavy Ion Fusion requires moderate currents, 1-10A, for a duration of about 1 {mu}s. For accurate beam transport, the center of charge must be located to within {plus_minus} 100 {mu}m. Beam position and intensity may be excited at frequencies approaching 10 MHz, and the monitoring system must have adequate bandwidth to respond at these frequencies. We have modified the Rogowski technique by using distributed reactance multiturn magnetic loops so that it is suitable for measuring current position as well as amplitude. Four identical stripline coils are wound one per quadrant around a non magnetic core. The sensitivity is similar to that of a lumped coil system, with the added advantage of increased bandwidth. The voltages induced on the four separate coils are compared and suitable signal conditioning is performed to recover beam position and intensity information.

  3. Beam position and total current monitor for heavy ion fusion beams

    SciTech Connect

    Berners, D.; Reginato, L.L.

    1992-10-01

    Heavy Ion Fusion requires moderate currents, 1-10A, for a duration of about 1 [mu]s. For accurate beam transport, the center of charge must be located to within [plus minus] 100 [mu]m. Beam position and intensity may be excited at frequencies approaching 10 MHz, and the monitoring system must have adequate bandwidth to respond at these frequencies. We have modified the Rogowski technique by using distributed reactance multiturn magnetic loops so that it is suitable for measuring current position as well as amplitude. Four identical stripline coils are wound one per quadrant around a non magnetic core. The sensitivity is similar to that of a lumped coil system, with the added advantage of increased bandwidth. The voltages induced on the four separate coils are compared and suitable signal conditioning is performed to recover beam position and intensity information.

  4. A wire scanner system for characterizing the BNL energy recovery LINAC beam position monitor system

    SciTech Connect

    Michnoff R.; Biscardi, C.; Cerniglia, P.; Degen, C.; Gassner, D.; Hoff, L.; Hulsart, R.

    2012-04-15

    A stepper motor controlled wire scanner system has recently been modified to support testing of the Brookhaven National Laboratory (BNL) Collider-Accelerator department's Energy Recovery Linac (ERL) beam position monitor (BPM) system. The ERL BPM consists of four 9.33 mm diameter buttons mounted at 90 degree spacing in a cube with 1.875 inch inside diameter. The buttons were designed by BNL and fabricated by Times Microwave Systems. Libera brilliance single pass BPM electronic modules with 700 MHz bandpass filter, manufactured by Instrumentation Technologies, will be used to measure the transverse beam positions at 14 locations around the ERL. The wire scanner assembly provides the ability to measure the BPM button response to a pulsed wire, and evaluate and calibrate the Libera position measurement electronics. A description of the wire scanner system and test result data will be presented.

  5. Hiresmon: A Fast High Resolution Beam Position Monitor for Medium Hard and Hard X-Rays

    SciTech Connect

    Menk, Ralf Hendrik; Giuressi, Dario; Arfelli, Fulvia; Rigon, Luigi

    2007-01-19

    The high-resolution x-ray beam position monitor (XBPM) is based on the principle of a segmented longitudinal ionization chamber with integrated readout and USB2 link. In contrast to traditional transversal ionization chambers here the incident x-rays are parallel to the collecting field which allows absolute intensity measurements with a precision better than 0.3 %. Simultaneously the beam position in vertical and horizontal direction can be measured with a frame rate of one kHz. The precision of position encoding depends only on the SNR of the synchrotron radiation and is in the order of micro meters at one kHz frame rate and 108 photon /sec at 9 KeV.

  6. A GPS/GNSS dense network used to monitor ionospheric positioning error

    NASA Astrophysics Data System (ADS)

    Wautelet, G.; Lejeune, S.; Warnant, R.

    2010-12-01

    GPS/GNSS networks are, for the last few years, quickly expanding their density all over the surface of the globe. The present idea is to use this density in order to assess the effect of ionospheric disturbances on relative positioning but also to monitor their propagation patterns. Local variability in the ionospheric electron density can dramaticaly affect the reliability of GPS/GNSS real time applications. In particular, Traveling Ionospheric Disturbances (TID's) or plasma instability due to geomagnetic storms can induce strong disturbances in relative positioning. It is therefore useful to develop an integrity monitoring service based on a GPS/GNSS dense network. To assess the effects of ionospheric activity on relative positioning, the SoDIPE-RTK software (Software for Determining the Ionospheric Positionning Error on RTK) has been developed at the Royal Meteorological Institute of Belgium. The approach consists in computing the positioning error due to the ionosphere and has been applied, as a proof of concept, on the Belgian dense network. This network called Active Geodetic Network (AGN) is composed of 66 GPS (dual-frequency) stations. In order to ensure a successful ambiguity resolution for both L1 and L2 carriers, baselines larger than 40 km are not taken into account in the analysis. In a first step, we assess the nominal RTK precision for each baseline during quiet ionospheric conditions (i.e. a background of low Total Electron Content (TEC) variability). The observed positioning accuracy is ~1 cm and depends mainly on baseline length and satellite geometry at the two considered stations. In a second step, the impact of two ionospheric events on positioning error (a medium scale TID and a powerful geomagnetic storm) is evaluated. As expected, the study demonstrates that the largest effects are observed during the occurrence of the geomagnetic storm with an ionospheric positioning error reaching 0.9 m. The maximal positioning error observed during the

  7. Through-wafer optical probe characterization for microelectromechanical systems positional state monitoring and feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    2000-12-01

    Implementation of closed-loop microelectromechanical system (MEMS) control enables mechanical microsystems to adapt to the demands of the environment that they are actuating, opening a broad range of new opportunities for future MEMS applications. Integrated optical microsystems have the potential to enable continuous in situ optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation that is necessary for realization of feedback control. We present the results of initial research evaluating through-wafer optical microprobes for surface micromachined MEMS integrated optical position monitoring. Results from the through-wafer free-space optical probe of a lateral comb resonator fabricated using the multiuser MEMS process service (MUMPS) indicate significant positional information content with an achievable return probe signal dynamic range of up to 80% arising from film transmission contrast. Static and dynamic deflection analysis and experimental results indicate a through-wafer probe positional signal sensitivity of 40 mV/micrometers for the present setup or 10% signal change per micrometer. A simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure given the availability of positional state information.

  8. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  9. The LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Dosil Suárez, Álvaro

    2016-07-01

    The upgrade of the LHCb experiment, planned for 2019, will transform the experiment to a trigger-less system reading out the full detector at 40 MHz event rate. All data reduction algorithms will be executed in a high-level software farm. The upgraded detector will run at luminosities of 2×1033 cm-2 s-1 and probe physics beyond the Standard Model in the heavy flavour sector with unprecedented precision. The Vertex Locator (VELO) is the silicon vertex detector surrounding the interaction region. The current detector will be replaced with a hybrid pixel system equipped with electronics capable of reading out at 40 MHz. The detector comprises silicon pixel sensors with 55×55 μm2 pitch, read out by the VeloPix ASIC, based on the TimePix/MediPix family. The hottest region will have pixel hit rates of 900 Mhits/s yielding a total data rate more than 3 Tbit/s for the upgraded VELO. The detector modules are located in a separate vacuum, separated from the beam vacuum by a thin custom made foil. The detector halves are retracted when the beams are injected and closed at stable beams, positioning the first sensitive pixel at 5.1 mm from the beams. The material budget will be minimised by the use of evaporative CO2 coolant circulating in microchannels within 400 μm thick silicon substrates.

  10. A configurable electronics system for the ESS-Bilbao beam position monitors

    NASA Astrophysics Data System (ADS)

    Muguira, L.; Belver, D.; Etxebarria, V.; Varnasseri, S.; Arredondo, I.; del Campo, M.; Echevarria, P.; Garmendia, N.; Feuchtwanger, J.; Jugo, J.; Portilla, J.

    2013-09-01

    A versatile and configurable system has been developed in order to monitorize the beam position and to meet all the requirements of the future ESS-Bilbao Linac. At the same time the design has been conceived to be open and configurable so that it could eventually be used in different kinds of accelerators, independent of the charged particle, with minimal change. The design of the Beam Position Monitors (BPMs) system includes a test bench both for button-type pick-ups (PU) and striplines (SL), the electronic units and the control system. The electronic units consist of two main parts. The first part is an Analog Front-End (AFE) unit where the RF signals are filtered, conditioned and converted to base-band. The second part is a Digital Front-End (DFE) unit which is based on an FPGA board where the base-band signals are sampled in order to calculate the beam position, the amplitude and the phase. To manage the system a Multipurpose Controller (MC) developed at ESSB has been used. It includes the FPGA management, the EPICS integration and Archiver Instances. A description of the system and a comparison between the performance of both PU and SL BPM designs measured with this electronics system are fully described and discussed.

  11. Monitoring mobility in older adults using global positioning system (GPS) watches and accelerometers: a feasibility study.

    PubMed

    Webber, Sandra C; Porter, Michelle M

    2009-10-01

    This exploratory study examined the feasibility of using Garmin global positioning system (GPS) watches and ActiGraph accelerometers to monitor walking and other aspects of community mobility in older adults. After accuracy at slow walking speeds was initially determined, 20 older adults (74.4 +/- 4.2 yr) wore the devices for 1 day. Steps, distances, and speeds (on foot and in vehicle) were determined. GPS data acquisition varied from 43 min to over 12 hr, with 55% of participants having more than 8 hr between initial and final data-collection points. When GPS data were acquired without interruptions, detailed mobility information was obtained regarding the timing, distances covered, and speeds reached during trips away from home. Although GPS and accelerometry technology offer promise for monitoring community mobility patterns, new GPS solutions are required that allow for data collection over an extended period of time between indoor and outdoor environments. PMID:19940324

  12. GPS/GLONASS time offset monitoring based on combined Precise Point Positioning (PPP) approach

    NASA Astrophysics Data System (ADS)

    Huang, G.; Zhang, Q.; Fu, W.; Guo, H.

    2015-06-01

    A new strategy is proposed to monitor GPS/GLONASS time offsets for common navigation users using a combined GPS/GLONASS Precise Point Positioning (PPP) method based on the orbit and clock products of different time scales. The results of the inter-system GPS/GLONASS time offset, the user time offset and the inter-system device delay difference were obtained using the proposed method. The properties of these results were analyzed in terms of the stability, precision and variation characteristics. Moreover, the practicality of the time offset results in an actual navigation application was tested and demonstrated. The results indicate that the monitoring and prediction of the user time offset, but not the inter-system time offset, has important values for navigation users.

  13. Positioning of Embedded Optical Fibres Sensors for the Monitoring of Buckling in Stiffened Composite Panels

    NASA Astrophysics Data System (ADS)

    Riccio, A.; Di Caprio, F.; Camerlingo, F.; Scaramuzzino, F.; Gambino, B.

    2013-02-01

    A numerical/experimental study on the monitoring of the skin buckling phenomenon in stiffened composite panels by embedding optical fibres is presented in this paper. A numerical procedure has been introduced able to provide the most efficient embedded optical fibre path (with minimum length) fulfilling the grating sensors locations and directions requirements whilst satisfying specific embedding/integrity constraints for the optical fibre. The developed numerical procedure has been applied to a stiffened composite panel under compression load. The best location and direction of the grating sensors and the optimal optical fibre path for the monitoring of the skin buckling phenomenon have been found by performing respectively non-linear FEM analyses and optimization analyses. The procedure has been validated by means of an experimental testing activity on a stiffened panel instrumented with embedded optical fibres and back-to-back strain gauges which have been positioned according to the numerically estimated grating sensors locations and directions.

  14. Intrafraction displacement of prone versus supine prostate positioning monitored by real-time electromagnetic tracking.

    PubMed

    Butler, Wayne M; Merrick, Gregory S; Reed, Joshua L; Murray, Brian C; Kurko, Brian S

    2013-01-01

    Implanted radiofrequency transponders were used for real-time monitoring of the intrafraction prostate displacement between patients in the prone position and the same patients in the supine position. Thirteen patients had three transponders implanted transperineally and were treated prone with a custom-fitted thermoplastic immobilization device. After collecting data from the last fraction, patients were realigned in the supine position and the displacements of the transponders were monitored for 5-7 minutes. Fourier transforms were applied to the data from each patient to determine periodicity and its amplitude. To remove auto correlation from the stream of displacement data, the distribution of short-term and long-term velocity components were calculated from Poincaré plots of paired sequential vector displacements. The mean absolute displacement was significantly greater prone than supine in the superior-inferior (SI) plane (1.2 ± 0.6 mm vs. 0.6 ± 0.4 mm, p= 0.015), but not for the lateral or anterior-posterior (AP) planes. Displacements were least in the lateral direction. Fourier analyses showed the amplitude of respiratory oscillations was much greater for the SI and AP planes in the prone versus the supine position. Analysis of Poincaré plots confirmed greater short-term variance in the prone position, but no difference in the long-term variance. The centroid of the implanted transponders was offset from the treatment isocenter by > 5 mm for 1.9% of the time versus 0.8% of the time for supine. These results confirmed significantly greater net intrafraction prostate displacement of patients in the prone position than in the supine position, but most of the difference was due to respiration-induced motion that was most pronounced in the SI and AP directions. Because the respiratory motion remained within the action threshold and also within our 5 mm treatment planning margins, there is no compelling reason to choose one treatment position over the other

  15. Monitoring motion and measuring relative position of the Chang'E-3 rover

    NASA Astrophysics Data System (ADS)

    Liu, Qinghui; Zheng, Xin; Huang, Yong; Li, Peijia; He, Qingbao; Wu, Yajun; Guo, Li; Tang, Mingle

    2014-11-01

    Same-beam very long baseline interferometry observations were performed between the rover and the lander of Chang'E-3 and differential phase delay data were obtained with the minimum random error of about 0.03 ps. These data were used to monitor the rover motions, as small as several centimeters, including movement, turning, and attitude adjustment. The relative position between the rover and the lander was precisely measured with an accuracy of 1 m, which is an improvement of 10 times compared with that of the Apollo project.

  16. High-Precision Resonant Cavity Beam Position, Emittance And Third-Moment Monitors

    SciTech Connect

    Barov, N.; Kim, J.S.; Weidemann, A.W.; Miller, R.H.; Nantista, C.D.; /SLAC

    2006-03-14

    Linear colliders and FEL facilities need fast, nondestructive beam position and profile monitors to facilitate machine tune-up, and for use with feedback control. FAR-TECH, Inc., in collaboration with SLAC, is developing a resonant cavity diagnostic to simultaneously measure the dipole, quadrupole and sextupole moments of the beam distribution. Measurements of dipole and quadrupole moments at multiple locations yield information about beam orbit and emittance. The sextupole moment can reveal information about beam asymmetry which is useful in diagnosing beam tail deflections caused by short-range dipole wakefields. In addition to the resonance enhancement of a single-cell cavity, use of a multi-cell standing-wave structure further enhances signal strength and improves the resolution of the device. An estimated resolution is better than 1 {micro}m in rms beam size and better than 1 nm in beam position.

  17. Design and performance of a high resolution, low latency stripline beam position monitor system

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.

    2015-03-01

    A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  18. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator

    NASA Astrophysics Data System (ADS)

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.

  19. Model-independent analysis of the Fermilab Tevatron turn-by-turn beam position monitor measurements

    SciTech Connect

    Petrenko, A.V.; Valishev, A.A.; Lebedev, V.A.; /Fermilab

    2011-09-01

    Coherent transverse beam oscillations in the Tevatron were analyzed with the model-independent analysis (MIA) technique. This allowed one to obtain the model-independent values of coupled betatron amplitudes, phase advances, and dispersion function around the ring from a single dipole kick measurement. In order to solve the MIA mode mixing problem which limits the accuracy of determination of the optical functions, we have developed a new technique of rotational MIA mode untangling. The basic idea is to treat each beam position monitor (BPM) as two BPMs separated in a ring by exactly one turn. This leads to a simple criterion of MIA mode separation: the betatron phase advance between any BPM and its counterpart shifted by one turn should be equal to the betatron tune and therefore should not depend on the BPM position in the ring. Furthermore, we describe a MIA-based technique to locate vibrating magnets in a storage ring.

  20. Prototyping of beam position monitor for medium energy beam transport section of RAON heavy ion accelerator.

    PubMed

    Jang, Hyojae; Jin, Hyunchang; Jang, Ji-Ho; Hong, In-Seok

    2016-02-01

    A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, development of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described. PMID:26932088

  1. A novel electromagnetic design and a new manufacturing process for the cavity BPM (Beam Position Monitor)

    NASA Astrophysics Data System (ADS)

    Dal Forno, Massimo; Craievich, Paolo; Baruzzo, Roberto; De Monte, Raffaele; Ferianis, Mario; Lamanna, Giuseppe; Vescovo, Roberto

    2012-01-01

    The Cavity Beam Position Monitor (BPM) is a beam diagnostic instrument which, in a seeded Free Electron Laser (FEL), allows the measurement of the electron beam position in a non-destructive way and with sub-micron resolution. It is composed by two resonant cavities called reference and position cavity, respectively. The measurement exploits the dipole mode that arises when the electron bunch passes off axis. In this paper we describe the Cavity BPM that has been designed and realized in the context of the FERMI@Elettra project [1]. New strategies have been adopted for the microwave design, for both the reference and the position cavities. Both cavities have been simulated by means of Ansoft HFSS [2] and CST Particle Studio [3], and have been realized using high precision lathe and wire-EDM (Electro-Discharge) machine, with a new technique that avoids the use of the sinker-EDM machine. Tuners have been used to accurately adjust the working frequencies for both cavities. The RF parameters have been estimated, and the modifications of the resonant frequencies produced by brazing and tuning have been evaluated. Finally, the Cavity BPM has been installed and tested in the presence of the electron beam.

