Science.gov

Sample records for positional-dependent transcriptional response

  1. ALU repeats in promoters are position-dependent co-response elements (coRE) that enhance or repress transcription by dimeric and monomeric progesterone receptors.

    PubMed

    Jacobsen, Britta M; Jambal, Purevsuren; Schittone, Stephanie A; Horwitz, Kathryn B

    2009-07-01

    We have conducted an in silico analysis of progesterone response elements (PRE) in progesterone receptor (PR) up-regulated promoters. Imperfect inverted repeats, direct repeats, and half-site PRE are widespread, not only in PR-regulated, but also in non-PR-regulated and random promoters. Few resemble the commonly used palindromic PRE with three nucleotide (nt) spacers. We speculated that PRE may be necessary but insufficient to control endogenous PR-dependent transcription. A search for PRE partners identified a highly conserved 234-nt sequence invariably located within 1-2 kb of transcription start sites. It resembles ALU repeats and contains binding sites for 11 transcription factors. The 234-nt sequence of the PR-regulated 8-oxoguanine DNA glycosylase promoter was cloned in the forward or reverse orientation in front of zero, one, or two inverted repeat PRE, and one or tandem PRE half-sites, driving luciferase. Under these conditions the 234-nt sequence functions as a co-response element (coRE). From the PRE or tandem half-sites, the reverse coRE is a strong activator of PR and glucocorticoid receptor-dependent transcription. The forward coRE is a powerful repressor. The prevalence of PRE half-sites in natural promoters suggested that PR monomers regulate transcription. Indeed, dimerization-domain mutant PR monomers were stronger transactivators than wild-type PR on PRE or tandem half-sites. This was repressed by the forward coRE. We propose that in natural promoters the coRE functions as a composite response element with imperfect PRE and half-sites to present variable, orientation-dependent transcription factors for interaction with nearby PR. PMID:19372234

  2. A position-dependent transcription-activating domain in TFIIIA.

    PubMed

    Mao, X; Darby, M K

    1993-12-01

    Transcription of the Xenopus 5S RNA gene by RNA polymerase III requires the gene-specific factor TFIIIA. To identify domains within TFIIIA that are essential for transcriptional activation, we have expressed C-terminal deletion, substitution, and insertion mutants of TFIIIA in bacteria as fusions with maltose-binding protein (MBP). The MBP-TFIIIA fusion protein specifically binds to the 5S RNA gene internal control region and complements transcription in a TFIIIA-depleted oocyte nuclear extract. Random, cassette-mediated mutagenesis of the carboxyl region of TFIIIA, which is not required for promoter binding, has defined a 14-amino-acid region that is critical for transcriptional activation. In contrast to activators of RNA polymerase II, the activity of the TFIIIA activation domain is strikingly sensitive to its position relative to the DNA-binding domain. When the eight amino acids that separate the transcription-activating domain from the last zinc finger are deleted, transcriptional activity is lost. Surprisingly, diverse amino acids can replace these eight amino acids with restoration of full transcriptional activity, suggesting that the length and not the sequence of this region is important. Insertion of amino acids between the zinc finger region and the transcription-activating domain causes a reduction in transcription proportional to the number of amino acids introduced. We propose that to function, the transcription-activating domain of TFIIIA must be correctly positioned at a minimum distance from the DNA-binding domain. PMID:8246967

  3. Position dependent expression of a homeobox gene transcript in relation to amphibian limb regeneration.

    PubMed Central

    Savard, P; Gates, P B; Brockes, J P

    1988-01-01

    Adult urodele amphibians such as the newt Notophthalmus viridescens are capable of regenerating their limbs and tail by formation of a blastema, a growth zone of mesenchymal progenitor cells. In an attempt to identify genes implicated in specification of the regenerate, we screened a newt forelimb blastema cDNA library with homeobox probes, and isolated and sequenced clones that identify a 1.8 kb polyadenylated transcript containing a homeobox. The transcript is derived from a single gene called NvHbox 1, the newt homologue of XIHbox 1 (Xenopus), HHO.c8 (human) and Hox-6.1 (mouse). The cDNA for the 1.8 kb transcript has two exons as determined by isolation and partial sequencing of a genomic clone. The expression of the transcript shows several interesting features in relation to limb regeneration: (i) Hybridization of Northern blots of poly(A)+ RNA from limb and tail and their respective blastemas shows that the transcript in limb tissues has exons 1 and 2, whereas a 1.8 kb transcript in tail tissues has only exon 2. (ii) The transcript is expressed in limbs of adult newt but not of adult Xenopus, raising the possibility that this contributes to an explanation of the loss of regenerative ability with maturation in adult anurans. (iii) The transcript is expressed at a higher level in a proximal (mid-humerus) blastema than in a distal one (mid-radius). When distal blastemas were proximalized by treatment with retinoic acid, no change in the level of the transcript was detected by Northern analysis at a single time point after amputation.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2907476

  4. Positional dependence of transcriptional inhibition by DNA torsional stress in yeast chromosomes.

    PubMed

    Joshi, Ricky S; Piña, Benjamin; Roca, Joaquim

    2010-02-17

    How DNA helical tension is constrained along the linear chromosomes of eukaryotic cells is poorly understood. In this study, we induced the accumulation of DNA (+) helical tension in Saccharomyces cerevisiae cells and examined how DNA transcription was affected along yeast chromosomes. The results revealed that, whereas the overwinding of DNA produced a general impairment of transcription initiation, genes situated at <100 kb from the chromosomal ends gradually escaped from the transcription stall. This novel positional effect seemed to be a simple function of the gene distance to the telomere: It occurred evenly in all 32 chromosome extremities and was independent of the atypical structure and transcription activity of subtelomeric chromatin. These results suggest that DNA helical tension dissipates at chromosomal ends and, therefore, provides a functional indication that yeast chromosome extremities are topologically open. The gradual escape from the transcription stall along the chromosomal flanks also indicates that friction restrictions to DNA twist diffusion, rather than tight topological boundaries, might suffice to confine DNA helical tension along eukaryotic chromatin. PMID:20057354

  5. Positional dependence of transcriptional inhibition by DNA torsional stress in yeast chromosomes

    PubMed Central

    Joshi, Ricky S; Piña, Benjamin; Roca, Joaquim

    2010-01-01

    How DNA helical tension is constrained along the linear chromosomes of eukaryotic cells is poorly understood. In this study, we induced the accumulation of DNA (+) helical tension in Saccharomyces cerevisiae cells and examined how DNA transcription was affected along yeast chromosomes. The results revealed that, whereas the overwinding of DNA produced a general impairment of transcription initiation, genes situated at <100 kb from the chromosomal ends gradually escaped from the transcription stall. This novel positional effect seemed to be a simple function of the gene distance to the telomere: It occurred evenly in all 32 chromosome extremities and was independent of the atypical structure and transcription activity of subtelomeric chromatin. These results suggest that DNA helical tension dissipates at chromosomal ends and, therefore, provides a functional indication that yeast chromosome extremities are topologically open. The gradual escape from the transcription stall along the chromosomal flanks also indicates that friction restrictions to DNA twist diffusion, rather than tight topological boundaries, might suffice to confine DNA helical tension along eukaryotic chromatin. PMID:20057354

  6. Position-Dependent Optical Response of a Superconducting Resonator at 15 mK

    NASA Astrophysics Data System (ADS)

    Voigt, K. D.; Hertzberg, J. B.; Hoffman, J. E.; Grover, J. A.; Lee, J.; Solano, P.; Budoyo, R. P.; Ballard, C.; Anderson, J. R.; Lobb, C. J.; Orozco, L. A.; Rolston, S. L.; Wellstood, F. C.

    2015-03-01

    We have studied the optical and dielectric response of a translatable thin-film lumped-element superconducting Al microwave resonator cooled to 15 mK. The resonator has a resonance frequency of 6.14 GHz, a quality factor Q of 2.59 x 105and is mounted inside a superconducting aluminum 3D cavity. A tapered optical fiber enters and exits the 3D cavity through two small holes in opposite sides of the cavity, placed so that the fiber can pass close to the resonator. The 3D cavity is mounted on an x-z piezo-translation stage that allows us to change the relative position of the lumped-element resonator and fiber. When the resonator is brought near to the fiber, we observe a shift in resonance frequency due to the presence of the fiber dielectric. When light is sent through the fiber, Rayleigh scattering causes a position-dependent illumination of the resonator, generating quasiparticles and thereby affecting its resonance frequency and Q. Our model of the resonator response includes the generation, diffusion, and recombination of quasiparticles in the resonator and shows that the frequency response allows us to track the position of the fiber in situ. Work supported by NSF through the Physics Frontier Center at the Joint Quantum Institute, Dept. of Physics, Univ. of Maryland.

  7. Position-dependent chemotactic response of slowly migrating cells in sigmoidal concentration profiles

    NASA Astrophysics Data System (ADS)

    Renner, A.; Jaeger, M. S.; Lankenau, A.; Duschl, C.

    2013-09-01

    Characterizing the chemotactic motility of slowly migrating cells as a function of time is still challenging. In this paper, we use a microfluidic device for investigating the chemotactic activity of HFF-1 fibroblasts in a sigmoidal concentration profile of epidermal growth factor (EGF). Sigmoidal concentration profiles are very common in biological systems but, in contrast to linear gradients, are much less studied in microfluidic systems. We monitored cell migration for up to 10 hours and found that chemotaxis is strongest where the absolute EGF concentration is below 25 pM ( K D of EGF is 1 nM). Calculating the fraction of receptor occupancy ( FRO) at the front and rear of the cells showed that the chemotactic activity of HFF-1 cells scaled with the difference in FRO between both ends of the cell normalized by the average FRO av of the cell. Interestingly, the mean chemotactic index of the cells was found to be a function of the gradient at the starting position and did not change when cells were entering into other regions of the highly non-linear concentration profile. Our studies demonstrate the usefulness of stable sigmoidal concentration profiles produced in microfluidic channels for a detailed analysis of the chemotactic response of slowly migrating cells.

  8. Position-dependent activity of CELF2 in the regulation of splicing and implications for signal-responsive regulation in T cells

    PubMed Central

    Ajith, Sandya; Gazzara, Matthew R.; Cole, Brian S.; Shankarling, Ganesh; Martinez, Nicole M.; Mallory, Michael J.; Lynch, Kristen W.

    2016-01-01

    ABSTRACT CELF2 is an RNA binding protein that has been implicated in developmental and signal-dependent splicing in the heart, brain and T cells. In the heart, CELF2 expression decreases during development, while in T cells CELF2 expression increases both during development and in response to antigen-induced signaling events. Although hundreds of CELF2-responsive splicing events have been identified in both heart and T cells, the way in which CELF2 functions has not been broadly investigated. Here we use CLIP-Seq to identified physical targets of CELF2 in a cultured human T cell line. By comparing the results with known functional targets of CELF2 splicing regulation from the same cell line we demonstrate a generalizable position-dependence of CELF2 activity that is consistent with previous mechanistic studies of individual CELF2 target genes in heart and brain. Strikingly, this general position-dependence is sufficient to explain the bi-directional activity of CELF2 on 2 T cell targets recently reported. Therefore, we propose that the location of CELF2 binding around an exon is a primary predictor of CELF2 function in a broad range of cellular contexts. PMID:27096301

  9. Identification of the Ω4406 Regulatory Region, a Developmental Promoter of Myxococcus xanthus, and a DNA Segment Responsible for Chromosomal Position-Dependent Inhibition of Gene Expression

    PubMed Central

    Loconto, Jennifer; Viswanathan, Poorna; Nowak, Scott J.; Gloudemans, Monica; Kroos, Lee

    2005-01-01

    When starved, Myxococcus xanthus cells send signals to each other that coordinate their movements, gene expression, and differentiation. C-signaling requires cell-cell contact, and increasing contact brought about by cell alignment in aggregates is thought to increase C-signaling, which induces expression of many genes, causing rod-shaped cells to differentiate into spherical spores. C-signaling involves the product of the csgA gene. A csgA mutant fails to express many genes that are normally induced after about 6 h into the developmental process. One such gene was identified by insertion of Tn5 lac at site Ω4406 in the M. xanthus chromosome. Tn5 lac fused transcription of lacZ to the upstream Ω4406 promoter. In this study, the Ω4406 promoter region was identified by analyzing mRNA and by testing different upstream DNA segments for the ability to drive developmental lacZ expression in M. xanthus. The 5′ end of Ω4406 mRNA mapped to approximately 1.3 kb upstream of the Tn5 lac insertion. A 1.0-kb DNA segment from 0.8 to 1.8 kb upstream of the Tn5 lac insertion, when fused to lacZ and integrated at a phage attachment site in the M. xanthus chromosome, showed a similar pattern of developmental expression as Tn5 lac Ω4406. The DNA sequence upstream of the putative transcriptional start site was strikingly similar to promoter regions of other C-signal-dependent genes. Developmental lacZ expression from the 1.0-kb segment was abolished in a csgA mutant but was restored upon codevelopment of the csgA mutant with wild-type cells, which supply C-signal, demonstrating that the Ω4406 promoter responds to extracellular C-signaling. Interestingly, the 0.8-kb DNA segment immediately upstream of Tn5 lac Ω4406 inhibited expression of a downstream lacZ reporter in transcriptional fusions integrated at a phage attachment site in the chromosome but not at the normal Ω4406 location. To our knowledge, this is the first example in M. xanthus of a chromosomal position-dependent

  10. Senescence responsive transcriptional element

    DOEpatents

    Campisi, Judith; Testori, Alessandro

    1999-01-01

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  11. Senescence responsive transcriptional element

    SciTech Connect

    Campisi, J.; Testori, A.

    1999-10-12

    Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.

  12. Legionella pneumophila transcriptional response to chlorine treatment.

    PubMed

    Bodet, Charles; Sahr, Tobias; Dupuy, Mathieu; Buchrieser, Carmen; Héchard, Yann

    2012-03-01

    Legionella pneumophila is a ubiquitous environmental microorganism found in freshwater that can cause an acute form of pneumonia known as Legionnaires' disease. Despite widespread use of chlorine to ensure drinking water quality and awareness that L. pneumophila may escape these treatments, little is known about its effects on L. pneumophila. The aim of this study was to investigate the L. pneumophila transcriptional response induced by chlorine treatment. Transcriptome analysis, using DNA arrays, showed that a sublethal dose of chlorine induces a differential expression of 391 genes involved in stress response, virulence, general metabolism, information pathways and transport. Many of the stress response genes were significantly upregulated, whereas a significant number of virulence genes were repressed. In particular, exposure of L. pneumophila to chlorine induced the expression of cellular antioxidant proteins, stress proteins and transcriptional regulators. In addition, glutathione S-transferase specific activity was enhanced following chlorine treatment. Our results clearly indicate that chlorine induces expression of proteins involved in cellular defence mechanisms against oxidative stress that might be involved in adaptation or resistance to chlorine treatment. PMID:22192759

  13. Transcriptional responses to complex mixtures: a review.

    PubMed

    Sen, Banalata; Mahadevan, Brinda; DeMarini, David M

    2007-01-01

    Exposure of people to hazardous compounds is primarily through complex environmental mixtures, those that occur through media such as air, soil, water, food, cigarette smoke, and combustion emissions. Microarray technology offers the ability to query the entire genome after exposure to such an array of compounds, permitting a characterization of the biological effects of such exposures. This review summarizes the published literature on the transcriptional profiles resulting from exposure of cells or organisms to complex environmental mixtures such as cigarette smoke, diesel emissions, urban air, motorcycle exhaust, carbon black, jet fuel, and metal ore and fumes. The majority of the mixtures generally up-regulate gene expression, with heme oxygenase 1 and CYP1A1 being up-regulated by all of the mixtures. Most of the mixtures altered the expression of genes involved in oxidative stress response (OH-1, metallothioneins), immune/inflammation response (IL-1b, protein kinase), xenobiotic metabolism (CYP1A1, CYP1B1), coagulation and fibrinolysis (plasminogen activator/inhibitor), proto-oncogenes (FUS1, JUN), heat-shock response (HSP60, HSP70), DNA repair (PCNA, GADD45), structural unit of condensed DNA (Crf15Orf16, DUSP 15), and extracellular matrix degradation (MMP1, 8, 9, 11, 12). Genes involved in aldehyde metabolism, such as ALDH3, appeared to be uniquely modulated by cigarette smoke. Cigarette smoke-exposed populations have been successfully distinguished from control nonexposed populations based on the expression pattern of a subset of genes, thereby demonstrating the utility of this approach in identifying biomarkers of exposure and susceptibility. The analysis of gene-expression data at the pathway and functional level, along with a systems biology approach, will provide a more comprehensive insight into the biological effects of complex mixtures and will improve risk assessment of the same. We suggest critical components of study design and reporting that will

  14. Natural antisense transcripts associated with salinity response in alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural antisense transcripts (NATs) are long non-coding RNAs (lncRNAs) complimentary to the messenger (sense) RNA (Wang et al. 2014). Many of them are involved in regulation of their own sense transcripts thus playing pivotal biological roles in all processes of organismal development and responses...

  15. Transcriptional regulation of drought response: a tortuous network of transcriptional factors

    PubMed Central

    Singh, Dhriti; Laxmi, Ashverya

    2015-01-01

    Drought is one of the leading factors responsible for the reduction in crop yield worldwide. Due to climate change, in future, more areas are going to be affected by drought and for prolonged periods. Therefore, understanding the mechanisms underlying the drought response is one of the major scientific concerns for improving crop yield. Plants deploy diverse strategies and mechanisms to respond and tolerate drought stress. Expression of numerous genes is modulated in different plants under drought stress that help them to optimize their growth and development. Plant hormone abscisic acid (ABA) plays a major role in plant response and tolerance by regulating the expression of many genes under drought stress. Transcription factors being the major regulator of gene expression play a crucial role in stress response. ABA regulates the expression of most of the target genes through ABA-responsive element (ABRE) binding protein/ABRE binding factor (AREB/ABF) transcription factors. Genes regulated by AREB/ABFs constitute a regulon termed as AREB/ABF regulon. In addition to this, drought responsive genes are also regulated by ABA-independent mechanisms. In ABA-independent regulation, dehydration-responsive element binding protein (DREB), NAM, ATAF, and CUC regulons play an important role by regulating many drought-responsive genes. Apart from these major regulons, MYB/MYC, WRKY, and nuclear factor-Y (NF-Y) transcription factors are also involved in drought response and tolerance. Our understanding about transcriptional regulation of drought is still evolving. Recent reports have suggested the existence of crosstalk between different transcription factors operating under drought stress. In this article, we have reviewed various regulons working under drought stress and their crosstalk with each other. PMID:26579147

  16. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses.

    PubMed

    Srinivasan, Karpagam; Friedman, Brad A; Larson, Jessica L; Lauffer, Benjamin E; Goldstein, Leonard D; Appling, Laurie L; Borneo, Jovencio; Poon, Chungkee; Ho, Terence; Cai, Fang; Steiner, Pascal; van der Brug, Marcel P; Modrusan, Zora; Kaminker, Joshua S; Hansen, David V

    2016-01-01

    A common approach to understanding neurodegenerative disease is comparing gene expression in diseased versus healthy tissues. We illustrate that expression profiles derived from whole tissue RNA highly reflect the degenerating tissues' altered cellular composition, not necessarily transcriptional regulation. To accurately understand transcriptional changes that accompany neuropathology, we acutely purify neurons, astrocytes and microglia from single adult mouse brains and analyse their transcriptomes by RNA sequencing. Using peripheral endotoxemia to establish the method, we reveal highly specific transcriptional responses and altered RNA processing in each cell type, with Tnfr1 required for the astrocytic response. Extending the method to an Alzheimer's disease model, we confirm that transcriptomic changes observed in whole tissue are driven primarily by cell type composition, not transcriptional regulation, and identify hundreds of cell type-specific changes undetected in whole tissue RNA. Applying similar methods to additional models and patient tissues will transform our understanding of aberrant gene expression in neurological disease. PMID:27097852

  17. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses

    PubMed Central

    Srinivasan, Karpagam; Friedman, Brad A.; Larson, Jessica L.; Lauffer, Benjamin E.; Goldstein, Leonard D.; Appling, Laurie L.; Borneo, Jovencio; Poon, Chungkee; Ho, Terence; Cai, Fang; Steiner, Pascal; van der Brug, Marcel P.; Modrusan, Zora; Kaminker, Joshua S.; Hansen, David V.

    2016-01-01

    A common approach to understanding neurodegenerative disease is comparing gene expression in diseased versus healthy tissues. We illustrate that expression profiles derived from whole tissue RNA highly reflect the degenerating tissues' altered cellular composition, not necessarily transcriptional regulation. To accurately understand transcriptional changes that accompany neuropathology, we acutely purify neurons, astrocytes and microglia from single adult mouse brains and analyse their transcriptomes by RNA sequencing. Using peripheral endotoxemia to establish the method, we reveal highly specific transcriptional responses and altered RNA processing in each cell type, with Tnfr1 required for the astrocytic response. Extending the method to an Alzheimer's disease model, we confirm that transcriptomic changes observed in whole tissue are driven primarily by cell type composition, not transcriptional regulation, and identify hundreds of cell type-specific changes undetected in whole tissue RNA. Applying similar methods to additional models and patient tissues will transform our understanding of aberrant gene expression in neurological disease. PMID:27097852

  18. Arabidopsis transcriptional responses differentiate between O3 and herbicides

    EPA Science Inventory

    Using published data based on Affymetrix ATH1 Gene-Chips we characterized the transcriptional response of Arabidopsis thaliana Columbia to O3 and a few other major environmental stresses including oxidative stress . A set of 101 markers could be extracted which provided a compo...

  19. TRANSCRIPTIONAL RESPONSES OF MOUSE EMBRYO CULTURES EXPOSED TO BROMOCHLOROACETIC ACID

    EPA Science Inventory

    Transcriptional responses of mouse embryo cultures exposed to bromochloroacetic acid

    Edward D. Karoly?*, Judith E. Schmid* and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and *Reproductive Tox...

  20. Fetal asphyctic preconditioning alters the transcriptional response to perinatal asphyxia

    PubMed Central

    2014-01-01

    Background Genomic reprogramming is thought to be, at least in part, responsible for the protective effect of brain preconditioning. Unraveling mechanisms of this endogenous neuroprotection, activated by preconditioning, is an important step towards new clinical strategies for treating asphyctic neonates. Therefore, we investigated whole-genome transcriptional changes in the brain of rats which underwent perinatal asphyxia (PA), and rats where PA was preceded by fetal asphyctic preconditioning (FAPA). Offspring were sacrificed 6 h and 96 h after birth, and whole-genome transcription was investigated using the Affymetrix Gene1.0ST chip. Microarray data were analyzed with the Bioconductor Limma package. In addition to univariate analysis, we performed Gene Set Enrichment Analysis (GSEA) in order to derive results with maximum biological relevance. Results We observed minimal, 25% or less, overlap of differentially regulated transcripts across different experimental groups which leads us to conclude that the transcriptional phenotype of these groups is largely unique. In both the PA and FAPA group we observe an upregulation of transcripts involved in cellular stress. Contrastingly, transcripts with a function in the cell nucleus were mostly downregulated in PA animals, while we see considerable upregulation in the FAPA group. Furthermore, we observed that histone deacetylases (HDACs) are exclusively regulated in FAPA animals. Conclusions This study is the first to investigate whole-genome transcription in the neonatal brain after PA alone, and after perinatal asphyxia preceded by preconditioning (FAPA). We describe several genes/pathways, such as ubiquitination and proteolysis, which were not previously linked to preconditioning-induced neuroprotection. Furthermore, we observed that the majority of upregulated genes in preconditioned animals have a function in the cell nucleus, including several epigenetic players such as HDACs, which suggests that epigenetic

  1. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms.

    PubMed

    Baldoni, Elena; Genga, Annamaria; Cominelli, Eleonora

    2015-01-01

    Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed. PMID:26184177

  2. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms

    PubMed Central

    Baldoni, Elena; Genga, Annamaria; Cominelli, Eleonora

    2015-01-01

    Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed. PMID:26184177

  3. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley

    PubMed Central

    Kruszka, Katarzyna; Pacak, Andrzej; Swida-Barteczka, Aleksandra; Nuc, Przemyslaw; Alaba, Sylwia; Wroblewska, Zuzanna; Karlowski, Wojciech; Jarmolowski, Artur; Szweykowska-Kulinska, Zofia

    2014-01-01

    Heat stress is one of the major abiotic factors that can induce severe plant damage, leading to a decrease in crop plant productivity. Despite barley being a cereal of great economic importance, few data are available concerning its thermotolerance mechanisms. In this work microRNAs (miRNAs) involved in heat stress response in barley were investigated. The level of selected barley mature miRNAs was examined by hybridization. Quantitative real-time PCR (RT-qPCR) was used to monitor the changes in the expression profiles of primary miRNA (pri-miRNA) precursors, as well as novel and conserved target genes during heat stress. The miRNA-mediated cleavage sites in the target transcripts were confirmed by degradome analysis and the 5’ RACE (rapid amplification of cDNA ends) approach. Four barley miRNAs (miR160a, 166a, 167h, and 5175a) were found which are heat stress up-regulated at the level of both mature miRNAs and precursor pri-miRNAs. Moreover, the splicing of introns hosting miR160a and miR5175a is also heat induced. The results demonstrate transcriptional and post-transcriptional regulation of heat-responsive miRNAs in barley. The observed induction of miRNA expression is correlated with the down-regulation of the expression level of their experimentally identified new and conservative target genes. PMID:25183744

  4. Post-transcriptional Regulation of Immunological Responses through Riboclustering

    PubMed Central

    Ganguly, Koelina; Giddaluru, Jeevan; August, Avery; Khan, Nooruddin

    2016-01-01

    Immunological programing of immune cells varies in response to changing environmental signals. This process is facilitated by modifiers that regulate the translational fate of mRNAs encoding various immune mediators, including cytokines and chemokines, which in turn determine the rapid activation, tolerance, and plasticity of the immune system. RNA-binding proteins (RBPs) recruited by the specific sequence elements in mRNA transcripts are one such modifiers. These RBPs form RBP–RNA complexes known as “riboclusters.” These riboclusters serve as RNA sorting machinery, where depending upon the composition of the ribocluster, translation, degradation, or storage of mRNA is controlled. Recent findings suggest that this regulation of mRNA homeostasis is critical for controlling the immune response. Here, we present the current knowledge of the ribocluster-mediated post-transcriptional regulation of immune mediators and highlight recent findings regarding their implications for the pathogenesis of acute or chronic inflammatory diseases. PMID:27199986

  5. Post-transcriptional Regulation of Immunological Responses through Riboclustering.

    PubMed

    Ganguly, Koelina; Giddaluru, Jeevan; August, Avery; Khan, Nooruddin

    2016-01-01

    Immunological programing of immune cells varies in response to changing environmental signals. This process is facilitated by modifiers that regulate the translational fate of mRNAs encoding various immune mediators, including cytokines and chemokines, which in turn determine the rapid activation, tolerance, and plasticity of the immune system. RNA-binding proteins (RBPs) recruited by the specific sequence elements in mRNA transcripts are one such modifiers. These RBPs form RBP-RNA complexes known as "riboclusters." These riboclusters serve as RNA sorting machinery, where depending upon the composition of the ribocluster, translation, degradation, or storage of mRNA is controlled. Recent findings suggest that this regulation of mRNA homeostasis is critical for controlling the immune response. Here, we present the current knowledge of the ribocluster-mediated post-transcriptional regulation of immune mediators and highlight recent findings regarding their implications for the pathogenesis of acute or chronic inflammatory diseases. PMID:27199986

  6. Transcriptional Profiling of the Immune Response to Marburg Virus Infection

    PubMed Central

    Yen, Judy; Caballero, Ignacio S.; Garamszegi, Sara; Malhotra, Shikha; Lin, Kenny; Hensley, Lisa; Goff, Arthur J.

    2015-01-01

    ABSTRACT Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. IMPORTANCE Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the

  7. In silico Analysis of Transcription Factor Repertoire and Prediction of Stress Responsive Transcription Factors in Soybean

    PubMed Central

    Mochida, Keiichi; Yoshida, Takuhiro; Sakurai, Tetsuya; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son Phan

    2009-01-01

    Sequence-specific DNA-binding transcription factors (TFs) are often termed as ‘master regulators’ which bind to DNA and either activate or repress gene transcription. We have computationally analysed the soybean genome sequence data and constructed a proper set of TFs based on the Hidden Markov Model profiles of DNA-binding domain families. Within the soybean genome, we identified 4342 loci encoding 5035 TF models which grouped into 61 families. We constructed a database named SoybeanTFDB (http://soybeantfdb.psc.riken.jp) containing the full compilation of soybean TFs and significant information such as: functional motifs, full-length cDNAs, domain alignments, promoter regions, genomic organization and putative regulatory functions based on annotations of gene ontology (GO) inferred by comparative analysis with Arabidopsis. With particular interest in abiotic stress signalling, we analysed the promoter regions for all of the TF encoding genes as a means to identify abiotic stress responsive cis-elements as well as all types of cis-motifs provided by the PLACE database. SoybeanTFDB enables scientists to easily access cis-element and GO annotations to aid in the prediction of TF function and selection of TFs with functions of interest. This study provides a basic framework and an important user-friendly public information resource which enables analyses of transcriptional regulation in soybean. PMID:19884168

  8. Transcript changes in Vibrio cholerae in response to salt stress.

    PubMed

    Fu, Xiuping; Liang, Weili; Du, Pengcheng; Yan, Meiying; Kan, Biao

    2014-01-01

    Vibrio cholerae, which is a serious human intestinal pathogen, often resides and thrives in estuaries but requires major self-regulation to overcome intestinal hyperosmotic stress or high salt stress in water and food. In the present study, we selected multiple O1 and O139 group V. cholerae strains that were isolated from different regions and during different years to study their salt tolerance. Based on the mechanisms that other bacteria use to respond to high salt stress, we selected salt stress-response related genes to study the mechanisms which V. cholerae responds to high salt stress. V. cholerae strains showed salt-resistance characteristics that varied in salt concentrations from 4% to 6%. However, group O1 and group O139 showed no significant difference in the degree of salt tolerance. The primary responses of bacteria to salt stress, including Na(+) exclusion, K(+) uptake and glutamate biosynthesis, were observed in V. cholerae strains. In addition, some sigma factors were up-regulated in V. cholerae strains, suggesting that V. cholerae may recruit common sigma factors to achieve an active salt stress response. However, some changes in gene transcript levels in response to salt stress in V. cholerae were strain-specific. In particular, hierarchical clustering of differentially expressed genes indicated that transcript levels of these genes were correlated with the degree of salt tolerance. Therefore, elevated transcript levels of some genes, including sigma factors and genes involved in peptidoglycan biosynthesis, may be due to the salt tolerance of strains. In addition, high salt-tolerant strains may recruit common as well as additional sigma factors to activate the salt stress response. PMID:25589902

  9. Transcriptional responses of Mycobacterium tuberculosis to lung surfactant

    PubMed Central

    Schwab, Ute; Rohde, Kyle H.; Wang, Zhengdong; Chess, Patricia R.; Notter, Robert H.; Russell, David G.

    2009-01-01

    This study uses microarray analyses to examine gene expression profiles for Mycobacterium tuberculosis (Mtb) induced by exposure in vitro to bovine lung surfactant preparations that vary in apoprotein content: (i) whole lung surfactant (WLS) containing the complete mix of endogenous lipids and surfactant proteins (SP)-A, -B, -C, and -D; (ii) extracted lung surfactant (CLSE) containing lipids plus SP-B and -C; (iii) column-purified surfactant lipids (PPL) containing no apoproteins, and (iv) purified human SP-A. Exposure to WLS evoked a multitude of transcriptional responses in Mtb, with 52 genes up-regulated and 23 genes down-regulated at 30 min exposure, plus 146 genes up-regulated and 27 genes down-regulated at 2 h. Notably, WLS rapidly induced several membrane-associated lipases that presumptively act on surfactant lipids as substrates, and a large number of genes involved in the synthesis of phthiocerol dimycocerosate (PDIM), a cell wall component known to be important in macrophage interactions and Mtb virulence. Exposure of Mtb to CLSE, PPL, or purified SP-A caused a substantially weaker transcriptional response (≤20 genes were induced) suggesting that interactions among multiple lipid-protein components of WLS may contribute to its effects on Mtb transcription. PMID:19272305

  10. Transcriptional response to hypoxia in the aquatic fungus Blastocladiella emersonii.

    PubMed

    Camilo, César M; Gomes, Suely L

    2010-06-01

    Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly downregulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe(2+) ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1alpha, caused a significant decrease in the levels of certain upregulated hypoxic genes. PMID:20418381

  11. Acetaminophen Modulates the Transcriptional Response to Recombinant Interferon-β

    PubMed Central

    Farnsworth, Aaron; Flaman, Anathea S.; Prasad, Shiv S.; Gravel, Caroline; Williams, Andrew; Yauk, Carole L.; Li, Xuguang

    2010-01-01

    Background Recombinant interferon treatment can result in several common side effects including fever and injection-site pain. Patients are often advised to use acetaminophen or other over-the-counter pain medications as needed. Little is known regarding the transcriptional changes induced by such co-administration. Methodology/Principal Findings We tested whether the administration of acetaminophen causes a change in the response normally induced by interferon-β treatment. CD-1 mice were administered acetaminophen (APAP), interferon-β (IFN-β) or a combination of IFN-β+APAP and liver and serum samples were collected for analysis. Differential gene expression was determined using an Agilent 22 k whole mouse genome microarray. Data were analyzed by several methods including Gene Ontology term clustering and Gene Set Enrichment Analysis. We observed a significant change in the transcription profile of hepatic cells when APAP was co-administered with IFN-β. These transcriptional changes included a marked up-regulation of genes involved in signal transduction and cell differentiation and down-regulation of genes involved in cellular metabolism, trafficking and the IκBK/NF-κB cascade. Additionally, we observed a large decrease in the expression of several IFN-induced genes including Ifit-3, Isg-15, Oasl1, Zbp1 and predicted gene EG634650 at both early and late time points. Conclusions/Significance A significant change in the transcriptional response was observed following co-administration of IFN-β+APAP relative to IFN-β treatment alone. These results suggest that administration of acetaminophen has the potential to modify the efficacy of IFN-β treatment. PMID:20544007

  12. Transcriptional responses of Arabidopsis thaliana plants to As (V) stress

    PubMed Central

    Abercrombie, Jason M; Halfhill, Matthew D; Ranjan, Priya; Rao, Murali R; Saxton, Arnold M; Yuan, Joshua S; Stewart, C Neal

    2008-01-01

    Background Arsenic is toxic to plants and a common environmental pollutant. There is a strong chemical similarity between arsenate [As (V)] and phosphate (Pi). Whole genome oligonucleotide microarrays were employed to investigate the transcriptional responses of Arabidopsis thaliana plants to As (V) stress. Results Antioxidant-related genes (i.e. coding for superoxide dismutases and peroxidases) play prominent roles in response to arsenate. The microarray experiment revealed induction of chloroplast Cu/Zn superoxide dismutase (SOD) (at2g28190), Cu/Zn SOD (at1g08830), as well as an SOD copper chaperone (at1g12520). On the other hand, Fe SODs were strongly repressed in response to As (V) stress. Non-parametric rank product statistics were used to detect differentially expressed genes. Arsenate stress resulted in the repression of numerous genes known to be induced by phosphate starvation. These observations were confirmed with qRT-PCR and SOD activity assays. Conclusion Microarray data suggest that As (V) induces genes involved in response to oxidative stress and represses transcription of genes induced by phosphate starvation. This study implicates As (V) as a phosphate mimic in the cell by repressing genes normally induced when available phosphate is scarce. Most importantly, these data reveal that arsenate stress affects the expression of several genes with little or unknown biological functions, thereby providing new putative gene targets for future research. PMID:18684332

  13. Transcription Profiling of the Stringent Response in Escherichia coli▿ †

    PubMed Central

    Durfee, Tim; Hansen, Anne-Marie; Zhi, Huijun; Blattner, Frederick R.; Jin, Ding Jun

    2008-01-01

    The bacterial stringent response serves as a paradigm for understanding global regulatory processes. It can be triggered by nutrient downshifts or starvation and is characterized by a rapid RelA-dependent increase in the alarmone (p)ppGpp. One hallmark of the response is the switch from maximum-growth-promoting to biosynthesis-related gene expression. However, the global transcription patterns accompanying the stringent response in Escherichia coli have not been analyzed comprehensively. Here, we present a time series of gene expression profiles for two serine hydroxymate-treated cultures: (i) MG1655, a wild-type E. coli K-12 strain, and (ii) an isogenic relAΔ251 derivative defective in the stringent response. The stringent response in MG1655 develops in a hierarchical manner, ultimately involving almost 500 differentially expressed genes, while the relAΔ251 mutant response is both delayed and limited in scope. We show that in addition to the down-regulation of stable RNA-encoding genes, flagellar and chemotaxis gene expression is also under stringent control. Reduced transcription of these systems, as well as metabolic and transporter-encoding genes, constitutes much of the down-regulated expression pattern. Conversely, a significantly larger number of genes are up-regulated. Under the conditions used, induction of amino acid biosynthetic genes is limited to the leader sequences of attenuator-regulated operons. Instead, up-regulated genes with known functions, including both regulators (e.g., rpoE, rpoH, and rpoS) and effectors, are largely involved in stress responses. However, one-half of the up-regulated genes have unknown functions. How these results are correlated with the various effects of (p)ppGpp (in particular, RNA polymerase redistribution) is discussed. PMID:18039766

  14. Antiviral response dictated by choreographed cascade of transcription factors

    PubMed Central

    Zaslavsky, Elena; Hershberg, Uri; Seto, Jeremy; Pham, Alissa M.; Marquez, Susanna; Duke, Jamie L.; Wetmur, James G.; tenOever, Benjamin R.; Sealfon, Stuart C.; Kleinstein, Steven H.

    2010-01-01

    The dendritic cell (DC) is a master regulator of immune responses. Pathogenic viruses subvert normal immune function in DCs through the expression of immune antagonists. Understanding how these antagonists interact with the host immune system requires knowledge of the underlying genetic regulatory network that operates during an uninhibited antiviral response. In order to isolate and identify this network, we studied DCs infected with Newcastle Disease Virus (NDV), which is able to stimulate innate immunity and DC maturation through activation of RIG-I signaling, but lacks the ability to evade the human interferon response. To analyze this experimental model, we developed a new approach integrating genome-wide expression kinetics and time-dependent promoter analysis. We found that the genetic program underlying the antiviral cell-state transition during the first 18-hours post-infection could be explained by a single convergent regulatory network. Gene expression changes were driven by a step-wise multi-factor cascading control mechanism, where the specific transcription factors controlling expression changed over time. Within this network, most individual genes are regulated by multiple factors, indicating robustness against virus-encoded immune evasion genes. In addition to effectively recapitulating current biological knowledge, we predicted, and validated experimentally, antiviral roles for several novel transcription factors. More generally, our results show how a genetic program can be temporally controlled through a single regulatory network to achieve the large-scale genetic reprogramming characteristic of cell state transitions. PMID:20164420

  15. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants

    PubMed Central

    Phukan, Ujjal J.; Jeena, Gajendra S.; Shukla, Rakesh K.

    2016-01-01

    Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological, and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational, and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research. PMID:27375634

  16. A transcriptional reference map of defence hormone responses in potato.

    PubMed

    Wiesel, Lea; Davis, Jayne L; Milne, Linda; Redondo Fernandez, Vanesa; Herold, Miriam B; Middlefell Williams, Jill; Morris, Jenny; Hedley, Pete E; Harrower, Brian; Newton, Adrian C; Birch, Paul R J; Gilroy, Eleanor M; Hein, Ingo

    2015-01-01

    Phytohormones are involved in diverse aspects of plant life including the regulation of plant growth, development and reproduction, as well as governing biotic and abiotic stress responses. We have generated a comprehensive transcriptional reference map of the early potato responses to exogenous application of the defence hormones abscisic acid, brassinolides (applied as epibrassinolide), ethylene (applied as the ethylene precursor aminocyclopropanecarboxylic acid), salicylic acid and jasmonic acid (applied as methyl jasmonate). Of the 39000 predicted genes on the microarray, a total of 2677 and 2473 genes were significantly differentially expressed at 1 h and 6 h after hormone treatment, respectively. Specific marker genes newly identified for the early hormone responses in potato include: a homeodomain 20 transcription factor (DMG400000248) for abscisic acid; a SAUR gene (DMG400016561) induced in epibrassinolide treated plants; an osmotin gene (DMG400003057) specifically enhanced by aminocyclopropanecarboxylic acid; a gene weakly similar to AtWRKY40 (DMG402007388) that was induced by salicylic acid; and a jasmonate ZIM-domain protein 1 (DMG400002930) which was specifically activated by methyl jasmonate. An online database has been set up to query the expression patterns of potato genes represented on the microarray that can also incorporate future microarray or RNAseq-based expression studies. PMID:26477733

  17. A transcriptional reference map of defence hormone responses in potato

    PubMed Central

    Wiesel, Lea; Davis, Jayne L.; Milne, Linda; Redondo Fernandez, Vanesa; Herold, Miriam B.; Middlefell Williams, Jill; Morris, Jenny; Hedley, Pete E.; Harrower, Brian; Newton, Adrian C.; Birch, Paul R. J.; Gilroy, Eleanor M.; Hein, Ingo

    2015-01-01

    Phytohormones are involved in diverse aspects of plant life including the regulation of plant growth, development and reproduction, as well as governing biotic and abiotic stress responses. We have generated a comprehensive transcriptional reference map of the early potato responses to exogenous application of the defence hormones abscisic acid, brassinolides (applied as epibrassinolide), ethylene (applied as the ethylene precursor aminocyclopropanecarboxylic acid), salicylic acid and jasmonic acid (applied as methyl jasmonate). Of the 39000 predicted genes on the microarray, a total of 2677 and 2473 genes were significantly differentially expressed at 1 h and 6 h after hormone treatment, respectively. Specific marker genes newly identified for the early hormone responses in potato include: a homeodomain 20 transcription factor (DMG400000248) for abscisic acid; a SAUR gene (DMG400016561) induced in epibrassinolide treated plants; an osmotin gene (DMG400003057) specifically enhanced by aminocyclopropanecarboxylic acid; a gene weakly similar to AtWRKY40 (DMG402007388) that was induced by salicylic acid; and a jasmonate ZIM-domain protein 1 (DMG400002930) which was specifically activated by methyl jasmonate. An online database has been set up to query the expression patterns of potato genes represented on the microarray that can also incorporate future microarray or RNAseq-based expression studies. PMID:26477733

  18. Transcriptional Response of Saccharomyces cerevisiae to Desiccation and Rehydration†

    PubMed Central

    Singh, Jatinder; Kumar, Deept; Ramakrishnan, Naren; Singhal, Vibha; Jervis, Jody; Garst, James F.; Slaughter, Stephen M.; DeSantis, Andrea M.; Potts, Malcolm; Helm, Richard F.

    2005-01-01

    A transcriptional analysis of the response of Saccharomyces cerevisiae strain BY4743 to controlled air-drying (desiccation) and subsequent rehydration under minimal glucose conditions was performed. Expression of genes involved in fatty acid oxidation and the glyoxylate cycle was observed to increase during drying and remained in this state during the rehydration phase. When the BY4743 expression profile for the dried sample was compared to that of a commercially prepared dry active yeast, strikingly similar expression changes were observed. The fact that these two samples, dried by different means, possessed very similar transcriptional profiles supports the hypothesis that the response to desiccation is a coordinated event independent of the particular conditions involved in water removal. Similarities between “stationary-phase-essential genes” and those upregulated during desiccation were also noted, suggesting commonalities in different routes to reduced metabolic states. Trends in extracellular and intracellular glucose and trehalose levels suggested that the cells were in a “holding pattern” during the rehydration phase, a concept that was reinforced by cell cycle analyses. Application of a “redescription mining” algorithm suggested that sulfur metabolism is important for cell survival during desiccation and rehydration. PMID:16332871

  19. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    PubMed

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. PMID:26876016

  20. Frequency Modulated Translocational Oscillations of Nrf2 Mediate the Antioxidant Response Element Cytoprotective Transcriptional Response

    PubMed Central

    Xue, Mingzhan; Momiji, Hiroshi; Rabbani, Naila; Barker, Guy; Bretschneider, Till; Shmygol, Anatoly; Rand, David A.

    2015-01-01

    Abstract Aims: Stress responsive signaling coordinated by nuclear factor erythroid 2-related factor 2 (Nrf2) provides an adaptive response for protection of cells against toxic insults, oxidative stress and metabolic dysfunction. Nrf2 regulates a battery of protective genes by binding to regulatory antioxidant response elements (AREs). The aim of this study was to examine how Nrf2 signals cell stress status and regulates transcription to maintain homeostasis. Results: In live cell microscopy we observed that Nrf2 undergoes autonomous translocational frequency-modulated oscillations between cytoplasm and nucleus. Oscillations occurred in quiescence and when cells were stimulated at physiological levels of activators, they decrease in period and amplitude and then evoke a cytoprotective transcriptional response. We propose a mechanism whereby oscillations are produced by negative feedback involving successive de-phosphorylation and phosphorylation steps. Nrf2 was inactivated in the nucleus and reactivated on return to the cytoplasm. Increased frequency of Nrf2 on return to the cytoplasm with increased reactivation or refresh-rate under stress conditions activated the transcriptional response mediating cytoprotective effects. The serine/threonine-protein phosphatase PGAM5, member of the Nrf2 interactome, was a key regulatory component. Innovation: We found that Nrf2 is activated in cells without change in total cellular Nrf2 protein concentration. Regulation of ARE-linked protective gene transcription occurs rather through translocational oscillations of Nrf2. We discovered cytoplasmic refresh rate of Nrf2 is important in maintaining and regulating the transcriptional response and links stress challenge to increased cytoplasmic surveillance. We found silencing and inhibition of PGAM5 provides potent activation of Nrf2. Conclusion: Frequency modulated translocational oscillations of Nrf2 mediate the ARE-linked cytoprotective transcriptional response. Antioxid. Redox

  1. Subwavelength optical lattices induced by position-dependent dark states

    SciTech Connect

    Sun Qingqing; Evers, Joerg; Kiffner, Martin; Zubairy, M. Suhail

    2011-05-15

    A method for the generation of subwavelength optical lattices based on multilevel dark states is proposed. The dark state is formed by a suitable combination of standing wave light fields, leading to position-dependent populations of the ground states. An additional field coupling dispersively to one of the ground states translates this position dependence into a subwavelength optical potential. We provide two semiclassical approaches to understand the involved physics, and demonstrate that they lead to identical results in a certain meaningful limit. Then we apply a Monte Carlo simulation technique to study the full quantum dynamics of the subwavelength trapping. Finally, we discuss the relevant time scales for the trapping, optimum conditions, and possible implementations.

  2. Displacement operator for quantum systems with position-dependent mass

    SciTech Connect

    Costa Filho, R. N.; Almeida, M. P.; Farias, G. A.; Andrade, J. S. Jr.

    2011-11-15

    A translation operator is introduced to describe the quantum dynamics of a position-dependent mass particle in a null or constant potential. From this operator, we obtain a generalized form of the momentum operator as well as a unique commutation relation for x and p{sub {gamma}}. Such a formalism naturally leads to a Schroedinger-like equation that is reminiscent of wave equations typically used to model electrons with position-dependent (effective) masses propagating through abrupt interfaces in semiconductor heterostructures. The distinctive features of our approach are demonstrated through analytical solutions calculated for particles under null and constant potentials like infinite wells in one and two dimensions and potential barriers.

  3. Transcription Factors in the Cellular Response to Charged Particle Exposure

    PubMed Central

    Hellweg, Christine E.; Spitta, Luis F.; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor’s p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles’ LET, with a maximal activation in the LET range of 90–300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  4. Transcription Factors in the Cellular Response to Charged Particle Exposure.

    PubMed

    Hellweg, Christine E; Spitta, Luis F; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor's p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles' LET, with a maximal activation in the LET range of 90-300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  5. Position dependent spin wave spectrum in nanostrip magnonic waveguides

    SciTech Connect

    Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Zhong, Zhiyong; Zheng, Yun

    2014-04-07

    The dispersion curves of propagating spin wave along different positions in nanostrip magnonic waveguides were studied by micromagnetic simulation. The results show that the modes of spin wave in the nanostrip magnonic waveguide are dependent on the position and the weak even modes of spin wave are excited even by symmetric excitation fields in a nanostrip magnonic waveguide. The reasons of the position dependent dispersion curve are explained by associating with geometrical confinement in the nanostrip magnonic waveguide.

  6. Dissecting the Transcriptional Response to Elicitors in Vitis vinifera Cells

    PubMed Central

    Belchí-Navarro, Sarai; Bru, Roque; Martínez-Zapater, José M.; Lijavetzky, Diego; Pedreño, María A.

    2014-01-01

    The high effectiveness of cyclic oligosaccharides like cyclodextrins in the production of trans-resveratrol in Vitis vinifera cell cultures is enhanced in the presence of methyl jasmonate. In order to dissect the basis of the interactions among the elicitation responses triggered by these two compounds, a transcriptional analysis of grapevine cell cultures treated with cyclodextrins and methyl jasmonate separately or in combination was carried out. The results showed that the activation of genes encoding enzymes from phenylpropanoid and stilbene biosynthesis induced by cyclodextrins alone was partially enhanced in the presence of methyl jasmonate, which correlated with their effects on trans-resveratrol production. In addition, protein translation and cell cycle regulation were more highly repressed in cells treated with cyclodextrins than in those treated with methyl jasmonate, and this response was enhanced in the combined treatment. Ethylene signalling was activated by all treatments, while jasmonate signalling and salicylic acid conjugation were activated only in the presence of methyl jasmonate and cyclodextrins, respectively. Moreover, the combined treatment resulted in a crosstalk between the signalling cascades activated by cyclodextrins and methyl jasmonate, which, in turn, provoked the activation of additional regulatory pathways involving the up-regulation of MYB15, NAC and WRKY transcription factors, protein kinases and calcium signal transducers. All these results suggest that both elicitors cause an activation of the secondary metabolism in detriment of basic cell processes like the primary metabolism or cell division. Crosstalk between cyclodextrins and methyl jasmonate-induced signalling provokes an intensification of these responses resulting in a greater trans-resveratrol production. PMID:25314001

  7. Computational Discovery of Transcription Factors Associated With Drug Response

    PubMed Central

    Hanson, Casey; Cairns, Junmei; Wang, Liewei; Sinha, Saurabh

    2015-01-01

    This study integrates gene expression, genotype, and drug response data in lymphoblastoid cell lines with transcription factor (TF) binding sites from ENCODE, in a novel methodology that elucidates regulatory contexts associated with cytotoxicity. The method, GENMi, postulates that SNPs within TF binding sites putatively modulate its regulatory activity, and the resulting variation in gene expression leads to variation in drug response. Analysis of 161 TFs and 24 treatments revealed 334 significantly associated TF-treatment pairs. Investigation of 20 selected pairs yielded literature support for 13 of these associations, often from studies where perturbation of the TF’s expression changes drug response. Experimental validation of significant GENMi associations in taxanes and anthracyclines across two triple negative breast cancer cell lines corroborates our findings. The method is shown to be more sensitive than an alternative, GWAS-based approach that does not use gene expression. These results demonstrate GENMi’s utility in identifying TFs that influence drug response and provide a number of candidates for further testing. PMID:26503816

  8. Vibrio elicits targeted transcriptional responses from copepod hosts.

    PubMed

    Almada, Amalia A; Tarrant, Ann M

    2016-06-01

    Copepods are abundant crustaceans that harbor diverse bacterial communities, yet the nature of their interactions with microbiota are poorly understood. Here, we report that Vibrio elicits targeted transcriptional responses in the estuarine copepod Eurytemora affinis We pre-treated E. affinis with an antibiotic cocktail and exposed them to either a zooplankton specialist (Vibrio sp. F10 9ZB36) or a free-living species (Vibrio ordalii 12B09) for 24 h. We then identified via RNA-Seq a total of 78 genes that were differentially expressed following Vibrio exposure, including homologs of C-type lectins, chitin-binding proteins and saposins. The response differed between the two Vibrio treatments, with the greatest changes elicited upon inoculation with V. sp. F10 We suggest that these differentially regulated genes play important roles in cuticle integrity, the innate immune response, and general stress response, and that their expression may enable E. affinis to recognize and regulate symbiotic vibrios. We further report that V. sp. F10 culturability is specifically altered upon colonization of E. affinis These findings suggest that rather than acting as passive environmental vectors, copepods discriminately interact with vibrios, which may ultimately impact the abundance and activity of copepod-associated bacteria. PMID:27056917

  9. Transcriptional response to petiole heat girdling in cassava

    PubMed Central

    Zhang, Yang; Ding, Zehong; Ma, Fangfang; Chauhan, Raj Deepika; Allen, Doug K.; Brutnell, Thomas P.; Wang, Wenquan; Peng, Ming; Li, Pinghua

    2015-01-01

    To examine the interactions of starch and sugar metabolism on photosynthesis in cassava, a heat-girdling treatment was applied to petioles of cassava leaves at the end of the light cycle to inhibit starch remobilization during the night. The inhibition of starch remobilization caused significant starch accumulation at the beginning of the light cycle, inhibited photosynthesis, and affected intracellular sugar levels. RNA-seq analysis of heat-treated and control plants revealed significantly decreased expression of genes related to photosynthesis, as well as N-metabolism and chlorophyll biosynthesis. However, expression of genes encoding TCA cycle enzymes and mitochondria electron transport components, and flavonoid biosynthetic pathway enzymes were induced. These studies reveal a dynamic transcriptional response to perturbation of sink demand in a single leaf, and provide useful information for understanding the regulations of cassava under sink or source limitation. PMID:25672661

  10. Transcriptional response to petiole heat girdling in cassava.

    PubMed

    Zhang, Yang; Ding, Zehong; Ma, Fangfang; Chauhan, Raj Deepika; Allen, Doug K; Brutnell, Thomas P; Wang, Wenquan; Peng, Ming; Li, Pinghua

    2015-01-01

    To examine the interactions of starch and sugar metabolism on photosynthesis in cassava, a heat-girdling treatment was applied to petioles of cassava leaves at the end of the light cycle to inhibit starch remobilization during the night. The inhibition of starch remobilization caused significant starch accumulation at the beginning of the light cycle, inhibited photosynthesis, and affected intracellular sugar levels. RNA-seq analysis of heat-treated and control plants revealed significantly decreased expression of genes related to photosynthesis, as well as N-metabolism and chlorophyll biosynthesis. However, expression of genes encoding TCA cycle enzymes and mitochondria electron transport components, and flavonoid biosynthetic pathway enzymes were induced. These studies reveal a dynamic transcriptional response to perturbation of sink demand in a single leaf, and provide useful information for understanding the regulations of cassava under sink or source limitation. PMID:25672661

  11. Transcriptional profiling of Haemophilus parasuis SH0165 response to tilmicosin.

    PubMed

    Liu, Yingyu; Chen, Pin; Wang, Yang; Li, Wentao; Cheng, Shuang; Wang, Chunmei; Zhang, Anding; He, Qigai

    2012-12-01

    The Haemophilus parasuis respiratory tract pathogen poses a severe threat to the swine industry despite available antimicrobial therapies. To gain a more detailed understanding of the molecular mechanisms underlying H. parasuis response to tilmicosin treatment, microarray technology was applied to analyze the variation in gene expression of isolated H. parasuis SH0165 treated in vitro with subinhibitory (0.25 μg/ml) and inhibitory (8 μg/ml) concentrations. Tilmicosin treatment induced differential expression of 405 genes, the encoded products of which are mainly involved in the heat shock response, protein synthesis, and intracellular transportation. The subinhibitory and inhibitory concentrations of tilmicosin induced distinctive gene expression profiles of shared and unique changes, respectively. These changes included 302 genes mainly involved in protein export and the phosphotransferase system to sustain cell growth, and 198 genes mainly related to RNA polymerase, recombination, and repair to inhibit cell growth. In silico analysis of functions related to the differentially expressed genes suggested that adaptation of H. parasuis SH0165 to tilmicosin involves modulation of protein synthesis and membrane transport. Collectively, the genes comprising each transcriptional profile of H. parasuis response to tilmicosin provide novel insights into the physiological functions of this economically significant bacterium and may represent targets of future molecular therapeutic strategies. PMID:22935051

  12. Coherent States of Position-Dependent Mass Oscillator

    NASA Astrophysics Data System (ADS)

    Dehdashti, Shahram; Mahdifar, Ali; Wang, Huaping

    2016-08-01

    In this paper, we study Gazeau-Klauder and displacement-type coherent states of two-dimensional position-dependent mass oscillators, which is called Λ-dependent oscillators and Λ can be interpreted as the curvatures of the spherical and the hyperbolic spaces, on which oscillators are constrained. In addition, we consider the effect of Λ parameter on the physical properties of these coherent states, including minimized Heisenberg uncertainty relation and Mandel's Q parameter. We also elaborate the relation between the curvature of the physical space and the curvature of the Λ-dependent coherent state manifold.

  13. Global transcriptional response of Lactobacillus reuteri to the sourdough environment.

    PubMed

    Hüfner, Eric; Britton, Robert A; Roos, Stefan; Jonsson, Hans; Hertel, Christian

    2008-10-01

    Lactobacillus reuteri is a lactic acid bacterium that is highly adapted to the sourdough environment. It is a dominant member of industrial type II sourdoughs, and is also able to colonize the intestinal tract of mammals, including humans, and birds. In this study, the transcriptional response of L. reuteri ATCC 55730 was investigated during sourdough fermentation by using whole-genome microarrays. Significant changes of mRNA levels were found for 101 genes involved in diverse cellular processes, such as carbohydrate and energy metabolism, cell envelope biosynthesis, exopolysaccharide production, stress responses, signal transduction and cobalamin biosynthesis. The results showed extensive changes of the organism's gene expression during growth in sourdough as compared with growth in chemically defined medium, and, thus, revealed pathways involved in the adaptation of L. reuteri to the ecological niche of sourdough. The utilization of starch and non-starch carbohydrates, the remodelling of the cell wall, characterized by reduced D-alanylation, and increased amounts of cell wall-associated polysaccharides, as well as the regulatory function of two component systems for cell wall biogenesis and metabolism were suggested by the gene expression data as being important for growth in sourdough. The impact of several L. reuteri genes for effective growth in sourdough was shown by implementation of mutant strains in sourdough fermentation. This study contributes to the understanding of the molecular fundamentals of L. reuteri's ecological competitiveness, and provides a basis for further exploration of genetic traits involved in adaptation to the food environment. PMID:18762399

  14. Metabolic Context Regulates Distinct Hypothalamic Transcriptional Responses to Antiaging Interventions

    PubMed Central

    Stranahan, Alexis M.; Martin, Bronwen; Chadwick, Wayne; Park, Sung-Soo; Wang, Liyun; Becker, Kevin G.; WoodIII, William H.; Zhang, Yongqing; Maudsley, Stuart

    2012-01-01

    The hypothalamus is an essential relay in the neural circuitry underlying energy metabolism that needs to continually adapt to changes in the energetic environment. The neuroendocrine control of food intake and energy expenditure is associated with, and likely dependent upon, hypothalamic plasticity. Severe disturbances in energy metabolism, such as those that occur in obesity, are therefore likely to be associated with disruption of hypothalamic transcriptomic plasticity. In this paper, we investigated the effects of two well-characterized antiaging interventions, caloric restriction and voluntary wheel running, in two distinct physiological paradigms, that is, diabetic (db/db) and nondiabetic wild-type (C57/Bl/6) animals to investigate the contextual sensitivity of hypothalamic transcriptomic responses. We found that, both quantitatively and qualitatively, caloric restriction and physical exercise were associated with distinct transcriptional signatures that differed significantly between diabetic and non-diabetic mice. This suggests that challenges to metabolic homeostasis regulate distinct hypothalamic gene sets in diabetic and non-diabetic animals. A greater understanding of how genetic background contributes to hypothalamic response mechanisms could pave the way for the development of more nuanced therapeutics for the treatment of metabolic disorders that occur in diverse physiological backgrounds. PMID:22934110

  15. REST is a hypoxia-responsive transcriptional repressor.

    PubMed

    Cavadas, Miguel A S; Mesnieres, Marion; Crifo, Bianca; Manresa, Mario C; Selfridge, Andrew C; Keogh, Ciara E; Fabian, Zsolt; Scholz, Carsten C; Nolan, Karen A; Rocha, Liliane M A; Tambuwala, Murtaza M; Brown, Stuart; Wdowicz, Anita; Corbett, Danielle; Murphy, Keith J; Godson, Catherine; Cummins, Eoin P; Taylor, Cormac T; Cheong, Alex

    2016-01-01

    Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia. PMID:27531581

  16. Transcriptional profiling of foam cells in response to hypercholesterolemia.

    PubMed

    Goo, Young-Hwa; Yechoor, Vijay K; Paul, Antoni

    2016-09-01

    Hypercholesterolemia is a main risk factor for atherosclerosis development. Arterial macrophages, or foam cells, take-up and process lipoprotein particles deposited in arteries, and store much of the cholesterol carried by these particles in their cytoplasm. However, the effects of exposure to different cholesterol levels on foam cells remain poorly understood. Given the remarkable plasticity of macrophages in response to environmental variables, studies on macrophage biology should ideally be performed in the environment where they exert their physiological functions, namely atherosclerotic lesions in the case of foam cells. We used a mouse model of atherosclerosis, the apolipoprotein E-deficient mouse, to study in vivo the transcriptional response of foam cells to short- and long-term elevations in plasma cholesterol, induced by feeding mice a western type diet. The microarray data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE70619. Here we provide detailed information on the experimental set-up, on the isolation of RNA by laser capture microdissection, and on the methodology used for RNA amplification and analysis by microarray and quantitative real-time PCR. PMID:27408807

  17. REST is a hypoxia-responsive transcriptional repressor

    PubMed Central

    Cavadas, Miguel A. S.; Mesnieres, Marion; Crifo, Bianca; Manresa, Mario C.; Selfridge, Andrew C.; Keogh, Ciara E.; Fabian, Zsolt; Scholz, Carsten C.; Nolan, Karen A.; Rocha, Liliane M. A.; Tambuwala, Murtaza M.; Brown, Stuart; Wdowicz, Anita; Corbett, Danielle; Murphy, Keith J.; Godson, Catherine; Cummins, Eoin P.; Taylor, Cormac T.; Cheong, Alex

    2016-01-01

    Cellular exposure to hypoxia results in altered gene expression in a range of physiologic and pathophysiologic states. Discrete cohorts of genes can be either up- or down-regulated in response to hypoxia. While the Hypoxia-Inducible Factor (HIF) is the primary driver of hypoxia-induced adaptive gene expression, less is known about the signalling mechanisms regulating hypoxia-dependent gene repression. Using RNA-seq, we demonstrate that equivalent numbers of genes are induced and repressed in human embryonic kidney (HEK293) cells. We demonstrate that nuclear localization of the Repressor Element 1-Silencing Transcription factor (REST) is induced in hypoxia and that REST is responsible for regulating approximately 20% of the hypoxia-repressed genes. Using chromatin immunoprecipitation assays we demonstrate that REST-dependent gene repression is at least in part mediated by direct binding to the promoters of target genes. Based on these data, we propose that REST is a key mediator of gene repression in hypoxia. PMID:27531581

  18. Dynamic Mechanism for the Transcription Apparatus Orchestrating Reliable Responses to Activators

    NASA Astrophysics Data System (ADS)

    Wang, Yaolai; Liu, Feng; Wang, Wei

    2012-05-01

    The transcription apparatus (TA) is a huge molecular machine. It detects the time-varying concentrations of transcriptional activators and initiates mRNA transcripts at appropriate rates. Based on the general structural organizations of the TA, we propose how the TA dynamically orchestrates transcriptional responses. The activators rapidly cycle in and out of a clamp-like space temporarily formed between the enhancer and the Mediator, with the concentration of activators encoded as their temporal occupancy rate (RTOR) within the space. The entry of activators into this space induces allostery in the Mediator, resulting in a facilitated circumstance for transcriptional reinitiation. The reinitiation rate is much larger than the cycling rate of activators, thereby RTOR guiding the amount of transcripts. Based on this mechanism, stochastic simulations can qualitatively reproduce and interpret multiple features of gene expression, e.g., transcriptional bursting is not mere noise as traditionally believed, but rather the basis of reliable transcriptional responses.

  19. Plastidial metabolite MEcPP induces a transcriptionally centered stress-response hub via the transcription factor CAMTA3.

    PubMed

    Benn, Geoffrey; Bjornson, Marta; Ke, Haiyan; De Souza, Amancio; Balmond, Edward I; Shaw, Jared T; Dehesh, Katayoon

    2016-08-01

    The general stress response (GSR) is an evolutionarily conserved rapid and transient transcriptional reprograming of genes central for transducing environmental signals into cellular responses, leading to metabolic and physiological readjustments to cope with prevailing conditions. Defining the regulatory components of the GSR will provide crucial insight into the design principles of early stress-response modules and their role in orchestrating master regulators of adaptive responses. Overaccumulation of methylerythritol cyclodiphosphate (MEcPP), a bifunctional chemical entity serving as both a precursor of isoprenoids produced by the plastidial methylerythritol phosphate (MEP) pathway and a stress-specific retrograde signal, in ceh1 (constitutively expressing hydroperoxide lyase1)-mutant plants leads to large-scale transcriptional alterations. Bioinformatic analyses of microarray data in ceh1 plants established the overrepresentation of a stress-responsive cis element and key GSR marker, the rapid stress response element (RSRE), in the promoters of robustly induced genes. ceh1 plants carrying an established 4×RSRE:Luciferase reporter for monitoring the GSR support constitutive activation of the response in this mutant background. Genetics and pharmacological approaches confirmed the specificity of MEcPP in RSRE induction via the transcription factor CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3), in a calcium-dependent manner. Moreover, CAMTA3-dependent activation of IRE1a (inositol-requiring protein-1) and bZIP60 (basic leucine zipper 60), two RSRE containing unfolded protein-response genes, bridges MEcPP-mediated GSR induction to the potentiation of protein-folding homeostasis in the endoplasmic reticulum. These findings introduce the notion of transcriptional regulation by a key plastidial retrograde signaling metabolite that induces nuclear GSR, thereby offering a window into the role of interorgannellar communication in shaping cellular adaptive

  20. Transcriptional responses of olive flounder (Paralichthys olivaceus) to low temperature.

    PubMed

    Hu, Jinwei; You, Feng; Wang, Qian; Weng, Shenda; Liu, Hui; Wang, Lijuan; Zhang, Pei-Jun; Tan, Xungang

    2014-01-01

    The olive flounder (Paralichthys olivaceus) is an economically important flatfish in marine aquaculture with a broad thermal tolerance ranging from 14 to 23°C. Cold-tolerant flounder that can survive during the winter season at a temperature of less than 14°C might facilitate the understanding of the mechanisms underlying the response to cold stress. In this study, the transcriptional response of flounder to cold stress (0.7±0.05°C) was characterized using RNA sequencing. Transcriptome sequencing was performed using the Illumina MiSeq platform for the cold-tolerant (CT) group, which survived under the cold stress; the cold-sensitive (CS) group, which could barely survive at the low temperature; and control group, which was not subjected to cold treatment. In all, 29,021 unigenes were generated. Compared with the unigene expression profile of the control group, 410 unigenes were up-regulated and 255 unigenes were down-regulated in the CT group, whereas 593 unigenes were up-regulated and 289 unigenes were down-regulated in the CS group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that signal transduction, lipid metabolism, digestive system, and signaling molecules and interaction were the most highly enriched pathways for the genes that were differentially expressed under cold stress. All these pathways could be assigned to the following four biological functions for flounder that can survive under cold stress: signal response to cold stress, cell repair/regeneration, energy production, and cell membrane construction and fluidity. PMID:25279944

  1. Transcriptional Responses of Olive Flounder (Paralichthys olivaceus) to Low Temperature

    PubMed Central

    Hu, Jinwei; You, Feng; Wang, Qian; Weng, Shenda; Liu, Hui; Wang, Lijuan; Zhang, Pei-Jun; Tan, Xungang

    2014-01-01

    The olive flounder (Paralichthys olivaceus) is an economically important flatfish in marine aquaculture with a broad thermal tolerance ranging from 14 to 23°C. Cold-tolerant flounder that can survive during the winter season at a temperature of less than 14°C might facilitate the understanding of the mechanisms underlying the response to cold stress. In this study, the transcriptional response of flounder to cold stress (0.7±0.05°C) was characterized using RNA sequencing. Transcriptome sequencing was performed using the Illumina MiSeq platform for the cold-tolerant (CT) group, which survived under the cold stress; the cold-sensitive (CS) group, which could barely survive at the low temperature; and control group, which was not subjected to cold treatment. In all, 29,021 unigenes were generated. Compared with the unigene expression profile of the control group, 410 unigenes were up-regulated and 255 unigenes were down-regulated in the CT group, whereas 593 unigenes were up-regulated and 289 unigenes were down-regulated in the CS group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that signal transduction, lipid metabolism, digestive system, and signaling molecules and interaction were the most highly enriched pathways for the genes that were differentially expressed under cold stress. All these pathways could be assigned to the following four biological functions for flounder that can survive under cold stress: signal response to cold stress, cell repair/regeneration, energy production, and cell membrane construction and fluidity. PMID:25279944

  2. Position dependent rate dampening in any active hand controller

    NASA Technical Reports Server (NTRS)

    Gregory, William W. (Inventor); Kauffman, James W. (Inventor)

    1994-01-01

    A control system for an active hand controller, for example, uses a control stick connected to and controlled by a motor. Electronics are provided to control the motor to eliminate oscillations due to motor torque and high gain due to breakout at the control stick when the control stick is at about its null position. Both hardware as well as software implementations can provide position dependent dampening to the control sticks such that when the control stick is located about a null position, a higher rate of dampening is provided than when the control stick is located outside the null position, when a lower rate of dampening is provided. The system provides a stable active hand controller control stick without degraded force and feel characteristics of the system.

