Validation of a CFD Methodology for Positive Displacement LVAD Analysis Using PIV Data
Reddy, Varun; Deutsch, Steve; Manning, Keefe B.; Paterson, Eric G.
2013-01-01
Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance. PMID:20353260
Validation of a CFD methodology for positive displacement LVAD analysis using PIV data.
Medvitz, Richard B; Reddy, Varun; Deutsch, Steve; Manning, Keefe B; Paterson, Eric G
2009-11-01
Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance. PMID:20353260
Lee, S.
2011-05-05
The Savannah River Remediation (SRR) Organization requested that Savannah River National Laboratory (SRNL) develop a Computational Fluid Dynamics (CFD) method to mix and blend the miscible contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank; such as, Tank 50H, to the Salt Waste Processing Facility (SWPF) feed tank. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The transient CFD governing equations consisting of three momentum equations, one mass balance, two turbulence transport equations for kinetic energy and dissipation rate, and one species transport were solved by an iterative technique until the species concentrations of tank fluid were in equilibrium. The steady-state flow solutions for the entire tank fluid were used for flow pattern analysis, for velocity scaling analysis, and the initial conditions for transient blending calculations. A series of the modeling calculations were performed to estimate the blending times for various jet flow conditions, and to investigate the impact of the cooling coils on the blending time of the tank contents. The modeling results were benchmarked against the pilot scale test results. All of the flow and mixing models were performed with the nozzles installed at the mid-elevation, and parallel to the tank wall. From the CFD modeling calculations, the main results are summarized as follows: (1) The benchmark analyses for the CFD flow velocity and blending models demonstrate their consistency with Engineering Development Laboratory (EDL) and literature test results in terms of local velocity measurements and experimental observations. Thus, an application of the established criterion to SRS full scale tank will provide a better, physically-based estimate of the required mixing time, and
CFD analysis of turbopump volutes
NASA Technical Reports Server (NTRS)
Ascoli, Edward P.; Chan, Daniel C.; Darian, Armen; Hsu, Wayne W.; Tran, Ken
1993-01-01
An effort is underway to develop a procedure for the regular use of CFD analysis in the design of turbopump volutes. Airflow data to be taken at NASA Marshall will be used to validate the CFD code and overall procedure. Initial focus has been on preprocessing (geometry creation, translation, and grid generation). Volute geometries have been acquired electronically and imported into the CATIA CAD system and RAGGS (Rockwell Automated Grid Generation System) via the IGES standard. An initial grid topology has been identified and grids have been constructed for turbine inlet and discharge volutes. For CFD analysis of volutes to be used regularly, a procedure must be defined to meet engineering design needs in a timely manner. Thus, a compromise must be established between making geometric approximations, the selection of grid topologies, and possible CFD code enhancements. While the initial grid developed approximated the volute tongue with a zero thickness, final computations should more accurately account for the geometry in this region. Additionally, grid topologies will be explored to minimize skewness and high aspect ratio cells that can affect solution accuracy and slow code convergence. Finally, as appropriate, code modifications will be made to allow for new grid topologies in an effort to expedite the overall CFD analysis process.
Lee, S.
2011-05-17
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single
CFD analysis of pump consortium impeller
NASA Technical Reports Server (NTRS)
Cheng, Gary C.; Chen, Y. S.; Williams, R. W.
1992-01-01
Current design of high performance turbopumps for rocket engines requires effective and robust analytical tools to provide design impact in a productive manner. The main goal of this study is to develop a robust and effective computational fluid dynamics (CFD) pump model for general turbopump design and analysis applications. A Navier-Stokes flow solver, FDNS, embedded with the extended k-epsilon turbulence model and with appropriate moving interface boundary conditions, is developed to analyze turbulent flows in the turbomachinery devices. The FDNS code was benchmarked with its numerical predictions of the pump consortium inducer, and provides satisfactory results. In the present study, a CFD analysis of the pump consortium impeller will be conducted with the application of the FDNS code. The pump consortium impeller, with partial blades, is the new design concept of the advanced rocket engine.
Optimization of a Centrifugal Impeller Design Through CFD Analysis
NASA Technical Reports Server (NTRS)
Chen, W. C.; Eastland, A. H.; Chan, D. C.; Garcia, Roberto
1993-01-01
This paper discusses the procedure, approach and Rocketdyne CFD results for the optimization of the NASA consortium impeller design. Two different approaches have been investigated. The first one is to use a tandem blade arrangement, the main impeller blade is split into two separate rows with the second blade row offset circumferentially with respect to the first row. The second approach is to control the high losses related to secondary flows within the impeller passage. Many key parameters have been identified and each consortium team member involved will optimize a specific parameter using 3-D CFD analysis. Rocketdyne has provided a series of CFD grids for the consortium team members. SECA will complete the tandem blade study, SRA will study the effect of the splitter blade solidity change, NASA LeRC will evaluate the effect of circumferential position of the splitter blade, VPI will work on the hub to shroud blade loading distribution, NASA Ames will examine the impeller discharge leakage flow impacts and Rocketdyne will continue to work on the meridional contour and the blade leading to trailing edge work distribution. This paper will also present Rocketdyne results from the tandem blade study and from the blade loading distribution study. It is the ultimate goal of this consortium team to integrate the available CFD analysis to design an advanced technology impeller that is suitable for use in the NASA Space Transportation Main Engine (STME) fuel turbopump.
Propellant Sloshing Parameter Extraction from CFD Analysis
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Peugeot, John
2010-01-01
Propellant slosh is a potential source of disturbance critical to the stability of space vehicle. The sloshing dynamics is typically represented by a mechanical model of spring mass damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the sloshing, sloshing mass, sloshing mass center coordinates, and critical damping coefficient. During the 1960 s US space program, these parameters were either computed from analytical solution for simple geometry or by experimental testing for the sub-scaled configurations. The purpose of this work is to demonstrate the soundness of a CFD approach in modeling the detailed fluid dynamics of tank sloshing and the excellent accuracy in extracting mechanical properties for different tank configurations and at different fill levels. The validation studies included straight cylinder against analytical solution, and sub-scaled Centaur LOX and LH2 tanks with and without baffles against experimental results. This effort shows that CFD technology can provide accurate mechanical parameters for any tank configuration, and is especially valuable to the future design of propellant tanks, as there is no previous experimental data available for the same size and configuration.
CFD Analysis of Core Bypass Phenomena
Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz
2010-03-01
The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary
CFD Analysis of Core Bypass Phenomena
Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz
2009-11-01
The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; LLie, Marcel; Shallhorn, Paul A.
2012-01-01
There are inherent uncertainties and errors associated with using Computational Fluid Dynamics (CFD) to predict the flow field and there is no standard method for evaluating uncertainty in the CFD community. This paper describes an approach to -validate the . uncertainty in using CFD. The method will use the state of the art uncertainty analysis applying different turbulence niodels and draw conclusions on which models provide the least uncertainty and which models most accurately predict the flow of a backward facing step.
CFD analysis of coverplate receiver flow
Popp, O.; Zimmermann, H.; Kutz, J.
1998-01-01
The flow field in a preswirled cooling air supply to a turbine rotor has been investigated by means of CFD simulations. Coefficients for system efficiency are derived. The influences of various geometric parameters for different configurations have been correlated with the help of appropriate coefficients. For some of the most important geometric parameters of the coverplate receiver, design recommendations have been made. For the preswirl nozzles, the potential of efficiency improvement by contour design is highlighted.
Removing Grit During Wastewater Treatment: CFD Analysis of HDVS Performance.