  2. A Demonstration of GPS Landslide Monitoring Using Online Positioning User Service (OPUS)

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2011-12-01

    Global Positioning System (GPS) technologies have been frequently applied to landslide study, both as a complement, and as an alternative to conventional surveying methods. However, most applications of GPS for landslide monitoring have been limited to the academic community for research purposes. High-accuracy GPS has not been widely equipped in geotechnical companies and used by technicians. The main issue that limits the applications of GPS in the practice of high-accuracy landslide monitoring is the complexity of GPS data processing. This study demonstrated an approach using the Online Positioning User Service (OPUS) (http://www.ngs.noaa.gov/OPUS) provided by the National Geodetic Survey (NGS) of National Oceanic and Atmospheric Administration (NOAA) to process GPS data and conduct long-term landslide monitoring in the Puerto Rico and Virgin Islands Region. Continuous GPS data collected at a creeping landslide site during two years were used to evaluate different scenarios for landslide surveying: continuous or campaign, long duration or short duration, morning or afternoon (different weather conditions). OPUS uses Continuously Operating Reference Station (CORS) managed by NGS (http://www.ngs.noaa.giv/CORS/) as references and user data as a rover to solve a position. There are 19 CORS permanent GPS stations in the Puerto Rico and Virgin Islands region. The dense GPS network provides a precise and reliable reference frame for subcentimeter-accuracy landslide monitoring in this region. Our criterion for the accuracy was the root-mean-square (RMS) of OPUS solutions over a 2-year period with respect to true landslide displacement time series overt the same period. The true landslide displacements were derived from a single-baseline (130 m) GPS processing by using 24-hour continuous data. If continuous GPS surveying is performed in the field, then OPUS static processing can provide 0.6 cm horizontal and 1.1 cm vertical precision with few outliers. If repeated

  3. Beam feasibility study of a collimator with in-jaw beam position monitors

    NASA Astrophysics Data System (ADS)

    Wollmann, Daniel; Nosych, Andriy A.; Valentino, Gianluca; Aberle, Oliver; Aßmann, Ralph W.; Bertarelli, Alessandro; Boccard, Christian; Bruce, Roderik; Burkart, Florian; Calvo, Eva; Cauchi, Marija; Dallocchio, Alessandro; Deboy, Daniel; Gasior, Marek; Jones, Rhodri; Kain, Verena; Lari, Luisella; Redaelli, Stefano; Rossi, Adriana

    2014-12-01

    At present, the beam-based alignment of the LHC collimators is performed by touching the beam halo with both jaws of each collimator. This method requires dedicated fills at low intensities that are done infrequently and makes this procedure time consuming. This limits the operational flexibility, in particular in the case of changes of optics and orbit configuration in the experimental regions. The performance of the LHC collimation system relies on the machine reproducibility and regular loss maps to validate the settings of the collimator jaws. To overcome these limitations and to allow a continuous monitoring of the beam position at the collimators, a design with jaw-integrated Beam Position Monitors (BPMs) was proposed and successfully tested with a prototype (mock-up) collimator in the CERN SPS. Extensive beam experiments allowed to determine the achievable accuracy of the jaw alignment for single and multi-turn operation. In this paper, the results of these experiments are discussed. The non-linear response of the BPMs is compared to the predictions from electromagnetic simulations. Finally, the measured alignment accuracy is compared to the one achieved with the present collimators in the LHC.

  4. Volatile anesthetics give a false-positive reading in chemical agent monitors in the "H" mode.

    PubMed

    Risk, D; Verpy, D; Conley, J D; Jacobson, T; Sawyer, T W

    2001-08-01

    Chemical agent monitors (CAMs) are routinely used by the armed forces and emergency response teams of many countries for the detection of the vesicant sulfur mustard (HD) and the G series of organophosphate nerve agents. Ambient operating room isoflurane levels were found to produce strong positive signals in the "H" mode when the CAM was used to monitor the efficacy of decontamination procedures during routine surgical procedures on HD-poisoned animals requiring up to 8 hours of general anesthesia. Subsequent testing showed that isoflurane, as well as desflurane, sevoflurane, halothane and methoxyflurane, produce two ionization peaks in the CAM response. One of these peaks is interpreted by the CAM processing software as HD, resulting in a CAM "H" mode bar response. No interference was encountered with isoflurane, desflurane, and sevoflurane when the CAM was set to the "G" mode, although extremely high (nonclinical) concentrations of halothane and methoxyflurane yielded a weakly positive bar response. These findings have potentially serious ramifications for the medical management of patients resulting from terrorist, military, or chemical agent decommissioning activity when concomitant chemical injuries are also possible. PMID:11515322

  5. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    NASA Astrophysics Data System (ADS)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  6. Development of Electronics for the ATF2 Interaction Point Region Beam Position Monitor

    SciTech Connect

    Kim, Youngim; Heo, Ae-young; Kim, Eun-San; Boogert, Stewart; Honda, Yosuke; Tauchi, Toshiaki; Terunuma, Nobuhiro; May, Justin; McCormick, Douglas; Smith, Tonee; /SLAC

    2012-08-14

    Nanometer resolution beam position monitors have been developed to measure and control beam position stability at the interaction point region of ATF2. The position of the beam has to be measured to within a few nanometers at the interaction point. In order to achieve this performance, electronics for the low-Q IP-BPM was developed. Every component of the electronics have been simulated and checked on the bench and using the ATF2 beam. We will explain each component and define their working range. Then, we will show the performance of the electronics measured with beam signal. ATF2 is a final focus test beam line for ILC in the framework of the ATF international collaboration. The new beam line was constructed to extend the extraction line at ATF, KEK, Japan. The first goal of ATF2 is the acheiving of a 37 nm vertical beam size at focal point (IP). The second goal is to stabilize the beam at the focal point at a few nanometer level for a long period in order to ensure the high luminosity. To achieve these goals a high resolution IP-BPM is essential. In addition for feedback applications a low-Q system is desirable.

  7. uc(Pegasus) Facility Upgrades

    NASA Astrophysics Data System (ADS)

    Quinn, J. C.; Lewicki, B. T.; Burke, S. P.; Eidietis, N. W.; Fonck, R. J.; Ford, B. A.; Garstka, G. D.; Unterberg, E. A.; Winz, G. R.

    2003-10-01

    Extensive new capabilities have been installed on the uc(Pegasus) ST facility. A new laboratory configuration allows separation of all power systems from the experimental hall. Data acquisition, control, and support facilities have been improved. New magnetic field power supplies utilize unique high-power 2700V IGCT switch modules to provide bipolar waveform control for the high-stress solenoid magnet, while 900V IGBTs provide uni/bipolar control of the PF and TF systems. The coil sets are independently controlled by pulse-width-modulated circuits developed by the HIT group. Capacitor charging, dumping, and monitoring are controlled by a PCI-based multichannel data acquisition and control system. These upgrades will provide: 1) increased V-s and loop voltage control for higher plasma current and suppression of MHD modes; 2) increased toroidal field with fast-ramp capability for improved access to the low-q, high βt regime; and 3) flexible equilibrium field control for radial position and modest shape control.

  8. Developmental Status of Beam Position and Phase Monitor for PEFP Proton Linac

    NASA Astrophysics Data System (ADS)

    Park, Sungju; Park, Jangho; Yu, Inha; Kim, Dotae; Hwang, Jung-Yun; Nam, Sanghoon

    2004-11-01

    The PEFP (Proton Engineering Frontier Project) at the KAERI (Korea Atomic Energy Research Institute) is building a high-power proton linear accelerator aiming to generate 100-MeV proton beams with 20-mA peak current. (Pulse width and max. repetition rate of 1 ms and 120 Hz respectively.) We have developed the Beam Position and Phase Monitor (BPPM) for the machine that features the button-type PU, the full-analog processing electronics, and the EPICS-based control system. The beam responses of the button-type PU have been obtained using the MAGIC (Particle-In-Cell) code. The processing electronics has been developed in collaboration with Bergoz Instrumentation. In this article, we report the present status of the system developments except the control system.

  9. Calibration of the beam-position monitor system for the SLAC PEP-II B factory

    SciTech Connect

    Johnson, R.; Smith, S.; Kurita, N.

    1997-06-01

    The Beam-Position Monitors (BPM) for the PEP-II B Factory consist of four 1.5-cm diameter button style pickups mounted on the diagonals of the quadrupole vacuum chambers. Before installation of the vacuum chambers in the quadrupole assemblies, the electrical center of the BPMs is measured with respect to the mechanical center in a calibration test stand. In this paper the calibration test stand is described and the precision and accuracy of the calibrations are presented. After installation of the quadrupole assemblies in the PEP-II tunnel, the passive attenuation for each channel of the system is measured to preserve the accuracy of the calibration. Finally, the active electronics includes an onboard calibrator. Results for these portions of the calibration are presented.

  10. Successive approximation algorithm for beam-position-monitor-based LHC collimator alignment

    NASA Astrophysics Data System (ADS)

    Valentino, Gianluca; Nosych, Andriy A.; Bruce, Roderik; Gasior, Marek; Mirarchi, Daniele; Redaelli, Stefano; Salvachua, Belen; Wollmann, Daniel

    2014-02-01

    Collimators with embedded beam position monitor (BPM) button electrodes will be installed in the Large Hadron Collider (LHC) during the current long shutdown period. For the subsequent operation, BPMs will allow the collimator jaws to be kept centered around the beam orbit. In this manner, a better beam cleaning efficiency and machine protection can be provided at unprecedented higher beam energies and intensities. A collimator alignment algorithm is proposed to center the jaws automatically around the beam. The algorithm is based on successive approximation and takes into account a correction of the nonlinear BPM sensitivity to beam displacement and an asymmetry of the electronic channels processing the BPM electrode signals. A software implementation was tested with a prototype collimator in the Super Proton Synchrotron. This paper presents results of the tests along with some considerations for eventual operation in the LHC.

  11. Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude

    2016-02-01

    Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences

  12. Log-ratio signal-processing technique for beam position monitors

    SciTech Connect

    Shafer, R.E.

    1993-02-01

    Two basic signal-processing techniques are presently in wide use for the processing of signals from beam position monitors (BPMs); difference-over-sum, and amplitude-modulation-to-phase-modulation (AM-PM) conversion. Difference-over-sum offers simplicity and low cost, but poor real-time normalized response and amplitude dynamic range. AM-PM offers fast real-time response and large dynamic range, but is costly and difficult to implement. Logarithmic-ratio processing, a technique using newly available inexpensive hybrid circuits, appears to offer the advantages of both, and the disadvantages of neither. This paper reviews the features techniques, and highlights the features of the log-ratio technique. Among the advantages of log-ratio is a beam-displacement response linearity that is superior to either difference-over-sum or AM-PM for circular-aperture BPMs.

  13. A new ultrasonic canal preparation system with electronic monitoring of file tip position.

    PubMed

    Kobayashi, C; Yoshioka, T; Suda, H

    1996-09-01

    A new ultrasonic root canal preparation system has been developed that electronically monitors the location of the file tip during all instrumentation procedures. The Root ZX has been adapted for this purpose, and its filter circuit effectively cuts out the large spike noise of the ultrasonic unit. During enlargement of the canal, the ultrasonic vibration of the file can be stopped at any desired position on the meter. Extracted human tooth models with electronically measurable canals were used to test the device. Pre- and postoperative shapes of the root canals were evaluated using contact microradiography. The autostop mechanism worked correctly. Using a weak power and fine files, straightening, ledge formation, and file breakage were minimal. It seems that this system minimized the danger of overinstrumentation and could be safely applied in clinical practice. PMID:9198433

  14. A Beam Position Monitor for High Power Beams with Large Transverse Dimensions

    SciTech Connect

    Arne Freyberger; Danny Dotson; Pavel Degtiarenko; Vladimir Popov

    2005-06-01

    Proper transport of the electron beam with over 0.5MW of power to the beam dump is a prerequisite for operations at Jefferson Lab. Operations has relied on imaging the beam on a beam viewer located at the entrance to the beam dump. The large beam size at the dump entrance, due to beam scattering in the experimental target, sometimes results in no observable image on the view-screen. Chemical vapor deposited silicon carbide [CVD] material with its large thermal conductivity and high melting point is well suited for surviving the thermal effects of beam exposure with this power density. We are exploring the CVD properties and how it can be used as a robust beam position monitor. Results of some beam tests with 0.5MW beams will be presented.

  15. PAL-XFEL cavity beam position monitor pick-up design and beam test

    NASA Astrophysics Data System (ADS)

    Lee, Sojeong; Park, Young Jung; Kim, Changbum; Kim, Seung Hwan; Shin, Dong Cheol; Han, Jang-Hui; Ko, In Soo

    2016-08-01

    As an X-ray Free Electron Laser, PAL-XFEL is about to start beam commissioning. X-band cavity beam position monitor (BPM) is used in the PAL-XFEL undulator beam line. Prototypes of cavity BPM pick-up were designed and fabricated to test the RF characteristics. Also, the beam test of a cavity BPM pick-up was done in the Injector Test Facility (ITF). In the beam test, the raw signal properties of the cavity BPM pick-up were measured at a 200 pC bunch charge. According to the RF test and beam test results, the prototype cavity BPM pick-up design was confirmed to meet the requirements of the PAL-XFEL cavity BPM system.

  16. Efficacy of Monitoring Patient’s Position during Neurosurgical Procedures: Introduction of Real-time Display and Record

    PubMed Central

    HASEGAWA, Mitsuhiro; NOURI, Mohsen; FUJISAWA, Hironori; HAYASHI, Yutaka; INAMASU, Joji; HIROSE, Yuichi; YAMASHITA, Junkoh

    2015-01-01

    There are many reports on position-related complications in neurosurgical literature but so far, continuous quantification of the patient’s position during the surgery has not been reported. This study aims to explore the utility of a new surgical table system and its software in displaying the patient’s body positions during surgery on real-time basis. More than 200 neurosurgical cases were monitored for their positions intra-operatively. The position was digitally recorded and could be seen by all the members in the operating team. It also displayed the three-dimensional relationship between the head and the heart positions. No position-related complications were observed during the study. The system was able to serve as an excellent indicator for monitoring the patient’s position. The recordings were analyzed and even used to reproduce or improve the position in the subsequent operations. The novel technique of monitoring the position of the head and the heart of the patients and the operating table planes are considered to be useful during delicate neurosurgical procedures thereby, preventing inadvertent procedural errors. This can be used to quantify various surgical positions in the future and define safety measures accordingly. PMID:25797776

  17. Integrity monitoring in real-time precise point positioning in the presence of ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Wezka, K.; Galas, R.

    2013-12-01

    Ionospheric disturbances are characterized as fast and random variability in the ionosphere. Those phenomena are difficult to predict, detect and model. Occurrence of some strong ionospheric disturbances can cause, inter alia degradation and interruption of GNSS signals. Therefore they are especially harmful for real-time applications, as for example Precise Point Positioning (PPP) in real time, where one of the most important requirements is to ensure the high level of reliability. In such applications verification and confirmation of a high trust degree towards the estimated coordinates is a very critical issue. In one of the previous papers (K. Wezka, 2012 -Identification of system performance parameters and their usability) two sets of parameters have been proposed for enhance reliability of the PPP. The first one for data quality control (QC) of the raw GNSS observations and the second one for examination of the quality, robustness and performance of various processing approaches (strategies). To the second group the following parameters has been proposed: accuracy, precision, availability, integrity and convergence time. In consideration of perturbation of GNSS signal resulting from sudden ionospheric disturbances, one of the most important demands is effective autonomous integrity monitoring. The poster presents first preliminary results of the applicability of the proposed parameters in order to ensure the high level of reliability/integrity of GNSS observations and positioning results under the presence of strong ionospheric anomalies. The data-set from continuously operated GNSS station located at high latitude, where ionospheric disturbances occur more frequently, were used for the analysis. Various selected Receiver Autonomous Integrity Monitoring (RAIM) approaches for quality control of the GNSS observables are applied to the data sets recorded under different (low/quite and high) ionospheric activities. Based on those analyses the usability of the

  18. Advanced laser-based tracking device for motor vehicle lane position monitoring and steering assistance

    NASA Astrophysics Data System (ADS)

    Bachalo, William D.; Inenaga, Andrew; Schuler, Carlos A.

    1995-12-01

    Aerometrics is developing an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. No additional markings are required. A warning is used to alert the driver of excessive weaving or unanticipated departure from the center of the lane. The laser beams are at invisible wavelengths to that operation of the device does not pose a distraction to the driver or other motorists: When appropriate markers are not present on the road, the device is capable of detecting this condition and warn the driver. The sensor system is expected to work well irrespective of ambient light levels, fog and rain. This sensor has enormous commercial potential. It could be marketed as an instrument to warn drivers that they are weaving, used as a research tool to monitor driving patterns, be required equipment for those previously convicted of driving under the influence, or used as a backup sensor for vehicle lateral position control. It can also be used in storage plants to guide robotic delivery vehicles. In this paper, the principles of operation of the sensor, and the results of Aerometrics ongoing testing will be presented.