  3. Transcriptional cross talk between orphan nuclear receptor ERRγ and transmembrane transcription factor ATF6α coordinates endoplasmic reticulum stress response

    PubMed Central

    Misra, Jagannath; Kim, Don-Kyu; Choi, Woogyun; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung-Hoon; Kaufman, Randal J.; Choi, Hueng-Sik

    2013-01-01

    Orphan nuclear receptor ERRγ is a member of nuclear receptor superfamily that regulates several important cellular processes including hepatic glucose and alcohol metabolism. However, mechanistic understanding of transcriptional regulation of the ERRγ gene remains to be elucidated. Here, we report that activating transcription factor 6α (ATF6α), an endoplasmic reticulum (ER)-membrane–bound basic leucine zipper (bZip) transcription factor, directly regulates ERRγ gene expression in response to ER stress. ATF6α binds to ATF6α responsive element in the ERRγ promoter. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) is required for this transactivation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding of both ATF6α and PGC1α on the ERRγ promoter. ChIP assay demonstrated histone H3 and H4 acetylation occurs at the ATF6α and PGC1α binding site. Of interest, ERRγ along with PGC1α induce ATF6α gene transcription upon ER stress. ERRγ binds to an ERRγ responsive element in the ATF6α promoter. ChIP assay confirmed that both ERRγ and PGC1α bind to a site in the ATF6α promoter that exhibits histone H3 and H4 acetylation. Overall, for the first time our data show a novel pathway of cross talk between nuclear receptors and ER-membrane–bound transcription factors and suggest a positive feed-forward loop regulates ERRγ and ATF6α gene transcription. PMID:23716639

  4. Transcriptional cross talk between orphan nuclear receptor ERRγ and transmembrane transcription factor ATF6α coordinates endoplasmic reticulum stress response.

    PubMed

    Misra, Jagannath; Kim, Don-Kyu; Choi, Woogyun; Koo, Seung-Hoi; Lee, Chul-Ho; Back, Sung-Hoon; Kaufman, Randal J; Choi, Hueng-Sik

    2013-08-01

    Orphan nuclear receptor ERRγ is a member of nuclear receptor superfamily that regulates several important cellular processes including hepatic glucose and alcohol metabolism. However, mechanistic understanding of transcriptional regulation of the ERRγ gene remains to be elucidated. Here, we report that activating transcription factor 6α (ATF6α), an endoplasmic reticulum (ER)-membrane-bound basic leucine zipper (bZip) transcription factor, directly regulates ERRγ gene expression in response to ER stress. ATF6α binds to ATF6α responsive element in the ERRγ promoter. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) is required for this transactivation. Chromatin immunoprecipitation (ChIP) assay confirmed the binding of both ATF6α and PGC1α on the ERRγ promoter. ChIP assay demonstrated histone H3 and H4 acetylation occurs at the ATF6α and PGC1α binding site. Of interest, ERRγ along with PGC1α induce ATF6α gene transcription upon ER stress. ERRγ binds to an ERRγ responsive element in the ATF6α promoter. ChIP assay confirmed that both ERRγ and PGC1α bind to a site in the ATF6α promoter that exhibits histone H3 and H4 acetylation. Overall, for the first time our data show a novel pathway of cross talk between nuclear receptors and ER-membrane-bound transcription factors and suggest a positive feed-forward loop regulates ERRγ and ATF6α gene transcription. PMID:23716639

  5. Transcriptional Response of Candida parapsilosis following Exposure to Farnesol▿ †

    PubMed Central

    Rossignol, Tristan; Logue, Mary E.; Reynolds, Kieran; Grenon, Muriel; Lowndes, Noel F.; Butler, Geraldine

    2007-01-01

    In Candida albicans, the quorum-sensing molecule farnesol inhibits the transition from yeast to hyphae but has no effect on cellular growth. We show that the addition of exogenous farnesol to cultures of Candida parapsilosis causes the cells to arrest, but not at a specific stage in the cell cycle. The cells are not susceptible to additional farnesol. However, the cells do eventually recover from arrest. Unlike in C. albicans, in C. parapsilosis sterols are localized to the tips of budding cells, and this polarization is disrupted by the addition of farnesol. We used the results of a genome sequence survey to design and manufacture partial genomic microarrays that were applied to determining the transcriptional response of C. parapsilosis to the presence of exogenous farnesol. In both C. albicans and C. parapsilosis, exposure to farnesol results in increased expression of the oxidoreductases GRP2 and ADH7 and altered expression of genes involved in sterol metabolism. There is no effect on expression of C. parapsilosis orthologs of genes involved in hyphal growth in C. albicans. Farnesol therefore differs significantly in its effects on C. parapsilosis and C. albicans. PMID:17684006

  6. Transcriptional and Proteomic Responses to Carbon Starvation in Paracoccidioides

    PubMed Central

    Lima, Patrícia de Sousa; Casaletti, Luciana; Bailão, Alexandre Melo; de Vasconcelos, Ana Tereza Ribeiro; Fernandes, Gabriel da Rocha; Soares, Célia Maria de Almeida

    2014-01-01

    Background The genus Paracoccidioides comprises human thermal dimorphic fungi, which cause paracoccidioidomycosis (PCM), an important mycosis in Latin America. Adaptation to environmental conditions is key to fungal survival during human host infection. The adaptability of carbon metabolism is a vital fitness attribute during pathogenesis. Methodology/Principal Findings The fungal pathogen Paracoccidioides spp. is exposed to numerous adverse conditions, such as nutrient deprivation, in the human host. In this study, a comprehensive response of Paracoccidioides, Pb01, under carbon starvation was investigated using high-resolution transcriptomic (RNAseq) and proteomic (NanoUPLC-MSE) approaches. A total of 1,063 transcripts and 421 proteins were differentially regulated, providing a global view of metabolic reprogramming during carbon starvation. The main changes were those related to cells shifting to gluconeogenesis and ethanol production, supported by the degradation of amino acids and fatty acids and by the modulation of the glyoxylate and tricarboxylic cycles. This proposed carbon flow hypothesis was supported by gene and protein expression profiles assessed using qRT-PCR and western blot analysis, respectively, as well as using enzymatic, cell dry weight and fungus-macrophage interaction assays. The carbon source provides a survival advantage to Paracoccidioides inside macrophages. Conclusions/Significance For a complete understanding of the physiological processes in an organism, the integration of approaches addressing different levels of regulation is important. To the best of our knowledge, this report presents the first description of the responses of Paracoccidioides spp. to host-like conditions using large-scale expression approaches. The alternative metabolic pathways that could be adopted by the organism during carbon starvation can be important for a better understanding of the fungal adaptation to the host, because systems for detecting and responding

  7. RNase L Attenuates Mitogen-stimulated Gene Expression via Transcriptional and Post-transcriptional Mechanisms to Limit the Proliferative Response*

    PubMed Central

    Brennan-Laun, Sarah E.; Li, Xiao-Ling; Ezelle, Heather J.; Venkataraman, Thiagarajan; Blackshear, Perry J.; Wilson, Gerald M.; Hassel, Bret A.

    2014-01-01

    The cellular response to mitogens is tightly regulated via transcriptional and post-transcriptional mechanisms to rapidly induce genes that promote proliferation and efficiently attenuate their expression to prevent malignant growth. RNase L is an endoribonuclease that mediates diverse antiproliferative activities, and tristetraprolin (TTP) is a mitogen-induced RNA-binding protein that directs the decay of proliferation-stimulatory mRNAs. In light of their roles as endogenous proliferative constraints, we examined the mechanisms and functional interactions of RNase L and TTP to attenuate a mitogenic response. Mitogen stimulation of RNase L-deficient cells significantly increased TTP transcription and the induction of other mitogen-induced mRNAs. This regulation corresponded with elevated expression of serum-response factor (SRF), a master regulator of mitogen-induced transcription. RNase L destabilized the SRF transcript and formed a complex with SRF mRNA in cells providing a mechanism by which RNase L down-regulates SRF-induced genes. TTP and RNase L proteins interacted in cells suggesting that RNase L is directed to cleave TTP-bound RNAs as a mechanism of substrate specificity. Consistent with their concerted function in RNA turnover, the absence of either RNase L or TTP stabilized SRF mRNA, and a subset of established TTP targets was also regulated by RNase L. RNase L deficiency enhanced mitogen-induced proliferation demonstrating its functional role in limiting the mitogenic response. Our findings support a model of feedback regulation in which RNase L and TTP target SRF mRNA and SRF-induced transcripts. Accordingly, meta-analysis revealed an enrichment of RNase L and TTP targets among SRF-regulated genes suggesting that the RNase L/TTP axis represents a viable target to inhibit SRF-driven proliferation in neoplastic diseases. PMID:25301952

  8. RNase L attenuates mitogen-stimulated gene expression via transcriptional and post-transcriptional mechanisms to limit the proliferative response.

    PubMed

    Brennan-Laun, Sarah E; Li, Xiao-Ling; Ezelle, Heather J; Venkataraman, Thiagarajan; Blackshear, Perry J; Wilson, Gerald M; Hassel, Bret A

    2014-11-28

    The cellular response to mitogens is tightly regulated via transcriptional and post-transcriptional mechanisms to rapidly induce genes that promote proliferation and efficiently attenuate their expression to prevent malignant growth. RNase L is an endoribonuclease that mediates diverse antiproliferative activities, and tristetraprolin (TTP) is a mitogen-induced RNA-binding protein that directs the decay of proliferation-stimulatory mRNAs. In light of their roles as endogenous proliferative constraints, we examined the mechanisms and functional interactions of RNase L and TTP to attenuate a mitogenic response. Mitogen stimulation of RNase L-deficient cells significantly increased TTP transcription and the induction of other mitogen-induced mRNAs. This regulation corresponded with elevated expression of serum-response factor (SRF), a master regulator of mitogen-induced transcription. RNase L destabilized the SRF transcript and formed a complex with SRF mRNA in cells providing a mechanism by which RNase L down-regulates SRF-induced genes. TTP and RNase L proteins interacted in cells suggesting that RNase L is directed to cleave TTP-bound RNAs as a mechanism of substrate specificity. Consistent with their concerted function in RNA turnover, the absence of either RNase L or TTP stabilized SRF mRNA, and a subset of established TTP targets was also regulated by RNase L. RNase L deficiency enhanced mitogen-induced proliferation demonstrating its functional role in limiting the mitogenic response. Our findings support a model of feedback regulation in which RNase L and TTP target SRF mRNA and SRF-induced transcripts. Accordingly, meta-analysis revealed an enrichment of RNase L and TTP targets among SRF-regulated genes suggesting that the RNase L/TTP axis represents a viable target to inhibit SRF-driven proliferation in neoplastic diseases. PMID:25301952

  9. Genome scale transcriptional response diversity among ten ecotypes of Arabidopsis thaliana during heat stress

    PubMed Central

    Barah, Pankaj; Jayavelu, Naresh D.; Mundy, John; Bones, Atle M.

    2013-01-01

    In the scenario of global warming and climate change, heat stress is a serious threat to crop production worldwide. Being sessile, plants cannot escape from heat. Plants have developed various adaptive mechanisms to survive heat stress. Several studies have focused on diversity of heat tolerance levels in divergent Arabidopsis thaliana (A. thaliana) ecotypes, but comprehensive genome scale understanding of heat stress response in plants is still lacking. Here we report the genome scale transcript responses to heat stress of 10 A. thaliana ecotypes (Col, Ler, C24, Cvi, Kas1, An1, Sha, Kyo2, Eri, and Kond) originated from different geographical locations. During the experiment, A. thaliana plants were subjected to heat stress (38°C) and transcript responses were monitored using Arabidopsis NimbleGen ATH6 microarrays. The responses of A. thaliana ecotypes exhibited considerable variation in the transcript abundance levels. In total, 3644 transcripts were significantly heat regulated (p < 0.01) in the 10 ecotypes, including 244 transcription factors and 203 transposable elements. By employing a systems genetics approach- Network Component Analysis (NCA), we have constructed an in silico transcript regulatory network model for 35 heat responsive transcription factors during cellular responses to heat stress in A. thaliana. The computed activities of the 35 transcription factors showed ecotype specific responses to the heat treatment. PMID:24409190

  10. Position-dependent mass quantum Hamiltonians: general approach and duality

    NASA Astrophysics Data System (ADS)

    Rego-Monteiro, M. A.; Rodrigues, Ligia M. C. S.; Curado, E. M. F.

    2016-03-01

    We analyze a general family of position-dependent mass (PDM) quantum Hamiltonians which are not self-adjoint and include, as particular cases, some Hamiltonians obtained in phenomenological approaches to condensed matter physics. We build a general family of self-adjoint Hamiltonians which are quantum mechanically equivalent to the non-self-adjoint proposed ones. Inspired by the probability density of the problem, we construct an ansatz for the solutions of the family of self-adjoint Hamiltonians. We use this ansatz to map the solutions of the time independent Schrödinger equations generated by the non-self-adjoint Hamiltonians into the Hilbert space of the solutions of the respective dual self-adjoint Hamiltonians. This mapping depends on both the PDM and on a function of position satisfying a condition that assures the existence of a consistent continuity equation. We identify the non-self-adjoint Hamiltonians here studied with a very general family of Hamiltonians proposed in a seminal article of Harrison (1961 Phys. Rev. 123 85) to describe varying band structures in different types of metals. Therefore, we have self-adjoint Hamiltonians that correspond to the non-self-adjoint ones found in Harrison’s article.

  11. Asymptotic velocity of a position-dependent quantum walk

    NASA Astrophysics Data System (ADS)

    Suzuki, Akito

    2016-01-01

    We consider a position-dependent coined quantum walk on Z and assume that the coin operator C( x) satisfies Vert C(x) - C_0 Vert ≤ c_1|x|^{-1-ɛ }, quad x in Zsetminus {0} with positive c_1 and ɛ and C_0 in U(2). We show that the Heisenberg operator hat{x}(t) of the position operator converges to the asymptotic velocity operator hat{v}_+ so that s- lim _{t → ∞} exp( i ξ hat{x}(t)/t ) = Π_p(U) + exp(i ξ hat{v}_+) Π_ac(U) provided that U has no singular continuous spectrum. Here Π_p(U) (resp., Π_ac(U)) is the orthogonal projection onto the direct sum of all eigenspaces (resp., the subspace of absolute continuity) of U. We also prove that for the random variable X_t denoting the position of a quantum walker at time t in N, X_t/t converges in law to a random variable V with the probability distribution μ _V = Vert Π_p(U)Ψ _0Vert ^2δ _0 + Vert E_{hat{v}_+}(\\cdot ) Π_ac(U)Ψ _0Vert ^2, where Ψ _0 is the initial state, δ _0 the Dirac measure at zero, and E_{hat{v}_+} the spectral measure of hat{v}_+.

  12. Position-dependent mass, finite-gap systems, and supersymmetry

    NASA Astrophysics Data System (ADS)

    Bravo, Rafael; Plyushchay, Mikhail S.

    2016-05-01

    The ordering problem in quantum systems with position-dependent mass (PDM) is treated by inclusion of the classically fictitious similarity transformation into the kinetic term. This provides a generation of supersymmetry with the first-order supercharges from the kinetic term alone, while inclusion of the potential term allows us also to generate nonlinear supersymmetry with higher-order supercharges. A broad class of finite-gap systems with PDM is obtained by different reduction procedures, and general results on supersymmetry generation are applied to them. We show that elliptic finite-gap systems of Lamé and Darboux-Treibich-Verdier types can be obtained by reduction to Seiffert's spherical spiral and Bernoulli lemniscate in the presence of Calogero-like or harmonic oscillator potentials, or by angular momentum reduction of a free motion on some AdS2 -related surfaces in the presence of Aharonov-Bohm flux. The limiting cases include the Higgs and Mathews-Lakshmanan oscillator models as well as a reflectionless model with PDM exploited recently in the discussion of cosmological inflationary scenarios.

  13. Default risk modeling with position-dependent killing

    NASA Astrophysics Data System (ADS)

    Katz, Yuri A.

    2013-04-01

    Diffusion in a linear potential in the presence of position-dependent killing is used to mimic a default process. Different assumptions regarding transport coefficients, initial conditions, and elasticity of the killing measure lead to diverse models of bankruptcy. One “stylized fact” is fundamental for our consideration: empirically default is a rather rare event, especially in the investment grade categories of credit ratings. Hence, the action of killing may be considered as a small parameter. In a number of special cases we derive closed-form expressions for the entire term structure of the cumulative probability of default, its hazard rate, and intensity. Comparison with historical data on aggregate global corporate defaults confirms the validity of the perturbation method for estimations of long-term probability of default for companies with high credit quality. On a single company level, we implement the derived formulas to estimate the one-year likelihood of default of Enron on a daily basis from August 2000 to August 2001, three months before its default, and compare the obtained results with forecasts of traditional structural models.

  14. PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges.

    PubMed

    Liu, Libin; Pilch, Paul F

    2016-01-01

    Ribosomal RNA transcription mediated by RNA polymerase I represents the rate-limiting step in ribosome biogenesis. In eukaryotic cells, nutrients and growth factors regulate ribosomal RNA transcription through various key factors coupled to cell growth. We show here in mature adipocytes, ribosomal transcription can be acutely regulated in response to metabolic challenges. This acute response is mediated by PTRF (polymerase I transcription and release factor, also known as cavin-1), which has previously been shown to play a critical role in caveolae formation. The caveolae-independent rDNA transcriptional role of PTRF not only explains the lipodystrophy phenotype observed in PTRF deficient mice and humans, but also highlights its crucial physiological role in maintaining adipocyte allostasis. Multiple post-translational modifications of PTRF provide mechanistic bases for its regulation. The role of PTRF in ribosomal transcriptional efficiency is likely relevant to many additional physiological situations of cell growth and organismal metabolism. PMID:27528195

  15. Temporal kinetics of the transcriptional response to carbon depletion and sucrose readdition in Arabidopsis seedlings.

    PubMed

    Cookson, Sarah Jane; Yadav, Umesh Prasad; Klie, Sebastian; Morcuende, Rosa; Usadel, Björn; Lunn, John Edward; Stitt, Mark

    2016-04-01

    To investigate whether the transcriptional response to carbon (C) depletion and sucrose resupply depends on the duration and severity of the C depletion, Arabidopsis seedlings were grown in liquid culture and harvested 3, 6, 12, 24, 48 and 72 h after removing sucrose from the medium and 30 min after resupplying sucrose at each time. Expression profiling revealed early transcriptional inhibition of cell wall synthesis and remodelling of signalling, followed by induction of C recycling and photosynthesis and general inhibition of growth. The temporal sequence differed from the published response to progressive exhaustion of C during a night and extended night in vegetatively growing plants. The response to sucrose readdition was conserved across the C-depletion time course. Intriguingly, the vast majority of rapidly responding transcripts decreased rather than increased. The majority of transcripts that respond rapidly to sucrose and many transcripts that respond during C depletion also decrease after treating seedlings with the transcriptional inhibitor cordycepin A. Comparison with published responses to overexpression of otsA, AKIN10 and bZIP11 revealed that many genes that respond to C depletion, and especially sucrose resupply, respond to one or more of these C-signalling components. Thus, multiple factors contribute to C responsiveness, including many signalling components, transcriptional regulation and transcript turnover. PMID:26386165

  16. Local potentiation of stress-responsive genes by upstream noncoding transcription

    PubMed Central

    Takemata, Naomichi; Oda, Arisa; Yamada, Takatomi; Galipon, Josephine; Miyoshi, Tomoichiro; Suzuki, Yutaka; Sugano, Sumio; Hoffman, Charles S.; Hirota, Kouji; Ohta, Kunihiro

    2016-01-01

    It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcription promotes chromatin remodeling and fbp1 mRNA expression. Here, we demonstrate that such upstream noncoding transcription facilitates promoter association of the stress-responsive transcriptional activator Atf1 at the sites of transcription, leading to activation of the downstream stress genes. Genome-wide analyses revealed that ∼50 Atf1-binding sites show marked decrease in Atf1 occupancy when cells are treated with a transcription inhibitor. Most of these transcription-enhanced Atf1-binding sites are associated with stress-dependent induction of the adjacent mRNAs or lncRNAs, as observed in fbp1. These Atf1-binding sites exhibit low Atf1 occupancy and high histone density in glucose-rich conditions, and undergo dramatic changes in chromatin status after glucose depletion: enhanced Atf1 binding, histone eviction, and histone H3 acetylation. We also found that upstream transcripts bind to the Groucho-Tup1 type transcriptional corepressors Tup11 and Tup12, and locally antagonize their repressive functions on Atf1 binding. These results reveal a new mechanism in which upstream noncoding transcription locally magnifies the specific activation of stress-inducible genes via counteraction of corepressors. PMID:26945040

  17. Local potentiation of stress-responsive genes by upstream noncoding transcription.

    PubMed

    Takemata, Naomichi; Oda, Arisa; Yamada, Takatomi; Galipon, Josephine; Miyoshi, Tomoichiro; Suzuki, Yutaka; Sugano, Sumio; Hoffman, Charles S; Hirota, Kouji; Ohta, Kunihiro

    2016-06-20

    It has been postulated that a myriad of long noncoding RNAs (lncRNAs) contribute to gene regulation. In fission yeast, glucose starvation triggers lncRNA transcription across promoter regions of stress-responsive genes including fbp1 (fructose-1,6-bisphosphatase1). At the fbp1 promoter, this transcription promotes chromatin remodeling and fbp1 mRNA expression. Here, we demonstrate that such upstream noncoding transcription facilitates promoter association of the stress-responsive transcriptional activator Atf1 at the sites of transcription, leading to activation of the downstream stress genes. Genome-wide analyses revealed that ∼50 Atf1-binding sites show marked decrease in Atf1 occupancy when cells are treated with a transcription inhibitor. Most of these transcription-enhanced Atf1-binding sites are associated with stress-dependent induction of the adjacent mRNAs or lncRNAs, as observed in fbp1 These Atf1-binding sites exhibit low Atf1 occupancy and high histone density in glucose-rich conditions, and undergo dramatic changes in chromatin status after glucose depletion: enhanced Atf1 binding, histone eviction, and histone H3 acetylation. We also found that upstream transcripts bind to the Groucho-Tup1 type transcriptional corepressors Tup11 and Tup12, and locally antagonize their repressive functions on Atf1 binding. These results reveal a new mechanism in which upstream noncoding transcription locally magnifies the specific activation of stress-inducible genes via counteraction of corepressors. PMID:26945040

  18. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis.

    PubMed

    Hai, T; Hartman, M G

    2001-07-25

    The mammalian ATF/CREB family of transcription factors represents a large group of basic region-leucine zipper (bZip) proteins which was originally defined in the late 1980s by their ability to bind to the consensus ATF/CRE site 'TGACGTCA'. Over the past decade, cDNA clones encoding identical or homologous proteins have been isolated by different laboratories and given different names. These proteins can be grouped into subgroups according to their amino acid similarity. In this review, we will briefly describe the classification of these proteins with a historical perspective of their nomenclature. We will then review three members of the ATF/CREB family of proteins: ATF3, ATF4 and ATF6. We will address four issues for each protein: (a) homologous proteins and alternative names, (b) dimer formation with other bZip proteins, (c) transcriptional activity, and (d) potential physiological functions. Although the name Activating Transcription Factor (ATF) implies that they are transcriptional activators, some of these proteins are transcriptional repressors. ATF3 homodimer is a transcriptional repressor and ATF4 has been reported to be either an activator or a repressor. We will review the reports on the transcriptional activities of ATF4, and propose potential explanations for the discrepancy. Although the physiological functions of these proteins are not well understood, some clues can be gained from studies with different approaches. When the data are available, we will address the following questions. (a) How is the expression (at the mRNA level or protein level) regulated? (b) How are the transcriptional activities regulated? (c) What are the interacting proteins (other than bZip partners)? (d) What are the consequences of ectopically expressing the gene (gain-of-function) or deleting the gene (loss-of-function)? Although answers to these questions are far from being complete, together they provide clues to the functions of these ATF proteins. Despite the

  19. Analysis of global transcriptional responses of chicken following primary and secondary Eimeria acervulina infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization of host transcriptional responses during coccidia infections can provide new clues for the development of alternative disease control strategies against these complex protozoan pathogens. In the current study, we compared chicken duodenal transcriptome profiles following primary and...

  20. Arabidopsis transcriptional responses differentiating closely related chemicals (herbicides) and cross-species extrapolation to Brassica

    EPA Science Inventory

    Using whole genome Affymetrix ATH1 GeneChips we characterized the transcriptional response of Arabidopsis thaliana Columbia 24 hours after treatment with five different herbicides. Four of them (chloransulam, imazapyr, primisulfuron, sulfometuron) inhibit acetolactate synthase (A...

  1. INO80-dependent regression of ecdysone-induced transcriptional responses regulates developmental timing in Drosophila.

    PubMed

    Neuman, Sarah D; Ihry, Robert J; Gruetzmacher, Kelly M; Bashirullah, Arash

    2014-03-15

    Sequential pulses of the steroid hormone ecdysone regulate the major developmental transitions in Drosophila, and the duration of each developmental stage is determined by the length of time between ecdysone pulses. Ecdysone regulates biological responses by directly initiating target gene transcription. In turn, these transcriptional responses are known to be self-limiting, with mechanisms in place to ensure regression of hormone-dependent transcription. However, the biological significance of these transcriptional repression mechanisms remains unclear. Here we show that the chromatin remodeling protein INO80 facilitates transcriptional repression of ecdysone-regulated genes during prepupal development. In ino80 mutant animals, inefficient repression of transcriptional responses to the late larval ecdysone pulse delays the onset of the subsequent prepupal ecdysone pulse, resulting in a significantly longer prepupal stage. Conversely, increased expression of ino80 is sufficient to shorten the prepupal stage by increasing the rate of transcriptional repression. Furthermore, we demonstrate that enhancing the rate of regression of the mid-prepupal competence factor βFTZ-F1 is sufficient to determine the timing of head eversion and thus the duration of prepupal development. Although ino80 is conserved from yeast to humans, this study represents the first characterization of a bona fide ino80 mutation in any metazoan, raising the possibility that the functions of ino80 in transcriptional repression and developmental timing are evolutionarily conserved. PMID:24468295

  2. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana.

    PubMed

    Bui, Liem T; Giuntoli, Beatrice; Kosmacz, Monika; Parlanti, Sandro; Licausi, Francesco

    2015-07-01

    Plant adaptation to hypoxic conditions is mediated by the transcriptional activation of genes involved in the metabolic reprogramming of plant cells to cope with reduced oxygen availability. Recent studies indicated that members of the group VII of the Ethylene Responsive Transcription Factor (ERFs) family act as positive regulators of this molecular response. In the current study, the five ERF-VII transcription factors of Arabidopsis thaliana were compared to infer a hierarchy in their role with respect to the anaerobic response. When the activity of each transcription factor was tested on a set of hypoxia-responsive promoters, RAP2.2, RAP2.3 and RAP2.12 appeared to be the most powerful activators. RAP2.12 was further dissected in transactivation assays in Arabidopsis protoplasts to identify responsible regions for transcriptional activation. An ultimate C-terminal motif was identified as sufficient to drive gene transcription. Finally, using realtime RT-PCR in single and double mutants for the corresponding genes, we confirmed that RAP2.2 and RAP2.12 exert major control upon the anaerobic response. PMID:26025519

  3. Transcriptional profile of Paracoccidioides spp. in response to itraconazole

    PubMed Central

    2014-01-01

    Background Itraconazole is currently used to treat paracoccidioidomycosis. The mechanism of action of azoles has been elucidated in some fungi, although little is known regarding its mechanism of action in Paracoccidioides spp. The present work focused on identification of regulated transcripts using representational difference analysis of Paracoccidioides spp. yeast cells treated with itraconazole for 1 and 2 h. Results Paracoccidioides Pb01 genes up-regulated by itraconazole included genes involved in cellular transport, metabolism/energy, transcription, cell rescue, defense and virulence. ERG11, ERG6, ERG3, ERG5 and ERG25 were up-regulated at multiple time points. In vivo infection experiments in mice corroborated the in vitro results. Ergosterol levels and distribution were evaluated in Paracoccidioides Pb18 yeast cells, and the results demonstrate that both factors were changed in the fungus treated with itraconazole. Conclusion To our knowledge, this is the first transcriptional analysis of Paracoccidioides spp. exposed to a triazole drug. Here acetyl seems to be intensively produced from different metabolic pathways to produce ergosterol by the action of ergosterol synthesis related enzymes, which were also affected in other fungi. Among the genes affected, we identified genes in common with other fungi, as well as genes unique to Paracoccidioides Pb01. Those genes could be considered target to new drugs. Voltage-gated Ca2+ alpha subunit (CAV), Tetracycline resistance protein (TETA) and Hemolisyn-iii channel protein (HLYiii) were found only here and a probably involvement with resistence to itraconazole could be investigated in the future. However our findings do not permit inference to current clinical practice. PMID:24690401

  4. Transcriptional responses to teflubenzuron exposure in European lobster (Homarus gammarus).

    PubMed

    Olsvik, Pål A; Samuelsen, Ole B; Agnalt, Ann-Lisbeth; Lunestad, Bjørn T

    2015-10-01

    Increasing use of pharmaceutical drugs to delouse farmed salmon raises environmental concerns. This study describes an experiment carried out to elucidate the molecular mechanisms of the antiparasitic drug teflubenzuron on a non-target species, the European lobster. Juvenile lobsters (10.3±0.9 mm carapace length) were fed two environmentally relevant doses of teflubenzuron, corresponding to 5 and 20% of a standard salmon medication (10 mg/kg day), termed low and high dose in this study. After 114 days of dietary exposure, whole-animal accumulation of teflubenzuron was determined. One claw from each animal was collected for transcriptional analysis. Overall, exposed animals showed low cumulative mortality. Six animals, two from the low dose treatment and four from the high dose, showed exoskeletal abnormalities (claw deformities or stiff walking legs). Residual levels of teflubenzuron in juvenile lobster were 2.7-fold higher in the high dose (282 ng/g) compared to the low dose treatment (103 ng/g). The transcriptional examination showed significant effects of teflubenzuron on 21 out of 39 studied genes. At the transcriptional level, environmentally relevant levels of the anti-salmon lice drug impacted genes linked to drug detoxification (cyp3a, cyp6a2, cyp302a, sult1b1, abcc4), cellular stress (hsp70, hsp90, chh), oxidative stress (cat, gpx3) and DNA damage (p53), as well as molting and exoskeleton regulation (chi3l1, ecr, jhl1, chs1, ctbs, gap65, jhel-ces1) in claw tissue (muscle and exoskeleton). In conclusion, teflubenzuron at sub-lethal levels can affect many molecular mechanisms in European lobster claws. PMID:26318677

  5. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells

    PubMed Central

    Vihervaara, Anniina; Sergelius, Christian; Vasara, Jenni; Blom, Malin A. H.; Elsing, Alexandra N.; Roos-Mattjus, Pia; Sistonen, Lea

    2013-01-01

    Heat shock factors (HSFs) are the master regulators of transcription under protein-damaging conditions, acting in an environment where the overall transcription is silenced. We determined the genomewide transcriptional program that is rapidly provoked by HSF1 and HSF2 under acute stress in human cells. Our results revealed the molecular mechanisms that maintain cellular homeostasis, including HSF1-driven induction of polyubiquitin genes, as well as HSF1- and HSF2-mediated expression patterns of cochaperones, transcriptional regulators, and signaling molecules. We characterized the genomewide transcriptional response to stress also in mitotic cells where the chromatin is tightly compacted. We found a radically limited binding and transactivating capacity of HSF1, leaving mitotic cells highly susceptible to proteotoxicity. In contrast, HSF2 occupied hundreds of loci in the mitotic cells and localized to the condensed chromatin also in meiosis. These results highlight the importance of the cell cycle phase in transcriptional responses and identify the specific mechanisms for HSF1 and HSF2 in transcriptional orchestration. Moreover, we propose that HSF2 is an epigenetic regulator directing transcription throughout cell cycle progression. PMID:23959860

  6. Unbiased reconstruction of a mammalian transcriptional network mediating the differential response to pathogens

    PubMed Central

    Amit, Ido; Garber, Manuel; Chevrier, Nicolas; Leite, Ana Paula; Donner, Yoni; Eisenhaure, Thomas; Guttman, Mitchell; Grenier, Jennifer K.; Li, Weibo; Zuk, Or; Schubert, Lisa A.; Birditt, Brian; Shay, Tal; Goren, Alon; Zhang, Xiaolan; Smith, Zachary; Deering, Raquel; McDonald, Rebecca C.; Cabili, Moran; Bernstein, Bradley E; Rinn, John L.; Meissner, Alex; Root, David E.; Hacohen, Nir; Regev, Aviv

    2010-01-01

    Models of mammalian regulatory networks controlling gene expression have been inferred from genomic data, yet have largely not been validated. We present an unbiased strategy to systematically perturb candidate regulators and monitor cellular transcriptional responses. We apply this approach to derive regulatory networks that control the transcriptional response of mouse primary dendritic cells (DCs) to pathogens. Our approach revealed the regulatory functions of 125 transcription factors, chromatin modifiers, and RNA binding proteins and constructed a network model consisting of two dozen core regulators and 76 fine-tuners that help explain how pathogen-sensing pathways achieve specificity. This study establishes a broadly-applicable, comprehensive and unbiased approach to reveal the wiring and functions of a regulatory network controlling a major transcriptional response in primary mammalian cells. PMID:19729616

  7. Host Transcription Factors in the Immediate Pro-Inflammatory Response to the Parasitic Mite Psoroptes ovis

    PubMed Central

    Burgess, Stewart T. G.; McNeilly, Tom N.; Watkins, Craig A.; Nisbet, Alasdair J.; Huntley, John F.

    2011-01-01

    Background Sheep scab, caused by infestation with the ectoparasitic mite Psoroptes ovis, results in the rapid development of cutaneous inflammation and leads to the crusted skin lesions characteristic of the disease. We described previously the global host transcriptional response to infestation with P. ovis, elucidating elements of the inflammatory processes which lead to the development of a rapid and profound immune response. However, the mechanisms by which this response is instigated remain unclear. To identify novel methods of intervention a better understanding of the early events involved in triggering the immune response is essential. The objective of this study was to gain a clearer understanding of the mechanisms and signaling pathways involved in the instigation of the immediate pro-inflammatory response. Results Through a combination of transcription factor binding site enrichment and pathway analysis we identified key roles for a number of transcription factors in the instigation of cutaneous inflammation. In particular, defined roles were elucidated for the transcription factors NF-kB and AP-1 in the orchestration of the early pro-inflammatory response, with these factors being implicated in the activation of a suite of inflammatory mediators. Conclusions Interrogation of the host temporal response to P. ovis infestation has enabled the further identification of the mechanisms underlying the development of the immediate host pro-inflammatory response. This response involves key regulatory roles for the transcription factors NF-kB and AP-1. Pathway analysis demonstrated that the activation of these transcription factors may be triggered following a host LPS-type response, potentially involving TLR4-signalling and also lead to the intriguing possibility that this could be triggered by a P. ovis allergen. PMID:21915322

  8. Transcriptional profile of immediate response to ionizing radiation exposure.

    PubMed

    Rouchka, Eric C; Flight, Robert M; Fasciotto, Brigitte H; Estrada, Rosendo; Eaton, John W; Patibandla, Phani K; Waigel, Sabine J; Li, Dazhuo; Kirtley, John K; Sethu, Palaniappan; Keynton, Robert S

    2016-03-01

    Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose-course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375. PMID:26981369

  9. Transcriptional profile of immediate response to ionizing radiation exposure

    PubMed Central

    Rouchka, Eric C.; Flight, Robert M.; Fasciotto, Brigitte H.; Estrada, Rosendo; Eaton, John W.; Patibandla, Phani K.; Waigel, Sabine J.; Li, Dazhuo; Kirtley, John K.; Sethu, Palaniappan; Keynton, Robert S.

    2015-01-01

    Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose–course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375. PMID:26981369

  10. Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata.

    PubMed

    Torson, Alex S; Yocum, George D; Rinehart, Joseph P; Kemp, William P; Bowsher, Julia H

    2015-04-01

    The transcriptional responses of insects to long-term, ecologically relevant temperature stress are poorly understood. Long-term exposure to low temperatures, commonly referred to as chilling, can lead to physiological effects collectively known as chill injury. Periodically increasing temperatures during long-term chilling has been shown to increase survival in many insects. However, the transcripts responsible for this increase in survival have never been characterized. Here, we present the first transcriptome-level analysis of increased longevity under fluctuating temperatures during chilling. Overwintering post-diapause quiescent alfalfa leafcutting bees (Megachile rotundata) were exposed to a constant temperature of 6°C, or 6°C with a daily fluctuation to 20°C. RNA was collected at two different time points, before and after mortality rates began to diverge between temperature treatments. Expression analysis identified differentially regulated transcripts between pairwise comparisons of both treatments and time points. Transcripts functioning in ion homeostasis, metabolic pathways and oxidative stress response were up-regulated in individuals exposed to periodic temperature fluctuations during chilling. The differential expression of these transcripts provides support for the hypotheses that fluctuating temperatures protect against chill injury by reducing oxidative stress and returning ion concentrations and metabolic function to more favorable levels. Additionally, exposure to fluctuating temperatures leads to increased expression of transcripts functioning in the immune response and neurogenesis, providing evidence for additional mechanisms associated with increased survival during chilling in M. rotundata. PMID:25657206

  11. Overlapping Podospora anserina Transcriptional Responses to Bacterial and Fungal Non Self Indicate a Multilayered Innate Immune Response

    PubMed Central

    Lamacchia, Marina; Dyrka, Witold; Breton, Annick; Saupe, Sven J.; Paoletti, Mathieu

    2016-01-01

    Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI), a genetically controlled process initiating a programmed cell death (PCD) leading to the rejection of a fusion cell between genetically different isolates of the same species. In Podospora anserina VI is controlled by members of the hnwd gene family encoding for proteins analogous to NOD Like Receptors (NLR) immune receptors in eukaryotes. It was hypothesized that the hnwd controlled VI reaction was derived from the fungal innate immune response. Here we analyze the P. anserina transcriptional responses to two bacterial species, Serratia fonticola to which P. anserina survives and S. marcescens to which P. anserina succumbs, and compare these to the transcriptional response induced under VI conditions. Transcriptional responses to both bacteria largely overlap, however the number of genes regulated and magnitude of regulation is more important when P. anserina survives. Transcriptional responses to bacteria also overlap with the VI reaction for both up or down regulated gene sets. Genes up regulated tend to be clustered in the genome, and display limited phylogenetic distribution. In all three responses we observed genes related to autophagy to be up-regulated. Autophagy contributes to the fungal survival in all three conditions. Genes encoding for secondary metabolites and histidine kinase signaling are also up regulated in all three conditions. Transcriptional responses also display differences. Genes involved in response to oxidative stress, or encoding small secreted proteins are essentially expressed in response to bacteria, while genes encoding NLR proteins are expressed during VI. Most functions encoded in response to bacteria favor survival of the fungus while most

  12. Genome Wide Binding Site Analysis Reveals Transcriptional Coactivation of Cytokinin-Responsive Genes by DELLA Proteins

    PubMed Central

    Marín-de la Rosa, Nora; Pfeiffer, Anne; Hill, Kristine; Locascio, Antonella; Bhalerao, Rishikesh P.; Miskolczi, Pal; Grønlund, Anne L.; Wanchoo-Kohli, Aakriti; Thomas, Stephen G.; Bennett, Malcolm J.; Lohmann, Jan U.; Blázquez, Miguel A.; Alabadí, David

    2015-01-01

    The ability of plants to provide a plastic response to environmental cues relies on the connectivity between signaling pathways. DELLA proteins act as hubs that relay environmental information to the multiple transcriptional circuits that control growth and development through physical interaction with transcription factors from different families. We have analyzed the presence of one DELLA protein at the Arabidopsis genome by chromatin immunoprecipitation coupled to large-scale sequencing and we find that it binds at the promoters of multiple genes. Enrichment analysis shows a strong preference for cis elements recognized by specific transcription factor families. In particular, we demonstrate that DELLA proteins are recruited by type-B ARABIDOPSIS RESPONSE REGULATORS (ARR) to the promoters of cytokinin-regulated genes, where they act as transcriptional co-activators. The biological relevance of this mechanism is underpinned by the necessity of simultaneous presence of DELLAs and ARRs to restrict root meristem growth and to promote photomorphogenesis. PMID:26134422

  13. Conserved enhancer and silencer elements responsible for differential Adh transcription in Drosophila cell lines.

    PubMed Central

    Ayer, S; Benyajati, C

    1990-01-01

    The distal promoter of Adh is differentially expressed in Drosophila tissue culture cell lines. After transfection with an exogenous Adh gene, there was a specific increase in distal alcohol dehydrogenase (ADH) transcripts in ADH-expressing (ADH+) cells above the levels observed in transfected ADH-nonexpressing (ADH-) cells. We used deletion mutations and a comparative transient-expression assay to identify the cis-acting elements responsible for enhanced Adh distal transcription in ADH+ cells. DNA sequences controlling high levels of distal transcription were localized to a 15-base-pair (bp) region nearly 500 bp upstream of the distal RNA start site. In addition, a 61-bp negative cis-acting element was found upstream from and adjacent to the enhancer. When this silencer element was deleted, distal transcription increased only in the ADH+ cell line. These distant upstream elements must interact with the promoter elements, the Adf-1-binding site and the TATA box, as they only influenced transcription when at least one of these two positive distal promoter elements was present. Internal deletions targeted to the Adf-1-binding site or the TATA box reduced transcription in both cell types but did not affect the transcription initiation site. Distal transcription in transfected ADH- cells appears to be controlled primarily through these promoter elements and does not involve the upstream regulatory elements. Evolutionary conservation in distantly related Drosophila species suggests the importance of these upstream elements in correct developmental and tissue-specific expression of ADH. Images PMID:1694013

  14. Ubiquitin ligase activity of TFIIH and the transcriptional response to DNA damage.

    PubMed

    Takagi, Yuichiro; Masuda, Claudio A; Chang, Wei-Hau; Komori, Hirofumi; Wang, Dong; Hunter, Tony; Joazeiro, Claudio A P; Kornberg, Roger D

    2005-04-15

    Core transcription factor (TF) IIH purified from yeast possesses an E3 ubiquitin (Ub) ligase activity, which resides, at least in part, in a RING finger (RNF) domain of the Ssl1 subunit. Yeast strains mutated in the Ssl1 RNF domain are sensitive to ultraviolet (UV) light and to methyl methanesulfonate (MMS). This increased sensitivity to DNA-damaging agents does not reflect a deficiency in nucleotide excision repair. Rather, it correlates with reduced transcriptional induction of genes involved in DNA repair, suggesting that the E3 Ub ligase activity of TFIIH mediates the transcriptional response to DNA damage. PMID:15837426

  15. Transcriptional profiling of recall responses to Francisella live vaccine strain.

    PubMed

    Paranavitana, Chrysanthi; DaSilva, Luis; Vladimirova, Antoaneta; Pittman, Phillip R; Velauthapillai, Mahendran; Nikolich, Mikeljon

    2014-03-01

    Global gene expression profile changes were monitored in human peripheral blood mononuclear cells (PBMCs) after challenge with the live vaccine strain (LVS) of Francisella tularensis. Because these PBMCs were from individuals previously immunized with LVS, stimulating these cells with LVS should activate memory responses. The Ingenuity Pathway Analysis tool identified pathways, functions, and networks associated with this in vitro recall response, including novel pathways triggered by the memory response. Dendritic cell (DC) maturation was the most significant among the more than 25 relevant pathways discovered. Interleukin 15, granulocyte-macrophage colony-stimulating factor, and triggering receptor expressed on myeloid cells 1 signaling pathways were also significant. Pathway analysis indicated that Class 1 antigen presentation may not be optimal with LVS vaccination. The top three biological functions were antigen presentation, cell-mediated and humoral immune responses. Network analysis revealed that the top network associated with these functions had IFNγ and TNFα in central interactive positions. Our results suggest that DC maturation is a key factor in the recall responses and that more effective antigen processing and presentation is needed for cytotoxic T lymphocyte responses. Taken together, these considerations are critical for future tularemia vaccine development studies. PMID:24453125

  16. Abiotic and Biotic Stressors Causing Equivalent Mortality Induce Highly Variable Transcriptional Responses in the Soybean Aphid

    PubMed Central

    Enders, Laramy S.; Bickel, Ryan D.; Brisson, Jennifer A.; Heng-Moss, Tiffany M.; Siegfried, Blair D.; Zera, Anthony J.; Miller, Nicholas J.

    2014-01-01

    Environmental stress affects basic organismal functioning and can cause physiological, developmental, and reproductive impairment. However, in many nonmodel organisms, the core molecular stress response remains poorly characterized and the extent to which stress-induced transcriptional changes differ across qualitatively different stress types is largely unexplored. The current study examines the molecular stress response of the soybean aphid (Aphis glycines) using RNA sequencing and compares transcriptional responses to multiple stressors (heat, starvation, and plant defenses) at a standardized stress level (27% adult mortality). Stress-induced transcriptional changes showed remarkable variation, with starvation, heat, and plant defensive stress altering the expression of 3985, 510, and 12 genes, respectively. Molecular responses showed little overlap across all three stressors. However, a common transcriptional stress response was identified under heat and starvation, involved with up-regulation of glycogen biosynthesis and molecular chaperones and down-regulation of bacterial endosymbiont cellular and insect cuticular components. Stressor-specific responses indicated heat affected expression of heat shock proteins and cuticular components, whereas starvation altered a diverse set of genes involved in primary metabolism, oxidative reductive processes, nucleosome and histone assembly, and the regulation of DNA repair and replication. Exposure to host plant defenses elicited the weakest response, of which half of the genes were of unknown function. This study highlights the need for standardizing stress levels when comparing across stress types and provides a basis for understanding the role of general vs. stressor specific molecular responses in aphids. PMID:25538100

  17. Natural antisense transcripts regulate the neuronal stress response and excitability

    PubMed Central

    Zheng, Xingguo; Valakh, Vera; DiAntonio, Aaron; Ben-Shahar, Yehuda

    2014-01-01

    Neurons regulate ionic fluxes across their plasma membrane to maintain their excitable properties under varying environmental conditions. However, the mechanisms that regulate ion channels abundance remain poorly understood. Here we show that pickpocket 29 (ppk29), a gene that encodes a Drosophila degenerin/epithelial sodium channel (DEG/ENaC), regulates neuronal excitability via a protein-independent mechanism. We demonstrate that the mRNA 3′UTR of ppk29 affects neuronal firing rates and associated heat-induced seizures by acting as a natural antisense transcript (NAT) that regulates the neuronal mRNA levels of seizure (sei), the Drosophila homolog of the human Ether-à-go-go Related Gene (hERG) potassium channel. We find that the regulatory impact of ppk29 mRNA on sei is independent of the sodium channel it encodes. Thus, our studies reveal a novel mRNA dependent mechanism for the regulation of neuronal excitability that is independent of protein-coding capacity. DOI: http://dx.doi.org/10.7554/eLife.01849.001 PMID:24642409

  18. Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan.

    PubMed

    Zakrzewska, Anna; Boorsma, Andre; Brul, Stanley; Hellingwerf, Klaas J; Klis, Frans M

    2005-04-01

    Chitosan is a plasma membrane-perturbing compound consisting of linear chains of beta-1,4-linked glucosamine residues, which at acidic pHs become positively charged. It is extensively used as an antimicrobial compound, yet its mode of action is still unresolved. Chitosan strongly affected the growth of the yeast Saccharomyces cerevisiae, the food spoilage yeast Zygosaccharomyces bailii, and two human-pathogenic yeasts, Candida albicans and Candida glabrata. Microarray analysis of yeast cells treated with sublethal concentrations of chitosan revealed induction of the environmental stress response and three more major transcriptional responses. The first was a rapid and stable Cin5p-mediated response. Cin5p/Yap4p is a transcription factor involved in various stress responses. Deletion of CIN5 led to increased chitosan sensitivity. The second was a Crz1p-mediated response, which is delayed compared to the Cin5p response. Crz1p is a transcription factor of the calcineurin pathway. Cells deleted for CRZ1 or treated with the calcineurin inhibitor FK506 became hypersensitive to chitosan, supporting the notion that the Crz1p-controlled response offers protection against chitosan. The third was a strong Rlm1p-mediated response which ran parallel in time with the Crz1p-regulated response. Rlm1p is a transcription factor of the cell wall integrity pathway, which is activated by cell wall stress. Importantly, chitosan-treated cells became more resistant to beta-1,3-glucanase, which is a well-known response to cell wall stress. We propose that the transcriptional response to chitosan may be representative of other plasma membrane-perturbing compounds. PMID:15821130

  19. Dynamic Transcriptional Response of Escherichia coli to Inclusion Body Formation

    PubMed Central

    Baig, Faraz; Fernando, Lawrence P.; Salazar, Mary Alice; Powell, Rhonda R.; Bruce, Terri F.; Harcum, Sarah W.

    2014-01-01

    Escherichia coli is used intensively for recombinant protein production, but one key challenge with recombinant E. coli is the tendency of recombinant proteins to misfold and aggregate into insoluble inclusion bodies (IBs). IBs contain high concentrations of inactive recombinant protein that require recovery steps to salvage a functional recombinant protein. Currently, no universally effective method exists to prevent IB formation in recombinant E. coli. In this study, DNA microarrays were used to compare the E. coli gene expression response dynamics to soluble and insoluble recombinant protein production. As expected and previously reported, the classical heat-shock genes had increased expression due to IB formation, including protein folding chaperones and proteases. Gene expression levels for protein synthesis-related and energy-synthesis pathways were also increased. Many transmembrane transporter and corresponding catabolic pathways genes had decreased expression for substrates not present in the culture medium. Additionally, putative genes represented over one-third of the genes identified to have significant expression changes due to IB formation, indicating many important cellular responses to IB formation still need to be characterized. Interestingly, cells grown in 3% ethanol had significantly reduced gene expression responses due to IB formation. Taken together, these results indicate that IB formation is complex, stimulates the heat-shock response, increases protein and energy synthesis needs, and streamlines transport and catabolic processes, while ethanol diminished all of these responses. PMID:24338599

  20. Transcription Factor ADS-4 Regulates Adaptive Responses and Resistance to Antifungal Azole Stress

    PubMed Central

    Wang, Kangji; Zhang, Zhenying; Chen, Xi; Sun, Xianyun; Jin, Cheng

    2015-01-01

    Azoles are commonly used as antifungal drugs or pesticides to control fungal infections in medicine and agriculture. Fungi adapt to azole stress by rapidly activating the transcription of a number of genes, and transcriptional increases in some azole-responsive genes can elevate azole resistance. The regulatory mechanisms that control transcriptional responses to azole stress in filamentous fungi are not well understood. This study identified a bZIP transcription factor, ADS-4 (antifungal drug sensitive-4), as a new regulator of adaptive responses and resistance to antifungal azoles. Transcription of ads-4 in Neurospora crassa cells increased when they were subjected to ketoconazole treatment, whereas the deletion of ads-4 resulted in hypersensitivity to ketoconazole and fluconazole. In contrast, the overexpression of ads-4 increased resistance to fluconazole and ketoconazole in N. crassa. Transcriptome sequencing (RNA-seq) analysis, followed by quantitative reverse transcription (qRT)-PCR confirmation, showed that ADS-4 positively regulated the transcriptional responses of at least six genes to ketoconazole stress in N. crassa. The gene products of four ADS-4-regulated genes are known contributors to azole resistance, including the major efflux pump CDR4 (Pdr5p ortholog), an ABC multidrug transporter (NcAbcB), sterol C-22 desaturase (ERG5), and a lipid transporter (NcRTA2) that is involved in calcineurin-mediated azole resistance. Deletion of the ads-4-homologous gene Afads-4 in Aspergillus fumigatus caused hypersensitivity to itraconazole and ketoconazole, which suggested that ADS-4 is a functionally conserved regulator of adaptive responses to azoles. This study provides important information on a new azole resistance factor that could be targeted by a new range of antifungal pesticides and drugs. PMID:26100701

  1. The genomewide transcriptional response underlying the pea aphid wing polyphenism.

    PubMed

    Vellichirammal, Neetha N; Madayiputhiya, Nandakumar; Brisson, Jennifer A

    2016-09-01

    Phenotypic plasticity is a key life history strategy used by many plants and animals living in heterogeneous environments. A multitude of studies have investigated the costs and limits of plasticity, as well as the conditions under which it evolves. Much less well understood are the molecular genetic mechanisms that enable an organism to sense its environment and respond in a plastic manner. The pea aphid wing polyphenism is a compelling laboratory model to study these mechanisms. In this polyphenism, environmental stressors like high density cause asexual, viviparous adult female aphids to change the development of their embryos from wingless to winged morphs. The life history trade-offs between the two morphs have been intensively studied, but the molecular mechanisms underlying this process remain largely unknown. We therefore performed a genomewide study of the maternal transcriptome at two time points with and without a crowding stress to discover the maternal molecular changes that lead to the development of winged vs. wingless offspring. We observed significant transcriptional changes in genes associated with odorant binding, neurotransmitter transport, hormonal activity and chromatin remodelling in the maternal transcriptome. We also found that titres of serotonin, dopamine and octopamine were higher in solitary compared to crowded aphids. We use these results to posit a model for how maternal signals inform a developing embryo to be winged or wingless. Our findings add significant insights into the identity of the molecular mechanisms that underlie environmentally induced morph determination and suggest a possible role for biogenic amine regulation in polyphenisms generally. PMID:27393739

  2. Transcriptional response in apple to fire blight disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fire blight, caused by the bacterium Erwinia amylovora, is a destructive disease of apple, pear, and other plants in the subfamily Maloideae of the Rosaceae. The goal of this study was to use a global analysis of gene expression to characterize the temporal response of apple to infection by E. amyl...

  3. Rapid transcriptional response of Malus to Erwinia amylovora infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Suppression subtractive cDNA hybridization (SSH) was used to identify genes that are differentially up- and down-regulated in apple (Malus X domestica) in response to challenge with Erwinia amylovora (Ea). cDNA libraries were constructed from Ea- and mock-challenged 'Gale Gala' apple leaf tissue at...

  4. Steering tumor progression through the transcriptional response to growth factors and stroma.

    PubMed

    Feldman, Morris E; Yarden, Yosef

    2014-08-01

    Tumor progression can be understood as a collaborative effort of mutations and growth factors, which propels cell proliferation and matrix invasion, and also enables evasion of drug-induced apoptosis. Concentrating on EGFR, we discuss downstream signaling and the initiation of transcriptional events in response to growth factors. Specifically, we portray a wave-like program, which initiates by rapid disappearance of two-dozen microRNAs, followed by an abrupt rise of immediate early genes (IEGs), relatively short transcripts encoding transcriptional regulators. Concurrent with the fall of IEGs, some 30-60 min after stimulation, a larger group, the delayed early genes, is up-regulated and its own fall overlaps the rise of the final wave of late response genes. This late wave persists and determines long-term phenotype acquisition, such as invasiveness. Key regulatory steps in the orderly response to growth factors provide a trove of potential oncogenes and tumor suppressors. PMID:24873881

  5. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores

    PubMed Central

    Appel, Heidi M.; Fescemyer, Howard; Ehlting, Juergen; Weston, David; Rehrig, Erin; Joshi, Trupti; Xu, Dong; Bohlmann, Joerg; Schultz, Jack

    2014-01-01

    We tested the hypothesis that Arabidopsis can recognize and respond differentially to insect species at the transcriptional level using a genome wide microarray. Transcriptional reprogramming was characterized using co-expression analysis in damaged and undamaged leaves at two times in response to mechanical wounding and four insect species. In all, 2778 (10.6%) of annotated genes on the array were differentially expressed in at least one treatment. Responses differed mainly between aphid and caterpillar and sampling times. Responses to aphids and caterpillars shared only 10% of up-regulated and 8% of down-regulated genes. Responses to two caterpillars shared 21 and 12% of up- and down-regulated genes, whereas responses to the two aphids shared only 7 and 4% of up-regulated and down-regulated genes. Overlap in genes expressed between 6 and 24 h was 3–15%, and depended on the insect species. Responses in attacked and unattacked leaves differed at 6 h but converged by 24 h. Genes responding to the insects are also responsive to many stressors and included primary metabolism. Aphids down-regulated amino acid catabolism; caterpillars stimulated production of amino acids involved in glucosinolate synthesis. Co-expression analysis revealed 17 response networks. Transcription factors were a major portion of differentially expressed genes throughout and responsive genes shared most of the known or postulated binding sites. However, cis-element composition of genes down regulated by the aphid M. persicae was unique, as were those of genes down-regulated by caterpillars. As many as 20 cis-elements were over-represented in one or more treatments, including some from well-characterized classes and others as yet uncharacterized. We suggest that transcriptional changes elicited by wounding and insects are heavily influenced by transcription factors and involve both enrichment of a common set of cis-elements and a unique enrichment of a few cis-elements in responding genes

  6. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores

    SciTech Connect

    Appel, Heidi M.; Fescemyer, Howard; Ehlting, Juergen; Weston, David; Rehrig, Erin; Joshi, Trupti; Xu, Dong; Bohlmann, Joerg; Schultz, Jack

    2014-11-14

    We tested the hypothesis that Arabidopsis can recognize and respond differentially to insect species at the transcriptional level using a genome wide microarray. Transcriptional reprogramming was characterized using co-expression analysis in damaged and undamaged leaves at two times in response to mechanical wounding and four insect species. In all, 2778 (10.6%) of annotated genes on the array were differentially expressed in at least one treatment. Responses differed mainly between aphid and caterpillar and sampling times. Responses to aphids and caterpillars shared only 10% of up-regulated and 8% of down-regulated genes. Responses to two caterpillars shared 21 and 12% of up- and down-regulated genes, whereas responses to the two aphids shared only 7 and 4% of up-regulated and down-regulated genes. Overlap in genes expressed between 6 and 24 h was 3–15%, and depended on the insect species. Responses in attacked and unattacked leaves differed at 6 h but converged by 24 h. Genes responding to the insects are also responsive to many stressors and included primary metabolism. Aphids down-regulated amino acid catabolism; caterpillars stimulated production of amino acids involved in glucosinolate synthesis. Co-expression analysis revealed 17 response networks. Transcription factors were a major portion of differentially expressed genes throughout and responsive genes shared most of the known or postulated binding sites. However, cis-element composition of genes down regulated by the aphid M. persicae was unique, as were those of genes down-regulated by caterpillars. As many as 20 cis-elements were over-represented in one or more treatments, including some from well-characterized classes and others as yet uncharacterized. We suggest that transcriptional changes elicited by wounding and insects are heavily influenced by transcription factors and involve both enrichment of a common set of cis-elements and a unique enrichment of a few cis-elements in responding genes.

  7. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores

    DOE PAGESBeta

    Appel, Heidi M.; Fescemyer, Howard; Ehlting, Juergen; Weston, David; Rehrig, Erin; Joshi, Trupti; Xu, Dong; Bohlmann, Joerg; Schultz, Jack

    2014-11-14

    We tested the hypothesis that Arabidopsis can recognize and respond differentially to insect species at the transcriptional level using a genome wide microarray. Transcriptional reprogramming was characterized using co-expression analysis in damaged and undamaged leaves at two times in response to mechanical wounding and four insect species. In all, 2778 (10.6%) of annotated genes on the array were differentially expressed in at least one treatment. Responses differed mainly between aphid and caterpillar and sampling times. Responses to aphids and caterpillars shared only 10% of up-regulated and 8% of down-regulated genes. Responses to two caterpillars shared 21 and 12% of up-more » and down-regulated genes, whereas responses to the two aphids shared only 7 and 4% of up-regulated and down-regulated genes. Overlap in genes expressed between 6 and 24 h was 3–15%, and depended on the insect species. Responses in attacked and unattacked leaves differed at 6 h but converged by 24 h. Genes responding to the insects are also responsive to many stressors and included primary metabolism. Aphids down-regulated amino acid catabolism; caterpillars stimulated production of amino acids involved in glucosinolate synthesis. Co-expression analysis revealed 17 response networks. Transcription factors were a major portion of differentially expressed genes throughout and responsive genes shared most of the known or postulated binding sites. However, cis-element composition of genes down regulated by the aphid M. persicae was unique, as were those of genes down-regulated by caterpillars. As many as 20 cis-elements were over-represented in one or more treatments, including some from well-characterized classes and others as yet uncharacterized. We suggest that transcriptional changes elicited by wounding and insects are heavily influenced by transcription factors and involve both enrichment of a common set of cis-elements and a unique enrichment of a few cis-elements in responding

  8. Transcriptional Regulation of the Beta-Synuclein 5′-Promoter Metal Response Element by Metal Transcription Factor-1

    PubMed Central

    McHugh, Patrick C.; Wright, Josephine A.; Brown, David R.

    2011-01-01

    The progression of many human neurodegenerative disorders is associated with an accumulation of alpha-synuclein. Alpha-synuclein belongs to the homologous synuclein family, which includes beta-synuclein. It has been proposed that beta-synuclein may be a natural regulator of alpha-synuclein. Therefore controlling beta-synuclein expression may control the accumulation of alpha-synuclein and ultimately prevent disease progression. The regulation of synucleins is poorly understood. We investigated the transcriptional regulation of beta-synuclein, with the aim of identifying molecules that differentially control beta-synuclein expression levels. To investigate transcriptional regulation of beta-synuclein, we used reporter gene assays and bioinformatics. We identified a region −1.1/−0.6 kb upstream of the beta-synuclein translational start site to be a key regulatory region of beta-synuclein 5′-promoter activity in human dopaminergic cells (SH-SY5Y). Within this key promoter region we identified a metal response element pertaining to a putative Metal Transcription Factor-1 (MTF-1) binding site. We demonstrated that MTF-1 binds to this 5′-promoter region using EMSA analysis. Moreover, we showed that MTF-1 differentially regulates beta-synuclein promoter binding site, as well as beta-synuclein mRNA and protein expression. This effect of MTF-1 on expression was found to be specific to beta-synuclein when compared to alpha-synuclein. Understanding the regulation of synucleins and how they interact may point to molecular targets that could be manipulated for therapeutic benefit. In this study we showed that MTF-1 differentially controls the expression of beta-synuclein when compared to its homolog alpha-synuclein. This could potentially provide a novel targets or pathways for therapeutic intervention and/or treatment of synucleinopathies. PMID:21386983

  9. Transcriptional 'memory' of a stress: transient chromatin and memory (epigenetic) marks at stress-response genes.

    PubMed

    Avramova, Zoya

    2015-07-01

    Drought, salinity, extreme temperature variations, pathogen and herbivory attacks are recurring environmental stresses experienced by plants throughout their life. To survive repeated stresses, plants provide responses that may be different from their response during the first encounter with the stress. A different response to a similar stress represents the concept of 'stress memory'. A coordinated reaction at the organismal, cellular and gene/genome levels is thought to increase survival chances by improving the plant's tolerance/avoidance abilities. Ultimately, stress memory may provide a mechanism for acclimation and adaptation. At the molecular level, the concept of stress memory indicates that the mechanisms responsible for memory-type transcription during repeated stresses are not based on repetitive activation of the same response pathways activated by the first stress. Some recent advances in the search for transcription 'memory factors' are discussed with an emphasis on super-induced dehydration stress memory response genes in Arabidopsis. PMID:25788029

  10. MOF maintains transcriptional programs regulating cellular stress response

    PubMed Central

    Sheikh, B N; Bechtel-Walz, W; Lucci, J; Karpiuk, O; Hild, I; Hartleben, B; Vornweg, J; Helmstädter, M; Sahyoun, A H; Bhardwaj, V; Stehle, T; Diehl, S; Kretz, O; Voss, A K; Thomas, T; Manke, T; Huber, T B; Akhtar, A

    2016-01-01

    MOF (MYST1, KAT8) is the major H4K16 lysine acetyltransferase (KAT) in Drosophila and mammals and is essential for embryonic development. However, little is known regarding the role of MOF in specific cell lineages. Here we analyze the differential role of MOF in proliferating and terminally differentiated tissues at steady state and under stress conditions. In proliferating cells, MOF directly binds and maintains the expression of genes required for cell cycle progression. In contrast, MOF is dispensable for terminally differentiated, postmitotic glomerular podocytes under physiological conditions. However, in response to injury, MOF is absolutely critical for podocyte maintenance in vivo. Consistently, we detect defective nuclear, endoplasmic reticulum and Golgi structures, as well as presence of multivesicular bodies in vivo in podocytes lacking Mof following injury. Undertaking genome-wide expression analysis of podocytes, we uncover several MOF-regulated pathways required for stress response. We find that MOF, along with the members of the non-specific lethal but not the male-specific lethal complex, directly binds to genes encoding the lysosome, endocytosis and vacuole pathways, which are known regulators of podocyte maintenance. Thus, our work identifies MOF as a key regulator of cellular stress response in glomerular podocytes. PMID:26387537

  11. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo.

    PubMed

    Deignan, Lisa; Pinheiro, Marco T; Sutcliffe, Catherine; Saunders, Abbie; Wilcockson, Scott G; Zeef, Leo A H; Donaldson, Ian J; Ashe, Hilary L

    2016-07-01

    The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates. PMID:27379389

  12. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo

    PubMed Central

    Saunders, Abbie; Wilcockson, Scott G.; Zeef, Leo A. H.; Donaldson, Ian J.; Ashe, Hilary L.

    2016-01-01

    The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates. PMID:27379389

  13. PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges

    PubMed Central

    Liu, Libin; Pilch, Paul F

    2016-01-01

    Ribosomal RNA transcription mediated by RNA polymerase I represents the rate-limiting step in ribosome biogenesis. In eukaryotic cells, nutrients and growth factors regulate ribosomal RNA transcription through various key factors coupled to cell growth. We show here in mature adipocytes, ribosomal transcription can be acutely regulated in response to metabolic challenges. This acute response is mediated by PTRF (polymerase I transcription and release factor, also known as cavin-1), which has previously been shown to play a critical role in caveolae formation. The caveolae–independent rDNA transcriptional role of PTRF not only explains the lipodystrophy phenotype observed in PTRF deficient mice and humans, but also highlights its crucial physiological role in maintaining adipocyte allostasis. Multiple post-translational modifications of PTRF provide mechanistic bases for its regulation. The role of PTRF in ribosomal transcriptional efficiency is likely relevant to many additional physiological situations of cell growth and organismal metabolism. DOI: http://dx.doi.org/10.7554/eLife.17508.001 PMID:27528195

  14. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome

    PubMed Central

    Aprile, Alessio; Mastrangelo, Anna M; De Leonardis, Anna M; Galiba, Gabor; Roncaglia, Enrica; Ferrari, Francesco; De Bellis, Luigi; Turchi, Luana; Giuliano, Giovanni; Cattivelli, Luigi

    2009-01-01

    Background Water stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS), a Chinese Spring terminal deletion line (CS_5AL-10) and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions. Results The transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed) in Creso (which lacks the D genome) or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region). Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10. Conclusion Bread and durum wheat genotypes were characterized by a different physiological reaction to water stress and by a

  15. Transcriptional Response of Musca domestica Larvae to Bacterial Infection

    PubMed Central

    Tang, Ting; Li, Xiang; Yang, Xue; Yu, Xue; Wang, Jianhui; Liu, Fengsong; Huang, Dawei

    2014-01-01

    The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs), various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin), which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system. PMID:25137050

  16. Transcriptional response of Musca domestica larvae to bacterial infection.

    PubMed

    Tang, Ting; Li, Xiang; Yang, Xue; Yu, Xue; Wang, Jianhui; Liu, Fengsong; Huang, Dawei

    2014-01-01

    The house fly Musca domestica, a cosmopolitan dipteran insect, is a significant vector for human and animal bacterial pathogens, but little is known about its immune response to these pathogens. To address this issue, we inoculated the larvae with a mixture of Escherichia coli and Staphylococcus aureus and profiled the transcriptome 6, 24, and 48 h thereafter. Many genes known to controlling innate immunity in insects were induced following infection, including genes encoding pattern recognition proteins (PGRPs), various components of the Toll and IMD signaling pathways and of the proPO-activating and redox systems, and multiple antimicrobial peptides. Interestingly, we also uncovered a large set of novel immune response genes including two broad-spectrum antimicrobial peptides (muscin and domesticin), which might have evolved to adapt to house-fly's unique ecological environments. Finally, genes mediating oxidative phosphorylation were repressed at 48 h post-infection, suggesting disruption of energy homeostasis and mitochondrial function at the late stages of infection. Collectively, our data reveal dynamic changes in gene expression following bacterial infection in the house fly, paving the way for future in-depth analysis of M. domestica's immune system. PMID:25137050

  17. DIFFERENCES IN THE TRANSCRIPTIONAL RESPONSE TO FULVESTRANT AND OESTROGEN DEPRIVATION IN ER-POSITIVE BREAST CANCER

    PubMed Central

    Patani, Neill; Dunbier, Anita; Anderson, Helen; Ghazoui, Zara; Ribas, Ricardo; Anderson, Elizabeth; Gao, Qiong; A’hern, Roger; Mackay, Alan; Lindemann, Justin; Wellings, Robert; Walker, Jill; Kuter, Irene; Martin, Lesley-Ann; Dowsett, Mitch

    2014-01-01

    Purpose Endocrine therapies include aromatase inhibitors and the selective oestrogen receptor (ER) down-regulator fulvestrant. This study aimed to determine if the reported efficacy of fulvestrant over anastrozole, and high- over low-dose fulvestrant, reflect distinct transcriptional responses. Experimental design Global gene expression profiles from ERα-positive breast carcinomas before and during pre-surgical treatment with fulvestrant (n=22) or anastrozole (n=81), and corresponding in vitro models, were compared. Transcripts responding differently to fulvestrant and oestrogen (E) deprivation were identified and integrated using gene ontology (GO), pathway and network analyses to evaluate their potential significance. Results The overall transcriptional response to fulvestrant and E-deprivation was correlated (r=0.61 in pre-surgical studies, r=0.87 in vitro), involving down-regulation of E-regulated and proliferation-associated genes. The transcriptional response to fulvestrant was of greater magnitude than E-deprivation (slope=0.62 in pre-surgical studies, slope=0.63 in vitro). Comparative analyses identified 28 genes and 40 GO categories affected specifically by fulvestrant. Seventeen fulvestrant-specific genes, including CAV1/2, SNAI2 and NRP1, associated with ERα, androgen receptor (AR) and TP53, in a network regulating cell cycle, death, survival, and tumour morphology. Eighteen genes responding differently to fulvestrant specifically predicted anti-proliferative response to fulvestrant, but not anastrozole. Transcriptional effects of low-dose fulvestrant correlated with high-dose treatment, but were of lower magnitude (ratio=0.29). Conclusions The transcriptional response to fulvestrant has much in common with E-deprivation, but is stronger with distinctions potentially attributable to arrest of E-independent ERα activity and involvement of AR signalling. Genes responding differently to fulvestrant may have predictive utility. These data are consistent

  18. Characterization of the Pinus massoniana transcriptional response to Bursaphelenchus xylophilus infection using suppression subtractive hybridization.