Meroney, Robert N; Sheker, Robert E
2016-05-01
Computational Fluid Dynamics (CFD) was used to simulate the grit and sand separation effectiveness of a typical hydrodynamic vortex separator (HDVS) system. The analysis examined the influences on the separator efficiency of: flow rate, fluid viscosities, total suspended solids (TSS), and particle size and distribution. It was found that separator efficiency for a wide range of these independent variables could be consolidated into a few curves based on the particle fall velocity to separator inflow velocity ratio, Ws/Vin. Based on CFD analysis it was also determined that systems of different sizes with length scale ratios ranging from 1 to 10 performed similarly when Ws/Vin and TSS were held constant. The CFD results have also been compared to a limited range of experimental data. PMID:27131307
CFD modeling of turbulent duct flows for coolant channel analysis
NASA Astrophysics Data System (ADS)
Ungewitter, Ronald J.; Chan, Daniel C.
1993-07-01
The design of modern liquid rocket engines requires the analysis of chamber coolant channels to maximize the heat transfer while minimizing the coolant flow. Coolant channels often do not remain at a constant cross section or at uniform curvature. New designs require higher aspect ratio coolant channels than previously used. To broaden the analysis capability and to complement standard analysis tools an investigation on the accuracy of CFD predictions for coolant channel flow has been initiated. Validation of CFD capabilities for coolant channel analysis will enhance the capabilities for optimizing design parameters without resorting to extensive experimental testing. The eventual goal is to use CFD to determine the flow fields of unique coolant channel designs and therefore determine critical heat transfer coefficients. In this presentation the accuracy of a particular CFD code is evaluated for turbulent flows. The first part of the presentation is a comparison of numerical results to existing cold flow data for square curved ducts (NASA CR-3367, 'Measurements of Laminar and Turbulent Flow in a Curved Duct with Thin Inlet Boundary Layers'). The results of this comparison show good agreement with the relatively coarse experimental data. The second part of the presentation compares two cases of higher aspect ratio channels (AR=2.5,10) to show changes in axial and secondary flow strength. These cases match experimental work presently in progress and will be used for future validation. The comparison shows increased secondary flow strength of the higher aspect ratio case due to the change in radius of curvature. The presentation includes a test case with a heated wall to demonstrate the program's capability. The presentation concludes with an outline of the procedure used to validate the CFD code for future design analysis.
SSME HPOTP impeller backcavity CFD analysis
NASA Astrophysics Data System (ADS)
Hsu, W. W.; Lin, S. J.
1992-07-01
The ball bearings behind the Space Shuttle Main Engine (SSME) HPOTP preburner pump have a history of premature wear requiring their replacement. Extensive tests have been conducted in an attempt to identify the operating factors that contribute to the wear. It has been conjectured that the coolant inflow velocity swirl pattern can aid bearing operation by matching ball orbit speed and thus affect bearing life. However, control of the velocity distribution up to now could only be achieved by trial and error following hardware testing. Observation of hardware from recent flight and development operation led to the hypothesis that certain assemblies with more extensive grinding patterns on the backwall of the impeller for rotor balancing correlated with improved bearing wear. To analytically evaluate the effect of cavity configuration on the flowfield, 3-D computational fluid dynamics (CFD) analyses of various geometries was successfully executed using REACT3D. Height of the anti-vortex ribs on the stationary wall was varied, as was the configuration of the rotating wall, from smooth to simulations of various grindout patterns. The results obtained indicate the effects of the various geometries and provide valuable guidelines for cavity modification to optimize bearing cooling.
SSME HPOTP impeller backcavity CFD analysis
NASA Technical Reports Server (NTRS)
Hsu, W. W.; Lin, S. J.
1992-01-01
The ball bearings behind the Space Shuttle Main Engine (SSME) HPOTP preburner pump have a history of premature wear requiring their replacement. Extensive tests have been conducted in an attempt to identify the operating factors that contribute to the wear. It has been conjectured that the coolant inflow velocity swirl pattern can aid bearing operation by matching ball orbit speed and thus affect bearing life. However, control of the velocity distribution up to now could only be achieved by trial and error following hardware testing. Observation of hardware from recent flight and development operation led to the hypothesis that certain assemblies with more extensive grinding patterns on the backwall of the impeller for rotor balancing correlated with improved bearing wear. To analytically evaluate the effect of cavity configuration on the flowfield, 3-D computational fluid dynamics (CFD) analyses of various geometries was successfully executed using REACT3D. Height of the anti-vortex ribs on the stationary wall was varied, as was the configuration of the rotating wall, from smooth to simulations of various grindout patterns. The results obtained indicate the effects of the various geometries and provide valuable guidelines for cavity modification to optimize bearing cooling.
New Flutter Analysis Technique for CFD-based Unsteady Aeroelasticity
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Jutte, Christine V.
2009-01-01
This paper presents a flutter analysis technique for the transonic flight regime. The technique uses an iterative approach to determine the critical dynamic pressure for a given mach number. Unlike other CFD-based flutter analysis methods, each iteration solves for the critical dynamic pressure and uses this value in subsequent iterations until the value converges. This process reduces the iterations required to determine the critical dynamic pressure. To improve the accuracy of the analysis, the technique employs a known structural model, leaving only the aerodynamic model as the unknown. The aerodynamic model is estimated using unsteady aeroelastic CFD analysis combined with a parameter estimation routine. The technique executes as follows. The known structural model is represented as a finite element model. Modal analysis determines the frequencies and mode shapes for the structural model. At a given mach number and dynamic pressure, the unsteady CFD analysis is performed. The output time history of the surface pressure is converted to a nodal aerodynamic force vector. The forces are then normalized by the given dynamic pressure. A multi-input multi-output parameter estimation software, ERA, estimates the aerodynamic model through the use of time histories of nodal aerodynamic forces and structural deformations. The critical dynamic pressure is then calculated using the known structural model and the estimated aerodynamic model. This output is used as the dynamic pressure in subsequent iterations until the critical dynamic pressure is determined. This technique is demonstrated on the Aerostructures Test Wing-2 model at NASA's Dryden Flight Research Center.
CFD analysis of gas explosions vented through relief pipes.
Ferrara, G; Di Benedetto, A; Salzano, E; Russo, G
2006-09-21
Vent devices for gas and dust explosions are often ducted to safe locations by means of relief pipes. However, the presence of the duct increases the severity of explosion if compared to simply vented vessels (i.e. compared to cases where no duct is present). Besides, the identification of the key phenomena controlling the violence of explosion has not yet been gained. Multidimensional models coupling, mass, momentum and energy conservation equations can be valuable tools for the analysis of such complex explosion phenomena. In this work, gas explosions vented through ducts have been modelled by a two-dimensional (2D) axi-symmetric computational fluid dynamic (CFD) model based on the unsteady Reynolds Averaged Navier Stokes (RANS) approach in which the laminar, flamelet and distributed combustion models have been implemented. Numerical test have been carried out by varying ignition position, duct diameter and length. Results have evidenced that the severity of ducted explosions is mainly driven by the vigorous secondary explosion occurring in the duct (burn-up) rather than by the duct flow resistance or acoustic enhancement. Moreover, it has been found out that the burn-up affects explosion severity due to the reduction of venting rate rather than to the burning rate enhancement through turbulization. PMID:16675106
The development of an efficient turbomachinery CFD analysis procedure
NASA Astrophysics Data System (ADS)
Thomas, Matthew E.; Shimp, Nancy R.; Raw, Michael J.; Galpin, Paul F.; Raithby, George D.
1989-07-01
A three-dimensional Navier-Stokes CFD code has been developed for application to the turbomachinery design process within liquid propulsion systems. Accuracy, robustness, efficiency, convenient grid generation, and user friendly integration into the turbomachinery analysis and design procedure have been emphasized. This paper documents the progress made to date including code description, grid generation and integration into the design process. Three test cases are presented: a turbine cascade, a pump impeller, and a volute.