  19. Hybrid monitor for both beam position and tilt of pulsed high-current beams

    SciTech Connect

    Pang, J. He, X.; Ma, C.; Zhao, L.; Li, Q.; Dai, Z.

    2014-09-15

    A Hybrid beam monitor, integrated with both azimuthal and axial B-dot probes, was designed for simultaneous measurement of both beam position and beam angle for pulsed high-current beams at the same location in beam pipe. The output signals of axial B-dot probes were found to be mixed with signals caused by transverse position deviation. In order to eliminate the unwanted signals, an elimination method was developed and its feasibility tested on a 50-Ω coaxial line test stand. By this method, a waveform, shape-like to that of input current and proportional to the tilt angle, was simulated and processed by following integration step to achieve the tilt angle. The tests showed that the measurement error of displacement and tilt angle less than 0.3 mm and 1.5 mrad, respectively. The latter error could be reduced with improved probes by reducing the inductance of the axial B-dot probe, but the improvement reached a limit due to some unknown systemic mechanism.

  20. Performance of the beam position monitor system for the SLAC PEP-II B factory

    SciTech Connect

    Johnson, Ronald G.; Smith, Stephen R.; Aiello, G. Roberto

    1998-12-10

    The beam position monitor (BPM) system for the SLAC PEP-II B Factory was designed to measure the positions of single-bunch single-turn to multibunch multi-turn beams in both rings of the facility. Each BPM is based on four button-style pickups. At most locations the buttons are connected to provide single-axis information (x only or y only). Operating at a harmonic (952 MHz) of the bunch spacing, the BPM system combines broadband and narrowband capabilities and provides data at a high rate. The active electronics system is multiplexed for signals from the high-energy ring (HER) and low-energy ring (LER). The system will be briefly described; however, the main purpose of the present paper is to present operational results. The BPM system operated successfully during commissioning of the HER (primarily) and the LER over the past year. Results to be presented include on-line calibration, single-bunch single-turn resolution (<100 {mu}m), and multibunch multi-turn resolution (<3 {mu}m), multiplexing, and absolute calibration. Thus far, the system has met or exceeded all the requirements that have been tested. The remaining requirements will be tested when both rings are completed and commissioned this summer. In addition, typical results of beam physics studies relying on the BPM system will be presented.

  1. Performance of the beam position monitor system for the SLAC PEP-II {ital B} factory

    SciTech Connect

    Johnson, R.G.; Smith, S.R.; Aiello, G.R.

    1998-12-01

    The beam position monitor (BPM) system for the SLAC PEP-II {ital B} Factory was designed to measure the positions of single-bunch single-turn to multibunch multi-turn beams in both rings of the facility. Each BPM is based on four button-style pickups. At most locations the buttons are connected to provide single-axis information ({ital x} only or {ital y} only). Operating at a harmonic (952 MHz) of the bunch spacing, the BPM system combines broadband and narrowband capabilities and provides data at a high rate. The active electronics system is multiplexed for signals from the high-energy ring (HER) and low-energy ring (LER). The system will be briefly described; however, the main purpose of the present paper is to present operational results. The BPM system operated successfully during commissioning of the HER (primarily) and the LER over the past year. Results to be presented include on-line calibration, single-bunch single-turn resolution ({lt}100 {mu}m), and multibunch multi-turn resolution ({lt}3 {mu}m), multiplexing, and absolute calibration. Thus far, the system has met or exceeded all the requirements that have been tested. The remaining requirements will be tested when both rings are completed and commissioned this summer. In addition, typical results of beam physics studies relying on the BPM system will be presented. {copyright} {ital 1998 American Institute of Physics.}

  2. Dual AC Dipole Excitation for the Measurement of Magnetic Multipole Strength from Beam Position Monitor Data

    SciTech Connect

    M. Spata, G.A. Krafft

    2011-09-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a technique for characterizing the nonlinear fields of the beam transport system. Two air-core dipole magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the electron beam. Fourier decomposition of beam position monitor data was then used to measure the amplitude of these frequencies at different positions along the beamline. For a purely linear transport system one expects to find solely the frequencies that were applied to the dipoles with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. The technique was calibrated using one of the sextupole magnets in a CEBAF beamline and then applied to a dipole to measure the sextupole and octupole strength of the magnet. A comparison is made between the beam-based measurements, results from TOSCA and data from our Magnet Measurement Facility.

  3. Functional performance requirements for seismic network upgrade

    SciTech Connect

    Lee, R.C.

    1991-08-18

    The SRL seismic network, established in 1976, was developed to monitor site and regional seismic activity that may have any potential to impact the safety or reduce containment capability of existing and planned structures and systems at the SRS, report seismic activity that may be relevant to emergency preparedness, including rapid assessments of earthquake location and magnitude, and estimates of potential on-site and off-site damage to facilities and lifelines for mitigation measures. All of these tasks require SRL seismologists to provide rapid analysis of large amounts of seismic data. The current seismic network upgrade, the subject of this Functional Performance Requirements Document, is necessary to improve system reliability and resolution. The upgrade provides equipment for the analysis of the network seismic data and replacement of old out-dated equipment. The digital network upgrade is configured for field station and laboratory digital processing systems. The upgrade consists of the purchase and installation of seismic sensors,, data telemetry digital upgrades, a dedicated Seismic Data Processing (SDP) system (already in procurement stage), and a Seismic Signal Analysis (SSA) system. The field stations and telephone telemetry upgrades include equipment necessary for three remote station upgrades including seismic amplifiers, voltage controlled oscillators, pulse calibrators, weather protection (including lightning protection) systems, seismometers, seismic amplifiers, and miscellaneous other parts. The central receiving and recording station upgrades will include discriminators, helicopter amplifier, omega timing system, strong motion instruments, wide-band velocity sensors, and other miscellaneous equipment.

  4. Automated long-term monitoring of parallel microfluidic operations applying a machine vision-assisted positioning method.

    PubMed

    Yip, Hon Ming; Li, John C S; Xie, Kai; Cui, Xin; Prasad, Agrim; Gao, Qiannan; Leung, Chi Chiu; Lam, Raymond H W

    2014-01-01

    As microfluidics has been applied extensively in many cell and biochemical applications, monitoring the related processes is an important requirement. In this work, we design and fabricate a high-throughput microfluidic device which contains 32 microchambers to perform automated parallel microfluidic operations and monitoring on an automated stage of a microscope. Images are captured at multiple spots on the device during the operations for monitoring samples in microchambers in parallel; yet the device positions may vary at different time points throughout operations as the device moves back and forth on a motorized microscopic stage. Here, we report an image-based positioning strategy to realign the chamber position before every recording of microscopic image. We fabricate alignment marks at defined locations next to the chambers in the microfluidic device as reference positions. We also develop image processing algorithms to recognize the chamber positions in real-time, followed by realigning the chambers to their preset positions in the captured images. We perform experiments to validate and characterize the device functionality and the automated realignment operation. Together, this microfluidic realignment strategy can be a platform technology to achieve precise positioning of multiple chambers for general microfluidic applications requiring long-term parallel monitoring of cell and biochemical activities. PMID:25133248

  5. Physical activity intensity can be accurately monitored by smartphone global positioning system 'app'.

    PubMed

    Gordon, Brett Ashley; Bruce, Lyndell; Benson, Amanda Clare

    2016-08-01

    Monitoring physical activity is important to better individualise health and fitness benefits. This study assessed the concurrent validity of a smartphone global positioning system (GPS) 'app' and a sport-specific GPS device with a similar sampling rate, to measure physical activity components of speed and distance, compared to a higher sampling sport-specific GPS device. Thirty-eight (21 female, 17 male) participants, mean age of 24.68, s = 6.46 years, completed two 2.400 km trials around an all-weather athletics track wearing GPSports Pro™ (PRO), GPSports WiSpi™ (WISPI) and an iPhone™ with a Motion X GPS™ 'app' (MOTIONX). Statistical agreement, assessed using t-tests and Bland-Altman plots, indicated an (mean; 95% LOA) underestimation of 2% for average speed (0.126 km·h(-1); -0.389 to 0.642; p < .001), 1.7% for maximal speed (0.442 km·h(-1); -2.676 to 3.561; p = .018) and 1.9% for distance (0.045 km; -0.140 to 0.232; p < .001) by MOTIONX compared to that measured by PRO. In contrast, compared to PRO, WISPI overestimated average speed (0.232 km·h(-1); -0.376 to 0.088; p < .001) and distance (0.083 km; -0.129 to -0.038; p < .001) by 3.5% whilst underestimating maximal speed by 2.5% (0.474 km·h(-1); -1.152 to 2.099; p < .001). Despite the statistically significant difference, the MOTIONX measures intensity of physical activity, with a similar error as WISPI, to an acceptable level for population-based monitoring in unimpeded open-air environments. This presents a low-cost, minimal burden opportunity to remotely monitor physical activity participation to improve the prescription of exercise as medicine. PMID:26505223

  6. Monitoring crustal motion in Papua New Guinea using the global positioning system

    NASA Astrophysics Data System (ADS)

    Stolz, A.

    Papua New Guinea is a region of intense and frequent earthquake activity. Four earthquakes of magnitude 8.0 or greater have occurred here in the last century. There are about 100 major volcanoes of which 14 are classified as active and 24 are classified as dormant. Bouguer gravity anomalies range from about -180 mGal to 200 mGal and the minimum free-air gravity anomalies reach about -300 mGal. The region occupies a unique position on the global satellite geoid — at the crest of a bulge which is higher than other parts of this geoid. Papua New Guinea is also a region of large predicted plate tectonic motions. The region includes two, and possibly as many as four, minor plates sandwiched between the major Indo-Australian and Pacific plates. It is proposed to use Global Positioning System (GPS) receivers to monitor crustal motion in Papua New Guinea. Because of the location of various islands on both sides of the plate boundaries, and within the broad inter-arc area, it is possible to use GPS to establish baselines that straddle many of the major tectonic elements, and so by repeated observations of these baselines, to directly observe the kinematics of plate convergence, intra-arc strain and back-arc spreading. Because the rates of plate convergence and back-arc spreading in this region are among the highest found in the world, and baseline length is generally under 500 km, it should be possible to attain an unusually high ratio of tectonic signal-to-measurement noise.

  7. Development and clinical application of a patient-position monitoring system

    NASA Astrophysics Data System (ADS)

    Gerig, Lee H.; El-Hakim, Sabry F.; Szanto, Janos; Salhani, Doug; Girard, A.

    1994-10-01

    We have developed and clinically tested a computer vision system capable of real time monitoring of the position of an oncology (cancer) patient undergoing radiation therapy. The system is able to report variations in patient setup from day to day, as well as patient motion during an individual treatment. The system consists of two CCD cameras mounted in the treatment room and focused on the treatment unit isocenter. The cameras are interfaced to a PC via a two channel video board. Special targets, placed on the patient surface are automatically recognized and extracted by our 3D vision software. The three coordinates of each target are determined using a triangulation algorithm. System accuracy, stability and reproducibility were tested in the laboratory as well as in the radiation therapy room. Beside accuracy, the system must ensure the highest reliability and safety in the actual application environment. In this paper we also report on the results of clinical testing performed on a total of 23 patients having various treatment sites and techniques. The system in its present configuration is capable of measuring multiple targets placed on the patient surface during radiation therapy. In the clinical environment the system has an accuracy and repeatability of better than 0.5 mm in Cartesian space over extended periods (> 1 month). The system can measure and report patient position in less than 5 seconds. Clinically we have found that the system can easily and accurately detect patient motion during treatment as well as variations in patient setup from day to day. A brief description of the system and detailed analysis of its performance in the laboratory and in the clinic are presented.

  8. Design of the button beam position monitor for PEP-II

    SciTech Connect

    Kurita, N.; Martin, D.; Smith, S.; Ng, C.; Nordby, M.; Perkins, C.

    1995-08-01

    The beam position monitor (BPM) was designed to provide a robust UHV feedthru and a reliable electromagnetic sensor. Stringent resolution requirements at low beam currents, bunch parameters, along with mechanical and chamber requirements produced challenges in the electrical, thermal, and structural design of the BPM`s. Numerical modeling and experimental analyses were used to optimize the design. The higher order modes (HOM`s) and beam impedance were modeled using MAFIA. Measurements agreed with the calculated 1 {Omega} transfer impedance at the 952 MHz signal processing frequency, and the first two HOM`s found in MAFIA. Tests and analysis both showed the button signal power approaching 40 W. Temperature and stress distributions were analyzed using this power loading with ANSYS. An electronic grade CuNi was selected for the BPM to reliably weld into the copper chambers. Pin seal and compressive joints were considered for the insulator vacuum seals. Both glassy ceramic-to-metal and ceramic-to-metal seals were evaluated.

  9. Estimation of effective imaging dose for kilovoltage intratreatment monitoring of the prostate position during cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Ng, J. A.; Booth, J.; Poulsen, P.; Kuncic, Z.; Keall, P. J.

    2013-09-01

    Kilovoltage intratreatment monitoring (KIM) is a novel real-time localization modality where the tumor position is continuously measured during intensity modulated radiation therapy (IMRT) or intensity modulated arc therapy (IMAT) by a kilovoltage (kV) x-ray imager. Adding kV imaging during therapy adds radiation dose. The additional effective dose is quantified for prostate radiotherapy and compared to dose from other localization modalities. The software PCXMC 2.0 was used to calculate the effective dose delivered to a phantom as a function of imager angle and field size for a Varian On-Board Imager. The average angular effective dose was calculated for a field size of 6 cm × 6 cm. The average angular effective dose was used in calculations for different treatment scenarios. Treatment scenarios considered were treatment type and fractionation. For all treatment scenarios, (i.e. conventionally fractionated and stereotactic body radiotherapy (SBRT), IMRT and IMAT), the total KIM dose at 1 Hz ranged from 2-10 mSv. This imaging dose is less than the Navotek radioactive implant dose (64 mSv) and a standard SBRT cone beam computed tomography pretreatment scan dose (22 mSv) over an entire treatment regime. KIM delivers an acceptably low effective dose for daily use as a real-time image-guidance method for prostate radiotherapy.

  10. Redesigned front end for the upgrade at CHESS

    SciTech Connect

    Headrick, R.L.; Smolenski, K.W.

    1996-09-01

    We will report on beamline front-end upgrades for the 24-pole wiggler beamlines at CHESS. A new design for primary x-ray beamstops based on a tapered, water-cooled copper block has been implemented and installed in the CHESS F beamline. The design uses a horizontally tapered {open_quote}{open_quote}V{close_quote}{close_quote} shape to reduce the power density on the internal surfaces and internal water channels in the block to provide efficient water cooling. Upstream of the beam stops, we have installed a new photoelectron style beam position monitor with separate monitoring of the wiggler and dipole vertical beam positions and with micron-level sensitivity. The monitor{close_quote}s internal surfaces are designed to absorb the full x-ray power in case of beam missteering, and the uncooled photoelectron collecting plates are not visible to the x-ray beam. A graphite prefilter has been installed to protect the beryllium windows that separate the front end from the x-ray optics downstream. The redesigned front end is required by the upgrade of the Cornell storage ring, now in progress, which will allow stored electron and positron currents of 300 mA by 1996, and 500 mA by 1998. At 500 mA, the wiggler power output will be over 32 kW. {copyright} {ital 1996 American Institute of Physics.}

  11. Position , photometric and morphological monitoring of comet-sungrazer S/2012 S1 (ISON) in Kyiv

    NASA Astrophysics Data System (ADS)

    Churyumov, Klim; Baransky, Alexandr

    Comet-sungrazer C/2012 S1 (ISON) was observed at the observational station of Kyiv Shevchenko National University ( MPC 585 ) from 28 Sept. 2012 to 1 Nov. 2013 During the 16 nights of observation obtained and sent to the database MPC - 214 astromerical exact positions of the comet. In parallel with the astrometrical monitoring of the comet were obtained a series of photometrical observations of cometary central condensation (m_2) through filter R. During Oct. - Dec. 2012 a magnitude of the central condensation of the comet (m(2) ) increased gradually from 17.6(m) to 16.8(m) . In the period from Dec. 28, 2012 to Jan. 2, 2013 there was observed a jump of increasing of comet brightness by ampliitude 1.1(m) from 16.8(m) to 15.7(m) , which was initiated by a sharp increasing of numbers of the sunspot : on Dec. 31, 2012 the Wolf number was 87 , and on Jan. 4 it reached of a values 167. Until the end of Feb. 2013 a cometary magnitude reached a values 15.4(m) . During Feb.- May 2013 the magnitude of the comet almost did not change. In the summer of 2013 , the comet did not observe because the small elongation of the comet. In autumn 2013 , a month before perihelion passage , the comet was observed during temporal interval Oct. 20 - Nov. 1. In the course of this period cometary magnitude of the central condensation rapidly increased from 13.4(m) to 11.6(m) . In the anti-solar direction the large tail was observed. Near the head in the direction of the comet tail a bright - helically twisted jet was observed.