    PubMed

    Xu, Liang; Liu, Zhen-Yu; Zhang, Kai; Lu, Quan; Liang, Jun; Zhang, Xing-Yao

    2013-01-01

    Pine wilt disease (PWD) caused by pine wood nematode (PWN), Bursaphelenchus xylophilus, is the most destructive diseases of pine and poses a threat of serious economic losses worldwide. Although several of the mechanisms involved in disease progression have been discovered, the molecular response of Pinus massoniana to PWN infection has not been explored. We constructed four subtractive suppression hybridization cDNA libraries by taking time-course samples from PWN-inoculated Masson pine trees. One-hundred forty-four significantly differentially expressed sequence tags (ESTs) were identified, and 124 high-quality sequences with transcriptional features were selected for gene ontology (GO) and individual gene analyses. There were marked differences in the types of transcripts, as well as in the timing and levels of transcript expression in the pine trees following PWN inoculation. Genes involved in signal transduction, transcription and translation and secondary metabolism were highly expressed after 24 h and 72 h, while stress response genes were highly expressed only after 72 h. Certain transcripts responding to PWN infection were discriminative; pathogenesis and cell wall-related genes were more abundant, while detoxification or redox process-related genes were less abundant. This study provides new insights into the molecular mechanisms that control the biochemical and physiological responses of pine trees to PWN infection, particularly during the initial stage of infection. PMID:23759987

  19. Characterization of the Pinus massoniana Transcriptional Response to Bursaphelenchus xylophilus Infection Using Suppression Subtractive Hybridization

    PubMed Central

    Xu, Liang; Liu, Zhen-Yu; Zhang, Kai; Lu, Quan; Liang, Jun; Zhang, Xing-Yao

    2013-01-01

    Pine wilt disease (PWD) caused by pine wood nematode (PWN), Bursaphelenchus xylophilus, is the most destructive diseases of pine and poses a threat of serious economic losses worldwide. Although several of the mechanisms involved in disease progression have been discovered, the molecular response of Pinus massoniana to PWN infection has not been explored. We constructed four subtractive suppression hybridization cDNA libraries by taking time-course samples from PWN-inoculated Masson pine trees. One-hundred forty-four significantly differentially expressed sequence tags (ESTs) were identified, and 124 high-quality sequences with transcriptional features were selected for gene ontology (GO) and individual gene analyses. There were marked differences in the types of transcripts, as well as in the timing and levels of transcript expression in the pine trees following PWN inoculation. Genes involved in signal transduction, transcription and translation and secondary metabolism were highly expressed after 24 h and 72 h, while stress response genes were highly expressed only after 72 h. Certain transcripts responding to PWN infection were discriminative; pathogenesis and cell wall-related genes were more abundant, while detoxification or redox process-related genes were less abundant. This study provides new insights into the molecular mechanisms that control the biochemical and physiological responses of pine trees to PWN infection, particularly during the initial stage of infection. PMID:23759987

  20. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention. PMID:26904076

  1. Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals.

    PubMed

    Latorre, Mauricio; Ehrenfeld, Nicole; Cortés, María Paz; Travisany, Dante; Budinich, Marko; Aravena, Andrés; González, Mauricio; Bobadilla-Fazzini, Roberto A; Parada, Pilar; Maass, Alejandro

    2016-01-01

    In order to provide new information about the adaptation of Acidithiobacillus ferrooxidans during the bioleaching process, the current analysis presents the first report of the global transcriptional response of the native copper mine strain Wenelen (DSM 16786) oxidized under different sulfide minerals. Microarrays were used to measure the response of At. ferrooxidans Wenelen to shifts from iron supplemented liquid cultures (reference state) to the addition of solid substrates enriched in pyrite or chalcopyrite. Genes encoding for energy metabolism showed a similar transcriptional profile for the two sulfide minerals. Interestingly, four operons related to sulfur metabolism were over-expressed during growth on a reduced sulfur source. Genes associated with metal tolerance (RND and ATPases type P) were up-regulated in the presence of pyrite or chalcopyrite. These results suggest that At. ferrooxidans Wenelen presents an efficient transcriptional system developed to respond to environmental conditions, namely the ability to withstand high copper concentrations. PMID:26476161

  2. Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines

    PubMed Central

    Banchereau, Romain; Baldwin, Nicole; Cepika, Alma-Martina; Athale, Shruti; Xue, Yaming; Yu, Chun I; Metang, Patrick; Cheruku, Abhilasha; Berthier, Isabelle; Gayet, Ingrid; Wang, Yuanyuan; Ohouo, Marina; Snipes, LuAnn; Xu, Hui; Obermoser, Gerlinde; Blankenship, Derek; Oh, Sangkon; Ramilo, Octavio; Chaussabel, Damien; Banchereau, Jacques; Palucka, Karolina; Pascual, Virginia

    2014-01-01

    The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines. PMID:25335753

  3. A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Bacteria

    PubMed Central

    Campbell, Elizabeth A.; Greenwell, Roger; Anthony, Jennifer R.; Wang, Sheng; Lim, Lionel; Das, Kalyan; Sofia, Heidi J.; Donohue, Timothy J.; Darst, Seth A.

    2008-01-01

    SUMMARY A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV σ factor σE and its cognate anti-σ ChrR. Crystal structures of the σE/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-σ domain (ASD) binds a Zn2+ ion, contacts σE, and is sufficient to inhibit σE-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn2+, and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV antiσs. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate σ factor. PMID:17803943

  4. MUTATIONAL AND TRANSCRIPTIONAL RESPONSES OF SAMMONELLA TO MX: CORRELATION OF MUTATIONAL DOSE RESPONSE TO CHANGES IN GENE EXPRESSION

    EPA Science Inventory

    We measured the mutational and transcriptional response of Salmonella TA 100 to 3 concentrations of a drinking water mutagen -chloro-4-(dichloromethyl)-5-hydroxy2(5H)-furanone (MX). The mutagenicity of MX in strain TA100 was evaluated in a 30min suspension assay, and the mutageni...

  5. MUTATIONAL AND TRANSCRIPTIONAL RESPONSE OF SALMONELLA TO MX: CORRELATION OF MUTATIONAL DOSE RESPONSE TO CHANGES IN GENE EXPRESSION

    EPA Science Inventory

    We measured the mutational and transcriptional response of Salmonella TA100 to 3 concentrations of the drinking water mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy2(5H)-furanone (MX). The mutagenicity of MX in strain TA100 was evaluated in a 30min suspension assay, and the mutage...

  6. Macrophage Transcriptional Response to Species-Adapted Mycobacterium avium subsp. Paratuberculosis Isolates: The Role of Pathogen Genotype in Host Response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transcriptional response of human and bovine macrophages to Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) isolates from cattle and sheep were examined using DNA microarrays. M. paratuberculosis is the etiologic agent of Johne’s Disease, a chronic infection of ruminant anima...

  7. Distinct transcriptional responses of RNA polymerases I, II and III to aptamers that bind TBP

    PubMed Central

    Fan, Xiaochun; Shi, Hua; Lis, John T.

    2005-01-01

    The TATA-binding protein (TBP) is a general factor that is involved in transcription by all three types of nuclear RNA polymerase. To delineate the roles played by the DNA-binding surface of TBP in these transcription reactions, we used a set of RNA aptamers directed against TBP and examined their ability to perturb transcription in vitro by the different RNA polymerases. Distinct responses to the TBP aptamers were observed for transcription by different types of polymerase at either the initiation, reinitiation or both stages of the transcription cycle. We further probed the TBP interactions in the TFIIIB•DNA complex to elucidate the mechanism for the different sensitivity of Pol III dependent transcription before and after preinitiation complex (PIC) formation. Lastly, the aptamers were employed to measure the time required for Pol III PIC formation in vitro. This approach can be generalized to define the involvement of a particular region on the surface of a protein at particular stages in a biological process. PMID:15701755

  8. The transcriptional response of microbial communities in thawing Alaskan permafrost soils.

    PubMed

    Coolen, Marco J L; Orsi, William D

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw. PMID:25852660

  9. Sex-related differences in murine hepatic transcriptional and proteomic responses to TCDD.

    PubMed

    Prokopec, Stephenie D; Watson, John D; Lee, Jamie; Pohjanvirta, Raimo; Boutros, Paul C

    2015-04-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that produces myriad toxicities in most mammals. In rodents alone, there is a huge divergence in the toxicological response across species, as well as among different strains within a species. But there are also significant differences between males and females animals of a single strain. These differences are inconsistent across model systems: the severity of toxicity is greater in female rats than males, while male mice and guinea pigs are more sensitive than females. Because the specific events that underlie this difference remain unclear, we characterized the hepatic transcriptional response of adult male and female C57BL/6 mice to 500μg/kg TCDD at multiple time-points. The transcriptional profile diverged significantly between the sexes. Female mice demonstrated a large number of altered transcripts as early as 6h following treatment, suggesting a large primary response. Conversely, male animals showed the greatest TCDD-mediated response 144h following exposure, potentially implicating significant secondary responses. Nr1i3 was statistically significantly induced at all time-points in the sensitive male animals. This mRNA encodes the constitutive androstane receptor (CAR), a transcription factor involved in the regulation of xenobiotic metabolism, lipid metabolism, cell cycle and apoptosis. Surprisingly though, changes at the protein level (aside from the positive control, CYP1A1) were modest, with only FMO3 showing clear induction, and no genes with sex-differences. Thus, while male and female mice show transcriptional differences in their response to TCDD, their association with TCDD-induced toxicities remains unclear. PMID:25703434

  10. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    PubMed Central

    Coolen, Marco J. L.; Orsi, William D.

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw. PMID:25852660

  11. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    PubMed

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses. PMID:22287635

  12. A consensus insulin response element is activated by an Ets-related transcription factor.

    PubMed

    Jacob, K K; Ouyang, L; Stanley, F M

    1995-11-17

    Insulin increases expression of somatostatin-chloramphenicol acetyltransferase (CAT) constructs 10-fold and thymidine kinase-CAT constructs 5-fold in GH4 cells. These responses are similar to our previously reported data on insulin-increased prolactin-CAT expression. They are also observed in HeLa cells and are thus not cell type specific. The evidence suggests that the insulin responsiveness of these genes is mediated by an Ets-related transcription factor. First, linker-scanning mutations and/or deletions of the prolactin, somatostatin, and thymidine kinase promoters suggest that their insulin responsiveness is mediated by the sequence CGGA. This sequence is identical with the response element of the Ets-related transcription factors. Second, CGGA-containing sequences placed at -88 in the delta MTV-CAT reporter plasmid conferred insulin responsiveness to the mammary tumor virus promoter. Third, expression of the DNA-binding domain of c-Ets-2, which acts by blocking effects mediated by Ets-related transcription factors, inhibits the response of these promoters to insulin. Finally, the Ets-related proteins Sap and Elk-1 bind to the prolactin, somatostatin, and thymidine kinase insulin-response elements. An Ets-like element was found in all insulin-sensitive promoters examined and may serve a similar function in those promoters. PMID:7499246

  13. GLOBAL TRANSCRIPTIONAL RESPONSE OF PORCINE MESENTERIC LYMPH NODES TO SALMONELLA ENTERICA SEROVAR TYPHIMURIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonellosis is prevalent worldwide and is both a food safety and animal production problem. To understand the host transcriptional response to Salmonella enterica serovar Typhimurium, the Affymetrix GeneChip® porcine genome array was used to identify differentially expressed (DE) genes in mesente...

  14. Transcriptional analysis of the innate immune response using the avian innate immunity microarray

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The avian innate immunity microarray (AIIM) is a genomics tool designed to study the transcriptional activity of the avian immune response (Cytogenet. Genome Res. 117:139-145, 2007). It is an avian cDNA microarray representing 4,959 avian genes spotted in triplicate. The AIIM contains 25 avian int...

  15. Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transcriptional responses of insects to long-term, ecologically relevant temperature stress are poorly understood. Long-term exposure to low temperatures, commonly referred to as chilling, can lead to physiological effects collectively known as chill injury. Periodically increasing temperatures ...

  16. Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated salinity imposes osmotic and ion toxicity stresses on living cells and requires a multitude of responses in order to enable plant survival. Building on earlier work profiling transcript levels in rice (Oryza sativa) shoots of FL478, a salt-tolerant indica recombinant inbred line, and IR29, ...

  17. ALTERED TRANSCRIPTIONAL RESPONSES OF MOUSE EMBRYO CULTURES EXPOSED TO BISINDOLYLMALEIMIDE (BIS L)

    EPA Science Inventory

    Altered transcriptional responses in mouse embryos exposed to bisindolylmaleimide I (Bis I) in whole embryo culture

    Edward D. Karoly?*, Judith E. Schmid*, Maria R. Blanton*and E. Sidney Hunter III*
    ?Curriculum in Toxicology, University of North Carolina at Chapel Hill, ...

  18. Transcription of interferon stimulated genes in response to Porcine rubulavirus infection in vitro

    PubMed Central

    Flores-Ocelotl, María del Rosario; Rosas-Murrieta, Nora Hilda; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Herrera-Camacho, Irma; Santos-López, Gerardo

    2011-01-01

    Porcine rubulavirus (PoRV) is an emerging virus causing meningo-encephalitis and reproductive failures in pigs. Little is known about the pathogenesis and immune evasion of this virus; therefore research on the mechanisms underlying tissue damage during infection is essential. To explore these mechanisms, the effect of PoRV on the transcription of interferon (IFN) pathway members was analyzed in vitro by semi-quantitative RT-PCR. Ten TCID50 of PoRV stimulated transcription of IFNα, IFNβ, STAT1, STAT2, p48 and OAS genes in neuroblastoma cells, whereas infection with 100 TCID50 did not stimulate transcription levels more than non-infected cells. When the cells were primed with IFNα, infection with 1 TCDI50 of PoRV sufficed to stimulate the transcription of the same genes, but 10 and 100 TCID50 did not modify the transcription level of those genes as compared with non-infected and primed controls. MxA gene transcription was observed only when the cells were primed with IFNα and stimulated with 10 TCID50, whereas 100 TCID50 of PoRV did not modify the MxA transcription level as compared to non-infected and primed cells. Our results show that PoRV replication at low titers stimulates the expression of IFN-responsive genes in neuroblastoma cells, and suggest that replication of PoRV at higher titers inhibits the transcription of several members of the IFN pathway. These findings may contribute to the understanding of the pathogenesis of PoRV. PMID:24031738

  19. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism1[OPEN

    PubMed Central

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1. PMID:26149570

  20. Coordinate Transcriptional and Translational Repression of p53 by TGFβ1 Impairs the Stress Response

    PubMed Central

    López-Díaz, Fernando J.; Gascard, Philippe; Balakrishnan, Sri Kripa; Zhao, Jianxin; del Rincon, Sonia V.; Spruck, Charles; Tlsty, Thea D.; Emerson, Beverly M.

    2013-01-01

    Summary Cellular stress results in profound changes in RNA and protein synthesis. How cells integrate this intrinsic, p53-centered program with extracellular signals is largely unknown. We demonstrate that TGFβ1 signaling interferes with the stress response through coordinate transcriptional and translational repression of p53 levels, which reduces p53-activated transcription, and apoptosis in precancerous cells. Mechanistically, E2F4 binds constitutively to the TP53 gene and induces transcription. TGFβ1-activated Smads are recruited to a composite Smad/E2F4 element by an E2F4/p107 complex that switches to a Smad co-repressor, which represses TP53 transcription. TGFβ1 also causes dissociation of ribosomal protein RPL26 and elongation factor eEF1A from p53 mRNA, thereby reducing p53 mRNA association with polyribosomes and p53 translation. TGFβ1-signalling is dominant over stress-induced transcription and translation of p53 and prevents stress-imposed downregulation of Smad proteins. Thus, crosstalk between the TGFβ and p53 pathways defines a major node of regulation in the cellular stress response, enhancing drug resistance. PMID:23706820

  1. The elongation factor Spt5 facilitates transcription initiation for rapid induction of inflammatory-response genes

    PubMed Central

    Diamant, Gil; Bahat, Anat; Dikstein, Rivka

    2016-01-01

    A subset of inflammatory-response NF-κB target genes is activated immediately following pro-inflammatory signal. Here we followed the kinetics of primary transcript accumulation after NF-κB activation when the elongation factor Spt5 is knocked down. While elongation rate is unchanged, the transcript synthesis at the 5′-end and at the earliest time points is delayed and reduced, suggesting an unexpected role in early transcription. Investigating the underlying mechanism reveals that the induced TFIID–promoter association is practically abolished by Spt5 depletion. This effect is associated with a decrease in promoter-proximal H3K4me3 and H4K5Ac histone modifications that are differentially required for rapid transcriptional induction. In contrast, the displacement of TFIIE and Mediator, which occurs during promoter escape, is attenuated in the absence of Spt5. Our findings are consistent with a central role of Spt5 in maintenance of TFIID–promoter association and promoter escape to support rapid transcriptional induction and re-initiation of inflammatory-response genes. PMID:27180651

  2. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism.

    PubMed

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-09-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1. PMID:26149570

  3. AtERF71/HRE2 transcription factor mediates osmotic stress response as well as hypoxia response in Arabidopsis.

    PubMed

    Park, Hee-Yeon; Seok, Hye-Yeon; Woo, Dong-Hyuk; Lee, Sun-Young; Tarte, Vaishali N; Lee, Eun-Hye; Lee, Choon-Hwan; Moon, Yong-Hwan

    2011-10-14

    Various transcription factors are involved in the response to environmental stresses in plants. In this study, we characterized AtERF71/HRE2, a member of the Arabidopsis AP2/ERF family, as an important regulator of the osmotic and hypoxic stress responses in plants. Transcript level of AtERF71/HRE2 was highly increased by anoxia, NaCl, mannitol, ABA, and MV treatments. aterf71/hre2 loss-of-function mutants displayed higher sensitivity to osmotic stress such as high salt and mannitol, accumulating higher levels of ROS under high salt treatment. In contrast, AtERF71/HRE2-overexpressing transgenic plants showed tolerance to salt and mannitol as well as flooding and MV stresses, exhibiting lower levels of ROS under high salt treatment. AtERF71/HRE2 protein was localized in the nucleus, and the C-terminal region of AtERF71/HRE2 was required for transcription activation activity. Taken together, our results suggest that AtERF71/HRE2 might function as a transcription factor involved in the response to osmotic stress as well as hypoxia. PMID:21946064

  4. Endoplasmic Reticulum Stress-responsive Transcription Factor ATF6α Directs Recruitment of the Mediator of RNA Polymerase II Transcription and Multiple Histone Acetyltransferase Complexes*♦

    PubMed Central

    Sela, Dotan; Chen, Lu; Martin-Brown, Skylar; Washburn, Michael P.; Florens, Laurence; Conaway, Joan Weliky; Conaway, Ronald C.

    2012-01-01

    The basic leucine zipper transcription factor ATF6α functions as a master regulator of endoplasmic reticulum (ER) stress response genes. Previous studies have established that, in response to ER stress, ATF6α translocates to the nucleus and activates transcription of ER stress response genes upon binding sequence specifically to ER stress response enhancer elements in their promoters. In this study, we investigate the biochemical mechanism by which ATF6α activates transcription. By exploiting a combination of biochemical and multidimensional protein identification technology-based mass spectrometry approaches, we have obtained evidence that ATF6α functions at least in part by recruiting to the ER stress response enhancer elements of ER stress response genes a collection of RNA polymerase II coregulatory complexes, including the Mediator and multiple histone acetyltransferase complexes, among which are the Spt-Ada-Gcn5 acetyltransferase (SAGA) and Ada-Two-A-containing (ATAC) complexes. Our findings shed new light on the mechanism of action of ATF6α, and they outline a straightforward strategy for applying multidimensional protein identification technology mass spectrometry to determine which RNA polymerase II transcription factors and coregulators are recruited to promoters and other regulatory elements to control transcription. PMID:22577136

  5. Differential Transcriptional Responses to Interferon-α and Interferon-γ in Primary Human Hepatocytes

    PubMed Central

    Nanda, Santosh; Ji, Xuhuai; Calderon-Rodriguez, Gloria M.; Greenberg, Harry B.; Liang, T. Jake

    2010-01-01

    Interferon (IFN) plays a central role in the innate and adaptive antiviral immune responses. While IFN-α is currently approved for treating chronic hepatitis B and hepatitis C, in limited studies, IFN-γ has not been shown to be effective for chronic hepatitis B or C. To identify the potential mechanism underlying the differential antiviral effects of IFN-α and IFN-γ, we used cDNA microarray to profile the global transcriptional response to IFN-α and IFN-γ in primary human hepatocytes, the target cell population of hepatitis viruses. Our results reveal distinct patterns of gene expression induced by these 2 cytokines. Overall, IFN-α induces more genes than IFN-γ at the transcriptional level. Distinct sets of genes were induced by IFN-α and IFN-γ with limited overlaps. IFN-α induces gene transcription at an early time point (6 h) but not at a later time point (18 h), while the effects of IFN-γ are more prominent at 18 h than at 6 h, suggesting a delayed transcriptional response to IFN-γ in the hepatocytes. These findings indicate differential actions of IFN-α and IFN-γ in the context of therapeutic intervention for chronic viral infections in the liver. PMID:20038212

  6. Transcriptional response to fluconazole and amphotericin B in Candida albicans biofilms.

    PubMed

    Nailis, Heleen; Vandenbosch, Davy; Deforce, Dieter; Nelis, Hans J; Coenye, Tom

    2010-05-01

    Biofilm formation is often associated with persistent Candida albicans infections. Treatment of these infections is difficult, since sessile C. albicans cells show increased resistance towards antifungal agents. The molecular mechanisms behind biofilm resistance in C. albicans are not yet understood. In the present study, we investigated the transcriptional response in young and mature in vitro-grown biofilms after a short and longer exposure time to high doses of fluconazole or amphotericin B. Treatment of biofilms with high doses of antifungal agents resulted in a drug-specific transcriptional response. Exposure of biofilms to fluconazole induced upregulation of genes encoding enzymes involved in ergosterol biosynthesis (ERG1, ERG3, ERG11 and ERG25). Treatment of biofilms with amphotericin B resulted in an overexpression of KRE1 and SKN1, two genes encoding proteins involved in beta-1,6-glucan biosynthesis. Our data indicate that sessile C. albicans cells show controlled regulation of gene expression, as they quickly mount a drug-specific transcriptional response in the presence of high doses of antifungal agents. These transcriptional changes suggest upregulation of ergosterol biosynthesis (fluconazole) and upregulation of beta-1,6-glucan biosynthesis (amphotericin B) in sessile C. albicans cells that might contribute to a resistant biofilm phenotype. PMID:20170727

  7. Chk2 regulates transcription-independent p53-mediated apoptosis in response to DNA damage

    SciTech Connect

    Chen Chen; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Motoyama, Noboru . E-mail: motoyama@nils.go.jp

    2005-07-29

    The tumor suppressor protein p53 plays a central role in the induction of apoptosis in response to genotoxic stress. The protein kinase Chk2 is an important regulator of p53 function in mammalian cells exposed to ionizing radiation (IR). Cells derived from Chk2-deficient mice are resistant to the induction of apoptosis by IR, and this resistance has been thought to be a result of the defective transcriptional activation of p53 target genes. It was recently shown, however, that p53 itself and histone H1.2 translocate to mitochondria and thereby induces apoptosis in a transcription-independent manner in response to IR. We have now examined whether Chk2 also regulates the transcription-independent induction of apoptosis by p53 and histone H1.2. The reduced ability of IR to induce p53 stabilization in Chk2-deficient thymocytes was associated with a marked impairment of p53 and histone H1 translocation to mitochondria. These results suggest that Chk2 regulates the transcription-independent mechanism of p53-mediated apoptosis by inducing stabilization of p53 in response to IR.

  8. Innate immune responses: Crosstalk of signaling and regulation of gene transcription

    SciTech Connect

    Zhong Bo; Tien Po; Shu Hongbing . E-mail: shuh@whu.edu.cn

    2006-08-15

    Innate immune responses to pathogens such as bacteria and viruses are triggered by recognition of specific structures of invading pathogens called pathogen-associated molecular patterns (PAMPs) by cellular pattern recognition receptors (PRRs) that are located at plasma membrane or inside cells. Stimulation of different PAMPs activates Toll-like receptor (TLR)-dependent and -independent signaling pathways that lead to activation of transcription factors nuclear factor-{kappa}B (NF-{kappa}B), interferon regulatory factor 3/7 (IRF3/7) and/or activator protein-1 (AP-1), which collaborate to induce transcription of a large number of downstream genes. This review focuses on the rapid progress that has recently improved our understanding of the crosstalk among the pathways and the precise regulation of transcription of the downstream genes.

  9. Saccharomyces cerevisiae Transcription Elongation Mutants Are Defective in PUR5 Induction in Response to Nucleotide Depletion

    PubMed Central

    Shaw, Randal J.; Reines, Daniel

    2000-01-01

    IMP dehydrogenase (IMPDH) is the rate-limiting enzyme in the de novo synthesis of guanine nucleotides. It is a target of therapeutically useful drugs and is implicated in the regulation of cell growth rate. In the yeast Saccharomyces cerevisiae, mutations in components of the RNA polymerase II (Pol II) transcription elongation machinery confer increased sensitivity to a drug that inhibits IMPDH, 6-azauracil (6AU), by a mechanism that is poorly understood. This phenotype is thought to reflect the need for an optimally functioning transcription machinery under conditions of lowered intracellular GTP levels. Here we show that in response to the application of IMPDH inhibitors such as 6AU, wild-type yeast strains induce transcription of PUR5, one of four genes encoding IMPDH-related enzymes. Yeast elongation mutants sensitive to 6AU, such as those with a disrupted gene encoding elongation factor SII or those containing amino acid substitutions in Pol II subunits, are defective in PUR5 induction. The inability to fully induce PUR5 correlates with mutations that effect transcription elongation since 6AU-sensitive strains deleted for genes not related to transcription elongation are competent to induce PUR5. DNA encompassing the PUR5 promoter and 5′ untranslated region supports 6AU induction of a luciferase reporter gene in wild-type cells. Thus, yeast sense and respond to nucleotide depletion via a mechanism of transcriptional induction that restores nucleotides to levels required for normal growth. An optimally functioning elongation machinery is critical for this response. PMID:11003640

  10. The Unfolded Protein Response in the Protozoan Parasite Toxoplasma gondii Features Translational and Transcriptional Control

    PubMed Central

    Joyce, Bradley R.; Tampaki, Zoi; Kim, Kami

    2013-01-01

    The unfolded protein response (UPR) is an important regulatory network that responds to perturbations in protein homeostasis in the endoplasmic reticulum (ER). In mammalian cells, the UPR features translational and transcriptional mechanisms of gene expression aimed at restoring proteostatic control. A central feature of the UPR is phosphorylation of the α subunit of eukaryotic initiation factor-2 (eIF2) by PERK (EIF2AK3/PEK), which reduces the influx of nascent proteins into the ER by lowering global protein synthesis, coincident with preferential translation of key transcription activators of genes that function to expand the processing capacity of this secretory organelle. Upon ER stress, the apicomplexan parasite Toxoplasma gondii is known to induce phosphorylation of Toxoplasma eIF2α and lower translation initiation. To characterize the nature of the ensuing UPR in this parasite, we carried out microarray analyses to measure the changes in the transcriptome and in translational control during ER stress. We determined that a collection of transcripts linked with the secretory process are induced in response to ER stress, supporting the idea that a transcriptional induction phase of the UPR occurs in Toxoplasma. Furthermore, we determined that about 500 gene transcripts showed enhanced association with translating ribosomes during ER stress. Many of these target genes are suggested to be involved in gene expression, including JmjC5, which continues to be actively translated during ER stress. This study indicates that Toxoplasma triggers a UPR during ER stress that features both translational and transcriptional regulatory mechanisms, which is likely to be important for parasite invasion and development. PMID:23666622

  11. A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata

    PubMed Central

    Merhej, Jawad; Thiebaut, Antonin; Blugeon, Corinne; Pouch, Juliette; Ali Chaouche, Mohammed El Amine; Camadro, Jean-Michel; Le Crom, Stéphane; Lelandais, Gaëlle; Devaux, Frédéric

    2016-01-01

    The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq), transcriptome analyses, and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1) transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata, and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption, and iron metabolism. PMID:27242683

  12. A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata.

    PubMed

    Merhej, Jawad; Thiebaut, Antonin; Blugeon, Corinne; Pouch, Juliette; Ali Chaouche, Mohammed El Amine; Camadro, Jean-Michel; Le Crom, Stéphane; Lelandais, Gaëlle; Devaux, Frédéric

    2016-01-01

    The yeast Candida glabrata has become the second cause of systemic candidemia in humans. However, relatively few genome-wide studies have been conducted in this organism and our knowledge of its transcriptional regulatory network is quite limited. In the present work, we combined genome-wide chromatin immunoprecipitation (ChIP-seq), transcriptome analyses, and DNA binding motif predictions to describe the regulatory interactions of the seven Yap (Yeast AP1) transcription factors of C. glabrata. We described a transcriptional network containing 255 regulatory interactions and 309 potential target genes. We predicted with high confidence the preferred DNA binding sites for 5 of the 7 CgYaps and showed a strong conservation of the Yap DNA binding properties between S. cerevisiae and C. glabrata. We provided reliable functional annotation for 3 of the 7 Yaps and identified for Yap1 and Yap5 a core regulon which is conserved in S. cerevisiae, C. glabrata, and C. albicans. We uncovered new roles for CgYap7 in the regulation of iron-sulfur cluster biogenesis, for CgYap1 in the regulation of heme biosynthesis and for CgYap5 in the repression of GRX4 in response to iron starvation. These transcription factors define an interconnected transcriptional network at the cross-roads between redox homeostasis, oxygen consumption, and iron metabolism. PMID:27242683

  13. Transcriptional Responses in the Hemiparasitic Plant Triphysaria versicolor to Host Plant Signals1[w

    PubMed Central

    Matvienko, Marta; Torres, Manuel J.; Yoder, John I.

    2001-01-01

    Parasitic plants in the Scrophulariaceae use chemicals released by host plant roots to signal developmental processes critical for heterotrophy. Haustoria, parasitic plant structures that attach to and invade host roots, develop on roots of the hemiparasitic plant Triphysaria versicolor within a few hours of exposure to either maize (Zea mays) root exudate or purified haustoria-inducing factors. We prepared a normalized, subtractive cDNA library enriched for transcripts differentially abundant in T. versicolor root tips treated with the allelopathic quinone 2,6-dimethoxybenzoquinone (DMBQ). Northern analyses estimated that about 10% of the cDNAs represent transcripts strongly up-regulated in roots exposed to DMBQ. Northern and reverse northern analyses demonstrated that most DMBQ-responsive messages were similarly up-regulated in T. versicolor roots exposed to maize root exudates. From the cDNA sequences we assembled a unigene set of 137 distinct transcripts and assigned functions by homology comparisons. Many of the proteins encoded by the transcripts are predicted to function in quinone detoxification, whereas others are more likely associated with haustorium development. The identification of genes transcriptionally regulated by haustorium-inducing factors provides a framework for dissecting genetic pathways recruited by parasitic plants during the transition to heterotrophic growth. PMID:11553755

  14. The Sch9 kinase is a chromatin-associated transcriptional activator of osmostress-responsive genes

    PubMed Central

    Pascual-Ahuir, Amparo; Proft, Markus

    2007-01-01

    The yeast Sch9 kinase has been implicated in the cellular adjustment to nutrient availability and in the regulation of aging. Here, we define a novel role for Sch9 in the transcriptional activation of osmostress inducible genes. Loss-of-function mutants sch9 are sensitive to hyperosmotic stress and show an impaired transcriptional response upon osmotic shock of several defense genes. We show that Sch9 is required for gene expression regulated by Sko1, a transcription factor, which is directly targeted by the Hog1 MAP kinase. Sch9 interacts in vitro with both Sko1 and Hog1. Additionally, Sch9 phosphorylates Sko1 in vitro. When artificially tethered to promoter DNA, Sch9 strongly activates transcription independently of osmotic stress. Using in vivo chromatin immunoprecipitation, we demonstrate that Sch9 is recruited to the GRE2 and CTT1 genes exclusively under osmostress conditions, and that this recruitment is dependent on Hog1 and Sko1. Furthermore, Sch9 is required for the proper recruitment of Hog1 at the same genes. Our data reveal the complexity of stress-induced transcription by the regulated association of signaling kinases to chromatin. PMID:17568771

  15. Spatiotemporal control of estrogen-responsive transcription in ERα-positive breast cancer cells

    PubMed Central

    Hsu, P-Y; Hsu, H-K; Hsiao, T-H; Ye, Z; Wang, E; Profit, A L; Jatoi, I; Chen, Y; Kirma, N B; Jin, V X; Sharp, Z D; Huang, T H-M

    2016-01-01

    Recruitment of transcription machinery to target promoters for aberrant gene expression has been well studied, but underlying control directed by distant-acting enhancers remains unclear in cancer development. Our previous study demonstrated that distant estrogen response elements (DEREs) located on chromosome 20q13 are frequently amplified and translocated to other chromosomes in ERα-positive breast cancer cells. In this study, we used three-dimensional interphase fluorescence in situ hybridization to decipher spatiotemporal gathering of multiple DEREs in the nucleus. Upon estrogen stimulation, scattered 20q13 DEREs were mobilized to form regulatory depots for synchronized gene expression of target loci. A chromosome conformation capture assay coupled with chromatin immunoprecipitation further uncovered that ERα-bound regulatory depots are tethered to heterochromatin protein 1 (HP1) for coordinated chromatin movement and histone modifications of target loci, resulting in transcription repression. Neutralizing HP1 function dysregulated the formation of DERE-involved regulatory depots and transcription inactivation of candidate tumor-suppressor genes. Deletion of amplified DEREs using the CRISPR/Cas9 genomic-editing system profoundly altered transcriptional profiles of proliferation-associated signaling networks, resulting in reduction of cancer cell growth. These findings reveal a formerly uncharacterized feature wherein multiple copies of the amplicon congregate as transcriptional units in the nucleus for synchronous regulation of function-related loci in tumorigenesis. Disruption of their assembly can be a new strategy for treating breast cancers and other malignancies. PMID:26300005

  16. A Trihelix DNA Binding Protein Counterbalances Hypoxia-Responsive Transcriptional Activation in Arabidopsis

    PubMed Central

    Licausi, Francesco; Kosmacz, Monika; Oosumi, Teruko; van Dongen, Joost T.; Bailey-Serres, Julia; Perata, Pierdomenico

    2014-01-01

    Transcriptional activation in response to hypoxia in plants is orchestrated by ethylene-responsive factor group VII (ERF-VII) transcription factors, which are stable during hypoxia but destabilized during normoxia through their targeting to the N-end rule pathway of selective proteolysis. Whereas the conditionally expressed ERF-VII genes enable effective flooding survival strategies in rice, the constitutive accumulation of N-end-rule–insensitive versions of the Arabidopsis thaliana ERF-VII factor RAP2.12 is maladaptive. This suggests that transcriptional activation under hypoxia that leads to anaerobic metabolism may need to be fine-tuned. However, it is presently unknown whether a counterbalance of RAP2.12 exists. Genome-wide transcriptome analyses identified an uncharacterized trihelix transcription factor gene, which we named HYPOXIA RESPONSE ATTENUATOR1 (HRA1), as highly up-regulated by hypoxia. HRA1 counteracts the induction of core low oxygen-responsive genes and transcriptional activation of hypoxia-responsive promoters by RAP2.12. By yeast-two-hybrid assays and chromatin immunoprecipitation we demonstrated that HRA1 interacts with the RAP2.12 protein but with only a few genomic DNA regions from hypoxia-regulated genes, indicating that HRA1 modulates RAP2.12 through protein–protein interaction. Comparison of the low oxygen response of tissues characterized by different levels of metabolic hypoxia (i.e., the shoot apical zone versus mature rosette leaves) revealed that the antagonistic interplay between RAP2.12 and HRA1 enables a flexible response to fluctuating hypoxia and is of importance to stress survival. In Arabidopsis, an effective low oxygen-sensing response requires RAP2.12 stabilization followed by HRA1 induction to modulate the extent of the anaerobic response by negative feedback regulation of RAP2.12. This mechanism is crucial for plant survival under suboptimal oxygenation conditions. The discovery of the feedback loop regulating the oxygen

  17. A trihelix DNA binding protein counterbalances hypoxia-responsive transcriptional activation in Arabidopsis.

    PubMed

    Giuntoli, Beatrice; Lee, Seung Cho; Licausi, Francesco; Kosmacz, Monika; Oosumi, Teruko; van Dongen, Joost T; Bailey-Serres, Julia; Perata, Pierdomenico

    2014-09-01

    Transcriptional activation in response to hypoxia in plants is orchestrated by ethylene-responsive factor group VII (ERF-VII) transcription factors, which are stable during hypoxia but destabilized during normoxia through their targeting to the N-end rule pathway of selective proteolysis. Whereas the conditionally expressed ERF-VII genes enable effective flooding survival strategies in rice, the constitutive accumulation of N-end-rule-insensitive versions of the Arabidopsis thaliana ERF-VII factor RAP2.12 is maladaptive. This suggests that transcriptional activation under hypoxia that leads to anaerobic metabolism may need to be fine-tuned. However, it is presently unknown whether a counterbalance of RAP2.12 exists. Genome-wide transcriptome analyses identified an uncharacterized trihelix transcription factor gene, which we named HYPOXIA RESPONSE ATTENUATOR1 (HRA1), as highly up-regulated by hypoxia. HRA1 counteracts the induction of core low oxygen-responsive genes and transcriptional activation of hypoxia-responsive promoters by RAP2.12. By yeast-two-hybrid assays and chromatin immunoprecipitation we demonstrated that HRA1 interacts with the RAP2.12 protein but with only a few genomic DNA regions from hypoxia-regulated genes, indicating that HRA1 modulates RAP2.12 through protein-protein interaction. Comparison of the low oxygen response of tissues characterized by different levels of metabolic hypoxia (i.e., the shoot apical zone versus mature rosette leaves) revealed that the antagonistic interplay between RAP2.12 and HRA1 enables a flexible response to fluctuating hypoxia and is of importance to stress survival. In Arabidopsis, an effective low oxygen-sensing response requires RAP2.12 stabilization followed by HRA1 induction to modulate the extent of the anaerobic response by negative feedback regulation of RAP2.12. This mechanism is crucial for plant survival under suboptimal oxygenation conditions. The discovery of the feedback loop regulating the oxygen

  18. Cyclic AMP Receptor Protein Acts as a Transcription Regulator in Response to Stresses in Deinococcus radiodurans

    PubMed Central

    Wang, Jiali; Liu, Chengzhi; Lu, Huizhi; Liu, Mengjia; Zhao, Ye; Tian, Bing; Wang, Liangyan; Hua, Yuejin

    2016-01-01

    The cyclic AMP receptor protein family of transcription factors regulates various metabolic pathways in bacteria, and also play roles in response to environmental changes. Here, we identify four homologs of the CRP family in Deinococcus radiodurans, one of which tolerates extremely high levels of oxidative stress and DNA-damaging reagents. Transcriptional levels of CRP were increased under hydrogen peroxide (H2O2) treatment during the stationary growth phase, indicating that CRPs function in response to oxidative stress. By constructing all CRP single knockout mutants, we found that the dr0997 mutant showed the lowest tolerance toward H2O2, ultraviolet radiation, ionizing radiation, and mitomycin C, while the phenotypes of the dr2362, dr0834, and dr1646 mutants showed slight or no significant differences from those of the wild-type strain. Taking advantage of the conservation of the CRP-binding site in many bacteria, we found that transcription of 18 genes, including genes encoding chromosome-partitioning protein (dr0998), Lon proteases (dr0349 and dr1974), NADH-quinone oxidoreductase (dr1506), thiosulfate sulfurtransferase (dr2531), the DNA repair protein UvsE (dr1819), PprA (dra0346), and RecN (dr1447), are directly regulated by DR0997. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses showed that certain genes involved in anti-oxidative responses, DNA repair, and various cellular pathways are transcriptionally attenuated in the dr0997 mutant. Interestingly, DR0997 also regulate the transcriptional levels of all CRP genes in this bacterium. These data suggest that DR0997 contributes to the extreme stress resistance of D. radiodurans via its regulatory role in multiple cellular pathways, such as anti-oxidation and DNA repair pathways. PMID:27182600

  19. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference.

    PubMed

    Liu, Yunkai; Ye, Sujuan; Erkine, Alexandre M

    2009-01-01

    Cellular stress responses are characterized by coordinated transcriptional induction of genes encoding a group of conserved proteins known as molecular chaperones, most of which are also known as heat shock proteins (HSPs). In S. cerevisiae, transcriptional responses to stress are mediated via two trans-regulatory activators: heat shock transcription factors (HSFs) that bind to heat shock elements (HSEs), and the Msn2 and Msn4 transcription factors that bind to stress response elements (STREs). Recent studies in S. cerevisiae demonstrated that a significant portion of the non-coding region in the genome is transcribed and this intergenic transcription could regulate the transcription of adjacent genes by transcription interference. The goal of this study was to analyze the genomic distribution of HSF and Msn2/4 binding sites and to study the potential for transcription interference regulated by stress response systems. Our genome-wide analysis revealed that 297 genes have STREs in their promoter region, whereas 310 genes contained HSEs. Twenty-five genes had both HSEs and STREs in their promoters. The first set of genes is potentially regulated by the Msn2/Msn4/STRE interaction. For the second set of genes, regulation by heat shock could be mediated through HSF/HSE regulatory mechanisms. The overlap between these groups suggests a co-regulation by the two pathways. Our study yielded 239 candidate genes, whose regulation could potentially be affected by heat-shock via transcription interference directed both from upstream and downstream areas relative to the native promoters. In addition we have categorized 924 genes containing HSE and/or STRE elements within the Open Reading Frames (ORFs), which may also affect normal transcription. Our study revealed a widespread possibility for the regulation of genes via transcriptional interference initiated by stress response. We provided a categorization of genes potentially affected at the transcriptional level by known

  20. Transcriptional Profiling Uncovers a Network of Cholesterol-Responsive Atherosclerosis Target Genes

    PubMed Central

    Nilsson, Roland; Noori, Peri; Maleki, Shohreh; Köhler, Marina; Hamsten, Anders; Tegnér, Jesper; Björkegren, Johan

    2008-01-01

    Despite the well-documented effects of plasma lipid lowering regimes halting atherosclerosis lesion development and reducing morbidity and mortality of coronary artery disease and stroke, the transcriptional response in the atherosclerotic lesion mediating these beneficial effects has not yet been carefully investigated. We performed transcriptional profiling at 10-week intervals in atherosclerosis-prone mice with human-like hypercholesterolemia and a genetic switch to lower plasma lipoproteins (Ldlr−/−Apo100/100 Mttpflox/flox Mx1-Cre). Atherosclerotic lesions progressed slowly at first, then expanded rapidly, and plateaued after advanced lesions formed. Analysis of lesion expression profiles indicated that accumulation of lipid-poor macrophages reached a point that led to the rapid expansion phase with accelerated foam-cell formation and inflammation, an interpretation supported by lesion histology. Genetic lowering of plasma cholesterol (e.g., lipoproteins) at this point all together prevented the formation of advanced plaques and parallel transcriptional profiling of the atherosclerotic arterial wall identified 37 cholesterol-responsive genes mediating this effect. Validation by siRNA-inhibition in macrophages incubated with acetylated-LDL revealed a network of eight cholesterol-responsive atherosclerosis genes regulating cholesterol-ester accumulation. Taken together, we have identified a network of atherosclerosis genes that in response to plasma cholesterol-lowering prevents the formation of advanced plaques. This network should be of interest for the development of novel atherosclerosis therapies. PMID:18369455

  1. Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation.

    PubMed

    Deed, Rebecca C; Deed, Nathan K; Gardner, Richard C

    2015-04-01

    Although the yeast response to low temperature has industrial significance for baking, lager brewing and white wine fermentation, the molecular response of yeast cells to low temperature remains poorly characterised. Transcriptional changes were quantified in a commercial wine yeast, Enoferm M2, fermented at optimal (25 °C) and low temperature (12.5 °C), at two time points during fermentation of Sauvignon blanc grape juice. The transition from early to mid-late fermentation was notably less severe in the cold than at 25 °C, and the Rim15p-Gis1p pathway was involved in effecting this transition. Genes for three key nutrients were strongly influenced by low temperature fermentation: nitrogen, sulfur and iron/copper, along with changes in the cell wall and stress response. Transcriptional analyses during wine fermentation at 12.5 °C in four F1 hybrids of M2 also highlighted the importance of genes involved in nutrient utilisation and the stress response. We identified transcription factors that may be important for these differences between genetic backgrounds. Since low fermentation temperatures cause fundamental changes in membrane kinetics and cellular metabolism, an understanding of the physiological and genetic limitations on cellular performance will assist breeding of improved industrial strains. PMID:25645433

  2. Modeling the Transcriptional Regulatory Network That Controls the Early Hypoxic Response in Candida albicans

    PubMed Central

    van het Hoog, Marco; Tebbji, Faiza; Beaurepaire, Cécile; Whiteway, Malcolm

    2014-01-01

    We determined the changes in transcriptional profiles that occur in the first hour following the transfer of Candida albicans to hypoxic growth conditions. The impressive speed of this response is not compatible with current models of fungal adaptation to hypoxia that depend on the depletion of sterol and heme. Functional analysis using Gene Set Enrichment Analysis (GSEA) identified the Sit4 phosphatase, Ccr4 mRNA deacetylase, and Sko1 transcription factor (TF) as potential regulators of the early hypoxic response. Cells mutated in these and other regulators exhibit a delay in their transcriptional responses to hypoxia. Promoter occupancy data for 29 TFs were combined with the transcriptional profiles of 3,111 in vivo target genes in a Network Component Analysis (NCA) to produce a model of the dynamic and highly interconnected TF network that controls this process. With data from the TF network obtained from a variety of sources, we generated an edge and node model that was capable of separating many of the hypoxia-upregulated and -downregulated genes. Upregulated genes are centered on Tye7, Upc2, and Mrr1, which are associated with many of the gene promoters that exhibit the strongest activations. The connectivity of the model illustrates the high redundancy of this response system and the challenges that lie in determining the individual contributions of specific TFs. Finally, treating cells with an inhibitor of the oxidative phosphorylation chain mimics most of the early hypoxic profile, which suggests that this response may be initiated by a drop in ATP production. PMID:24681685

  3. Sex-related differences in murine hepatic transcriptional and proteomic responses to TCDD

    SciTech Connect

    Prokopec, Stephenie D.; Watson, John D.; Lee, Jamie; Pohjanvirta, Raimo; Boutros, Paul C.

    2015-04-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that produces myriad toxicities in most mammals. In rodents alone, there is a huge divergence in the toxicological response across species, as well as among different strains within a species. But there are also significant differences between males and females animals of a single strain. These differences are inconsistent across model systems: the severity of toxicity is greater in female rats than males, while male mice and guinea pigs are more sensitive than females. Because the specific events that underlie this difference remain unclear, we characterized the hepatic transcriptional response of adult male and female C57BL/6 mice to 500 μg/kg TCDD at multiple time-points. The transcriptional profile diverged significantly between the sexes. Female mice demonstrated a large number of altered transcripts as early as 6 h following treatment, suggesting a large primary response. Conversely, male animals showed the greatest TCDD-mediated response 144 h following exposure, potentially implicating significant secondary responses. Nr1i3 was statistically significantly induced at all time-points in the sensitive male animals. This mRNA encodes the constitutive androstane receptor (CAR), a transcription factor involved in the regulation of xenobiotic metabolism, lipid metabolism, cell cycle and apoptosis. Surprisingly though, changes at the protein level (aside from the positive control, CYP1A1) were modest, with only FMO3 showing clear induction, and no genes with sex-differences. Thus, while male and female mice show transcriptional differences in their response to TCDD, their association with TCDD-induced toxicities remains unclear. - Highlights: • Differences exist between the toxicity phenotypes to TCDD in male and female mice. • TCDD-mediated transcriptomic differences were identified between the sexes. • Resistant female mice displayed a large, early-onset, transcriptomic response.

  4. Ladder operators and associated algebra for position-dependent effective mass systems

    NASA Astrophysics Data System (ADS)

    Amir, Naila; Iqbal, Shahid

    2015-07-01

    An algebraic treatment of shape-invariant quantum-mechanical position-dependent effective mass systems is discussed. Using shape invariance, a general recipe for construction of ladder operators and associated algebraic structure of the pertaining system, is obtained. These operators are used to find exact solutions of general one-dimensional systems with spatially varying mass. We apply our formalism to specific translationally shape-invariant potentials having position-dependent effective mass.

  5. Transcriptional profiling of the age-related response to genotoxic stress points to differential DNA damage response with age.

    PubMed

    Simon, Kirk; Mukundan, Anju; Dewundara, Samantha; Van Remmen, Holly; Dombkowski, Alan A; Cabelof, Diane C

    2009-09-01

    The p53 DNA damage response attenuated with age and we have evaluated downstream factors in the DNA damage response. In old animals p21 protein accumulates in the whole cell fraction but significantly declines in the nucleus, which may alter cell cycle and apoptotic programs in response to DNA damage. We evaluated the transcriptional response to DNA damage in young and old and find 2692 genes are differentially regulated in old compared to young in response to oxidative stress (p<0.005). As anticipated, the transcriptional profile of young mice is consistent with DNA damage induced cell cycle arrest while the profile of old mice is consistent with cell cycle progression in the presence of DNA damage, suggesting the potential for catastrophic accumulation of DNA damage at the replication fork. Unique sets of DNA repair genes are induced in response to damage in old and young, suggesting the types of damage accumulating differs between young and old. The DNA repair genes upregulated in old animals point to accumulation of replication-dependent DNA double strand breaks (DSB). Expression data is consistent with loss of apoptosis following DNA damage in old animals. These data suggest DNA damage responses differ greatly in young and old animals. PMID:19679149

  6. Noise-driven diamagnetic susceptibility of impurity doped quantum dots: Role of anisotropy, position-dependent effective mass and position-dependent dielectric screening function

    NASA Astrophysics Data System (ADS)

    Bera, Aindrila; Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas

    2016-08-01

    We explore Diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise introduced to the system additively and multiplicatively. In view of this profiles of DMS have been pursued with variations of geometrical anisotropy and dopant location. We have invoked position-dependent effective mass (PDEM) and position-dependent dielectric screening function (PDDSF) of the system. Presence of noise sometimes suppresses and sometimes amplifies DMS from that of noise-free condition and the extent of suppression/amplification depends on mode of application of noise. It is important to mention that the said suppression/amplification exhibits subtle dependence on use of PDEM, PDDSF and geometrical anisotropy. The study reveals that DMS, or more fundamentally, the effective confinement of LDSS, can be tuned by appropriate mingling of geometrical anisotropy/effective mass/dielectric constant of the system with noise and also on the pathway of application of latter.

  7. Histone ubiquitylation and its roles in transcription and DNA damage response.

    PubMed

    Meas, Rithy; Mao, Peng

    2015-12-01

    DNA in human cells is constantly assaulted by endogenous and exogenous DNA damaging agents. It is vital for the cell to respond rapidly and precisely to DNA damage to maintain genome integrity and reduce the risk of mutagenesis. Sophisticated reactions occur in chromatin surrounding the damaged site leading to the activation of DNA damage response (DDR), including transcription reprogramming, cell cycle checkpoint, and DNA repair. Histone proteins around the DNA damage play essential roles in DDR, through extensive post-translational modifications (PTMs) by a variety of modifying enzymes. One PTM on histones, mono-ubiquitylation, has emerged as a key player in cellular response to DNA damage. In this review, we will (1) briefly summarize the history of histone H2A and H2B ubiquitylation (H2Aub and H2Bub, respectively), (2) discuss their roles in transcription, and (3) their functions in DDR. PMID:26422137

  8. Transcriptional Response of the Sulfur Chemolithoautotroph Thiomicrospira crunogena to Dissolved Inorganic Carbon Limitation

    PubMed Central

    Dobrinski, Kimberly P.; Enkemann, Steven A.; Yoder, Sean J.; Haller, Edward

    2012-01-01

    The hydrothermal vent gammaproteobacterium Thiomicrospira crunogena inhabits an unstable environment and must endure dramatic changes in habitat chemistry. This sulfur chemolithoautotroph responds to changes in dissolved inorganic carbon (DIC) (DIC = CO2 + HCO3− + CO3−2) availability with a carbon-concentrating mechanism (CCM) in which whole-cell affinity for DIC, as well as the intracellular DIC concentration, increases substantially under DIC limitation. To determine whether this CCM is regulated at the level of transcription, we resuspended cells that were cultivated under high-DIC conditions in chemostats in growth medium with low concentrations of DIC and tracked CCM development in the presence and absence of the RNA polymerase inhibitor rifampin. Induction of the CCM, as measured by silicone oil centrifugation, was hindered in the presence of rifampin. Similar results were observed for carboxysome gene transcription and assembly, as assayed by quantitative reverse transcription-PCR (qRT-PCR) and transmission electron microscopy, respectively. Genome-wide transcription patterns for cells grown under DIC limitation and those grown under ammonia limitation were assayed via microarrays and compared. In addition to carboxysome genes, two novel genes (Tcr_1019 and Tcr_1315) present in other organisms, including chemolithoautotrophs, but whose function(s) has not been elucidated in any organism were found to be upregulated under low-DIC conditions. Likewise, under ammonia limitation, in addition to the expected enhancement of ammonia transporter and PII gene transcription, the transcription of two novel genes (Tcr_0466 and Tcr_2018) was measurably enhanced. Upregulation of all four genes (Tcr_1019, 4-fold; Tcr_131, ∼7-fold; Tcr_0466, >200-fold; Tcr_2018, 7-fold), which suggests that novel components are part of the response to nutrient limitation by this organism, was verified via qRT-PCR. PMID:22328671

  9. Contributions of transcription and mRNA decay to gene expression dynamics of fission yeast in response to oxidative stress

    PubMed Central

    Marguerat, Samuel; Lawler, Katherine; Brazma, Alvis; Bähler, Jürg

    2014-01-01

    The cooperation of transcriptional and post-transcriptional levels of control to shape gene regulation is only partially understood. Here we show that a combination of two simple and non-invasive genomic techniques, coupled with kinetic mathematical modeling, affords insight into the intricate dynamics of RNA regulation in response to oxidative stress in the fission yeast Schizosaccharomyces pombe. This study reveals a dominant role of transcriptional regulation in response to stress, but also points to the first minutes after stress induction as a critical time when the coordinated control of mRNA turnover can support the control of transcription for rapid gene regulation. In addition, we uncover specialized gene expression strategies associated with distinct functional gene groups, such as simultaneous transcriptional repression and mRNA destabilization for genes encoding ribosomal proteins, delayed mRNA destabilization with varying contribution of transcription for ribosome biogenesis genes, dominant roles of mRNA stabilization for genes functioning in protein degradation, and adjustment of both transcription and mRNA turnover during the adaptation to stress. We also show that genes regulated independently of the bZIP transcription factor Atf1p are predominantly controlled by mRNA turnover, and identify putative cis-regulatory sequences that are associated with different gene expression strategies during the stress response. This study highlights the intricate and multi-faceted interplay between transcription and RNA turnover during the dynamic regulatory response to stress. PMID:25007214

  10. A Semi-Supervised Approach for Refining Transcriptional Signatures of Drug Response and Repositioning Predictions.

    PubMed

    Iorio, Francesco; Shrestha, Roshan L; Levin, Nicolas; Boilot, Viviane; Garnett, Mathew J; Saez-Rodriguez, Julio; Draviam, Viji M

    2015-01-01

    We present a novel strategy to identify drug-repositioning opportunities. The starting point of our method is the generation of a signature summarising the consensual transcriptional response of multiple human cell lines to a compound of interest (namely the seed compound). This signature can be derived from data in existing databases, such as the connectivity-map, and it is used at first instance to query a network interlinking all the connectivity-map compounds, based on the similarity of their transcriptional responses. This provides a drug neighbourhood, composed of compounds predicted to share some effects with the seed one. The original signature is then refined by systematically reducing its overlap with the transcriptional responses induced by drugs in this neighbourhood that are known to share a secondary effect with the seed compound. Finally, the drug network is queried again with the resulting refined signatures and the whole process is carried on for a number of iterations. Drugs in the final refined neighbourhood are then predicted to exert the principal mode of action of the seed compound. We illustrate our approach using paclitaxel (a microtubule stabilising agent) as seed compound. Our method predicts that glipizide and splitomicin perturb microtubule function in human cells: a result that could not be obtained through standard signature matching methods. In agreement, we find that glipizide and splitomicin reduce interphase microtubule growth rates and transiently increase the percentage of mitotic cells-consistent with our prediction. Finally, we validated the refined signatures of paclitaxel response by mining a large drug screening dataset, showing that human cancer cell lines whose basal transcriptional profile is anti-correlated to them are significantly more sensitive to paclitaxel and docetaxel. PMID:26452147

  11. A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha.

    PubMed

    Flores-Sandoval, Eduardo; Eklund, D Magnus; Bowman, John L

    2015-05-01

    In land plants comparative genomics has revealed that members of basal lineages share a common set of transcription factors with the derived flowering plants, despite sharing few homologous structures. The plant hormone auxin has been implicated in many facets of development in both basal and derived lineages of land plants. We functionally characterized the auxin transcriptional response machinery in the liverwort Marchantia polymorpha, a member of the basal lineage of extant land plants. All components known from flowering plant systems are present in M. polymorpha, but they exist as single orthologs: a single MpTOPLESS (TPL) corepressor, a single MpTRANSPORT inhibitor response 1 auxin receptor, single orthologs of each class of auxin response factor (ARF; MpARF1, MpARF2, MpARF3), and a single negative regulator auxin/indole-3-acetic acid (MpIAA). Phylogenetic analyses suggest this simple system is the ancestral condition for land plants. We experimentally demonstrate that these genes act in an auxin response pathway--chimeric fusions of the MpTPL corepressor with heterodimerization domains of MpARF1, MpARF2, or their negative regulator, MpIAA, generate auxin insensitive plants that lack the capacity to pattern and transition into mature stages of development. Our results indicate auxin mediated transcriptional regulation acts as a facilitator of branching, differentiation and growth, rather than acting to determine or specify tissues during the haploid stage of the M. polymorpha life cycle. We hypothesize that the ancestral role of auxin is to modulate a balance of differentiated and pluri- or totipotent cell states, whose fates are determined by interactions with combinations of unrelated transcription factors. PMID:26020649

  12. Roles of Arabidopsis WRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens

    PubMed Central

    Lai, Zhibing; Vinod, KM; Zheng, Zuyu; Fan, Baofang; Chen, Zhixiang

    2008-01-01

    Background Plant WRKY DNA-binding transcription factors are involved in plant responses to biotic and abiotic responses. It has been previously shown that Arabidopsis WRKY3 and WRKY4, which encode two structurally similar WRKY transcription factors, are induced by pathogen infection and salicylic acid (SA). However, the role of the two WRKY transcription factors in plant disease resistance has not been directly analyzed. Results Both WRKY3 and WRKY4 are nuclear-localized and specifically recognize the TTGACC W-box sequences in vitro. Expression of WRKY3 and WRKY4 was induced rapidly by stress conditions generated by liquid infiltration or spraying. Stress-induced expression of WRKY4 was further elevated by pathogen infection and SA treatment. To determine directly their role in plant disease resistance, we have isolated T-DNA insertion mutants and generated transgenic overexpression lines for WRKY3 and WRKY4. Both the loss-of-function mutants and transgenic overexpression lines were examined for responses to the biotrophic bacterial pathogen Pseudomonas syringae and the necrotrophic fungal pathogen Botrytis cinerea. The wrky3 and wrky4 single and double mutants exhibited more severe disease symptoms and support higher fungal growth than wild-type plants after Botrytis infection. Although disruption of WRKY3 and WRKY4 did not have a major effect on plant response to P. syringae, overexpression of WRKY4 greatly enhanced plant susceptibility to the bacterial pathogen and suppressed pathogen-induced PR1 gene expression. Conclusion The nuclear localization and sequence-specific DNA-binding activity support that WRKY3 and WRKY4 function as transcription factors. Functional analysis based on T-DNA insertion mutants and transgenic overexpression lines indicates that WRKY3 and WRKY4 have a positive role in plant resistance to necrotrophic pathogens and WRKY4 has a negative effect on plant resistance to biotrophic pathogens. PMID:18570649

  13. A Simple Auxin Transcriptional Response System Regulates Multiple Morphogenetic Processes in the Liverwort Marchantia polymorpha

    PubMed Central

    Flores-Sandoval, Eduardo; Eklund, D. Magnus; Bowman, John L.

    2015-01-01

    In land plants comparative genomics has revealed that members of basal lineages share a common set of transcription factors with the derived flowering plants, despite sharing few homologous structures. The plant hormone auxin has been implicated in many facets of development in both basal and derived lineages of land plants. We functionally characterized the auxin transcriptional response machinery in the liverwort Marchantia polymorpha, a member of the basal lineage of extant land plants. All components known from flowering plant systems are present in M. polymorpha, but they exist as single orthologs: a single MpTOPLESS (TPL) corepressor, a single MpTRANSPORT INHIBITOR RESPONSE 1 auxin receptor, single orthologs of each class of AUXIN RESPONSE FACTOR (ARF; MpARF1, MpARF2, MpARF3), and a single negative regulator AUXIN/INDOLE-3-ACETIC ACID (MpIAA). Phylogenetic analyses suggest this simple system is the ancestral condition for land plants. We experimentally demonstrate that these genes act in an auxin response pathway — chimeric fusions of the MpTPL corepressor with heterodimerization domains of MpARF1, MpARF2, or their negative regulator, MpIAA, generate auxin insensitive plants that lack the capacity to pattern and transition into mature stages of development. Our results indicate auxin mediated transcriptional regulation acts as a facilitator of branching, differentiation and growth, rather than acting to determine or specify tissues during the haploid stage of the M. polymorpha life cycle. We hypothesize that the ancestral role of auxin is to modulate a balance of differentiated and pluri- or totipotent cell states, whose fates are determined by interactions with combinations of unrelated transcription factors. PMID:26020649

  14. A Semi-Supervised Approach for Refining Transcriptional Signatures of Drug Response and Repositioning Predictions

    PubMed Central

    Iorio, Francesco; Shrestha, Roshan L.; Levin, Nicolas; Boilot, Viviane; Garnett, Mathew J.; Saez-Rodriguez, Julio; Draviam, Viji M.

    2015-01-01

    We present a novel strategy to identify drug-repositioning opportunities. The starting point of our method is the generation of a signature summarising the consensual transcriptional response of multiple human cell lines to a compound of interest (namely the seed compound). This signature can be derived from data in existing databases, such as the connectivity-map, and it is used at first instance to query a network interlinking all the connectivity-map compounds, based on the similarity of their transcriptional responses. This provides a drug neighbourhood, composed of compounds predicted to share some effects with the seed one. The original signature is then refined by systematically reducing its overlap with the transcriptional responses induced by drugs in this neighbourhood that are known to share a secondary effect with the seed compound. Finally, the drug network is queried again with the resulting refined signatures and the whole process is carried on for a number of iterations. Drugs in the final refined neighbourhood are then predicted to exert the principal mode of action of the seed compound. We illustrate our approach using paclitaxel (a microtubule stabilising agent) as seed compound. Our method predicts that glipizide and splitomicin perturb microtubule function in human cells: a result that could not be obtained through standard signature matching methods. In agreement, we find that glipizide and splitomicin reduce interphase microtubule growth rates and transiently increase the percentage of mitotic cells–consistent with our prediction. Finally, we validated the refined signatures of paclitaxel response by mining a large drug screening dataset, showing that human cancer cell lines whose basal transcriptional profile is anti-correlated to them are significantly more sensitive to paclitaxel and docetaxel. PMID:26452147

  15. Mga2 Transcription Factor Regulates an Oxygen-responsive Lipid Homeostasis Pathway in Fission Yeast.

    PubMed

    Burr, Risa; Stewart, Emerson V; Shao, Wei; Zhao, Shan; Hannibal-Bach, Hans Kristian; Ejsing, Christer S; Espenshade, Peter J

    2016-06-01

    Eukaryotic lipid synthesis is oxygen-dependent with cholesterol synthesis requiring 11 oxygen molecules and fatty acid desaturation requiring 1 oxygen molecule per double bond. Accordingly, organisms evaluate oxygen availability to control lipid homeostasis. The sterol regulatory element-binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis in response to changing sterol and oxygen levels. However, notably missing is an SREBP-1 analog that regulates triacylglycerol and glycerophospholipid homeostasis in response to low oxygen. Consistent with this, studies have shown that the Sre1 transcription factor regulates only a fraction of all genes up-regulated under low oxygen. To identify new regulators of low oxygen adaptation, we screened the S. pombe nonessential haploid deletion collection and identified 27 gene deletions sensitive to both low oxygen and cobalt chloride, a hypoxia mimetic. One of these genes, mga2, is a putative transcriptional activator. In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid saturation. Indeed, addition of exogenous oleic acid to mga2Δ cells rescued the observed growth defects. Together, these results establish Mga2 as a transcriptional regulator of triacylglycerol and glycerophospholipid homeostasis in S. pombe, analogous to mammalian SREBP-1. PMID:27053105

  16. Mammalian Heat Shock Response and Mechanisms Underlying Its Genome-wide Transcriptional Regulation.

    PubMed

    Mahat, Dig B; Salamanca, H Hans; Duarte, Fabiana M; Danko, Charles G; Lis, John T

    2016-04-01

    The heat shock response (HSR) is critical for survival of all organisms. However, its scope, extent, and the molecular mechanism of regulation are poorly understood. Here we show that the genome-wide transcriptional response to heat shock in mammals is rapid and dynamic and results in induction of several hundred and repression of several thousand genes. Heat shock factor 1 (HSF1), the "master regulator" of the HSR, controls only a fraction of heat shock-induced genes and does so by increasing RNA polymerase II release from promoter-proximal pause. Notably, HSF2 does not compensate for the lack of HSF1. However, serum response factor appears to transiently induce cytoskeletal genes independently of HSF1. The pervasive repression of transcription is predominantly HSF1-independent and is mediated through reduction of RNA polymerase II pause release. Overall, mammalian cells orchestrate rapid, dynamic, and extensive changes in transcription upon heat shock that are largely modulated at pause release, and HSF1 plays a limited and specialized role. PMID:27052732

  17. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif.

    PubMed

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; d'Onofrio, Alberto

    2016-01-01

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting. PMID:27256916

  18. Prolyl 4-hydroxylase activity-responsive transcription factors: From hydroxylation to gene expression and neuroprotection

    PubMed Central

    Siddiq, Ambreena; Aminova, Leila R; Ratan, Rajiv R

    2008-01-01

    Most homeostatic processes including gene transcription occur as a result of deviations in physiological tone that threatens the survival of the organism. A prototypical homeostatic stress response includes changes in gene expression following alterations in oxygen, iron or 2-oxoglutarate levels. Each of these cofactors plays an important role in cellular metabolism. Accordingly, a family of enzymes known as the Prolyl 4-hydroxylase (PHD) enzymes are a group of dioxygenases that have evolved to sense changes in 2-oxoglutarate, oxygen and iron via changes in enzyme activity. Indeed, PHDs are a part of an established oxygen sensor system that regulates transcriptional regulation of hypoxia/stress-regulated genes and thus are an important component of events leading to cellular rescue from oxygen, iron or 2-oxoglutarate deprivations. The ability of PHD activity to regulate homeostatic responses to oxygen, iron or 2-oxoglutarate metabolism has led to the development of small molecule inhibitors of the PHDs as a strategy for activating or augmenting cellular stress responses. These small molecules are proving effective in preclinical models of stroke and Parkinson's disease. However the precise protective pathways engaged by PHD inhibition are only beginning to be defined. In the current review, we summarize the role of iron, 2-oxoglutarate and oxygen in the PHD catalyzed hydroxylation reaction and provide a brief discussion of some of the transcription factors that play an effective role in neuroprotection against oxidative stress as a result of changes in PHD activity. PMID:17981760

  19. Gene switching rate determines response to extrinsic perturbations in the self-activation transcriptional network motif

    PubMed Central

    de Franciscis, Sebastiano; Caravagna, Giulio; Mauri, Giancarlo; d’Onofrio, Alberto

    2016-01-01

    Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we consider a common network motif - the positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic noises perturbing gene deactivation in a variety of settings where the network might operate. These settings are representative of distinct cellular types, abundance of transcription factors and ratio between gene switching and protein synthesis rates. By investigating noise-induced transitions among the different network operative states, our results suggest that gene switching rates are key parameters to shape network response to external perturbations, and that such response depends on the particular biological setting, i.e. the characteristic time scales and protein abundance. These results might have implications on our understanding of irreversible transitions for noise-related phenomena such as cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical model of the network in order to analyze the system consistently to the reference biological setting. PMID:27256916

  20. The Arabidopsis Transcription Factor NAC016 Promotes Drought Stress Responses by Repressing AREB1 Transcription through a Trifurcate Feed-Forward Regulatory Loop Involving NAP[OPEN

    PubMed Central

    Sakuraba, Yasuhito; Kim, Ye-Sol; Han, Su-Hyun; Lee, Byoung-Doo; Paek, Nam-Chon

    2015-01-01

    Drought and other abiotic stresses negatively affect plant growth and development and thus reduce productivity. The plant-specific NAM/ATAF1/2/CUC2 (NAC) transcription factors have important roles in abiotic stress-responsive signaling. Here, we show that Arabidopsis thaliana NAC016 is involved in drought stress responses; nac016 mutants have high drought tolerance, and NAC016-overexpressing (NAC016-OX) plants have low drought tolerance. Using genome-wide gene expression microarray analysis and MEME motif searches, we identified the NAC016-specific binding motif (NAC16BM), GATTGGAT[AT]CA, in the promoters of genes downregulated in nac016-1 mutants. The NAC16BM sequence does not contain the core NAC binding motif CACG (or its reverse complement CGTG). NAC016 directly binds to the NAC16BM in the promoter of ABSCISIC ACID-RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), which encodes a central transcription factor in the stress-responsive abscisic acid signaling pathway and represses AREB1 transcription. We found that knockout mutants of the NAC016 target gene NAC-LIKE, ACTIVATED BY AP3/PI (NAP) also exhibited strong drought tolerance; moreover, NAP binds to the AREB1 promoter and suppresses AREB1 transcription. Taking these results together, we propose that a trifurcate feed-forward pathway involving NAC016, NAP, and AREB1 functions in the drought stress response, in addition to affecting leaf senescence in Arabidopsis. PMID:26059204

  1. Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1

    PubMed Central

    2010-01-01

    Background Archaea combine bacterial-as well as eukaryotic-like features to regulate cellular processes. Halobacterium salinarum R1 encodes eight leucine-responsive regulatory protein (Lrp)-homologues. The function of two of them, Irp (OE3923F) and lrpA1 (OE2621R), were analyzed by gene deletion and overexpression, including genome scale impacts using microarrays. Results It was shown that Lrp affects the transcription of multiple target genes, including those encoding enzymes involved in amino acid synthesis, central metabolism, transport processes and other regulators of transcription. In contrast, LrpA1 regulates transcription in a more specific manner. The aspB3 gene, coding for an aspartate transaminase, was repressed by LrpA1 in the presence of L-aspartate. Analytical DNA-affinity chromatography was adapted to high salt, and demonstrated binding of LrpA1 to its own promoter, as well as L-aspartate dependent binding to the aspB3 promoter. Conclusion The gene expression profiles of two archaeal Lrp-homologues report in detail their role in H. salinarum R1. LrpA1 and Lrp show similar functions to those already described in bacteria, but in addition they play a key role in regulatory networks, such as controlling the transcription of other regulators. In a more detailed analysis ligand dependent binding of LrpA1 was demonstrated to its target gene aspB3. PMID:20509863

  2. Characterization of a novel Medicago sativa NAC transcription factor gene involved in response to drought stress.

    PubMed

    Wang, Yong Xin

    2013-11-01

    Relying on the regulation of transcription factors, plants resist to various abiotic and biotic stresses. NAC (NAM, ATAF1/2, CUC2) are one of the largest families of plant-specific transcription factors and known to play important roles in plant development and response to environmental stresses. A new NAC gene was cloned on the basis of 503 bp EST fragment from the SSH cDNA library of Medicago sativa. It was 1,115 bp including an 816 bp ORF and encodes 271 amino acids. A highly conserved region is located from the 7th amino acid to the 315th amino acid in its N-terminal domain. The NAC protein is subcellularly localized in the nucleus of onion epidemical cells and possible functions as a transcription factor. The relative quantitative real-time RT-PCR was performed at different stress time. The results revealed that the transcription expression of NAC gene could be induced by drought, high salinity and ABA. The transgenic Arabidopsis with NAC gene has the drought tolerance better than the wild-type. PMID:24057250

  3. Laser Microdissection of Grapevine Leaves Reveals Site-Specific Regulation of Transcriptional Response to Plasmopara viticola.