Design and Analysis of Missile Systems through CFD Simulations
NASA Astrophysics Data System (ADS)
Chakraborty, Debasis
2010-10-01
Development of indigenous CFD codes and their applications for complex aerodynamic and propulsive flow problems pertaining to DRDO missiles are presented. Grid generators, 3D Euler and Navier Stokes solvers are developed in-house using state of art numerical techniques and physical models. These softwares are used extensively for aerodynamic characterization of missiles over a wide range of Mach number, angle of attack, control surface deflection and store separation studies. Significant contributions are made in the design of high speed propulsion systems of various ongoing and future missiles through CFD analysis internal flow field. Important design modifications were suggested and the propulsion system performances were optimized. Capabilities have been developed for many advanced topics including computational aeroelasticity, coupled Euler Boltzmann solver, etc.
CFD Analysis of Bubbling Fluidized Bed Using Rice Husk
NASA Astrophysics Data System (ADS)
Singh, Ravi Inder; Mohapatra, S. K.; Gangacharyulu, D.
Rice is Cultivated in all the main regions of world. The worldwide annual rice production could be 666million tons (www.monstersandcritics.com,2008) for year 2008. The annual production of rice husk is 133.2 million tons considering rice husk being 20% of total paddy production. The average annual energy potential is 1.998 *1012 MJ of rice husk considering 15MJ/kg of rice husk. India has vast resource of rice husk; a renewable source of fuel, which if used effectively would reduce the rate of depletion of fossil energy resources. As a result a new thrust on research and development in boilers bases on rice husk is given to commercialize the concept. CFD is the analysis of systems involving fluid flow, heat transfer and associated phenomena such as chemical reactions by means of computer-based simulation. High quality Computational Fluid dynamics (CFD) is an effective engineering tool for Power Engineering Industry. It can determine detailed flow distributions, temperatures, and pollutant concentrations with excellent accuracy, and without excessive effort by the software user. In the other words it is the science of predicting fluid flow, heat and mass transfer, chemical reactions and related phenomena; and an innovate strategy to conform to regulations and yet stay ahead in today's competitive power market. This paper is divided into two parts; in first part review of CFD applied to the various types of boilers based on biomass fuels/alternative fuels is presented. In second part CFD analysis of fluidized bed boilers based on rice husk considering the rice husk based furnace has been discussed. The eulerian multiphase model has used for fluidized bed. Fluidized bed has been modeled using Fluent 6.2 commercial code. The effect of numerical influence of bed superheater tubes has also been discussed.
Observations Regarding Use of Advanced CFD Analysis, Sensitivity Analysis, and Design Codes in MDO
NASA Technical Reports Server (NTRS)
Newman, Perry A.; Hou, Gene J. W.; Taylor, Arthur C., III
1996-01-01
Observations regarding the use of advanced computational fluid dynamics (CFD) analysis, sensitivity analysis (SA), and design codes in gradient-based multidisciplinary design optimization (MDO) reflect our perception of the interactions required of CFD and our experience in recent aerodynamic design optimization studies using CFD. Sample results from these latter studies are summarized for conventional optimization (analysis - SA codes) and simultaneous analysis and design optimization (design code) using both Euler and Navier-Stokes flow approximations. The amount of computational resources required for aerodynamic design using CFD via analysis - SA codes is greater than that required for design codes. Thus, an MDO formulation that utilizes the more efficient design codes where possible is desired. However, in the aerovehicle MDO problem, the various disciplines that are involved have different design points in the flight envelope; therefore, CFD analysis - SA codes are required at the aerodynamic 'off design' points. The suggested MDO formulation is a hybrid multilevel optimization procedure that consists of both multipoint CFD analysis - SA codes and multipoint CFD design codes that perform suboptimizations.
Analysis Tools for CFD Multigrid Solvers
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Diskin, Boris
2004-01-01
Analysis tools are needed to guide the development and evaluate the performance of multigrid solvers for the fluid flow equations. Classical analysis tools, such as local mode analysis, often fail to accurately predict performance. Two-grid analysis tools, herein referred to as Idealized Coarse Grid and Idealized Relaxation iterations, have been developed and evaluated within a pilot multigrid solver. These new tools are applicable to general systems of equations and/or discretizations and point to problem areas within an existing multigrid solver. Idealized Relaxation and Idealized Coarse Grid are applied in developing textbook-efficient multigrid solvers for incompressible stagnation flow problems.
A novel CFD/structural analysis of a cross parachute
LaFarge, R.A.; Nelsen, J.M.; Gwinn, K.W.
1993-12-31
A novel CFD/structural analysis was performed to predict functionality of a cross parachute under loadings near the structural limits of the parachute. The determination of parachute functionality was based on the computed structural integrity of the canopy and suspension lines. In addition to the standard aerodynamic pressure loading on the canopy, the structural analysis considered the reduction in fabric strength due to the computed aerodynamic heating. The intent was to illustrate the feasibility of such an analysis with the commercially available software PATRAN.
CFD analysis of baffle flame stabilization
NASA Astrophysics Data System (ADS)
Chen, Yen-Sen; Farmer, Richard C.
1991-06-01
A computational fluid dynamics analysis of ignition and combustion in baffle flame stabilized combustors was developed in order to increase the understanding of combustion efficiency and stability. The objectives of this investigation were to develop and verify a computational model of the ignition and combustion of typical augmenter configurations and to generalize the model for application to the combustion occurring in a generic gas turbine engine with augmenters, upstream vitiation, and a downstream chocked nozzle. Triangular bar and cone stabilized flames were simulated. Quasi-global propane and methane kinetics models were employed in the computation. A more detailed methane-air kinetics model was also used. An ignition procedure was devised by initially providing a 1200 K hot spot near the base to start the flame. The recirculation zone lengths of cold and hot flows were well predicted. Time averaged flow quantities were used for data comparisons since the predicted recirculating zones of the reacting flows were unsteady.
Boom Minimization Framework for Supersonic Aircraft Using CFD Analysis
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Rallabhandi, Sriram K.
2010-01-01
A new framework is presented for shape optimization using analytical shape functions and high-fidelity computational fluid dynamics (CFD) via Cart3D. The focus of the paper is the system-level integration of several key enabling analysis tools and automation methods to perform shape optimization and reduce sonic boom footprint. A boom mitigation case study subject to performance, stability and geometrical requirements is presented to demonstrate a subset of the capabilities of the framework. Lastly, a design space exploration is carried out to assess the key parameters and constraints driving the design.
Status report : guard containment CFD analysis.
Tzanos, C. P.; Nuclear Engineering Division
2006-03-03
decay heat levels at GFR target power densities. The lower back-up pressure, plus whatever natural convection is available at this pressure, will be utilized to significantly reduce the blower power of the active DHR system sized to remove 2-3% decay power. The objective is to be able to have such low power requirements so that power supplies such as batteries without the need for startup, can be utilized. This lower back-up pressure should be sufficient to support natural convection removal of 0.5% decay heat which occurs at {approx}24 hrs. So there should be no more need for active systems/power supply after the initial period of one day. Furthermore, since there will be a decay of the after-heat from 2-3% to 0.5% in this time period, credit should be taken in probability space for loss of active systems during the 24 hours. The safety approach will then be a probabilistic one. In the future discussions with the regulatory authorities the approach which will then be taken is that this class of decay heat removal accidents should be treated in combination with the PRA rather than solely through deterministic calculations. Work is now ongoing in the U.S.-France I-NERI GFR project to further evaluate this hybrid passive/active approach to heat removal for depressurized decay heat accidents. The objective of the analysis documented in this report is to provide information on local and global temperature, pressure and flow distributions in the guard containment , during steady state, and reactor vessel depressurization conditions due to a small break in the reactor vessel bottom control rod drive system. This is for the 2400 MWt plant option. The results should lead to improved guard containment designs and enhanced margin for safety criteria.
Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu; Campbell, Richard L.
2014-01-01
The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
Non-Newtonian Liquid Flow through Small Diameter Piping Components: CFD Analysis
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar
2016-05-01
Computational Fluid Dynamics (CFD) analysis have been carried out to evaluate the frictional pressure drop across the horizontal pipeline and different piping components, like elbows, orifices, gate and globe valves for non-Newtonian liquid through 0.0127 m pipe line. The mesh generation is done using GAMBIT 6.3 and FLUENT 6.3 is used for CFD analysis. The CFD results are verified with our earlier published experimental data. The CFD results show the very good agreement with the experimental values.