  12. ECG-based detection of body position changes in ischemia monitoring.

    PubMed

    García, José; Aström, Magnus; Mendive, Javier; Laguna, Pablo; Sörnmo, Leif

    2003-06-01

    The purpose of this paper is to analyze and detect changes in body position (BPC) during electrocardiogram (ECG) recording. These changes are often manifested as shifts in the electrical axis and may be misclassified as ischemic changes during ambulatory monitoring. We investigate two ECG signal processing methods for detecting BPCs. Different schemes for feature extraction are used (spatial and scalar), while preprocessing, trend postprocessing and detection are identical. The spatial approach is based on VCG loop rotation angles and the scalar approach is based on the Karhunen-Loève transform (KLT) coefficients. The methods are evaluated on two different databases: a database with annotated BPCs and the STAFF III database with recordings from rest and during angioplasty-induced ischemia but not including BPCs. The angle-based detector results in performance values of detection probability PD = 95%, false alarm probability PF = 3% in the BPC database and false alarm rate in the STAFF III database in control ECGs during rest RF(c) = 2 h(-1) (episodes per hour) and in ischemia recordings during angioplasty RF(a) = 7 h(-1), whereas the KLT-based detector produces values of PD = 89%, PF = 3%, RF(c) = 4 h(-1), and RF(a) = 11 h(-1), respectively. Including information on noise level in the detection process to reduce the number of false alarms, performance values of PD approximately equal to 90%, PF approximately equal to 1%, RF(c) approximately equal to 1 h(-1) and RF(a) approximately equal to 2 h(-1) are obtained with both methods. It is concluded that reliable detection of BPCs may be achieved using the ECG signal and should work in parallel to ischemia detectors. PMID:12814234

  13. Triangle and concave pentagon electrodes for an improved broadband frequency response of stripline beam position monitors

    NASA Astrophysics Data System (ADS)

    Shobuda, Yoshihiro; Chin, Yong Ho; Takata, Koji; Toyama, Takeshi; Nakamura, Keigo

    2016-02-01

    The frequency domain performance of a stripline beam position monitor depends largely on the longitudinal shape of its electrode. Some shapes other than a conventional rectangle have been proposed and tested. To attain a good impedance matching along the electrode, they need to be precisely bent down toward their downstream in proportion to their width. This is a considerable task, and a failure to comply with it will result in a large distortion of the frequency-domain transfer function from the ideal one due to unwanted signal reflections. In this report, we first propose a triangle electrode for easy fabrication and setup: it only requires that a triangularly cut flat electrode will be placed in a chamber while being obliquely inclined toward the downstream port. Theoretical and simulation results show that the simple triangle electrode has a remarkably flatter frequency response than the rectangle one. The frequency response, in particular at high frequencies, can be further improved by attaching an "apron" plate, perpendicular to the upstream edge of the electrode. The overshooting of the frequency response at low frequency can be eliminated by replacing the straight sidelines of the triangle by three-point polylines (with a result that the triangle is transformed to a concave pentagon). The concave pentagon electrode needs to be bent only once at the middle point of the polylines for a good impedance matching and thus its fabrication and setup remain to be easy. Rf measurements for the various electrode shapes have been carried out. We found that the concave pentagon electrode achieves a wide and flat frequency response up to about 4 GHz for the J-PARC Main Ring (MR).

  14. Two-terminal longitudinal hotwire sensor for monitoring the position and speed of advancing liquid fronts in microfluidic channels

    SciTech Connect

    Ryu, Kee Suk; Shaikh, Kashan; Goluch, Edgar; Liu Chang

    2006-03-06

    We report a simple and practical sensor for monitoring both the absolute position and advancing speed of liquid front in a microfluidic channel. The sensor consists of a longitudinal hot wire element - a two-terminal electrical device, with its length spanning the entire channel. The design, materials, fabrication method, and use of this sensor are extremely simple. Characterization results are presented.

  15. Community Violence Exposure and Adolescent Substance Use: Does Monitoring and Positive Parenting Moderate Risk in Urban Communities?

    ERIC Educational Resources Information Center

    Lee, Rosalyn

    2012-01-01

    This study investigates whether monitoring and positive parenting moderate the relationship between community violence exposure (CVE) and youth substance use. Analyses utilized a subsample (N = 2197) of a cross-sectional, ethnically diverse, urban school district sample. Dependent variables were any past year alcohol or drug use (AOD) and binge…

  16. Development of a Millimeter-Wave Beam Position and Profile Monitor for Transmission Efficiency Improvement in an ECRH System

    NASA Astrophysics Data System (ADS)

    Shimozuma, T.; Kobayashi, S.; Ito, S.; Ito, Y.; Kubo, S.; Yoshimura, Y.; Nishiura, M.; Igami, H.; Takahashi, H.; Mizuno, Y.; Okada, K.; Mutoh, T.

    2015-03-01

    In a high power Electron Cyclotron Resonance Heating (ECRH) system, a long-distance and low-loss transmission system is required to realize effective heating of nuclear fusion-relevant plasmas. A millimeter-wave beam position and profile monitor, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam monitor consists of a reflector, Peltier-device array and a heat-sink. It was tested using simulated electric heater power or gyrotron output power. The data obtained from the monitor were well agreed with the heat source position and profile. The methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated wave-guide are proposed.

  17. The D0 Upgrade

    SciTech Connect

    Abachi, S.; D0 Collaboration

    1995-07-01

    In this paper we describe the approved DO Upgrade detector, and its physics capabilities. The DO Upgrade is under construction and will run during the next Fermilab collider running period in early 1999 (Run II). The upgrade is designed to work at the higher luminosities and shorter bunch spacings expected during this run. The major elements of t he upgrade are: a new tracking system with a silicon tracker, scintillating fiber tracker, a 2T solenoid, and a central preshower detector; new calorimeter electronics; new muon trigger and tracking detectors with new muon system electronics; a forward preshower detector; new trigger electronics and DAQ improvements to handle the higher rates.

  18. EPIC Computer Upgrade

    NASA Video Gallery

    Expedition 30 Commander Dan Burbank and Flight Engineer Don Pettit work on installing hardware for the Enhanced Processor and Integrated Communications (EPIC) upgrade of the International Space Sta...

  19. Upgrading the GSI beamline microscope with a confocal fluorescence lifetime scanner to monitor charged particle induced chromatin decondensation in living cells

    NASA Astrophysics Data System (ADS)

    Abdollahi, Elham; Taucher-Scholz, Gisela; Durante, Marco; Jakob, Burkhard

    2015-12-01

    We report the upgrade of the GSI beamline microscope coupled to the linear accelerator UNILAC by a confocal FLIM scanner utilizing time correlated single photon counting technique (TCSPC). The system can now be used to address the radiation induced chromatin decondensation in more detail and with higher sensitivity compared to intensity based methods. This decondensation of heterochromatic areas is one of the early DNA damage responses observed after charged particle irradiation and might facilitate the further processing of the induced lesions. We describe here the establishment of different DNA dyes as chromatin compaction probes usable for quantification of the DNA condensation status in living cells utilizing lifetime imaging. In addition, we find an evidence of heterochromatic chromatin decondensation in ion irradiated murine chromocenters detected after subsequent fixation using FLIM measurements.

  20. External Ventricular Catheters: Is It Appropriate to Use an Open/Monitor Position to Adequately Trend Intracranial Pressure in a Neuroscience Critical Care Environment?

    PubMed

    Sunderland, Nicole E; Villanueva, Nancy E; Pazuchanics, Susan J

    2016-10-01

    Intracranial pressure (ICP) monitoring can be an important assessment tool in critically and acutely ill patients. An external ventricular drain offers a comprehensive way to monitor ICP and drain cerebrospinal fluid. The Monro-Kellie hypothesis, Pascal's principle, and fluid dynamics were used to formulate an assumption that an open/monitor position on the stopcock is an adequate trending measure for ICP monitoring while concurrently draining cerebrospinal fluid. Data were collected from 50 patients and totaled 1053 separate number sets. The open/monitor position was compared with the clamped position every hour. An order for "open to drain" was needed for appropriate measurement and nursing care. Results showed the absolute average differences between open/monitor and clamped positions at 1.6268 mm Hg. This finding suggests that it is appropriate to use an open/monitor position via an external ventricular drain for adequate trending of patients' ICP. PMID:27579963

  1. Proof of the standard quantum limit for monitoring free-mass position

    SciTech Connect

    Kosugi, Seiji

    2010-08-15

    The measurement result of the moved distance for a free mass m during the time {tau} between two position measurements cannot be predicted with uncertainty smaller than {radical}(({h_bar}/2{pi}){tau}/m). This is formulated as a standard quantum limit and it has been proven to always hold for the following position measurement: a probe is set in a prescribed position before the measurement. Just after the interaction of the mass with the probe, the probe position is measured, and using this value, the measurement results of the premeasurement and postmeasurement positions are estimated.

  2. Hydrocarbonaceous material upgrading method

    SciTech Connect

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  3. Deformation integrity monitoring for GNSS positioning services including local, regional and large scale hazard monitoring - the Karlsruhe approach and software(MONIKA)

    NASA Astrophysics Data System (ADS)

    Jaeger, R.

    2007-05-01

    GNSS-positioning services like SAPOS/ascos in Germany and many others in Europe, America and worldwide, usually yield in a short time their interdisciplinary and country-wide use for precise geo-referencing, replacing traditional low order geodetic networks. So it becomes necessary that possible changes of the reference stations' coordinates are detected ad hoc. The GNSS-reference-station MONitoring by the KArlsruhe approach and software (MONIKA) are designed for that task. The developments at Karlsruhe University of Applied Sciences in cooperation with the State Survey of Baden-Württemberg are further motivated by a the official resolution of the German state survey departments' association (Arbeitsgemeinschaft der Vermessungsverwaltungen Deutschland (AdV)) 2006 on coordinate monitoring as a quality-control duty of the GNSS-positioning service provider. The presented approach can - besides the coordinate control of GNSS-positioning services - also be used to set up any GNSS-service for the tasks of an area-wide geodynamical and natural disaster-prevention service. The mathematical model of approach, which enables a multivariate and multi-epochal design approach, is based on the GNSS-observations input of the RINEX-data of the GNSS service, followed by fully automatic processing of baselines and/or session, and a near-online setting up of epoch-state vectors and their covariance-matrices in a rigorous 3D network adjustment. In case of large scale and long-term monitoring situations, geodynamical standard trends (datum-drift, plate-movements etc.) are accordingly considered and included in the mathematical model of MONIKA. The coordinate-based deformation monitoring approach, as third step of the stepwise adjustments, is based on the above epoch-state vectors, and - splitting off geodynamics trends - hereby on a multivariate and multi-epochal congruency testing. So far, that no other information exists, all points are assumed as being stable and congruent reference

  4. STAR upgrade program and future physics

    NASA Astrophysics Data System (ADS)

    Wang, Yaping; Star Collaboration

    2014-09-01

    In this paper, we will present STAR's future plan in terms of both the detector upgrade and physics measurement to study matter with colour degrees of freedom. We will first discuss the status of the newly installed Heavy Flavor Tracker and Muon Telescope Detector, and their physics prospect in 2014-2016. We will then describe the proposed detector upgrades for the second phase of Beam Energy Scan program in 2018-2019 to study the QCD phase diagram. Finally we will present STAR's plan with detector upgrades in the forward directions for the anticipated pp/pA physics program in 2021-2022 and ep/eA in 2025+. The upgraded STAR experiment will be in an excellent position to perform precision measurements of the partonic structures of the nucleon and nuclei.

  5. Reconstruction of lattice parameters and beam momentum distribution from turn-by-turn beam position monitor readings in circular accelerators

    NASA Astrophysics Data System (ADS)

    Edmonds, C. S.; Gratus, J.; Hock, K. M.; Machida, S.; Muratori, B. D.; Torromé, R. G.; Wolski, A.

    2014-05-01

    In high chromaticity circular accelerators, rapid decoherence of the betatron motion of a particle beam can make the measurement of lattice and bunch values, such as Courant-Snyder parameters and betatron amplitude, difficult. A method for reconstructing the momentum distribution of a beam from beam position measurements is presented. Further analysis of the same beam position monitor data allows estimates to be made of the Courant-Snyder parameters and the amplitude of coherent betatron oscillation of the beam. The methods are tested through application to data taken on the linear nonscaling fixed field alternating gradient accelerator, EMMA.

  6. Use of a home positive airway pressure device during intraoperative monitored anesthesia care for outpatient surgery.

    PubMed

    Borg, Lindsay; Walters, Tessa L; Siegel, Lawrence C; Dazols, John; Mariano, Edward R

    2016-08-01

    Perioperative positive airway pressure (PAP) is recommended by the American Society of Anesthesiologists for patients with obstructive sleep apnea, but a readily available and personalized intraoperative delivery system does not exist. We present the successful use of a patient's own nasal PAP machine in the operating room during outpatient foot surgery which required addition of a straight adaptor for oxygen delivery and careful positioning of the gas sampling line to permit end-tidal carbox dioxide monitoring. Home PAP machines may provide a potential alternative to more invasive methods of airway management for patients with obstructive sleep apnea under moderate sedation. PMID:27169990

  7. Optimisation of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector

    SciTech Connect

    ILINSKI P.

    2012-07-10

    Optimisation of blade type x-ray beam position monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, con and #64257;guration and operation principle was analysed in order to improve XBPM performance. Optimisation is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission type XBPM a Diamond Detector Blades (DDB) were analysed as blades for XBPMs. DDB XBPMs can help to overcome drawbacks of the photoemission blade XBPMs.

  8. In-line monitoring of particle size in a fluid bed granulator: investigations concerning positioning and configuration of the sensor.

    PubMed

    Roßteuscher-Carl, Katrin; Fricke, Sabine; Hacker, Michael C; Schulz-Siegmund, Michaela

    2014-05-15

    According to the ICH Q8 guideline, analytic technologies (PAT) are important tools for characterization and optimization of pharmaceutical manufacturing processes. Particle size as a critical quality attribute for granules is therefore an important parameter that should be monitored during the fluid bed granulation process. This work focusses on optimizing position and configuration of an SFT-sensor for the in-line measurement of particle size distribution in a Glatt GPCG 3 fluid bed granulator. As model-substances, different grades of microcrystalline cellulose were used. The in-line measured particle size and particle rate in the sensor were evaluated. A sensor position in the deceleration zone of the granulator was found to be promising for in-line particle size measurement. Most reliable data were generated in this position when the probe was placed in a distance of 11cm from the chamber wall to avoid bias by the inlet air stream. No major influence of rotation angle of the probe was found in this position. Furthermore, an entire fluid bed granulation process was successfully monitored with the sensor installed in the optimized setting. PMID:24589125

  9. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    NASA Astrophysics Data System (ADS)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  10. Tapping upgrade potential

    SciTech Connect

    Gill, H.S. )

    1993-01-01

    Modernizing aging hydropower stations presents plant owners with a unique opportunity for improving efficiency and plant output. But several factors should be considered before undertaking a turbine upgrade project.

  11. The D0 upgrade

    SciTech Connect

    Gruenendahl, S.; The D0 Collaboration

    1994-01-01

    In order to maximize the physics potential of the Fermilab Tevatron proton antiproton collider complex, both the accelerator system and the two large collider detectors are undergoing major upgrades during the remainder of this decade. For the D0 detector, the upgrade focuses on implementation of an integrated magnetic tracker in the central region of the detector, accompanied by those modifications to other parts of the apparatus necessary to cope with the increase in interaction rate provided by the collider.

  12. Optics upgrade for switchyard

    SciTech Connect

    Kobilarcik, Thomas R.; /Fermilab

    2005-08-01

    An upgrade of the Switchyard optics is proposed. This upgrade extends the P3 (old Main Ring) lattice through enclosure C. The septa for the 3-way Meson Area split is moved from enclosure F1 to enclosure M01. The functionality of the Meson Target Train is preserved. Finally, for the purpose of demonstrating that the resulting split can be transported, a straw-man lattice is proposed for enclosure M02 and beyond.

  13. Position and Orientation Tracking in a Ubiquitous Monitoring System for Parkinson Disease Patients With Freezing of Gait Symptom

    PubMed Central

    Català, Andreu; Rodríguez Martín, Daniel; van der Aa, Nico; Chen, Wei; Rauterberg, Matthias

    2013-01-01

    Background Freezing of gait (FoG) is one of the most disturbing and least understood symptoms in Parkinson disease (PD). Although the majority of existing assistive systems assume accurate detections of FoG episodes, the detection itself is still an open problem. The specificity of FoG is its dependency on the context of a patient, such as the current location or activity. Knowing the patient's context might improve FoG detection. One of the main technical challenges that needs to be solved in order to start using contextual information for FoG detection is accurate estimation of the patient's position and orientation toward key elements of his or her indoor environment. Objective The objectives of this paper are to (1) present the concept of the monitoring system, based on wearable and ambient sensors, which is designed to detect FoG using the spatial context of the user, (2) establish a set of requirements for the application of position and orientation tracking in FoG detection, (3) evaluate the accuracy of the position estimation for the tracking system, and (4) evaluate two different methods for human orientation estimation. Methods We developed a prototype system to localize humans and track their orientation, as an important prerequisite for a context-based FoG monitoring system. To setup the system for experiments with real PD patients, the accuracy of the position and orientation tracking was assessed under laboratory conditions in 12 participants. To collect the data, the participants were asked to wear a smartphone, with and without known orientation around the waist, while walking over a predefined path in the marked area captured by two Kinect cameras with non-overlapping fields of view. Results We used the root mean square error (RMSE) as the main performance measure. The vision based position tracking algorithm achieved RMSE = 0.16 m in position estimation for upright standing people. The experimental results for the proposed human orientation

  14. Preliminary results on the effect of sensor position on unobtrusive rollover detection for sleep monitoring in smart homes.