    PubMed

    Lenzi, Luisa; Caruso, Carla; Bianchedi, Pier Luigi; Pertot, Ilaria; Perazzolli, Michele

    2016-01-01

    Grapevine is one of the most important fruit crops in the world, and it is highly susceptible to downy mildew caused by the biotrophic oomycete Plasmopara viticola. Gene expression profiling has been used extensively to investigate the regulation processes of grapevine-P. viticola interaction, but all studies to date have involved the use of whole leaves. However, only a small fraction of host cells is in contact with the pathogen, so highly localized transcriptional changes of infected cells may be masked by the large portion of non-infected cells when analyzing the whole leaf. In order to understand the transcriptional regulation of the plant reaction at the sites of pathogen infection, we optimized a laser microdissection protocol and analyzed the transcriptional changes in stomata cells and surrounding areas of grapevine leaves at early stages of P. viticola infection. The results indicate that the expression levels of seven P. viticola-responsive genes were greater in microdissected cells than in whole leaves, highlighting the site-specific transcriptional regulation of the host response. The gene modulation was restricted to the stomata cells and to the surrounding areas of infected tissues, indicating that the host response is mainly located at the infection sites and that short-distance signals are implicated. In addition, due to the high sensitivity of the laser microdissection technique, significant modulations of three genes that were completely masked in the whole tissue analysis were detected. The protocol validated in this study could greatly increase the sensitivity of further transcriptomic studies of the grapevine-P. viticola interaction. PMID:26546320

  4. Inhibition of transferrin receptor 1 transcription by a cell density response element

    PubMed Central

    2005-01-01

    TfR1 (transferrin receptor 1) mediates the uptake of transferrin-bound iron and thereby plays a critical role in cellular iron metabolism. Its expression is coupled to cell proliferation/differentiation and controlled in response to iron levels and other signals by transcriptional and post-transcriptional mechanisms. It is well established that TfR1 levels decline when cultured cells reach a high density and in the present study we have investigated the underlying mechanisms. Consistent with previous findings, we demonstrate that TfR1 expression is attenuated in a cell-density-dependent manner in human lung cancer H1299 cells and in murine B6 fibroblasts as the result of a marked decrease in mRNA content. This response is not associated with alterations in the RNA-binding activity of iron regulatory proteins that are indicative of a transcriptional mechanism. Reporter assays reveal that the human TfR1 promoters contains sequences mediating cell-density-dependent transcriptional inhibition. Mapping of the human and mouse TfR1 promoters identified a conserved hexa-nucleotide 5′-GAGGGC-3′ motif with notable sequence similarity to a previously described element within the IGF-2 (insulin-like growth factor-2) promoter. We show that this motif is necessary for the formation of specific complexes with nuclear extracts and for cell-density-dependent regulation in reporter gene assays. Thus the TfR1 promoter contains a functional ‘cell density response element’ (CDRE). PMID:16092918

  5. Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae.

    PubMed

    Zhao, H; Eide, D J

    1997-09-01

    Zinc ion homeostasis in Saccharomyces cerevisiae is controlled primarily through the transcriptional regulation of zinc uptake systems in response to intracellular zinc levels. A high-affinity uptake system is encoded by the ZRT1 gene, and its expression is induced more than 30-fold in zinc-limited cells. A low-affinity transporter is encoded by the ZRT2 gene, and this system is also regulated by zinc. We used a genetic approach to isolate mutants whose ZRT1 expression is no longer repressed in zinc-replete cells, and a new gene, ZAP1, was identified. ZAP1 encodes a 93-kDa protein with sequence similarity to transcriptional activators; the C-terminal 174 amino acids contains five C2H2 zinc finger domains, and the N terminus (residues 1 to 706) has two potential acidic activation domains. The N-terminal region also contains 12% histidine and cysteine residues. The mutant allele isolated, ZAP1-1up, is semidominant and caused high-level expression of ZRT1 and ZRT2 in both zinc-limited and zinc-replete cells. This phenotype is the result of a mutation that substitutes a serine for a cysteine residue in the N-terminal region. A zap1 deletion mutant grew well on zinc-replete media but poorly on zinc-limiting media. This mutant had low-level ZRT1 and ZRT2 expression in zinc-limited as well as zinc-replete cells. These data indicate that Zap1p plays a central role in zinc ion homeostasis by regulating transcription of the zinc uptake system genes in response to zinc. Finally, we present evidence that Zap1p regulates transcription of its own promoter in response to zinc through a positive autoregulatory mechanism. PMID:9271382

  6. Adaptation of the Agrobacterium tumefaciens VirG response regulator to activate transcription in plants.

    PubMed

    Czarnecka-Verner, Eva; Salem, Tarek A; Gurley, William B

    2016-02-01

    The Agrobacterium tumefaciens VirG response regulator of the VirA/VirG two-component system was adapted to function in tobacco protoplasts. The subcellular localization of VirG and VirA proteins transiently expressed in onion cells was determined using GFP fusions. Preliminary studies using Gal4DBD-VP16 fusions with VirG and Escherichia coli UhpA, and NarL response regulators indicated compatibility of these bacterial proteins with the eukaryotic transcriptional apparatus. A strong transcriptional activator based on tandem activation domains from the Drosophila fushi tarazu and Herpes simplex VP16 was created. Selected configurations of the two-site Gal4-vir box GUS reporters were activated by chimeric effectors dependent on either the yeast Gal4 DNA-binding domain or that of VirG. Transcriptional induction of the GUS reporter was highest for the VirE19-element promoter with both constitutive and wild-type VirG-tandem activation domain effectors. Multiple VirE19 elements increased the reporter activity proportionately, indicating that the VirG DNA binding domain was functional in plants. The VirG constitutive-Q-VP16 effector was more active than the VirG wild-type. In both the constitutive and wild-type forms of VirG, Q-VP16 activated transcription of the GUS reporter best when located at the C-terminus, i.e. juxtaposed to the VirG DNA binding domain. These results demonstrate the possibility of using DNA binding domains from bacterial response regulators and their cognate binding elements in the engineering of plant gene expression. PMID:26646288

  7. The Transcriptional Response of Caenorhabditis elegans to Ivermectin Exposure Identifies Novel Genes Involved in the Response to Reduced Food Intake

    PubMed Central

    Laing, Steven T.; Ivens, Al; Butler, Victoria; Ravikumar, Sai P.; Laing, Roz; Woods, Debra J.; Gilleard, John S.

    2012-01-01

    We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug ivermectin (IVM) using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short–term food withdrawal (4 hr) independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated with fat storage (intestine and hypodermis). These experiments have serendipitously identified novel genes involved in an early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms. PMID:22348077

  8. Tomato Whole Genome Transcriptional Response to Tetranychus urticae Identifies Divergence of Spider Mite-Induced Responses Between Tomato and Arabidopsis.

    PubMed

    Martel, Catherine; Zhurov, Vladimir; Navarro, Marie; Martinez, Manuel; Cazaux, Marc; Auger, Philippe; Migeon, Alain; Santamaria, M Estrella; Wybouw, Nicky; Diaz, Isabel; Van Leeuwen, Thomas; Navajas, Maria; Grbic, Miodrag; Grbic, Vojislava

    2015-03-01

    The two-spotted spider mite Tetranychus urticae is one of the most significant mite pests in agriculture, feeding on more than 1,100 plant hosts, including model plants Arabidopsis thaliana and tomato, Solanum lycopersicum. Here, we describe timecourse tomato transcriptional responses to spider mite feeding and compare them with Arabidopsis in order to determine conserved and divergent defense responses to this pest. To refine the involvement of jasmonic acid (JA) in mite-induced responses and to improve tomato Gene Ontology annotations, we analyzed transcriptional changes in the tomato JA-signaling mutant defenseless1 (def-1) upon JA treatment and spider mite herbivory. Overlay of differentially expressed genes (DEG) identified in def-1 onto those from the timecourse experiment established that JA controls expression of the majority of genes differentially regulated by herbivory. Comparison of defense responses between tomato and Arabidopsis highlighted 96 orthologous genes (of 2,133 DEG) that were recruited for defense against spider mites in both species. These genes, involved in biosynthesis of JA, phenylpropanoids, flavonoids, and terpenoids, represent the conserved core of induced defenses. The remaining tomato DEG support the establishment of tomato-specific defenses, indicating profound divergence of spider mite-induced responses between tomato and Arabidopsis. PMID:25679539

  9. Tomato genome-wide transcriptional responses to Fusarium wilt and Tomato Mosaic Virus.

    PubMed

    Andolfo, Giuseppe; Ferriello, Francesca; Tardella, Luca; Ferrarini, Alberto; Sigillo, Loredana; Frusciante, Luigi; Ercolano, Maria Raffaella

    2014-01-01

    Since gene expression approaches constitute a starting point for investigating plant-pathogen systems, we performed a transcriptional analysis to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp. lycopersici (Fol) and Tomato Mosaic Virus (ToMV). Differentially expressed tomato genes upon inoculation with Fol and ToMV were identified at two days post-inoculation. A large overlap was found in differentially expressed genes throughout the two incompatible interactions. However, Gene Ontology enrichment analysis evidenced specific categories in both interactions. Response to ToMV seems more multifaceted, since more than 70 specific categories were enriched versus the 30 detected in Fol interaction. In particular, the virus stimulated the production of an invertase enzyme that is able to redirect the flux of carbohydrates, whereas Fol induced a homeostatic response to prevent the fungus from killing cells. Genomic mapping of transcripts suggested that specific genomic regions are involved in resistance response to pathogen. Coordinated machinery could play an important role in prompting the response, since 60% of pathogen receptor genes (NB-ARC-LRR, RLP, RLK) were differentially regulated during both interactions. Assessment of genomic gene expression patterns could help in building up models of mediated resistance responses. PMID:24804963

  10. Comprehensive Analysis Suggests Overlapping Expression of Rice ONAC Transcription Factors in Abiotic and Biotic Stress Responses

    PubMed Central

    Sun, Lijun; Huang, Lei; Hong, Yongbo; Zhang, Huijuan; Song, Fengming; Li, Dayong

    2015-01-01

    NAC (NAM/ATAF/CUC) transcription factors comprise a large plant-specific gene family that contains more than 149 members in rice. Extensive studies have revealed that NAC transcription factors not only play important roles in plant growth and development, but also have functions in regulation of responses to biotic and abiotic stresses. However, biological functions for most of the members in the NAC family remain unknown. In this study, microarray data analyses revealed that a total of 63 ONAC genes exhibited overlapping expression patterns in rice under various abiotic (salt, drought, and cold) and biotic (infection by fungal, bacterial, viral pathogens, and parasitic plants) stresses. Thirty-eight ONAC genes exhibited overlapping expression in response to any two abiotic stresses, among which 16 of 30 selected ONAC genes were upregulated in response to exogenous ABA. Sixty-five ONAC genes showed overlapping expression patterns in response to any two biotic stresses. Results from the present study suggested that members of the ONAC genes with overlapping expression pattern may have pleiotropic biological functions in regulation of defense response against different abiotic and biotic stresses, which provide clues for further functional analysis of the ONAC genes in stress tolerance and pathogen resistance. PMID:25690040

  11. Portrait of transcriptional responses to ultraviolet and ionizing radiation in human cells

    PubMed Central

    Rieger, Kerri E.; Chu, Gilbert

    2004-01-01

    To understand the human response to DNA damage, we used microarrays to measure transcriptional responses of 10 000 genes to ionizing radiation (IR) and ultraviolet radiation (UV). To identify bona fide responses, we used cell lines from 15 individuals and a rigorous statistical method, Significance Analysis of Microarrays (SAM). By exploring how sample number affects SAM, we rendered a portrait of the human damage response with a degree of accuracy unmatched by previous studies. By showing how SAM can be used to estimate the total number of responsive genes, we discovered that 24% of all genes respond to IR and 32% respond to UV, although most responses were less than 2-fold. Many genes were involved in known damage-response pathways for cell cycling and proliferation, apoptosis, DNA repair or the stress response. However, the majority of genes were involved in unexpected pathways, with functions in signal transduction, RNA binding and editing, protein synthesis and degradation, energy metabolism, metabolism of macromolecular precursors, cell structure and adhesion, vesicle transport, or lysosomal metabolism. Although these functions were not previously associated with the damage response in mammals, many were conserved in yeast. These insights reveal new directions for studying the human response to DNA damage. PMID:15356296

  12. Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo

    PubMed Central

    Troost, Freddy J; van Baarlen, Peter; Lindsey, Patrick; Kodde, Andrea; de Vos, Willem M; Kleerebezem, Michiel; Brummer, Robert-Jan M

    2008-01-01

    Background There is limited knowledge on the extent and dynamics of the mucosal response to commensal and probiotic species in the human intestinal lumen. This study aimed to identify the acute, time-dependent responses of intestinal mucosa to commensal Lactobacillus plantarum WCFS1 in vivo in two placebo-controlled human intervention studies in healthy volunteers. Transcriptional changes in duodenal mucosa upon continuous intraduodenal infusion of L. plantarum WCFS1 for one- and six h, respectively, were studied using oro- and nasogastric intubations with dedicated orogastric catheters and tissue sampling by standard flexible gastroduodenoscopy. Results One- and six-h exposure of small intestinal mucosa to L. plantarum WCFS1 induced differential expression of 669 and 424 gene reporters, respectively. While short-term exposure to L. plantarum WCFS1 inhibited fatty acid metabolism and cell cycle progression, cells switched to a more proliferative phase after prolonged exposure with an overall expression profile characterized by upregulation of genes involved in lipid metabolism, cellular growth and development. Cell death and immune responses were triggered, but cell death-executing genes or inflammatory signals were not expressed. Proteome analysis showed differential expression of several proteins. Only the microsomal protein 'microsomal triglyceride transfer protein' was regulated on both the transcriptional and the protein level in all subjects. Conclusion Overall, this study showed that intestinal exposure to L. plantarum WCFS1 induced consistent, time-dependent transcriptional responses in healthy intestinal mucosa. This extensive exploration of the human response to L. plantarum WCFS1 could eventually provide molecular support for specific or probiotic activity of this strain or species, and exemplifies the strength of the applied technology to identify the potential bio-activity of microbes in the human intestine. PMID:18681965

  13. Endothelial Inflammatory Transcriptional Responses Induced by Plasma Following Inhalation of Diesel Emissions

    PubMed Central

    Schisler, Jonathan C.; Ronnebaum, Sarah M.; Madden, Michael; Channell, Meghan M.; Campen, Matthew J.; Willis, Monte S.

    2016-01-01

    Background Air pollution, especially emissions derived from traffic sources, is associated with adverse cardiovascular outcomes. However, it remains unclear how inhaled factors drive extrapulmonary pathology. Objectives Previously, we found that canonical inflammatory response transcripts were elevated in cultured endothelial cells treated with plasma obtained after exposure compared with pre-exposure samples or filtered air (sham) exposures. While the findings confirmed the presence of bioactive factor(s) in the plasma after diesel inhalation, we wanted to better examine the complete genomic response to investigate 1) major responsive transcripts and 2) collected response pathways and ontogeny that may help to refine this method and inform the pathogenesis. Methods We assayed endothelial RNA with gene expression microarrays, examining the responses of cultured endothelial cells to plasma obtained from 6 healthy human subjects exposed to 100 μg/m3 diesel exhaust or filtered air for 2 h on separate occasions. In addition to pre-exposure baseline samples, we investigated samples obtained immediately-post and 24h-post exposure. Results Microarray analysis of the coronary artery endothelial cells challenged with plasma identified 855 probes that changed over time following diesel exhaust exposure. Over-representation analysis identified inflammatory cytokine pathways were upregulated both at the 2 and 24 h condition. Novel pathways related to FOX transcription factors and secreted extracellular factors were also identified in the microarray analysis. Conclusions These outcomes are consistent with our recent findings that plasma contains bioactive and inflammatory factors following pollutant inhalation. The specific study design implicates a novel pathway related to inflammatory blood borne components that may drive the extrapulmonary toxicity of ambient air pollutants. PMID:25942053

  14. Physiological and transcriptional responses to high temperature in Arthrospira (Spirulina) platensis C1.

    PubMed

    Panyakampol, Jaruta; Cheevadhanarak, Supapon; Sutheeworapong, Sawannee; Chaijaruwanich, Jeerayut; Senachak, Jittisak; Siangdung, Wipawan; Jeamton, Wattana; Tanticharoen, Morakot; Paithoonrangsarid, Kalyanee

    2015-03-01

    Arthrospira (Spirulina) platensis is a well-known commercial cyanobacterium that is used as a food and in feed supplements. In this study, we examined the physiological changes and whole-genome expression in A. platensis C1 exposed to high temperature. We found that photosynthetic activity was significantly decreased after the temperature was shifted from 35°C to 42°C for 2 h. A reduction in biomass production and protein content, concomitant with the accumulation of carbohydrate content, was observed after prolonged exposure to high temperatures for 24 h. Moreover, the results of the expression profiling in response to high temperature at the designated time points (8 h) revealed two distinct phases of the responses. The first was the immediate response phase, in which the transcript levels of genes involved in different mechanisms, including genes for heat shock proteins; genes involved in signal transduction and carbon and nitrogen metabolism; and genes encoding inorganic ion transporters for magnesium, nitrite and nitrate, were either transiently induced or repressed by the high temperature. In the second phase, the long-term response phase, both the induction and repression of the expression of genes with important roles in translation and photosynthesis were observed. Taken together, the results of our physiological and transcriptional studies suggest that dynamic changes in the transcriptional profiles of these thermal-responsive genes might play a role in maintaining cell homeostasis under high temperatures, as reflected in the growth and biochemical composition, particularly the protein and carbohydrate content, of A. platensis C1. PMID:25524069

  15. Genome-wide transcriptional response of an avian pathogenic Escherichia coli (APEC) pst mutant

    PubMed Central

    Crépin, Sébastien; Lamarche, Martin G; Garneau, Philippe; Séguin, Julie; Proulx, Julie; Dozois, Charles M; Harel, Josée

    2008-01-01

    Background Avian pathogenic E. coli (APEC) are associated with extraintestinal diseases in poultry. The pstSCAB-phoU operon belongs to the Pho regulon and encodes the phosphate specific transport (Pst) system. A functional Pst system is required for full virulence in APEC and other bacteria and contributes to resistance of APEC to serum, to cationic antimicrobial peptides and acid shock. The global mechanisms contributing to the attenuation and decreased resistance of the APEC pst mutant to environmental stresses have not been investigated at the transcriptional level. To determine the global effect of a pst mutation on gene expression, we compared the transcriptomes of APEC strain χ7122 and its isogenic pst mutant (K3) grown in phosphate-rich medium. Results Overall, 470 genes were differentially expressed by at least 1.5-fold. Interestingly, the pst mutant not only induced systems involved in phosphate acquisition and metabolism, despite phosphate availability, but also modulated stress response mechanisms. Indeed, transcriptional changes in genes associated with the general stress responses, including the oxidative stress response were among the major differences observed. Accordingly, the K3 strain was less resistant to reactive oxygen species (ROS) than the wild-type strain. In addition, the pst mutant demonstrated reduced expression of genes involved in lipopolysaccharide modifications and coding for cell surface components such as type 1 and F9 fimbriae. Phenotypic tests also established that the pst mutant was impaired in its capacity to produce type 1 fimbriae, as demonstrated by western blotting and agglutination of yeast cells, when compared to wild-type APEC strain χ7122. Conclusion Overall, our data elucidated the effects of a pst mutation on the transcriptional response, and further support the role of the Pho regulon as part of a complex network contributing to phosphate homeostasis, adaptive stress responses, and E. coli virulence. PMID:19038054

  16. Dimer formation and transcription activation in the sporulation response regulator Spo0A.

    PubMed

    Lewis, Richard J; Scott, David J; Brannigan, James A; Ladds, Joanne C; Cervin, Marguerite A; Spiegelman, George B; Hoggett, James G; Barák, Imrich; Wilkinson, Anthony J

    2002-02-15

    The response regulator Spo0A is the master control element in the initiation of sporulation in Bacillus subtilis. Like many other multi-domain response regulators, the latent activity of the effector, C-terminal domain is stimulated by phosphorylation on a conserved aspartic acid residue in the regulatory, N-terminal domain. If a threshold concentration of phosphorylated Spo0A is achieved, the transcription of genes required for sporulation is activated, whereas the genes encoding stationary phase sentinels are repressed, and sporulation proceeds. Despite detailed genetic, biochemical and structural characterisation, it is not understood how the phosphorylation signal in the receiver domain is transduced into DNA binding and transcription activation in the distal effector domain. An obstacle to our understanding of Spo0A function is the uncertainty concerning changes in quaternary structure that accompany phosphorylation. Here we have revisited this question and shown unequivocally that Spo0A forms dimers upon phosphorylation and that the subunit interactions in the dimer are mediated principally by the receiver domain. Purified dimers of two mutants of Spo0A, in which the phosphorylatable aspartic acid residue has been substituted, activate transcription from the spoIIG promoter in vitro, whereas monomers do not. This suggests that dimers represent the activated form of Spo0A. PMID:11851334

  17. Transcriptional Response to Hypoxia in the Aquatic Fungus Blastocladiella emersonii▿†

    PubMed Central

    Camilo, César M.; Gomes, Suely L.

    2010-01-01

    Global gene expression analysis was carried out with Blastocladiella emersonii cells subjected to oxygen deprivation (hypoxia) using cDNA microarrays. In experiments of gradual hypoxia (gradual decrease in dissolved oxygen) and direct hypoxia (direct decrease in dissolved oxygen), about 650 differentially expressed genes were observed. A total of 534 genes were affected directly or indirectly by oxygen availability, as they showed recovery to normal expression levels or a tendency to recover when cells were reoxygenated. In addition to modulating many genes with no putative assigned function, B. emersonii cells respond to hypoxia by readjusting the expression levels of genes responsible for energy production and consumption. At least transcriptionally, this fungus seems to favor anaerobic metabolism through the upregulation of genes encoding glycolytic enzymes and lactate dehydrogenase and the downregulation of most genes coding for tricarboxylic acid (TCA) cycle enzymes. Furthermore, genes involved in energy-costly processes, like protein synthesis, amino acid biosynthesis, protein folding, and transport, had their expression profiles predominantly downregulated during oxygen deprivation, indicating an energy-saving effort. Data also revealed similarities between the transcriptional profiles of cells under hypoxia and under iron(II) deprivation, suggesting that Fe2+ ion could have a role in oxygen sensing and/or response to hypoxia in B. emersonii. Additionally, treatment of fungal cells prior to hypoxia with the antibiotic geldanamycin, which negatively affects the stability of mammalian hypoxia transcription factor HIF-1α, caused a significant decrease in the levels of certain upregulated hypoxic genes. PMID:20418381

  18. A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Eubacteria

    SciTech Connect

    Campbell,E.; Greenwell, R.; Anthony, J.; Wang, S.; Lim, L.; Das, K.; Sofia, H.; Donohue, T.; Darst, S.

    2007-01-01

    A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV {sigma} factor {sigma}{sup E} and its cognate anti-{sigma} ChrR. Crystal structures of the {sigma}{sup E}/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-{sigma} domain (ASD) binds a Zn{sup 2+} ion, contacts {sigma}{sup E}, and is sufficient to inhibit {sigma}{sup E}-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn{sup 2+}, and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV anti-{sigma}s. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate {sigma} factor.

  19. Cold tolerance in thiourea primed capsicum seedlings is associated with transcript regulation of stress responsive genes.

    PubMed

    Patade, Vikas Yadav; Khatri, Deepti; Manoj, Kamble; Kumari, Maya; Ahmed, Zakwan

    2012-12-01

    Benefits of seed priming in seedling establishment and tolerance to subsequent stress exposure are well reported. However, the molecular mechanisms underlying the priming mediated benefits are not much discovered. Results of our earlier experiments established that thiourea (TU) seed priming imparts cold tolerance to capsicum seedlings. Therefore, to understand molecular mechanisms underlying priming mediated cold stress tolerance, quantitative transcript expression of stress responsive genes involved in transcript regulation (CaCBF1A, CaCBF1B, Zinc Finger protein, CaWRKY30), osmotic adjustment (PROX1, P5CS, Osmotin), antioxidant defence (CAT2, APX, GST, GR1, Cu/Zn SOD, Mn SOD, Fe SOD), signaling (Annexin), movement of solutes and water (CaPIP1), and metabolite biosynthesis through phenylpropanoid pathway (CAH) was studied in response to cold (4 °C; 4 and 24 h) stress in seedlings grown from the TU primed, hydroprimed and unsoaked seeds. The transcript expression of CaWRKY30, PROX1, Osmotin, Cu/Zn SOD and CAH genes was either higher or induced earlier on cold exposure in thiourea priming than that of hydroprimed and unsoaked over the respective unstressed controls. The results thus suggest that the TU priming modulate expression of these genes thereby imparting cold tolerance in capsicum seedlings. PMID:23053959

  20. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia

    PubMed Central

    Mudie, Sharon; Bandarra, Daniel; Batie, Michael; Biddlestone, John; Moniz, Sonia; Ortmann, Brian; Shmakova, Alena; Rocha, Sonia

    2014-01-01

    Hypoxia is an important developmental cue for multicellular organisms but it is also a contributing factor for several human pathologies, such as stroke, cardiovascular diseases and cancer. In cells, hypoxia activates a major transcriptional program coordinated by the Hypoxia Inducible Factor (HIF) family. HIF can activate more than one hundred targets but not all of them are activated at the same time, and there is considerable cell type variability. In this report we identified the paired-like homeodomain pituitary transcription factor (PITX1), as a transcription factor that helps promote specificity in HIF-1α dependent target gene activation. Mechanistically, PITX1 associates with HIF-1β and it is important for the induction of certain HIF-1 dependent genes but not all. In particular, PITX1 controls the HIF-1α-dependent expression of the histone demethylases; JMJD2B, JMJD2A, JMJD2C and JMJD1B. Functionally, PITX1 is required for the survival and proliferation responses in hypoxia, as PITX1 depleted cells have higher levels of apoptotic markers and reduced proliferation. Overall, our study identified PITX1 as a key specificity factor in HIF-1α dependent responses, suggesting PITX1 as a protein to target in hypoxic cancers. PMID:25558831

  1. Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato.

    PubMed

    Thagun, Chonprakun; Imanishi, Shunsuke; Kudo, Toru; Nakabayashi, Ryo; Ohyama, Kiyoshi; Mori, Tetsuya; Kawamoto, Koichi; Nakamura, Yukino; Katayama, Minami; Nonaka, Satoko; Matsukura, Chiaki; Yano, Kentaro; Ezura, Hiroshi; Saito, Kazuki; Hashimoto, Takashi; Shoji, Tsubasa

    2016-05-01

    Steroidal glycoalkaloids (SGAs) are cholesterol-derived specialized metabolites produced in species of the Solanaceae. Here, we report that a group of jasmonate-responsive transcription factors of the ETHYLENE RESPONSE FACTOR (ERF) family (JREs) are close homologs of alkaloid regulators in Cathranthus roseus and tobacco, and regulate production of SGAs in tomato. In transgenic tomato, overexpression and dominant suppression of JRE genes caused drastic changes in SGA accumulation and in the expression of genes for metabolic enzymes involved in the multistep pathway leading to SGA biosynthesis, including the upstream mevalonate pathway. Transactivation and DNA-protein binding assays demonstrate that JRE4 activates the transcription of SGA biosynthetic genes by binding to GCC box-like elements in their promoters. These JRE-binding elements occur at significantly higher frequencies in proximal promoter regions of the genes regulated by JRE genes, supporting the conclusion that JREs mediate transcriptional co-ordination of a series of metabolic genes involved in SGA biosynthesis. PMID:27084593

  2. The metal-responsive transcription factor-1 contributes to HIF-1 activation during hypoxic stress

    SciTech Connect

    Murphy, Brian J. . E-mail: brian.murphy@sri.com; Sato, Barbara G.; Dalton, Timothy P.; Laderoute, Keith R.

    2005-11-25

    Hypoxia-inducible factor-1 (HIF-1), the major transcriptional regulator of the mammalian cellular response to low oxygen (hypoxia), is embedded within a complex network of signaling pathways. We have been investigating the importance of another stress-responsive transcription factor, MTF-1, for the adaptation of cells to hypoxia. This article reports that MTF-1 plays a central role in hypoxic cells by contributing to HIF-1 activity. Loss of MTF-1 in transformed Mtf1 null mouse embryonic fibroblasts (MEFs) results in an attenuation of nuclear HIF-1{alpha} protein accumulation, HIF-1 transcriptional activity, and expression of an established HIF-1 target gene, glucose transporter-1 (Glut1). Mtf1 null (Mtf1 KO) MEFs also have constitutively higher levels of both glutathione (GSH) and the rate-limiting enzyme involved in GSH synthesis-glutamate cysteine ligase catalytic subunit-than wild type cells. The altered cellular redox state arising from increased GSH may perturb oxygen-sensing mechanisms in hypoxic Mtf1 KO cells and decrease the accumulation of HIF-1{alpha} protein. Together, these novel findings define a role for MTF-1 in the regulation of HIF-1 activity.

  3. The basic leucine zipper transcription factor ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes.

    PubMed

    Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma

    2014-01-01

    In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949

  4. A response regulator that represses transcription of several virulence operons in the group A streptococcus.

    PubMed

    Federle, M J; McIver, K S; Scott, J R

    1999-06-01

    A search for homologs of the Bacillus subtilis PhoP response regulator in the group A streptococcus (GAS) genome revealed three good candidates. Inactivation of one of these, recently identified as csrR (J. C. Levin and M. R. Wessels, Mol. Microbiol. 30:209-219, 1998), caused the strain to produce mucoid colonies and to increase transcription of hasA, the first gene in the operon for capsule synthesis. We report here that a nonpolar insertion in this gene also increased transcription of ska (encoding streptokinase), sagA (streptolysin S), and speMF (mitogenic factor) but did not affect transcription of slo (streptolysin O), mga (multiple gene regulator of GAS), emm (M protein), scpA (complement C5a peptidase), or speB or speC (pyrogenic exotoxins B and C). The amounts of streptokinase, streptolysin S, and capsule paralleled the levels of transcription of their genes in all cases. Because CsrR represses genes unrelated to those for capsule synthesis, and because CsrA-CsrB is a global regulatory system in Escherichia coli whose mechanism is unrelated to that of these genes in GAS, the locus has been renamed covR, for "control of virulence genes" in GAS. Transcription of the covR operon was also increased in the nonpolar insertion mutant, indicating that CovR represses its own synthesis as well. All phenotypes of the covR nonpolar insertion mutant were complemented by the covR gene on a plasmid. CovR acts on operons expressed both in exponential and in stationary phase, demonstrating that the CovR-CovS pathway is separate from growth phase-dependent regulation in GAS. Therefore, CovR is the first multiple-gene repressor of virulence factors described for this important human pathogen. PMID:10368137

  5. A Response Regulator That Represses Transcription of Several Virulence Operons in the Group A Streptococcus

    PubMed Central

    Federle, Michael J.; McIver, Kevin S.; Scott, June R.

    1999-01-01

    A search for homologs of the Bacillus subtilis PhoP response regulator in the group A streptococcus (GAS) genome revealed three good candidates. Inactivation of one of these, recently identified as csrR (J. C. Levin and M. R. Wessels, Mol. Microbiol. 30:209–219, 1998), caused the strain to produce mucoid colonies and to increase transcription of hasA, the first gene in the operon for capsule synthesis. We report here that a nonpolar insertion in this gene also increased transcription of ska (encoding streptokinase), sagA (streptolysin S), and speMF (mitogenic factor) but did not affect transcription of slo (streptolysin O), mga (multiple gene regulator of GAS), emm (M protein), scpA (complement C5a peptidase), or speB or speC (pyrogenic exotoxins B and C). The amounts of streptokinase, streptolysin S, and capsule paralleled the levels of transcription of their genes in all cases. Because CsrR represses genes unrelated to those for capsule synthesis, and because CsrA-CsrB is a global regulatory system in Escherichia coli whose mechanism is unrelated to that of these genes in GAS, the locus has been renamed covR, for “control of virulence genes” in GAS. Transcription of the covR operon was also increased in the nonpolar insertion mutant, indicating that CovR represses its own synthesis as well. All phenotypes of the covR nonpolar insertion mutant were complemented by the covR gene on a plasmid. CovR acts on operons expressed both in exponential and in stationary phase, demonstrating that the CovR-CovS pathway is separate from growth phase-dependent regulation in GAS. Therefore, CovR is the first multiple-gene repressor of virulence factors described for this important human pathogen. PMID:10368137

  6. The estrogen receptor-α-induced microRNA signature regulates itself and its transcriptional response

    PubMed Central

    Castellano, Leandro; Giamas, Georgios; Jacob, Jimmy; Coombes, R. Charles; Lucchesi, Walter; Thiruchelvam, Paul; Barton, Geraint; Jiao, Long R.; Wait, Robin; Waxman, Jonathan; Hannon, Gregory J.; Stebbing, Justin

    2009-01-01

    Following estrogenic activation, the estrogen receptor-α (ERα) directly regulates the transcription of target genes via DNA binding. MicroRNAs (miRNAs) modulated by ERα have the potential to fine tune these regulatory systems and also provide an alternate mechanism that could impact on estrogen-dependent developmental and pathological systems. Through a microarray approach, we identify the subset of microRNAs (miRNAs) modulated by ERα, which include upregulation of miRNAs derived from the processing of the paralogous primary transcripts (pri-) mir-17–92 and mir-106a-363. Characterization of the mir-17–92 locus confirms that the ERα target protein c-MYC binds its promoter in an estrogen-dependent manner. We observe that levels of pri-mir-17–92 increase earlier than the mature miRNAs derived from it, implicating precursor cleavage modulation after transcription. Pri-mir-17–92 is immediately cleaved by DROSHA to pre-miR-18a, indicating that its regulation occurs during the formation of the mature molecule from the precursor. The clinical implications of this novel regulatory system were confirmed by demonstrating that pre-miR-18a was significantly upregulated in ERα-positive compared to ERα-negative breast cancers. Mechanistically, miRNAs derived from these paralogous pri-miRNAs (miR-18a, miR-19b, and miR-20b) target and downregulate ERα, while a subset of pri-miRNA-derived miRNAs inhibit protein translation of the ERα transcriptional p160 coactivator, AIB1. Therefore, different subsets of miRNAs identified act as part of a negative autoregulatory feedback loop. We propose that ERα, c-MYC, and miRNA transcriptional programs invoke a sophisticated network of interactions able to provide the wide range of coordinated cellular responses to estrogen. PMID:19706389

  7. A Novel Peroxisome Proliferator Response Element Modulates Hepatic Low Density Lipoprotein Receptor Gene Transcription in Response to PPARδ Activation

    PubMed Central

    Shende, Vikram R.; Singh, Amar Bahadur; Liu, Jingwen

    2016-01-01

    The hepatic expression of LDLR gene is regulated primarily at the transcriptional level by a sterol-regulatory element (SRE) in its proximal promoter region which is the site of action of SRE-binding protein 2 (SREBP2). However whether additional cis-regulatory elements contribute to LDLR transcription has not been fully explored. We investigated the function of a putative PPAR-response element (PPRE) sequence motif located at −768 to −752 bases upstream of the transcription start site of human LDLR gene in response to PPARδ activation. Promoter luciferase reporter analyses showed that treating HepG2 cells with PPARδ agonist L165041 markedly increased the activity of a full-length LDLR promoter construct (pLDLR-1192) without any effects on the shorter promoter reporter pLDLR-234 that contains only the core regulatory elements SRE-1 and SP1 sites. Importantly, mutation of the PPRE sequence greatly attenuated the induction of the full-length LDLR promoter activity by L165041 without affecting rosuvastatin mediated transactivation. Electrophoretic mobility shift and chromatin immunoprecipitation assays further confirmed the binding of PPARδ to the LDLR-PPRE site. Treating HepG2 cells with L165041 elevated the mRNA and protein expressions of LDLR without affecting the LDLR mRNA decay rate. The induction of LDLR expression by PPARδ agonist was further observed in liver tissue of mice and hamsters treated with L165041. Altogether, our studies identify a novel PPRE-mediated regulatory mechanism for LDLR transcription and suggest that combined treatment of statin with PPARδ agonists may have advantageous effects on LDLR expression. PMID:26443862

  8. Functions of heat shock transcription factors involved in response to photooxidative stresses in Arabidopsis.

    PubMed

    Yabuta, Yukinori

    2016-07-01

    Because plants are continually exposed to various environmental stresses, they possess numerous transcription factors that regulate metabolism to adapt and acclimate to those conditions. To clarify the gene regulation systems activated in response to photooxidative stress, we isolated 76 high light and heat shock stress-inducible genes, including heat shock transcription factor (Hsf) A2 from Arabidopsis. Unlike yeast or animals, more than 20 genes encoding putative Hsfs are present in the genomes of higher plants, and they are categorized into three classes based on their structural characterization. However, the multiplicity of Hsfs in plants remains unknown. Furthermore, the individual functions of Hsfs are also largely unknown because of their genetic redundancy. Recently, the developments of T-DNA insertion knockout mutant lines and chimeric repressor gene-silencing technology have provided effective tools for exploring the individual functions of Hsfs. This review describes the current knowledge on the individual functions and activation mechanisms of Hsfs. PMID:27095030

  9. Escape process in systems characterized by stable noises and position-dependent resting times

    NASA Astrophysics Data System (ADS)

    Srokowski, Tomasz

    2016-06-01

    Stochastic systems characterized by a random driving in a form of the general stable noise are considered. The particle experiences long rests due to the traps the density of which is position dependent and obeys a power-law form attributed to the underlying self-similar structure. Both the one- and two-dimensional cases are analyzed. The random walk description involves a position-dependent waiting time distribution. On the other hand, the stochastic dynamics is formulated in terms of the subordination technique where the random time generator is position dependent. The first passage time problem is addressed by evaluating a first passage time density distribution and an escape rate. The influence of the medium nonhomogeneity on those quantities is demonstrated; moreover, the dependence of the escape rate on the stability index and the memory parameter is evaluated. Results indicate essential differences between the Gaussian case and the case involving Lévy flights.

  10. Escape process in systems characterized by stable noises and position-dependent resting times.

    PubMed

    Srokowski, Tomasz

    2016-06-01

    Stochastic systems characterized by a random driving in a form of the general stable noise are considered. The particle experiences long rests due to the traps the density of which is position dependent and obeys a power-law form attributed to the underlying self-similar structure. Both the one- and two-dimensional cases are analyzed. The random walk description involves a position-dependent waiting time distribution. On the other hand, the stochastic dynamics is formulated in terms of the subordination technique where the random time generator is position dependent. The first passage time problem is addressed by evaluating a first passage time density distribution and an escape rate. The influence of the medium nonhomogeneity on those quantities is demonstrated; moreover, the dependence of the escape rate on the stability index and the memory parameter is evaluated. Results indicate essential differences between the Gaussian case and the case involving Lévy flights. PMID:27415243

  11. Switch from Stress Response to Homeobox Transcription Factors in Adipose Tissue After Profound Fat Loss

    PubMed Central

    Stavrum, Anne-Kristin; Stansberg, Christine; Holdhus, Rita; Hoang, Tuyen; Veum, Vivian L.; Christensen, Bjørn Jostein; Våge, Villy; Sagen, Jørn V.; Steen, Vidar M.; Mellgren, Gunnar

    2010-01-01

    Background In obesity, impaired adipose tissue function may promote secondary disease through ectopic lipid accumulation and excess release of adipokines, resulting in systemic low-grade inflammation, insulin resistance and organ dysfunction. However, several of the genes regulating adipose tissue function in obesity are yet to be identified. Methodology/Principal Findings In order to identify novel candidate genes that may regulate adipose tissue function, we analyzed global gene expression in abdominal subcutaneous adipose tissue before and one year after bariatric surgery (biliopancreatic diversion with duodenal switch, BPD/DS) (n = 16). Adipose tissue from lean healthy individuals was also analyzed (n = 13). Two different microarray platforms (AB 1700 and Illumina) were used to measure the differential gene expression, and the results were further validated by qPCR. Surgery reduced BMI from 53.3 to 33.1 kg/m2. The majority of differentially expressed genes were down-regulated after profound fat loss, including transcription factors involved in stress response, inflammation, and immune cell function (e.g., FOS, JUN, ETS, C/EBPB, C/EBPD). Interestingly, a distinct set of genes was up-regulated after fat loss, including homeobox transcription factors (IRX3, IRX5, HOXA5, HOXA9, HOXB5, HOXC6, EMX2, PRRX1) and extracellular matrix structural proteins (COL1A1, COL1A2, COL3A1, COL5A1, COL6A3). Conclusions/Significance The data demonstrate a marked switch of transcription factors in adipose tissue after profound fat loss, providing new molecular insight into a dichotomy between stress response and metabolically favorable tissue development. Our findings implicate homeobox transcription factors as important regulators of adipose tissue function. PMID:20543949

  12. Transcriptional response of chicken embryo cells to Newcastle disease virus (D58 strain) infection.

    PubMed

    Kumar, Ramesh; Kirubaharan, J John; Chandran, N Daniel Joy; Gnanapriya, N

    2013-09-01

    Newcastle disease virus (NDV), the causative agent of Newcastle disease (ND) in chicken causes significant economic loss for the poultry industry worldwide. The mechanism involved in host response to NDV infection is not well understood. For better understanding of the virus-host interaction; transcriptional profile of some genes of chicken embryo (CE) cells infected with NDV vaccine strain D58 was established using quantitative RT-PCR SYBR Green method. The relative standard curve method was used to measure the level of transcripts of the cellular genes against an endogenous control (β actin) gene. Among the genes studied, IFN α, IFN γ, MHC I and DDX 1 were up-regulated while IL 6 was down regulated. The expression of viral genes (M and F) in the infected CE cells was also confirmed by relative quantification. The host cellular genes involved in pro-inflammatory response, interferon-regulated proteins and the cellular immune response were affected by NDV infection, indicating involvement of complex signaling pathways of host cell responses to the infection. Thus, this study contributes to the understanding of the pathogenesis of ND and provides an insight into the virus-host interaction. PMID:24426287

  13. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    PubMed Central

    2011-01-01

    Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548

  14. Transcriptome-wide identification of bread wheat WRKY transcription factors in response to drought stress.

    PubMed

    Okay, Sezer; Derelli, Ebru; Unver, Turgay

    2014-10-01

    The WRKY superfamily of transcription factors was shown to be involved in biotic and abiotic stress responses in plants such as wheat (Triticum aestivum L.), one of the major crops largely cultivated and consumed all over the world. Drought is an important abiotic stress resulting in a considerable amount of loss in agronomical yield. Therefore, identification of drought responsive WRKY members in wheat has a profound significance. Here, a total of 160 TaWRKY proteins were characterized according to sequence similarity, motif varieties, and their phylogenetic relationships. The conserved sequences of the TaWRKYs were aligned and classified into three main groups and five subgroups. A novel motif in wheat, WRKYGQR, was identified. To putatively determine the drought responsive TaWRKY members, publicly available RNA-Seq data were analyzed for the first time in this study. Through in silico searches, 35 transcripts were detected having an identity to ten known TaWRKY genes. Furthermore, relative expression levels of TaWRKY16/TaWRKY16-A, TaWRKY17, TaWRKY19-C, TaWRKY24, TaWRKY59, TaWRKY61, and TaWRKY82 were measured in root and leaf tissues of drought-tolerant Sivas 111/33 and susceptible Atay 85 cultivars. All of the quantified TaWRKY transcripts were found to be up-regulated in root tissue of Sivas 111/33. Differential expression of TaWRKY16, TaWRKY24, TaWRKY59, TaWRKY61 and TaWRKY82 genes was discovered for the first time upon drought stress in wheat. These comprehensive analyses bestow a better understanding about the WRKY TFs in bread wheat under water deficit, and increased number of drought responsive WRKYs would contribute to the molecular breeding of tolerant wheat cultivars. PMID:24748053

  15. The Pho4 transcription factor mediates the response to arsenate and arsenite in Candida albicans

    PubMed Central

    Urrialde, Verónica; Prieto, Daniel; Pla, Jesús; Alonso-Monge, Rebeca

    2015-01-01

    Arsenate (As (V)) is the dominant form of the toxic metalloid arsenic (As). Microorganisms have consequently developed mechanisms to detoxify and tolerate this kind of compounds. In the present work, we have explored the arsenate sensing and signaling mechanisms in the pathogenic fungus Candida albicans. Although mutants impaired in the Hog1 or Mkc1-mediated pathways did not show significant sensitivity to this compound, both Hog1 and Mkc1 became phosphorylated upon addition of sodium arsenate to growing cells. Hog1 phosphorylation upon arsenate challenge was shown to be Ssk1-dependent. A screening designed for the identification of transcription factors involved in the arsenate response identified Pho4, a transcription factor of the myc-family, as pho4 mutants were susceptible to As (V). The expression of PHO4 was shortly induced in the presence of sodium arsenate in a Hog1-independent manner. Pho4 level affects Hog1 phosphorylation upon As (V) challenge, suggesting an indirect relationship between Pho4 activity and signaling in C. albicans. Pho4 also mediates the response to arsenite as revealed by the fact that pho4 defective mutants are sensitive to arsenite and Pho4 becomes phosphorylated upon sodium arsenite addition. Arsenite also triggers Hog1 phosphorylation by a process that is, in this case, independent of the Ssk1 kinase. These results indicate that the HOG pathway mediates the response to arsenate and arsenite in C. albicans and that the Pho4 transcription factor can differentiate among As (III), As (V) and Pi, triggering presumably specific responses. PMID:25717325

  16. Transcriptional and antagonistic responses of Pseudomonas fluorescens Pf0-1 to phylogenetically different bacterial competitors.

    PubMed

    Garbeva, Paolina; Silby, Mark W; Raaijmakers, Jos M; Levy, Stuart B; Boer, Wietse de

    2011-06-01

    The ability of soil bacteria to successfully compete with a range of other microbial species is crucial for their growth and survival in the nutrient-limited soil environment. In the present work, we studied the behavior and transcriptional responses of soil-inhabiting Pseudomonas fluorescens strain Pf0-1 on nutrient-poor agar to confrontation with strains of three phylogenetically different bacterial genera, that is, Bacillus, Brevundimonas and Pedobacter. Competition for nutrients was apparent as all three bacterial genera had a negative effect on the density of P. fluorescens Pf0-1; this effect was most strong during the interaction with Bacillus. Microarray-based analyses indicated strong differences in the transcriptional responses of Pf0-1 to the different competitors. There was higher similarity in the gene expression response of P. fluorescens Pf0-1 to the Gram-negative bacteria as compared with the Gram-positive strain. The Gram-negative strains did also trigger the production of an unknown broad-spectrum antibiotic in Pf0-1. More detailed analysis indicated that expression of specific Pf0-1 genes involved in signal transduction and secondary metabolite production was strongly affected by the competitors' identity, suggesting that Pf0-1 can distinguish among different competitors and fine-tune its competitive strategies. The results presented here demonstrate that P. fluorescens Pf0-1 shows a species-specific transcriptional and metabolic response to bacterial competitors and provide new leads in the identification of specific cues in bacteria-bacteria interactions and of novel competitive strategies, antimicrobial traits and genes. PMID:21228890

  17. MHC class II transcription is associated with inflammatory responses in a wild marine mammal.

    PubMed

    Montano-Frías, Jorge E; Vera-Massieu, Camila; Álvarez-Martínez, Roberto; Flores-Morán, Adriana; Acevedo-Whitehouse, Karina

    2016-08-01

    Inflammation is one of the most important non-specific and rapid responses that a vertebrate can elicit in response to damage or a foreign insult. To date, despite increasing evidence that the innate and adaptive branches of immunity are more intricately related than previously thought, few have examined interactions between the Major Histocompatibility Complex (MHC, a polymorphic region of the vertebrate genome that is involved with antigen presentation) and inflammation, and even less is known about these interactions in an eco-immunological context. Here, we examined the effect of MHC class II DRB gene multiplicity and transcription on phytohemagglutinin (PHA)-induced inflammation during the early stages of development of California sea lions. Neither constitutive nor expressed ZacaDRB diversity was found to be associated with pup responses to PHA at any of the stages of pup development. However, for two-month-old pups, those with a specific MHC-DRB locus (ZacaDRB-A) tended to have less efficient responsive inflammation. Transcription of distinct MHC-DRB loci was also linked to PHA-induced inflammation, with patterns that varied markedly between ages, and that suggested that ongoing infectious processes could limit the capacity to respond to a secondary challenge. Life history constraints and physiological processes associated with development of California sea lions, in conjunction with their changing pathogenic environment could explain the observed effects of MHC class II transcription on PHA-induced inflammation. To our knowledge, ours is the first study to examine the importance of expressed vs. constitutive MHC loci on inflammation in a natural population. PMID:27137083

  18. The transcriptional response of Saccharomyces cerevisiae to proapoptotic concentrations of Pichia membranifaciens killer toxin.

    PubMed

    Santos, A; Marquina, D

    2011-10-01

    PMKT (Pichia membranifaciens killer toxin) reportedly has antimicrobial activity against yeasts and filamentous fungi. In previous research we posited that high PMKT concentrations pose a serious challenge for cell survival by disrupting plasma membrane electrochemical gradients, inducing a transcriptional response similar to that of certain stimuli such as hyperosmotic shock. This response was related to the HOG-pathway with Hog1p phosphorylation and a transitional increase in intracellular glycerol accumulation. Such a response was consistent with the notion that the effect induced by high PMKT concentrations lies in an alteration to the ionic homeostasis of the sensitive cell. By contrast, the evidence presented here shows that low PMKT doses lead to a cell death process in Saccharomyces cerevisiae accompanied by cytological and biochemical indicators of apoptotic programmed cell death, namely, the production of reactive oxygen species, DNA strand breaks, metacaspase activation and cytochrome c release. Furthermore, dying cells progressed from an apoptotic state to a secondary necrotic state, and the rate at which this change occurred was proportional to the intensity of the stimulus. We have explored the global gene expression response of S. cerevisiae during that stimulus. The results obtained from DNA microarrays indicate that genes related with an oxidative stress response were induced in response to proapoptotic concentrations of PMKT, showing that the coordinated transcriptional response is not coincident with that obtained when ionophoric concentrations of PMKT are used. By contrast, cwp2Δ mutants showed no signs of apoptosis, indicating that the initial steps of the killer mechanism coincide when proapoptotic (low) or ionophoric (high) PMKT concentrations are used. Additionally, low dosages of PMKT promoted Hog1p phosphorylation and glycerol accumulation. PMID:21801845

  19. Genome-Wide Transcriptional Profiling of the Escherichia coli Responses to Superoxide Stress and Sodium Salicylate

    PubMed Central

    Pomposiello, Pablo J.; Bennik, Marjon H. J.; Demple, Bruce

    2001-01-01

    Escherichia coli responds to oxidative stress by activating sets of coregulated genes that help the cell to maintain homeostasis. Identified previously by genetic and biochemical approaches, the soxRS system mediates the induction of 18 of these redox-inducible genes (including the soxS gene itself). An overlapping set of genes is activated by an assortment of structurally unrelated molecules with antibiotic activities; many genes in this response are controlled by the marRAB system. The activation of either the soxRS or the marRAB system results in enhanced resistance to both superoxide-generating agents and multiple antibiotics. In order to probe the extent of these regulatory networks, we have measured whole-genome transcriptional profiles of the E. coli response to the superoxide-generating agent paraquat (PQ), an inducer of the soxRS system, and to the weak acid salt sodium salicylate (NaSal), an inducer of the marRA system. A total of 112 genes was modulated in response to PQ, while 134 genes were modulated in response to NaSal. We have also obtained transcriptional profiles of the SoxS and MarA regulons in the absence of global stress, in order to establish the regulatory hierarchies within the global responses. Several previously unrelated genes were shown to be under SoxS or MarA control. The genetic responses to both environmental insults revealed several common themes, including the activation of genes coding for functions that replenish reducing potential; regulate iron transport and storage; and participate in sugar and amino acid transport, detoxification, protein modification, osmotic protection, and peptidoglycan synthesis. A large number of PQ- and NaSal-responsive genes have no known function, suggesting that many adaptive metabolic changes that ensue after stress remain uncharacterized. PMID:11395452

  20. Myonuclear transcription is responsive to mechanical load and DNA content but uncoupled from cell size during hypertrophy

    PubMed Central

    Kirby, Tyler J.; Patel, Rooshil M.; McClintock, Timothy S.; Dupont-Versteegden, Esther E.; Peterson, Charlotte A.; McCarthy, John J.

    2016-01-01

    Myofibers increase size and DNA content in response to a hypertrophic stimulus, thus providing a physiological model with which to study how these factors affect global transcription. Using 5-ethynyl uridine (EU) to metabolically label nascent RNA, we measured a sevenfold increase in myofiber transcription during early hypertrophy before a change in cell size and DNA content. The typical increase in myofiber DNA content observed at the later stage of hypertrophy was associated with a significant decrease in the percentage of EU-positive myonuclei; however, when DNA content was held constant by preventing myonuclear accretion via satellite cell depletion, both the number of transcriptionally active myonuclei and the amount of RNA generated by each myonucleus increased. During late hypertrophy, transcription did not scale with cell size, as smaller myofibers (<1000 μm2) demonstrated the highest transcriptional activity. Finally, transcription was primarily responsible for changes in the expression of genes known to regulate myofiber size. These findings show that resident myonuclei possess a significant reserve capacity to up-regulate transcription during hypertrophy and that myofiber transcription is responsive to DNA content but uncoupled from cell size during hypertrophy. PMID:26764089

  1. Transcriptional Responses Associated with Virulence and Defence in the Interaction between Heterobasidion annosum s.s. and Norway Spruce

    PubMed Central

    Lundén, Karl; Danielsson, Marie; Durling, Mikael Brandström; Ihrmark, Katarina; Gorriz, Miguel Nemesio; Stenlid, Jan; Asiegbu, Frederick O.; Elfstrand, Malin

    2015-01-01

    Heterobasidion annosum sensu lato is a serious pathogen causing root and stem rot to conifers in the northern hemisphere and rendering the timber defective for sawing and pulping. In this study we applied next-generation sequencing to i) identify transcriptional responses unique to Heterobasidion-inoculated Norway spruce and ii) investigate the H. annosum transcripts to identify putative virulence factors. To address these objectives we wounded or inoculated 30-year-old Norway spruce clones with H. annosum and 454-sequenced the transcriptome of the interaction at 0, 5 and 15 days post inoculation. The 491860 high-quality reads were de novo assembled and the relative expression was analysed. Overall, very few H. annosum transcripts were represented in our dataset. Three delta-12 fatty acid desaturase transcripts and one Clavaminate synthase-like transcript, both associated with virulence in other pathosystems, were found among the significantly induced transcripts. The analysis of the Norway spruce transcriptional responses produced a handful of differentially expressed transcripts. Most of these transcripts originated from genes known to respond to H. annosum. However, three genes that had not previously been reported to respond to H. annosum showed specific induction to inoculation: an oxophytodienoic acid–reductase (OPR), a beta–glucosidase and a germin-like protein (GLP2) gene. Even in a small data set like ours, five novel highly expressed Norway spruce transcripts without significant alignment to any previously annotated protein in Genbank but present in the P. abies (v1.0) gene catalogue were identified. Their expression pattern suggests a role in defence. Therefore a more complete survey of the transcriptional responses in the interactions between Norway spruce and its major pathogen H. annosum would probably provide a better understanding of gymnosperm defence than accumulated until now. PMID:26151363

  2. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish

    PubMed Central

    Goodale, Britton C.; Tilton, Susan C.; Wilson, Glenn; Corvi, Margaret M.; Janszen, Derek B.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert L.

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the Aryl Hydrocarbon Receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and-independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 hours post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures. PMID:23656968

  3. Tissue contaminants and associated transcriptional response in trout liver from high elevation lakes of Washington

    USGS Publications Warehouse

    Moran, P.W.; Aluru, N.; Black, R.W.; Vijayan, M.M.

    2007-01-01

    The consistent cold temperatures and large amount of precipitation in the Olympic and Cascade ranges of Washington State are thought to enhance atmospheric deposition of contaminants. However, little is known about contaminant levels in organisms residing in these remote high elevation lakes. We measured total mercury and 28 organochlorine compounds in trout collected from 14 remote lakes in the Olympic, Mt. Rainer, and North Cascades National Parks. Mercury was detected in trout from all lakes sampled (15 to 262 ??g/kg ww), while two organochlorines, total polychlorinated biphenyls (tPCB) and dichlorodiphenyldichloroethylene (DDE), were also detected in these fish tissues (<25 ??g/kg ww). In sediments, organochlorine levels were below detection, while median total and methyl mercury were 30.4 and 0.34 ??g/ kg dry weight (ww), respectively. Using fish from two lakes, representing different contaminant loading levels (Wilcox lake: high; Skymo lake: low), we examined transcriptional response in the liver using a custom-made low-density targeted rainbow trout cDNA microarray. We detected significant differences in liver transcriptional response, including significant changes in metabolic, endocrine, and immune-related genes, in fish collected from Wilcox Lake compared to Skymo Lake. Overall, our results suggest that local urban areas contribute to the observed contaminant patterns in these high elevation lakes, while the transcriptional changes point to a biological response associated with exposure to these contaminants in fish. Specifically, the gene expression pattern leads us to hypothesize a role for mercury in disrupting the metabolic and reproductive pathways in fish from high elevation lakes in western Washington. ?? 2007 American Chemical Society.

  4. Tissue contaminants and associated transcriptional response in trout liver from high elevation lakes of Washington.

    PubMed

    Moran, Patrick W; Aluru, Neelakanteswar; Black, Robert W; Vijayan, Mathilakath M

    2007-09-15

    The consistent cold temperatures and large amount of precipitation in the Olympic and Cascade ranges of Washington State are thought to enhance atmospheric deposition of contaminants. However, little is known about contaminant levels in organisms residing in these remote high elevation lakes. We measured total mercury and 28 organochlorine compounds in trout collected from 14 remote lakes in the Olympic, Mt. Rainer, and North Cascades National Parks. Mercury was detected in trout from all lakes sampled (15 to 262 microg/kg ww), while two organochlorines, total polychlorinated biphenyls (tPCB) and dichlorodiphenyldichloroethylene (DDE), were also detected in these fish tissues (<25 microg/kg ww). In sediments, organochlorine levels were below detection, while median total and methyl mercury were 30.4 and 0.34 microg/kg dry weight (ww), respectively. Using fish from two lakes, representing different contaminant loading levels (Wilcox lake: high; Skymo lake: low), we examined transcriptional response in the liver using a custom-made low-density targeted rainbow trout cDNA microarray. We detected significant differences in liver transcriptional response, including significant changes in metabolic, endocrine, and immune-related genes, in fish collected from Wilcox Lake compared to Skymo Lake. Overall, our results suggest that local urban areas contribute to the observed contaminant patterns in these high elevation lakes, while the transcriptional changes point to a biological response associated with exposure to these contaminants in fish. Specifically, the gene expression pattern leads us to hypothesize a role for mercury in disrupting the metabolic and reproductive pathways in fish from high elevation lakes in western Washington. PMID:17948813

  5. Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  6. Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J.

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  7. Structurally Distinct Polycyclic Aromatic Hydrocarbons Induce Differential Transcriptional Responses in Developing Zebrafish

    SciTech Connect

    Goodale, Britton; Tilton, Susan C.; Corvi, Margaret M.; Wilson, Glenn V.; Janszen, Derek B.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert

    2013-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures.

  8. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription

    PubMed Central

    Kobayashi, Eri H.; Suzuki, Takafumi; Funayama, Ryo; Nagashima, Takeshi; Hayashi, Makiko; Sekine, Hiroki; Tanaka, Nobuyuki; Moriguchi, Takashi; Motohashi, Hozumi; Nakayama, Keiko; Yamamoto, Masayuki

    2016-01-01

    Nrf2 (NF-E2-related factor-2) transcription factor regulates oxidative/xenobiotic stress response and also represses inflammation. However, the mechanisms how Nrf2 alleviates inflammation are still unclear. Here, we demonstrate that Nrf2 interferes with lipopolysaccharide-induced transcriptional upregulation of proinflammatory cytokines, including IL-6 and IL-1β. Chromatin immunoprecipitation (ChIP)-seq and ChIP-qPCR analyses revealed that Nrf2 binds to the proximity of these genes in macrophages and inhibits RNA Pol II recruitment. Further, we found that Nrf2-mediated inhibition is independent of the Nrf2-binding motif and reactive oxygen species level. Murine inflammatory models further demonstrated that Nrf2 interferes with IL6 induction and inflammatory phenotypes in vivo. Thus, contrary to the widely accepted view that Nrf2 suppresses inflammation through redox control, we demonstrate here that Nrf2 opposes transcriptional upregulation of proinflammatory cytokine genes. This study identifies Nrf2 as the upstream regulator of cytokine production and establishes a molecular basis for an Nrf2-mediated anti-inflammation approach. PMID:27211851

  9. Genome-wide transcriptional responses to carbon starvation in nongrowing Lactococcus lactis.

    PubMed

    Ercan, Onur; Wels, Michiel; Smid, Eddy J; Kleerebezem, Michiel

    2015-04-01

    This paper describes the transcriptional adaptations of nongrowing, retentostat cultures of Lactococcus lactis to starvation. Near-zero-growth cultures (μ = 0.0001 h(-1)) obtained by extended retentostat cultivation were exposed to starvation by termination of the medium supply for 24 h, followed by a recovery period of another 24 h by reinitiating the medium supply to the retentostat culture. During starvation, the viability of the culture was largely retained, and the expression of genes involved in transcription and translational machineries, cell division, and cell membrane energy metabolism was strongly repressed. Expression of these genes was largely recovered following the reinitiation of the medium supply. Starvation triggered the elevated expression of genes associated with synthesis of branched-chain amino acids, histidine, purine, and riboflavin. The expression of these biosynthesis genes was found to remain at an elevated level after reinitiation of the medium supply. In addition, starvation induced the complete gene set predicted to be involved in natural competence in L. lactis KF147, and the elevated expression of these genes was sustained during the subsequent recovery period, but our attempts to experimentally demonstrate natural transformation in these cells failed. Mining the starvation response gene set identified a conserved cis-acting element that resembles the lactococcal CodY motif in the upstream regions of genes associated with transcription and translational machineries, purine biosynthesis, and natural transformation in L. lactis, suggesting a role for CodY in the observed transcriptome adaptations to starvation in nongrowing cells. PMID:25636846

  10. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo

    PubMed Central

    Lim, Hee-Woong; Uhlenhaut, N. Henriette; Rauch, Alexander; Weiner, Juliane; Hübner, Sabine; Hübner, Norbert; Won, Kyoung-Jae; Lazar, Mitchell A.; Tuckermann, Jan; Steger, David J.

    2015-01-01

    Glucocorticoids (GCs) are commonly prescribed drugs, but their anti-inflammatory benefits are mitigated by metabolic side effects. Their transcriptional effects, including tissue-specific gene activation and repression, are mediated by the glucocorticoid receptor (GR), which is known to bind as a homodimer to a palindromic DNA sequence. Using ChIP-exo in mouse liver under endogenous corticosterone exposure, we report here that monomeric GR interaction with a half-site motif is more prevalent than homodimer binding. Monomers colocalize with lineage-determining transcription factors in both liver and primary macrophages, and the GR half-site motif drives transcription, suggesting that monomeric binding is fundamental to GR's tissue-specific functions. In response to exogenous GC in vivo, GR dimers assemble on chromatin near ligand-activated genes, concomitant with monomer evacuation of sites near repressed genes. Thus, pharmacological GCs mediate gene expression by favoring GR homodimer occupancy at classic palindromic sites at the expense of monomeric binding. The findings have important implications for improving therapies that target GR. PMID:25957148

  11. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation

    PubMed Central

    El-Sayed, Ashraf S. A.; Yassin, Marwa A.; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway. PMID:26633307

  12. Pokemon (FBI-1) interacts with Smad4 to repress TGF-β-induced transcriptional responses.

    PubMed

    Yang, Yutao; Cui, Jiajun; Xue, Feng; Zhang, Chuanfu; Mei, Zhu; Wang, Yue; Bi, Mingjun; Shan, Dapeng; Meredith, Alex; Li, Hui; Xu, Zhi-Qing David

    2015-03-01

    Pokemon, an important proto-oncoprotein, is a transcriptional repressor that belongs to the POK (POZ and Krüppel) family. Smad4, a key component of TGF-β pathway, plays an essential role in TGF-β-induced transcriptional responses. In this study, we show that Pokemon can interact directly with Smad4 both in vitro and in vivo. Overexpression of Pokemon decreases TGF-β-induced transcriptional activities, whereas knockdown of Pokemon increases these activities. Interestingly, Pokemon does not affect activation of Smad2/3, formation of Smads complex, or DNA binding activity of Smad4. TGF-β1 treatment increases the interaction between Pokemon and Smad4, and also enhances the recruitment of Pokemon to Smad4-DNA complex. In addition, we also find that Pokemon recruits HDAC1 to Smad4 complex but decreases the interaction between Smad4 and p300/CBP. Taken together, all these data suggest that Pokemon is a new partner of Smad4 and plays a negative role in TGF-β pathway. PMID:25514493

  13. Dynamic transcriptional changes in response to rehydration in Anabaena sp. PCC 7120.

    PubMed

    Higo, Akiyoshi; Suzuki, Takayuki; Ikeuchi, Masahiko; Ohmori, Masayuki

    2007-11-01

    Global transcriptional responses to dehydration and rehydration were determined in Anabaena sp. PCC 7120. Nearly 300 genes were up- or downregulated during both dehydration and rehydration. While as many as 133 genes showed dehydration-specific downregulation, only 29 genes showed dehydration-specific upregulation. In contrast, while only 13 genes showed rehydration-specific downregulation, as many as 259 genes showed rehydration-specific upregulation. The genes upregulated during rehydration responded rapidly and transiently, whereas those upregulated during dehydration did so gradually and persistently. The expression of various genes involved in DNA repair, protein folding and NAD synthesis, as well as genes responding to nitrogen depletion and CO2 limitation, was upregulated during rehydration. Although no genes for transcriptional regulators showed dehydration-specific upregulation, eight showed rehydration-specific upregulation. Among them, two genes, ancrpB and alr0618, encode putative transcriptional activators of the cAMP receptor protein (CRP) family. DNA microarray analysis using gene disruptants revealed that AnCrpB and Alr0618 regulate the genes induced by nitrogen depletion and by CO2 limitation, respectively. We conclude that rehydration is a complex process in which the expression of certain genes, particularly those for metabolism, is dramatically induced. PMID:17975076

  14. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo.