CFD Analysis of the 24-inch JIRAD Hybrid Rocket Motor
NASA Technical Reports Server (NTRS)
Liang, Pak-Yan; Ungewitter, Ronald; Claflin, Scott
1996-01-01
A series of multispecies, multiphase computational fluid dynamics (CFD) analyses of the 24-inch diameter joint government industry industrial research and development (JIRAD) hybrid rocket motor is described. The 24-inch JIRAD hybrid motor operates by injection of liquid oxygen (LOX) into a vaporization plenum chamber upstream of ports in the hydroxyl-terminated polybutadiene (HTPB) solid fuel. The injector spray pattern had a strong influence on combustion stability of the JIRAD motor so a CFD study was initiated to define the injector end flow field under different oxidizer spray patterns and operating conditions. By using CFD to gain a clear picture of the flow field and temperature distribution within the JIRAD motor, it is hoped that the fundamental mechanisms of hybrid combustion instability may be identified and then suppressed by simple alterations to the oxidizer injection parameters such as injection angle and velocity. The simulations in this study were carried out using the General Algorithm for Analysis of Combustion SYstems (GALACSY) multiphase combustion codes. GALACSY consists of a comprehensive set of droplet dynamic submodels (atomization, evaporation, etc.) and a computationally efficient hydrocarbon chemistry package built around a robust Navier-Stokes solver optimized for low Mach number flows. Lagrangian tracking of dispersed particles describes a closely coupled spray phase. The CFD cases described in this paper represent various levels of simplification of the problem. They include: (A) gaseous oxygen with combusting fuel vapor blowing off the walls at various oxidizer injection angles and velocities, (B) gaseous oxygen with combusting fuel vapor blowing off the walls, and (C) liquid oxygen with combusting fuel vapor blowing off the walls. The study used an axisymmetric model and the results indicate that the injector design significantly effects the flow field in the injector end of the motor. Markedly different recirculation patterns are
NASA Astrophysics Data System (ADS)
Iannetti, Aldo; Stickland, Matthew T.; Dempster, William M.
2015-09-01
An advanced transient CFD model of a positive displacement reciprocating pump was created to study its behavior and performance in cavitating condition during the inlet stroke. The "full" cavitation model developed by Singhal et al. was utilized, and a sensitivity analysis test on two air mass fraction amounts (1.5 and 15 parts per million) was carried out to study the influence of the dissolved air content in water on the cavitation phenomenon. The model was equipped with user defined functions to introduce the liquid compressibility, which stabilizes the simulation, and to handle the two-way coupling between the pressure field and the inlet valve lift history. Estimation of the performance is also presented in both cases.
Computational Fluid Dynamics (CFD) applications in rocket propulsion analysis and design
NASA Astrophysics Data System (ADS)
McConnaughey, P. K.; Garcia, R.; Griffin, L. W.; Ruf, J. H.
1993-11-01
Computational Fluid Dynamics (CFD) has been used in recent applications to affect subcomponent designs in liquid propulsion rocket engines. This paper elucidates three such applications for turbine stage, pump stage, and combustor chamber geometries. Details of these applications include the development of a high turning airfoil for a gas generator (GG) powered, liquid oxygen (LOX) turbopump, single-stage turbine using CFD as an integral part of the design process. CFD application to pump stage design has emphasized analysis of inducers, impellers, and diffuser/volute sections. Improvements in pump stage impeller discharge flow uniformity have been seen through CFD optimization on coarse grid models. In the area of combustor design, recent CFD analysis of a film cooled ablating combustion chamber has been used to quantify the interaction between film cooling rate, chamber wall contraction angle, and geometry and their effects of these quantities on local wall temperature. The results are currently guiding combustion chamber design and coolant flow rate for an upcoming subcomponent test. Critical aspects of successful integration of CFD into the design cycle includes a close-coupling of CFD and design organizations, quick turnaround of parametric analyses once a baseline CFD benchmark has been established, and the use of CFD methodology and approaches that address pertinent design issues. In this latter area, some problem details can be simplified while retaining key physical aspects to maintain analytical integrity.
Computational Fluid Dynamics (CFD) applications in rocket propulsion analysis and design
NASA Technical Reports Server (NTRS)
Mcconnaughey, P. K.; Garcia, R.; Griffin, L. W.; Ruf, J. H.
1993-01-01
Computational Fluid Dynamics (CFD) has been used in recent applications to affect subcomponent designs in liquid propulsion rocket engines. This paper elucidates three such applications for turbine stage, pump stage, and combustor chamber geometries. Details of these applications include the development of a high turning airfoil for a gas generator (GG) powered, liquid oxygen (LOX) turbopump, single-stage turbine using CFD as an integral part of the design process. CFD application to pump stage design has emphasized analysis of inducers, impellers, and diffuser/volute sections. Improvements in pump stage impeller discharge flow uniformity have been seen through CFD optimization on coarse grid models. In the area of combustor design, recent CFD analysis of a film cooled ablating combustion chamber has been used to quantify the interaction between film cooling rate, chamber wall contraction angle, and geometry and their effects of these quantities on local wall temperature. The results are currently guiding combustion chamber design and coolant flow rate for an upcoming subcomponent test. Critical aspects of successful integration of CFD into the design cycle includes a close-coupling of CFD and design organizations, quick turnaround of parametric analyses once a baseline CFD benchmark has been established, and the use of CFD methodology and approaches that address pertinent design issues. In this latter area, some problem details can be simplified while retaining key physical aspects to maintain analytical integrity.
Development of a CFD Analysis Plan for the first VHTR Standard Problem
Richard W. Johnson
2008-09-01
Data from a scaled model of a portion of the lower plenum of the helium-cooled very high temperature reactor (VHTR) are under consideration for acceptance as a computational fluid dynamics (CFD) validation data set or standard problem. A CFD analysis will help determine if the scaled model is a suitable geometry for validation data. The present article describes the development of an analysis plan for the CFD model. The plan examines the boundary conditions that should be used, the extent of the computational domain that should be included and which turbulence models need not be examined against the data. Calculations are made for a closely related 2D geometry to address these issues. It was found that a CFD model that includes only the inside of the scaled model in its computational domain is adequate for CFD calculations. The realizable k~e model was found not to be suitable for this problem because it did not predict vortex-shedding.
Statistical Analysis of the AIAA Drag Prediction Workshop CFD Solutions
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.; Hemsch, Michael J.
2007-01-01
The first AIAA Drag Prediction Workshop (DPW), held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third AIAA Drag Prediction Workshop, held in June 2006, focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This report compares the transonic cruise prediction results of the second and third workshops using statistical analysis.
Design of Shrouded Airborne Wind Turbine & CFD Analysis
NASA Astrophysics Data System (ADS)
Anbreen, Faiqa; Faiqa Anbreen Collaboration
2015-11-01
The focus is to design a shrouded airborne wind turbine, capable to generate 70 kW to propel a leisure boat. The idea of designing an airborne turbine is to take the advantage of different velocity layers in the atmosphere. The blades have been designed using NREL S826 airfoil, which has coefficient of lift CL of 1.4 at angle of attack, 6°. The value selected for CP is 0.8. The rotor diameter is 7.4 m. The balloon (shroud) has converging-diverging nozzle design, to increase the mass flow rate through the rotor. The ratio of inlet area to throat area, Ai/At is 1.31 and exit area to throat area, Ae/At is1.15. The Solidworks model has been analyzed numerically using CFD. The software used is StarCCM +. The Unsteady Reynolds Averaged Navier Stokes Simulation (URANS) K- ɛ model has been selected, to study the physical properties of the flow, with emphasis on the performance of the turbine. Stress analysis has been done using Nastran. From the simulations, the torque generated by the turbine is approximately 800N-m and angular velocity is 21 rad/s.