    PubMed

    Townsend, Daphne I; Goubran, Rafik; Frize, Monique; Knoefel, Frank

    2009-01-01

    Older adults experience increased sleep movement disorders and sleep fragmentation, and these are associated with serious health consequences such as falls. Monitoring sleep fragmentation and restlessness in older adults can reveal information about their daily and long-term health status. Long-term home monitoring is only realistic within the contact of unobtrusive, non-contact sensors. This paper presents exploratory work using the pressure sensor array as an instrument for rollover detection. The sensor output is used to calculate a center of gravity signal, from which five features are extracted. These features are used in a decision tree to classify detected movements in two categories; rollovers and other movements. Rollovers were detected with a sensitivity and specificity of 82% and 100% respectively, and a Mathew's correlation coefficient of 0.86 when data from all sensor positions were included. Intrapositional and interpositional effects of movements on sensors placed throughout the bed are described. PMID:19965073

  15. Spatial Orientation and Morphology of the Pulmonary Artery: Relevance to Optimising Design and Positioning of a Continuous Pressure Monitoring Device.

    PubMed

    Lee, Su-Lin; Aguib, Heba; Chapron, Julien; Bahmanyar, Reza; Borghi, Alessandro; Murphy, Olive; McLeod, Chris; ElGuindy, Ahmed; Yacoub, Magdi

    2016-06-01

    Personalised treatment of heart disease requires an understanding of the patient-specific characteristics, which can vary over time. A newly developed implantable surface acoustic wave pressure sensor, capable of continuous monitoring of the left ventricle filling pressure, is a novel device for personalised management of patients with heart disease. However, a one-size-fits-all approach to device sizing will affect its positioning within the pulmonary artery and its relationship to the interrogating device on the chest wall on a patient-specific level. In this paper, we analyse the spatial orientation and morphology of the pulmonary artery and its main branches in patients who could benefit from the device and normal controls. The results could optimise the design of the sensor, its stent, and importantly its placement, ensuring long-term monitoring in patient groups. PMID:27075735

  16. A proposed interim improvement to the Tevatron beam position monitors with narrow band crystal filters

    SciTech Connect

    Cheng-Yang Tan

    2003-08-25

    Since the start of Run II, we have found that we are unable to reliably and accurately measure the beam position with the present BPM system during high energy physics (HEP). This problem can be traced back to the analogue frontend called the AM/PM module which has trouble handling coalesced beam, but works well with uncoalesced beam. In this paper, we propose a simple fix to the AM/PM module so that we can measure the beam position during HEP. The idea is to use narrow band crystal filters which ring when pinged by coalesced beam so that the AM/PM module is tricked into thinking that it is measuring uncoalesced beam.

  17. Solar Eclipse Monitoring for Solar Energy Applications Using the Solar and Moon Position Algorithms

    SciTech Connect

    Reda, I.

    2010-03-01

    This report includes a procedure for implementing an algorithm (described by Jean Meeus) to calculate the moon's zenith angle with uncertainty of +/-0.001 degrees and azimuth angle with uncertainty of +/-0.003 degrees. The step-by-step format presented here simplifies the complicated steps Meeus describes to calculate the Moon's position, and focuses on the Moon instead of the planets and stars. It also introduces some changes to accommodate for solar radiation applications.

  18. A demonstration of centimeter-level monitoring of polar motion with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lindqwister, U. J.; Freedman, A. P.; Blewitt, G.

    1992-01-01

    Daily estimates of the Earth's pole position were obtained with the Global Positioning System (GPS) by using measurements obtained during the GPS IERS (International Earth Rotation Service) and Geodynamics (GIG'91) experiment from 22 Jan. to 13 Feb. 1991. Data from a globally distributed network consisting of 21 Rogue GPS receivers were chosen for the analysis. A comparison of the GPS polar motion series with nine 24-hour very long baseline interferometry (VLBI) estimates yielded agreement in the day-to-day pole position of about 1.5 cm for both X and Y polar motion. A similar comparison of GPS and satellite laser ranging (SLR) data showed agreement to about 1.0 cm. These preliminary results indicate that polar motion can be determined by GPS independent of, and at a level comparable to, that which is obtained from either VLBI or SLR. Furthermore, GPS can provide these data with a daily frequency that neither alternative technique can readily achieve. Thus, GPS promises to be a powerful tool for determining high-frequency platform parameter variation, essential for the ultraprecise spacecraft-tracking requirements of the coming years.

  19. Simultaneous linear optics and coupling correction for storage rings with turn-by-turn beam position monitor data

    SciTech Connect

    Yang, Xi; Huang, Xiaobiao

    2015-11-10

    We propose a method to simultaneously correct linear optics errors and linear coupling for storage rings using turn-by-turn (TbT) beam position monitor (BPM) data. The independent component analysis (ICA) method is used to isolate the betatron normal modes from the measured TbT BPM data. The betatron amplitudes and phase advances of the projections of the normal modes on the horizontal and vertical planes are then extracted, which, combined with dispersion measurement, are used to fit the lattice model. Furthermore, the fitting results are used for lattice correction. Our method has been successfully demonstrated on the NSLS-II storage ring.

  20. VISIR upgrade overview and status

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans Ulrich; Baksai, Pedro; Dobrzycka, Danuta; Finger, Gert; Ives, Derek; Jakob, Gerd; Lagadec, Eric; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Moerchen, Margaret; Momany, Yazan; Moreau, Vincent; Pantin, Eric; Riquelme, Miguel; Siebenmorgen, Ralf; Silber, Armin; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Venema, Lars; Weilenmann, Ueli; Yegorova, Irina

    2012-09-01

    We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As Aquarius detector array (Raytheon) which has demonstrated very good performance (sensitivity, stability) in the laboratory IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a userdefined constraint on water vapour. Improved pipelines based on the ESO Reflex concept will provide better support to astronomers. The upgraded VISIR will be a powerful instrument providing background limited performance for diffraction-limited observations at an 8-m telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is available from survey work (e.g. VISTA, WISE). In addition it will bring confirmation of the technical readiness and scientific value of several aspects of potential mid-IR instrumentation at Extremely Large Telescopes. The intervention on VISIR and installation of hardware has been completed in July and commissioning will take place during July and August. VISIR is scheduled to be available to the users starting Oct 2012.

  1. ALPHA: A Case Study in Upgrading.

    ERIC Educational Resources Information Center

    Granick, Leonard P. R.; And Others

    An industry-focused upgrading model, based upon job redesigns of entry-level and higher skill positions and a multi-step diagonal/vertical progression ladder was installed in a company having a 150-employee blue collar work force. The model provided for rapid promotion and wage increases of both present employees and new hires, supported by skills…

  2. Monitoring Afatinib Treatment in HER2-Positive Gastric Cancer with 18F-FDG and 89Zr-Trastuzumab PET

    PubMed Central

    Janjigian, Yelena Y.; Viola-Villegas, Nerissa; Holland, Jason P.; Divilov, Vadim; Carlin, Sean D.; Gomes-DaGama, Erica M.; Chiosis, Gabriela; Carbonetti, Gregory; de Stanchina, Elisa; Lewis, Jason S.

    2016-01-01

    We evaluated the ability of the PET imaging agent 89Zr-trastuzumab to delineate HER2-positive gastric cancer and to monitor the pharmacodynamic effects of the epidermal growth factor receptor (EGFR)/human epidermal growth factor receptor 2 (HER2) tyrosine kinase inhibitor afatinib. Methods Using 89Zr-trastuzumab, 18F-FDG, or 3′-deoxy-3′-18F-fluorothymidine (18F-FLT PET), we imaged HER2-positive NCI-N87 and HER2-negative MKN74 gastric cancer xenografts in mice. Next, we examined the pharmacodynamic effects of afatinib in NCI-N87 xenografts using 89Zr-trastuzumab and 18F-FDG PET and comparing imaging results to changes in tumor size and in protein expression as monitored by Western blot and histologic studies. Results Although 18F-FDG uptake in NCI-N87 tumors did not change, a decrease in 89Zr-trastuzumab uptake was observed in the afatinib-treated versus control groups (3.0 ± 0.0 percentage injected dose per gram (%ID/g) vs. 21.0 ± 3.4%ID/g, respectively; P < 0.05). 89Zr-trastuzumab PET results corresponded with tumor reduction, apoptosis, and downregulation of HER2 observed on treatment with afatinib. Downregulation of total HER2, phosphorylated (p)-HER2, and p-EGFR occurred within 24 h of the first dose of afatinib, with a sustained effect over 21 d of treatment. Conclusion Afatinib demonstrated antitumor activity in HER2-positive gastric cancer in vivo. 89Zr-trastuzumab PET specifically delineated HER2-positive gastric cancer and can be used to measure the pharmacodynamic effects of afatinib. PMID:23578997

  3. Intelligent portal monitor for fast suppression of false positives due to radiopharmaceuticals

    SciTech Connect

    Johnson, M.W.; Butterfield, K.B.

    1985-01-01

    Monitoring the movement of radioactive material through secure or sensitive areas may be complicated by the existence of unanticipated sources of radiation carried by individuals passing through the area. Typical of such sources are radiopharmaceuticals prescribed for a medical procedure. We report here on an apparatus designed to quickly discriminate between in-vivo radiopharmaceuticals and other nuclear materials, based on a pattern-recognition algorithm and a microcomputer. Principles of operation are discussed, and the data base for the pattern-recognition algorithm is displayed. Operating experience with the apparatus in a trial location is also discussed. Our apparatus correctly identifies in-vivo radiopharmaceuticals in over 80% of all trials; challenges with radioisotopes other than radiopharmaceuticals have led the apparatus, without exception, to reject the challenge isotope as incompatible with medical practice. The apparatus thus rapidly discriminates between individuals bearing radiopharmaceuticals and those bearing illicit sources, such as special nuclear materials. Examples of applications are presented. 7 refs., 4 figs., 1 tab.

  4. ELECTRO-OPTIC BEAM POSITION AND PULSED POWER MONITORS FOR THE SECOND AXIS OF DARHT.

    SciTech Connect

    M. BRUBAKER; C. EKDAHL; C. YAKYMYSHYN

    2001-05-01

    The second axis of the Dual Axis Radiographic Hydro-Test (DARHT) facility utilizes a long pulse electron beam having a duration in excess of two microseconds. This time scale poses problems for many conventional diagnostics that rely upon electrical cables to transmit signals between the accelerator and recording equipment. Recognizing that transit time isolation is not readily achieved for the long pulse regime, difficulties resulting from ground loops are anticipated. An electro-optic (EO) voltage sensor technology has been developed to address this issue. The EO sensor exploits the Pockels effect in Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) to provide linear modulation of laser light in response to the voltage induced on a pickup electrode. Fiber coupling between the light source, Pockels cell and receiver ensures complete galvanic isolation with improved cost and performance as compared to conventional sensors fitted with fiber optic links. Furthermore, the EO approach requires that only the passive sensor element be located near the accelerator while the light source and receiver can be installed in remote locations. This paper describes the design and development of EO sensors for electron beam and pulsed power monitoring on the second axis of DARHT. Typical calibration and testing data for the sensors is also presented.

  5. Global positioning system surveying to monitor land subsidence in Sacramento Valley, California, USA

    USGS Publications Warehouse

    Ikehara, M.E.

    1994-01-01

    A subsidence research program began in 1985 to document the extent and magnitude of land subsidence in Sacramento Valley, California, an area of about 15 600 km2m, using Global Positioning System (GPS) surveying. In addition to periodic conventional spirit levelling, an examination was made of the changes in GPS-derived ellipsoidal height differences (summary differences) between pairs of adjacent bench marks in central Sacramento Valley from 1986 to 1989. The average rates of land subsidence in the southern Sacramento Valley for the past several decades were determined by comparing GPS-derived orthometric heights with historic published elevations. A maximum average rate of 0.053 m year-1 (0.90 m in 17 years) of subsidence has been measured. -Author

  6. HISPASAT launch and early operations phases: Computation and monitoring of geostationary satellite positioning

    NASA Technical Reports Server (NTRS)

    Brousse, Pascal; Desprairies, Arnaud

    1993-01-01

    Since 1974, CNES, the French National Space Agency, has been involved in the geostationary launch and early operations phases (LEOP) of moving satellites from a transfer orbit delivered by a launcher to a geostationary point. During the operations and their preparation, the Flight Dynamics Center (FDC), part of CNES LEOP facilities, is in charge of the space mechanics aspects. What is noteworthy about the Spanish HISPASAT satellite positioning is that all the operations were performed on the customer's premises, and consequently the FDC was duplicated in Madrid, Spain. The first part of this paper is the FDC presentation: its role, its hardware configuration, and its space dynamics ground control system called MERCATOR. The second part of this paper details the preparation used by the FDC for the HISPASAT mission: hardware and software installation in Madrid, integration with the other entities, and technical and operational qualifications. The third part gives results concerning flight dynamics aspects and operational activities.

  7. Cyclotron Institute Upgrade Project

    SciTech Connect

    Clark, Henry; Yennello, Sherry; Tribble, Robert

    2014-08-26

    The Cyclotron Institute at Texas A&M University has upgraded its accelerator facilities to extend research capabilities with both stable and radioactive beams. The upgrade is divided into three major tasks: (1) re-commission the K-150 (88”) cyclotron, couple it to existing beam lines to provide intense stable beams into the K-500 experimental areas and use it as a driver to produce radioactive beams; (2) develop light ion and heavy ion guides for stopping radioactive ions created with the K-150 beams; and (3) transport 1+ ions from the ion guides into a charge-breeding electron-cyclotron-resonance ion source (CB-ECR) to produce highly-charged radioactive ions for acceleration in the K-500 cyclotron. When completed, the upgraded facility will provide high-quality re-accelerated secondary beams in a unique energy range in the world.

  8. Formaldehyde OMI operational retrieval upgrades

    NASA Astrophysics Data System (ADS)

    Gonzalez Abad, G.; Chance, K.; Liu, X.

    2013-05-01

    Total column of formaldehyde (HCHO), a proxy for biogenic emissions, can be observed from satellites using the ultraviolet region of the spectrum. The operational HCHO retrievals from the Ozone Monitoring Instrument (OMI) on board the AURA satellite, part of NASA's A-train constellation of Earth Observing satellites, are described. The operational retrieval, based on a basic optical absorption spectroscopy (BOAS) algorithm, has been affected by the degradation of the instrument especially from 2008 onwards. The most significant problems are the unrealistic increasing high background concentrations of HCHO retrieved from OMI and the row anomaly. An upgrade for the original operational algorithm is therefore needed to ensure its trend quality and to account for these difficulties. The strategies implemented to deal with the instrumental degradation are presented here. Air mass factors (AMFs) in the current fitting window show significant wavelength dependence. Fitting uncertainties can potentially be improved by including shorter wavelengths as long as the AMFs wavelength dependence is taken into account. As part of these improvements a look-up table of wavelength-dependent AMFs have been calculated. Using this new table it is possible to retrieve the HCHO total column directly, weighting the HCHO cross sections with the wavelength-dependent AMFs. Additionally, the pixels affected by the row anomaly are now flagged in the level 2 data generated with the upgraded algorithm.

  9. Occupational Exposure to Ultrafine Particles among Airport Employees - Combining Personal Monitoring and Global Positioning System

    PubMed Central

    Møller, Karina Lauenborg; Thygesen, Lau Caspar; Schipperijn, Jasper; Loft, Steffen; Bonde, Jens Peter; Mikkelsen, Sigurd; Brauer, Charlotte

    2014-01-01

    Background Exposure to ultrafine particles (UFP) has been linked to cardiovascular and lung diseases. Combustion of jet fuel and diesel powered handling equipment emit UFP resulting in potentially high exposure levels among employees working at airports. High levels of UFP have been reported at several airports, especially on the apron, but knowledge on individual exposure profiles among different occupational groups working at an airport is lacking. Purpose The aim of this study was to compare personal exposure to UFP among five different occupational groups working at Copenhagen Airport (CPH). Method 30 employees from five different occupational groups (baggage handlers, catering drivers, cleaning staff and airside and landside security) at CPH were instructed to wear a personal monitor of particle number concentration in real time and a GPS device. The measurements were carried out on 8 days distributed over two weeks in October 2012. The overall differences between the groups were assessed using linear mixed model. Results Data showed significant differences in exposure levels among the groups when adjusted for variation within individuals and for effect of time and date (p<0.01). Baggage handlers were exposed to 7 times higher average concentrations (geometric mean, GM: 37×103 UFP/cm3, 95% CI: 25–55×103 UFP/cm3) than employees mainly working indoors (GM: 5×103 UFP/cm3, 95% CI: 2–11×103 UFP/cm3). Furthermore, catering drivers, cleaning staff and airside security were exposed to intermediate concentrations (GM: 12 to 20×103 UFP/cm3). Conclusion The study demonstrates a strong gradient of exposure to UFP in ambient air across occupational groups of airport employees. PMID:25203510

  10. Antenna feedhorn software upgrade

    NASA Technical Reports Server (NTRS)

    Potter, P. D.