    PubMed

    Lim, Hee-Woong; Uhlenhaut, N Henriette; Rauch, Alexander; Weiner, Juliane; Hübner, Sabine; Hübner, Norbert; Won, Kyoung-Jae; Lazar, Mitchell A; Tuckermann, Jan; Steger, David J

    2015-06-01

    Glucocorticoids (GCs) are commonly prescribed drugs, but their anti-inflammatory benefits are mitigated by metabolic side effects. Their transcriptional effects, including tissue-specific gene activation and repression, are mediated by the glucocorticoid receptor (GR), which is known to bind as a homodimer to a palindromic DNA sequence. Using ChIP-exo in mouse liver under endogenous corticosterone exposure, we report here that monomeric GR interaction with a half-site motif is more prevalent than homodimer binding. Monomers colocalize with lineage-determining transcription factors in both liver and primary macrophages, and the GR half-site motif drives transcription, suggesting that monomeric binding is fundamental to GR's tissue-specific functions. In response to exogenous GC in vivo, GR dimers assemble on chromatin near ligand-activated genes, concomitant with monomer evacuation of sites near repressed genes. Thus, pharmacological GCs mediate gene expression by favoring GR homodimer occupancy at classic palindromic sites at the expense of monomeric binding. The findings have important implications for improving therapies that target GR. PMID:25957148

  15. Transcriptional Response to Acute Thermal Exposure in Juvenile Chinook Salmon Determined by RNAseq

    PubMed Central

    Tomalty, Katharine M. H.; Meek, Mariah H.; Stephens, Molly R.; Rincón, Gonzalo; Fangue, Nann A.; May, Bernie P.; Baerwald, Melinda R.

    2015-01-01

    Thermal exposure is a serious and growing challenge facing fish species worldwide. Chinook salmon (Oncorhynchus tshawytscha) living in the southern portion of their native range are particularly likely to encounter warmer water due to a confluence of factors. River alterations have increased the likelihood that juveniles will be exposed to warm water temperatures during their freshwater life stage, which can negatively impact survival, growth, and development and pose a threat to dwindling salmon populations. To better understand how acute thermal exposure affects the biology of salmon, we performed a transcriptional analysis of gill tissue from Chinook salmon juveniles reared at 12° and exposed acutely to water temperatures ranging from ideal to potentially lethal (12° to 25°). Reverse-transcribed RNA libraries were sequenced on the Illumina HiSeq2000 platform and a de novo reference transcriptome was created. Differentially expressed transcripts were annotated using Blast2GO and relevant gene clusters were identified. In addition to a high degree of downregulation of a wide range of genes, we found upregulation of genes involved in protein folding/rescue, protein degradation, cell death, oxidative stress, metabolism, inflammation/immunity, transcription/translation, ion transport, cell cycle/growth, cell signaling, cellular trafficking, and structure/cytoskeleton. These results demonstrate the complex multi-modal cellular response to thermal stress in juvenile salmon. PMID:25911227

  16. Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill

    PubMed Central

    Rivers, Adam R; Sharma, Shalabh; Tringe, Susannah G; Martin, Jeffrey; Joye, Samantha B; Moran, Mary Ann

    2013-01-01

    The Deepwater Horizon blowout released a massive amount of oil and gas into the deep ocean between April and July 2010, stimulating microbial blooms of petroleum-degrading bacteria. To understand the metabolic response of marine microorganisms, we sequenced ∼66 million community transcripts that revealed the identity of metabolically active microbes and their roles in petroleum consumption. Reads were assigned to reference genes from ∼2700 bacterial and archaeal taxa, but most assignments (39%) were to just six genomes representing predominantly methane- and petroleum-degrading Gammaproteobacteria. Specific pathways for the degradation of alkanes, aromatic compounds and methane emerged from the metatranscriptomes, with some transcripts assigned to methane monooxygenases representing highly divergent homologs that may degrade either methane or short alkanes. The microbial community in the plume was less taxonomically and functionally diverse than the unexposed community below the plume; this was due primarily to decreased species evenness resulting from Gammaproteobacteria blooms. Surprisingly, a number of taxa (related to SAR11, Nitrosopumilus and Bacteroides, among others) contributed equal numbers of transcripts per liter in both the unexposed and plume samples, suggesting that some groups were unaffected by the petroleum inputs and blooms of degrader taxa, and may be important for re-establishing the pre-spill microbial community structure. PMID:23902988

  17. Localization of O-GlcNAc modification on the serum response transcription factor.

    PubMed

    Reason, A J; Morris, H R; Panico, M; Marais, R; Treisman, R H; Haltiwanger, R S; Hart, G W; Kelly, W G; Dell, A

    1992-08-25

    A unique form of nucleoplasmic and cytoplasmic protein glycosylation, O-linked GlcNAc, has previously been detected, using Gal transferase labeling techniques, on a myriad of proteins (for review see Hart, G. W., Haltiwanger, R. S., Holt, G. D., and Kelly, W. G. (1989a) Annu. Rev. Biochem. 58, 841-874), including many RNA polymerase II transcription factors (Jackson, S. P., and Tjian, R. (1988) Cell 55, 125-133). However, virtually nothing is known about the degree of glycosylation at individual sites, or, indeed, the actual sites of attachment of O-GlcNAc on transcription factors. In this paper we provide rigorous evidence for the occurrence and locations of O-GlcNAc on the c-fos transcription factor, serum response factor (SRF), expressed in an insect cell line. Fast atom bombardment mass spectrometry (FAB-MS) of proteolytic digests of SRF provides evidence for the presence of a single substoichiometric O-GlcNAc residue on each of four peptides isolated after sequential cyanogen bromide, tryptic, and proline specific enzyme digestion: these peptides are 306VSASVSP312, 274GTTSTIQTAP283, 313SAVSSADGTVLK324, and 374DSSTDLTQTSSSGTVTLP391. Using an array of techniques, including manual Edman degradation, aminopeptidase, and elastase digestion, together with FAB-MS, the major sites of O-GlcNAc attachment were shown to be serine residues within short tandem repeat regions. The highest level of glycosylation was found on the SSS tandem repeat of peptide (374-391) which is situated within the transcriptional activation domain of SRF. The other glycosylation sites observed in SRF are located in the region of the protein between the DNA binding domain and the transcriptional activation domain. Glycosylation of peptides (274-283) and (313-324) was found to occur on the serine in the TTST tandem repeat and on serine 316 in the SS repeat, respectively. The lowest level of glycosylation was recovered in peptide (306-312) which lacks tandem repeats. All the glycosylation sites

  18. Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations

    PubMed Central

    Taymaz-Nikerel, Hilal; Cankorur-Cetinkaya, Ayca; Kirdar, Betul

    2016-01-01

    Cells respond to environmental and/or genetic perturbations in order to survive and proliferate. Characterization of the changes after various stimuli at different -omics levels is crucial to comprehend the adaptation of cells to the changing conditions. Genome-wide quantification and analysis of transcript levels, the genes affected by perturbations, extends our understanding of cellular metabolism by pointing out the mechanisms that play role in sensing the stress caused by those perturbations and related signaling pathways, and in this way guides us to achieve endeavors, such as rational engineering of cells or interpretation of disease mechanisms. Saccharomyces cerevisiae as a model system has been studied in response to different perturbations and corresponding transcriptional profiles were followed either statically or/and dynamically, short and long term. This review focuses on response of yeast cells to diverse stress inducing perturbations, including nutritional changes, ionic stress, salt stress, oxidative stress, osmotic shock, and to genetic interventions such as deletion and overexpression of genes. It is aimed to conclude on common regulatory phenomena that allow yeast to organize its transcriptomic response after any perturbation under different external conditions. PMID:26925399

  19. Rice ASR1 and ASR5 are complementary transcription factors regulating aluminium responsive genes.

    PubMed

    Arenhart, Rafael Augusto; Schunemann, Mariana; Bucker Neto, Lauro; Margis, Rogerio; Wang, Zhi-Yong; Margis-Pinheiro, Marcia

    2016-03-01

    Rice is the most tolerant staple crop to aluminium (Al) toxicity, which is a limiting stress for grain production worldwide. This Al tolerance is the result of combined mechanisms that are triggered in part by the transcription factor ASR5. ASRs are dual target proteins that participate as chaperones in the cytoplasm and as transcription factors in the nucleus. Moreover, these proteins respond to biotic and abiotic stresses, including salt, drought and Al. Rice plants with silenced ASR genes are highly sensitive to Al. ASR5, a well-characterized protein, binds to specific cis elements in Al responsive genes and regulates their expression. Because the Al sensitive phenotype found in silenced rice plants could be due to the mutual silencing of ASR1 and ASR5, we investigated the effect of the specific silencing of ASR5. Plants with artificial microRNA silencing of ASR5 present a non-transformed phenotype in response to Al because of the induction of ASR1. ASR1 has the same subcellular localization as ASR5, binds to ASR5 cis-regulatory elements, regulates ASR5 regulated genes in a non-preferential manner and might replace ASR5 under certain conditions. Our results indicate that ASR1 and ASR5 act in concert and complementarily to regulate gene expression in response to Al. PMID:26476017

  20. Transcriptional profiling of Petunia seedlings reveals candidate regulators of the cold stress response

    PubMed Central

    Li, Bei; Ning, Luyun; Zhang, Junwei; Bao, Manzhu; Zhang, Wei

    2015-01-01

    Petunias are important ornamentals with the capacity for cold acclimation. So far, there is limited information concerning gene regulation and signaling pathways associated with the cold stress response in petunias. A custom-designed petunia microarray representing 24816 genes was used to perform transcriptome profiling in petunia seedlings subjected to cold at 2°C for 0.5 h, 2 h, 24 h, and 5 d. A total of 2071 transcripts displayed differential expression patterns under cold stress, of which 1149 were up-regulated and 922 were down-regulated. Gene ontology enrichment analysis demarcated related biological processes, suggesting a possible link between flavonoid metabolism and plant adaptation to low temperatures. Many novel stress-responsive regulators were revealed, suggesting that diverse regulatory pathways may exist in petunias in addition to the well-characterized CBF pathway. The expression changes of selected genes under cold and other abiotic stress conditions were confirmed by real-time RT-PCR. Furthermore, weighted gene co-expression network analysis divided the petunia genes on the array into 65 modules that showed high co-expression and identified stress-specific hub genes with high connectivity. Our identification of these transcriptional responses and groups of differentially expressed regulators will facilitate the functional dissection of the molecular mechanism in petunias responding to environment stresses and extend our ability to improve cold tolerance in plants. PMID:25784921

  1. REDOX RESPONSIVE TRANSCRIPTION FACTOR1 is involved in age-dependent and systemic stress signaling

    PubMed Central

    Matsuo, Mitsuhiro; Oelmüller, Ralf

    2015-01-01

    REDOX RESPONSIVE TRANSCRIPTION FACTOR1 (RRTF1) regulates redox homeostasis under stress, however the mechanism is mainly unknown. In a recent publication, we analyzed rrtf1 knockout (ko) and RRTF1 overexpressor lines of Arabidopsis thaliana and showed that RRTF1 plays a crucial role in reactive oxygen species (ROS) production. Ko line produces less and overexpressor lines constitutively high levels of ROS under stress, and the amount of ROS increases with increase in stress and the RRTF1 level in the plant. The transcription factor also activates systemic ROS signaling under stress.1 In this report, we show that RRTF1 exerts different roles in young and old leaves. While RRTF1 enhances defense responses to high light (HL) stress in young leaves, it induces senescence and chlorosis in older leaves. These findings suggest that RRTF1 and/or RRTF1-mediated ROS signaling induce stress responses in an age-dependent manner, and the age-dependent alteration in the RRTF1 function might be important for plants' acclimation to the stress environment. PMID:26479402

  2. Different Transcript Patterns in Response to Specialist and Generalist Herbivores in the Wild Arabidopsis Relative Boechera divaricarpa

    PubMed Central

    Vogel, Heiko; Kroymann, Juergen; Mitchell-Olds, Thomas

    2007-01-01

    Background Plants defend themselves against herbivorous insects, utilizing both constitutive and inducible defenses. Induced defenses are controlled by several phytohormone-mediated signaling pathways. Here, we analyze transcriptional changes in the North American Arabidopsis relative Boechera divaricarpa in response to larval herbivory by the crucifer specialist lepidopteran Plutella xylostella (diamondback moth) and by the generalist lepidopteran Trichoplusia ni (cabbage semilooper), and compare them to wounding and exogenous phytohormone application. Methodology/Principal Findings We use a custom macroarray constructed from B. divaricarpa herbivory-regulated cDNAs identified by suppression subtractive hybridization and from known stress-responsive A. thaliana genes for transcript profiling after insect herbivory, wounding and in response to jasmonate, salicylate and ethylene. In addition, we introduce path analysis as a novel approach to analyze transcript profiles. Path analyses reveal that transcriptional responses to the crucifer specialist P. xylostella are primarily determined by direct effects of the ethylene and salicylate pathways, whereas responses to the generalist T. ni are influenced by the ethylene and jasmonate pathways. Wound-induced transcriptional changes are influenced by all three pathways, with jasmonate having the strongest effect. Conclusions/Significance Our results show that insect herbivory is distinct from simple mechanical plant damage, and that different lepidopteran herbivores elicit different transcriptional responses. PMID:17957263

  3. The isoprenoid pathway and transcriptional response to its inhibitors in the yeast Saccharomyces cerevisiae.

    PubMed

    Kuranda, Klaudia; François, Jean; Palamarczyk, Grazyna

    2010-02-01

    This review presents new insights into the regulation of the isoprenoid pathway in the yeast Saccharomyces cerevisiae, in particular the short-term transcriptional response to two inhibitors, lovastatin and zaragozic acid (ZA). Whereas lovastatin blocks whole isoprenoid pathway, ZA only blocks the sterol branch. Consequently, their effects on the cellular level of farnesyl diphosphate (FPP) are different. Lovastatin decreases the FPP level, whereas ZA, by inhibiting the main FPP-consuming enzyme, increases FPP availability in the cell. We discuss the role of genes whose expression is affected by both inhibitors and consider possible association of these genes with the regulation of the isoprenoid pathway. PMID:19744247

  4. Association between Positional Dependency and Obstruction Site in Obstructive Sleep Apnea Syndrome

    PubMed Central

    Sunwoo, Woong Sang; Hong, Sung-Lyong; Kim, Sang-Wook; Park, Sung Joon; Han, Doo Hee; Kim, Jeong-Whun; Lee, Chul Hee

    2012-01-01

    Objectives The purpose of this study is to find out associations between positional dependency and obstructive levels based on sleep videofluoroscopy (SVF) in patients with obstructive sleep apnea syndrome (OSAS). Methods Retrospective review was made of 91 OSAS patients who underwent polysomnography and SVF from August 2009 through June 2010. Polysomnography variables including apnea-hypopnea index (AHI), supine AHI, non-supine AHI, time spent in supine sleep position of the total sleep time and positional dependency (PD) were analyzed. Obstruction sites were evaluated as SVF variables. Results Of 91 patients, 65 (71.4%) were positional patients (PP) and 26 (28.6%) were non-positional patients (NPP). An analysis of polysomnography variables according to PD revealed that overall AHI, non-supine AHI and supine AHI in PP was significantly lower than that in NPP. The patients with soft palate obstruction (SP type) were more likely to have PD than the patients with tongue base obstruction (TB type; P=0.046). PD was inversely related to OSAS severity significantly (P=0.001). Conclusion These results provide evidence that positional dependent patients may have higher success rate of soft palate OSA surgery alone than non-positional dependent patients. Although PD may be associated with obstruction site, PD only itself may not be useful in planning surgical treatment for OSAS. PMID:23205227

  5. Isospectral Trigonometric Pöschl-Teller Potentials with Position Dependent Mass Generated by Supersymmetry

    NASA Astrophysics Data System (ADS)

    Santiago-Cruz, C.

    2016-03-01

    In this work a position dependent mass Hamiltonian with the same spectrum of the trigonometric Pöschl-Teller one was constructed by means of the underlying potential algebra. The corresponding wave functions are determined by using the factorization method. A new family of isospectral potentials are constructed by applying a Darboux transformation. An example is presented in order to illustrate the formalism.

  6. Functional analysis of a light-responsive plant bZIP transcriptional regulator.

    PubMed Central

    Feldbrügge, M; Sprenger, M; Dinkelbach, M; Yazaki, K; Harter, K; Weisshaar, B

    1994-01-01

    Common plant regulatory factor 1 (CPRF1) is a parsley basic region/leucine zipper (bZIP) transcription factor that recognizes specific nucleotide sequences containing ACGT cores. Such a sequence is contained within LRU1, the composite light regulatory unit that is necessary and sufficient for light-dependent activity of the parsley chalcone synthase (CHS) promoter. After light treatment of both etiolated and green seedlings, CPRF1 mRNA levels increased prior to CHS mRNA accumulation. The change in CPRF1 mRNA leads to a light-responsive increase in CPRF1 protein. Transient expression analysis in parsley protoplasts using the CPRF1 promoter fused to the beta-glucuronidase (GUS) open reading frame indicated that light-dependent CPRF1 mRNA accumulation was under transcriptional control. The 5' untranslated region of the CPRF1 gene includes a cis-acting nucleotide sequence that contains two ACGT elements at a distance of 12 bp between their palindromic centers. This feature is reminiscent of as-1 and octopine synthase (ocs) elements identified in promoters from plant pathogens. This double ACGT Element element, designated dACECPRF1, stimulated transcription when placed 5' to a heterologous core promoter. CPRF1 bound to dACECPRF1 DNA as well as to the ACGT element from the CHS promoter in vitro. Cotransfection experiments demonstrated that CPRF1 interacts with these elements in vivo and that overexpression of CPRF1 actually reduced light-dependent transcription from the CHS promoter. CPRF1 thus appears to contribute to the regulation of the CPRF1 gene and to interfere with the activities of light-regulated promoters. PMID:7827494

  7. The kdp system of Clostridium acetobutylicum: cloning, sequencing, and transcriptional regulation in response to potassium concentration.

    PubMed Central

    Treuner-Lange, A; Kuhn, A; Dürre, P

    1997-01-01

    The complete sequence of the kdp gene region of Clostridium acetobutylicum has been determined. This part of the chromosome comprises two small open reading frames (orfZ and orfY), putatively encoding hydrophobic peptides, and the genes kdpA, kdpB, kdpC, and kdpX, followed by an operon encoding a pair of sensor-effector regulatory proteins (KdpD and KdpE). Except for orfZ, orfY, and kdpX, all genes showed significant homology to the kdp genes of Escherichia coli, encoding a high-affinity potassium transport ATPase and its regulators. The complete genome sequence of Synechocystis sp. strain PCC 6803 and a recently published part of the Mycobacterium tuberculosis genome indicate the existence of a kdp system in these organisms as well, but all three systems comprise neither a second orf upstream of kdpA nor an additional kdpX gene. Expression of the clostridial kdp genes, including the unique kdpX gene, was found to be inducible by low potassium concentrations. A transcription start point could be mapped upstream of orfZ. A promoter upstream of kdpD was active only under noninducing conditions. Lowering the potassium content of the medium led to formation of a common transcript (orfZYkdpABCXDE), with a putative internal RNase E recognition site, which could be responsible for the instability of the common transcript. Except for the two small peptides, all gene products could be detected in in vitro transcription-translation experiments. PMID:9226259

  8. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  9. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  10. Responses of human cells to ZnO nanoparticles: a gene transcription study†

    PubMed Central

    Moos, Philip J.; Olszewski, Kyle; Honeggar, Matthew; Cassidy, Pamela; Leachman, Sancy; Woessner, David; Cutler, N. Shane; Veranth, John M.

    2013-01-01

    The gene transcript profile responses to metal oxide nanoparticles was studied using human cell lines derived from the colon and skin tumors. Much of the research on nanoparticle toxicology has focused on models of inhalation and intact skin exposure, and effects of ingestion exposure and application to diseased skin are relatively unknown. Powders of nominally nanosized SiO2, TiO2, ZnO and Fe2O3 were chosen because these substances are widely used in consumer products. The four oxides were evaluated using colon-derived cell lines, RKO and CaCo-2, and ZnO and TiO2 were evaluated further using skin-derived cell lines HaCaT and SK Mel-28. ZnO induced the most notable gene transcription changes, even though this material was applied at the lowest concentration. Nano-sized and conventional ZnO induced similar responses suggesting common mechanisms of action. The results showed neither a non-specific response pattern common to all substances nor synergy of the particles with TNF-α cotreatment. The response to ZnO was not consistent with a pronounced proinflammatory signature, but involved changes in metal metabolism, chaperonin proteins, and protein folding genes. This response was observed in all cell lines when ZnO was in contact with the human cells. When the cells were exposed to soluble Zn, the genes involved in metal metabolism were induced but the genes involved in protein refoldling were unaffected. This provides some of the first data on the effects of commercial metal oxide nanoparticles on human colon-derived and skin-derived cells. PMID:21769377

  11. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish

    SciTech Connect

    Goodale, Britton C.; Tilton, Susan C.; Corvi, Margaret M.; Wilson, Glenn R.; Janszen, Derek B.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert L.

    2013-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC–MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures. - Highlights: • Defined global mRNA expression

  12. Spatial dissection of the Arabidopsis thaliana transcriptional response to downy mildew using Fluorescence Activated Cell Sorting

    PubMed Central

    Coker, Timothy L. R.; Cevik, Volkan; Beynon, Jim L.; Gifford, Miriam L.

    2015-01-01

    Changes in gene expression form a crucial part of the plant response to infection. In the last decade, whole-leaf expression profiling has played a valuable role in identifying genes and processes that contribute to the interactions between the model plant Arabidopsis thaliana and a diverse range of pathogens. However, with some pathogens such as downy mildew caused by the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis (Hpa), whole-leaf profiling may fail to capture the complete Arabidopsis response encompassing responses of non-infected as well as infected cells within the leaf. Highly localized expression changes that occur in infected cells may be diluted by the comparative abundance of non-infected cells. Furthermore, local and systemic Hpa responses of a differing nature may become conflated. To address this we applied the technique of Fluorescence Activated Cell Sorting (FACS), typically used for analyzing plant abiotic responses, to the study of plant-pathogen interactions. We isolated haustoriated (Hpa-proximal) and non-haustoriated (Hpa-distal) cells from infected seedling samples using FACS, and measured global gene expression. When compared with an uninfected control, 278 transcripts were identified as significantly differentially expressed, the vast majority of which were differentially expressed specifically in Hpa-proximal cells. By comparing our data to previous, whole organ studies, we discovered many highly locally regulated genes that can be implicated as novel in the Hpa response, and that were uncovered for the first time using our sensitive FACS technique. PMID:26217372

  13. Loss of transcription factor early growth response gene 1 results in impaired endochondral bone repair

    PubMed Central

    Reumann, Marie K.; Strachna, Olga; Yagerman, Sarah; Torrecilla, Daniel; Kim, Jihye; Doty, Steven B.; Lukashova, Lyudmila; Boskey, Adele L.; Mayer-Kuckuk, Philipp

    2011-01-01

    Transcription factors that play a role in ossification during development are expected to participate in postnatal fracture repair since the endochondral bone formation that occurs in embryos is recapitulated during fracture repair. However, inherent differences exist between bone development and fracture repair, including a sudden disruption of tissue integrity followed by an inflammatory response. This raises the possibility that repair-specific transcription factors participate in bone healing. Here, we assessed the consequence of loss of early growth response gene 1 (EGR-1) on endochondral bone healing because this transcription factor has been shown to modulate repair in vascularized tissues. Model fractures were created in ribs of wild type (wt) and EGR-1−/− mice. Differences in tissue morphology and composition between these two animal groups were followed over 28 post fracture days (PFDs). In wt mice, bone healing occurred in healing phases characteristic of endochondral bone repair. A similar healing sequence was observed in EGR-1−/− mice but was impaired by alterations. A persistent accumulation of fibrin between the disconnected bones was observed on PFD7 and remained pronounced in the callus on PFD14. Additionally, the PFD14 callus was abnormally enlarged and showed increased deposition of mineralized tissue. Cartilage ossification in the callus was associated with hyper-vascularity and -proliferation. Moreover, cell deposits located in proximity to the callus within skeletal muscle were detected on PFD14. Despite these impairments, repair in EGR-1−/− callus advanced on PFD28, suggesting EGR-1 is not essential for healing. Together, this study provides genetic evidence that EGR-1 is a pleiotropic regulator of endochondral fracture repair. PMID:21726677

  14. A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria

    SciTech Connect

    Campbell, Elizabeth A.; Greenwell, Roger S.; Anthony, Jennifer R.; Wang, Sheng; Lim, Lee; Das, Kakoli; Sofia, Heidi J.; Donohue, Timothy J.; Darst, Seth A.

    2007-09-07

    In Rhodbacter sphaeroides, transcriptional response to singlet oxygen is controlled by the ECF (extracytoplasmic function) transcription factor, σΕ. ECF σ’s comprise the largest and most divergent group of the σ70-family members and are negatively regulated by their cognate anti-σ factor. Here, we determine the crystal structure of the Rhodobacter sphaeroides ECF σ factor, σE, in an inhibitory complex with its anti-σ, ChrR. The structure reveals that ChrR is composed of two structural domains separated by a flexible linker. The N-terminal domain sterically occludes the two primary binding determinants on σE for core RNA polymerase and is thus referred to as the ASD (anti-σ domain). Genetic and biochemical characterization of the two domains show that the ASD is sufficient to inhibit σE dependant transcription and the C-terminal domain is required for response to singlet oxygen and the release of σE from the ASD. In addition, structural and sequence analyses of the ASD of ChrR and other ECF anti-σ’s, reveal that the N-terminal domain of different groups of ECF anti-σ’s share a common structural fold with some sequence similarity. Bioinformatics studies show that the ASD occurs in as many as one third of ECF anti-σ’s, many of which have diverse C-terminal domains. The conserved ASD are sometimes fused to diverse C-terminal domains. These studies reveal that the ASD class of anti-σ’s are extraordinarily diverse, based on the type of σΕ factors they are associated with and the C-terminal domains to which they are linked.

  15. Transcriptional Responses to Estrogen and Progesterone in Mammary Gland Identify Networks Regulating p53 Activity

    PubMed Central

    Lu, Shaolei; Becker, Klaus A.; Hagen, Mary J.; Yan, Haoheng; Roberts, Amy L.; Mathews, Lesley A.; Schneider, Sallie S.; Siegelmann, Hava T.; MacBeth, Kyle J.; Tirrell, Stephen M.; Blanchard, Jeffrey L.; Jerry, D. Joseph

    2008-01-01

    Estrogen and progestins are essential for mammary growth and differentiation but also enhance the activity of the p53 tumor suppressor protein in the mammary epithelium. However, the pathways by which these hormones regulate p53 activity are unknown. Microarrays were used to profile the transcriptional changes within the mammary gland after administration of either vehicle, 17β-estradiol (E), or progesterone (P) individually and combined (EP). Treatment with EP yielded 1182 unique genes that were differentially expressed compared to the vehicle-treated group. Although 30% of genes were responsive to either E or P individually, combined treatment with both EP had a synergistic effect accounting for 60% of the differentially regulated genes. Analysis of protein-protein interactions identified p53, RelA, Snw1, and Igfals as common targets of genes regulated by EP. RelA and p53 form hubs within a network connected by genes that are regulated by EP and that may coordinate the competing functions of RelA and p53 in proliferation and survival of cells. Induction of early growth response 1 (Egr1) and Stratifin (Sfn) (also known as 14–3-3σ) by EP was confirmed by reverse transcription-quantitative PCR and shown to be p53 independent. In luciferase reporter assays, Egr1 was shown to enhance transcriptional activation by p53 and inhibit nuclear factor κB activity. These results identify a gene expression network that provides redundant activation of RelA to support proliferation as well as sensitize p53 to ensure proper surveillance and integration of their competing functions through factors such as Egr1, which both enhance p53 and inhibit RelA. PMID:18556351

  16. Regulation of low affinity neurotrophin receptor (p75NTR) by early growth response (Egr) transcriptional regulators

    PubMed Central

    Gao, Xiaoguang; Daugherty, Rebecca L.; Tourtellotte, Warren G.

    2007-01-01

    The low affinity neurotrophin receptor p75NTR is a multifunctional receptor with important roles in neurotrophin signaling, axon outgrowth, and oligodendroglia and neuron survival. It is transcriptionally regulated with spatial and temporal precision during nervous system development, injury and regeneration. Very little is known about how p75NTR expression is dynamically regulated but it is likely to influence how p75NTR signals in particular cellular contexts. Here, we identify the early growth response (Egr) transcriptional regulators, Egr1 and Egr3, as direct modulators of p75NTR gene expression. Egr1 and Egr3 bind and transactivate the p75NTR promoter in vitro and in vivo, using distinct response elements on the p75NTR promoter. Consistent with these results, p75NTR expression is greatly diminished in muscle spindle stretch receptors and in peripheral nerve Schwann cells in Egr gene deficient mice. Taken together, the results elucidate a novel mechanism whereby Egr proteins can directly modulate p75NTR expression and signaling in vivo. PMID:17916431

  17. The Adipose Transcriptional Response to Insulin Is Determined by Obesity, Not Insulin Sensitivity.

    PubMed

    Rydén, Mikael; Hrydziuszko, Olga; Mileti, Enrichetta; Raman, Amitha; Bornholdt, Jette; Boyd, Mette; Toft, Eva; Qvist, Veronica; Näslund, Erik; Thorell, Anders; Andersson, Daniel P; Dahlman, Ingrid; Gao, Hui; Sandelin, Albin; Daub, Carsten O; Arner, Peter

    2016-08-30

    Metabolically healthy obese subjects display preserved insulin sensitivity and a beneficial white adipose tissue gene expression pattern. However, this observation stems from fasting studies when insulin levels are low. We investigated adipose gene expression by 5'Cap-mRNA sequencing in 17 healthy non-obese (NO), 21 insulin-sensitive severely obese (ISO), and 30 insulin-resistant severely obese (IRO) subjects, before and 2 hr into a hyperinsulinemic euglycemic clamp. ISO and IRO subjects displayed a clear but globally similar transcriptional response to insulin, which differed from the small effects observed in NO subjects. In the obese, 231 genes were altered; 71 were enriched in ISO subjects (e.g., phosphorylation processes), and 52 were enriched in IRO subjects (e.g., cellular stimuli). Common cardio-metabolic risk factors and gender do not influence these findings. This study demonstrates that differences in the acute transcriptional response to insulin are primarily driven by obesity per se, challenging the notion of healthy obese adipose tissue, at least in severe obesity. PMID:27545890

  18. Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes

    PubMed Central

    Tomasch, Jürgen; Gohl, Regina; Bunk, Boyke; Diez, Maria Suarez; Wagner-Döbler, Irene

    2011-01-01

    Bacterial aerobic anoxygenic photosynthesis (AAP) is an important mechanism of energy generation in aquatic habitats, accounting for up to 5% of the surface ocean's photosynthetic electron transport. We used Dinoroseobacter shibae, a representative of the globally abundant marine Roseobacter clade, as a model organism to study the transcriptional response of a photoheterotrophic bacterium to changing light regimes. Continuous cultivation of D. shibae in a chemostat in combination with time series microarray analysis was used in order to identify gene-regulatory patterns after switching from dark to light and vice versa. The change from heterotrophic growth in the dark to photoheterotrophic growth in the light was accompanied by a strong but transient activation of a broad stress response to the formation of singlet oxygen, an immediate downregulation of photosynthesis-related genes, fine-tuning of the expression of ETC components, as well as upregulation of the transcriptional and translational apparatus. Furthermore, our data suggest that D. shibae might use the 3-hydroxypropionate cycle for CO2 fixation. Analysis of the transcriptome dynamics after switching from light to dark showed relatively small changes and a delayed activation of photosynthesis gene expression, indicating that, except for light other signals must be involved in their regulation. Providing the first analysis of AAP on the level of transcriptome dynamics, our data allow the formulation of testable hypotheses on the cellular processes affected by AAP and the mechanisms involved in light- and stress-related gene regulation. PMID:21654848

  19. Transcriptional responses of Norway spruce (Picea abies) inner sapwood against Heterobasidion parviporum.

    PubMed

    Oliva, J; Rommel, S; Fossdal, C G; Hietala, A M; Nemesio-Gorriz, M; Solheim, H; Elfstrand, M

    2015-09-01

    The white-rot fungus Heterobasidion parviporum Niemelä & Korhonen establishes a necrotrophic interaction with Norway spruce (Picea abies (L.) H.Karst.) causing root and butt rot and growth losses in living trees. The interaction occurs first with the bark and the outer sapwood, as the pathogen enters the tree via wounds or root-to-root contacts. Later, when the fungus reaches the heartwood, it spreads therein creating a decay column, and the interaction mainly occurs in the inner sapwood where the tree creates a reaction zone. While bark and outer sapwood interactions are well studied, little is known about the nature of the transcriptional responses leading to the creation of a reaction zone. In this study, we sampled bark and sapwood both proximal and distal to the reaction zone in artificially inoculated and naturally infected trees. We quantified gene expression levels of candidate genes in secondary metabolite, hormone biosynthesis and signalling pathways using quantitative polymerase chain reaction. An up-regulation of mainly the phenylpropanoid pathway and jasmonic acid biosynthesis was found at the inoculation site, when inoculations were compared with wounding. We found that transcriptional responses in inner sapwood were similar to those reported upon infection through the bark. Our data suggest that the defence mechanism is induced due to direct fungal contact irrespective of the tissue type. Understanding the nature of these interactions is important when considering tree breeding-based resistance strategies to reduce the spread of the pathogen between and within trees. PMID:26209615

  20. EXB1/WRKY71 transcription factor regulates both shoot branching and responses to abiotic stresses.

    PubMed

    Guo, Dongshu; Qin, Genji

    2016-03-01

    As the sessile organisms, plants evolve different strategies to survive in adverse environmental conditions. The elaborate regulation of shoot branching is an important strategy for plant morphological adaptation to various environments, while the regulation of reactive oxygen species (ROS), salicylic acid (SA) and jasmonic acid (JA) is pivotal for plant responses to biotic and abiotic stresses. Recently, we have demonstrated that Arabidopsis EXB1, a WRKY transcription factor, is a positive regulator of shoot branching as a cover story in Plant Cell. Here we show that WRKY23, an EXB1 close member, has a redundant role in control of shoot branching. We further show that EXB1 is induced by H2O2, ABA or mannitol treatments, suggesting that EXB1 may also play roles in plant responses to abiotic stresses. RNA-sequencing (RNA-seq) analysis using 4EnhpEXB1-EXB1GR inducible line indicates that the genes involved in oxidative stress, oxidation reduction, SA or JA signaling pathway are regulated by EXB1 induction in a short time. We suggest that EXB1/WRKY71 transcription factor may play pivotal roles in plant adaptation to environments by both morphological and physiological ways. PMID:26914912

  1. Transcription networks responsible for early regulation of Salmonella-induced inflammation in the jejunum of pigs

    PubMed Central

    2013-01-01

    Background The aim of this study was to identify transcription factors/regulators that play a crucial role in steering the (innate) immune response shortly (within a few hours) after the first contact of the intestinal mucosa with an inflammatory mediator, and to test whether the processes regulated by these factors/regulators can be modulated by chemical substances of natural origin. Methods We experimentally induced inflammation by perfusion of surgically applied jejunal loops with Salmonella enterica subspecies enterica serovar Typhimurium DT104 in three pigs. Segments of mock and Salmonella treated loops were dissected after 2, 4 and 8 hours of perfusion. IL8 and IL1-beta mRNA expression levels were measured in mucosal scrapings of all segments. Furthermore, intra-animal microarray comparisons (isogenic) between Salmonella and mock treated segments after 8 hours, and inter-animal comparisons between similar Salmonella-treated loops of each pig at 2 and 4 hours, were performed. Results IL-1beta and IL8 mRNA levels, and intra-animal microarray comparisons at 8 hours between Salmonella and mock treated segments showed that the response-time and type of response to Salmonella was different in all three pigs. This plasticity allowed us to extract a comprehensive set of differentially expressed genes from inter-animal comparisons at 2 and 4 hours. Pathway analysis indicated that many of these genes play a role in induction and/or tempering the inflammatory response in the intestine. Among them a set of transcription factors/regulators known to be involved in regulation of inflammation, but also factors/regulators for which involvement was not expected. Nine out of twenty compounds of natural origin, which according to literature had the potential to modulate the activity of these factors/regulators, were able to stimulate or inhibit a Salmonella-induced mRNA response of inflammatory-reporter genes IL8 and/or nuclear factor of kappa light polypeptide gene

  2. Transcriptional response networks for elucidating mechanisms of action of multitargeted agents.

    PubMed

    Kibble, Milla; Khan, Suleiman A; Saarinen, Niina; Iorio, Francesco; Saez-Rodriguez, Julio; Mäkelä, Sari; Aittokallio, Tero

    2016-07-01

    Drug discovery is moving away from the single target-based approach towards harnessing the potential of polypharmacological agents that modulate the activity of multiple nodes in the complex networks of deregulations underlying disease phenotypes. Computational network pharmacology methods that use systems-level drug-response phenotypes, such as those originating from genome-wide transcriptomic profiles, have proved particularly effective for elucidating the mechanisms of action of multitargeted compounds. Here, we show, via the case study of the natural product pinosylvin, how the combination of two complementary network-based methods can provide novel, unexpected mechanistic insights. This case study also illustrates that elucidating the mechanism of action of multitargeted natural products through transcriptional response-based approaches is a challenging endeavor, often requiring multiple computational-experimental iterations. PMID:26979547

  3. The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage

    PubMed Central

    Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A; Gwerder, Myriam; Gutsche, Katrin; Altmeyer, Matthias; Jungmichel, Stephanie; Toledo, Luis I; Fink, Daniel; Rask, Maj-Britt; Grøfte, Merete; Lukas, Claudia; Nielsen, Michael L; Smerdon, Stephen J; Lukas, Jiri; Stucki, Manuel

    2016-01-01

    Chromosome breakage elicits transient silencing of ribosomal RNA synthesis, but the mechanisms involved remained elusive. Here we discover an in-trans signaling mechanism that triggers pan-nuclear silencing of rRNA transcription in response to DNA damage. This is associated with transient recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identified TCOF1-Treacle, a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1, and demonstrate that NBS1 translocation and accumulation in the nucleoli is Treacle-dependent. Finally, we provide evidence that Treacle-mediated NBS1 recruitment into the nucleoli regulates rRNA silencing in-trans in the presence of distant chromosome breaks. PMID:25064736

  4. Transcriptional and Posttranscriptional Events Control Copper-Responsive Expression of a Rhodobacter capsulatus Multicopper Oxidase

    PubMed Central

    Rademacher, Corinna; Moser, Roman; Lackmann, Jan-Wilm; Klinkert, Birgit; Narberhaus, Franz

    2012-01-01

    The copper-regulated Rhodobacter capsulatus cutO (multicopper oxidase) gene confers copper tolerance and is carried in the tricistronic orf635-cutO-cutR operon. Transcription of cutO strictly depends on the promoter upstream of orf635, as demonstrated by lacZ reporter fusions to nested promoter fragments. Remarkably, orf635 expression was not affected by copper availability, whereas cutO and cutR were expressed only in the presence of copper. Differential regulation was abolished by site-directed mutations within the orf635-cutO intergenic region, suggesting that this region encodes a copper-responsive mRNA element. Bioinformatic predictions and RNA structure probing experiments revealed an intergenic stem-loop structure as the candidate mRNA element. This is the first posttranscriptional copper response mechanism reported in bacteria. PMID:22287514

  5. Topology and dynamics of signaling networks: in search of transcriptional control of the inflammatory response.

    PubMed

    Androulakis, Ioannis P; Kamisoglu, Kubra; Mattick, John S

    2013-01-01

    Over the past several decades, to develop a fundamental understanding of inflammation's progression, research has focused on extracellular mediators, such as cytokines, as characteristic components of inflammatory response. These efforts have recently been complemented by advances in proteomics that allow analysis of multiple signaling proteins in parallel, to provide more complete mechanistic models of inflammation. In this review, we discuss various techniques for assessing protein activity, as well as computational techniques that are well suited for interpreting large amounts of proteomic data to generate signaling networks or for modeling the dynamics of known network interactions. We also discuss examples that explore these experimental and computational techniques in tandem to generate signaling networks under various conditions and that link those networks to transcriptional activity. Further advancements in this field will likely provide an explicit description of inflammatory response, paving the way for better diagnostics and therapies in clinic. PMID:23862674

  6. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress

    PubMed Central

    Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C.

    2015-01-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism’s multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic–pituitary–adrenal axis, sympathetic adrenal–medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  7. Global transcriptional responses to cisplatin in Dictyostelium discoideum identify potential drug targets

    PubMed Central

    Van Driessche, Nancy; Alexander, Hannah; Min, Junxia; Kuspa, Adam; Alexander, Stephen; Shaulsky, Gad

    2007-01-01

    Dictyostelium discoideum is a useful model for studying mechanisms of cisplatin drug sensitivity. Our previous findings, that mutations in sphingolipid metabolism genes confer cisplatin resistance in D. discoideum and in human cells, raised interest in the resistance mechanisms and their implications for cisplatin chemotherapy. Here we used expression microarrays to monitor physiological changes and to identify pathways that are affected by cisplatin treatment of D. discoideum. We found >400 genes whose regulation was altered by cisplatin treatment of wild-type cells, including groups of genes that participate in cell proliferation and in nucleotide and protein metabolism, showing that the cisplatin response is orderly and multifaceted. Transcriptional profiling of two isogenic cisplatin-resistant mutants, impaired in different sphingolipid metabolism steps, showed that the effect of cisplatin treatment was greater than the effect of the mutations, indicating that cisplatin resistance in the mutants is due to specific abilities to overcome the drug effects rather than to general drug insensitivity. Nevertheless, the mutants exhibited significantly different responses to cisplatin compared with the parent, and >200 genes accounted for that difference. Mutations in five cisplatin response genes (sgkB, csbA, acbA, smlA, and atg8) resulted in altered drug sensitivity, implicating novel pathways in cisplatin response. Our data illustrate how modeling complex cellular responses to drugs in genetically stable and tractable systems can uncover new targets with the potential for improving chemotherapy. PMID:17878305

  8. Different STAT transcription complexes drive early and delayed responses to type I Interferons

    PubMed Central

    Plumlee, Courtney R.; Perry, Stuart; Gu, Ai Di; Lee, Carolyn; Shresta, Sujan; Decker, Thomas; Schindler, Christian

    2015-01-01

    Interferons, which transduce pivotal signals through signal transducer and activator of transcription (Stat)1 and Stat2, effectively suppress the replication of Legionella pneumophila in primary murine macrophages. Whereas the ability of IFN-γ to impede L. pneumophila growth is fully dependent on Stat1, IFN-α/β unexpectedly suppresses L. pneumophila growth in both Stat1 and Stat2 deficient macrophages. New studies demonstrating that the robust response to IFN-α/β is lost in Stat1-Stat2 double knockout macrophages, suggest that Stat1 and Stat2 are functionally redundant in their ability to direct an innate response towards L. pneumophila. Since the ability of IFN-α/β to signal through Stat1-dependent complexes (i.e., Stat1-Stat1 and Stat1-Stat2 dimers) has been well characterized, the current studies focus on how Stat2 is able to direct a potent response to IFN-α/β in the absence of Stat1. These studies reveal that IFN-α/β is able to drive the formation of a Stat2 and IRF9 complex that drives the expression of a subset of IFN stimulated genes (ISGs), but with substantially delayed kinetics. These observations raise the possibility that this pathway evolved in response to microbes that have devised strategies to subvert Stat1 dependent responses. PMID:26019270

  9. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses

    PubMed Central

    Zheng, Ye; Chaudhry, Ashutosh; Kas, Arnold; deRoos, Paul; Kim, Jeong M.; Chu, Tin-Tin; Corcoran, Lynn; Treuting, Piper; Klein, Ulf; Rudensky, Alexander Y.

    2010-01-01

    In the course of infection or autoimmunity, particular transcription factors orchestrate the differentiation of TH1, TH2 or TH17 effector cells, the responses of which are limited by a distinct lineage of suppressive regulatory T cells (Treg). Treg cell differentiation and function are guided by the transcription factor Foxp3, and their deficiency due to mutations in Foxp3 results in aggressive fatal autoimmune disease associated with sharply augmented TH1 and TH2 cytokine production1–3. Recent studies suggested that Foxp3 regulates the bulk of the Foxp3-dependent transcriptional program indirectly through a set of transcriptional regulators serving as direct Foxp3 targets4,5. Here we show that in mouse Treg cells, high amounts of interferon regulatory factor-4 (IRF4), a transcription factor essential for TH2 effector cell differentiation, is dependent on Foxp3 expression. We proposed that IRF4 expression endows Treg cells with the ability to suppress TH2 responses. Indeed, ablation of a conditional Irf4 allele in Treg cells resulted in selective dysregulation of TH2 responses, IL4-dependent immunoglobulin isotype production, and tissue lesions with pronounced plasma cell infiltration, in contrast to the mononuclear-cell-dominated pathology typical of mice lacking Treg cells. Our results indicate that Treg cells use components of the transcriptional machinery, promoting a particular type of effector CD4+ T cell differentiation, to efficiently restrain the corresponding type of the immune response. PMID:19182775

  10. Early Transcriptional Defense Responses in Arabidopsis Cell Suspension Culture under High-Light Conditions1[C][W][OA

    PubMed Central

    González-Pérez, Sergio; Gutiérrez, Jorge; García-García, Francisco; Osuna, Daniel; Dopazo, Joaquín; Lorenzo, Óscar; Revuelta, José L.; Arellano, Juan B.

    2011-01-01

    The early transcriptional defense responses and reactive oxygen species (ROS) production in Arabidopsis (Arabidopsis thaliana) cell suspension culture (ACSC), containing functional chloroplasts, were examined at high light (HL). The transcriptional analysis revealed that most of the ROS markers identified among the 449 transcripts with significant differential expression were transcripts specifically up-regulated by singlet oxygen (1O2). On the contrary, minimal correlation was established with transcripts specifically up-regulated by superoxide radical or hydrogen peroxide. The transcriptional analysis was supported by fluorescence microscopy experiments. The incubation of ACSC with the 1O2 sensor green reagent and 2′,7′-dichlorofluorescein diacetate showed that the 30-min-HL-treated cultures emitted fluorescence that corresponded with the production of 1O2 but not of hydrogen peroxide. Furthermore, the in vivo photodamage of the D1 protein of photosystem II indicated that the photogeneration of 1O2 took place within the photosystem II reaction center. Functional enrichment analyses identified transcripts that are key components of the ROS signaling transduction pathway in plants as well as others encoding transcription factors that regulate both ROS scavenging and water deficit stress. A meta-analysis examining the transcriptional profiles of mutants and hormone treatments in Arabidopsis showed a high correlation between ACSC at HL and the fluorescent mutant family of Arabidopsis, a producer of 1O2 in plastids. Intriguingly, a high correlation was also observed with ABA deficient1 and more axillary growth4, two mutants with defects in the biosynthesis pathways of two key (apo)carotenoid-derived plant hormones (i.e. abscisic acid and strigolactones, respectively). ACSC has proven to be a valuable system for studying early transcriptional responses to HL stress. PMID:21531897

  11. Lytic infection of Lactococcus lactis by bacteriophages Tuc2009 and c2 triggers alternative transcriptional host responses.

    PubMed

    Ainsworth, Stuart; Zomer, Aldert; Mahony, Jennifer; van Sinderen, Douwe

    2013-08-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed throughout lytic infection. Whole-genome microarrays performed at various time points postinfection demonstrated a rather modest impact on host transcription. The majority of changes in the host transcriptome occur during late infection stages; few changes in host gene transcription occur during the immediate and early infection stages. Alterations in the L. lactis UC509.9 transcriptome during lytic infection appear to be phage specific, with relatively few differentially transcribed genes shared between cells infected with Tuc2009 and those infected with c2. Despite the apparent lack of a coordinated general phage response, three themes common to both infections were noted: alternative transcription of genes involved in catabolic flux and energy production, differential transcription of genes involved in cell wall modification, and differential transcription of genes involved in the conversion of ribonucleotides to deoxyribonucleotides. The transcriptional profiles of both bacteriophages during lytic infection generally correlated with the findings of previous studies and allowed the confirmation of previously predicted promoter sequences. In addition, the host transcriptional response to lysogenization with Tuc2009 was monitored along with tiling array analysis of Tuc2009 in the lysogenic state. Analysis identified 44 host genes with altered transcription during lysogeny, 36 of which displayed levels of transcription significantly reduced from those for uninfected cells. PMID:23728817

  12. Transcriptional Profiling of the Circulating Immune Response to Lassa Virus in an Aerosol Model of Exposure

    PubMed Central

    Honko, Anna N.; Garamszegi, Sara; Caballero, Ignacio S.; Johnson, Joshua C.; Mucker, Eric M.; Trefry, John C.; Hensley, Lisa E.; Connor, John H.

    2013-01-01

    Lassa virus (LASV) is a significant human pathogen that is endemic to several countries in West Africa. Infection with LASV leads to the development of hemorrhagic fever in a significant number of cases, and it is estimated that thousands die each year from the disease. Little is known about the complex immune mechanisms governing the response to LASV or the genetic determinants of susceptibility and resistance to infection. In the study presented here, we have used a whole-genome, microarray-based approach to determine the temporal host response in the peripheral blood mononuclear cells (PBMCs) of non-human primates (NHP) following aerosol exposure to LASV. Sequential sampling over the entire disease course showed that there are strong transcriptional changes of the immune response to LASV exposure, including the early induction of interferon-responsive genes and Toll-like receptor signaling pathways. However, this increase in early innate responses was coupled with a lack of pro-inflammatory cytokine response in LASV exposed NHPs. There was a distinct lack of cytokines such as IL1β and IL23α, while immunosuppressive cytokines such as IL27 and IL6 were upregulated. Comparison of IRF/STAT1-stimulated gene expression with the viral load in LASV exposed NHPs suggests that mRNA expression significantly precedes viremia, and thus might be used for early diagnostics of the disease. Our results provide a transcriptomic survey of the circulating immune response to hemorrhagic LASV exposure and provide a foundation for biomarker identification to allow clinical diagnosis of LASV infection through analysis of the host response. PMID:23638192

  13. Transcript expression of the freeze responsive gene fr10 in Rana sylvatica during freezing, anoxia, dehydration, and development.

    PubMed

    Sullivan, K J; Biggar, K K; Storey, K B

    2015-01-01

    Freeze tolerance is a critical winter survival strategy for the wood frog, Rana sylvatica. In response to freezing, a number of genes are upregulated to facilitate the survival response. This includes fr10, a novel freeze-responsive gene first identified in R. sylvatica. This study analyzes the transcriptional expression of fr10 in seven tissues in response to freezing, anoxia, and dehydration stress, and throughout the Gosner stages of tadpole development. Transcription of fr10 increased overall in response to 24 h of freezing, with significant increases in expression detected in testes, heart, brain, and lung when compared to control tissues. When exposed to anoxia; heart, lung, and kidney tissues experienced a significant increase, while the transcription of fr10 in response to 40% dehydration was found to significantly increase in both heart and brain tissues. An analysis of the transcription of fr10 throughout the development of the wood frog showed a relatively constant expression; with slightly lower transcription levels observed in two of the seven Gosner stages. Based on these results, it is predicted that fr10 has multiple roles depending on the needs and stresses experienced by the wood frog. It has conclusively been shown to act as a cryoprotectant, with possible additional roles in anoxia, dehydration, and development. In the future, it is hoped that further knowledge of the mechanism of action of FR10 will allow for increased stress tolerance in human cells and tissues. PMID:25280399

  14. Early Transcriptional Signatures of the Immune Response to a Live Attenuated Tetravalent Dengue Vaccine Candidate in Non-human Primates

    PubMed Central

    Strouts, Fiona R.; Popper, Stephen J.; Partidos, Charalambos D.; Stinchcomb, Dan T.; Osorio, Jorge E.; Relman, David A.

    2016-01-01

    Background The development of a vaccine against dengue faces unique challenges, including the complexity of the immune responses to the four antigenically distinct serotypes. Genome-wide transcriptional profiling provides insight into the pathways and molecular features that underlie responses to immune system stimulation, and may facilitate predictions of immune protection. Methodology/Principal Findings In this study, we measured early transcriptional responses in the peripheral blood of cynomolgus macaques following vaccination with a live, attenuated tetravalent dengue vaccine candidate, TDV, which is based on a DENV-2 backbone. Different doses and routes of vaccine administration were used, and viral load and neutralizing antibody titers were measured at different time-points following vaccination. All 30 vaccinated animals developed a neutralizing antibody response to each of the four dengue serotypes, and only 3 of these animals had detectable serum viral RNA after challenge with wild-type dengue virus (DENV), suggesting protection of vaccinated animals to DENV infection. The vaccine induced statistically significant changes in 595 gene transcripts on days 1, 3, 5 and 7 as compared with baseline and placebo-treated animals. Genes involved in the type I interferon (IFN) response, including IFI44, DDX58, MX1 and OASL, exhibited the highest fold-change in transcript abundance, and this response was strongest following double dose and subcutaneous (versus intradermal) vaccine administration. In addition, modules of genes involved in antigen presentation, dendritic cell activation, and T cell activation and signaling were enriched following vaccination. Increased abundance of gene transcripts related to T cell activation on day 5, and the type I IFN response on day 7, were significantly correlated with the development of high neutralizing antibody titers on day 30. Conclusions/Significance These results suggest that early transcriptional responses may be

  15. The cAMP response element binding protein, CREB, is a potent inhibitor of diverse transcriptional activators.

    PubMed Central

    Lemaigre, F P; Ace, C I; Green, M R

    1993-01-01

    Cyclic AMP response element binding protein (CREB) activates transcription of cAMP response element (CRE)-containing promoters following an elevation of intracellular cAMP. Here we show that CREB and the highly related protein ATF-1 are also potent transcription inhibitors. Strikingly, CREB inhibits transcription of multiple activators, whose DNA-binding domains and activation regions are unrelated to one another. Inhibition requires that the CREB dimerization and DNA-binding domains are intact. However, inhibition is not dependent upon the presence of a CRE in the promoter, and does not involve heterodimer formation between CREB and the activator. The ability of an activator protein to inhibit transcription in such a promiscuous fashion has not been previously reported. Images PMID:8332500

  16. RrmA regulates the stability of specific transcripts in response to both nitrogen source and oxidative stress

    PubMed Central

    Krol, Kinga; Morozov, Igor Y; Jones, Meriel G; Wyszomirski, Tomasz; Weglenski, Piotr; Dzikowska, Agnieszka; Caddick, Mark X

    2013-01-01

    Differential regulation of transcript stability is an effective means by which an organism can modulate gene expression. A well-characterized example is glutamine signalled degradation of specific transcripts in Aspergillus nidulans. In the case of areA, which encodes a wide-domain transcription factor mediating nitrogen metabolite repression, the signal is mediated through a highly conserved region of the 3′ UTR. Utilizing this RNA sequence we isolated RrmA, an RNA recognition motif protein. Disruption of the respective gene led to loss of both glutamine signalled transcript degradation as well as nitrate signalled stabilization of niaD mRNA. However, nitrogen starvation was shown to act independently of RrmA in stabilizing certain transcripts. RrmA was also implicated in the regulation of arginine catabolism gene expression and the oxidative stress responses at the level of mRNA stability. ΔrrmA mutants are hypersensitive to oxidative stress. This phenotype correlates with destabilization of eifE and dhsA mRNA. eifE encodes eIF5A, a translation factor within which a conserved lysine is post-translationally modified to hypusine, a process requiring DhsA. Intriguingly, for specific transcripts RrmA mediates both stabilization and destabilization and the specificity of the signals transduced is transcript dependent, suggesting it acts in consort with other factors which differ between transcripts. PMID:23841692

  17. Transcriptional and Microscopic Analyses of Citrus Stem and Root Responses to Candidatus Liberibacter asiaticus Infection

    PubMed Central

    Aritua, Valente; Achor, Diann; Gmitter, Frederick G.; Albrigo, Gene; Wang, Nian

    2013-01-01

    Huanglongbing (HLB) is the most destructive disease that affects citrus worldwide. The disease has been associated with Candidatus Liberibacter. HLB diseased citrus plants develop a multitude of symptoms including zinc and copper deficiencies, blotchy mottle, corky veins, stunting, and twig dieback. Ca. L. asiaticus infection also seriously affects the roots. Previous study focused on gene expression of leaves and fruit to Ca. L. asiaticus infection. In this study, we compared the gene expression levels of stems and roots of healthy plants with those in Ca. L. asiaticus infected plants using microarrays. Affymetrix microarray analysis showed a total of 988 genes were significantly altered in expression, of which 885 were in the stems, and 111 in the roots. Of these, 551 and 56 were up-regulated, while 334 and 55 were down-regulated in the stem and root samples of HLB diseased trees compared to healthy plants, respectively. Dramatic differences in the transcriptional responses were observed between citrus stems and roots to Ca. L. asiaticus infection, with only 8 genes affected in both the roots and stems. The affected genes are involved in diverse cellular functions, including carbohydrate metabolism, cell wall biogenesis, biotic and abiotic stress responses, signaling and transcriptional factors, transportation, cell organization, protein modification and degradation, development, hormone signaling, metal handling, and redox. Microscopy analysis showed the depletion of starch in the roots of the infected plants but not in healthy plants. Collapse and thickening of cell walls were observed in HLB affected roots, but not as severe as in the stems. This study provides insight into the host response of the stems and roots to Ca. L. asiaticus infection. PMID:24058486

  18. In Vitro Ischemia Triggers a Transcriptional Response to Down-Regulate Synaptic Proteins in Hippocampal Neurons

    PubMed Central

    Fernandes, Joana; Vieira, Marta; Carreto, Laura; Santos, Manuel A. S.; Duarte, Carlos B.; Carvalho, Ana Luísa; Santos, Armanda E.

    2014-01-01

    Transient global cerebral ischemia induces profound changes in the transcriptome of brain cells, which is partially associated with the induction or repression of genes that influence the ischemic response. However, the mechanisms responsible for the selective vulnerability of hippocampal neurons to global ischemia remain to be clarified. To identify molecular changes elicited by ischemic insults, we subjected hippocampal primary cultures to oxygen-glucose deprivation (OGD), an in vitro model for global ischemia that resulted in delayed neuronal death with an excitotoxic component. To investigate changes in the transcriptome of hippocampal neurons submitted to OGD, total RNA was extracted at early (7 h) and delayed (24 h) time points after OGD and used in a whole-genome RNA microarray. We observed that at 7 h after OGD there was a general repression of genes, whereas at 24 h there was a general induction of gene expression. Genes related with functions such as transcription and RNA biosynthesis were highly regulated at both periods of incubation after OGD, confirming that the response to ischemia is a dynamic and coordinated process. Our analysis showed that genes for synaptic proteins, such as those encoding for PICK1, GRIP1, TARPγ3, calsyntenin-2/3, SAPAP2 and SNAP-25, were down-regulated after OGD. Additionally, OGD decreased the mRNA and protein expression levels of the GluA1 AMPA receptor subunit as well as the GluN2A and GluN2B subunits of NMDA receptors, but increased the mRNA expression of the GluN3A subunit, thus altering the composition of ionotropic glutamate receptors in hippocampal neurons. Together, our results present the expression profile elicited by in vitro ischemia in hippocampal neurons, and indicate that OGD activates a transcriptional program leading to down-regulation in the expression of genes coding for synaptic proteins, suggesting that the synaptic proteome may change after ischemia. PMID:24960035

  19. Legionella pneumophila Transcriptional Response following Exposure to CuO Nanoparticles

    PubMed Central

    Struewing, Ian; Buse, Helen Y.; Kou, Jiahui; Shuman, Howard A.; Faucher, Sébastien P.; Ashbolt, Nicholas J.

    2013-01-01

    Copper ions are an effective antimicrobial agent used to control Legionnaires' disease and Pontiac fever arising from institutional drinking water systems. Here, we present data on an alternative bactericidal agent, copper oxide nanoparticles (CuO-NPs), and its efficacy on Legionella pneumophila. In broth cultures, the CuO-NPs caused growth inhibition, which appeared to be concentration and exposure time dependent. The transcriptomic response of L. pneumophila to CuO-NP exposure was investigated by using a whole-genome microarray. The expression of genes involved in metabolism, transcription, translation, DNA replication and repair, and unknown/hypothetical proteins was significantly affected by exposure to CuO-NPs. In addition, expression of 21 virulence genes was also affected by exposure to CuO-NP and further evaluated by quantitative reverse transcription-PCR (qRT-PCR). Some virulence gene responses occurred immediately and transiently after addition of CuO-NPs to the cells and faded rapidly (icmV, icmW, lepA), while expression of other genes increased within 6 h (ceg29, legLC8, legP, lem19, lem24, lpg1689, and rtxA), 12 h (cegC1, dotA, enhC, htpX, icmE, pvcA, and sidF), and 24 h (legP, lem19, and ceg19), but for most of the genes tested, expression was reduced after 24 h of exposure. Genes like ceg29 and rtxA appeared to be the most responsive to CuO-NP exposures and along with other genes identified in this study may prove useful to monitor and manage the impact of drinking water disinfection on L. pneumophila. PMID:23416998

  20. Heterogeneity in lipopolysaccharide responsiveness of endothelial cells identified by gene expression profiling: role of transcription factors

    PubMed Central

    Beck, G C; Rafat, N; Brinkkoetter, P; Hanusch, C; Schulte, J; Haak, M; van Ackern, K; van der Woude, F J; Yard, B A

    2006-01-01

    Interindividual differences of endothelial cells in response to endotoxins might contribute to the diversity in clinical outcome among septic patients. The present study was conducted to test the hypothesis that endothelial cells (EC) with high and low proinflammatory potential exist and to dissect the molecular basis underlying this phenomenon. Thirty human umbilical vein endothelial cell (HUVEC) lines were stimulated for 24 h with lipopolysaccharide (LPS) and screened for interleukin (IL)-8 production. Based on IL-8 production five low and five high producers, tentatively called types I and II responders, respectively, were selected for genome-wide gene expression profiling. From the 74 genes that were modulated by LPS in all type II responders, 33 genes were not influenced in type I responders. Among the 41 genes that were increased in both responders, 17 were expressed significantly stronger in type II responders. Apart from IL-8, significant differences in the expression of proinflammatory related genes between types I and II responders were found for adhesion molecules [intercellular adhesion molecule (ICAM-1), E-selectin)], chemokines [monocyte chemoattractant protein (MCP-1), granulocyte chemotactic protein (GCP-2)], cytokines (IL-6) and the transcription factor CCAAT/enhancer binding protein-delta (C/EBP-δ). Type I responders also displayed a low response towards tumour necrosis factor (TNF)-α. In general, maximal activation of nuclear factor (NF)-κB was achieved in type I responders at higher concentrations of LPS compared to type II responders. In the present study we demonstrate that LPS-mediated gene expression differs quantitatively and qualitatively in types I and II responders. Our results suggest a pivotal role for common transcription factors as a low inflammatory response was also observed after TNF-α stimulation. Further studies are required to elucidate the relevance of these findings in terms of clinical outcome in septic patients. PMID

  1. Is post-transcriptional stabilization, splicing and translation of selective mRNAs a key to the DNA damage response?

    PubMed Central

    2011-01-01

    In response to DNA damage, cells activate a complex, kinase-based signaling network that consists of two components—a rapid phosphorylation-driven signaling cascade that results in immediate inhibition of Cdk/cyclin complexes to arrest the cell cycle along with recruitment of repair machinery to damaged DNA, followed by a delayed transcriptional response that promotes cell cycle arrest through the induction of Cdk inhibitors, such as p21. In recent years a third layer of complexity has emerged that involves post-transcriptional control of mRNA stability, splicing and translation as a critical part of the DNA damage response. Here, we describe recent work implicating DNA damage-dependent modification of RNA-binding proteins that are responsible for some of these mRNA effects, highlighting recent work on post-transcriptional regulation of the cell cycle checkpoint protein/apoptosis inducer Gadd45α by the checkpoint kinase MAPKAP Kinase-2. PMID:21173571

  2. Parametric stability of continuous shafts, connected to mechanisms with position-dependent inertia

    NASA Astrophysics Data System (ADS)

    Turhan, O.; Koser, K.

    2004-10-01

    Stability of the parametrically excited torsional vibrations of shafts connected to mechanisms with position-dependent inertia is studied via a version of Bolotin's method. The shafts are considered to be torsionally elastic, distributed parameter systems and discretized through a finite element scheme. The mechanisms are modelled by a linearized Eksergian equation of motion. A general method of analysis is described and applied to examples with slider-crank and Scotch-yoke mechanisms.

  3. Algebraic solutions of shape-invariant position-dependent effective mass systems

    NASA Astrophysics Data System (ADS)

    Amir, Naila; Iqbal, Shahid

    2016-06-01

    Keeping in view the ordering ambiguity that arises due to the presence of position-dependent effective mass in the kinetic energy term of the Hamiltonian, a general scheme for obtaining algebraic solutions of quantum mechanical systems with position-dependent effective mass is discussed. We quantize the Hamiltonian of the pertaining system by using symmetric ordering of the operators concerning momentum and the spatially varying mass, initially proposed by von Roos and Lévy-Leblond. The algebraic method, used to obtain the solutions, is based on the concepts of supersymmetric quantum mechanics and shape invariance. In order to exemplify the general formalism a class of non-linear oscillators has been considered. This class includes the particular example of a one-dimensional oscillator with different position-dependent effective mass profiles. Explicit expressions for the eigenenergies and eigenfunctions in terms of generalized Hermite polynomials are presented. Moreover, properties of these modified Hermite polynomials, like existence of generating function and recurrence relations among the polynomials have also been studied. Furthermore, it has been shown that in the harmonic limit, all the results for the linear harmonic oscillator are recovered.

  4. Analysis of transcriptional responses of chickens infected with different Newcastle disease virus isolates using paraffin embedded samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transcriptional response of several cytokines in the spleen of chicken naturally infected by Newcastle Disease velogenic viscerotropic viruses was compared to the responses of atypical velogenic, velogenic neurotropic, and mesogenic strains during the first five days after infection. The ribonuc...

  5. MicroRNA as Type I Interferon-Regulated Transcripts and Modulators of the Innate Immune Response

    PubMed Central

    Forster, Samuel C.; Tate, Michelle D.; Hertzog, Paul J.

    2015-01-01

    Type I interferons (IFNs) are an important family of cytokines that regulate innate and adaptive immune responses to pathogens, in cancer and inflammatory diseases. While the regulation and role of protein-coding genes involved in these responses are well characterized, the role of non-coding microRNAs in the IFN responses is less developed. We review the emerging picture of microRNA regulation of the IFN response at the transcriptional and post-transcriptional level. This response forms an important regulatory loop; several microRNAs target transcripts encoding components at many steps of the type I IFN response, both production and action, at the receptor, signaling, transcription factor, and regulated gene level. Not only do IFNs regulate positive signaling molecules but also negative regulators such as SOCS1. In total, 36 microRNA are reported as IFN regulated. Given this apparent multipronged targeting of the IFN response by microRNAs and their well-characterized capacity to “buffer” responses in other situations, the prospects of improved sequencing and microRNA targeting technologies will facilitate the elucidation of the broader regulatory networks of microRNA in this important biological context, and their therapeutic and diagnostic potential. PMID:26217335

  6. Cylindrospermopsin induced transcriptional responses in human hepatoma HepG2 cells.

    PubMed

    Straser, Alja; Filipič, Metka; Zegura, Bojana

    2013-09-01

    The newly emerging cyanotoxin cylindrospermopsin (CYN) is showing genotoxic effects in a range of test systems. However, the knowledge on the mechanisms involved is limited. To get insight into the cellular responses to CYN a toxicogenomic analysis of selected genes commonly affected by genotoxic stress was performed on HepG2 cells exposed to a non-cytotoxic but genotoxic concentration of CYN (0.5 μg/ml for 12 and 24h). CYN increased expression of the immediate-early response genes from the FOS and JUN gene families and there was strong evidence for the involvement of P53 and NF-κB signaling. Strong up-regulation of the growth arrest and DNA damage inducible genes (GADD45A and GADD45B), cyclin-dependent kinase inhibitors (CDKN1A and CDKN2B), checkpoint kinase 1 (CHEK1), and genes involved in DNA damage repair (XPC, ERCC4 and others) indicated cell-cycle arrest and induction of nucleotide excision and double strand break repair. Up-regulation of metabolic enzyme genes provided evidence for the involvement of phase I (CYP1A1, CYP1B1, ALDH1A2 and CES2) and phase II (UGT1A6, UGT1A1, NAT1 and GSTM3) enzymes in the detoxification response and potential activation of CYN. The obtained transcriptional patterns after exposure of HepG2 cells to CYN provide valuable new information on the cellular response to CYN. PMID:23726867

  7. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    SciTech Connect

    He, Z.; Zhou, A.; Baidoo, E.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C.L.; Huang, K.; Alm, E.J.; Fields, M.W.; Wall, J.; Stahl, D.; Hazen, T.C.; Keasling, J.D.; Arkin, A.P.; Zhou, J.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed. Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.

  8. Distinct transcriptional responses elicited by unfolded nuclear or cytoplasmic protein in mammalian cells

    PubMed Central

    Miyazaki, Yusuke; Chen, Ling-chun; Chu, Bernard W; Swigut, Tomek; Wandless, Thomas J

    2015-01-01

    Eukaryotic cells possess a variety of signaling pathways that prevent accumulation of unfolded and misfolded proteins. Chief among these is the heat shock response (HSR), which is assumed to respond to unfolded proteins in the cytosol and nucleus alike. In this study, we probe this axiom further using engineered proteins called ‘destabilizing domains’, whose folding state we control with a small molecule. The sudden appearance of unfolded protein in mammalian cells elicits a robust transcriptional response, which is distinct from the HSR and other known pathways that respond to unfolded proteins. The cellular response to unfolded protein is strikingly different in the nucleus and the cytosol, although unfolded protein in either compartment engages the p53 network. This response provides cross-protection during subsequent proteotoxic stress, suggesting that it is a central component of protein quality control networks, and like the HSR, is likely to influence the initiation and progression of human pathologies. DOI: http://dx.doi.org/10.7554/eLife.07687.001 PMID:26314864

  9. Transcriptional Responses of Resistant and Susceptible Fish Clones to the Bacterial Pathogen Flavobacterium psychrophilum

    PubMed Central

    Martin, Samuel A. M.; Jouneau, Luc; Bernardet, Jean-Francois; Houel, Armel; Lunazzi, Aurélie; Duchaud, Eric; Michel, Christian; Quillet, Edwige; Boudinot, Pierre

    2012-01-01

    Flavobacterium psychrophilum is a bacterial species that represents one of the most important pathogens for aquaculture worldwide, especially for salmonids. To gain insights into the genetic basis of the natural resistance to F. psychrophilum, we selected homozygous clones of rainbow trout with contrasted susceptibility to the infection. We compared the transcriptional response to the bacteria in the pronephros of a susceptible and a resistant line by micro-array analysis five days after infection. While the basal transcriptome of healthy fish was significantly different in the resistant and susceptible lines, the transcriptome modifications induced by the bacteria involved essentially the same genes and pathways. The response to F. psychrophilum involved antimicrobial peptides, complement, and a number of enzymes and chemokines. The matrix metalloproteases mmp9 and mmp13 were among the most highly induced genes in both genetic backgrounds. Key genes of both pro- and anti-inflammatory response such as IL1 and IL10, were up-regulated with a greater magnitude in susceptible animals where the bacterial load was also much higher. While higher resistance to F. psychrophilum does not seem to be based on extensive differences in the orientation of the immune response, several genes including complement C3 showed stronger induction in the resistant fish. They may be important for the variation of susceptibility to the infection. PMID:22720048

  10. Larval Helicoverpa zea Transcriptional, Growth and Behavioral Responses to Nicotine and Nicotiana tabacum

    PubMed Central

    Gog, Linus; Vogel, Heiko; Hum-Musser, Sue M.; Tuter, Jason; Musser, Richard O.