CFD analysis of straight and flared vortex tube
NASA Astrophysics Data System (ADS)
Dhillon, Aman Kumar; Bandyopadhyay, Syamalendu S.
2015-12-01
Vortex tube (VT) is a simple low refrigeration producing device having no moving part. However, the flow inside it is very complex. Recent studies show that the performance of VT improves with the increase in the divergence angle of a flared VT. To explore the temperature separation phenomenon in the VT, a three dimensional computational fluid dynamics (CFD) analysis of VT has been carried out. For the present work, a VT having diameter of 12 mm, length of 120 mm, cold outlet diameter of 7 mm and hot outlet annulus of 0.4 mm with 6 straight rectangular nozzles having area of 0.5 sq. mm each is considered. The turbulence in the flow field of the VT is modeled by standard k-e turbulence model considering Redlich-Kwong real gas model. The effect of variation of divergence angle of hot tube in the VT is studied and compared with the experimental results available in the literature. The temperature separation between the hot outlet and cold outlet, in both straight and 2 degree flared tube is studied. Analysis results indicate that for a hot mass fraction above 0.5, the flared tube shows better cold production capacity compared to the straight tube. Effect of important parameters like temperature gradient, velocities (axial, radial and tangential), velocity gradients, effective thermal conductivity and viscosity of fluid etc., on heat transfer and shear work transfer in the VT have been investigated. To understand the temperature separation mechanism, heat transfer and work transfer along the axial direction have been evaluated in both straight and flared tubes. The isentropic efficiency and COP as a refrigerator as well as a heat pump of straight tube and flared tube have been computed.
Highly Efficient Design-of-Experiments Methods for Combining CFD Analysis and Experimental Data
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Haller, Harold S.
2009-01-01
It is the purpose of this study to examine the impact of "highly efficient" Design-of-Experiments (DOE) methods for combining sets of CFD generated analysis data with smaller sets of Experimental test data in order to accurately predict performance results where experimental test data were not obtained. The study examines the impact of micro-ramp flow control on the shock wave boundary layer (SWBL) interaction where a complete paired set of data exist from both CFD analysis and Experimental measurements By combining the complete set of CFD analysis data composed of fifteen (15) cases with a smaller subset of experimental test data containing four/five (4/5) cases, compound data sets (CFD/EXP) were generated which allows the prediction of the complete set of Experimental results No statistical difference were found to exist between the combined (CFD/EXP) generated data sets and the complete Experimental data set composed of fifteen (15) cases. The same optimal micro-ramp configuration was obtained using the (CFD/EXP) generated data as obtained with the complete set of Experimental data, and the DOE response surfaces generated by the two data sets were also not statistically different.
CFD MODELING ANALYSIS OF MECHANICAL DRAFT COOLING TOWER
Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L
2008-03-03
Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has a MDCT consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to conduct a parametric study for cooling tower performance under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model to achieve the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of the modeling calculations was performed to investigate the impact of ambient and operating conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was benchmarked against the literature data and the SRS test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be presented here.
NASA Technical Reports Server (NTRS)
Anderson, Kevin R.; Zayas, Daniel; Turner, Daniel
2012-01-01
Computational Fluid Dynamics (CFD) using the commercial CFD package CFDesign has been performed at NASA Jet Propulsion Laboratory (JPL) California Institute of Technology (Caltech) in support of the Phaeton Early Career Hire Program's Optical Payload for Lasercomm Science (OPALS) mission. The OPALS project is one which involves an International Space Station payload that will be using forced convection cooling in a hermetically sealed enclosure at 1 atm of air to cool "off-the-shelf" vendor electronics. The CFD analysis was used to characterize the thermal and fluid flow environment within a complicated labyrinth of electronics boards, fans, instrumentation, harnessing, ductwork and heat exchanger fins. The paradigm of iteratively using CAD/CAE tools and CFD was followed in order to determine the optimum flow geometry and heat sink configuration to yield operational convective film coefficients and temperature survivability limits for the electronics payload. Results from this current CFD analysis and correlation of the CFD model against thermal test data will be presented. Lessons learned and coupled thermal / flow modeling strategies will be shared in this paper.
An integrated CFD/experimental analysis of aerodynamic forces and moments
NASA Technical Reports Server (NTRS)
Melton, John E.; Robertson, David D.; Moyer, Seth A.
1989-01-01
Aerodynamic analysis using computational fluid dynamics (CFD) is most fruitful when it is combined with a thorough program of wind tunnel testing. The understanding of aerodynamic phenomena is enhanced by the synergistic use of both analysis methods. A technique is described for an integrated approach to determining the forces and moments acting on a wind tunnel model by using a combination of experimentally measured pressures and CFD predictions. The CFD code used was FLO57 (an Euler solver) and the wind tunnel model was a heavily instrumented delta wing with 62.5 deg of leading-edge sweep. A thorough comparison of the CFD results and the experimental data is presented for surface pressure distributions and longitudinal forces and moments. The experimental pressures were also integrated over the surface of the model and the resulting forces and moments are compared to the CFD and wind tunnel results. The accurate determination of various drag increments via the combined use of the CFD and experimental pressures is presented in detail.
Certification of CFD heat transfer software for turbine blade analysis
NASA Technical Reports Server (NTRS)
Jordan, William A.
2004-01-01
Accurate modeling of heat transfer effects is a critical component of the Turbine Branch of the Turbomachinery and Propulsion Systems Division. Being able to adequately predict and model heat flux, coolant flows, and peak temperatures are necessary for the analysis of high pressure turbine blades. To that end, the primary goal of my internship this summer will be to certify the reliability of the CFD program GlennHT for the purpose of turbine blade heat transfer analysis. GlennHT is currently in use by the engineers in the Turbine Branch who use the FORTRAN 77 version of the code for analysis. The program, however, has been updated to a FORTRAN 90 version which is more robust than the older code. In order for the new code to be distributed for use, its reliability must first be certified. Over the course of my internship I will create and run test cases using the FORTRAN 90 version of GlennHT and compare the results to older cases which are known to be accurate, If the results of the new code match those of the sample cases then the newer version will be one step closer to certification for distribution. In order to complete these it will first be necessary to become familiar with operating a number of other programs. Among them are GridPro, which is used to create a grid mesh around a blade geometry, and FieldView, whose purpose is to graphically display the results from the GlennHT program. Once enough familiarity is established with these programs to render them useful, then the work of creating and running test scenarios will begin. The work is additionally complicated by a transition in computer hardware. Most of the working computers in the Turbine Branch are Silicon Graphics machines, which will soon be replaced by LINUX PC's. My project is one of the first to make use the new PC's. The change in system architecture however, has created several software related issues which have greatly increased the time and effort investments required by the project
CFD Analysis for Flow of Liquids in Coils
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar
2016-04-01
The effects of liquid flow rate, coil diameter, pseudo plasticity of the liquids on the frictional pressure drop for the flow through helical coils have been reported through experimental investigation. Numerical modeling is carried using Fluent 6.3 software to find its applicability in the flow system. The Computational Fluid Dynamics (CFD) simulations are carried out using laminar non-Newtonian pseudo plastic power law model for laminar flow and k-ɛ model for turbulent flow for water. Water and dilute solution of Sodium Carboxy Methyl Cellulose (SCMC) as a non-Newtonian pseudo plastic fluid used for the study. Both hexahedral and tetrahedral grids are used for this simulation. The CFD results show the very good agreement with the experimental values. The comparison of the non-Newtonian liquid flow and water are also reported.