    1979-01-01

    The HYBRIDHORN computer program was developed to serve as an item of general purpose antenna feedhorn design and analysis software. The formulation contains a small flare angle approximation which is subject to question for designs such as the S- and X-band feedhorn. Additionally, the original formulation did not allow azimuthal variation indexes other than unity. The HYBRIDHORN program was upgraded to correct both of these deficiencies. A large flare angle formulation was found. In the upgrade, all of the major program elements were converted to Univac 1108 compatible structured FORTRAN (SFTRAN) for ease of software maintenance. The small and large angle formulations are described and sample numerical results are presented.

  11. A new tool to monitor training and performance of sport horses using global positioning system (GPS) with integrated GSM capabilities.

    PubMed

    Hebenbrock, M; Düe, M; Holzhausen, H; Sass, A; Stadler, P; Ellendorff, F

    2005-07-01

    Global Positioning Systems (GPS) are considered suitable to monitor the position and velocity of horses during cross-country competition or in training. Furthermore, simultaneous recording of life data such as heart rate could be useful to assess the horse's condition during exercise. To test the suitability and reliability of a commercially available GPS system with integrated heart rate recording system and with built in GSM for data transmission, the Fidelak Equipilot Type EP-2003-15/G-2.11 (EP-15/G) was evaluated first for reliability of pulse recording from a pulse generator within the physiological range of horses; furthermore distance, velocity and heart rate recordings were carried out on a standard 1000 m field track with five repetitions. Agreement (% deviation from actually measured distance and from stopwatch-distance based velocity calculations) and variability (Coefficient of Variation for distance, velocity, heart rate) were calculated. From the results it was safe to assume that the heart rate sensor recorded horse heart rates at a high degree of accuracy. Overall distances and velocities are in high agreement with actually measured values. However, overall variability expressed in terms of relative variability (C.V.) is smaller for distance recording (C.V. 0.68%) when compared to velocity (C.V. 1.01%). The system tested is suitable and reliable for simultaneously recording of distance, velocity and heart rates for horses during cross country exercise. GPS-based monitoring of movement along with simultaneous recording of physiological data and the possibility to call upon data will not only be of benefit for training horses or for surveillance during competition, it may also be suitable for distant patient monitoring and in behavioural studies as well as in veterinary medicine in general. PMID:16124700

  12. Blood pressure monitor with a position sensor for wrist placement to eliminate hydrostatic pressure effect on blood pressure measurement.

    PubMed

    Sato, Hironori; Koshimizu, Hiroshi; Yamashita, Shingo; Ogura, Toshihiko

    2013-01-01

    Accurate measurement of blood pressure at wrist requires the heart and wrist to be kept at the same level to avoid the effects of hydrostatic pressure. Although a blood pressure monitor with a position sensor that guides appropriate forearm angle without use of a chair and desk has already been proposed, a similar functioning device for measuring upper arm blood pressure with a chair and desk is needed. In this study, a calculation model was first used to explore design of such a system. The findings were then implemented into design of a new blood pressure monitor. Results of various methods were compared. The calculation model of the wrist level from arthrosis angles and interarticulars lengths was developed and considered using published anthropometric dimensions. It is compared with 33 volunteer persons' experimental results. The calculated difference of level was -4.1 to 7.9 (cm) with a fixed chair and desk. The experimental result was -3.0 to 5.5 (cm) at left wrist and -2.1 to 6.3(cm) at right wrist. The absolute difference level equals ±4.8 (mmHg) of blood pressure readings according to the calculated result. This meets the AAMI requirements for a blood pressure monitor. In the conclusion, the calculation model is able to effectively evaluate the difference between the heart and wrist level. Improving the method for maintaining wrist to heart level will improve wrist blood pressure measurement accuracy when also sitting in the chair at a desk. The leading angle of user's forearm using a position sensor is shown to work for this purpose. PMID:24110067

  13. VISIR upgrade overview and status

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans-Ulrich; Baksai, Pedro; Di Lieto, Nicola; Dobrzycka, Danuta; Duhoux, Philippe; Finger, Gert; Heikamp, Stephanie; Ives, Derek; Jakob, Gerd; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Momany, Yazan; Moreau, Vincent; Pantin, Eric; Riquelme, Miguel; Sandrock, Stefan; Siebenmorgen, Ralf; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Valdes, Guillermo; Venema, Lars; Weilenmann, Ueli

    2014-07-01

    We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector array (Raytheon) which has been carefully characterized in ESO's IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water vapour. During the commissioning in 2012 it was found that the on-sky sensitivity of the AQUARIUS detector was significantly below expectations and that VISIR was not ready to go back to science operations. Extensive testing of the detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as excess low frequency noise (ELFN). It is inherent to the design chosen for this detector and can't be remedied by changing the detector set-up. Since this is a form of correlated noise its impact can be limited by modulating the scene recorded by the detector. We have studied several mitigation options and found that faster chopping using the secondary mirror (M2) of the VLT offers the most promising way forward. Faster M2 chopping has been tested and is scheduled for implementation before the end of 2014

  14. Development of the chemical exposure monitor with indoor positioning (CEMWIP) for workplace VOC surveys.

    PubMed

    Brown, K K; Shaw, P B; Mead, K R; Kovein, R J; Voorhees, R T; Brandes, A R

    2016-06-01

    The purpose of this article was to research and develop a direct-reading exposure assessment method that combined a real-time location system with a wireless direct-reading personal chemical sensor. The personal chemical sensor was a photoionization device for detecting volatile organic compounds. The combined system was calibrated and tested against the same four standard gas concentrations and calibrated at one standard location and tested at four locations that included the standard locations. Data were wirelessly collected from the chemical sensor every 1.4 sec, for volatile organic compounds concentration, location, temperature, humidity, and time. Regression analysis of the photo-ionization device voltage response against calibration gases showed the chemical sensor had a limit of detection of 0.2 ppm. The real-time location system was accurate to 13 cm ± 6 cm (standard deviation) in an open area and to 57 cm ± 31 cm in a closed room where the radio frequency has to penetrate drywall-finished walls. The streaming data were collected and graphically displayed as a three-dimensional hazard map for assessment of peak exposure with location. A real-time personal exposure assessment device with indoor positioning was practical and provided new knowledge on direct reading exposure assessment methods. PMID:26786234

  15. A compact and portable X-ray beam position monitor using Medipix3

    NASA Astrophysics Data System (ADS)

    Rico-Alvarez, O.; Kachatkou, A.; Marchal, J.; Willis, B.; Sawhney, K.; Tartoni, N.; van Silfhout, R. G.

    2014-12-01

    The present work reports on the design and implementation of a novel portable X-ray beam diagnostics (XBPM) device. The device is transparent to the X-ray beam and provides real-time measurements of beam position, intensity, and size. The measurement principle is based on a pinhole camera which records scattered radiation from a Kapton foil which is placed in the beam path. The use of hybrid detectors (Medipix3) that feature a virtually noiseless readout system with capability of single photon detection and energy resolving power enables the diagnostics with a better resolution and higher sensitivity compared to the use of traditional indirect X-ray detection schemes. We describe the detailed system design, which consists of a vacuum compatible focal plane sensor array, a sensor conditioning and readout board and a heterogeneous data processing unit, which also acts as a network server that handles network communications with clients. The readout protocol for the Medipix3 sensor is implemented using field programmable gate array (FPGA) logic resulting in a versatile and scalable system that is capable of performing advanced functions such as data compression techniques and feature extraction. For the system performance measurements, we equipped the instrument with a single Medipix3 die, bump bonded to a Si sensor, rather than four for which it was designed. Without data compression, it is capable of acquiring magnified images and profiles of synchrotron X-ray beams at a transfer rate through Ethernet of 27 frames/s for one Medipix3 die.

  16. Reproducibility of the external surface position in left-breast DIBH radiotherapy with spirometer-based monitoring.

    PubMed

    Fassi, Aurora; Ivaldi, Giovanni B; Meaglia, Ilaria; Porcu, Patrizia; Tabarelli de Fatis, Paola; Liotta, Marco; Riboldi, Marco; Baroni, Guido

    2014-01-01

    Deep inspiration breath hold (DIBH) in left-sided breast cancer radiotherapy treatments allows for a reduction in cardiac and pulmonary doses without compromising target coverage. The selection of the most appropriate technology for DIBH monitoring is a crucial issue. We evaluated the stability and reproducibility of DIBHs controlled by a spirometric device, by assessing the variability of the external surface position within a single DIBH (intra-DIBH) and between DIBHs performed in the same treatment session (intrafraction) or in different sessions (interfraction). The study included seven left-breast cancer patients treated with spirometer-based DIBH radiotherapy. Infrared optical tracking was used to record the 3D coordinates of seven to eleven passive markers placed on the patient's thoraco-abdominal surface during 29-43 DIBHs performed in six to eight treatment sessions. The obtained results showed displacements of the external surface between different sessions up to 6.3mm along a single direction, even at constant inspired volumes. The median value of the interfraction variability in the position of breast passive markers was 2.9 mm (range 1.9-4.8 mm) in the latero-lateral direction, 3.6 mm (range 2.2-4.6mm) in the antero-posterior direction, and 4.3mm (range 2.8-6.2 mm) in the cranio-caudal direction. There were no significant dose distribution variations for target and organs at risk with respect to the treatment plan, confirming the adequacy of the applied clinical margins (15 mm) to compensate for the measured setup uncertainties. This study demonstrates that spirometer-based control does not guarantee a stable and reproducible position of the external surface in left-breast DIBH radiotherapy, suggesting the need for more robust DIBH monitoring techniques when reduced margins and setup uncertainties are required for improving normal tissue sparing and decreasing cardiac and pulmonary toxicity. PMID:24423845

  17. Design of a Standing-Wave Multi-Cavity Beam-Monitor for Simultaneous Beam Position and Emittance Measurements

    SciTech Connect

    Kim, J.S.; Miller, R.; Nantista, C.; /SLAC

    2005-06-22

    A high precision emittance measurement requires precise beam position at the measurement location. At present there is no existing technique, commercial or otherwise, for non-destructive pulse-to-pulse simultaneous beam position and emittance measurement. FARTECH, Inc. is currently developing a high precision cavity-based beam monitor for simultaneous beam position and emittance measurements pulse-to-pulse, without beam interception and without moving parts. The design and analysis of a multi-cavity standing wave structure for a pulse-to-pulse emittance measurement system in which the quadrupole and the dipole standing wave modes resonate at harmonics of the beam operating frequency is presented. Considering the Next Linear Collider beams, an optimized 9-cavity standing wave system is designed for simultaneous high precision beam position and emittance measurements. It operates with the {pi}-quadrupole mode resonating at 16th harmonic of the NLC bunch frequency, and the 3 {pi}/4 dipole mode at 12th harmonic (8.568 GHz). The 9-cavity system design indicates that the two dipoles resonate almost at the same frequency 8.583 GHz and the quadrupole at 11.427 GHz according to the scattering parameter calculations. The design can be trivially scaled so that the dipole frequency is at 8.568 GHz, and the quadrupole frequency can then be tuned during fabrication to achieve the desired 11.424 GHz. The output powers from these modes are estimated for the NLC beams. An estimated rms-beam size resolution is sub micro-meters and beam positions in sub nano-meters.

  18. Design of a Standing-Wave Multi-Cavity Beam-Monitor for Simultaneous Beam Position and Emittance Measurements

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Miller, Roger; Nantista, Christopher

    2004-12-01

    A high precision emittance measurement requires precise beam position at the measurement location. At present there is no existing technique, commercial or otherwise, for non-destructive pulse-to-pulse simultaneous beam position and emittance measurement. FAR-TECH, Inc. is currently developing a high precision cavity-based beam monitor for simultaneous beam position and emittance measurements pulse-to-pulse, without beam interception and without moving parts. The design and anlysis of a multi-cavity standing wave structure for a pulse-to-pulse emittance measurement system in which the quadrupole and the dipole standing wave modes resonate at harmonics of the beam operating frequency is presented. Considering the Next Linear Collider beams, an optimized 9-cavity standing wave system is designed for simultaneous high precision beam position and emittance measurements. It operates with the π - quadrupole mode resonating at 16th harmonic of the NLC bunch frequency, and the 3 π /4 dipole mode at 12th harmonic (8.568 GHz). The 9-cavity system design indicates that the two dipoles resonate almost at the same frequency 8.583 GHz and the quadrupole at 11.427 GHz according to the scattering parameter calculations. The design can be trivially scaled so that the dipole frequency is at 8.568 GHz, and the quadrupole frequency can then be tuned during fabrication to achieve the desired 11.424 GHz. The output powers from these modes are estimated for the NLC beams. An estimated rms-beam size resolution is sub micro-meters and beam positions in sub nano-meters.

  19. Continuous Monitoring and Intrafraction Target Position Correction During Treatment Improves Target Coverage for Patients Undergoing SBRT Prostate Therapy

    SciTech Connect

    Lovelock, D. Michael; Messineo, Alessandra P.; Cox, Brett W.; Kollmeier, Marisa A.; Zelefsky, Michael J.

    2015-03-01

    Purpose: To compare the potential benefits of continuous monitoring of prostate position and intervention (CMI) using 2-mm displacement thresholds during stereotactic body radiation therapy (SBRT) treatment to those of a conventional image-guided procedure involving single localization prior to treatment. Methods and Materials: Eighty-nine patients accrued to a prostate SBRT dose escalation protocol were implanted with radiofrequency transponder beacons. The planning target volume (PTV) margin was 5 mm in all directions, except for 3 mm in the posterior direction. The prostate was kept within 2 mm of its planned position by the therapists halting dose delivery and, if necessary, correcting the couch position. We computed the number, type, and time required for interventions and where the prostate would have been during dose delivery had there been, instead, a single image-guided setup procedure prior to each treatment. Distributions of prostate displacements were computed as a function of time. Results: After the initial setup, 1.7 interventions per fraction were required, with a concomitant increase in time for dose delivery of approximately 65 seconds. Small systematic drifts in prostate position in the posterior and inferior directions were observed in the study patients. Without CMI, intrafractional motion would have resulted in approximately 10% of patients having a delivered dose that did not meet our clinical coverage requirement, that is, a PTV D95 of >90%. The posterior PTV margin required for 95% of the dose to be delivered with the target positioned within the PTV was computed as a function of time. The margin necessary was found to increase by 2 mm every 5 minutes, starting from the time of the imaging procedure. Conclusions: CMI using a tight 2-mm displacement threshold was not only feasible but was found to deliver superior PTV coverage compared with the conventional image-guided procedure in the SBRT setting.

  20. Monitoring daily MLC positional errors using trajectory log files and EPID measurements for IMRT and VMAT deliveries

    NASA Astrophysics Data System (ADS)

    Agnew, A.; Agnew, C. E.; Grattan, M. W. D.; Hounsell, A. R.; McGarry, C. K.

    2014-05-01

    This work investigated the differences between multileaf collimator (MLC) positioning accuracy determined using either log files or electronic portal imaging devices (EPID) and then assessed the possibility of reducing patient specific quality control (QC) via phantom-less methodologies. In-house software was developed, and validated, to track MLC positional accuracy with the rotational and static gantry picket fence tests using an integrated electronic portal image. This software was used to monitor MLC daily performance over a 1 year period for two Varian TrueBeam linear accelerators, with the results directly compared with MLC positions determined using leaf trajectory log files. This software was validated by introducing known shifts and collimator errors. Skewness of the MLCs was found to be 0.03 ± 0.06° (mean ±1 standard deviation (SD)) and was dependent on whether the collimator was rotated manually or automatically. Trajectory log files, analysed using in-house software, showed average MLC positioning errors with a magnitude of 0.004 ± 0.003 mm (rotational) and 0.004 ± 0.011 mm (static) across two TrueBeam units over 1 year (mean ±1 SD). These ranges, as indicated by the SD, were lower than the related average MLC positioning errors of 0.000 ± 0.025 mm (rotational) and 0.000 ± 0.039 mm (static) that were obtained using the in-house EPID based software. The range of EPID measured MLC positional errors was larger due to the inherent uncertainties of the procedure. Over the duration of the study, multiple MLC positional errors were detected using the EPID based software but these same errors were not detected using the trajectory log files. This work shows the importance of increasing linac specific QC when phantom-less methodologies, such as the use of log files, are used to reduce patient specific QC. Tolerances of 0.25 mm have been created for the MLC positional errors using the EPID-based automated picket fence test. The software allows diagnosis

  1. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  2. Upgrading Undergraduate Biology Education

    ERIC Educational Resources Information Center

    Musante, Susan

    2011-01-01

    On many campuses throughout the country, undergraduate biology education is in serious need of an upgrade. During the past few decades, the body of biological knowledge has grown exponentially, and as a research endeavor, the practice of biology has evolved. Education research has also made great strides, revealing many new insights into how…

  3. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  4. Evaluation of target and cardiac position during visually monitored deep inspiration breath-hold for breast radiotherapy.