    2014-01-01

    The polyphagous feeding habits of the corn earworm, Helicoverpa zea (Boddie), underscore its status as a major agricultural pest with a wide geographic distribution and host plant repertoire. To study the transcriptomic response to toxins in diet, we conducted a microarray analysis of H. zea caterpillars feeding on artificial diet, diet laced with nicotine and Nicotiana tabacum (L.) plants. We supplemented our analysis with growth and aversion bioassays. The transcriptome reflects an abundant expression of proteases, chitin, cytochrome P450 and immune-related genes, many of which are shared between the two experimental treatments. However, the tobacco treatment tended to elicit stronger transcriptional responses than nicotine-laced diet. The salivary factor glucose oxidase, known to suppress nicotine induction in the plant, was upregulated by H. zea in response to tobacco but not to nicotine-laced diet. Reduced caterpillar growth rates accompanied the broad regulation of genes associated with growth, such as juvenile hormone epoxide hydrolase. The differential expression of chemosensory proteins, such as odorant binding-protein-2 precursor, as well as the neurotransmitter nicotinic-acetylcholine-receptor subunit 9, highlights candidate genes regulating aversive behavior towards nicotine. We suggest that an observed coincidental rise in cannibalistic behavior and regulation of proteases and protease inhibitors in H. zea larvae signify a compensatory response to induced plant defenses. PMID:26462833

  11. Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses

    PubMed Central

    2014-01-01

    Background Ultraviolet (UV) radiation modulates secondary metabolism in the skin of Vitis vinifera L. berries, which affects the final composition of both grapes and wines. The expression of several phenylpropanoid biosynthesis-related genes is regulated by UV radiation in grape berries. However, the complete portion of transcriptome and ripening processes influenced by solar UV radiation in grapes remains unknown. Results Whole genome arrays were used to identify the berry skin transcriptome modulated by the UV radiation received naturally in a mid-altitude Tempranillo vineyard. UV radiation-blocking and transmitting filters were used to generate the experimental conditions. The expression of 121 genes was significantly altered by solar UV radiation. Functional enrichment analysis of altered transcripts mainly pointed out that secondary metabolism-related transcripts were induced by UV radiation including VvFLS1, VvGT5 and VvGT6 flavonol biosynthetic genes and monoterpenoid biosynthetic genes. Berry skin phenolic composition was also analysed to search for correlation with gene expression changes and UV-increased flavonols accumulation was the most evident impact. Among regulatory genes, novel UV radiation-responsive transcription factors including VvMYB24 and three bHLH, together with known grapevine UV-responsive genes such as VvMYBF1, were identified. A transcriptomic meta-analysis revealed that genes up-regulated by UV radiation in the berry skin were also enriched in homologs of Arabidopsis UVR8 UV-B photoreceptor-dependent UV-B -responsive genes. Indeed, a search of the grapevine reference genomic sequence identified UV-B signalling pathway homologs and among them, VvHY5-1, VvHY5-2 and VvRUP were up-regulated by UV radiation in the berry skin. Conclusions Results suggest that the UV-B radiation-specific signalling pathway is activated in the skin of grapes grown at mid-altitudes. The biosynthesis and accumulation of secondary metabolites, which are

  12. Identification and Validation of Reference Genes for Transcript Normalization in Strawberry (Fragaria × ananassa) Defense Responses

    PubMed Central

    Amil-Ruiz, Francisco; Garrido-Gala, José; Blanco-Portales, Rosario; Folta, Kevin M.; Muñoz-Blanco, Juan; Caballero, José L.

    2013-01-01

    Strawberry (Fragaria spp) is an emerging model for the development of basic genomics and recombinant DNA studies among rosaceous crops. Functional genomic and molecular studies involve relative quantification of gene expression under experimental conditions of interest. Accuracy and reliability are dependent upon the choice of an optimal reference control transcript. There is no information available on validated endogenous reference genes for use in studies testing strawberry-pathogen interactions. Thirteen potential pre-selected strawberry reference genes were tested against different tissues, strawberry cultivars, biotic stresses, ripening and senescent conditions, and SA/JA treatments. Evaluation of reference candidate’s suitability was analyzed by five different methodologies, and information was merged to identify best reference transcripts. A combination of all five methods was used for selective classification of reference genes. The resulting superior reference genes, FaRIB413, FaACTIN, FaEF1α and FaGAPDH2 are strongly recommended as control genes for relative quantification of gene expression in strawberry. This report constitutes the first systematic study to identify and validate optimal reference genes for accurate normalization of gene expression in strawberry plant defense response studies. PMID:23940602

  13. Methylation of arginine by PRMT1 regulates Nrf2 transcriptional activity during the antioxidative response.

    PubMed

    Liu, Xin; Li, Hongyuan; Liu, Lingxia; Lu, Yang; Gao, Yanyan; Geng, Pengyu; Li, Xiaoxue; Huang, Baiqu; Zhang, Yu; Lu, Jun

    2016-08-01

    The cap 'n' collar (CNC) family of transcription factors play important roles in resistance of oxidative and electrophilic stresses. Among the CNC family members, NF-E2-related factor 2 (Nrf2) is critical for regulating the antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. The activity of Nrf2 is controlled by a variety of post-translational modifications, including phosphorylation, ubiquitination, acetylation and sumoylation. Here we demonstrate that the arginine methyltransferase-1 (PRMT1) methylates Nrf2 protein at a single residue of arginine 437, both in vitro and in vivo. Using the heme oxygenase-1 (HO-1) as a model of phase II enzyme gene, we found that methylation of Nrf2 by PRMT1 led to a moderate increase of its DNA-binding activity and transactivation, which subsequently protected cells against the tBHP-induced glutathione depletion and cell death. Collectively, our results define a novel modification of Nrf2, which operates as a fine-tuning mechanism for the transcriptional activity of Nrf2 under the oxidative stress. PMID:27183873

  14. Chronic Contractile Dysfunction without Hypertrophy Does Not Provoke a Compensatory Transcriptional Response in Mouse Hearts.

    PubMed

    Matkovich, Scot J; Grubb, David R; McMullen, Julie R; Woodcock, Elizabeth A

    2016-01-01

    Diseased myocardium from humans and experimental animal models shows heightened expression and activity of a specific subtype of phospholipase C (PLC), the splice variant PLCβ1b. Previous studies from our group showed that increasing PLCβ1b expression in adult mouse hearts by viral transduction was sufficient to cause sustained contractile dysfunction of rapid onset, which was maintained indefinitely in the absence of other pathological changes in the myocardium. We hypothesized that impaired contractility alone would be sufficient to induce a compensatory transcriptional response. Unbiased, comprehensive mRNA-sequencing was performed on 6 biological replicates of rAAV6-treated blank, PLCβ1b and PLCβ1a (closely related but inactive splice variant) hearts 8 weeks after injection, when reduced contractility was manifest in PLCβ1b hearts without evidence of induced hypertrophy. Expression of PLCβ1b resulted in expression changes in only 9 genes at FDR<0.1 when compared with control and these genes appeared unrelated to contractility. Importantly, PLCβ1a caused similar mild expression changes to PLCβ1b, despite a complete lack of effect of this isoform on cardiac contractility. We conclude that contractile depression caused by PLCβ1b activation is largely independent of changes in the transcriptome, and thus that lowered contractility is not sufficient in itself to provoke measurable transcriptomic alterations. In addition, our data stress the importance of a stringent control group to filter out transcriptional changes unrelated to cardiac function. PMID:27359099

  15. Membrane-bound NAC transcription factors in maize and their contribution to the oxidative stress response.

    PubMed

    Wang, Dexin; Yu, Yanchong; Liu, Zhenhua; Li, Shuo; Wang, Zeli; Xiang, Fengning

    2016-09-01

    NAC membrane-bound transcription factors (NTM1-like, NTL proteins) participate in the regulation of plant development and the abiotic stress response. While their function has been thoroughly explored in Arabidopsis thaliana, this is not the case in maize. Seven ZmNTL genes were identified by an in silico scan of relevant genome sequence. All seven included a NAC domain at their N terminus, and an α-helical membrane-bound structure domain in their C terminal region. Based on their gene structure and content of conserved motifs, the seven sequences were distributed into four clades. Six of the seven ZmNTLs were associated with the plasma membrane, and the remaining one with the endoplasmic reticulum. ZmNTL2-7 were more strongly transcribed in the stem than in either the leaf or root, while ZmNTL1 transcript abundance was highest in the leaf. When the plants were exposed to either abscisic acid or hydrogen peroxide treatment, all seven genes were up-regulated in the root and stem and down-regulated in the leaf. The heterologous expression of ZmNTL1-ΔTM, 2-ΔTM and 5-ΔTM in A. thaliana reduced the level of sensitivity of the plant to hydrogen peroxide. PMID:27457981

  16. Chronic Contractile Dysfunction without Hypertrophy Does Not Provoke a Compensatory Transcriptional Response in Mouse Hearts

    PubMed Central

    Grubb, David R.; McMullen, Julie R.; Woodcock, Elizabeth A.

    2016-01-01

    Diseased myocardium from humans and experimental animal models shows heightened expression and activity of a specific subtype of phospholipase C (PLC), the splice variant PLCβ1b. Previous studies from our group showed that increasing PLCβ1b expression in adult mouse hearts by viral transduction was sufficient to cause sustained contractile dysfunction of rapid onset, which was maintained indefinitely in the absence of other pathological changes in the myocardium. We hypothesized that impaired contractility alone would be sufficient to induce a compensatory transcriptional response. Unbiased, comprehensive mRNA-sequencing was performed on 6 biological replicates of rAAV6-treated blank, PLCβ1b and PLCβ1a (closely related but inactive splice variant) hearts 8 weeks after injection, when reduced contractility was manifest in PLCβ1b hearts without evidence of induced hypertrophy. Expression of PLCβ1b resulted in expression changes in only 9 genes at FDR<0.1 when compared with control and these genes appeared unrelated to contractility. Importantly, PLCβ1a caused similar mild expression changes to PLCβ1b, despite a complete lack of effect of this isoform on cardiac contractility. We conclude that contractile depression caused by PLCβ1b activation is largely independent of changes in the transcriptome, and thus that lowered contractility is not sufficient in itself to provoke measurable transcriptomic alterations. In addition, our data stress the importance of a stringent control group to filter out transcriptional changes unrelated to cardiac function. PMID:27359099

  17. Influence of Elevated Atmospheric Carbon Dioxide on Transcriptional Responses of Bradyrhizobium japonicum in the Soybean Rhizoplane

    PubMed Central

    Sugawara, Masayuki; Sadowsky, Michael J.

    2013-01-01

    Elevated atmospheric CO2 can influence the structure and function of rhizoplane and rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizoplane and rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizoplane of soybean plants exposed to elevated atmospheric CO2. The results of microarray analyses indicated that elevated atmospheric CO2 concentration indirectly influenced the expression of a large number of genes in Bradyrhizobium attached to soybean roots. In addition, relative to plants and bacteria grown under ambient CO2 growth conditions, genes involved in C1 metabolism, denitrification and FixK2-associated genes, including those involved in nitrogen fixation, microaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2 in the rhizosphere. The expression profile of genes involved in lipochitooligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, the results of these studies indicate that the growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizoplane, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency. PMID:23666536

  18. Meta-Analysis of Transcriptional Responses to Mastitis-Causing Escherichia coli

    PubMed Central

    Younis, Sidra; Javed, Qamar; Blumenberg, Miroslav

    2016-01-01

    Bovine mastitis is a widespread disease in dairy cows, and is often caused by bacterial mammary gland infection. Mastitis causes reduced milk production and leads to excessive use of antibiotics. We present meta-analysis of transcriptional profiles of bovine mastitis from 10 studies and 307 microarrays, allowing identification of much larger sets of affected genes than any individual study. Combining multiple studies provides insight into the molecular effects of Escherichia coli infection in vivo and uncovers differences between the consequences of E. coli vs. Staphylococcus aureus infection of primary mammary epithelial cells (PMECs). In udders, live E. coli elicits inflammatory and immune defenses through numerous cytokines and chemokines. Importantly, E. coli infection causes downregulation of genes encoding lipid biosynthesis enzymes that are involved in milk production. Additionally, host metabolism is generally suppressed. Finally, defensins and bacteria-recognition genes are upregulated, while the expression of the extracellular matrix protein transcripts is silenced. In PMECs, heat-inactivated E. coli elicits expression of ribosomal, cytoskeletal and angiogenic signaling genes, and causes suppression of the cell cycle and energy production genes. We hypothesize that heat-inactivated E. coli may have prophylactic effects against mastitis. Heat-inactivated S. aureus promotes stronger inflammatory and immune defenses than E. coli. Lipopolysaccharide by itself induces MHC antigen presentation components, an effect not seen in response to E. coli bacteria. These results provide the basis for strategies to prevent and treat mastitis and may lead to the reduction in the use of antibiotics. PMID:26933871

  19. Transcriptional and antioxidative responses to endogenous polyunsaturated fatty acid accumulation in yeast.

    PubMed

    Andrisic, Luka; Collinson, Emma J; Tehlivets, Oksana; Perak, Eleonora; Zarkovic, Tomislav; Dawes, Ian W; Zarkovic, Neven; Cipak Gasparovic, Ana

    2015-01-01

    Pathophysiology of polyunsaturated fatty acids (PUFAs) is associated with aberrant lipid and oxygen metabolism. In particular, under oxidative stress, PUFAs are prone to autocatalytic degradation via peroxidation, leading to formation of reactive aldehydes with numerous potentially harmful effects. However, the pathological and compensatory mechanisms induced by lipid peroxidation are very complex and not sufficiently understood. In our study, we have used yeast capable of endogenous PUFA synthesis in order to understand the effects triggered by PUFA accumulation on cellular physiology of a eukaryotic organism. The mechanisms induced by PUFA accumulation in S. cerevisiae expressing Hevea brasiliensis Δ12-fatty acid desaturase include down-regulation of components of electron transport chain in mitochondria as well as up-regulation of pentose-phosphate pathway and fatty acid β-oxidation at the transcriptional level. Interestingly, while no changes were observed at the transcriptional level, activities of two important enzymatic antioxidants, catalase and glutathione-S-transferase, were altered in response to PUFA accumulation. Increased intracellular glutathione levels further suggest an endogenous oxidative stress and activation of antioxidative defense mechanisms under conditions of PUFA accumulation. Finally, our data suggest that PUFA in cell membrane causes metabolic changes which in turn lead to adaptation to endogenous oxidative stress. PMID:25280400

  20. PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in Chlamydomonas reinhardtii.

    PubMed

    Bajhaiya, Amit K; Dean, Andrew P; Zeef, Leo A H; Webster, Rachel E; Pittman, Jon K

    2016-03-01

    Many eukaryotic microalgae modify their metabolism in response to nutrient stresses such as phosphorus (P) starvation, which substantially induces storage metabolite biosynthesis, but the genetic mechanisms regulating this response are poorly understood. Here, we show that P starvation-induced lipid and starch accumulation is inhibited in a Chlamydomonas reinhardtii mutant lacking the transcription factor Pi Starvation Response1 (PSR1). Transcriptomic analysis identified specific metabolism transcripts that are induced by P starvation but misregulated in the psr1 mutant. These include transcripts for starch and triacylglycerol synthesis but also transcripts for photosynthesis-, redox-, and stress signaling-related proteins. To further examine the role of PSR1 in regulating lipid and starch metabolism, PSR1 complementation lines in the psr1 strain and PSR1 overexpression lines in a cell wall-deficient strain were generated. PSR1 expression in the psr1 lines was shown to be functional due to rescue of the psr1 phenotype. PSR1 overexpression lines exhibited increased starch content and number of starch granules per cell, which correlated with a higher expression of specific starch metabolism genes but reduced neutral lipid content. Furthermore, this phenotype was consistent in the presence and absence of acetate. Together, these results identify a key transcriptional regulator in global metabolism and demonstrate transcriptional engineering in microalgae to modulate starch biosynthesis. PMID:26704642

  1. PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in Chlamydomonas reinhardtii1[OPEN

    PubMed Central

    Bajhaiya, Amit K.; Dean, Andrew P.; Zeef, Leo A.H.; Webster, Rachel E.; Pittman, Jon K.

    2016-01-01

    Many eukaryotic microalgae modify their metabolism in response to nutrient stresses such as phosphorus (P) starvation, which substantially induces storage metabolite biosynthesis, but the genetic mechanisms regulating this response are poorly understood. Here, we show that P starvation-induced lipid and starch accumulation is inhibited in a Chlamydomonas reinhardtii mutant lacking the transcription factor Pi Starvation Response1 (PSR1). Transcriptomic analysis identified specific metabolism transcripts that are induced by P starvation but misregulated in the psr1 mutant. These include transcripts for starch and triacylglycerol synthesis but also transcripts for photosynthesis-, redox-, and stress signaling-related proteins. To further examine the role of PSR1 in regulating lipid and starch metabolism, PSR1 complementation lines in the psr1 strain and PSR1 overexpression lines in a cell wall-deficient strain were generated. PSR1 expression in the psr1 lines was shown to be functional due to rescue of the psr1 phenotype. PSR1 overexpression lines exhibited increased starch content and number of starch granules per cell, which correlated with a higher expression of specific starch metabolism genes but reduced neutral lipid content. Furthermore, this phenotype was consistent in the presence and absence of acetate. Together, these results identify a key transcriptional regulator in global metabolism and demonstrate transcriptional engineering in microalgae to modulate starch biosynthesis. PMID:26704642

  2. A genome wide transcriptional model of the complex response to pre-TCR signalling during thymocyte differentiation.

    PubMed

    Sahni, Hemant; Ross, Susan; Barbarulo, Alessandro; Solanki, Anisha; Lau, Ching-In; Furmanski, Anna; Saldaña, José Ignacio; Ono, Masahiro; Hubank, Mike; Barenco, Martino; Crompton, Tessa

    2015-10-01

    Developing thymocytes require pre-TCR signalling to differentiate from CD4-CD8- double negative to CD4+CD8+ double positive cell. Here we followed the transcriptional response to pre-TCR signalling in a synchronised population of differentiating double negative thymocytes. This time series analysis revealed a complex transcriptional response, in which thousands of genes were up and down-regulated before changes in cell surface phenotype were detected. Genome-wide measurement of RNA degradation of individual genes showed great heterogeneity in the rate of degradation between different genes. We therefore used time course expression and degradation data and a genome wide transcriptional modelling (GWTM) strategy to model the transcriptional response of genes up-regulated on pre-TCR signal transduction. This analysis revealed five major temporally distinct transcriptional activities that up regulate transcription through time, whereas down-regulation of expression occurred in three waves. Our model thus placed known regulators in a temporal perspective, and in addition identified novel candidate regulators of thymocyte differentiation. PMID:26415229

  3. Transcriptional response of Mexican axolotls to Ambystoma tigrinum virus (ATV) infection

    PubMed Central

    Cotter, Jennifer D; Storfer, Andrew; Page, Robert B; Beachy, Christopher K; Voss, S Randal

    2008-01-01

    Background Very little is known about the immunological responses of amphibians to pathogens that are causing global population declines. We used a custom microarray gene chip to characterize gene expression responses of axolotls (Ambystoma mexicanum) to an emerging viral pathogen, Ambystoma tigrinum virus (ATV). Result At 0, 24, 72, and 144 hours post-infection, spleen and lung samples were removed for estimation of host mRNA abundance and viral load. A total of 158 up-regulated and 105 down-regulated genes were identified across all time points using statistical and fold level criteria. The presumptive functions of these genes suggest a robust innate immune and antiviral gene expression response is initiated by A. mexicanum as early as 24 hours after ATV infection. At 24 hours, we observed transcript abundance changes for genes that are associated with phagocytosis and cytokine signaling, complement, and other general immune and defense responses. By 144 hours, we observed gene expression changes indicating host-mediated cell death, inflammation, and cytotoxicity. Conclusion Although A. mexicanum appears to mount a robust innate immune response, we did not observe gene expression changes indicative of lymphocyte proliferation in the spleen, which is associated with clearance of Frog 3 iridovirus in adult Xenopus. We speculate that ATV may be especially lethal to A. mexicanum and related tiger salamanders because they lack proliferative lymphocyte responses that are needed to clear highly virulent iridoviruses. Genes identified from this study provide important new resources to investigate ATV disease pathology and host-pathogen dynamics in natural populations. PMID:18937860

  4. Protective immune responses to biolistic DNA vaccination of Brugia malayi abundant larval transcript-2.

    PubMed

    Joseph, S K; Sambanthamoorthy, S; Dakshinamoorthy, G; Munirathinam, G; Ramaswamy, K

    2012-10-01

    Biolistic vaccination using gene gun is developed as a safer tool for delivery of DNA vaccines, a technique that combines high vaccine efficiency with lower antigen dosage and lower cost per vaccine dose. In this study, we compared the protective responses in mice after delivering the Brugia malayi abundant larval transcript-2 (BmALT-2) DNA vaccine using the conventional intradermal approach or with the needleless gene gun delivery approach. BmALT-2 is a leading vaccine candidate against B. malayi, a lymphatic filarial parasite of human. After optimizing the DNA dose and gene gun parameters for delivery into mouse skin, groups of mice were biolistically vaccinated with 5 μg of BmALT-2pVAX. Groups of mice vaccinated intradermally with 5 μg or 100 μg of BmALT-2pVAX was used for comparison of vaccine efficacy. Results demonstrated that gene gun vaccination with 5 μg of BmALT-2pVAX conferred significant protection against challenge infection that was comparable to the degree of protection conferred by intradermal vaccination with 100 μg of BmALT-2pVAX. This observation was further supported by an in vitro antibody dependent cellular cytotoxicity (ADCC) assay. Analysis of the immune response showed that the gene gun vaccination predominantly induced an IgG1 antibody response and significantly high Th2 cytokine response (IL-4) from spleen cells compared to intradermal BmALT-2 DNA delivery that induced predominantly an IgG2a and Th1 cytokine response (IFN-γ, IL-12 and TNF-α). These findings show that host protective responses could be achieved with 20 fold decrease in DNA dose using a gene gun and could prove to be an efficient delivery method in BmALT-2 DNA vaccination against lymphatic filariasis. PMID:22885273

  5. Transcriptional and biochemical responses of monoacylglycerol acyltransferase-mediated oil synthesis and associated senescence-like responses in Nicotiana benthamiana

    PubMed Central

    Divi, Uday K.; El Tahchy, Anna; Vanhercke, Thomas; Petrie, James R.; Robles-Martinez, Jose A.; Singh, Surinder P.

    2014-01-01

    Triacylglycerol (TAG) accumulates in plant seeds as a major renewable source of carbon for food, fuel and industrial feedstock. Approaches to enhance TAG content by altering lipid pathways and genes in vegetative parts have gained significant attention for biofuel and other applications. However, consequences of these modifications are not always studied in detail. In an attempt to increase TAG levels in leaves we previously demonstrated that a novel substrate, monoacylglycerol (MAG), can be used for the biosynthesis of diacylglycerol (DAG) and TAG. Transient expression of the Mus musculus monoacylglycerol acyltransferases MGAT1 and 2 in the model plant Nicotiana benthamiana increased TAG levels at 5 days post-infiltration (dpi). Here we show that increased TAG and DAG levels can be achieved as early as 2 dpi. In addition, the MGAT1 infiltrated areas showed senescence-like symptoms from 3 dpi onwards. To unravel underlying molecular mechanisms, Illumina deep sequencing was carried out (a) for de-novo assembling and annotation of N. benthamiana leaf transcripts and (b) to characterize MGAT1-responsive transcriptome. We found that MGAT1-responsive genes are involved in several processes including TAG biosynthesis, photosynthesis, cell-wall, cutin, suberin, wax and mucilage biosynthesis, lipid and hormone metabolism. Comparative analysis with transcript profiles from other senescence studies identified characteristic gene expression changes involved in senescence induction. We confirmed that increased TAG and observed senescence-symptoms are due to the MAG depletion caused by MGAT1 activity and suggest a mechanism for MGAT1 induced TAG increase and senescence-like symptoms. The data generated will serve as a valuable resource for oil and senescence related studies and for future N. benthamiana transcriptome studies. PMID:24904604

  6. Transcriptional and biochemical responses of monoacylglycerol acyltransferase-mediated oil synthesis and associated senescence-like responses in Nicotiana benthamiana.

    PubMed

    Divi, Uday K; El Tahchy, Anna; Vanhercke, Thomas; Petrie, James R; Robles-Martinez, Jose A; Singh, Surinder P

    2014-01-01

    Triacylglycerol (TAG) accumulates in plant seeds as a major renewable source of carbon for food, fuel and industrial feedstock. Approaches to enhance TAG content by altering lipid pathways and genes in vegetative parts have gained significant attention for biofuel and other applications. However, consequences of these modifications are not always studied in detail. In an attempt to increase TAG levels in leaves we previously demonstrated that a novel substrate, monoacylglycerol (MAG), can be used for the biosynthesis of diacylglycerol (DAG) and TAG. Transient expression of the Mus musculus monoacylglycerol acyltransferases MGAT1 and 2 in the model plant Nicotiana benthamiana increased TAG levels at 5 days post-infiltration (dpi). Here we show that increased TAG and DAG levels can be achieved as early as 2 dpi. In addition, the MGAT1 infiltrated areas showed senescence-like symptoms from 3 dpi onwards. To unravel underlying molecular mechanisms, Illumina deep sequencing was carried out (a) for de-novo assembling and annotation of N. benthamiana leaf transcripts and (b) to characterize MGAT1-responsive transcriptome. We found that MGAT1-responsive genes are involved in several processes including TAG biosynthesis, photosynthesis, cell-wall, cutin, suberin, wax and mucilage biosynthesis, lipid and hormone metabolism. Comparative analysis with transcript profiles from other senescence studies identified characteristic gene expression changes involved in senescence induction. We confirmed that increased TAG and observed senescence-symptoms are due to the MAG depletion caused by MGAT1 activity and suggest a mechanism for MGAT1 induced TAG increase and senescence-like symptoms. The data generated will serve as a valuable resource for oil and senescence related studies and for future N. benthamiana transcriptome studies. PMID:24904604

  7. Long-distance transport, vacuolar sequestration and transcriptional responses induced by cadmium and arsenic

    PubMed Central

    Mendoza-Cózatl, David G.; Jobe, Timothy O.; Hauser, Felix; Schroeder, Julian I.

    2011-01-01

    Summary Iron, zinc, copper and manganese are essential metals for cellular enzyme functions while cadmium, mercury and the metalloid arsenic lack any biological function. Both, essential and non-essential metals and metalloids are extremely reactive and toxic. Therefore, plants have acquired specialized mechanisms to sense, transport and maintain essential metals within physiological concentrations and to detoxify non-essential metals and metalloids. This review focuses on the recent identification of transporters that sequester cadmium and arsenic in vacuoles and the mechanisms mediating the partitioning of these metal(loid)s between roots and shoots. We further discuss recent models of phloem-mediated long-distance transport, seed accumulation of Cd and As and recent data demonstrating that plants posses a defined transcriptional response that allow plants to preserve metal homeostasis. This research is instrumental for future engineering of reduced toxic metal(loid) accumulation in edible crop tissues as well as for improved phytoremediation technologies. PMID:21820943

  8. Link between Epigenomic Alterations and Genome-Wide Aberrant Transcriptional Response to Allergen in Dendritic Cells Conveying Maternal Asthma Risk

    PubMed Central

    Mikhaylova, Lyudmila; Zhang, Yiming; Kobzik, Lester; Fedulov, Alexey V.

    2013-01-01

    We investigated the link between epigenome-wide methylation aberrations at birth and genomic transcriptional changes upon allergen sensitization that occur in the neonatal dendritic cells (DC) due to maternal asthma. We previously demonstrated that neonates of asthmatic mothers are born with a functional skew in splenic DCs that can be seen even in allergen-naïve pups and can convey allergy responses to normal recipients. However, minimal-to-no transcriptional or phenotypic changes were found to explain this alteration. Here we provide in-depth analysis of genome-wide DNA methylation profiles and RNA transcriptional (microarray) profiles before and after allergen sensitization. We identified differentially methylated and differentially expressed loci and performed manually-curated matching of methylation status of the key regulatory sequences (promoters and CpG islands) to expression of their respective transcripts before and after sensitization. We found that while allergen-naive DCs from asthma-at-risk neonates have minimal transcriptional change compared to controls, the methylation changes are extensive. The substantial transcriptional change only becomes evident upon allergen sensitization, when it occurs in multiple genes with the pre-existing epigenetic alterations. We demonstrate that maternal asthma leads to both hyper- and hypomethylation in neonatal DCs, and that both types of events at various loci significantly overlap with transcriptional responses to allergen. Pathway analysis indicates that approximately 1/2 of differentially expressed and differentially methylated genes directly interact in known networks involved in allergy and asthma processes. We conclude that congenital epigenetic changes in DCs are strongly linked to altered transcriptional responses to allergen and to early-life asthma origin. The findings are consistent with the emerging paradigm that asthma is a disease with underlying epigenetic changes. PMID:23950928

  9. Acinetobacter baumannii Response to Host-Mediated Zinc Limitation Requires the Transcriptional Regulator Zur

    PubMed Central

    Mortensen, Brittany L.; Rathi, Subodh; Chazin, Walter J.

    2014-01-01

    Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia in intensive care units, and the increasing rates of antibiotic resistance make treating these infections challenging. Consequently, there is an urgent need to develop new antimicrobials to treat A. baumannii infections. One potential therapeutic option is to target bacterial systems involved in maintaining appropriate metal homeostasis, processes that are critical for the growth of pathogens within the host. The A. baumannii inner membrane zinc transporter ZnuABC is required for growth under low-zinc conditions and for A. baumannii pathogenesis. The expression of znuABC is regulated by the transcriptional repressor Zur. To investigate the role of Zur during the A. baumannii response to zinc limitation, a zur deletion mutant was generated, and transcriptional changes were analyzed using RNA sequencing. A number of Zur-regulated genes were identified that exhibit increased expression both when zur is absent and under low-zinc conditions, and Zur binds to predicted Zur box sequences of several genes affected by zinc levels or the zur mutation. Furthermore, the zur mutant is impaired for growth in the presence of both high and low zinc levels compared to wild-type A. baumannii. Finally, the zur mutant exhibits a defect in dissemination in a mouse model of A. baumannii pneumonia, establishing zinc sensing as a critical process during A. baumannii infection. These results define Zur-regulated genes within A. baumannii and demonstrate a requirement for Zur in the A. baumannii response to the various zinc levels experienced within the vertebrate host. PMID:24816603

  10. Screen Identifying Arabidopsis Transcription Factors Involved in the Response to 9-Lipoxygenase-Derived Oxylipins

    PubMed Central

    Walper, Elisabeth; Weiste, Christoph; Mueller, Martin J.; Hamberg, Mats; Dröge-Laser, Wolfgang

    2016-01-01

    13-Lipoxygenase-derived oxylipins, such as jasmonates act as potent signaling molecules in plants. Although experimental evidence supports the impact of oxylipins generated by the 9-Lipoxygenase (9-LOX) pathway in root development and pathogen defense, their signaling function in plants remains largely elusive. Based on the root growth inhibiting properties of the 9-LOX-oxylipin 9-HOT (9-hydroxy-10,12,15-octadecatrienoic acid), we established a screening approach aiming at identifying transcription factors (TFs) involved in signaling and/or metabolism of this oxylipin. Making use of the AtTORF-Ex (Arabidopsis thaliana Transcription Factor Open Reading Frame Expression) collection of plant lines overexpressing TF genes, we screened for those TFs which restore root growth on 9-HOT. Out of 6,000 lines, eight TFs were recovered at least three times and were therefore selected for detailed analysis. Overexpression of the basic leucine Zipper (bZIP) TF TGA5 and its target, the monoxygenase CYP81D11 reduced the effect of added 9-HOT, presumably due to activation of a detoxification pathway. The highly related ETHYLENE RESPONSE FACTORs ERF106 and ERF107 induce a broad detoxification response towards 9-LOX-oxylipins and xenobiotic compounds. From a set of 18 related group S-bZIP factors isolated in the screen, bZIP11 is known to participate in auxin-mediated root growth and may connect oxylipins to root meristem function. The TF candidates isolated in this screen provide starting points for further attempts to dissect putative signaling pathways involving 9-LOX-derived oxylipins. PMID:27073862

  11. New family of tungstate-responsive transcriptional regulators in sulfate-reducing bacteria.

    PubMed

    Kazakov, Alexey E; Rajeev, Lara; Luning, Eric G; Zane, Grant M; Siddartha, Kavya; Rodionov, Dmitry A; Dubchak, Inna; Arkin, Adam P; Wall, Judy D; Mukhopadhyay, Aindrila; Novichkov, Pavel S

    2013-10-01

    The trace elements molybdenum and tungsten are essential components of cofactors of many metalloenzymes. However, in sulfate-reducing bacteria, high concentrations of molybdate and tungstate oxyanions inhibit growth, thus requiring the tight regulation of their homeostasis. By a combination of bioinformatic and experimental techniques, we identified a novel regulator family, tungstate-responsive regulator (TunR), controlling the homeostasis of tungstate and molybdate in sulfate-reducing deltaproteobacteria. The effector-sensing domains of these regulators are similar to those of the known molybdate-responsive regulator ModE, while their DNA-binding domains are homologous to XerC/XerD site-specific recombinases. Using a comparative genomics approach, we identified DNA motifs and reconstructed regulons for 40 TunR family members. Positional analysis of TunR sites and putative promoters allowed us to classify most TunR proteins into two groups: (i) activators of modABC genes encoding a high-affinity molybdenum and tungsten transporting system and (ii) repressors of genes for toluene sulfonate uptake (TSUP) family transporters. The activation of modA and modBC genes by TunR in Desulfovibrio vulgaris Hildenborough was confirmed in vivo, and we discovered that the activation was diminished in the presence of tungstate. A predicted 30-bp TunR-binding motif was confirmed by in vitro binding assays. A novel TunR family of bacterial transcriptional factors controls tungstate and molybdate homeostasis in sulfate-reducing deltaproteobacteria. We proposed that TunR proteins participate in protection of the cells from the inhibition by these oxyanions. To our knowledge, this is a unique case of a family of bacterial transcriptional factors evolved from site-specific recombinases. PMID:23913324

  12. Role of Transcription Factor HAT1 in Modulating Arabidopsis thaliana Response to Cucumber mosaic virus.

    PubMed

    Zou, Li-Juan; Deng, Xing-Guang; Han, Xue-Ying; Tan, Wen-Rong; Zhu, Li-Jun; Xi, De-Hui; Zhang, Da-Wei; Lin, Hong-Hui

    2016-09-01

    Arabidopsis thaliana homeodomain-leucine zipper protein 1 (HAT1) belongs to the homeodomain-leucine zipper (HD-Zip) family class II that plays important roles in plant growth and development as a transcription factor. To elucidate further the role of HD-Zip II transcription factors in plant defense, the A. thaliana hat1, hat1hat3 and hat1hat2hat3 mutants and HAT1 overexpression plants (HAT1OX) were challenged with Cucumber mosaic virus (CMV). HAT1OX displayed more susceptibility, while loss-of-function mutants of HAT1 exhibited less susceptibility to CMV infection. HAT1 and its close homologs HAT2 and HAT3 function redundantly, as the triple mutant hat1hat2hat3 displayed increased virus resistance compared with the hat1 and hat1hat3 mutants. Furthermore, the induction of the antioxidant system (the activities and expression of enzymatic antioxidants) and the expression of defense-associated genes were down-regulated in HAT1OX but up-regulated in hat1hat2hat3 when compared with Col-0 after CMV infection. Further evidence showed that the involvement of HAT1 in the anti-CMV defense response might be dependent on salicylic acid (SA) but not jasmonic acid (JA). The SA level or expression of SA synthesis-related genes was decreased in HAT1OX but increased in hat1hat2hat3 compared with Col-0 after CMV infection, but there were little difference in JA level or JA synthesis-related gene expression among HAT1OX or defective plants. In addition, HAT1 expression is dependent on SA accumulation. Taken together, our study indicated that HAT1 negatively regulates plant defense responses to CMV. PMID:27328697

  13. Bacillus anthracis’ lethal toxin induces broad transcriptional responses in human peripheral monocytes

    PubMed Central

    2012-01-01

    Background Anthrax lethal toxin (LT), produced by the Gram-positive bacterium Bacillus anthracis, is a highly effective zinc dependent metalloprotease that cleaves the N-terminus of mitogen-activated protein kinase kinases (MAPKK or MEKs) and is known to play a role in impairing the host immune system during an inhalation anthrax infection. Here, we present the transcriptional responses of LT treated human monocytes in order to further elucidate the mechanisms of LT inhibition on the host immune system. Results Western Blot analysis demonstrated cleavage of endogenous MEK1 and MEK3 when human monocytes were treated with 500 ng/mL LT for four hours, proving their susceptibility to anthrax lethal toxin. Furthermore, staining with annexin V and propidium iodide revealed that LT treatment did not induce human peripheral monocyte apoptosis or necrosis. Using Affymetrix Human Genome U133 Plus 2.0 Arrays, we identified over 820 probe sets differentially regulated after LT treatment at the p <0.001 significance level, interrupting the normal transduction of over 60 known pathways. As expected, the MAPKK signaling pathway was most drastically affected by LT, but numerous genes outside the well-recognized pathways were also influenced by LT including the IL-18 signaling pathway, Toll-like receptor pathway and the IFN alpha signaling pathway. Multiple genes involved in actin regulation, signal transduction, transcriptional regulation and cytokine signaling were identified after treatment with anthrax LT. Conclusion We conclude LT directly targets human peripheral monocytes and causes multiple aberrant gene responses that would be expected to be associated with defects in human monocyte’s normal signaling transduction pathways and function. This study provides further insights into the mechanisms associated with the host immune system collapse during an anthrax infection, and suggests that anthrax LT may have additional downstream targets outside the well-known MAPK

  14. Screen Identifying Arabidopsis Transcription Factors Involved in the Response to 9-Lipoxygenase-Derived Oxylipins.

    PubMed

    Walper, Elisabeth; Weiste, Christoph; Mueller, Martin J; Hamberg, Mats; Dröge-Laser, Wolfgang

    2016-01-01

    13-Lipoxygenase-derived oxylipins, such as jasmonates act as potent signaling molecules in plants. Although experimental evidence supports the impact of oxylipins generated by the 9-Lipoxygenase (9-LOX) pathway in root development and pathogen defense, their signaling function in plants remains largely elusive. Based on the root growth inhibiting properties of the 9-LOX-oxylipin 9-HOT (9-hydroxy-10,12,15-octadecatrienoic acid), we established a screening approach aiming at identifying transcription factors (TFs) involved in signaling and/or metabolism of this oxylipin. Making use of the AtTORF-Ex (Arabidopsis thaliana Transcription Factor Open Reading Frame Expression) collection of plant lines overexpressing TF genes, we screened for those TFs which restore root growth on 9-HOT. Out of 6,000 lines, eight TFs were recovered at least three times and were therefore selected for detailed analysis. Overexpression of the basic leucine Zipper (bZIP) TF TGA5 and its target, the monoxygenase CYP81D11 reduced the effect of added 9-HOT, presumably due to activation of a detoxification pathway. The highly related ETHYLENE RESPONSE FACTORs ERF106 and ERF107 induce a broad detoxification response towards 9-LOX-oxylipins and xenobiotic compounds. From a set of 18 related group S-bZIP factors isolated in the screen, bZIP11 is known to participate in auxin-mediated root growth and may connect oxylipins to root meristem function. The TF candidates isolated in this screen provide starting points for further attempts to dissect putative signaling pathways involving 9-LOX-derived oxylipins. PMID:27073862

  15. Transcriptional and cellular responses of the green alga Chlamydomonas reinhardtii to perfluoroalkyl phosphonic acids.

    PubMed

    Sanchez, David; Houde, Magali; Douville, Mélanie; De Silva, Amila O; Spencer, Christine; Verreault, Jonathan

    2015-03-01

    Perfluoroalkyl phosphonic acids (PFPAs), a new class of perfluoroalkyl substances used primarily in the industrial sector as surfactants, were recently detected in surface water and wastewater treatment plant effluents. Toxicological effects of PFPAs have as yet not been investigated in aquatic organisms. The objective of the present study was to evaluate the effects of perfluorooctylphosphonic acid (C8-PFPA) and perfluorodecylphosphonic acid (C10-PFPA) exposure (31-250μg/L) on Chlamydomonas reinhardtii using genomic (qRT-PCR), biochemical (reactive oxygen species production (ROS) and lipid peroxidation), and physiological (cellular viability) indicators. After 72h of exposure, no differences were observed in cellular viability for any of the two perfluorochemicals. However, increase in ROS concentrations (36% and 25.6% at 125 and 250μg/L, respectively) and lipid peroxidation (35.5% and 35.7% at 125 and 250μg/L, respectively) was observed following exposure to C10-PFPA. C8-PFPA exposure did not impact ROS production and lipid peroxidation in algae. To get insights into the molecular response and modes of action of PFPA toxicity, qRT-PCR-based assays were performed to analyze the transcription of genes related to antioxidant responses including superoxide dismutase (SOD-1), glutathione peroxidase (GPX), catalase (CAT), glutathione S-transferase (GST), and ascorbate peroxidase (APX I). Genomic analyses revealed that the transcription of CAT and APX I was up-regulated for all the C10-PFPA concentrations. In addition, PFPAs were quantified in St. Lawrence River surface water samples and detected at concentrations ranging from 250 to 850pg/L for C8-PFPA and 380 to 650pg/L for C10-PFPA. This study supports the prevalence of PFPAs in the aquatic environment and suggests potential impacts of PFPA exposure on the antioxidant defensive system in C. reinhardtii. PMID:25621396

  16. A Shoot-Specific Hypoxic Response of Arabidopsis Sheds Light on the Role of the Phosphate-Responsive Transcription Factor PHOSPHATE STARVATION RESPONSE11[W

    PubMed Central

    Klecker, Maria; Gasch, Philipp; Peisker, Helga; Dörmann, Peter; Schlicke, Hagen; Grimm, Bernhard; Mustroph, Angelika

    2014-01-01

    Plant responses to biotic and abiotic stresses are often very specific, but signal transduction pathways can partially or completely overlap. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the transcriptional responses to phosphate starvation and oxygen deficiency stress comprise a set of commonly induced genes. While the phosphate deficiency response is systemic, under oxygen deficiency, most of the commonly induced genes are found only in illuminated shoots. This jointly induced response to the two stresses is under control of the transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), but not of the oxygen-sensing N-end rule pathway, and includes genes encoding proteins for the synthesis of galactolipids, which replace phospholipids in plant membranes under phosphate starvation. Despite the induction of galactolipid synthesis genes, total galactolipid content and plant survival are not severely affected by the up-regulation of galactolipid gene expression in illuminated leaves during hypoxia. However, changes in galactolipid molecular species composition point to an adaptation of lipid fluxes through the endoplasmic reticulum and chloroplast pathways during hypoxia. PHR1-mediated signaling of phosphate deprivation was also light dependent. Because a photoreceptor-mediated PHR1 activation was not detectable under hypoxia, our data suggest that a chloroplast-derived retrograde signal, potentially arising from metabolic changes, regulates PHR1 activity under both oxygen and phosphate deficiency. PMID:24753539

  17. Maize reas1 Mutant Stimulates Ribosome Use Efficiency and Triggers Distinct Transcriptional and Translational Responses.

    PubMed

    Qi, Weiwei; Zhu, Jie; Wu, Qiao; Wang, Qun; Li, Xia; Yao, Dongsheng; Jin, Ying; Wang, Gang; Wang, Guifeng; Song, Rentao

    2016-02-01

    Ribosome biogenesis is a fundamental cellular process in all cells. Impaired ribosome biogenesis causes developmental defects; however, its molecular and cellular bases are not fully understood. We cloned a gene responsible for a maize (Zea mays) small seed mutant, dek* (for defective kernel), and found that it encodes Ribosome export associated1 (ZmReas1). Reas1 is an AAA-ATPase that controls 60S ribosome export from the nucleus to the cytoplasm after ribosome maturation. dek* is a weak mutant allele with decreased Reas1 function. In dek* cells, mature 60S ribosome subunits are reduced in the nucleus and cytoplasm, but the proportion of actively translating polyribosomes in cytosol is significantly increased. Reduced phosphorylation of eukaryotic initiation factor 2α and the increased elongation factor 1α level indicate an enhancement of general translational efficiency in dek* cells. The mutation also triggers dramatic changes in differentially transcribed genes and differentially translated RNAs. Discrepancy was observed between differentially transcribed genes and differentially translated RNAs, indicating distinct cellular responses at transcription and translation levels to the stress of defective ribosome processing. DNA replication and nucleosome assembly-related gene expression are selectively suppressed at the translational level, resulting in inhibited cell growth and proliferation in dek* cells. This study provides insight into cellular responses due to impaired ribosome biogenesis. PMID:26645456

  18. Morphological and transcriptional responses of Lycopersicon esculentum to hexavalent chromium in agricultural soil.

    PubMed

    Li, Shi-Guo; Hou, Jing; Liu, Xin-Hui; Cui, Bao-Shan; Bai, Jun-Hong

    2016-07-01

    The carcinogenic, teratogenic, and mutagenic effects of hexavalent chromium (Cr[VI]) on living organisms through the food chain raise the immediate need to assess the potential toxicological impacts of Cr(VI) on human health. Therefore, the concentration-dependent responses of 12 Cr(VI)-responsive genes selected from a high-throughput Lycopersicon esculentum complementary DNA microarray were examined at different Cr concentrations. The results indicated that most of the genes were differentially expressed from 0.1 mg Cr/kg soil, whereas the lowest-observable-adverse-effect concentrations of Cr(VI) were 1.6 mg Cr/kg soil, 6.4 mg Cr/kg soil, 3.2 mg Cr/kg soil, and 0.4 mg Cr/kg soil for seed germination, root elongation, root biomass, and root morphology, respectively, implying that the transcriptional method was more sensitive than the traditional method in detecting Cr(VI) toxicity. Dose-dependent responses were observed for the relative expression of expansin (p = 0.778), probable chalcone-flavonone isomerase 3 (p = -0.496), and 12S seed storage protein CRD (p = -0.614); therefore, the authors propose the 3 genes as putative biomarkers in Cr(VI)-contaminated soil. Environ Toxicol Chem 2016;35:1751-1758. © 2015 SETAC. PMID:26627465

  19. Control of T Helper 2 Responses by Transcription Factor IRF4-Dependent Dendritic Cells

    PubMed Central

    Gao, Yan; Nish, Simone A.; Jiang, Ruoyi; Hou, Lin; Licona-Limón, Paula; Weinstein, Jason S.; Zhao, Hongyu; Medzhitov, Ruslan

    2014-01-01

    SUMMARY CD4+ T cell differentiation is regulated by specialized antigen-presenting cells. Dendritic cells (DCs) produce cytokines that promote naive CD4+ T cell differentiation into T helper 1 (Th1), Th17, and inducible T regulatory (iTreg) cells. However, the initiation of Th2 cell responses remains poorly understood, although it is likely that more than one mechanism might be involved. Here we have defined a specific DC subset that is involved in Th2 cell differentiation in vivo in response to a protease allergen, as well as infection with Nippostrongylus brasiliensis. We have demonstrated that this subset is controlled by the transcription factor interferon regulatory factor 4 (IRF4), which is required for their differentiation and Th2 cell-inducing function. IRF4 is known to control Th2 cell differentiation and Th2 cell-associated suppressing function in Treg cells. Our finding suggests that IRF4 also plays a role in DCs where it controls the initiation of Th2 cell responses. PMID:24076050

  20. Inferring Infection Patterns Based on a Connectivity Map of Host Transcriptional Responses.

    PubMed

    Han, Lu; He, Haochen; Li, Fei; Cui, Xiuliang; Xie, Dafei; Liu, Yang; Zheng, Xiaofei; Bai, Hui; Wang, Shengqi; Bo, Xiaochen

    2015-01-01

    Host responses to infections represent an important pathogenicity determiner, and delineation of host responses can elucidate pathogenesis processes and inform the development of anti-infection therapies. Low cost, high throughput, easy quantitation, and rich descriptions have made gene expression profiling generated by DNA microarrays an optimal approach for describing host transcriptional responses (HTRs). However, efforts to characterize the landscape of HTRs to diverse pathogens are far from offering a comprehensive view. Here, we developed an HTR Connectivity Map based on systematic assessment of pairwise similarities of HTRs to 50 clinically important human pathogens using 1353 gene-expression profiles generated from >60 human cells/tissues. These 50 pathogens were further partitioned into eight robust "HTR communities" (i.e., groups with more consensus internal HTR similarities). These communities showed enrichment in specific infection attributes and differential gene expression patterns. Using query signatures of HTRs to external pathogens, we demonstrated four distinct modes of HTR associations among different pathogens types/class, and validated the reliability of the HTR community divisions for differentiating and categorizing pathogens from a host-oriented perspective. These findings provide a first-generation HTR Connectivity Map of 50 diverse pathogens, and demonstrate the potential for using annotated HTR community to detect functional associations among infectious pathogens. PMID:26508266

  1. Host Transcriptional Profiles and Immunopathologic Response following Mycobacterium avium subsp. paratuberculosis Infection in Mice

    PubMed Central

    Shin, Min-Kyoung; Park, Hongtae; Shin, Seung Won; Jung, Myunghwan; Lee, Su-Hyung; Kim, Dae-Yong; Yoo, Han Sang

    2015-01-01

    Paratuberculosis or Johne’s disease is a chronic granulomatous enteropathy in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. In the present study, we examined the host response to MAP infection in spleens of mice in order to investigate the host immunopathology accompanying host-pathogen interaction. Transcriptional profiles of the MAP-infected mice at 3 and 6 weeks p.i. showed severe histopathological changes, whereas those at 12 weeks p.i. displayed reduced lesion severity in the spleen and liver. MAP-infected mice at 3 and 6 weeks p.i. showed up-regulation of interferon-related genes, scavenger receptor, and complement components, suggesting an initial innate immune reaction, such as macrophage activation, bactericidal activity, and macrophage invasion of MAP. Concurrently, MAP-infected mice at 3 and 6 weeks p.i. were also suggested to express M2 macrophage phenotype with up-regulation of Mrc1, and Marco and down-regulation of MHC class II, Ccr7, and Irf5, and canonical pathways related to the T cell response including ICOS-ICOSL signaling in T helper cells, calcium-induced T lymphocyte apoptosis, and CD28 signaling in T helper cell. These results provide information which furthers the understanding of the immunopathologic response to MAP infection in mice, thereby providing insights valuable for research into the pathogenesis for MAP infection. PMID:26439498

  2. Inferring Infection Patterns Based on a Connectivity Map of Host Transcriptional Responses

    PubMed Central

    Han, Lu; He, Haochen; Li, Fei; Cui, Xiuliang; Xie, Dafei; Liu, Yang; Zheng, Xiaofei; Bai, Hui; Wang, Shengqi; Bo, Xiaochen

    2015-01-01

    Host responses to infections represent an important pathogenicity determiner, and delineation of host responses can elucidate pathogenesis processes and inform the development of anti-infection therapies. Low cost, high throughput, easy quantitation, and rich descriptions have made gene expression profiling generated by DNA microarrays an optimal approach for describing host transcriptional responses (HTRs). However, efforts to characterize the landscape of HTRs to diverse pathogens are far from offering a comprehensive view. Here, we developed an HTR Connectivity Map based on systematic assessment of pairwise similarities of HTRs to 50 clinically important human pathogens using 1353 gene-expression profiles generated from >60 human cells/tissues. These 50 pathogens were further partitioned into eight robust “HTR communities” (i.e., groups with more consensus internal HTR similarities). These communities showed enrichment in specific infection attributes and differential gene expression patterns. Using query signatures of HTRs to external pathogens, we demonstrated four distinct modes of HTR associations among different pathogens types/class, and validated the reliability of the HTR community divisions for differentiating and categorizing pathogens from a host-oriented perspective. These findings provide a first-generation HTR Connectivity Map of 50 diverse pathogens, and demonstrate the potential for using annotated HTR community to detect functional associations among infectious pathogens. PMID:26508266

  3. Organogenic nodule development in hop (Humulus lupulus L.): Transcript and metabolic responses

    PubMed Central

    Fortes, Ana M; Santos, Filipa; Choi, Young H; Silva, Marta S; Figueiredo, Andreia; Sousa, Lisete; Pessoa, Fernando; Santos, Bartolomeu A; Sebastiana, Mónica; Palme, Klaus; Malhó, Rui; Verpoorte, Rob; Pais, Maria S

    2008-01-01

    Background Hop (Humulus lupulus L.) is an economically important plant forming organogenic nodules which can be used for genetic transformation and micropropagation. We are interested in the mechanisms underlying reprogramming of cells through stress and hormone treatments. Results An integrated molecular and metabolomic approach was used to investigate global gene expression and metabolic responses during development of hop's organogenic nodules. Transcript profiling using a 3,324-cDNA clone array revealed differential regulation of 133 unigenes, classified into 11 functional categories. Several pathways seem to be determinant in organogenic nodule formation, namely defense and stress response, sugar and lipid metabolism, synthesis of secondary metabolites and hormone signaling. Metabolic profiling using 1H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, lipid and sugar metabolism and secondary metabolism in organogenic nodule formation. Conclusion The expression profile of genes pivotal for energy metabolism, together with metabolites profile, suggested that these morphogenic structures gain energy through a heterotrophic, transport-dependent and sugar-degrading anaerobic metabolism. Polyamines and auxins are likely to be involved in the regulation of expression of many genes related to organogenic nodule formation. These results represent substantial progress toward a better understanding of this complex developmental program and reveal novel information regarding morphogenesis in plants. PMID:18823540

  4. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects

    PubMed Central

    Shao, Hongbo; Wang, Hongyan; Tang, Xiaoli

    2015-01-01

    Abiotic stresses adversely affect plant growth and agricultural productivity. According to the current climate prediction models, crop plants will face a greater number of environmental stresses, which are likely to occur simultaneously in the future. So it is very urgent to breed broad-spectrum tolerant crops in order to meet an increasing demand for food productivity due to global population increase. As one of the largest families of transcription factors (TFs) in plants, NAC TFs play vital roles in regulating plant growth and development processes including abiotic stress responses. Lots of studies indicated that many stress-responsive NAC TFs had been used to improve stress tolerance in crop plants by genetic engineering. In this review, the recent progress in NAC TFs was summarized, and the potential utilization of NAC TFs in breeding abiotic stress tolerant transgenic crops was also be discussed. In view of the complexity of field conditions and the specificity in multiple stress responses, we suggest that the NAC TFs commonly induced by multiple stresses should be promising candidates to produce plants with enhanced multiple stress tolerance. Furthermore, the field evaluation of transgenic crops harboring NAC genes, as well as the suitable promoters for minimizing the negative effects caused by over-expressing some NAC genes, should be considered. PMID:26579152

  5. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress.

    PubMed

    Huang, Renhui; Pan, Mingfang; Wan, Cuixiang; Shah, Nagendra P; Tao, Xueying; Wei, Hua

    2016-02-01

    Acid tolerance responses (ATR) in Lactobacillus plantarum ZDY2013 were investigated at physiological and molecular levels. A comparison of composition of cell membrane fatty acids (CMFA) between acid-challenged and unchallenged cells showed that acid adaptation evoked a significantly higher percentage of saturated fatty acids and cyclopropane fatty acids in acid-challenged than in unchallenged cells. In addition, reverse transcription-quantitative PCR analysis in acid-adapted cells at different pH values (ranging from 3.0 to 4.0) indicated that several genes were differently regulated, including those related to proton pumps, amino acid metabolism, sugar metabolism, and class I and class III stress response pathways. Expression of genes involved in fatty acid synthesis and production of alkali was significantly upregulated. Upon exposure to pH 4.5 for 2 h, a higher survival rate (higher viable cell count) of Lactobacillus plantarum ZDY2013 was achieved following an additional challenge to 40 mM hydrogen peroxide for 60 min, but no difference in survival rate of cells was found with further challenge to heat, ethanol, or salt. Therefore, we concluded that the physiological and metabolic changes of acid-treated cells of Lactobacillus plantarum ZDY2013 help the cells resist damage caused by acid, and further initiated global response signals to bring the whole cell into a state of defense to other stress factors, especially hydrogen peroxide. PMID:26627851

  6. Expression analysis of bZIP transcription factor encoding genes in response to water deficit stress in rice.

    PubMed

    Ali, Kishwar; Rai, R D; Tyagi, Aruna

    2016-05-01

    In plants, basic region/leucine zipper motif (bZIP) transcription factors regulate several developmental processes and activate genes in response to biotic and abiotic stresses. Role of stress responsive bZIP transcription factors was studied in paddy in relation to different stages of development and water deficit stress (WDS) in a drought tolerant cultivar N22 and susceptible IR 64. Further, relative water content (RWC), membrane stability index (MSI) and abscisic acid (ABA) content were measured as indices of WDS at different stages of development and levels of stress. Expression of stress responsive bZIP transcription factors was directly correlated to developmental stage and WDS and indirectly to RWC, MSI and ABA content. PMID:27319052

  7. Herbivory responsive C2H2 zinc finger transcription factor protein StZFP2 from potato.

    PubMed

    Lawrence, Susan D; Novak, Nicole G; Jones, Richard W; Farrar, Robert R; Blackburn, Michael B

    2014-07-01

    While C2H2 zinc finger transcription factors (TF) are often regulated by abiotic stress, their role during insect infestation has been overlooked. This study demonstrates that the transcripts of the zinc finger transcription factors StZFP1 and StZFP2 are induced in potato (Solanum tuberosum L.) upon infestation by either the generalist tobacco hornworm (THW, Manduca sexta L.) or the specialist Colorado potato beetle (CPB, Leptinotarsa decemlineata Say). StZFP1 has been previously characterized as conferring salt tolerance to transgenic tobacco and its transcript is induced by Phytophthora infestans and several abiotic stresses. StZFP2 has not been characterized previously, but contains the hallmarks of a C2H2 zinc finger TF, with two conserved zinc finger domains and DLN motif, which encodes a transcriptional repressor domain. Expression studies demonstrate that StZFP2 transcript is also induced by tobacco hornworm and Colorado potato beetle. These observations expand the role of the C2H2 transcription factor in potato to include the response to chewing insect pests. PMID:24811678

  8. Interaction between p53 and estradiol pathways in transcriptional responses to chemotherapeutics.

    PubMed

    Lion, Mattia; Bisio, Alessandra; Tebaldi, Toma; De Sanctis, Veronica; Menendez, Daniel; Resnick, Michael A; Ciribilli, Yari; Inga, Alberto

    2013-04-15

    Estrogen receptors (ERs) and p53 can interact via cis-elements to regulate the angiogenesis-related VEGFR-1 (FLT1) gene, as we reported previously. Here, we address cooperation between these transcription factors on a global scale. Human breast adenocarcinoma MCF7 cells were exposed to single or combinatorial treatments with the chemotherapeutic agent doxorubicin and the ER ligand 17β-estradiol (E2). Whole-genome transcriptome changes were measured by expression microarrays. Nearly 200 differentially expressed genes were identified that showed limited responsiveness to either doxorubicin treatment or ER ligand alone but were upregulated in a greater than additive manner following combined treatment. Based on exposure to 5-fuorouracil and nutlin-3a, the combined responses were treatment-specific. Among 16 genes chosen for validation using quantitative real-time PCR, seven (INPP5D, TLR5, KRT15, EPHA2, GDNF, NOTCH1, SOX9) were confirmed to be novel direct targets of p53, based on responses in MCF7 cells silenced for p53 or cooperative targets of p53 and ER. Promoter pattern searches and chromatin IP experiments for the INPP5D, TLR5, KRT15 genes supported direct, cis-mediated p53 and/or ER regulation through canonical and noncanonical p53 and ER response elements. Collectively, we establish that combinatorial activation of p53 and ER can induce novel gene expression programs that have implications for cell-cell communications, adhesion, cell differentiation, development and inflammatory responses as well as cancer treatments. PMID:23518503

  9. Interaction between p53 and estradiol pathways in transcriptional responses to chemotherapeutics

    PubMed Central

    Lion, Mattia; Bisio, Alessandra; Tebaldi, Toma; De Sanctis, Veronica; Menendez, Daniel; Resnick, Michael A.; Ciribilli, Yari; Inga, Alberto

    2013-01-01

    Estrogen receptors (ERs) and p53 can interact via cis-elements to regulate the angiogenesis-related VEGFR-1 (FLT1) gene, as we reported previously. Here, we address cooperation between these transcription factors on a global scale. Human breast adenocarcinoma MCF7 cells were exposed to single or combinatorial treatments with the chemotherapeutic agent doxorubicin and the ER ligand 17β-estradiol (E2). Whole-genome transcriptome changes were measured by expression microarrays. Nearly 200 differentially expressed genes were identified that showed limited responsiveness to either doxorubicin treatment or ER ligand alone but were upregulated in a greater than additive manner following combined treatment. Based on exposure to 5-fuorouracil and nutlin-3a, the combined responses were treatment-specific. Among 16 genes chosen for validation using quantitative real-time PCR, seven (INPP5D, TLR5, KRT15, EPHA2, GDNF, NOTCH1, SOX9) were confirmed to be novel direct targets of p53, based on responses in MCF7 cells silenced for p53 or cooperative targets of p53 and ER. Promoter pattern searches and chromatin IP experiments for the INPP5D, TLR5, KRT15 genes supported direct, cis-mediated p53 and/or ER regulation through canonical and noncanonical p53 and ER response elements. Collectively, we establish that combinatorial activation of p53 and ER can induce novel gene expression programs that have implications for cell-cell communications, adhesion, cell differentiation, development and inflammatory responses as well as cancer treatments. PMID:23518503

  10. Correlating transcriptional networks with pathological complete response following neoadjuvant chemotherapy for breast cancer.

    PubMed

    Liu, Rong; Lv, Qiao-Li; Yu, Jing; Hu, Lei; Zhang, Li-Hua; Cheng, Yu; Zhou, Hong-Hao

    2015-06-01

    We aimed to investigate the association between gene co-expression modules and responses to neoadjuvant chemotherapy in breast cancer by using a systematic biological approach. The gene expression profiles and clinico-pathological data of 508 (discovery set) and 740 (validation set) patients with breast cancer who received neoadjuvant chemotherapy were analyzed. Weighted gene co-expression network analysis was performed and identified seven co-regulated gene modules. Each module and gene signature were evaluated with logistic regression models for pathological complete response (pCR). The association between modules and pCR in each intrinsic molecular subtype was also investigated. Two transcriptional modules were correlated with tumor grade, estrogen receptor status, progesterone receptor status, and chemotherapy response in breast cancer. One module that constitutes upregulated cell proliferation genes was associated with a high probability for pCR in the whole (odds ratio (OR) = 5.20 and 3.45 in the discovery and validation datasets, respectively), luminal B, and basal-like subtypes. The prognostic potentials of novel genes, such as MELK, and pCR-related genes, such as ESR1 and TOP2A, were identified. The upregulation of another gene co-expression module was associated with weak chemotherapy responses (OR = 0.19 and 0.33 in the discovery and validation datasets, respectively). The novel gene CA12 was identified as a potential prognostic indicator in this module. A systems biology network-based approach may facilitate the discovery of biomarkers for predicting chemotherapy responses in breast cancer and contribute in developing personalized medicines. PMID:25981901

  11. The MluI cell cycle box (MCB) motifs, but not damage-responsive elements (DREs), are responsible for the transcriptional induction of the rhp51+ gene in response to DNA replication stress.

    PubMed

    Sartagul, Wugangerile; Zhou, Xin; Yamada, Yuki; Ma, Ning; Tanaka, Katsunori; Furuyashiki, Tomoyuki; Ma, Yan

    2014-01-01

    DNA replication stress induces the transcriptional activation of rhp51+, a fission yeast recA homolog required for repair of DNA double strand breaks. However, the mechanism by which DNA replication stress activates rhp51+ transcription is not understood. The promoter region of rhp51+ contains two damage-responsive elements (DREs) and two MluI cell cycle box (MCB) motifs. Using luciferase reporter assays, we examined the role of these elements in rhp51+ transcription. The full-length rhp51+ promoter and a promoter fragment containing MCB motifs only, but not a fragment containing DREs, mediated transcriptional activation upon DNA replication stress. Removal of the MCB motifs from the rhp51+ promoter abolished the induction of rhp51+ transcription by DNA replication stress. Consistent with a role for MCB motifs in rhp51+ transcription activation, deletion of the MBF (MCB-binding factor) co-repressors Nrm1 and Yox1 precluded rhp51+ transcriptional induction in response to DNA replication stress. Using cells deficient in checkpoint signaling molecules, we found that the Rad3-Cds1/Chk1 pathway partially mediated rhp51+ transcription in response to DNA replication stress, suggesting the involvement of unidentified checkpoint signaling pathways. Because MBF is critical for G1/S transcription, we examined how the cell cycle affected rhp51+ transcription. The transcription of rhp51+ and cdc18+, an MBF-dependent G1/S gene, peaked simultaneously in synchronized cdc25-22 cells. Furthermore, DNA replication stress maintained transcription of rhp51+ similarly to cdc18+. Collectively, these results suggest that MBF and its regulators mediate rhp51+ transcription in response to DNA replication stress, and underlie rhp51+ transcription at the G1/S transition. PMID:25372384

  12. Genome-Wide Transcriptional Response of the Archaeon Thermococcus gammatolerans to Cadmium

    PubMed Central

    Lagorce, Arnaud; Fourçans, Aude; Dutertre, Murielle; Bouyssiere, Brice; Zivanovic, Yvan; Confalonieri, Fabrice

    2012-01-01

    Thermococcus gammatolerans, the most radioresistant archaeon known to date, is an anaerobic and hyperthermophilic sulfur-reducing organism living in deep-sea hydrothermal vents. Knowledge of mechanisms underlying archaeal metal tolerance in such metal-rich ecosystem is still poorly documented. We showed that T. gammatolerans exhibits high resistance to cadmium (Cd), cobalt (Co) and zinc (Zn), a weaker tolerance to nickel (Ni), copper (Cu) and arsenate (AsO4) and that cells exposed to 1 mM Cd exhibit a cellular Cd concentration of 67 µM. A time-dependent transcriptomic analysis using microarrays was performed at a non-toxic (100 µM) and a toxic (1 mM) Cd dose. The reliability of microarray data was strengthened by real time RT-PCR validations. Altogether, 114 Cd responsive genes were revealed and a substantial subset of genes is related to metal homeostasis, drug detoxification, re-oxidization of cofactors and ATP production. This first genome-wide expression profiling study of archaeal cells challenged with Cd showed that T. gammatolerans withstands induced stress through pathways observed in both prokaryotes and eukaryotes but also through new and original strategies. T. gammatolerans cells challenged with 1 mM Cd basically promote: 1) the induction of several transporter/permease encoding genes, probably to detoxify the cell; 2) the upregulation of Fe transporters encoding genes to likely compensate Cd damages in iron-containing proteins; 3) the induction of membrane-bound hydrogenase (Mbh) and membrane-bound hydrogenlyase (Mhy2) subunits encoding genes involved in recycling reduced cofactors and/or in proton translocation for energy production. By contrast to other organisms, redox homeostasis genes appear constitutively expressed and only a few genes encoding DNA repair proteins are regulated. We compared the expression of 27 Cd responsive genes in other stress conditions (Zn, Ni, heat shock, γ-rays), and showed that the Cd transcriptional pattern is

  13. HIPK2: a multitalented partner for transcription factors in DNA damage response and development.

    PubMed

    Rinaldo, Cinzia; Prodosmo, Andrea; Siepi, Francesca; Soddu, Silvia

    2007-08-01

    Protein phosphorylation is a widely diffuse and versatile post-translational modification that controls many cellular processes, from signal transduction to gene transcription. The homeodomain-interacting protein kinases (HIPKs) belong to a new family of serine-threonine kinases first identified as corepressors for homeodomain transcription factors. Different screenings for the identification of new partners of transcription factors have indicated that HIPK2, the best characterized member of the HIPK family, is a multitalented coregulator of an increasing number of transcription factors and cofactors. The aim of this review is to describe the different mechanisms through which HIPK2 regulates gene transcription. PMID:17713576

  14. Transcriptional induction of IFN-gamma-responsive genes is modulated by DNA surrounding the interferon stimulation response element.