Experimental and CFD Analysis of Advanced Convective Cooling Systems
Hassan, Yassin A; Ugaz, Victor M
2012-06-27
The objective of this project is to study the fundamental physical phenomena in the reactor cavity cooling system (RCCS) of very high-temperature reactors (VHTRs). One of the primary design objectives is to assure that RCCS acts as an ultimate heat sink capable of maintaining thermal integrity of the fuel, vessel, and equipment within the reactor cavity for the entire spectrum of postulated accident scenarios. Since construction of full-scale experimental test facilities to study these phenomena is impractical, it is logical to expect that computational fluid dynamics (CFD) simulations will play a key role in the RCCS design process. An important question then arises: To what extent are conventional CFD codes able to accurately capture the most important flow phenomena, and how can they be modified to improve their quantitative predictions? Researchers are working to tackle this problem in two ways. First, in the experimental phase, the research team plans to design and construct an innovative platform that will provide a standard test setting for validating CFD codes proposed for the RCCS design. This capability will significantly advance the state of knowledge in both liquid-cooled and gas-cooled (e.g., sodium fast reactor) reactor technology. This work will also extend flow measurements to micro-scale levels not obtainable in large-scale test facilities, thereby revealing previously undetectable phenomena that will complement the existing infrastructure. Second, in the computational phase of this work, numerical simulation of the flow and temperature profiles will be performed using advanced turbulence models to simulate the complex conditions of flows in critical zones of the cavity. These models will be validated and verified so that they can be implemented into commercially available CFD codes. Ultimately, the results of these validation studies can then be used to enable a more accurate design and safety evaluation of systems in actual nuclear power
CFD analysis of jet mixing in low NOx flametube combustors
NASA Technical Reports Server (NTRS)
Talpallikar, M. V.; Smith, C. E.; Lai, M. C.; Holdeman, J. D.
1991-01-01
The Rich-burn/Quick-mix/Lean-burn (RQL) combustor was identified as a potential gas turbine combustor concept to reduce NO(x) emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NO(x) levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing by-pass combustion air with rich-burn gases. Jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed twelve radial-inflow slots. The numerical analyses were performed with an advanced, validated 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric variation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both non-reacting and reacting analyses were performed. Results showed mixing and NO(x) emissions to be highly sensitive to J and slot aspect ratio. Lowest NO(x) emissions occurred when the dilution jet penetrated to approximately mid-radius. The viability of using 3-D CFD analyses for optimizing jet mixing was demonstrated.
CFD analysis on a turbulence generator of medium consistency pump
NASA Astrophysics Data System (ADS)
Ma, X. D.; Wu, D. Z.; Huang, D. S.; Yu, H.; Wang, L. Q.
2013-12-01
Medium concentration paper suspension is a water-air-fibre three phase suspension. It has complicated physical features. When concentration exceeds 7%, it stops flowing and acts like a solid. A generator suspension is installed before the impeller to disturb the flocs and networks to make it start to flow. In this paper, CFD method is adopted to study the effects of the turbulence generator. As there is not a mature model to describe the characteristic of pulp suspension, Newtonian fluid is used to get the general property of the turbulence generator. In the CFD simulation, apparent viscosity of the pulp suspension is used to characterize the mixture. Firstly, numerical method is applied to get the turbulence generator properties in different rotational speed and different viscosity. From another point of view, air contained in the suspension is separate initially by means of centrifugal force. As it is difficult to describe a practical model of pulp suspension, it is simplified to be a water-air two-phase mixture. Several air contents are simulated to study the air distribution in the turbulence generator. The results show that there are three main effects of turbulence generator. Firstly, it has an entrainment effect of the suspension to make it into the pump. Secondly, it stirs the pulp suspension to bring it into flowing. Last, air is centralized in the shaft centre and pre-separated in the turbulence generator. So, the turbulence generator can pre-treat the pulp suspension to make the MC pump transport suspension successfully.
NASA Technical Reports Server (NTRS)
Kamhawi, Hilmi N.
2012-01-01
This report documents the work performed from March 2010 to March 2012. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed framework using the Adaptive Modeling Language (AML) as a framework and supporting the configuration design and parametric CFD grid generation. This report will focus on describing the work in the area of parametric CFD grid generation using novel concepts for defining the interaction between the mesh topology and the geometry in such a way as to separate the mesh topology from the geometric topology while maintaining the link between the mesh topology and the actual geometry.
Overview of the LaNCETS Flight Experiment and the CFD Analysis
NASA Technical Reports Server (NTRS)
Cliatt, Larry J., II; Haering, Edward A., Jr.; Bio, Trong
2008-01-01
LaCETS baseline flight study include: 29 high-quality nearfield shock structure probings at three Mach numbers; Shocks in exhaust plume measured; ! CFD study of simplified nozzle shows similar plume structures as flight data; ! Phase II flights scheduled for October 2008; and ! US Industry and Academia invited to participate in analysis, review, and assessment of LaNCETS data.
Methodology for CFD Design Analysis of National Launch System Nozzle Manifold
NASA Technical Reports Server (NTRS)
Haire, Scot L.
1993-01-01
The current design environment dictates that high technology CFD (Computational Fluid Dynamics) analysis produce quality results in a timely manner if it is to be integrated into the design process. The design methodology outlined describes the CFD analysis of an NLS (National Launch System) nozzle film cooling manifold. The objective of the analysis was to obtain a qualitative estimate for the flow distribution within the manifold. A complex, 3D, multiple zone, structured grid was generated from a 3D CAD file of the geometry. A Euler solution was computed with a fully implicit compressible flow solver. Post processing consisted of full 3D color graphics and mass averaged performance. The result was a qualitative CFD solution that provided the design team with relevant information concerning the flow distribution in and performance characteristics of the film cooling manifold within an effective time frame. Also, this design methodology was the foundation for a quick turnaround CFD analysis of the next iteration in the manifold design.
The Analysis and Design of Low Boom Configurations Using CFD and Numerical Optimization Techniques
NASA Technical Reports Server (NTRS)
Siclari, Michael J.
1999-01-01
The use of computational fluid dynamics (CFD) for the analysis of sonic booms generated by aircraft has been shown to increase the accuracy and reliability of predictions. CFD takes into account important three-dimensional and nonlinear effects that are generally neglected by modified linear theory (MLT) methods. Up to the present time, CFD methods have been primarily used for analysis or prediction. Some investigators have used CFD to impact the design of low boom configurations using trial and error methods. One investigator developed a hybrid design method using a combination of Modified Linear Theory (e.g. F-functions) and CFD to provide equivalent area due to lift driven by a numerical optimizer to redesign or modify an existing configuration to achieve a shaped sonic boom signature. A three-dimensional design methodology has not yet been developed that completely uses nonlinear methods or CFD. Constrained numerical optimization techniques have existed for some time. Many of these methods use gradients to search for the minimum of a specified objective function subject to a variety of design variable bounds, linear and nonlinear constraints. Gradient based design optimization methods require the determination of the objective function gradients with respect to each of the design variables. These optimization methods are efficient and work well if the gradients can be obtained analytically. If analytical gradients are not available, the objective gradients or derivatives with respect to the design variables must be obtained numerically. To obtain numerical gradients, say, for 10 design variables, might require anywhere from 10 to 20 objective function evaluations. Typically, 5-10 global iterations of the optimizer are required to minimize the objective function. In terms of using CFD as a design optimization tool, the numerical evaluation of gradients can require anywhere from 100 to 200 CFD computations per design for only 10 design variables. If one CFD
Intelligent Patching of Conceptual Geometry for CFD Analysis
NASA Technical Reports Server (NTRS)
Li, Wu
2010-01-01
The iPatch computer code for intelligently patching surface grids was developed to convert conceptual geometry to computational fluid dynamics (CFD) geometry (see figure). It automatically uses bicubic B-splines to extrapolate (if necessary) each surface in a conceptual geometry so that all the independently defined geometric components (such as wing and fuselage) can be intersected to form a watertight CFD geometry. The software also computes the intersection curves of surface patches at any resolution (up to 10.4 accuracy) specified by the user, and it writes the B-spline surface patches, and the corresponding boundary points, for the watertight CFD geometry in the format that can be directly used by the grid generation tool VGRID. iPatch requires that input geometry be in PLOT3D format where each component surface is defined by a rectangular grid {(x(i,j), y(i,j), z(i,j)):1less than or equal to i less than or equal to m, 1 less than or equal to j less than or equal to n} that represents a smooth B-spline surface. All surfaces in the PLOT3D file conceptually represent a watertight geometry of components of an aircraft on the half-space y greater than or equal to 0. Overlapping surfaces are not allowed, but could be fixed by a utility code "fixp3d". The fixp3d utility code first finds the two grid lines on the two surface grids that are closest to each other in Hausdorff distance (a metric to measure the discrepancies of two sets); then uses one of the grid lines as the transition line, extending grid lines on one grid to the other grid to form a merged grid. Any two connecting surfaces shall have a "visually" common boundary curve, or can be described by an intersection relationship defined in a geometry specification file. The intersection of two surfaces can be at a conceptual level. However, the intersection is directional (along either i or j index direction), and each intersecting grid line (or its spine extrapolation) on the first surface should intersect
Statistical Analysis of CFD Solutions from the Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Hemsch, Michael J.