    PubMed

    Conroy, Leigh; Yeung, Rosanna; Watt, Elizabeth; Quirk, Sarah; Long, Karen; Hudson, Alana; Phan, Tien; Smith, Wendy L

    2016-01-01

    A low-resource visually monitored deep inspiration breath-hold (VM-DIBH) technique was successfully implemented in our clinic to reduce cardiac dose in left-sided breast radiotherapy. In this study, we retrospectively characterized the chest wall and heart positioning accuracy of VM-DIBH using cine portal images from 42 patients. Central chest wall position from field edge and in-field maximum heart distance (MHD) were manually measured on cine images and compared to the planned positions based on the digitally reconstructed radiographs (DRRs). An in-house program was designed to measure left anterior descending artery (LAD) and chest wall separation on the planning DIBH CT scan with respect to breath-hold level (BHL) during simulation to determine a minimum BHL for VM-DIBH eligibility. Systematic and random setup uncertainties of 3.0 mm and 2.6 mm, respectively, were found for VM-DIBH treatment from the chest wall measurements. Intrabeam breath-hold stability was found to be good, with over 96% of delivered fields within 3 mm. Average treatment MHD was significantly larger for those patients where some of the heart was planned in the field compared to patients whose heart was completely shielded in the plan (p < 0.001). No evidence for a minimum BHL was found, suggesting that all patients who can tolerate DIBH may yield a benefit from it. PMID:27455494

  5. Monitors.

    ERIC Educational Resources Information Center

    Powell, David

    1984-01-01

    Provides guidelines for selecting a monitor to suit specific applications, explains the process by which graphics images are produced on a CRT monitor, and describes four types of flat-panel displays being used in the newest lap-sized portable computers. A comparison chart provides prices and specifications for over 80 monitors. (MBR)

  6. Evaluation of New Quantitative Assays for Diagnosis and Monitoring of Cytomegalovirus Disease in Human Immunodeficiency Virus-Positive Patients

    PubMed Central

    Pellegrin, Isabelle; Garrigue, Isabelle; Binquet, Christine; Chene, Genevieve; Neau, Didier; Bonot, Pascal; Bonnet, Fabrice; Fleury, Herve; Pellegrin, Jean-Luc

    1999-01-01

    Cobas Amplicor CMV Monitor (CMM) and Quantiplex CMV bDNA 2.0 (CMV bDNA 2.0), two new standardized and quantitative assays for the detection of cytomegalovirus (CMV) DNA in plasma and peripheral blood leukocytes (PBLs), respectively, were compared to the CMV viremia assay, pp65 antigenemia assay, and the Amplicor CMV test (P-AMP). The CMV loads were measured in 384 samples from 58 human immunodeficiency virus (HIV) type 1-infected, CMV-seropositive subjects, including 13 with symptomatic CMV disease. The assays were highly concordant (agreement, 0.88 to 0.97) except when the CMV load was low. Quantitative results for plasma and PBLs were significantly correlated (Spearman ρ = 0.92). For PBLs, positive results were obtained 125 days before symptomatic CMV disease by CMV bDNA 2.0 and 124 days by pp65 antigenemia assay, whereas they were obtained 46 days before symptomatic CMV disease by CMM and P-AMP. At the time of CMV disease diagnosis, the sensitivity, specificity, and positive and negative predictive values of CMV bDNA 2.0 were 92.3, 97.8, 92.3, and 97.8%, respectively, whereas they were 92.3, 93.3, 80, and 97.8%, respectively, for the pp65 antigenemia assay; 84.6, 100, 100, and 95.7%, respectively, for CMM; and 76.9, 100, 100, and 93.8%, respectively, for P-AMP. Considering the entire follow-up, the sensitivity, specificity, and positive and negative predictive values of CMV bDNA 2.0 were 92.3, 73.3, 52.1, and 97.1%, respectively, whereas they were 100, 55.5, 39.4, and 100%, respectively, for the pp65 antigenemia assay; 92.3, 86.7, 66.7, and 97.5%, respectively, for CMM; and 84.6, 91.1, 73.3, and 95.3%, respectively, for P-AMP. Detection of CMV in plasma is technically easy and, despite its later positivity (i.e., later than in PBLs), can provide enough information sufficiently early so that HIV-infected patients can be effectively treated. In addition, these standardized quantitative assays accurately monitor the efficacy of anti-CMV treatment. PMID:10488165

  7. Testing of FMI's Coal Upgrading Process

    SciTech Connect

    Vijay Sethi

    2009-03-21

    WRI and FMI have collaborated to develop and test a novel coal upgrading technology. Proprietary coal upgrading technology is a fluidized bed-based continuous process which allows high through-puts, reducing the coal processing costs. Processing is carried out under controlled oxidizing conditions at mild enough conditions that compared to other coal upgrading technologies; the produced water is not as difficult to treat. All the energy required for coal drying and upgrading is derived from the coal itself. Under the auspices of the Jointly Sponsored Research Program, Cooperative Agreement DE-FC26-98FT40323, a nominal 400 lbs/hour PDU was constructed and operated. Over the course of this project, several low-rank coals were successfully tested in the PDU. In all cases, a higher Btu, low moisture content, stable product was produced and subsequently analyzed. Stack emissions were monitored and produced water samples were analyzed. Product stability was established by performing moisture readsorption testing. Product pyrophobicity was demonstrated by instrumenting a coal pile.

  8. BNL upgrade plans

    SciTech Connect

    Foelsche, H.W.J.

    1987-01-01

    Brookhaven National Laboratory is proposing two major upgrade projects for a future experimental program with protons and heavy ions. The first is the construction of a Relativistic Heavy Ion Collider (RHIC) which will use the AGS complex as an injector. The second initiative is an upgrade of the AGS proton intensity and duty cycle. Both objectives require a Booster for the AGS which has recently been approved as a construction project. With the completion of the booster, and with certain modifications of the AGS, the facility will ultimately become capable of supporting average proton currents on the order of 25 to 50 microamperes. The RHIC will provide center-of-mass collision energies of 2 x 100 to 125 GeV/amu for ions up to the heaviest masses, and 2 x 250 GeV for protons.

  9. CRYOGENICS IN BEPCII UPGRADE.

    SciTech Connect

    JIA,L.; WANG,L.; LI,S.

    2002-07-22

    THIS PAPER PRESENTS A CRYOGENIC DESIGN FOR UPGRADING THE BEIJING ELECTRON POSITRON COLLIDER AT THE INSTITUTE OF HIGH ENERGY PHYSICS IN BEIJING. THE UPGRADE INVOLVES 3 NEW SUPERCONDUCTING FACILITIES, THE INTERACTION REGION QUADRUPOLE MAGNETS, THE DETECTOR SOLENOID MAGNETS AND THE SRF CAVITIES. FOR COOLING OF THESE DEVICES, A NEW CRYPLANT WITH A TOTAL CAPACITY OF 1.0KW AT 4.5K IS TO BE BUILT AT IHEP. AN INTEGRATED CRYOGENIC DESIGN TO FIT THE BEPCII CRYOGENIC LOADS WITH HIGH EFFICIENCY IS CARRIEDOUT USING COMPUTATIONAL PROCESS ANALYSIS SOFTWARE WITH THE EMPHASES ON ECONOMICS AND SAFETY IN BOTH CONSTRUCTION AND OPERATION OF THE PLANT. THIS PAPER DESCRIBES THE CRYOGENIC CHARACTERISTICS OF EACH SUPERCONDUCTING DEVICE, THEIR COOLING SCHEMES AND THE OVERALL CRYOPLANT.

  10. Immunologic Monitoring of T-Lymphocyte Subsets and Hla-Dr-Positive Monocytes in Kidney Transplant Recipients

    PubMed Central

    Cho, Jang-Hee; Yoon, Young-Deuk; Jang, Hye Min; Kwon, Eugene; Jung, Hee-Yeon; Choi, Ji-Young; Park, Sun-Hee; Kim, Yong-Lim; Kim, Hyung-Kee; Huh, Seung; Won, Dong-Il; Kim, Chan-Duck

    2015-01-01

    Abstract The clinical significance of circulating T-lymphocyte subsets and human leukocyte antigen (HLA)-DR-positive monocytes in the peripheral blood of kidney transplant recipients (KTRs) remains unclear. We examined the efficacy of enumerating these cells for the immunologic monitoring of KTRs. Blood samples were obtained before transplantation, 2 weeks after transplantation and at diagnosis, and 2 weeks after treating biopsy-proven acute cellular rejection and cytomegalovirus (CMV) infection. Serial flow cytometric analysis was performed using peripheral blood obtained from 123 patients to identify the frequencies of HLA-DR+, CD3+, CD4+, CD8+, and CD25+ T-lymphocytes and HLA-DR-positive monocytes. Frequencies of CD4+CD25+/CD4+ T cells, CD8+CD25+/CD8+ T cells, and HLA-DR-positive monocytes were significantly lower at 2 weeks after transplantation than before transplantation (all P < 0.001). This decrease was not correlated with clinical parameters. The frequency of CD4+CD25+/CD4+ T cells was significantly higher in KTRs with acute rejection than in KTRs at 2 weeks after transplantation (9.10% [range 4.30–25.6%] vs 5.10% [range 0.10–33.3%]; P = 0.024). However, no significant differences were observed between stable KTRs and KTRs with CMV infection. Analysis of the receiver operating characteristic curve adjusted by covariates showed that acute rejection could be predicted with 75.0% sensitivity and 68.4% specificity by setting the cutoff value of CD4+CD25+/CD4+ T cell frequency as 5.8%. Circulating T-lymphocyte and monocyte subsets showed significant and consistent changes in their frequencies after immunosuppression. Of the various immune cells examined, circulating levels of CD4+CD25+ T cells might be a useful noninvasive immunologic indicator for detecting acute rejection. PMID:26554788

  11. The D0 upgrade

    SciTech Connect

    Tuts, P.M. . Physics Dept.)

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P[sub T] physics using precision measurements of e's, [mu]'s, jets, and missing E[sub T]. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10[sup 31] cm[sup [minus]2]sec[sup [minus]1], and the minimum bunch spacing will drop to 396ns from the present 3.5[mu]s (by the Main Injector era, luminosities will approach 10[sup 32] cm[sup [minus]2]sec[sup [minus]1] and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P[sub T] physics menu, but also the low P[sub T] physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  12. The D0 upgrade

    SciTech Connect

    Tuts, P.M.; The D0 Collaboration

    1992-10-01

    The original D0 detector was proposed in 1983, with a focus on high P{sub T} physics using precision measurements of e`s, {mu}`s, jets, and missing E{sub T}. This detector, as of the summer of 1992, has started data taking at the Fermilab Collider. However, by 1995/6 the luminosity will reach 10{sup 31} cm{sup {minus}2}sec{sup {minus}1}, and the minimum bunch spacing will drop to 396ns from the present 3.5{mu}s (by the Main Injector era, luminosities will approach 10{sup 32} cm{sup {minus}2}sec{sup {minus}1} and minimum bunch spacings may reach 132ns). These changes in the accelerator conditions force us to upgrade or replace a number of detector subsystems in order to meet these new demands. In addition, the upgrade offers us the opportunity to expand the physics horizons to include not only the all important high P{sub T} physics menu, but also the low P{sub T} physics that has become increasingly important. In this paper we describe the D0 detector upgrade.

  13. The LHCb VELO upgrade

    NASA Astrophysics Data System (ADS)

    Rodríguez Pérez, Pablo

    2013-12-01

    LHCb is a forward spectrometer experiment dedicated to the study of new physics in the decays of beauty and charm hadrons produced in proton collisions at the Large Hadron Collider (LHC) at CERN. The VErtex LOcator (VELO) is the microstrip silicon detector surrounding the interaction point, providing tracking and vertexing measurements. The upgrade of the LHCb experiment, planned for 2018, will increase the luminosity up to 2×1033 cm-2 s-1 and will perform the readout as a trigger-less system with an event rate of 40 MHz. Extremely non-uniform radiation doses will reach up to 5×1015 1 MeV neq/cm2 in the innermost regions of the VELO sensors, and the output data bandwidth will be increased by a factor of 40. An upgraded detector is under development based in a pixel sensor of the Timepix/Medipix family, with 55 × 55 μm2 pixels. In addition a microstrip solution with finer pitch, higher granularity and thinner than the current detector is being developed in parallel. The current status of the VELO upgrade program will be described together with recent testbeam results.

  14. High Resolution BPM Upgrade for the ATF Damping Ring at KEK

    SciTech Connect

    Eddy, N.; Briegel, C.; Fellenz, B.; Gianfelice-Wendt, E.; Prieto, P.; Rechenmacher, R.; Semenov, A.; Voy, D.; Wendt, M.; Zhang, D.; Terunuma, N.; /KEK, Tsukuba

    2011-08-17

    A beam position monitor (BPM) upgrade at the KEK Accelerator Test Facility (ATF) damping ring has been accomplished, carried out by a KEK/FNAL/SLAC collaboration under the umbrella of the global ILC R&D effort. The upgrade consists of a high resolution, high reproducibility read-out system, based on analog and digital down-conversion techniques, digital signal processing, and also implements a new automatic gain error correction schema. The technical concept and realization as well as results of beam studies are presented. The next generation of linear colliders require ultra-low vertical emittance of <2 pm-rad. The damping ring at the KEK Accelerator Test Facility (ATF) is designed to demonstrate this mission critical goal. A high resolution beam position monitor (BPM) system for the damping ring is one of the key tools for realizing this goal. The BPM system needs to provide two distnict measurements. First, a very high resolution ({approx}100-200nm) closed-orbit measurement which is averaged over many turns and realized with narrowband filter techniques - 'narrowband mode'. This is needed to monitor and steer the beam along an optimum orbit and to facilitate beam-based alignment to minimize non-linear field effects. Second, is the ability to make turn by turn (TBT) measurements to support optics studies and corrections necessary to achieve the design performance. As the TBT measurement necessitates a wider bandwidth, it is often referred to as 'wideband mode'. The BPM upgrade was initiated as a KEK/SLAC/FNAL collaboration in the frame of the Global Design Initiative of the International Linear Collider. The project was realized and completed using Japan-US funds with Fermilab as the core partner.

  15. Design of a diagnostic area-type beam position monitor for x-ray beamlines at the National Synchrotron Light Source

    SciTech Connect

    Corridon, D.

    1996-10-01

    We have built a area-type beam position monitor for use as a diagnostic tool at the National Synchrotron Light Source. The device is compact and fits into a vacuum cross. We completed range and resolution tests of the device at beamline X-19A at the NSLS and concluded that such a monitor can be placed in the confines of the vacuum cross.

  16. Using Electronic Drug Monitor Feedback to Improve Adherence to Antiretroviral Therapy Among HIV-Positive Patients in China

    PubMed Central

    DeSilva, Mary Bachman; Hamer, Davidson H.; Xu, Keyi; Zhang, Jianbo; Li, Tao; Wilson, Ira B.; Gill, Christopher J.

    2009-01-01

    Effective antiretroviral therapy (ART) requires excellent adherence. Little is known about how to improve ART adherence in many HIV/AIDS-affected countries, including China. We therefore assessed an adherence intervention among HIV-positive patients in southwestern China. Eighty subjects were enrolled and monitored for 6 months. Sixty-eight remaining subjects were randomized to intervention/control arms. In months 7–12, intervention subjects were counseled using EDM feedback; controls continued with standard of care. Among randomized subjects, mean adherence and CD4 count were 86.8 vs. 83.8% and 297 vs. 357 cells/μl in intervention vs. control subjects, respectively. At month 12, among 64 subjects who completed the trial, mean adherence had risen significantly among intervention subjects to 96.5% but remained unchanged in controls. Mean CD4 count rose by 90 cells/μl and declined by 9 cells/μl among intervention and control subjects, respectively. EDM feedback as a counseling tool appears promising for management of HIV and other chronic diseases. PMID:19771504

  17. Regioselective deprotection of the monosaccharide-bearing thiocyanomethyl group at the anomeric position monitored by reversed-phase HPLC method.

    PubMed

    Abualassal, Qais; Al Azzam, Khaldun M; Jilani, Jamal A

    2016-09-01

    In the current work, the investigation and development of a chemo-enzymatic approach for the synthesis of neo-glycoproteins have been studied. This strategy is based on the regioselective enzymatic hydrolysis of peracetylated monosaccharide, functionalized at the anomeric position (C1) as 1-thio-(S-cyanomethyl) group, a precursor of the 2- iminomethoxyethyl thioglycosides-linker for protein glycosylation, catalyzed by immobilized enzymes to obtain selectively monodeprotected compounds. The use of this activation in C1 is the most frequently used strategy for glycoprotein preparation. The selected biocatalysts are the lipase from Candida rugosa and the acetyl xylan esterase from Bacillus pumilus. A reversed-phase high-performance liquid-chromatographic (HPLC) method for monitoring the regioselective deprotection reaction has been developed. The developed HPLC method was used as a fingerprint to follow the hydrolysis of substrate 1 to substrate 1a and to determine its purity and yield. Moreover, the obtained compound was further purified by flash chromatography. The obtained compound 1a was further characterized using (1) H, (13) C NMR, correlation spectroscopy (COSY) and heteronuclear multiple bond correlation. The resulting product can be used as an intermediate for the preparation of di- and more complex oligosaccharides aimed at protein conjugation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26864255

  18. Tracking Accuracy of a Real-Time Fiducial Tracking System for Patient Positioning and Monitoring in Radiation Therapy

    SciTech Connect

    Shchory, Tal; Schifter, Dan; Lichtman, Rinat; Neustadter, David; Corn, Benjamin W.