    PubMed Central

    Strehlow, I; Decker, T

    1992-01-01

    The 9/27 and GBP mRNAs are both inducible by Interferon-gamma (IFN-gamma). The promoters of both genes contain an Interferon Stimulation Response Element (ISRE), but while the GBP gene is strongly induced transcriptionally by IFN-gamma the response of the 9/27 promoter is very weak. We investigated the molecular basis for this difference. The different IFN-gamma-responsiveness was found to have more than one reason. First, 9/27 promoter DNA was unable to bind the Gamma Interferon Activation Factor (GAF) with a single high affinity site. It efficiently competed for the association of the GAF with the GBP promoter but this competition was due to the presence of two low affinity sites, the ISRE and an ISRE-like sequence, suggesting that the GAS and ISRE, though both having clear preferences for specific proteins, may nevertheless share a certain degree of structural homology. Second, the 9/27 and GBP ISREs differed markedly in their affinities for regulatory proteins (ISGFs 1,2,3) and the GBP ISRE was more potent in mediating IFN-gamma-induced promoter activity in transient transfection. Third and most importantly, however, the strong difference between the IFN-gamma response of the two promoters was mainly due to the sequences surrounding the ISRE: the positive-acting GAS on one side and sequences with silencing properties 5' and 3' of the 9/27 ISRE on the other side. The data thus show mechanisms to both up- and down-regulate the activity of the ISRE. Images PMID:1508672

  15. Degree Distribution of Position-Dependent Ball-Passing Networks in Football Games

    NASA Astrophysics Data System (ADS)

    Narizuka, Takuma; Yamamoto, Ken; Yamazaki, Yoshihiro

    2015-08-01

    We propose a simple stochastic model describing the position-dependent ball-passing network in football (soccer) games. In this network, a player in a certain area in a divided field is a node, and a pass between two nodes corresponds to an edge. Our stochastic process model is characterized by the consecutive choice of a node depending on its intrinsic fitness. We derive an explicit expression for the degree distribution and find that the derived distribution reproduces that for actual data reasonably well.

  16. Barut—Girardello Coherent States for Nonlinear Oscillator with Position-Dependent Mass

    NASA Astrophysics Data System (ADS)

    Amir, Naila; Iqbal, Shahid

    2016-07-01

    Using ladder operators for the non-linear oscillator with position-dependent effective mass, realization of the dynamic group SU(1,1) is presented. Keeping in view the algebraic structure of the non-linear oscillator, coherent states are constructed using Barut—Girardello formalism and their basic properties are discussed. Furthermore, the statistical properties of these states are investigated by means of Mandel parameter and second order correlation function. Moreover, it is shown that in the harmonic limit, all the results obtained for the non-linear oscillator with spatially varying mass reduce to corresponding results of the linear oscillator with constant mass.

  17. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts

    PubMed Central

    Esnault, Cyril; Stewart, Aengus; Gualdrini, Francesco; East, Phil; Horswell, Stuart; Matthews, Nik; Treisman, Richard

    2014-01-01

    The transcription factor SRF (serum response factor) recruits two families of coactivators, the MRTFs (myocardin-related transcription factors) and the TCFs (ternary complex factors), to couple gene transcription to growth factor signaling. Here we investigated the role of the SRF network in the immediate transcriptional response of fibroblasts to serum stimulation. SRF recruited its cofactors in a gene-specific manner, and virtually all MRTF binding was directed by SRF. Much of SRF DNA binding was serum-inducible, reflecting a requirement for MRTF–SRF complex formation in nucleosome displacement. We identified 960 serum-responsive SRF target genes, which were mostly MRTF-controlled, as assessed by MRTF chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq) and/or sensitivity to MRTF-linked signals. MRTF activation facilitates RNA polymerase II (Pol II) recruitment or promoter escape according to gene context. MRTF targets encode regulators of the cytoskeleton, transcription, and cell growth, underpinning the role of SRF in cytoskeletal dynamics and mechanosensing. Finally, we show that specific activation of either MRTFs or TCFs can reset the circadian clock. PMID:24732378

  18. Dose- and Time-Dependent Transcriptional Response of Ishikawa Cells Exposed to Genistein.

    PubMed

    Naciff, Jorge M; Khambatta, Zubin S; Carr, Gregory J; Tiesman, Jay P; Singleton, David W; Khan, Sohaib A; Daston, George P

    2016-05-01

    To further define the utility of the Ishikawa cells as a reliable in vitro model to determine the potential estrogenic activity of chemicals of interest, transcriptional changes induced by genistein (GES) in Ishikawa cells at various doses (10 pM, 1 nM, 100 nM, and 10 μM) and time points (8, 24, and 48 h) were identified using a comprehensive microarray approach. Trend analysis indicated that the expression of 5342 unique genes was modified by GES in a dose- and time-dependent manner (P ≤ 0.0001). However, the majority of gene expression changes induced in Ishikawa cells were elicited by the highest dose of GES evaluated (10 μM). The GES' estrogenic activity was identified by comparing the Ishikawa cells' response to GES versus 17 α-ethynyl estradiol (EE, at equipotent doses, ie, 10 μM vs 1 μM, respectively) and was defined by changes in the expression of 284 unique genes elicited by GES and EE in the same direction, although the magnitude of the change for some genes was different. Further, comparing the response of the Ishikawa cells exposed to high doses of GES and EE versus the response of the juvenile rat uterus exposed to EE, we identified 66 unique genes which were up- or down regulated in a similar manner in vivo as well as in vitro Genistein elicits changes in multiple molecular pathways affecting various biological processes particularly associated with cell organization and biogenesis, regulation of translation, cell proliferation, and intracellular transport; processes also affected by estrogen exposure in the uterus of the rat. These results indicate that Ishikawa cells are capable of generating a biologically relevant estrogenic response and offer an in vitro model to assess this mode of action. PMID:26865667

  19. Activating Transcription Factor 3 Expression as a Marker of Response to the Histone Deacetylase Inhibitor Pracinostat.

    PubMed

    Sooraj, Dhanya; Xu, Dakang; Cain, Jason E; Gold, Daniel P; Williams, Bryan R G

    2016-07-01

    Improved treatment strategies are required for bladder cancer due to frequent recurrence of low-grade tumors and poor survival rate from high-grade tumors with current therapies. Histone deacetylase inhibitors (HDACi), approved as single agents for specific lymphomas, have shown promising preclinical results in solid tumors but could benefit from identification of biomarkers for response. Loss of activating transcription factor 3 (ATF3) expression is a feature of bladder tumor progression and correlates with poor survival. We investigated the utility of measuring ATF3 expression as a marker of response to the HDACi pracinostat in bladder cancer models. Pracinostat treatment of bladder cancer cell lines reactivated the expression of ATF3, correlating with significant alteration in proliferative, migratory, and anchorage-dependent growth capacities. Pracinostat also induced growth arrest at the G0-G1 cell-cycle phase, coincident with the activation of tumor suppressor genes. In mouse xenograft bladder cancer models, pracinostat treatment significantly reduced tumor volumes compared with controls, accompanied by reexpression of ATF3 in nonproliferating cells from early to late stage of therapy and in parallel induced antiangiogenesis and apoptosis. Importantly, cells in which ATF3 expression was depleted were less sensitive to pracinostat treatment in vitro, exhibiting significantly higher proliferative and migratory properties. In vivo, control xenograft tumors were significantly more responsive to treatment than ATF3 knockdown xenografts. Thus, reactivation of ATF3 is an important factor in determining sensitivity to pracinostat treatment, both in vitro and in vivo, and could serve as a potential biomarker of response and provide a rationale for therapeutic utility in HDACi-mediated treatments for bladder cancer. Mol Cancer Ther; 15(7); 1726-39. ©2016 AACR. PMID:27196751

  20. Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae.

    PubMed

    Cornman, Robert Scott; Lopez, Dawn; Evans, Jay D

    2013-01-01

    American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and a general immunity is achieved by larvae as they age, the basis of which has not been identified. To quickly identify a pool of candidate genes responsive to P. larvae infection, we sequenced transcripts from larvae inoculated with P. larvae at 12 hours post-emergence and incubated for 72 hours, and compared expression levels to a control cohort. We identified 75 genes with significantly higher expression and six genes with significantly lower expression. In addition to several antimicrobial peptides, two genes encoding peritrophic-matrix domains were also up-regulated. Extracellular matrix proteins, proteases/protease inhibitors, and members of the Osiris gene family were prevalent among differentially regulated genes. However, analysis of Drosophila homologs of differentially expressed genes revealed spatial and temporal patterns consistent with developmental asynchrony as a likely confounder of our results. We therefore used qPCR to measure the consistency of gene expression changes for a subset of differentially expressed genes. A replicate experiment sampled at both 48 and 72 hours post infection allowed further discrimination of genes likely to be involved in host response. The consistently responsive genes in our test set included a hymenopteran-specific protein tyrosine kinase, a hymenopteran specific serine endopeptidase, a cytochrome P450 (CYP9Q1), and a homolog of trynity, a zona pellucida domain protein. Of the known honey bee antimicrobial peptides, apidaecin was responsive at both time-points studied whereas hymenoptaecin was more consistent in its level of change between biological replicates and had the greatest increase in expression by RNA-seq analysis

  1. The Characterization and Structure of the Manganese-responsive Transcriptional Regulator ScaR†§

    PubMed Central

    Stoll, Kate E.; Draper, William E.; Kliegman, Joseph I.; Golynskiy, Misha V.; Brew-Appiah, Rhoda A. T.; Phillips, Rebecca K.; Brown, Hattie K.; Breyer, Wendy A.; Jakubovics, Nicholas S.; Jenkinson, Howard F.; Brennan, Richard G.; Cohen, Seth M.; Glasfeld, Arthur

    2013-01-01

    The streptococcal coaggregation regulator (ScaR) of Streptococcus gordonii is a manganese-dependent transcriptional regulator. When intracellular manganese concentrations become elevated, ScaR represses transcription of the scaCBA operon, which encodes a manganese uptake transporter. A member of the DtxR/MntR family of metalloregulators, ScaR shares sequence similarity with other family members, and many metal-binding residues are conserved. Here, we show that ScaR is an active dimer, with two dimers binding the 46-bp scaC operator. Each ScaR subunit binds two manganese ions, and the protein is activated by a variety of other metal ions, including Cd2+, Co2+ and Ni2+, but not Zn2+. The crystal structure of apo-ScaR reveals a tertiary and quaternary structure similar to its homolog, the iron-responsive regulator DtxR. While each DtxR subunit binds a metal ion in two sites, labeled primary and ancillary, crystal structures of ScaR determined in the presence of Cd2+ and Zn2+ show only a single occupied metal binding site that is novel to ScaR. The site analogous to the primary site in DtxR is unoccupied, and the ancillary site is absent from ScaR. Instead, metal ions bind to ScaR at a site labeled “secondary”, which is composed of Glu80, Cys123, His125 and Asp160 and lies roughly 5 Å away from where the ancillary site would be predicted to exist. This difference suggests that ScaR and its closely related homologs are activated by a mechanism distinct from that of either DtxR or MntR. PMID:19795834

  2. Comparative transcriptional and translational analysis of heme oxygenase expression in response to sulfur mustard.

    PubMed

    Nourani, Mohammad Reza; Mahmoodzadeh Hosseini, Hamideh; Imani Fooladi, Abbas Ali

    2015-01-01

    Sulfur mustard (SM) is a potent alkylating agent which reacts with nucleophilic groups on DNA, RNA and proteins. It is capable of inducing cellular toxicity and oxidative stress via production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The accumulation of high amounts of the reactive species causes harmful effects such as DNA damage, lipid peroxidation, protein oxidation, inflammation and apoptosis. Although SM (also known as mustard gas) and its derivatives are rapidly removed from the body, long-term damages are much more serious than the short-term effects and may be correlated with the subsequent changes occurred on the genome. In order to defend against oxidative properties of this toxic molecule, cells trigger several anti-oxidant pathways through up-regulating the corresponding genes. Enzymes like heme oxygenase-1, superoxide dismutase and glutathione-S-transferase are the examples of such genes. These enzymes produce anti-oxidant substances that are able to scavenge the reactive species, alleviate their noxious effects and protect the cells. Following SM gas exposure, gene transcription (mRNA levels) of these enzymes are ramped up to help detoxify the cells. Yet, some studies have reported that the up-regulated transcription does not necessarily translate into higher protein expression levels. The exact reason why this phenomenon happens is not clear. Creation of mutations in the genome sequence may lead to protein structure changes. Phosphorylation or other post-translational alterations of proteins upon SM exposure are also considered as possible causes. In addition, alterations in some microRNAs responsible for regulating post-translation events may inhibit the expression of the anti-oxidant proteins in the poisoned cells at translational level. PMID:26096165

  3. Comparison of Transcriptional Changes to Chloroplast and Mitochondrial Perturbations Reveals Common and Specific Responses in Arabidopsis

    PubMed Central

    Van Aken, Olivier; Whelan, James

    2012-01-01

    Throughout the life of a plant, the biogenesis and fine-tuning of energy organelles is essential both under normal growth and stress conditions. Communication from organelle to nucleus is essential to adapt gene regulation and protein synthesis specifically to the current needs of the plant. This organelle-to-nuclear communication is termed retrograde signaling and has been studied extensively over the last decades. In this study we have used large-scale gene expression data sets relating to perturbations of chloroplast and mitochondrial function to gain further insights into plant retrograde signaling and how mitochondrial and chloroplast retrograde pathways interact and differ. Twenty seven studies were included that assess transcript profiles in response to chemical inhibition as well as genetic mutations of organellar proteins. The results show a highly significant overlap between gene expression changes triggered by chloroplast and mitochondrial perturbations. These overlapping gene expression changes appear to be common with general abiotic, biotic, and nutrient stresses. However, retrograde signaling pathways are capable of distinguishing the source of the perturbation as indicated by a statistical overrepresentation of changes in genes encoding proteins of the affected organelle. Organelle-specific overrepresented functional categories among others relate to energy metabolism and protein synthesis. Our analysis also suggests that WRKY transcription factors play a coordinating role on the interface of both organellar signaling pathways. Global comparison of the expression profiles for each experiment revealed that the recently identified chloroplast retrograde pathway using phospho-adenosine phosphate is possibly more related to mitochondrial than chloroplast perturbations. Furthermore, new marker genes have been identified that respond specifically to mitochondrial and/or chloroplast dysfunction. PMID:23269925

  4. Transcriptional and cellular responses to defective mitochondrial proteolysis in fission yeast.

    PubMed

    Guha, Suranjana; López-Maury, Luis; Shaw, Michael; Bähler, Jürg; Norbury, Chris J; Agashe, Vishwas R

    2011-04-29

    Lon and m-AAA are the principal, regulated proteases required for protein maturation and turnover in the mitochondrial matrix of diverse species. To understand their roles in fission yeast (Schizosaccharomyces pombe) mitochondria, we generated deletion strains lacking Lon and m-AAA, individually (Δlon1 and Δm-AAA) or together, Δlon1Δm-AAA (Δ/Δ). All three strains were viable but incapable of respiratory growth on a non-fermentable carbon source due to mitochondrial dysfunction. Confocal and electron microscopy revealed a decrease in membrane potential and ultrastructural changes in Δlon1, Δm-AAA and Δ/Δ mitochondria, consistent with a respiratory defect and aggregation of proteins in the mitochondrial matrix. To understand the global adaptations required for cell survival in the absence of Lon and m-AAA proteases, we compared genome-wide gene expression signatures of the deletion strains with the isogenic wild-type strain. Deletion of lon1 caused a distinctive transcriptional footprint of just 12 differentially expressed genes, 9 of which were up-regulated genes located on the proximal mitochondrial genome (mitochondrial DNA). In contrast, m-AAA deletion caused a much larger transcriptional response involving 268 almost exclusively nuclear genes. Genes ameliorating stress and iron assimilation were up-regulated, while diverse mitochondrial genes and other metabolic enzymes were down-regulated. The connection with iron dysregulation was further explored using biochemical, chemical and cellular assays. Although Δm-AAA and Δ/Δ contained more cellular iron than the wild-type strain, their transcriptomes strongly resembled a signature normally evoked by iron insufficiency or disrupted assembly of iron-sulfur clusters in mitochondria. Based on these findings, we posit that excess iron accumulation could contribute to the pathology of human neurodegenerative disorders arising from defects in m-AAA function. PMID:21354177

  5. Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals.

    PubMed

    Watamoto, T; Samaranayake, L P; Egusa, H; Yatani, H; Seneviratne, C J

    2011-09-01

    Biofilm formation is a major virulence attribute of Candida albicans and is directly associated with therapeutic failure. One method by which Candida acquires antifungal resistance is the expression of drug-resistance genes. This study aimed to evaluate the transcriptional regulation of several genes associated with antifungal resistance of C. albicans under planktonic, recently adhered and biofilm growth modes and in C. albicans biofilms in response to antifungal agents. Initially, the antifungal susceptibility of C. albicans cultures in different growth modes was evaluated by standard antifungal susceptibility testing. Next, to assess CDR1, CDR2, MDR1, ERG11, FKS1 and PIL1 expression, RNA was harvested from cells in each growth mode, and from biofilms after drug treatment, and subjected to quantitative real-time RT-PCR (qRT-PCR). Biofilm C. albicans was more resistant to antifungals than recently adhered cells and stationary-phase planktonic cultures. Transcriptional expression of CDR1, CDR2, MDR1, ERG11 and FKS1 was lower in recently adhered C. albicans than in the stationary-phase planktonic cultures. In contrast, PIL1 levels were significantly increased in recently adhered and biofilm modes of growth. The expression of MDR1 in biofilms greatly increased on challenge with amphotericin B but not with the other drugs tested (P<0.01). ERG11 was significantly upregulated by ketoconazole (P<0.01). Caspofungin and amphotericin B significantly upregulated FKS1 expression, whereas they significantly downregulated PIL1 expression (P<0.01). These results indicate that the expression of drug-resistance genes is associated with higher drug resistance of Candida biofilms, and lay a foundation for future large-scale genome-wide expression analysis. PMID:21474609

  6. Host Transcriptional Response to Influenza and Other Acute Respiratory Viral Infections – A Prospective Cohort Study

    PubMed Central

    Zhai, Yijie; Franco, Luis M.; Atmar, Robert L.; Quarles, John M.; Arden, Nancy; Bucasas, Kristine L.; Wells, Janet M.; Niño, Diane; Wang, Xueqing; Zapata, Gladys E.; Shaw, Chad A.; Belmont, John W.; Couch, Robert B.

    2015-01-01

    To better understand the systemic response to naturally acquired acute respiratory viral infections, we prospectively enrolled 1610 healthy adults in 2009 and 2010. Of these, 142 subjects were followed for detailed evaluation of acute viral respiratory illness. We examined peripheral blood gene expression at 7 timepoints: enrollment, 5 illness visits and the end of each year of the study. 133 completed all study visits and yielded technically adequate peripheral blood microarray gene expression data. Seventy-three (55%) had an influenza virus infection, 64 influenza A and 9 influenza B. The remaining subjects had a rhinovirus infection (N = 32), other viral infections (N = 4), or no viral agent identified (N = 24). The results, which were replicated between two seasons, showed a dramatic upregulation of interferon pathway and innate immunity genes. This persisted for 2-4 days. The data show a recovery phase at days 4 and 6 with differentially expressed transcripts implicated in cell proliferation and repair. By day 21 the gene expression pattern was indistinguishable from baseline (enrollment). Influenza virus infection induced a higher magnitude and longer duration of the shared expression signature of illness compared to the other viral infections. Using lineage and activation state-specific transcripts to produce cell composition scores, patterns of B and T lymphocyte depressions accompanied by a major activation of NK cells were detected in the acute phase of illness. The data also demonstrate multiple dynamic gene modules that are reorganized and strengthened following infection. Finally, we examined pre- and post-infection anti-influenza antibody titers defining novel gene expression correlates. PMID:26070066

  7. Transcriptional analysis of soybean root response to Fusarium virguliforme, the causal agent of sudden death syndrome.

    PubMed

    Radwan, Osman; Liu, Yu; Clough, Steven J

    2011-08-01

    Sudden death syndrome (SDS) of soybean can be caused by any of four distinct Fusarium species, with F. virguliforme and F. tucumaniae being the main casual agents in North and South America, respectively. Although the fungal tissue is largely confined to the roots, the fungus releases a toxin that is translocated to leaf tissues, in which it causes interveinal chlorosis and necrosis leading to scorching symptoms and possible defoliation. In this study, we report on an Affymetrix analysis measuring transcript abundances in resistant (PI 567.374) and susceptible (Essex) roots upon infection by F. virguliforme, 5 and 7 days postinoculation. Many of the genes with increased expression were common between resistant and susceptible plants (including genes related to programmed cell death, the phenylpropanoid pathway, defense, signal transduction, and transcription factors), but some genotype-specific expression was noted. Changes in small (sm)RNA levels between inoculated and mock-treated samples were also studied and implicate a role for these molecules in this interaction. In total, 2,467 genes were significantly changing in the experiment, with 1,694 changing in response to the pathogen; 93 smRNA and 42 microRNA that have putative soybean gene targets were identified from infected tissue. Comparing genotypes, 247 genes were uniquely modulating in the resistant host, whereas 378 genes were uniquely modulating in the susceptible host. Comparing locations of differentially expressed genes to known resistant quantitative trait loci as well as identifying smRNA that increased while their putative targets decreased (or vice versa) allowed for the narrowing of candidate SDS defense-associated genes. PMID:21751852

  8. High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core “DSB” response specific to clastogenic treatments

    PubMed Central

    Missirian, Victor; Conklin, Phillip A.; Culligan, Kevin M.; Huefner, Neil D.; Britt, Anne B.

    2014-01-01

    Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as “collateral” damage to other cellular components and therefore are not expected to provoke identical responses by the cell. Here we study the effects of two different types of ionizing radiation (IR) treatment, HZE (1 GeV Fe26+ high mass, high charge, and high energy relativistic particles) and gamma photons, on the transcriptome of Arabidopsis thaliana seedlings. Both types of IR induce small clusters of radicals that can result in the formation of double strand breaks (DSBs), but HZE also produces linear arrays of extremely clustered damage. We performed these experiments across a range of time points (1.5–24 h after irradiation) in both wild-type plants and in mutants defective in the DSB-sensing protein kinase ATM. The two types of IR exhibit a shared double strand break-repair-related damage response, although they differ slightly in the timing, degree, and ATM-dependence of the response. The ATM-dependent, DNA metabolism-related transcripts of the “DSB response” were also induced by other DNA damaging agents, but were not induced by conventional stresses. Both Gamma and HZE irradiation induced, at 24 h post-irradiation, ATM-dependent transcripts associated with a variety of conventional stresses; these were overrepresented for pathogen response, rather than DNA metabolism. In contrast, only HZE-irradiated plants, at 1.5 h after irradiation, exhibited an additional and very extensive transcriptional response, shared with plants experiencing “extended night.” This response was not apparent in gamma-irradiated plants. PMID:25136344

  9. Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction

    PubMed Central

    Tetteh, Antonia Y.; Sun, Katherine H.; Kittur, Farooqahmed S.; Ibeanu, Gordon C.

    2014-01-01

    Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se0), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process. PMID:24839442

  10. Genome-wide identification of soybean WRKY transcription factors in response to salt stress.

    PubMed

    Yu, Yanchong; Wang, Nan; Hu, Ruibo; Xiang, Fengning

    2016-01-01

    Members of the large family of WRKY transcription factors are involved in a wide range of developmental and physiological processes, most particularly in the plant response to biotic and abiotic stress. Here, an analysis of the soybean genome sequence allowed the identification of the full complement of 188 soybean WRKY genes. Phylogenetic analysis revealed that soybean WRKY genes were classified into three major groups (I, II, III), with the second group further categorized into five subgroups (IIa-IIe). The soybean WRKYs from each group shared similar gene structures and motif compositions. The location of the GmWRKYs was dispersed over all 20 soybean chromosomes. The whole genome duplication appeared to have contributed significantly to the expansion of the family. Expression analysis by RNA-seq indicated that in soybean root, 66 of the genes responded rapidly and transiently to the imposition of salt stress, all but one being up-regulated. While in aerial part, 49 GmWRKYs responded, all but two being down-regulated. RT-qPCR analysis showed that in the whole soybean plant, 66 GmWRKYs exhibited distinct expression patterns in response to salt stress, of which 12 showed no significant change, 35 were decreased, while 19 were induced. The data present here provide critical clues for further functional studies of WRKY gene in soybean salt tolerance. PMID:27386364

  11. Differential Biphasic Transcriptional Host Response Associated with Coevolution of Hemagglutinin Quasispecies of Influenza A Virus.

    PubMed

    Manchanda, Himanshu; Seidel, Nora; Blaess, Markus F; Claus, Ralf A; Linde, Joerg; Slevogt, Hortense; Sauerbrei, Andreas; Guthke, Reinhard; Schmidtke, Michaela

    2016-01-01

    Severe influenza associated with strong symptoms and lung inflammation can be caused by intra-host evolution of quasispecies with aspartic acid or glycine in hemagglutinin position 222 (HA-222D/G; H1 numbering). To gain insights into the dynamics of host response to this coevolution and to identify key mechanisms contributing to copathogenesis, the lung transcriptional response of BALB/c mice infected with an A(H1N1)pdm09 isolate consisting HA-222D/G quasispecies was analyzed from days 1 to 12 post infection (p.i). At day 2 p.i. 968 differentially expressed genes (DEGs) were detected. The DEG number declined to 359 at day 4 and reached 1001 at day 7 p.i. prior to recovery. Interestingly, a biphasic expression profile was shown for the majority of these genes. Cytokine assays confirmed these results on protein level exemplarily for two key inflammatory cytokines, interferon gamma and interleukin 6. Using a reverse engineering strategy, a regulatory network was inferred to hypothetically explain the biphasic pattern for selected DEGs. Known regulatory interactions were extracted by Pathway Studio 9.0 and integrated during network inference. The hypothetic gene regulatory network revealed a positive feedback loop of Ifng, Stat1, and Tlr3 gene signaling that was triggered by the HA-G222 variant and correlated with a clinical symptom score indicating disease severity. PMID:27536272

  12. Differential transcriptional responses underlie dietary induction of intestinal carbohydrase activities in house sparrow nestlings.

    PubMed

    Gatica-Sosa, C; Brzęk, P; Chediack, J G; Cid, F D; Karasov, W H; Caviedes-Vidal, E

    2016-04-01

    Many species show diet-induced flexibility of activity of intestinal enzymes; however, molecular and genetic mechanisms responsible for such modulation are less known, particularly in altricial birds. The goal of our study was to test whether a diet-induced increase in activity of intestinal maltase and sucrase in house sparrow nestlings is matched with an increase in maltase-glucoamylase (MG) and sucrase-isomaltase (SI) complex mRNAs respectively. Both enzyme activities were significantly higher in mid-intestine of nestlings fed a medium-starch (MS) diet compared to those fed a starch-free (SF) diet. In contrast to the similar pattern of dietary induction for both enzyme activities, diet MS elevated significantly only the level of MG mRNA, but not SI mRNA. The coordinated increase in activity of maltase and in MG mRNA is consistent with the hypothesis that dietary induction of this enzyme is under transcriptional control. In contrast, the lack of such coordination for changes in activity of sucrase and SI mRNA suggests that upregulation of this enzyme may be achieved by post-translational factor(s). We conclude that genetic mechanisms responsible for diet-induced flexibility of digestive enzymes in birds may differ from that observed in mammals. PMID:26122561

  13. Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo

    PubMed Central

    Yang, Lixin; Kemadjou, Jules R; Zinsmeister, Christian; Bauer, Matthias; Legradi, Jessica; Müller, Ferenc; Pankratz, Michael; Jäkel, Jens; Strähle, Uwe

    2007-01-01

    Background Early life stages are generally most sensitive to toxic effects. Our knowledge on the action of manmade chemicals on the developing vertebrate embryo is, however, rather limited. We addressed the toxicogenomic response of the zebrafish embryo in a systematic manner by asking whether distinct chemicals would induce specific transcriptional profiles. Results We exposed zebrafish embryos to a range of environmental toxicants and measured the changes in gene-expression profiles by hybridizing cDNA to an oligonucleotide microarray. Several hundred genes responded significantly to at least one of the 11 toxicants tested. We obtained specific expression profiles for each of the chemicals and could predict the identity of the toxicant from the expression profiles with high probability. Changes in gene expression were observed at toxicant concentrations that did not cause morphological effects. The toxicogenomic profiles were highly stage specific and we detected tissue-specific gene responses, underscoring the sensitivity of the assay system. Conclusion Our results show that the genome of the zebrafish embryo responds to toxicant exposure in a highly sensitive and specific manner. Our work provides proof-of-principle for the use of the zebrafish embryo as a toxicogenomic model and highlights its potential for systematic, large-scale analysis of the effects of chemicals on the developing vertebrate embryo. PMID:17961207

  14. Differential Biphasic Transcriptional Host Response Associated with Coevolution of Hemagglutinin Quasispecies of Influenza A Virus

    PubMed Central

    Manchanda, Himanshu; Seidel, Nora; Blaess, Markus F.; Claus, Ralf A.; Linde, Joerg; Slevogt, Hortense; Sauerbrei, Andreas; Guthke, Reinhard; Schmidtke, Michaela

    2016-01-01

    Severe influenza associated with strong symptoms and lung inflammation can be caused by intra-host evolution of quasispecies with aspartic acid or glycine in hemagglutinin position 222 (HA-222D/G; H1 numbering). To gain insights into the dynamics of host response to this coevolution and to identify key mechanisms contributing to copathogenesis, the lung transcriptional response of BALB/c mice infected with an A(H1N1)pdm09 isolate consisting HA-222D/G quasispecies was analyzed from days 1 to 12 post infection (p.i). At day 2 p.i. 968 differentially expressed genes (DEGs) were detected. The DEG number declined to 359 at day 4 and reached 1001 at day 7 p.i. prior to recovery. Interestingly, a biphasic expression profile was shown for the majority of these genes. Cytokine assays confirmed these results on protein level exemplarily for two key inflammatory cytokines, interferon gamma and interleukin 6. Using a reverse engineering strategy, a regulatory network was inferred to hypothetically explain the biphasic pattern for selected DEGs. Known regulatory interactions were extracted by Pathway Studio 9.0 and integrated during network inference. The hypothetic gene regulatory network revealed a positive feedback loop of Ifng, Stat1, and Tlr3 gene signaling that was triggered by the HA-G222 variant and correlated with a clinical symptom score indicating disease severity. PMID:27536272

  15. Enhancer Turnover Is Associated with a Divergent Transcriptional Response to Glucocorticoid in Mouse and Human Macrophages.

    PubMed

    Jubb, Alasdair W; Young, Robert S; Hume, David A; Bickmore, Wendy A

    2016-01-15

    Phenotypic differences between individuals and species are controlled in part through differences in expression of a relatively conserved set of genes. Genes expressed in the immune system are subject to especially powerful selection. We have investigated the evolution of both gene expression and candidate enhancers in human and mouse macrophages exposed to glucocorticoid (GC), a regulator of innate immunity and an important therapeutic agent. Our analyses revealed a very limited overlap in the repertoire of genes responsive to GC in human and mouse macrophages. Peaks of inducible binding of the GC receptor (GR) detected by chromatin immunoprecipitation-Seq correlated with induction, but not repression, of target genes in both species, occurred at distal regulatory sites not promoters, and were strongly enriched for the consensus GR-binding motif. Turnover of GR binding between mice and humans was associated with gain and loss of the motif. There was no detectable signal of positive selection at species-specific GR binding sites, but clear evidence of purifying selection at the small number of conserved sites. We conclude that enhancer divergence underlies the difference in transcriptional activation after GC treatment between mouse and human macrophages. Only the shared inducible loci show evidence of selection, and therefore these loci may be important for the subset of responses to GC that is shared between species. PMID:26663721

  16. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions.

    PubMed

    Joshi, Rohit; Wani, Shabir H; Singh, Balwant; Bohra, Abhishek; Dar, Zahoor A; Lone, Ajaz A; Pareek, Ashwani; Singla-Pareek, Sneh L

    2016-01-01

    Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution toward improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern "OMICS" analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant's response under drought stress and to devise potential strategies to improve plant tolerance against drought. PMID:27471513

  17. Global Transcriptional Response to Hfe Deficiency and Dietary Iron Overload in Mouse Liver and Duodenum

    PubMed Central

    Rodriguez, Alejandra; Luukkaala, Tiina; Fleming, Robert E.; Britton, Robert S.; Bacon, Bruce R.; Parkkila, Seppo

    2009-01-01

    Iron is an essential trace element whose absorption is usually tightly regulated in the duodenum. HFE-related hereditary hemochromatosis (HH) is characterized by abnormally low expression of the iron-regulatory hormone, hepcidin, which results in increased iron absorption. The liver is crucial for iron homeostasis as it is the main production site of hepcidin. The aim of this study was to explore and compare the genome-wide transcriptome response to Hfe deficiency and dietary iron overload in murine liver and duodenum. Illumina™ arrays containing over 47,000 probes were used to study global transcriptional changes. Quantitative RT-PCR (Q-RT-PCR) was used to validate the microarray results. In the liver, the expression of 151 genes was altered in Hfe−/− mice while dietary iron overload changed the expression of 218 genes. There were 173 and 108 differentially expressed genes in the duodenum of Hfe−/− mice and mice with dietary iron overload, respectively. There was 93.5% concordance between the results obtained by microarray analysis and Q-RT-PCR. Overexpression of genes for acute phase reactants in the liver and a strong induction of digestive enzyme genes in the duodenum were characteristic of the Hfe-deficient genotype. In contrast, dietary iron overload caused a more pronounced change of gene expression responsive to oxidative stress. In conclusion, Hfe deficiency caused a previously unrecognized increase in gene expression of hepatic acute phase proteins and duodenal digestive enzymes. PMID:19787063

  18. Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis.

    PubMed

    Ding, Zhong Jie; Yan, Jing Ying; Xu, Xiao Yan; Yu, Di Qiu; Li, Gui Xin; Zhang, Shu Qun; Zheng, Shao Jian

    2014-07-01

    Drought and salt stress severely inhibit plant growth and development; however, the regulatory mechanisms of plants in response to these stresses are not fully understood. Here we report that the expression of a WRKY transcription factor WRKY46 is rapidly induced by drought, salt and oxidative stresses. T-DNA insertion of WRKY46 leads to more sensitivity to drought and salt stress, whereas overexpression of WRKY46 (OV46) results in hypersensitivity in soil-grown plants, with a higher water loss rate, but with increased tolerance on the sealed agar plates. Stomatal closing in the OV46 line is insensitive to ABA because of a reduced accumulation of reactive oxygen species (ROS) in the guard cells. We further find that WRKY46 is expressed in guard cells, where its expression is not affected by dehydration, and is involved in light-dependent stomatal opening. Microarray analysis reveals that WRKY46 regulates a set of genes involved in cellular osmoprotection and redox homeostasis under dehydration stress, which is confirmed by ROS and malondialdehyde (MDA) levels in stressed seedlings. Moreover, WRKY46 modulates light-dependent starch metabolism in guard cells via regulating QUA-QUINE STARCH (QQS) gene expression. Taken together, we demonstrate that WRKY46 plays dual roles in regulating plant responses to drought and salt stress and light-dependent stomatal opening in guard cells. PMID:24773321

  19. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions

    PubMed Central

    Joshi, Rohit; Wani, Shabir H.; Singh, Balwant; Bohra, Abhishek; Dar, Zahoor A.; Lone, Ajaz A.; Pareek, Ashwani; Singla-Pareek, Sneh L.

    2016-01-01

    Increasing vulnerability of plants to a variety of stresses such as drought, salt and extreme temperatures poses a global threat to sustained growth and productivity of major crops. Of these stresses, drought represents a considerable threat to plant growth and development. In view of this, developing staple food cultivars with improved drought tolerance emerges as the most sustainable solution toward improving crop productivity in a scenario of climate change. In parallel, unraveling the genetic architecture and the targeted identification of molecular networks using modern “OMICS” analyses, that can underpin drought tolerance mechanisms, is urgently required. Importantly, integrated studies intending to elucidate complex mechanisms can bridge the gap existing in our current knowledge about drought stress tolerance in plants. It is now well established that drought tolerance is regulated by several genes, including transcription factors (TFs) that enable plants to withstand unfavorable conditions, and these remain potential genomic candidates for their wide application in crop breeding. These TFs represent the key molecular switches orchestrating the regulation of plant developmental processes in response to a variety of stresses. The current review aims to offer a deeper understanding of TFs engaged in regulating plant’s response under drought stress and to devise potential strategies to improve plant tolerance against drought. PMID:27471513

  20. Transcriptional Profiling Analysis of Bacillus subtilis in Response to High Levels of Fe(3.).

    PubMed

    Yu, Wen-Bang; Ye, Bang-Ce

    2016-06-01

    Iron is essential to microorganisms for its important biological function but could be highly toxic in excess. We have used genome-wide transcriptional analysis in Fe(3+)-treated (4 mM) Bacillus subtilis to reveal the effect of excess Fe(3+) on B. subtilis and characterized the potential pathways involved in Fe(3+) stress tolerance. A total of 366 and 400 genes were identified as significantly up-regulated and down-regulated, respectively. We found excess Fe(3+) had four major influences on B. subtilis: Fe(3+) resulted in oxidative stress and induced genes involved in oxidative stress resistance including the SigB-regulated genes, but the PerR regulon was not inducible in Fe(3+)-mediated oxidative stress except zosA; Fe(3+) significantly disturbed homeostasis of Mn(2+) and Zn(2+), and the mechanism was proposed in this article; the acidity of Fe(3+)-induced genes involved in acid consuming and production of bases and shifted B. subtilis to carbon starvation state; Fe(3+)-induced genes related to membrane remodeling (bkd operon), which prevents Fe(3+)'s incorporation to membrane lipids. Moreover, Fe(3+) repressed the stringent control response, consistent with the induction of stringent control in iron limitation, demonstrating that iron might be a signal in stringent control of B. subtilis. This study was the first to provide a comprehensive overview of the genetic response of B. subtilis to ecxess Fe(3+). PMID:26858131

  1. Gut Transcription in Helicoverpa zea is Dynamically Altered in Response to Baculovirus Infection

    PubMed Central

    Noland, Jeffrey E.; Breitenbach, Jonathan E.; Popham, Holly J. R.; Hum-Musser, Sue M.; Vogel, Heiko; Musser, Richard O.

    2013-01-01

    The Helicoverpa zea transcriptome was analyzed 24 h after H. zea larvae fed on artificial diet laced with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). Significant differential regulation of 1,139 putative genes (p < 0.05 T-test with Benjamini and Hochberg False Discovery Rate) was detected in the gut epithelial tissue; where 63% of these genes were down-regulated and 37% of genes were up-regulated compared to the mock-infected control. Genes that play important roles in digestive physiology were noted as being generally down-regulated. Among these were aminopeptidases, trypsin-like serine proteases, lipases, esterases and serine proteases. Genes related to the immune response reacted in a complex nature having peptidoglycan binding and viral antigen recognition proteins and antiviral pathway systems down-regulated, whereas antimicrobial peptides and prophenoloxidase were up-regulated. In general, detoxification genes, specifically cytochrome P450 and glutathione S-transferase were down-regulated as a result of infection. This report offers the first comparative transcriptomic study of H. zea compared to HzSNPV infected H. zea and provides further groundwork that will lead to a larger understanding of transcriptional perturbations associated with viral infection and the host response to the viral insult in what is likely the most heavily infected tissue in the insect. PMID:26462433

  2. Contribution of transcript stability to a conserved procyanidin-induced cytokine response in γδT cells1

    PubMed Central

    Daughenbaugh, Katie F.; Holderness, Jeff; Graff, Jill C.; Hedges, Jodi F.; Freedman, Brett; Graff, Joel W.; Jutila, Mark A.

    2011-01-01

    γδ T cells function in innate and adaptive immunity and are primed for secondary responses by procyanidin components of unripe apple peel (APP). Here we investigate the effects of APP and purified procyanidins on γ δ T cell gene expression. A microarray analysis was performed on bovine γ δ T cells treated with APP; increases in transcripts encoding GM-CSF, IL-8, and IL-17, but not markers of TCR stimulation such as IFNγ , were observed. Key responses were confirmed in human, mouse, and bovine cells by RT-PCR and/or ELISA, indicating a conserved response to procyanidins. In vivo relevance of the cytokine response was shown in mice following intraperitoneal injection of APP, which induced production of CXCL1/KC and resulted in neutrophil influx to the blood and peritoneum. In the human γ δ T cell-line, MOLT-14, GM-CSF and IL-8 transcripts were increased and stabilized in cells treated with crude APP or purified procyanidins. The ERK1/2 MAPK pathway was activated in APP-treated cells, and necessary for transcript stabilization. Our data describe a unique γ δ T cell inflammatory response during procyanidin treatment and suggest that transcript stability mechanisms could account, at least in part, for the priming phenotype. PMID:21307878

  3. Transcriptional responses underlying the hormetic and detrimental effects of the plant secondary metabolite gossypol on the generalist herbivore Helicoverpa armigera

    PubMed Central

    2011-01-01

    Background Hormesis is a biphasic biological response characterized by the stimulatory effect at relatively low amounts of chemical compounds which are otherwise detrimental at higher concentrations. A hormetic response in larval growth rates has been observed in cotton-feeding insects in response to increasing concentrations of gossypol, a toxic metabolite found in the pigment glands of some plants in the family Malvaceae. We investigated the developmental effect of gossypol in the cotton bollworm, Helicoverpa armigera, an important heliothine pest species, by exposing larvae to different doses of this metabolite in their diet. In addition, we sought to determine the underlying transcriptional responses to different gossypol doses. Results Larval weight gain, pupal weight and larval development time were measured in feeding experiments and a hormetic response was seen for the first two characters. On the basis of net larval weight gain responses to gossypol, three concentrations (0%, 0.016% and 0.16%) were selected for transcript profiling in the gut and the rest of the body in a two-color double reference design microarray experiment. Hormesis could be observed at the transcript level, since at the low gossypol dose, genes involved in energy acquisition such as β-fructofuranosidases were up-regulated in the gut, and genes involved in cell adhesion were down-regulated in the body. Genes with products predicted to be integral to the membrane or associated with the proteasome core complex were significantly affected by the detrimental dose treatment in the body. Oxidoreductase activity-related genes were observed to be significantly altered in both tissues at the highest gossypol dose. Conclusions This study represents the first transcriptional profiling approach investigating the effects of different concentrations of gossypol in a lepidopteran species. H. armigera's transcriptional response to gossypol feeding is tissue- and dose-dependent and involves diverse

  4. Position-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera)

    PubMed Central

    Lakes-Harlan, Reinhard; Scherberich, Jan

    2015-01-01

    A primary task of auditory systems is the localization of sound sources in space. Sound source localization in azimuth is usually based on temporal or intensity differences of sounds between the bilaterally arranged ears. In mammals, localization in elevation is possible by transfer functions at the ear, especially the pinnae. Although insects are able to locate sound sources, little attention is given to the mechanisms of acoustic orientation to elevated positions. Here we comparatively analyse the peripheral hearing thresholds of three species of bushcrickets in respect to sound source positions in space. The hearing thresholds across frequencies depend on the location of a sound source in the three-dimensional hearing space in front of the animal. Thresholds differ for different azimuthal positions and for different positions in elevation. This position-dependent frequency tuning is species specific. Largest differences in thresholds between positions are found in Ancylecha fenestrata. Correspondingly, A. fenestrata has a rather complex ear morphology including cuticular folds covering the anterior tympanal membrane. The position-dependent tuning might contribute to sound source localization in the habitats. Acoustic orientation might be a selective factor for the evolution of morphological structures at the bushcricket ear and, speculatively, even for frequency fractioning in the ear. PMID:26543574

  5. Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies

    PubMed Central

    Inouye, David I.; Ravikumar, Pradeep; Dhillon, Inderjit S.

    2016-01-01

    We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York—modeled as an exponential distribution—is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix—a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with ℓ1 regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times.

  6. Time scale separation leads to position-dependent diffusion along a slow coordinate

    PubMed Central

    Berezhkovskii, Alexander; Szabo, Attila

    2011-01-01

    When there is a separation of time scales, an effective description of the dynamics of the slow variables can be obtained by adiabatic elimination of fast ones. For example, for anisotropic Langevin dynamics in two dimensions, the conventional procedure leads to a Langevin equation for the slow coordinate that involves the potential of the mean force. The friction constant along this coordinate remains unchanged. Here, we show that a more accurate, but still Markovian, description of the slow dynamics can be obtained by using position-dependent friction that is related to the time integral of the autocorrelation function of the difference between the actual force and the mean force by a Kirkwood-like formula. The result is generalized to many dimensions, where the slow or reaction coordinate is an arbitrary function of the Cartesian coordinates. When the fast variables are effectively one-dimensional, the additional friction along the slow coordinate can be expressed in closed form for an arbitrary potential. For a cylindrically symmetric channel of varying cross section with winding centerline, our analytical expression immediately yields the multidimensional version of the Zwanzig-Bradley formula for the position-dependent diffusion coefficient. PMID:21861557

  7. Laccase Production and Differential Transcription of Laccase Genes in Cerrena sp. in Response to Metal Ions, Aromatic Compounds, and Nutrients.

    PubMed

    Yang, Jie; Wang, Guozeng; Ng, Tzi Bun; Lin, Juan; Ye, Xiuyun

    2015-01-01

    Laccases can oxidize a wide range of aromatic compounds and are industrially valuable. Laccases often exist in gene families and may differ from each other in expression and function. Quantitative real-time polymerase chain reaction (qPCR) was used for transcription profiling of eight laccase genes in Cerrena sp. strain HYB07 with validated reference genes. A high laccase activity of 280.0 U/mL was obtained after submerged fermentation for 5 days. Laccase production and laccase gene transcription at different fermentation stages and in response to various environmental cues were revealed. HYB07 laccase activity correlated with transcription levels of its predominantly expressed laccase gene, Lac7. Cu(2+) ions were indispensable for efficient laccase production by HYB07, mainly through Lac7 transcription induction, and no aromatic compounds were needed. HYB07 laccase synthesis and biomass accumulation were highest with non-limiting carbon and nitrogen. Glycerol and inorganic nitrogen sources adversely impacted Lac7 transcription, laccase yields, and fungal growth. The present study would further our understanding of transcription regulation of laccase genes, which may in turn facilitate laccase production as well as elucidation of their physiological roles. PMID:26793186

  8. H-NS controls pap and daa fimbrial transcription in Escherichia coli in response to multiple environmental cues.

    PubMed

    White-Ziegler, C A; Villapakkam, A; Ronaszeki, K; Young, S

    2000-11-01

    A comparative study was completed to determine the influence of various environmental stimuli on the transcription of three different fimbrial operons in Escherichia coli and to determine the role of the histone-like protein H-NS in this environmental regulation. The fimbrial operons studied included the pap operon, which encodes pyelonephritis-associated pili (P pili), the daa operon, which encodes F1845 fimbriae, and the fan operon, which encodes K99 fimbriae. Using lacZYA transcriptional fusions within each of the fimbrial operons, we tested temperature, osmolarity, carbon source, rich medium, oxygen levels, pH, amino acids, solid medium, and iron concentration for their effects on fimbrial gene expression. Low temperature, high osmolarity, glucose as a carbon source, and rich medium repressed transcription of all three operons. High iron did not alter transcription of any of the operons tested, whereas the remaining stimuli had effects on individual operons. For the pap and daa operons, introduction of the hns651 mutation relieved the repression, either fully or partially, due to low temperature, glucose as a carbon source, rich medium, and high osmolarity. Taken together, these data indicate that there are common environmental cues that regulate fimbrial transcription in E. coli and that H-NS is an important environmental regulator for fimbrial transcription in response to several stimuli. PMID:11053383

  9. Laccase Production and Differential Transcription of Laccase Genes in Cerrena sp. in Response to Metal Ions, Aromatic Compounds, and Nutrients

    PubMed Central

    Yang, Jie; Wang, Guozeng; Ng, Tzi Bun; Lin, Juan; Ye, Xiuyun

    2016-01-01

    Laccases can oxidize a wide range of aromatic compounds and are industrially valuable. Laccases often exist in gene families and may differ from each other in expression and function. Quantitative real-time polymerase chain reaction (qPCR) was used for transcription profiling of eight laccase genes in Cerrena sp. strain HYB07 with validated reference genes. A high laccase activity of 280.0 U/mL was obtained after submerged fermentation for 5 days. Laccase production and laccase gene transcription at different fermentation stages and in response to various environmental cues were revealed. HYB07 laccase activity correlated with transcription levels of its predominantly expressed laccase gene, Lac7. Cu2+ ions were indispensable for efficient laccase production by HYB07, mainly through Lac7 transcription induction, and no aromatic compounds were needed. HYB07 laccase synthesis and biomass accumulation were highest with non-limiting carbon and nitrogen. Glycerol and inorganic nitrogen sources adversely impacted Lac7 transcription, laccase yields, and fungal growth. The present study would further our understanding of transcription regulation of laccase genes, which may in turn facilitate laccase production as well as elucidation of their physiological roles. PMID:26793186

  10. Physiological and Transcriptional Responses of Anaerobic Chemostat Cultures of Saccharomyces cerevisiae Subjected to Diurnal Temperature Cycles

    PubMed Central

    Hebly, Marit; de Ridder, Dick; de Hulster, Erik A. F.; de la Torre Cortes, Pilar; Pronk, Jack T.

    2014-01-01

    Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and the yeast transcriptome has not been studied in detail. In this study, 24-h sinusoidal temperature cycles, oscillating between 12°C and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose and extracellular metabolites as well as CO2 production rates showed regular, reproducible circadian rhythms. DTC also led to waves of transcriptional activation and repression, which involved one-sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to respond primarily to changes in the glucose concentration. Elimination of known glucose-responsive genes revealed an overrepresentation of previously identified temperature-responsive genes as well as genes involved in the cell cycle and de novo purine biosynthesis. In-depth analysis demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that the 24-h DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to acclimate their transcriptome and physiology at the DTC temperature maximum and to approach acclimation at the DTC temperature minimum. Furthermore, this comparison and literature data on growth rate-dependent cell cycle phase distribution indicated that cell cycle synchronization was most likely an effect of imposed fluctuations of the relative growth rate (μ/μmax) rather than a direct effect of temperature. PMID:24814792

  11. Physiological and transcriptional responses of anaerobic chemostat cultures of Saccharomyces cerevisiae subjected to diurnal temperature cycles.

    PubMed

    Hebly, Marit; de Ridder, Dick; de Hulster, Erik A F; de la Torre Cortes, Pilar; Pronk, Jack T; Daran-Lapujade, Pascale

    2014-07-01

    Diurnal temperature cycling is an intrinsic characteristic of many exposed microbial ecosystems. However, its influence on yeast physiology and the yeast transcriptome has not been studied in detail. In this study, 24-h sinusoidal temperature cycles, oscillating between 12°C and 30°C, were imposed on anaerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. After three diurnal temperature cycles (DTC), concentrations of glucose and extracellular metabolites as well as CO2 production rates showed regular, reproducible circadian rhythms. DTC also led to waves of transcriptional activation and repression, which involved one-sixth of the yeast genome. A substantial fraction of these DTC-responsive genes appeared to respond primarily to changes in the glucose concentration. Elimination of known glucose-responsive genes revealed an overrepresentation of previously identified temperature-responsive genes as well as genes involved in the cell cycle and de novo purine biosynthesis. In-depth analysis demonstrated that DTC led to a partial synchronization of the cell cycle of the yeast populations in chemostat cultures, which was lost upon release from DTC. Comparison of DTC results with data from steady-state cultures showed that the 24-h DTC was sufficiently slow to allow S. cerevisiae chemostat cultures to acclimate their transcriptome and physiology at the DTC temperature maximum and to approach acclimation at the DTC temperature minimum. Furthermore, this comparison and literature data on growth rate-dependent cell cycle phase distribution indicated that cell cycle synchronization was most likely an effect of imposed fluctuations of the relative growth rate (μ/μmax) rather than a direct effect of temperature. PMID:24814792

  12. Mapping Variation in Cellular and Transcriptional Response to 1,25-Dihydroxyvitamin D3 in Peripheral Blood Mononuclear Cells

    PubMed Central

    Kariuki, Silvia N.; Maranville, Joseph C.; Baxter, Shaneen S.; Jeong, Choongwon; Nakagome, Shigeki; Hrusch, Cara L.; Witonsky, David B.; Sperling, Anne I.; Di Rienzo, Anna

    2016-01-01

    The active hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) is an important modulator of the immune system, inhibiting cellular proliferation and regulating transcription of immune response genes. In order to characterize the genetic basis of variation in the immunomodulatory effects of 1,25D, we mapped quantitative traits of 1,25D response at both the cellular and the transcriptional level. We carried out a genome-wide association scan of percent inhibition of cell proliferation (Imax) induced by 1,25D treatment of peripheral blood mononuclear cells from 88 healthy African-American individuals. Two genome-wide significant variants were identified: rs1893662 in a gene desert on chromosome 18 (p = 2.32 x 10−8) and rs6451692 on chromosome 5 (p = 2.55 x 10−8), which may influence the anti-proliferative activity of 1,25D by regulating the expression of nearby genes such as the chemokine gene, CCL28, and the translation initiation gene, PAIP1. We also identified 8 expression quantitative trait loci at a FDR<0.10 for transcriptional response to 1,25D treatment, which include the transcriptional regulator ets variant 3-like (ETV3L) and EH-domain containing 4 (EHD4). In addition, we identified response eQTLs in vitamin D receptor binding sites near genes differentially expressed in response to 1,25D, such as FERM Domain Containing 6 (FRMD6), which plays a critical role in regulating both cell proliferation and apoptosis. Combining information from the GWAS of Imax and the response eQTL mapping enabled identification of putative Imax-associated candidate genes such as PAIP1 and the transcriptional repressor gene ZNF649. Overall, the variants identified in this study are strong candidates for immune traits and diseases linked to vitamin D, such as multiple sclerosis. PMID:27454520

  13. Mapping Variation in Cellular and Transcriptional Response to 1,25-Dihydroxyvitamin D3 in Peripheral Blood Mononuclear Cells.

    PubMed

    Kariuki, Silvia N; Maranville, Joseph C; Baxter, Shaneen S; Jeong, Choongwon; Nakagome, Shigeki; Hrusch, Cara L; Witonsky, David B; Sperling, Anne I; Di Rienzo, Anna

    2016-01-01

    The active hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) is an important modulator of the immune system, inhibiting cellular proliferation and regulating transcription of immune response genes. In order to characterize the genetic basis of variation in the immunomodulatory effects of 1,25D, we mapped quantitative traits of 1,25D response at both the cellular and the transcriptional level. We carried out a genome-wide association scan of percent inhibition of cell proliferation (Imax) induced by 1,25D treatment of peripheral blood mononuclear cells from 88 healthy African-American individuals. Two genome-wide significant variants were identified: rs1893662 in a gene desert on chromosome 18 (p = 2.32 x 10-8) and rs6451692 on chromosome 5 (p = 2.55 x 10-8), which may influence the anti-proliferative activity of 1,25D by regulating the expression of nearby genes such as the chemokine gene, CCL28, and the translation initiation gene, PAIP1. We also identified 8 expression quantitative trait loci at a FDR<0.10 for transcriptional response to 1,25D treatment, which include the transcriptional regulator ets variant 3-like (ETV3L) and EH-domain containing 4 (EHD4). In addition, we identified response eQTLs in vitamin D receptor binding sites near genes differentially expressed in response to 1,25D, such as FERM Domain Containing 6 (FRMD6), which plays a critical role in regulating both cell proliferation and apoptosis. Combining information from the GWAS of Imax and the response eQTL mapping enabled identification of putative Imax-associated candidate genes such as PAIP1 and the transcriptional repressor gene ZNF649. Overall, the variants identified in this study are strong candidates for immune traits and diseases linked to vitamin D, such as multiple sclerosis. PMID:27454520

  14. Patterns of Transcriptional Response to 1,25-Dihydroxyvitamin D3 and Bacterial Lipopolysaccharide in Primary Human Monocytes.

    PubMed

    Kariuki, Silvia N; Blischak, John D; Nakagome, Shigeki; Witonsky, David B; Di Rienzo, Anna

    2016-01-01

    The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D), plays an important immunomodulatory role, regulating transcription of genes in the innate and adaptive immune system. The present study examines patterns of transcriptome-wide response to 1,25D, and the bacterial lipopolysaccharide (LPS) in primary human monocytes, to elucidate pathways underlying the effects of 1,25D on the immune system. Monocytes obtained from healthy individuals of African-American and European-American ancestry were treated with 1,25D, LPS, or both, simultaneously. The addition of 1,25D during stimulation with LPS induced significant upregulation of genes in the antimicrobial and autophagy pathways, and downregulation of proinflammatory response genes compared to LPS treatment alone. A joint Bayesian analysis enabled clustering of genes into patterns of shared transcriptional response across treatments. The biological pathways enriched within these expression patterns highlighted several mechanisms through which 1,25D could exert its immunomodulatory role. Pathways such as mTOR signaling, EIF2 signaling, IL-8 signaling, and Tec Kinase signaling were enriched among genes with opposite transcriptional responses to 1,25D and LPS, respectively, highlighting the important roles of these pathways in mediating the immunomodulatory activity of 1,25D. Furthermore, a subset of genes with evidence of interethnic differences in transcriptional response was also identified, suggesting that in addition to the well-established interethnic variation in circulating levels of vitamin D, the intensity of transcriptional response to 1,25D and LPS also varies between ethnic groups. We propose that dysregulation of the pathways identified in this study could contribute to immune-mediated disease risk. PMID:26976439

  15. Patterns of Transcriptional Response to 1,25-Dihydroxyvitamin D3 and Bacterial Lipopolysaccharide in Primary Human Monocytes

    PubMed Central

    Kariuki, Silvia N.; Blischak, John D.; Nakagome, Shigeki; Witonsky, David B.; Di Rienzo, Anna

    2016-01-01

    The active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D), plays an important immunomodulatory role, regulating transcription of genes in the innate and adaptive immune system. The present study examines patterns of transcriptome-wide response to 1,25D, and the bacterial lipopolysaccharide (LPS) in primary human monocytes, to elucidate pathways underlying the effects of 1,25D on the immune system. Monocytes obtained from healthy individuals of African-American and European-American ancestry were treated with 1,25D, LPS, or both, simultaneously. The addition of 1,25D during stimulation with LPS induced significant upregulation of genes in the antimicrobial and autophagy pathways, and downregulation of proinflammatory response genes compared to LPS treatment alone. A joint Bayesian analysis enabled clustering of genes into patterns of shared transcriptional response across treatments. The biological pathways enriched within these expression patterns highlighted several mechanisms through which 1,25D could exert its immunomodulatory role. Pathways such as mTOR signaling, EIF2 signaling, IL-8 signaling, and Tec Kinase signaling were enriched among genes with opposite transcriptional responses to 1,25D and LPS, respectively, highlighting the important roles of these pathways in mediating the immunomodulatory activity of 1,25D. Furthermore, a subset of genes with evidence of interethnic differences in transcriptional response was also identified, suggesting that in addition to the well-established interethnic variation in circulating levels of vitamin D, the intensity of transcriptional response to 1,25D and LPS also varies between ethnic groups. We propose that dysregulation of the pathways identified in this study could contribute to immune-mediated disease risk. PMID:26976439

  16. The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid

    PubMed Central

    Steinmetz, Birgit; Hackl, Hubert; Slabáková, Eva; Schwarzinger, Ilse; Smějová, Monika; Spittler, Andreas; Arbesu, Itziar; Shehata, Medhat; Souček, Karel; Wieser, Rotraud

    2014-01-01

    The product of the ecotropic virus integration site 1 (EVI1) gene, whose overexpression is associated with a poor prognosis in myeloid leukemias and some epithelial tumors, regulates gene transcription both through direct DNA binding and through modulation of the activity of other sequence specific transcription factors. Previous results from our laboratory have shown that EVI1 influenced transcription regulation in response to the myeloid differentiation inducing agent, all-trans retinoic acid (ATRA), in a dual manner: it enhanced ATRA induced transcription of the RARβ gene, but repressed the ATRA induction of the EVI1 gene itself. In the present study, we asked whether EVI1 would modulate the ATRA regulation of a larger number of genes, as well as biological responses to this agent, in human myeloid cells. U937 and HL-60 cells ectopically expressing EVI1 through retroviral transduction were subjected to microarray based gene expression analysis, and to assays measuring cellular proliferation, differentiation, and apoptosis. These experiments showed that EVI1 modulated the ATRA response of several dozens of genes, and in fact reinforced it in the vast majority of cases. A particularly strong synergy between EVI1 and ATRA was observed for GDF15, which codes for a member of the TGF-β superfamily of cytokines. In line with the gene expression results, EVI1 enhanced cell cycle arrest, differentiation, and apoptosis in response to ATRA, and knockdown of GDF15 counteracted some of these effects. The potential clinical implications of these findings are discussed. PMID:25486480

  17. A Global Genomic and Genetic Strategy to Predict Pathway Activation of Xenobiotic Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobiotic-responsive transcription factors(TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  18. The oncogene EVI1 enhances transcriptional and biological responses of human myeloid cells to all-trans retinoic acid.

    PubMed

    Steinmetz, Birgit; Hackl, Hubert; Slabáková, Eva; Schwarzinger, Ilse; Smějová, Monika; Spittler, Andreas; Arbesu, Itziar; Shehata, Medhat; Souček, Karel; Wieser, Rotraud

    2014-01-01

    The product of the ecotropic virus integration site 1 (EVI1) gene, whose overexpression is associated with a poor prognosis in myeloid leukemias and some epithelial tumors, regulates gene transcription both through direct DNA binding and through modulation of the activity of other sequence specific transcription factors. Previous results from our laboratory have shown that EVI1 influenced transcription regulation in response to the myeloid differentiation inducing agent, all-trans retinoic acid (ATRA), in a dual manner: it enhanced ATRA induced transcription of the RARβ gene, but repressed the ATRA induction of the EVI1 gene itself. In the present study, we asked whether EVI1 would modulate the ATRA regulation of a larger number of genes, as well as biological responses to this agent, in human myeloid cells. U937 and HL-60 cells ectopically expressing EVI1 through retroviral transduction were subjected to microarray based gene expression analysis, and to assays measuring cellular proliferation, differentiation, and apoptosis. These experiments showed that EVI1 modulated the ATRA response of several dozens of genes, and in fact reinforced it in the vast majority of cases. A particularly strong synergy between EVI1 and ATRA was observed for GDF15, which codes for a member of the TGF-β superfamily of cytokines. In line with the gene expression results, EVI1 enhanced cell cycle arrest, differentiation, and apoptosis in response to ATRA, and knockdown of GDF15 counteracted some of these effects. The potential clinical implications of these findings are discussed. PMID:25486480

  19. Adaptive and Specialised Transcriptional Responses to Xenobiotic Stress in Caenorhabditis elegans Are Regulated by Nuclear Hormone Receptors

    PubMed Central

    Jones, Laura M.; Rayson, Samantha J.; Flemming, Anthony J.; Urwin, Peter E.

    2013-01-01

    Characterisation of the pathways by which xenobiotics are metabolised and excreted in both target and non-target organisms is crucial for the rational design of effective and specific novel bioactive molecules. Consequently, we have investigated the induced responses of the model nematode Caenorhabditis elegans to a variety of xenobiotics which represent a range of putative modes of action. The majority of genes that were specifically induced in preliminary microarray analyses encoded enzymes from Phase I and II metabolism, including cytochrome P450s, short chain dehydrogenases, UDP-glucuronosyl transferases and glutathione transferases. Changes in gene expression were confirmed by quantitative PCR and GFP induction in reporter strains driven by promoters for transcription of twelve induced enzymes was investigated. The particular complement of metabolic genes induced was found to be highly contingent on the xenobiotic applied. The known regulators of responses to applied chemicals ahr-1, hif-1, mdt-15 and nhr-8 were not required for any of these inducible responses and skn-1 regulated GFP expression from only two of the promoters. Reporter strains were used in conjunction with systematic RNAi screens to identify transcription factors which drive expression of these genes under xenobiotic exposure. These transcription factors appeared to regulate specific xenobiotic responses and have no reported phenotypes under standard conditions. Focussing on nhr-176 we demonstrate the role of this transcription factor in mediating the resistance to thiabendazole. PMID:23922869

  20. Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress

    PubMed Central

    2013-01-01

    Background Organisms of the genus Clostridium are Gram-positive endospore formers of great importance to the carbon cycle, human normo- and pathophysiology, but also in biofuel and biorefinery applications. Exposure of Clostridium organisms to chemical and in particular toxic metabolite stress is ubiquitous in both natural (such as in the human microbiome) and engineered environments, engaging both the general stress response as well as specialized programs. Yet, despite its fundamental and applied significance, it remains largely unexplored at the systems level. Results We generated a total of 96 individual sets of microarray data examining the transcriptional changes in C. acetobutylicum, a model Clostridium organism, in response to three levels of chemical stress from the native metabolites, butanol and butyrate. We identified 164 significantly differentially expressed transcriptional regulators and detailed the cellular programs associated with general and stressor-specific responses, many previously unexplored. Pattern-based, comparative genomic analyses enabled us, for the first time, to construct a detailed picture of the genetic circuitry underlying the stress response. Notably, a list of the regulons and DNA binding motifs of the stress-related transcription factors were identified: two heat-shock response regulators, HrcA and CtsR; the SOS response regulator LexA; the redox sensor Rex; and the peroxide sensor PerR. Moreover, several transcriptional regulators controlling stress-responsive amino acid and purine metabolism and their regulons were also identified, including ArgR (arginine biosynthesis and catabolism regulator), HisR (histidine biosynthesis regulator), CymR (cysteine metabolism repressor) and PurR (purine metabolism repressor). Conclusions Using an exceptionally large set of temporal transcriptional data and regulon analyses, we successfully built a STRING-based stress response network model integrating important players for the general and

  1. Association of CD30 transcripts with Th1 responses and proinflammatory cytokines in patients with end-stage renal disease.

    PubMed

    Velásquez, Sonia Y; Opelz, Gerhard; Rojas, Mauricio; Süsal, Caner; Alvarez, Cristiam M

    2016-05-01

    High serum sCD30 levels are associated with inflammatory disorders and poor outcome in renal transplantation. The contribution to these phenomena of transcripts and proteins related to CD30-activation and -cleavage is unknown. We assessed in peripheral blood of end-stage renal disease patients (ESRDP) transcripts of CD30-activation proteins CD30 and CD30L, CD30-cleavage proteins ADAM10 and ADAM17, and Th1- and Th2-type immunity-related factors t-bet and GATA3. Additionally, we evaluated the same transcripts and release of sCD30 and 32 cytokines after allogeneic and polyclonal T-cell activation. In peripheral blood, ESRDP showed increased levels of t-bet and GATA3 transcripts compared to healthy controls (HC) (both P<0.01) whereas levels of CD30, CD30L, ADAM10 and ADAM17 transcripts were similar. Polyclonal and allogeneic stimulation induced higher levels of CD30 transcripts in ESRDP than in HC (both P<0.001). Principal component analysis (PCA) in allogeneic cultures of ESRDP identified two correlation clusters, one consisting of sCD30, the Th-1 cytokine IFN-γ, MIP-1α, RANTES, sIL-2Rα, MIP-1β, TNF-β, MDC, GM-CSF and IL-5, and another one consisting of CD30 and t-bet transcripts, IL-13 and proinflammatory proteins IP-10, IL-8, IL-1Rα and MCP-1. Reflecting an activated immune state, ESRDP exhibited after allostimulation upregulation of CD30 transcripts in T cells, which was associated with Th1 and proinflammatory responses. PMID:26970513

  2. Transcriptional and functional studies of a Cd(II)/Pb(II)-responsive transcriptional regulator(CmtR) from Acidithiobacillus ferrooxidans ATCC 23270.

    PubMed

    Zheng, Chunli; Li, Yanjun; Nie, Li; Qian, Lin; Cai, Lu; Liu, Jianshe

    2012-08-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high cadmium (Cd) concentrations. This property is important for its use in biomining processes, where Cd and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of that a Cd(II)/Pb(II)-responsive transcriptional regulator (CmtR) was possibly related to Cd homeostasis. The expression of the CmtR was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cd. The putative A. ferrooxidans Cd resistance determinant was found to be upregulated when this bacterium was exposed to Cd in the range of 15-30 mM. The CmtR from A. ferrooxidans was cloned and expressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. UV-Vis spectroscopic measurements showed that the reconstruction CmtR was able to bind Cd(II) forming Cd(II)-CmtR complex in vitro. The sequence alignment and molecular modeling showed that the crucial residues for CmtR binding were likely to be Cys77, Cys112, and Cys121. The results reported here strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cd including the Cd(II)/Pb(II)-responsive transcriptional regulator. PMID:22555344

  3. Global Transcriptional Responses of the Toxic Cyanobacterium, Microcystis aeruginosa, to Nitrogen Stress, Phosphorus Stress, and Growth on Organic Matter

    PubMed Central

    Harke, Matthew J.; Gobler, Christopher J.

    2013-01-01

    Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE), and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC), and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5–22% of genes differentially expressed), transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis. PMID:23894552

  4. Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription

    PubMed Central

    Alasoo, Kaur; Martinez, Fernando O.; Hale, Christine; Gordon, Siamon; Powrie, Fiona; Dougan, Gordon; Mukhopadhyay, Subhankar; Gaffney, Daniel J.

    2015-01-01

    Macrophages differentiated from human induced pluripotent stem cells (IPSDMs) are a potentially valuable new tool for linking genotype to phenotype in functional studies. However, at a genome-wide level these cells have remained largely uncharacterised. Here, we compared the transcriptomes of naïve and lipopolysaccharide (LPS) stimulated monocyte-derived macrophages (MDMs) and IPSDMs using RNA-Seq. The IPSDM and MDM transcriptomes were broadly similar and exhibited a highly conserved response to LPS. However, there were also significant differences in the expression of genes associated with antigen presentation and tissue remodelling. Furthermore, genes coding for multiple chemokines involved in neutrophil recruitment were more highly expressed in IPSDMs upon LPS stimulation. Additionally, analysing individual transcript expression identified hundreds of genes undergoing alternative promoter and 3′ untranslated region usage following LPS treatment representing a previously under-appreciated level of regulation in the LPS response. PMID:26224331

  5. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets

    PubMed Central

    Zeller, Karen I; Jegga, Anil G; Aronow, Bruce J; O'Donnell, Kathryn A; Dang, Chi V

    2003-01-01

    We report a database of genes responsive to the Myc oncogenic transcription factor. The database Myc Target Gene prioritizes candidate target genes according to experimental evidence and clusters responsive genes into functional groups. We coupled the prioritization of target genes with phylogenetic sequence comparisons to predict c-Myc target binding sites, which are in turn validated by chromatin immunoprecipitation assays. This database is essential for the understanding of the genetic regulatory networks underlying the genesis of cancers. PMID:14519204

  6. Identification and in silico characterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses

    PubMed Central

    Osorio, Marina Borges; Bücker-Neto, Lauro; Castilhos, Graciela; Turchetto-Zolet, Andreia Carina; Wiebke-Strohm, Beatriz; Bodanese-Zanettini, Maria Helena; Margis-Pinheiro, Márcia

    2012-01-01

    Environmental stresses caused by either abiotic or biotic factors greatly affect agriculture. As for soybean [Glycine max (L.) Merril], one of the most important crop species in the world, the situation is not different. In order to deal with these stresses, plants have evolved a variety of sophisticated molecular mechanisms, to which the transcriptional regulation of target-genes by transcription factors is crucial. Even though the involvement of several transcription factor families has been widely reported in stress response, there still is a lot to be uncovered, especially in soybean. Therefore, the objective of this study was to investigate the role of bHLH and trihelix-GT transcription factors in soybean responses to environmental stresses. Gene annotation, data mining for stress response, and phylogenetic analysis of members from both families are presented herein. At least 45 bHLH (from subgroup 25) and 63 trihelix-GT putative genes reside in the soybean genome. Among them, at least 14 bHLH and 11 trihelix-GT seem to be involved in responses to abiotic/biotic stresses. Phylogenetic analysis successfully clustered these with members from other plant species. Nevertheless, bHLH and trihelix-GT genes encompass almost three times more members in soybean than in Arabidopsis or rice, with many of these grouping into new clades with no apparent near orthologs in the other analyzed species. Our results represent an important step towards unraveling the functional roles of plant bHLH and trihelix-GT transcription factors in response to environmental cues. PMID:22802709

  7. Methyl Jasmonate-Elicited Transcriptional Responses and Pentacyclic Triterpene Biosynthesis in Sweet Basil1[C][W

    PubMed Central

    Misra, Rajesh Chandra; Maiti, Protiti; Chanotiya, Chandan Singh; Shanker, Karuna; Ghosh, Sumit

    2014-01-01

    Sweet basil (Ocimum basilicum) is well known for its diverse pharmacological properties and has been widely used in traditional medicine for the treatment of various ailments. Although a variety of secondary metabolites with potent biological activities are identified, our understanding of the biosynthetic pathways that produce them has remained largely incomplete. We studied transcriptional changes in sweet basil after methyl jasmonate (MeJA) treatment, which is considered an elicitor of secondary metabolites, and identified 388 candidate MeJA-responsive unique transcripts. Transcript analysis suggests that in addition to controlling its own biosynthesis and stress responses, MeJA up-regulates transcripts of the various secondary metabolic pathways, including terpenoids and phenylpropanoids/flavonoids. Furthermore, combined transcript and metabolite analysis revealed MeJA-induced biosynthesis of the medicinally important ursane-type and oleanane-type pentacyclic triterpenes. Two MeJA-responsive oxidosqualene cyclases (ObAS1 and ObAS2) that encode for 761- and 765-amino acid proteins, respectively, were identified and characterized. Functional expressions of ObAS1 and ObAS2 in Saccharomyces cerevisiae led to the production of β-amyrin and α-amyrin, the direct precursors of oleanane-type and ursane-type pentacyclic triterpenes, respectively. ObAS1 was identified as a β-amyrin synthase, whereas ObAS2 was a mixed amyrin synthase that produced both α-amyrin and β-amyrin but had a product preference for α-amyrin. Moreover, transcript and metabolite analysis shed light on the spatiotemporal regulation of pentacyclic triterpene biosynthesis in sweet basil. Taken together, these results will be helpful in elucidating the secondary metabolic pathways of sweet basil and developing metabolic engineering strategies for enhanced production of pentacyclic triterpenes. PMID:24367017

  8. The transcriptional network of WRKY53 in cereals links oxidative responses to biotic and abiotic stress inputs.

    PubMed

    Van Eck, Leon; Davidson, Rebecca M; Wu, Shuchi; Zhao, Bingyu Y; Botha, Anna-Maria; Leach, Jan E; Lapitan, Nora L V

    2014-06-01

    The transcription factor WRKY53 is expressed during biotic and abiotic stress responses in cereals, but little is currently known about its regulation, structure and downstream targets. We sequenced the wheat ortholog TaWRKY53 and its promoter region, which revealed extensive similarity in gene architecture and cis-acting regulatory elements to the rice ortholog OsWRKY53, including the presence of stress-responsive abscisic acid-responsive elements (ABRE) motifs and GCC-boxes. Four proteins interacted with the WRKY53 promoter in yeast one-hybrid assays, suggesting that this gene can receive inputs from diverse stress-related pathways such as calcium signalling and senescence, and environmental cues such as drought and ultraviolet radiation. The Ser/Thr receptor kinase ORK10/LRK10 and the apoplastic peroxidase POC1 are two downstream targets for regulation by the WRKY53 transcription factor, predicted based on the presence of W-box motifs in their promoters and coregulation with WRKY53, and verified by electrophoretic mobility shift assay (EMSA). Both ORK10/LRK10 and POC1 are upregulated during cereal responses to pathogens and aphids and important components of the oxidative burst during the hypersensitive response. Taken with our yeast two-hybrid assay which identified a strong protein-protein interaction between microsomal glutathione S-transferase 3 and WRKY53, this implies that the WRKY53 transcriptional network regulates oxidative responses to a wide array of stresses. PMID:24777609

  9. Transcriptional Modulation of Enterotoxigenic Escherichia coli Virulence Genes in Response to Epithelial Cell Interactions

    PubMed Central

    Kansal, Rita; Rasko, David A.; Sahl, Jason W.; Munson, George P.; Roy, Koushik; Luo, Qingwei; Sheikh, Alaullah; Kuhne, Kurt J.

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens. PMID:23115039

  10. Data set for transcriptional response to depletion of the Shoc2 scaffolding protein

    PubMed Central

    Rouchka, Eric C.; Jeoung, Myoungkun; Jang, Eun Ryoung; Liu, Jinpeng; Wang, Chi; Li, Xiaohong; Galperin, Emilia

    2016-01-01

    The Suppressor of Clear, Caenorhabditis elegans Homolog (SHOC2) is a scaffold protein that positively modulates activity of the RAS/ERK1/2 MAP kinase signaling cascade. We set out to understand the ERK1/2 pathway transcriptional response transduced through the SHOC2 scaffolding module. This data article describes raw gene expression within triplicates of kidney fibroblast-like Cos1 cell line expressing non-targeting shRNA (Cos-NT) and triplicates of Cos1 cells depleted of SHOC2 using shRNA (Cos-LV1) upon activation of ERK1/2 pathway by the Epidermal Growth Factor Receptor (EGFR). The data referred here is available in NCBI׳s Gene Expression Omnibus (GEO), accession GEO: GSE67063 as well as NCBI׳s Sequence Read Archive (SRA), accession SRA: SRP056324. A complete analysis of the results can be found in “Shoc2-tranduced ERK1/2 motility signals – Novel insights from functional genomics”(Jeoung et al., 2016) [1]. PMID:27077079

  11. Transcriptional response of susceptible and tolerant citrus to infection with Candidatus Liberibacter asiaticus.

    PubMed

    Albrecht, Ute; Bowman, Kim D

    2012-04-01

    Candidatus Liberibacter asiaticus (Las), a non-culturable phloem-limited bacterium, is the suspected causal agent of huanglongbing (HLB) in Florida. HLB is one of the most devastating diseases of citrus and no resistant cultivars have been identified to date, though tolerance has been observed in the genus Poncirus and some of its hybrids. This study compares transcriptional changes in tolerant US-897 (Citrus reticulata Blanco×Poncirus trifoliata L. Raf.) and susceptible 'Cleopatra' mandarin (C. reticulata) seedlings in response to infection with Las using the Affymetrix GeneChip citrus array, with the main objective of identifying genes associated with tolerance to HLB. Microarray analysis identified 326 genes which were significantly upregulated by at least 4-fold in the susceptible genotype, compared with only 17 genes in US-897. Exclusively upregulated in US-897 was a gene for a 2-oxoglutarate (2OG) and Fe(II)-dependant oxygenase, an important enzyme involved in the biosynthesis of plant secondary metabolites. More than eight hundred genes were expressed at much higher levels in US-897 independent of infection with Las. Among these, genes for a constitutive disease resistance protein (CDR1) were notable. The possible involvement of these and other detected genes in tolerance to HLB and their possible use for biotechnology are discussed. PMID:22325873

  12. Early transcriptional responses to mercury: a role for ethylene in mercury-induced stress.

    PubMed

    Montero-Palmero, M Belén; Martín-Barranco, Amanda; Escobar, Carolina; Hernández, Luis E

    2014-01-01

    Understanding the cellular mechanisms of plant tolerance to mercury (Hg) is important for developing phytoremediation strategies of Hg-contaminated soils. The early responses of alfalfa (Medicago sativa) seedlings to Hg were studied using transcriptomics analysis. A Medicago truncatula microarray was hybridized with high-quality root RNA from M. sativa treated with 3 μM Hg for 3, 6 and 24 h. The transcriptional pattern data were complementary to the measurements of root growth inhibition, lipid peroxidation, hydrogen peroxide (H2 O2 ) accumulation and NADPH-oxidase activity as stress indexes. Of 559 differentially expressed genes (DEGs), 91% were up-regulated. The majority of DEGs were shared between the 3 and 6 h (60%) time points, including the 'stress', 'secondary metabolism' and 'hormone metabolism' functional categories. Genes from ethylene metabolism and signalling were highly represented, suggesting that this phytohormone may be relevant for metal perception and homeostasis. Ethylene-insensitive alfalfa seedlings preincubated with the ethylene signalling inhibitor 1-methylcyclopronene and Arabidopsis thaliana ein2-5 mutants confirmed that ethylene participates in the early perception of Hg stress. It modulates root growth inhibition, NADPH-oxidase activity and Hg-induced apoplastic H2 O2 accumulation. Therefore, ethylene signalling attenuation could be useful in future phytotechnological applications to ameliorate stress symptoms in Hg-polluted plants. PMID:24033367

  13. Oxidative stress-responsive transcription factor ATF3 potentially mediates diabetic angiopathy.

    PubMed

    Okamoto, Aki; Iwamoto, Yasuhiko; Maru, Yoshiro

    2006-02-01

    Previous results of our cDNA microarray analysis to look for genes whose expression level correlates well with in vitro tubulogenesis by NP31 endothelial cells revealed the transcription factor ATF3 known to be responsive to stress such as reactive oxygen species (ROS). Anti-ATF3 small interfering RNA gave an inhibitory influence on tube formation by NP31 cells expressing an activated form of the vascular endothelial growth factor receptor 1 (VEGFR-1) kinase. When expression of ATF3 was regulated under the control of tetracycline system in NP31 cells, they acquired the tubulogenic ability upon ATF3 induction. While ATF3 failed to induce expressions of VEGF and VEGFR, it regulated those of CDK2, CDK4, p8, plasminogen activator inhibitor 1, integrin alpha1, subunit and matrix metalloprotease MMP13. In H2O2-stimulated NP31 cells as well as endothelial cells of glomerulus and aorta of Otsuka-Long-Evans-Tokushima-Fatty diabetic model rats, concomitantly enhanced expressions of ATF3, PAI-1, and p8 were observed. Given the proposed hypothesis of the close linkage between diabetic angiopathy and ROS, those data suggest that ROS-associated diabetic complication may involve ATF3-mediated pathological angiogenesis. PMID:16428460

  14. Global functional analysis of nucleophosmin in Taxol response, cancer, chromatin regulation, and ribosomal DNA transcription

    SciTech Connect

    Bergstralh, Daniel T. . E-mail: dan.bergstralh@med.unc.edu; Conti, Brian J.; Moore, Chris B.; Brickey, W. June; Taxman, Debra J.; Ting, Jenny P.-Y.

    2007-01-01

    Analysis of lung cancer response to chemotherapeutic agents showed the accumulation of a Taxol-induced protein that reacted with an anti-phospho-MEK1/2 antibody. Mass spectroscopy identified the protein as nucleophosmin/B23 (NPM), a multifunctional protein with diverse roles: ribosome biosynthesis, p53 regulation, nuclear-cytoplasmic shuttling, and centrosome duplication. Our work demonstrates that following cellular exposure to mitosis-arresting agents, NPM is phosphorylated and its chromatographic property is altered, suggesting changes in function during mitosis. To determine the functional relevance of NPM, its expression in tumor cells was reduced by siRNA. Cells with reduced NPM were treated with Taxol followed by microarray profiling accompanied by gene/protein pathway analyses. These studies demonstrate several expected and unexpected consequences of NPM depletion. The predominant downstream effectors of NPM are genes involved in cell proliferation, cancer, and the cell cycle. In congruence with its role in cancer, NPM is over-expressed in primary malignant lung cancer tissues. We also demonstrate a role for NPM in the expression of genes encoding SET (TAF1{beta}) and the histone methylase SET8. Additionally, we show that NPM is required for a previously unobserved G2/M upregulation of TAF1A, which encodes the rDNA transcription factor TAF{sub I}48. These results demonstrate multi-faceted functions of NPM that can affect cancer cells.

  15. Changes in transcriptional pausing modify the folding dynamics of the pH-responsive RNA element

    PubMed Central

    Nechooshtan, Gal; Elgrably-Weiss, Maya; Altuvia, Shoshy

    2014-01-01

    Previously, we described a novel pH-responsive RNA element in Escherichia coli that resides in the 5′ untranslated region of the alx gene and controls its translation in a pH-dependent manner. Under normal growth conditions, this RNA region forms a translationally inactive structure, but when transcribed under alkaline conditions, it forms an active structure producing the Alx protein. We identified two distinct transcriptional pause sites and proposed that pausing at these sites interfered with the formation of the inactive structure while facilitating folding of the active one. Alkali increases the longevity of pausing at these sites, thereby promoting folding of the translationally active form of alx RNA. We show here that mutations that modify the extent and/or position of pausing, although silent with regard to structure stability per se, greatly influence the dynamics of folding and thereby translation. Our data illustrate the mechanistic design of alx regulation, relying on precise temporal and spatial characteristics. We propose that this unique design provides an opportunity for environmental signals such as pH to introduce structural changes in the RNA and thereby modulate expression. PMID:24078087

  16. The transcription factor early growth response factor-1 (EGR-1) promotes apoptosis of neuroblastoma cells.

    PubMed Central

    Pignatelli, Miguel; Luna-Medina, Rosario; Pérez-Rendón, Arturo; Santos, Angel; Perez-Castillo, Ana

    2003-01-01

    Early growth response factor-1 (EGR-1) is an immediate early gene, which is rapidly activated in quiescent cells by mitogens or in postmitotic neurons after depolarization. EGR-1 has been involved in diverse biological functions such as cell growth, differentiation and apoptosis. Here we report that enforced expression of the EGR-1 gene induces apoptosis, as determined by flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein nick-end labelling (TUNEL) analysis, in murine Neuro2A cells. In accordance with this role of EGR-1 in cell death, antisense oligonucleotides increase cell viability in cells cultured in the absence of serum. This apoptotic activity of the EGR-1 appears to be mediated by p73, a member of the p53 family of proteins, since an increase in the amount of p73 is observed in clones stably expressing the EGR-1 protein. We also observed an increase in the transcriptional activity of the mdm2 promoter in cells overexpressing EGR-1, which is paralleled by a marked decrease in the levels of p53 protein, therefore excluding a role of this protein in mediating EGR-1-induced apoptosis. Our results suggest that EGR-1 is an important factor involved in neuronal apoptosis. PMID:12755686

  17. Data set for transcriptional response to depletion of the Shoc2 scaffolding protein.

    PubMed

    Rouchka, Eric C; Jeoung, Myoungkun; Jang, Eun Ryoung; Liu, Jinpeng; Wang, Chi; Li, Xiaohong; Galperin, Emilia

    2016-06-01

    The Suppressor of Clear, Caenorhabditis elegans Homolog (SHOC2) is a scaffold protein that positively modulates activity of the RAS/ERK1/2 MAP kinase signaling cascade. We set out to understand the ERK1/2 pathway transcriptional response transduced through the SHOC2 scaffolding module. This data article describes raw gene expression within triplicates of kidney fibroblast-like Cos1 cell line expressing non-targeting shRNA (Cos-NT) and triplicates of Cos1 cells depleted of SHOC2 using shRNA (Cos-LV1) upon activation of ERK1/2 pathway by the Epidermal Growth Factor Receptor (EGFR). The data referred here is available in NCBI׳s Gene Expression Omnibus (GEO), accession GEO: GSE67063 as well as NCBI׳s Sequence Read Archive (SRA), accession SRA: SRP056324. A complete analysis of the results can be found in "Shoc2-tranduced ERK1/2 motility signals - Novel insights from functional genomics"(Jeoung et al., 2016) [1]. PMID:27077079

  18. Transcriptional modulation of enterotoxigenic Escherichia coli virulence genes in response to epithelial cell interactions.

    PubMed

    Kansal, Rita; Rasko, David A; Sahl, Jason W; Munson, George P; Roy, Koushik; Luo, Qingwei; Sheikh, Alaullah; Kuhne, Kurt J; Fleckenstein, James M

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens. PMID:23115039

  19. Understanding Responses to High School Exit Exams in Literacy: A Bourdieusian Analysis of Poetic Transcriptions

    ERIC Educational Resources Information Center

    Huddleston, Andrew P.

    2012-01-01

    In this article, the author demonstrates how a Bourdieusian analysis of poetic transcriptions offers great potential for helping teachers and students to understand how they are responding to state policy mandates in schools. Specifically, the author uses Bourdieu's concepts of field, capital, and habitus to analyze two poetic transcriptions,…

  20. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.

    PubMed

    Liu, Chunqing; Zhang, Xuekun; Zhang, Ka; An, Hong; Hu, Kaining; Wen, Jing; Shen, Jinxiong; Ma, Chaozhi; Yi, Bin; Tu, Jinxing; Fu, Tingdong

    2015-01-01

    Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus) productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs) were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74%) of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO) enrichment test indicated that up-regulated genes in root were mostly involved in "stimulus" "stress" biological process, and activated genes in leaf mainly functioned in "cell" "cell part" components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs) provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus. PMID:26270661

  1. Thyroid Hormone Response Element Half-Site Organization and Its Effect on Thyroid Hormone Mediated Transcription

    PubMed Central

    Paquette, Martin A.; Atlas, Ella; Wade, Mike G.; Yauk, Carole L.

    2014-01-01

    Thyroid hormone (TH) exerts its effects by binding to the thyroid hormone receptor (TR), which binds to TH response elements (TREs) to regulate target gene expression. We investigated the relative ability of liganded homodimers TR and retinoid X receptor (RXR), and the heterodimer TR/RXR, to regulate gene expression for the TRE half-site organizations: direct repeat 4 (DR4), inverted repeat 0 (IR0) and everted repeat 6 (ER6). Luciferase reporter assays using a DR4 TRE suggest that both the TR homodimer and TR/RXR heterodimer regulate luciferase expression in the presence of their respective ligands. However, in the presence of the IR0 TRE, transfection with TR/RXR and RXR alone increased luciferase activity and there was no effect of TR alone. The presence of 9-cis-retinoic acid was necessary for luciferase expression, whereas TH treatment alone was insufficient. For the ER6 TRE, transfection with TR/RXR, TR alone and RXR alone (in the presence of their respective ligands) all caused a significant increase in luciferase activity. When both ligands were present, transfection with both TR/RXR caused more activation. Finally, we investigated the efficacy of the TR-antagonist 1–850 in inhibiting transcription by TR or TR/RXR at DR4 and ER6 TREs. We found that 1–850 did not suppress luciferase activation in the presence of TR/RXR for the ER6 TRE, suggesting conformational changes of the ligand binding domain of the TR when bound to different TRE half-site organizations. Collectively, the findings indicate that there are fundamental differences between TRE configurations that affect nuclear receptor interactions with the response element and ability to bind ligands and antagonists. PMID:24971931

  2. Identification and characterization of a mitochondrial unfolded protein response transcription factor ATFS-1 in Litopenaeus vannamei.

    PubMed

    Chen, Yong-Gui; Yue, Hai-Tao; Zhang, Ze-Zhi; Yuan, Feng-Hua; Bi, Hai-Tao; Yuan, Kai; Weng, Shao-Ping; He, Jian-Guo; Chen, Yi-Hong

    2016-07-01

    A mitochondrial specific stress response termed mitochondrial unfolded protein response (UPR(mt)) is activated in responding to disturbance of protein homeostasis in mitochondria. The activating transcription factor associated with stress-1 (designated as ATFS-1) is the key regulator of UPR(mt). To investigating the roles of ATFS-1 (LvATFS-1) in Litopenaeus vannamei mitochondrial stress remission and immunity, it's full length cDNA was cloned. The open reading frame of LvATFS-1 was 1, 557 bp in length, deducing to a 268 amino acids protein. LvATFS-1 was highly expressed in muscle, hemocytes and eyestalk. Subcellular location assays showed that N-terminal of LvATFS-1 contained a mitochondrial targeting sequence, which could directed the fused EGFP located to mitochondria. And the C-terminal of LvATFS-1, which had a nuclear localization signal, expressed in nucleus. The in vitro experiments verified that LvATFS-1 could reduced the level of intracellular reactive oxygen species (ROS). And results of real-time RT-PCR indicated that LvATFS-1 might scavenge excess ROS via ROS-eliminating genes regulation. Reporter gene assays showed that LvATFS-1 could upregulated the expression of the antimicrobial peptide genes in Drosophila Schneider 2 cells. Results of real-time RT-PCR showed that Vibrio alginolyticus or white spot syndrome virus (WSSV) infection induced the expression of LvATFS-1. And knocked-down LvATFS-1 by RNAi resulted in a higher cumulative mortality of L. vannamei upon V. alginolyticus or WSSV infection. These results suggested that LvATFS-1 not only rolled in mitochondrial specific stress responding, but also important for L. vannamei immunologic defence. PMID:26481519

  3. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress

    PubMed Central

    Liu, Chunqing; Zhang, Xuekun; Zhang, Ka; An, Hong; Hu, Kaining; Wen, Jing; Shen, Jinxiong; Ma, Chaozhi; Yi, Bin; Tu, Jinxing; Fu, Tingdong

    2015-01-01

    Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus) productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs) were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74%) of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO) enrichment test indicated that up-regulated genes in root were mostly involved in “stimulus” “stress” biological process, and activated genes in leaf mainly functioned in “cell” “cell part” components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs) provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus. PMID:26270661

  4. Simulation of Probe Position-Dependent Electron Energy-Loss Fine Structure

    SciTech Connect

    Oxley, M. P.; Kapetanakis, M. D.; Prange, Micah P.; Varela, M.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2014-03-31

    We present a theoretical framework for calculating probe-position-dependent electron energy-loss near-edge structure for the scanning transmission electron microscope by combining density functional theory with dynamical scattering theory. We show how simpler approaches to calculating near-edge structure fail to include the fundamental physics needed to understand the evolution of near-edge structure as a function of probe position and investigate the dependence of near-edge structure on probe size. It is within this framework that density functional theory should be presented, in order to ensure that variations of near-edge structure are truly due to local electronic structure and how much from the diffraction and focusing of the electron beam.

  5. Superintegrable systems with a position dependent mass: Kepler-related and oscillator-related systems

    NASA Astrophysics Data System (ADS)

    Rañada, Manuel F.

    2016-06-01

    The superintegrability of two-dimensional Hamiltonians with a position dependent mass (pdm) is studied (the kinetic term contains a factor m that depends of the radial coordinate). First, the properties of Killing vectors are studied and the associated Noether momenta are obtained. Then the existence of several families of superintegrable Hamiltonians is proved and the quadratic integrals of motion are explicitly obtained. These families include, as particular cases, some systems previously obtained making use of different approaches. We also relate the superintegrability of some of these pdm systems with the existence of complex functions endowed with interesting Poisson bracket properties. Finally the relation of these pdm Hamiltonians with the Euclidean Kepler problem and with the Euclidean harmonic oscillator is analyzed.

  6. Classical oscillator with position-dependent mass in a complex domain

    NASA Astrophysics Data System (ADS)

    Ghosh, Subir; Modak, Sujoy Kumar

    2009-03-01

    We study complexified Harmonic Oscillator with a position-dependent mass, termed as Complex Exotic Oscillator (CEO). The complexification induces a gauge invariance [A.V. Smilga, J. Phys. A 41 (2008) 244026, arXiv:0706.4064; A. Mostafazadeh, J. Math. Phys. 43 (2002) 205; A. Mostafazadeh, J. Math. Phys. 43 (2002) 2814; A. Mostafazadeh, J. Math. Phys. 43 (2002) 3944]. The role of PT-symmetry is discussed from the perspective of classical trajectories of CEO for real energy. Some trajectories of CEO are similar to those for the particle in a quartic potential in the complex domain [C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40 (1999) 2201; C.M. Bender, D.D. Holm, D. Hook, J. Phys. A 40 (2007) F793, arXiv:0705.3893].

  7. Fisher information for the position-dependent mass Schrödinger system

    NASA Astrophysics Data System (ADS)

    Falaye, B. J.; Serrano, F. A.; Dong, Shi-Hai

    2016-01-01

    This study presents the Fisher information for the position-dependent mass Schrödinger equation with hyperbolic potential V (x) = -V0csch2 (ax). The analysis of the quantum-mechanical probability for the ground and exited states (n = 0, 1, 2) has been obtained via the Fisher information. This controls both chemical and physical properties of some molecular systems. The Fisher information is considered only for x > 0 due to the singular point at x = 0. We found that Fisher-information-based uncertainty relation and the Cramer-Rao inequality holds. Some relevant numerical results are presented. The results presented show that the Cramer-Rao and the Heisenberg products in both spaces provide a natural measure for anharmonicity of -V0csch2 (ax).

  8. Solutions to position-dependent mass quantum mechanics for a new class of hyperbolic potentials

    SciTech Connect

    Christiansen, H. R.; Grupo de Física Teórica, State University of Ceara , Av. Paranjana 1700, 60740-903 Fortaleza-CE ; Cunha, M. S.

    2013-12-15

    We analytically solve the position-dependent mass (PDM) 1D Schrödinger equation for a new class of hyperbolic potentials V{sub q}{sup p}(x)=−V{sub 0}(sinh{sup p}x/cosh{sup q}x), p=−2,0,⋯q [see C. A. Downing, J. Math. Phys. 54, 072101 (2013)] among several hyperbolic single- and double-wells. For a solitonic mass distribution, m(x)=m{sub 0} sech{sup 2}(x), we obtain exact analytic solutions to the resulting differential equations. For several members of the class, the quantum mechanical problems map into confluent Heun differential equations. The PDM Poschl-Teller potential is considered and exactly solved as a particular case.

  9. Fisher information and Shannon entropy of position-dependent mass oscillators

    NASA Astrophysics Data System (ADS)

    Macedo, D. X.; Guedes, I.

    2015-09-01

    We calculate the Fisher information and the Shannon entropy for three position-dependent mass oscillators. These systems can be seen as deformed harmonic oscillators in the sense that when the deformation parameter (λ) goes to zero, they are identical to the constant mass harmonic oscillator. For two out of the three oscillators we observe that as λ increases the position Fisher information (Fx) increases while the momentum Fisher information (Fp) decreases. On the other hand, the Shannon entropy always increases for the three systems with increasing λ. Discussion about squeezing effect in either position or momentum due to the λ variation and a relation between the product of Fisher information and the Shannon entropy are also presented.

  10. Development of Eye Position Dependency of Slow Phase Velocity during Caloric Stimulation

    PubMed Central

    Bockisch, Christopher J.; Khojasteh, Elham; Straumann, Dominik; Hegemann, Stefan C. A.

    2012-01-01

    The nystagmus in patients with vestibular disorders often has an eye position dependency, called Alexander’s law, where the slow phase velocity is higher with gaze in the fast phase direction compared with gaze in the slow phase direction. Alexander’s law has been hypothesized to arise either due to adaptive changes in the velocity-to-position neural integrator, or as a consequence of processing of the vestibular-ocular reflex. We tested whether Alexander’s law arises only as a consequence of non-physiologic vestibular stimulation. We measured the time course of the development of Alexander’s law in healthy humans with nystagmus caused by three types of caloric vestibular stimulation: cold (unilateral inhibition), warm (unilateral excitation), and simultaneous bilateral bithermal (one side cold, the other warm) stimulation, mimicking the normal push-pull pattern of vestibular stimulation. Alexander’s law, measured as a negative slope of the velocity versus position curve, was observed in all conditions. A reversed pattern of eye position dependency (positive slope) was found <10% of the time. The slope often changed with nystagmus velocity (cross-correlation of nystagmus speed and slope was significant in 50% of cases), and the average lag of the slope with the speed was not significantly different from zero. Our results do not support the hypothesis that Alexander’s law can only be observed with non-physiologic vestibular stimulation. Further, the rapid development of Alexander’s law, while possible for an adaptive mechanism, is nonetheless quite fast compared to most other ocular motor adaptations. These results suggest that Alexander’s law may not be a consequence of a true adaptive mechanism. PMID:23251522

  11. Recruitment of Pontin/Reptin by E2f1 amplifies E2f transcriptional response during cancer progression

    PubMed Central

    Tarangelo, Amy; Lo, Nathanael; Teng, Rebecca; Kim, Eunsun; Le, Linh; Watson, Deborah; Furth, Emma E.; Raman, Pichai; Ehmer, Ursula; Viatour, Patrick

    2015-01-01

    Changes in gene expression during tumorigenesis are often considered the consequence of de novo mutations occurring in the tumour. An alternative possibility is that the transcriptional response of oncogenic transcription factors evolves during tumorigenesis. Here we show that aberrant E2f activity, following inactivation of the Rb gene family in a mouse model of liver cancer, initially activates a robust gene expression programme associated with the cell cycle. Slowly accumulating E2f1 progressively recruits a Pontin/Reptin complex to open the chromatin conformation at E2f target genes and amplifies the E2f transcriptional response. This mechanism enhances the E2f-mediated transactivation of cell cycle genes and initiates the activation of low binding affinity E2f target genes that regulate non-cell-cycle functions, such as the Warburg effect. These data indicate that both the physiological and the oncogenic activities of E2f result in distinct transcriptional responses, which could be exploited to target E2f oncogenic activity for therapy. PMID:26639898

  12. Cross-species transcriptional network analysis reveals conservation and variation in response to metal stress in cyanobacteria

    PubMed Central

    2013-01-01

    Background As one of the most dominant bacterial groups on Earth, cyanobacteria play a pivotal role in the global carbon cycling and the Earth atmosphere composition. Understanding their molecular responses to environmental perturbations has important scientific and environmental values. Since important biological processes or networks are often evolutionarily conserved, the cross-species transcriptional network analysis offers a useful strategy to decipher conserved and species-specific transcriptional mechanisms that cells utilize to deal with various biotic and abiotic disturbances, and it will eventually lead to a better understanding of associated adaptation and regulatory networks. Results In this study, the Weighted Gene Co-expression Network Analysis (WGCNA) approach was used to establish transcriptional networks for four important cyanobacteria species under metal stress, including iron depletion and high copper conditions. Cross-species network comparison led to discovery of several core response modules and genes possibly essential to metal stress, as well as species-specific hub genes for metal stresses in different cyanobacteria species, shedding light on survival strategies of cyanobacteria responding to different environmental perturbations. Conclusions The WGCNA analysis demonstrated that the application of cross-species transcriptional network analysis will lead to novel insights to molecular response to environmental changes which will otherwise not be achieved by analyzing data from a single species. PMID:23421563

  13. Integrative Omics Analysis Reveals Post-Transcriptionally Enhanced Protective Host Response in Colorectal Cancers with Microsatellite Instability

    PubMed Central

    2015-01-01

    Microsatellite instability (MSI) is a frequent and clinically relevant molecular phenotype in colorectal cancer. MSI cancers have favorable survival compared with microsatellite stable cancers (MSS), possibly due to the pronounced tumor-infiltrating lymphocytes observed in MSI cancers. Consistent with the strong immune response that MSI cancers trigger in the host, previous transcriptome expression studies have identified mRNA signatures characteristic of immune response in MSI cancers. However, proteomics features of MSI cancers and the extent to which the mRNA signatures are reflected at the protein level remain largely unknown. Here, we performed a comprehensive comparison of global proteomics profiles between MSI and MSS colorectal cancers in The Cancer Genome Atlas (TCGA) cohort. We found that protein signatures of MSI are also associated with increased immunogenicity. To reliably quantify post-transcription regulation in MSI cancers, we developed a resampling-based regression method by integrative modeling of transcriptomics and proteomics data sets. Compared with the popular simple method, which detects post-transcriptional regulation by either identifying genes differentially expressed at the mRNA level but not at the protein level or vice versa, our method provided a quantitative, more sensitive, and accurate way to identify genes subject to differential post-transcriptional regulation. With this method, we demonstrated that post-transcriptional regulation, coordinating protein expression with key players, initiates de novo and enhances protective host response in MSI cancers. PMID:26680540

  14. Transcriptome analysis of newly classified bZIP transcription factors of Brassica rapa in cold stress response.

    PubMed

    Hwang, Indeok; Jung, Hee-Jeong; Park, Jong-In; Yang, Tae-Jin; Nou, Ill-Sup

    2014-09-01

    Plant bZIP transcription factors play crucial roles in biological processes. In this study, 136 putative bZIP transcription members were identified in Brassica rapa. The bZIP family can be divided into nine groups according to the specific amino acid rich domain in B. rapa and Arabidopsis thaliana. To screen the cold stress responsive BrbZIP genes, we evaluated whether the transcription patterns of the BrbZIP genes were enhanced by cold treatment in the inbred lines, Chiifu and Kenshin, by microarray data analysis and qRT-PCR. The expression level of six genes increased significantly in Kenshin, but these genes were unchanged in Chiifu. These findings suggest that the six genes that encoded proteins containing N-rich regions might be involved in cold stress response. The results presented herein provide valuable information regarding the molecular basis of the bZIP transcription factors and their potential function in regulation growth and development, particularly in cold stress response. PMID:25075938

  15. Post-transcriptional methylation of transfer and ribosomal RNA in stress response pathways, cell differentiation and cancer

    PubMed Central

    Frye, Michaela

    2016-01-01

    Purpose of the review Significant advances have been made in understanding the functional roles of evolutionary conserved chemical modifications in RNA. By focusing on cytosine-5 methylation, we will highlight the latest insight into the mechanisms how post-transcriptional methylation contributes cell fate decisions, with implications for cancer development. Recent findings Several mutations in RNA-modifying enzymes have been identified to cause complex human diseases, and linked post-transcriptional modifications to fundamental cellular processes. Distinct post-transcriptional modifications are implicated in the regulation of stem cell maintenance and cellular differentiation. The dynamic deposition of a methyl mark into non-coding RNAs modulates the adaptive cellular responses to stress and alterations of methylation levels may lead to cancer. PMID:26599292

  16. Transcriptional responses in the rat nasal epithelium following subchronic inhalation of naphthalene vapor

    SciTech Connect

    Clewell, H.J. Efremenko, A.; Campbell, J.L.; Dodd, D.E.; Thomas, R.S.

    2014-10-01

    Male and female Fischer 344 rats were exposed to naphthalene vapors at 0 (controls), 0.1, 1, 10, and 30 ppm for 6 h/d, 5 d/wk, over a 90-day period. Following exposure, the respiratory epithelium and olfactory epithelium from the nasal cavity were dissected separately, RNA was isolated, and gene expression microarray analysis was conducted. Only a few significant gene expression changes were observed in the olfactory or respiratory epithelium of either gender at the lowest concentration (0.1 ppm). At the 1.0 ppm concentration there was limited evidence of an oxidative stress response in the respiratory epithelium, but not in the olfactory epithelium. In contrast, a large number of significantly enriched cellular pathway responses were observed in both tissues at the two highest concentrations (10 and 30 ppm, which correspond to tumorigenic concentrations in the NTP bioassay). The nature of these responses supports a mode of action involving oxidative stress, inflammation and proliferation. These results are consistent with a dose-dependent transition in the mode of action for naphthalene toxicity/carcinogenicity between 1.0 and 10 ppm in the rat. In the female olfactory epithelium (the gender/site with the highest incidences of neuroblastomas in the NTP bioassay), the lowest concentration at which any signaling pathway was significantly affected, as characterized by the median pathway benchmark dose (BMD) or its 95% lower bound (BMDL) was 6.0 or 3.7 ppm, respectively, while the lowest female olfactory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 16.1, 11.1, and 8.4 ppm, respectively. In the male respiratory epithelium (the gender/site with the highest incidences of adenomas in the NTP bioassay), the lowest pathway BMD and BMDL were 0.4 and 0.3 ppm, respectively, and the lowest male respiratory BMD values for pathways related to glutathione homeostasis, inflammation, and proliferation were 0.5, 0.7, and 0.9 ppm

  17. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection

    PubMed Central

    Kamber, Tim; Buchmann, Jan P.; Pothier, Joël F.; Smits, Theo H. M.; Wicker, Thomas; Duffy, Brion

    2016-01-01

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora. PMID:26883568

  18. Identification and transcriptional profiling of differentially expressed genes associated with response to UVA radiation in Drosophila melanogaster (Diptera: Drosophilidae).

    PubMed

    Zhou, Li-Jun; Zhu, Zhi-Hui; Liu, Zhen-Xing; Ma, Wei-Hua; Desneux, Nicolas; Lei, Chao-Liang

    2013-10-01

    Ultraviolet A (UVA) radiation, the major component of solar ultraviolet (UV) radiation reaching the earth's surface, leads to negative effects in insects, such as oxidative stress, photoreceptor damage, and cell death. To better understand the molecular mechanisms of insect response to UVA radiation, suppression subtractive hybridization (SSH) and real-time quantitative polymerase chain reaction approaches were combined to reveal differential transcript expression in Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). In this study, two subtractive cDNA libraries were constructed and sequenced, obtaining 131 high-quality unique expressed sequence tags (ESTs) that were up- or downregulated in D. melanogaster exposed to UVA radiation for 0.5 h. Of the 131 ESTs, 102 unique ESTs were differentially expressed and classified into 10 functional categories. The results showed that UVA radiation induces expression of genes related to stress and defense response and metabolism. Potential transcription factor binding motifs upstream of these genes are associated with multiple signaling pathways that may help the insect cope with the stress of UVA radiation. To our knowledge, this is the first analysis of insect response to UVA radiation at the transcriptional level. Our results reveal that UVA radiation influences the expression profiles of stress-responsive genes and provide further insights into the mechanisms of adaptive response to UVA radiation stress. PMID:24331622

  19. Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element

    PubMed Central

    Oropeza-Aburto, Araceli; Cruz-Ramírez, Alfredo; Acevedo-Hernández, Gustavo J.; Pérez-Torres, Claudia-Anahí; Caballero-Pérez, Juan; Herrera-Estrella, Luis

    2012-01-01

    Plants have evolved a plethora of responses to cope with phosphate (Pi) deficiency, including the transcriptional activation of a large set of genes. Among Pi-responsive genes, the expression of the Arabidopsis phospholipase DZ2 (PLDZ2) is activated to participate in the degradation of phospholipids in roots in order to release Pi to support other cellular activities. A deletion analysis was performed to identify the regions determining the strength, tissue-specific expression, and Pi responsiveness of this regulatory region. This study also reports the identification and characterization of a transcriptional enhancer element that is present in the PLDZ2 promoter and able to confer Pi responsiveness to a minimal, inactive 35S promoter. This enhancer also shares the cytokinin and sucrose responsive properties observed for the intact PLDZ2 promoter. The EZ2 element contains two P1BS motifs, each of which is the DNA binding site of transcription factor PHR1. Mutation analysis showed that the P1BS motifs present in EZ2 are necessary but not sufficient for the enhancer function, revealing the importance of adjacent sequences. The structural organization of EZ2 is conserved in the orthologous genes of at least eight families of rosids, suggesting that architectural features such as the distance between the two P1BS motifs are also important for the regulatory properties of this enhancer element. PMID:22210906

  20. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection.

    PubMed

    Kamber, Tim; Buchmann, Jan P; Pothier, Joël F; Smits, Theo H M; Wicker, Thomas; Duffy, Brion

    2016-01-01

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora. PMID:26883568

  1. Cloning and characterization of aquaglyceroporin genes from rainbow smelt (Osmerus mordax) and transcript expression in response to cold temperature.

    PubMed

    Hall, Jennifer R; Clow, Kathy A; Rise, Matthew L; Driedzic, William R

    2015-09-01

    Aquaglyceroporins (GLPs) are integral membrane proteins that facilitate passive movement of water, glycerol and urea across cellular membranes. In this study, GLP-encoding genes were characterized in rainbow smelt (Osmerus mordax mordax), an anadromous teleost that accumulates high glycerol and modest urea levels in plasma and tissues as an adaptive cryoprotectant mechanism in sub-zero temperatures. We report the gene and promoter sequences for two aqp10b paralogs (aqp10ba, aqp10bb) that are 82% identical at the predicted amino acid level, and aqp9b. Aqp10bb and aqp9b have the 6 exon structure common to vertebrate GLPs. Aqp10ba has 8 exons; there are two additional exons at the 5' end, and the promoter sequence is different from aqp10bb. Molecular phylogenetic analysis suggests that the aqp10b paralogs arose from a gene duplication event specific to the smelt lineage. Smelt GLP transcripts are ubiquitously expressed; however, aqp10ba transcripts were highest in kidney, aqp10bb transcripts were highest in kidney, intestine, pyloric caeca and brain, and aqp9b transcripts were highest in spleen, liver, red blood cells and kidney. In cold-temperature challenge experiments, plasma glycerol and urea levels were significantly higher in cold- compared to warm-acclimated smelt; however, GLP transcript levels were generally either significantly lower or remained constant. The exception was significantly higher aqp10ba transcript levels in kidney. High aqp10ba transcripts in smelt kidney that increase significantly in response to cold temperature in congruence with plasma urea suggest that this gene duplicate may have evolved to allow the re-absorption of urea to concomitantly conserve nitrogen and prevent freezing. PMID:25981700

  2. Transcriptional induction of the mouse metallothionein-I gene in hydrogen peroxide-treated Hepa cells involves a composite major late transcription factor/antioxidant response element and metal response promoter elements.

    PubMed Central

    Dalton, T; Palmiter, R D; Andrews, G K

    1994-01-01

    Synthesis of metallothionein-I (MT-I) and heme oxygenase mRNAs is rapidly and transiently induced by H2O2 in mouse hepatoma cells (Hepa) and this effect is blocked by catalase. Menadione, which generates free radicals, also induces these mRNAs. Deletion mutagenesis revealed that a region between -42 and -153 in the mouse MT-I promoter was essential for induction of a CAT reporter gene. A multimer of a 16 bp sequence (-101 to -86) that includes an antioxidant response element and overlapping adenovirus major late transcription factor binding site elevated basal expression and allowed induction by H2O2 when inserted upstream of a minimal promoter. However, deletion of this region (-100 to -89) from the intact MT-I promoter (-153) did not completely eliminate response. Multiple copies of a metal response element also permitted response to H2O2. These results suggest that induction of MT-I gene transcription by H2O2 is mediated by at least two different elements within the proximal MT-I gene promoter and suggest a previously undescribed function of the MRE. Induction of MT gene transcription by ROS and the subsequent scavenging of ROS by the MT peptide is reminiscent of the metal regulatory loop and is consistent with the hypothesized protective functions of MT. Images PMID:7800494

  3. The transcriptional regulator megakaryoblastic leukemia-1 mediates serum response factor-independent activation of tenascin-C transcription by mechanical stress.

    PubMed

    Asparuhova, Maria B; Ferralli, Jacqueline; Chiquet, Matthias; Chiquet-Ehrismann, Ruth

    2011-10-01

    The extracellular matrix protein tenascin-C (TNC) is up-regulated in processes influenced by mechanical stress, such as inflammation, tissue remodeling, wound healing, and tumorigenesis. Cyclic strain-induced TNC expression depends on RhoA-actin signaling, the pathway that regulates transcriptional activity of serum response factor (SRF) by its coactivator megakaryoblastic leukemia-1 (MKL1). Therefore, we tested whether MKL1 controls TNC transcription. We demonstrate that overexpression of MKL1 strongly induces TNC expression in mouse NIH3T3 fibroblasts and normal HC11 and transformed 4T1 mammary epithelial cells. Part of the induction was dependant on SRF and a newly identified atypical CArG box in the TNC promoter. Another part was independent of SRF but required the SAP domain of MKL1. An MKL1 mutant incapable of binding to SRF still strongly induced TNC, while induction of the SRF target c-fos was abolished. Cyclic strain failed to induce TNC in MKL1-deficient but not in SRF-deficient fibroblasts, and strain-induced TNC expression strongly depended on the SAP domain of MKL1. Promoter-reporter and chromatin immunoprecipitation experiments unraveled a SAP-dependent, SRF-independent interaction of MKL1 with the proximal promoter region of TNC, attributing for the first time a functional role to the SAP domain of MKL1 in regulating gene expression. PMID:21705668

  4. The Bordetella Bfe System: Growth and Transcriptional Response to Siderophores, Catechols, and Neuroendocrine Catecholamines

    PubMed Central

    Anderson, Mark T.; Armstrong, Sandra K.

    2006-01-01

    Ferric enterobactin utilization by Bordetella bronchiseptica and Bordetella pertussis requires the BfeA outer membrane receptor. Under iron-depleted growth conditions, transcription of bfeA is activated by the BfeR regulator by a mechanism requiring the siderophore enterobactin. In this study, enterobactin-inducible bfeA transcription was shown to be TonB independent. To determine whether other siderophores or nonsiderophore catechols could be utilized by the Bfe system, various compounds were tested for the abilities to promote the growth of iron-starved B. bronchiseptica and induce bfeA transcription. The BfeA receptor transported ferric salmochelin, corynebactin, and the synthetic siderophores TRENCAM and MECAM. Salmochelin and MECAM induced bfeA transcription in iron-starved Bordetella cells, but induction by corynebactin and TRENCAM was minimal. The neuroendocrine catecholamines epinephrine, norepinephrine, and dopamine exhibited a remarkable capacity to induce transcription of bfeA. Norepinephrine treatment of B. bronchiseptica resulted in BfeR-dependent bfeA transcription, elevated BfeA receptor production, and growth stimulation. Pyrocatechol, carbidopa, and isoproterenol were similarly strong inducers of bfeA transcription, whereas tyramine and 3,4-dihydroxymandelic acid demonstrated low inducing activity. The results indicate that the inducer structure requires a catechol group for function and that the ability to induce bfeA transcription does not necessarily correlate with the ability to stimulate bacterial growth. The expanded range of catechol siderophores transported by the BfeA receptor demonstrates the potential versatility of the Bordetella Bfe iron retrieval system. The finding that catecholamine neurotransmitters activate bfeA transcription and promote growth suggests that Bordetella cells can perceive and may benefit from neuroendocrine catecholamines on the respiratory epithelium. PMID:16885441

  5. Stress memory induced transcriptional and metabolic changes of perennial ryegrass (Lolium perenne) in response to salt stress.

    PubMed

    Hu, Tao; Jin, Yupei; Li, Huiying; Amombo, Erick; Fu, Jinmin

    2016-01-01

    Preexposure to a stress could induce stable signals and reactions on plant physiology and gene expression during future encounters as a 'stress memory'. In this study, we found that two trainable genes, BPSP encoding putative brown plant hopper susceptibility protein and sucs encoding sucrose synthase displayed transcriptional memory for their considerably higher transcript levels during two or more subsequent stresses (S3, S4) relative to the initial stress (S0), and their expression returning to basal transcript levels (non-stressed) during the recovery states (R1, R2 and R3). Removing the repetitive stress/recovery exercise, activated transcriptional memory from two trainable genes persisted for at least 4 days in perennial ryegrass. The pretrainable genes with stress memory effort had higher response to the subsequent elevated NaCl concentration treatment than the non-trainable plants, which was confirmed by lower electrolyte leakage and minimum H2 O2 and O2 (-) accumulation. Salt stress elevated the content of 41 metabolites in perennial ryegrass leaves, and sugars and sugar alcohol accounted for more than 74.1% of the total metabolite content. The salt stress memory was associated with higher contents of 11 sugars and 1 sugar alcohol in the pretrainable grass leaves. Similarly, six sugars showed greater content in the pretrainable grass roots. These novel phenomena associated with transcriptional memory and metabolite profiles could lead to new insights into improving plant salinity acclimation process. PMID:25913889

  6. Identification of bovine leukemia virus tax function associated with host cell transcription, signaling, stress response and immune response pathway by microarray-based gene expression analysis

    PubMed Central

    2012-01-01

    Background Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis and is closely related to human T-cell leukemia virus type I. The Tax protein of BLV is a transcriptional activator of viral replication and a key contributor to oncogenic potential. We previously identified interesting mutant forms of Tax with elevated (TaxD247G) or reduced (TaxS240P) transactivation effects on BLV replication and propagation. However, the effects of these mutations on functions other than transcriptional activation are unknown. In this study, to identify genes that play a role in the cascade of signal events regulated by wild-type and mutant Tax proteins, we used a large-scale host cell gene-profiling approach. Results Using a microarray containing approximately 18,400 human mRNA transcripts, we found several alterations after the expression of Tax proteins in genes involved in many cellular functions such as transcription, signal transduction, cell growth, apoptosis, stress response, and immune response, indicating that Tax protein has multiple biological effects on various cellular environments. We also found that TaxD247G strongly regulated more genes involved in transcription, signal transduction, and cell growth functions, contrary to TaxS240P, which regulated fewer genes. In addition, the expression of genes related to stress response significantly increased in the presence of TaxS240P as compared to wild-type Tax and TaxD247G. By contrast, the largest group of downregulated genes was related to immune response, and the majority of these genes belonged to the interferon family. However, no significant difference in the expression level of downregulated genes was observed among the Tax proteins. Finally, the expression of important cellular factors obtained from the human microarray results were validated at the RNA and protein levels by real-time quantitative reverse transcription-polymerase chain reaction and western blotting, respectively, after

  7. Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency

    PubMed Central

    2013-01-01

    Background TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in defense responses to biotic and abiotic stresses. Here, we identified the TIFY genes (designated PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. Results Nineteen genes from the PvTIFY gene family were identified through whole-genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the newly designed Bean Custom Array 90 K was performed on transgenic roots of composite plants with modulated (RNAi-silencing or over-expression) PvTIFY10C gene expression. Data were interpreted using Gene Ontology and MapMan adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress responses and metabolism in PvTIFY10C silenced vs. over-expressing roots. These data point to transcript reprogramming (mainly repression) orchestrated by PvTIFY10C. In addition, we found that several PvTIFY genes, as well as genes from the JA biosynthetic pathway, responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, and signaling were oppositely-regulated in control vs. PvTIFY10C-silenced roots of composite plants under P-stress. These data indicate that PvTIFY10C regulates, directly or indirectly, the

  8. RFX Transcription Factor DAF-19 Regulates 5-HT and Innate Immune Responses to Pathogenic Bacteria in Caenorhabditis elegans

    PubMed Central

    Choi, Sunju; Xu, Lu; Sze, Ji Ying

    2013-01-01

    In Caenorhabditis elegans the Toll-interleukin receptor domain adaptor protein TIR-1 via a conserved mitogen-activated protein kinase (MAPK) signaling cascade induces innate immunity and upregulates serotonin (5-HT) biosynthesis gene tph-1 in a pair of ADF chemosensory neurons in response to infection. Here, we identify transcription factors downstream of the TIR-1 signaling pathway. We show that common transcription factors control the innate immunity and 5-HT biosynthesis. We demonstrate that a cysteine to tyrosine substitution in an ARM motif of the HEAT/Arm repeat region of the TIR-1 protein confers TIR-1 hyperactivation, leading to constitutive tph-1 upregulation in the ADF neurons, increased expression of intestinal antimicrobial genes, and enhanced resistance to killing by the human opportunistic pathogen Pseudomonas aeruginosa PA14. A forward genetic screen for suppressors of the hyperactive TIR-1 led to the identification of DAF-19, an ortholog of regulatory factor X (RFX) transcription factors that are required for human adaptive immunity. We show that DAF-19 concerts with ATF-7, a member of the activating transcription factor (ATF)/cAMP response element-binding B (CREB) family of transcription factors, to regulate tph-1 and antimicrobial genes, reminiscent of RFX-CREB interaction in human immune cells. daf-19 mutants display heightened susceptibility to killing by PA14. Remarkably, whereas the TIR-1-MAPK-DAF-19/ATF-7 pathway in the intestinal immunity is regulated by DKF-2/protein kinase D, we found that the regulation of tph-1 expression is independent of DKF-2 but requires UNC-43/Ca2+/calmodulin-dependent protein kinase (CaMK) II. Our results suggest that pathogenic cues trigger a common core-signaling pathway via tissue-specific mechanisms and demonstrate a novel role for RFX factors in neuronal and innate immune responses to infection. PMID:23505381

  9. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses.

    PubMed

    Sivitz, Alicia; Grinvalds, Claudia; Barberon, Marie; Curie, Catherine; Vert, Grégory

    2011-06-01

    Plants display a number of responses to low iron availability in order to increase iron uptake from the soil. In the model plant Arabidopsis thaliana, the ferric-chelate reductase FRO2 and the ferrous iron transporter IRT1 control iron entry from the soil into the root epidermis. To maintain iron homeostasis, the expression of FRO2 and IRT1 is tightly controlled by iron deficiency at the transcriptional level. The basic helix-loop-helix (bHLH) transcription factor FIT represents the most upstream actor known in the iron-deficiency signaling pathway, and directly regulates the expression of the root iron uptake machinery genes FRO2 and IRT1. However, how FIT is controlled by iron and acts to activate transcription of its targets remains obscure. Here we show that FIT mRNA and endogenous FIT protein accumulate in Arabidopsis roots upon iron deficiency. However, using plants constitutively expressing FIT, we observed that FIT protein accumulation is reduced in iron-limited conditions. This post-transcriptional regulation of FIT is perfectly synchronized with the accumulation of endogenous FIT and IRT1 proteins, and therefore is part of the early responses to low iron. We demonstrated that such regulation affects FIT protein stability under iron deficiency as a result of 26S proteasome-dependent degradation. In addition, we showed that FIT post-translational regulation by iron is required for FRO2 and IRT1 gene expression. Taken together our results indicate that FIT transcriptional and post-translational regulations are integrated in plant roots to ensure that the positive regulator FIT accumulates as a short-lived protein following iron shortage, and to allow proper iron-deficiency responses. PMID:21426424

  10. Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α

    PubMed Central

    Minsky, Neri; Roeder, Robert G.

    2015-01-01

    In recent years an extensive effort has been made to elucidate the molecular pathways involved in metabolic signaling in health and disease. Here we show, surprisingly, that metabolic regulation and the heat-shock/stress response are directly linked. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator of metabolic genes, acts as a direct transcriptional repressor of heat-shock factor 1 (HSF1), a key regulator of the heat-shock/stress response. Our findings reveal that heat-shock protein (HSP) gene expression is suppressed during fasting in mouse liver and in primary hepatocytes dependent on PGC-1α. HSF1 and PGC-1α associate physically and are colocalized on several HSP promoters. These observations are extended to several cancer cell lines in which PGC-1α is shown to repress the ability of HSF1 to activate gene-expression programs necessary for cancer survival. Our study reveals a surprising direct link between two major cellular transcriptional networks, highlighting a previously unrecognized facet of the activity of the central metabolic regulator PGC-1α beyond its well-established ability to boost metabolic genes via its interactions with nuclear hormone receptors and nuclear respiratory factors. Our data point to PGC-1α as a critical repressor of HSF1-mediated transcriptional programs, a finding with possible implications both for our understanding of the full scope of metabolically regulated target genes in vivo and, conceivably, for therapeutics. PMID:26438876

  11. Heat-Shock Response Transcriptional Program Enables High-Yield and High-Quality Recombinant Protein Production in Escherichia coli

    PubMed Central

    2014-01-01

    The biosynthesis of soluble, properly folded recombinant proteins in large quantities from Escherichia coli is desirable for academic research and industrial protein production. The basal E. coli protein homeostasis (proteostasis) network capacity is often insufficient to efficiently fold overexpressed proteins. Herein we demonstrate that a transcriptionally reprogrammed E. coli proteostasis network is generally superior for producing soluble, folded, and functional recombinant proteins. Reprogramming is accomplished by overexpressing a negative feedback deficient heat-shock response transcription factor before and during overexpression of the protein-of-interest. The advantage of transcriptional reprogramming versus simply overexpressing select proteostasis network components (e.g., chaperones and co-chaperones, which has been explored previously) is that a large number of proteostasis network components are upregulated at their evolved stoichiometry, thus maintaining the system capabilities of the proteostasis network that are currently incompletely understood. Transcriptional proteostasis network reprogramming mediated by stress-responsive signaling in the absence of stress should also be useful for protein production in other cells. PMID:25051296

  12. Arabidopsis BRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses.

    PubMed

    Wang, Shui; Durrant, Wendy E; Song, Junqi; Spivey, Natalie W; Dong, Xinnian

    2010-12-28

    Systemic acquired resistance (SAR) is a plant immune response associated with both transcriptional reprogramming and increased homologous DNA recombination (HR). SNI1 is a negative regulator of SAR and HR, as indicated by the increased basal expression of defense genes and HR in sni1. We found that the sni1 phenotypes are rescued by mutations in BREAST CANCER 2 (BRCA2). In humans, BRCA2 is a mediator of RAD51 in pairing of homologous DNA. Mutations in BRCA2 cause predisposition to breast/ovarian cancers; however, the role of the BRCA2-RAD51 complex in transcriptional regulation remains unclear. In Arabidopsis, both brca2 and rad51 were found to be hypersusceptible not only to genotoxic substances, but also to pathogen infections. A whole-genome microarray analysis showed that downstream of NPR1, BRCA2A is a major regulator of defense-related gene transcription. ChIP demonstrated that RAD51 is specifically recruited to the promoters of defense genes during SAR. This recruitment is dependent on the SAR signal salicylic acid (SA) and on the function of BRCA2. This study provides the molecular evidence showing that the BRCA2-RAD51 complex, known for its function in HR, also plays a direct and specific role in transcription regulation during plant immune responses. PMID:21149701

  13. Transcriptional response of stress-regulated genes to industrial effluent exposure in the cockle Cerastoderma glaucum.

    PubMed

    Karray, Sahar; Tastard, Emmanuelle; Moreau, Brigitte; Delahaut, Laurence; Geffard, Alain; Guillon, Emmanuel; Denis, Françoise; Hamza-Chaffai, Amel; Chénais, Benoît; Marchand, Justine

    2015-11-01

    This study assessed the responses of molecular biomarkers and heavy metal levels in Cerastoderma glaucum exposed for 1 week to two industrial effluents (1%) discharged into the Tunisian coastal area, F1 and F2, produced by different units of production of a phosphate treatment plant. A significant uptake of metals (Cd, Cu, Zn, and Ni) was observed in exposed cockles compared to controls, with an uptake higher for F1 than for F2. A decrease in LT50 (stress on stress test) was also observed after an exposure to the effluent F1. Treatments resulted in different patterns of messenger RNA (mRNA) expression of the different genes tested in this report. Gene transcription monitoring performed on seven genes potentially involved in the tolerance to metal exposure showed that for both exposures, mechanisms are rapidly and synchronically settled down to prevent damage to cellular components, by (1) handling and exporting out metal ions through the up-regulation of ATP-binding cassette xenobiotic transporter (ABCB1) and metallothionein (MT), (2) increasing the mRNA expression of antioxidant enzymes (catalase (CAT), superoxide dismutases, CuZnSOD and MnSOD), (3) protecting and/or repairing proteins through the expression of heat shock protein 70 (HSP70) mRNAs, and (4) increasing ATP production (through the up-regulation of cytochrome c oxidase 1 (CO1)) to provide energy for cells to tolerate stress exposure. The tools developed may be useful both for future control strategies and for the use of the cockle C. glaucum as a sentinel species. PMID:25613800

  14. The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens

    PubMed Central

    Kamisugi, Yasuko; Whitaker, John W.

    2016-01-01

    The model bryophyte Physcomitrella patens is unique among plants in supporting the generation of mutant alleles by facile homologous recombination-mediated gene targeting (GT). Reasoning that targeted transgene integration occurs through the capture of transforming DNA by the homology-dependent pathway for DNA double-strand break (DNA-DSB) repair, we analysed the genome-wide transcriptomic response to bleomycin-induced DNA damage and generated mutants in candidate DNA repair genes. Massively parallel (Illumina) cDNA sequencing identified potential participants in gene targeting. Transcripts encoding DNA repair proteins active in multiple repair pathways were significantly up-regulated. These included Rad51, CtIP, DNA ligase 1, Replication protein A and ATR in homology-dependent repair, Xrcc4, DNA ligase 4, Ku70 and Ku80 in non-homologous end-joining and Rad1, Tebichi/polymerase theta, PARP in microhomology-mediated end-joining. Differentially regulated cell-cycle components included up-regulated Rad9 and Hus1 DNA-damage-related checkpoint proteins and down-regulated D-type cyclins and B-type CDKs, commensurate with the imposition of a checkpoint at G2 of the cell cycle characteristic of homology-dependent DNA-DSB repair. Candidate genes, including ATP-dependent chromatin remodelling helicases associated with repair and recombination, were knocked out and analysed for growth defects, hypersensitivity to DNA damage and reduced GT efficiency. Targeted knockout of PpCtIP, a cell-cycle activated mediator of homology-dependent DSB resection, resulted in bleomycin-hypersensitivity and greatly reduced GT efficiency. PMID:27537368

  15. Psychological Well-Being and the Human Conserved Transcriptional Response to Adversity

    PubMed Central

    Fredrickson, Barbara L.; Grewen, Karen M.; Algoe, Sara B.; Firestine, Ann M.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cole, Steve W.

    2015-01-01

    Research in human social genomics has identified a conserved transcriptional response to adversity (CTRA) characterized by up-regulated expression of pro-inflammatory genes and down-regulated expression of Type I interferon- and antibody-related genes. This report seeks to identify the specific aspects of positive psychological well-being that oppose such effects and predict reduced CTRA gene expression. In a new confirmation study of 122 healthy adults that replicated the approach of a previously reported discovery study, mixed effect linear model analyses identified a significant inverse association between expression of CTRA indicator genes and a summary measure of eudaimonic well-being from the Mental Health Continuum – Short Form. Analyses of a 2- representation of eudaimonia converged in finding correlated psychological and social subdomains of eudaimonic well-being to be the primary carriers of CTRA associations. Hedonic well-being showed no consistent CTRA association independent of eudaimonic well-being, and summary measures integrating hedonic and eudaimonic well-being showed less stable CTRA associations than did focal measures of eudaimonia (psychological and social well-being). Similar results emerged from analyses of pooled discovery and confirmation samples (n = 198). Similar results also emerged from analyses of a second new generalization study of 107 healthy adults that included the more detailed Ryff Scales of Psychological Well-being and found this more robust measure of eudaimonic well-being to also associate with reduced CTRA gene expression. Five of the 6 major sub-domains of psychological well-being predicted reduced CTRA gene expression when analyzed separately, and 3 remained distinctively prognostic in mutually adjusted analyses. All associations were independent of demographic characteristics, health-related confounders, and RNA indicators of leukocyte subset distribution. These results identify specific sub-dimensions of eudaimonic

  16. Psychological well-being and the human conserved transcriptional response to adversity.

    PubMed

    Fredrickson, Barbara L; Grewen, Karen M; Algoe, Sara B; Firestine, Ann M; Arevalo, Jesusa M G; Ma, Jeffrey; Cole, Steve W

    2015-01-01

    Research in human social genomics has identified a conserved transcriptional response to adversity (CTRA) characterized by up-regulated expression of pro-inflammatory genes and down-regulated expression of Type I interferon- and antibody-related genes. This report seeks to identify the specific aspects of positive psychological well-being that oppose such effects and predict reduced CTRA gene expression. In a new confirmation study of 122 healthy adults that replicated the approach of a previously reported discovery study, mixed effect linear model analyses identified a significant inverse association between expression of CTRA indicator genes and a summary measure of eudaimonic well-being from the Mental Health Continuum - Short Form. Analyses of a 2- representation of eudaimonia converged in finding correlated psychological and social subdomains of eudaimonic well-being to be the primary carriers of CTRA associations. Hedonic well-being showed no consistent CTRA association independent of eudaimonic well-being, and summary measures integrating hedonic and eudaimonic well-being showed less stable CTRA associations than did focal measures of eudaimonia (psychological and social well-being). Similar results emerged from analyses of pooled discovery and confirmation samples (n = 198). Similar results also emerged from analyses of a second new generalization study of 107 healthy adults that included the more detailed Ryff Scales of Psychological Well-being and found this more robust measure of eudaimonic well-being to also associate with reduced CTRA gene expression. Five of the 6 major sub-domains of psychological well-being predicted reduced CTRA gene expression when analyzed separately, and 3 remained distinctively prognostic in mutually adjusted analyses. All associations were independent of demographic characteristics, health-related confounders, and RNA indicators of leukocyte subset distribution. These results identify specific sub-dimensions of eudaimonic well

  17. The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens.

    PubMed

    Kamisugi, Yasuko; Whitaker, John W; Cuming, Andrew C

    2016-01-01

    The model bryophyte Physcomitrella patens is unique among plants in supporting the generation of mutant alleles by facile homologous recombination-mediated gene targeting (GT). Reasoning that targeted transgene integration occurs through the capture of transforming DNA by the homology-dependent pathway for DNA double-strand break (DNA-DSB) repair, we analysed the genome-wide transcriptomic response to bleomycin-induced DNA damage and generated mutants in candidate DNA repair genes. Massively parallel (Illumina) cDNA sequencing identified potential participants in gene targeting. Transcripts encoding DNA repair proteins active in multiple repair pathways were significantly up-regulated. These included Rad51, CtIP, DNA ligase 1, Replication protein A and ATR in homology-dependent repair, Xrcc4, DNA ligase 4, Ku70 and Ku80 in non-homologous end-joining and Rad1, Tebichi/polymerase theta, PARP in microhomology-mediated end-joining. Differentially regulated cell-cycle components included up-regulated Rad9 and Hus1 DNA-damage-related checkpoint proteins and down-regulated D-type cyclins and B-type CDKs, commensurate with the imposition of a checkpoint at G2 of the cell cycle characteristic of homology-dependent DNA-DSB repair. Candidate genes, including ATP-dependent chromatin remodelling helicases associated with repair and recombination, were knocked out and analysed for growth defects, hypersensitivity to DNA damage and reduced GT efficiency. Targeted knockout of PpCtIP, a cell-cycle activated mediator of homology-dependent DSB resection, resulted in bleomycin-hypersensitivity and greatly reduced GT efficiency. PMID:27537368

  18. Transcriptional profiling of rat hypothalamus response to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin.

    PubMed

    Houlahan, Kathleen E; Prokopec, Stephenie D; Moffat, Ivy D; Lindén, Jere; Lensu, Sanna; Okey, Allan B; Pohjanvirta, Raimo; Boutros, Paul C

    2015-02-01

    In some mammals, halogenated aromatic hydrocarbon (HAH) exposure causes wasting syndrome, defined as significant weight loss associated with lethal outcomes. The most potent HAH in causing wasting is 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), which exerts its toxic effects through the aryl hydrocarbon receptor (AHR). Since TCDD toxicity is thought to predominantly arise from dysregulation of AHR-transcribed genes, it was hypothesized that wasting syndrome is a result of to TCDD-induced dysregulation of genes involved in regulation of food-intake. As the hypothalamus is the central nervous systems' regulatory center for food-intake and energy balance. Therefore, mRNA abundances in hypothalamic tissue from two rat strains with widely differing sensitivities to TCDD-induced wasting syndrome: TCDD-sensitive Long-Evans rats and TCDD-resistant Han/Wistar rats, 23h after exposure to TCDD (100μg/kg) or corn oil vehicle. TCDD exposure caused minimal transcriptional dysregulation in the hypothalamus, with only 6 genes significantly altered in Long-Evans rats and 15 genes in Han/Wistar rats. Two of the most dysregulated genes were Cyp1a1 and Nqo1, which are induced by TCDD across a wide range of tissues and are considered sensitive markers of TCDD exposure. The minimal response of the hypothalamic transcriptome to a lethal dose of TCDD at an early time-point suggests that the hypothalamus is not the predominant site of initial events leading to hypophagia and associated wasting. TCDD may affect feeding behaviour via events upstream or downstream of the hypothalamus, and further work is required to evaluate this at the level of individual hypothalamic nuclei and subregions. PMID:25529477

  19. Transcriptional analysis of an immune-responsive serine protease from Indian malarial vector, Anopheles culicifacies

    PubMed Central

    Rodrigues, Janneth; Agrawal, Neema; Sharma, Anil; Malhotra, Pawan; Adak, Tridibes; Chauhan, Virander S; Bhatnagar, Raj K

    2007-01-01

    Background The main vector for transmission of malaria in India is the Anopheles culicifacies mosquito species, a naturally selected subgroup of which is completely refractory (R) to transmission of the malaria parasite, Plasmodium vivax; Results Here, we report the molecular characterization of a serine protease (acsp30)-encoding gene from A. culicifacies, which was expressed in high abundance in the refractory strain compared to the susceptible (S) strain. The transcriptional upregulation of acsp30 upon Plasmodium challenge in the refractory strain coincided with ookinete invasion of mosquito midgut. Gene organization and primary sequence of acsp30 were identical in the R and S strains suggesting a divergent regulatory status of acsp30 in these strains. To examine this further, the upstream regulatory sequences of acsp30 were isolated, cloned and evaluated for the presence of promoter activity. The 702 bp upstream region of acsp30 from the two strains revealed sequence divergence. The promoter activity measured by luciferase-based reporter assay was shown to be 1.5-fold higher in the R strain than in the S. Gel shift experiments demonstrated a differential recruitment of nuclear proteins to upstream sequences of acsp30 as well as a difference in the composition of nuclear proteins in the two strains, both of which might contribute to the relative abundance of acsp30 in the R strain; Conclusion The specific upregulation of acsp30 in the R strain only in response to Plasmodium infection is suggestive of its role in contributing the refractory phenotype to the A. culicifacies mosquito population. PMID:17502004

  20. Global transcriptional response of Clostridium difficile carrying the CD38 prophage.

    PubMed

    Sekulovic, Ognjen; Fortier, Louis-Charles

    2015-02-01

    Clostridium difficile is one of the most dangerous pathogens in hospital settings. Most strains of