    2010-11-15

    Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive tracking system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.

  19. The LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Jacobsson, Richard

    2013-11-01

    With the demonstration that LHCb can successfully perform forward precision measurements with event pileup, the operation and trigger strategy evolved significantly during the LHC Run 1 allowing LHCb to collect over 3fb-1 at centre-of-mass energies of 7TeV and 8TeV. Increased bandwidth opened the door for LHCb to extend the physics program. The additional statistics and well managed systematic effects together with the stable trigger and data taking conditions have led to a very large number of world-class measurements and dominance in heavy flavour physics [1], in addition to a reputation of an excellent forward general purpose detector at the LHC. Long Shutdown (LS) 1 (2013-2014) will allow LHCb to fully explore the large statistics collected and prepare LHCb for Run 2 (2015 - 2017). However, even after an additional expected integrated luminosity of 5-6 fb-1 in Run 2, many of the LHCb precision measurements will remain limited by statistics, and some exploratory physics modes will not even be accessible yet. With the need for reconstructing the event topology in order to efficiently trigger on the beauty and the charm hadrons decays, the current 1 MHz readout limit is the main bottle neck to run at higher luminosity and with higher trigger efficiencies. LHCb will therefore undergo a major upgrade in LS 2 ( 2018 - 2019) aimed at collecting an order of magnitude more data by 2028. The upgrade consists of a full readout at the LHC bunch crossing rate ( 40 MHz) with the ultimate flexibility of only a software trigger. In order to increase the instantaneous luminosity up to 2x1033cm-2s-1, several sub-detector upgrades are also underway to cope with the higher occupancies and radiation dose.

  20. Energy Efficiency Through Lighting Upgrades

    SciTech Connect

    Berst, Kara; Howeth, Maria

    2013-02-26

    Lighting upgrades including neon to LED, incandescent to CFL's and T-12 to T-8 and T-5's were completed through this grant. A total of 16 Chickasaw nation facilities decreased their carbon footprint because of these grant funds. Calculations used were based on comparing the energy usage from the previous year's average and the current energy usage. For facilities without a full year's set of energy bills, the month after installation was compared to the same month from the previous year. Overall, the effect the lighting change-outs had for the gaming centers and casinos far exceeded expectations. For the Madill Gaming Center; both an interior and exterior upgrade was performed which resulted in a 31% decrease in energy consumption. This same reduction was seen in every facility that participated in the grant. Just by simply changing out light bulbs to newer energy efficient equivalents, a decrease in energy usage can be achieved and this was validated by the return on investment seen at Chickasaw Nation facilities. Along with the technical project tasks were awareness sessions presented at Chickasaw Head Starts. The positive message of environmental stewardship was passed down to head start students and passed along to Chickasaw employees. Excitement was created in those that learned what they could do to help reduce their energy bills and many followed through and took the idea home. For a fairy low cost, the general public can also use this technique to lower their energy consumption both at home and at work. Although the idea behind the project was somewhat simple, true benefits have been gained through environmental awareness and reductions of energy costs.

  1. The Bevalac Upgrade Project

    SciTech Connect

    Alonso, J.R.; Dwinell, R.D.; Feinberg, B.; Frias, R.; Gough, R.A.; Howard, D.R.; Hunt, D.B.; Krebs, G.F.; Krupnick, J.T.; Lewis, S.A.

    1987-03-01

    This paper describes a proposed upgrade of the Bevalac accelerator complex in which the present Bevatron is replaced with a modern, strong-focusing 17 T-m synchrotron. This new ring is designed to accelerate all ions throughout the periodic table with intensities 100 to 1000 times higher than the present Bevatron. It will also provide a substantially improved beam spill structure and will reduce operating costs. A fast extraction capability can be used to inject a future heavy ion storage ring. Pulse-to-pulse switching of energy and ion species is an important goal. The existing injectors, shielding, experimental facilities and utilities of the present Bevalac will remain substantially intact.

  2. 'Upgrading' psoriasis responsibly.

    PubMed

    Boehncke, Sandra; Boehncke, Wolf-Henning

    2014-10-01

    Psoriasis is a 'pacemaker' in dermatology. Substantial progress has been made regarding our understanding of its pathophysiology and genetic background, fuelling developments in cutaneous biology in general. Besides, the clinical perspective on psoriasis is currently changing, taking into consideration comorbidity and the systemic dimensions of this seemingly organ-specific inflammation. The availability of drugs exhibiting fewer contraindications and improved long-term safety opened a discussion around replacing a relatively limited (regarding both objectives and duration) 'therapeutic' by a much broader 'management' approach when it comes to treating psoriasis as a systemic disease. The question arises whether this 'upgrade' is warranted. PMID:25040560

  3. Upgraded Coal Interest Group

    SciTech Connect

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  4. Research ships upgraded

    NASA Astrophysics Data System (ADS)

    Two research vessels, operated by the Scripps Institution of Oceanography, University of California, San Diego, and Woods Hole Oceanographic Institution, Woods Hole, Mass., are undergoing scientific upgrading and engineering modifications costing $15 million each. The improvements will prepare them to take lead roles in major future ocean research efforts.Research vessel Knorr (operated by WHOI) entered the McDermott Shipyard in Amelia, LA., on February 15. It will receive new engines and a propulsion system, and its length will be increased from 245 to 279 feet. The R/V Melville (operated by SIO) is scheduled for the same 10-month remodeling to begin in mid-November.

  5. LHC detector upgrades

    SciTech Connect

    Dan Green

    2003-09-15

    The LHC detectors are well into their construction phase. The LHC schedule shows first beam to ATLAS and CMS in 2007. Because the LHC accelerator has begun to plan for a ten fold increase in LHC design luminosity (the SLHC or super LHC) it is none too soon to begin to think about the upgrades which will be required of the present LHC detectors. In particular, the tracking systems of ATLAS and CMS will need to be completely rebuilt. Given the time needed to do the R & D, make prototypes, and construct the new detectors and given the accelerator schedule for the SLHC, work needs to begin rather soon.

  6. The upgraded DØ detector

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, D. L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S. N.; Ahn, S. H.; Ahsan, M.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G. A.; Anastasoaie, M.; Andeen, T.; Anderson, J. T.; Anderson, S.; Andrieu, B.; Angstadt, R.; Anosov, V.; Arnoud, Y.; Arov, M.; Askew, A.; Åsman, B.; Assis Jesus, A. C. S.; Atramentov, O.; Autermann, C.; Avila, C.; Babukhadia, L.; Bacon, T. C.; Badaud, F.; Baden, A.; Baffioni, S.; Bagby, L.; Baldin, B.; Balm, P. W.; Banerjee, P.; Banerjee, S.; Barberis, E.; Bardon, O.; Barg, W.; Bargassa, P.; Baringer, P.; Barnes, C.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bhattacharjee, M.; Baturitsky, M. A.; Bauer, D.; Bean, A.; Baumbaugh, B.; Beauceron, S.; Begalli, M.; Beaudette, F.; Begel, M.; Bellavance, A.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Besson, A.; Beuselinck, R.; Beutel, D.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Binder, M.; Biscarat, C.; Bishoff, A.; Black, K. M.; Blackler, I.; Blazey, G.; Blekman, F.; Blessing, S.; Bloch, D.; Blumenschein, U.; Bockenthien, E.; Bodyagin, V.; Boehnlein, A.; Boeriu, O.; Bolton, T. A.; Bonamy, P.; Bonifas, D.; Borcherding, F.; Borissov, G.; Bos, K.; Bose, T.; Boswell, C.; Bowden, M.; Brandt, A.; Briskin, G.; Brock, R.; Brooijmans, G.; Bross, A.; Buchanan, N. J.; Buchholz, D.; Buehler, M.; Buescher, V.; Burdin, S.; Burke, S.; Burnett, T. H.; Busato, E.; Buszello, C. P.; Butler, D.; Butler, J. M.; Cammin, J.; Caron, S.; Bystricky, J.; Canal, L.; Canelli, F.; Carvalho, W.; Casey, B. C. K.; Casey, D.; Cason, N. M.; Castilla-Valdez, H.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapin, D.; Charles, F.; Cheu, E.; Chevalier, L.; Chi, E.; Chiche, R.; Cho, D. K.; Choate, R.; Choi, S.; Choudhary, B.; Chopra, S.; Christenson, J. H.; Christiansen, T.; Christofek, L.; Churin, I.; Cisko, G.; Claes, D.; Clark, A. R.; Clément, B.; Clément, C.; Coadou, Y.; Colling, D. J.; Coney, L.; Connolly, B.; Cooke, M.; Cooper, W. E.; Coppage, D.; Corcoran, M.; Coss, J.; Cothenet, A.; Cousinou, M.-C.; Cox, B.; Crépé-Renaudin, S.; Cristetiu, M.; Cummings, M. A. C.; Cutts, D.; da Motta, H.; Das, M.; Davies, B.; Davies, G.; Davis, G. A.; Davis, W.; De, K.; de Jong, P.; de Jong, S. J.; De La Cruz-Burelo, E.; De La Taille, C.; De Oliveira Martins, C.; Dean, S.; Degenhardt, J. D.; Déliot, F.; Delsart, P. A.; Del Signore, K.; DeMaat, R.; Demarteau, M.; Demina, R.; Demine, P.; Denisov, D.; Denisov, S. P.; Desai, S.; Diehl, H. T.; Diesburg, M.; Doets, M.; Doidge, M.; Dong, H.; Doulas, S.; Dudko, L. V.; Duflot, L.; Dugad, S. R.; Duperrin, A.; Dvornikov, O.; Dyer, J.; Dyshkant, A.; Eads, M.; Edmunds, D.; Edwards, T.; Ellison, J.; Elmsheuser, J.; Eltzroth, J. T.; Elvira, V. D.; Eno, S.; Ermolov, P.; Eroshin, O. V.; Estrada, J.; Evans, D.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fagan, J.; Fast, J.; Fatakia, S. N.; Fein, D.; Feligioni, L.; Ferapontov, A. V.; Ferbel, T.; Ferreira, M. J.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fleck, I.; Fitzpatrick, T.; Flattum, E.; Fleuret, F.; Flores, R.; Foglesong, J.; Fortner, M.; Fox, H.; Franklin, C.; Freeman, W.; Fu, S.; Fuess, S.; Gadfort, T.; Galea, C. F.; Gallas, E.; Galyaev, E.; Gao, M.; Garcia, C.; Garcia-Bellido, A.; Gardner, J.; Gavrilov, V.; Gay, A.; Gay, P.; Gelé, D.; Gelhaus, R.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gillberg, D.; Geurkov, G.; Ginther, G.; Gobbi, B.; Goldmann, K.; Golling, T.; Gollub, N.; Golovtsov, V.; Gómez, B.; Gomez, G.; Gomez, R.; Goodwin, R.; Gornushkin, Y.; Gounder, K.; Goussiou, A.; Graham, D.; Graham, G.; Grannis, P. D.; Gray, K.; Greder, S.; Green, D. R.; Green, J.; Green, J. A.; Greenlee, H.; Greenwood, Z. D.; Gregores, E. M.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groer, L.; Grünendahl, S.; Grünewald, M. W.; Gu, W.; Guglielmo, J.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hadley, N. J.; Haggard, E.; Haggerty, H.; Hagopian, S.; Hall, I.; Hall, R. E.; Han, C.; Han, L.; Hance, R.; Hanagaki, K.; Hanlet, P.; Hansen, S.; Harder, K.; Harel, A.; Harrington, R.; Hauptman, J. M.; Hauser, R.; Hays, C.; Hays, J.; Hazen, E.; Hebbeker, T.; Hebert, C.; Hedin, D.; Heinmiller, J. M.; Heinson, A. P.; Heintz, U.; Hensel, C.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Hong, S. J.; Hooper, R.; Hou, S.; Houben, P.; Hu, Y.; Huang, J.; Huang, Y.; Hynek, V.; Huffman, D.; Iashvili, I.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jacquier, Y.; Jaffré, M.; Jain, S.; Jain, V.; Jakobs, K.; Jayanti, R.; Jenkins, A.; Jesik, R.; Jiang, Y.; Johns, K.; Johnson, M.; Johnson, P.; Jonckheere, A.; Jonsson, P.; Jöstlein, H.; Jouravlev, N.; Juarez, M.; Juste, A.; Kaan, A. P.; Kado, M. M.; Käfer, D.; Kahl, W.; Kahn, S.; Kajfasz, E.

    2006-09-01

    The DØ experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to DØ.

  7. Upgraded demonstration vehicle task report

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Hardy, K.; Livingston, R.; Sandberg, J.

    1981-01-01

    Vehicle/battery performance capabilities and interface problems that occurred when upgraded developmental batteries were integrated with upgraded versions of comercially available electric vehicles were investigated. Developmental batteries used included nickel zinc batteries, a nickel iron battery, and an improved lead acid battery. Testing of the electric vehicles and upgraded batteries was performed in the complete vehicle system environment to characterize performance and identify problems unique to the vehicle/battery system. Constant speed tests and driving schedule range tests were performed on a chassis dynamometer. The results from these tests of the upgraded batteries and vehicles were compared to performance capabilities for the same vehicles equipped with standard batteries.

  8. SNO+ Readout Electronics Upgrades

    NASA Astrophysics Data System (ADS)

    Bonventre, Richard; Shokair, Timothy; Knapik, Robert

    2012-03-01

    The SNO+ experiment is designed to explore several topics in neutrino physics including neutrinoless double beta decay, reactor antineutrinos, and low energy solar neutrinos. SNO+ uses the existing Sudbury Neutrino Observatory (SNO) detector, with the heavy water target replaced with liquid scintillator. The new target requires an upgrade to the command and control electronics to handle the higher rates expected with scintillation light as compared to Cherenkov light. The readout electronics have been upgraded to autonomously push data to a central data acquisition computer over ethernet from each of the 19 front end crates. The autonomous readout is achieved with a field programmable gate array (FPGA) with an embedded processor. Inside the FPGA fabric a state machine is configured to pull data across the VME-like bus of each crate. A small C program, making use of the open source Light Weight IP (LWIP) libraries, is run directly on the hardware (with no operating system) to push the data via TCP/IP. The hybrid combination of `high-level' C code and a `low-level' VHDL state machine is a cost effective and flexible solution for reading out individual front end crates.

  9. Energy Efficiency Upgrades

    SciTech Connect

    Roby Williams

    2012-03-29

    The energy efficiency upgrades project at Hardin County General Hospital did not include research nor was it a demonstration project. The project enabled the hospital to replace outdated systems with modern efficient models. Hardin County General Hospital is a 501c3, nonprofit hospital and the sole community provider for Hardin and Pope Counties of Illinois. This project provided much needed equipment and facility upgrades that would not have been possible through locally generated funding. Task 1 was a reroofing of the hospital. The hospital architect designed the replacement to increase the energy efficiency of the hospital roof/ceiling structure. Task 2 was replacement and installation of a new more efficient CT scanner for the hospital. Included in the project was replacement of HVAC equipment for the entire radiological suite. Task 5 was a replacement and installation of a new higher capacity diesel-fueled emergency generator for the hospital replacing a 50+ year old gas-fired generator. Task 7 was the replacement of 50+ year-old walk-in cooler/freezer with a newer, energy efficient model. Task 8 was the replacement of 10+ year-old washing machines in the hospital laundry with higher capacity, energy efficient models. Task 9 was replacement of 50-year old single pane curtain window system with double-pane insulated windows. Additionally, insulation was added around ventilation systems and the curtain wall system.

  10. HP upgrade operational streamlining

    NASA Technical Reports Server (NTRS)

    Edge, David R.; Emenheiser, Kenneth S.; Hanrahan, William P., III; Mccollums, D.; Seery, Paul J.; Ricklefs, Randall L.

    1993-01-01

    New computer technology and resources must be successfully integrated into CDSLR station operations to manage new complex operational tracking requirements, support the on site production of new data products, support ongoing station performance improvements, and to support new station communication requirements. The NASA CDSLR Network is in the process of upgrading station computer resources with HP UNIX workstations, designed to automate a wide range of operational station requirements. The primary HP upgrade objective was to relocate computer intensive data system tasks from the controller computer to a new advanced computer environment designed to meet the new data system requirements. The HP UNIX environment supports fully automated real time data communications, data management, data processing, and data quality control. Automated data compression procedures are used to improve the efficiency of station data communications. In addition, the UNIX environment supports a number of semi-automated technical and administrative operational station tasks. The x window user interface generates multiple simultaneous color graphics displays, providing direct operator visibility and control over a wide range of operational station functions.