2002-01-01
A simple, graphical framework is presented for robust statistical evaluation of results obtained from N-Version testing of a series of RANS CFD codes. The solutions were obtained by a variety of code developers and users for the June 2001 Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration used for the computational tests is the DLR-F4 wing-body combination previously tested in several European wind tunnels and for which a previous N-Version test had been conducted. The statistical framework is used to evaluate code results for (1) a single cruise design point, (2) drag polars and (3) drag rise. The paper concludes with a discussion of the meaning of the results, especially with respect to predictability, Validation, and reporting of solutions.
CFD Design and Analysis of a Passively Suspended Tesla Pump Left Ventricular Assist Device
Medvitz, Richard B.; Boger, David A.; Izraelev, Valentin; Rosenberg, Gerson; Paterson, Eric G.
2012-01-01
This paper summarizes the use of computational fluid dynamics (CFD) to design a novelly suspended Tesla LVAD. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750 and 7000 RPM and at flow rates varying from 3 to 7 liter-per-minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mmHg with a hydraulic efficiency of 16% at the design conditions of 6 LPM throughflow and a 6750 RPM rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance. PMID:21595722
Aerodynamic analysis of Audi A4 Sedan using CFD
NASA Astrophysics Data System (ADS)
Birwa, S. K.; Rathi, N.; Gupta, R.
2013-04-01
This paper presents the aerodynamic influence of velocity and ground clearance for Audi A4 Sedan. The topology of the test vehicle was modeled using CATIA P3 V5 R17. ANSYS FLUENT 12 was the CFD solver employed in this study. The distribution of pressure and velocity was obtained. The velocities were 30, 40, 50 and 60 m/s and ground clearances were 76.2 mm,101.6 mm,127 mm and 152.4 mm. The simulation results were compared with the available resources. It was found that the drag coefficient decreases with the velocity increasing from 30 to 60 m/s and increases with the ground clearance from 101.6 mm to 152.4 mm. Further decrease in ground clearance showed no effect on the value of coefficient of drag. The lift coefficient was found to decrease firstly with ground clearance from 152.4 mm to 101.6 mm, and then increase from 101.6 mm to 76.2 mm. Both the lift coefficient and drag coefficient was found to be minimum for the ground clearance of 101.6 mm as designed by the company.
A novel approach to CFD analysis of the urban environment
NASA Astrophysics Data System (ADS)
Nardecchia, F.; Gugliermetti, F.; Bisegna, F.
2015-11-01
The construction of cities, with their buildings and human activities, not only changes the landscape, but also influences the local climate in a manner that depends on many different factors and parameters: weather conditions, urban thermo-physical and geometrical characteristics, anthropogenic moisture and heat sources. Land-cover and canopy structure play an important role in urban climatology and every environmental assessment and city design face with them. Inside the previous frame, the objective of this study is both to identify both the key design variables that alter the environment surrounding the buildings, and to quantified the extension area of these phenomena. The tool used for this study is a 2D computational fluid dynamics (CFD) numerical simulation considering different heights for buildings, temperature gaps between undisturbed air and building's walls, velocities of undisturbed air. Results obtained allowed to find a novel approach to study urban canopies, giving a qualitative assessment on the contribution and definition of the total energy of the area surrounding the buildings.
CFD analysis of wing trailing edge vortex generator using serrations
NASA Astrophysics Data System (ADS)
Alawadhi, H. A.; Alex, A. G.; Kim, Y. H.
2014-03-01
This study presents computational results of a NACA0012 base wing with the trailing edge modified to incorporate triangular serrations. The effect of the serrations were investigated in three stages, the deflection angle of the serration with respect to the wing chord were examined from -90° to 90° at 10° intervals; the results obtained showed that although larger deflection induces a stronger vorticity magnitude, the strength of the vortex decays faster than compared to smaller deflections. Moreover, the vorticity profile downstream of the wing varies with deflection angle of the serration. Next, the addition of a Clark Y flap to the base wing to analyze the flow pattern and the effect on the flow separation; without serrations attached to the base wing trailing edge, at a high angle of attack, the flow will separate early and would render the flap less effective. The Vortex generator energizes the boundary layer and encourages the flow to remain attached to the flap, allowing for a greater range flap deflection. A wind tunnel experiment was developed and conducted to substantiate the computational analysis in a real world scenario. There was a positive correlation between the results obtained experimentally and computationally.
Ex-Core CFD Analysis Results for the Prometheus Gas Reactor
Lorentz, Donald G.
2007-01-30
This paper presents the initial nozzle-to-nozzle (N2N) reactor vessel model scoping studies using computational fluid dynamics (CFD) analysis methods. The N2N model has been solved under a variety of different boundary conditions. This paper presents some of the basic hydraulic results from the N2N CFD analysis effort. It also demonstrates how designers were going to apply the analysis results to modify a number of the design features. The initial goals for developing a preliminary CFD N2N model were to establish baseline expectations for pressure drops and flow fields around the reactor core. Analysis results indicated that the averaged reactor vessel pressure drop for all analyzed cases was 46.9 kPa ({approx}6.8 psid). In addition, mass flow distributions to the three core fuel channel regions exhibited a nearly inverted profile to those specified for the in-core thermal/hydraulic design. During subsequent design iterations, the goal would have been to modify or add design features that would have minimized reactor vessel pressure drop and improved flow distribution to the inlet of the core.
An Application of Overset Grids to Payload/Fairing Three-Dimensional Internal Flow CFD Analysis
NASA Technical Reports Server (NTRS)
Kandula, Max; Nallasamy, R.; Schallhorn, P.; Duncil, L.
2007-01-01
The application of overset grids to the computational fluid dynamics analysis of three-dimensional internal flow in the payload/fairing of an expendable launch vehicle is described. In conjunction with the overset grid system, the flowfield in the payload/fairing configuration is obtained with the aid of OVERFLOW Navier-Stokes code. The solution exhibits a highly three dimensional complex flowfield with swirl, separation, and vortices. Some of the computed flow features are compared with the measured Laser-Doppler Velocimetry (LDV) data on a 1/5th scale model of the payload/fairing configuration. The counter-rotating vortex structures and the location of the saddle point predicted by the CFD analysis are in general agreement with the LDV data. Comparisons of the computed (CFD) velocity profiles on horizontal and vertical lines in the LDV measurement plane in the faring nose region show reasonable agreement with the LDV data.
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Dr. Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and th e control system of a launch vehicle. Instead of relying on mechanical analogs which are not valid during aU stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid flow equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
Integrated CFD and Controls Analysis Interface for High Accuracy Liquid Propellant Slosh Predictions
NASA Technical Reports Server (NTRS)
Marsell, Brandon; Griffin, David; Schallhorn, Paul; Roth, Jacob
2012-01-01
Coupling computational fluid dynamics (CFD) with a controls analysis tool elegantly allows for high accuracy predictions of the interaction between sloshing liquid propellants and the control system of a launch vehicle. Instead of relying on mechanical analogs which are n0t va lid during all stages of flight, this method allows for a direct link between the vehicle dynamic environments calculated by the solver in the controls analysis tool to the fluid now equations solved by the CFD code. This paper describes such a coupling methodology, presents the results of a series of test cases, and compares said results against equivalent results from extensively validated tools. The coupling methodology, described herein, has proven to be highly accurate in a variety of different cases.
Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis
Richard W. Johnson; Richard R. Schultz; Patrick J. Roache; Ismail B. Celik; William D. Pointer; Yassin A. Hassan
2006-09-01
Traditionally, nuclear reactor safety analysis has been performed using systems analysis codes such as RELAP5, which was developed at the INL. However, goals established by the Generation IV program, especially the desire to increase efficiency, has lead to an increase in operating temperatures for the reactors. This increase pushes reactor materials to operate towards their upper temperature limits relative to structural integrity. Because there will be some finite variation of the power density in the reactor core, there will be a potential for local hot spots to occur in the reactor vessel. Hence, it has become apparent that detailed analysis will be required to ensure that local ‘hot spots’ do not exceed safety limits. It is generally accepted that computational fluid dynamics (CFD) codes are intrinsically capable of simulating fluid dynamics and heat transport locally because they are based on ‘first principles.’ Indeed, CFD analysis has reached a fairly mature level of development, including the commercial level. However, CFD experts are aware that even though commercial codes are capable of simulating local fluid and thermal physics, great care must be taken in their application to avoid errors caused by such things as inappropriate grid meshing, low-order discretization schemes, lack of iterative convergence and inaccurate time-stepping. Just as important is the choice of a turbulence model for turbulent flow simulation. Turbulence models model the effects of turbulent transport of mass, momentum and energy, but are not necessarily applicable for wide ranges of flow types. Therefore, there is a well-recognized need to establish practices and procedures for the proper application of CFD to simulate flow physics accurately and establish the level of uncertainty of such computations. The present document represents contributions of CFD experts on what the basic practices, procedures and guidelines should be to aid CFD analysts to obtain accurate
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2011-01-01
Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.
CFD Sensitivity Analysis of a Modern Civil Transport Near Buffet-Onset Conditions
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Allison, Dennis O.; Biedron, Robert T.; Buning, Pieter G.; Gainer, Thomas G.; Morrison, Joseph H.; Rivers, S. Melissa; Mysko, Stephen J.; Witkowski, David P.
2001-01-01
A computational fluid dynamics (CFD) sensitivity analysis is conducted for a modern civil transport at several conditions ranging from mostly attached flow to flow with substantial separation. Two different Navier-Stokes computer codes and four different turbulence models are utilized, and results are compared both to wind tunnel data at flight Reynolds number and flight data. In-depth CFD sensitivities to grid, code, spatial differencing method, aeroelastic shape, and turbulence model are described for conditions near buffet onset (a condition at which significant separation exists). In summary, given a grid of sufficient density for a given aeroelastic wing shape, the combined approximate error band in CFD at conditions near buffet onset due to code, spatial differencing method, and turbulence model is: 6% in lift, 7% in drag, and 16% in moment. The biggest two contributers to this uncertainty are turbulence model and code. Computed results agree well with wind tunnel surface pressure measurements both for an overspeed 'cruise' case as well as a case with small trailing edge separation. At and beyond buffet onset, computed results agree well over the inner half of the wing, but shock location is predicted too far aft at some of the outboard stations. Lift, drag, and moment curves are predicted in good agreement with experimental results from the wind tunnel.
CFD Analysis of Swing of Cricket Ball and Trajectory Prediction
NASA Astrophysics Data System (ADS)
G, Jithin; Tom, Josin; Ruishikesh, Kamat; Jose, Jyothish; Kumar, Sanjay
2013-11-01
This work aims to understand the aerodynamics associated with the flight and swing of a cricket ball and predict its flight trajectory over the course of the game: at start (smooth ball) and as the game progresses (rough ball). Asymmetric airflow over the ball due to seam orientation and surface roughness can cause flight deviation (swing). The values of Drag, Lift and Side forces which are crucial for determining the trajectory of the ball were found with the help of FLUENT using the standard K- ɛ model. Analysis was done to study how the ball velocity, spin imparted to be ball and the tilt of the seam affects the movement of the ball through air. The governing force balance equations in 3 dimensions in combination a MATLAB code which used Heun's method was used for obtaining the trajectory of the ball. The conditions for the conventional swing and reverse swing to occur were deduced from the analysis and found to be in alignment with the real life situation. Critical seam angle for maximum swing and transition speed for normal to reverse swing were found out. The obtained trajectories were compared to real life hawk eye trajectories for validation. The analysis results were in good agreement with the real life situation.
Three Dimensional CFD Analysis of the GTX Combustor
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.
2002-01-01
The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. ScramJet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel massflow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.
CFD Methods and Tools for Multi-Element Airfoil Analysis
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; George, Michael W. (Technical Monitor)
1995-01-01
This lecture will discuss the computational tools currently available for high-lift multi-element airfoil analysis. It will present an overview of a number of different numerical approaches, their current capabilities, short-comings, and computational costs. The lecture will be limited to viscous methods, including inviscid/boundary layer coupling methods, and incompressible and compressible Reynolds-averaged Navier-Stokes methods. Both structured and unstructured grid generation approaches will be presented. Two different structured grid procedures are outlined, one which uses multi-block patched grids, the other uses overset chimera grids. Turbulence and transition modeling will be discussed.
Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion
NASA Technical Reports Server (NTRS)
Garcia, R.; McConnaughey, P. K.; Eastland, A.
1993-01-01
The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial
CFD and Aeroelastic Analysis of the MEXICO Wind Turbine
NASA Astrophysics Data System (ADS)
Carrión, M.; Woodgate, M.; Steijl, R.; Barakos, G.; Gómez-Iradi, S.; Munduate, X.
2014-12-01
This paper presents an aerodynamic and aeroelastic analysis of the MEXICO wind turbine, using the compressible HMB solver of Liverpool. The aeroelasticity of the blade, as well as the effect of a low-Mach scheme were studied for the zero-yaw 15m/s wind case and steady- state computations. The wake developed behind the rotor was also extracted and compared with the experimental data, using the compressible solver and a low-Mach scheme. It was found that the loads were not sensitive to the Mach number effects, although the low-Mach scheme improved the wake predictions. The sensitivity of the results to the blade structural properties was also highlighted.
CFD Analysis and Design Optimization Using Parallel Computers
NASA Technical Reports Server (NTRS)
Martinelli, Luigi; Alonso, Juan Jose; Jameson, Antony; Reuther, James
1997-01-01
A versatile and efficient multi-block method is presented for the simulation of both steady and unsteady flow, as well as aerodynamic design optimization of complete aircraft configurations. The compressible Euler and Reynolds Averaged Navier-Stokes (RANS) equations are discretized using a high resolution scheme on body-fitted structured meshes. An efficient multigrid implicit scheme is implemented for time-accurate flow calculations. Optimum aerodynamic shape design is achieved at very low cost using an adjoint formulation. The method is implemented on parallel computing systems using the MPI message passing interface standard to ensure portability. The results demonstrate that, by combining highly efficient algorithms with parallel computing, it is possible to perform detailed steady and unsteady analysis as well as automatic design for complex configurations using the present generation of parallel computers.
CFD Based Computations of Flexible Helicopter Blades for Stability Analysis
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2011-01-01
As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.
CFD Analysis of Emissions for a Candidate N+3 Combustor
NASA Technical Reports Server (NTRS)
Ajmani, Kumud
2015-01-01
An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spray-modeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.
CFD Analysis of Emissions for a Candidate N+3 Combustor
NASA Technical Reports Server (NTRS)
Ajmani, Kumud
2015-01-01
An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spraymodeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.
NASA Astrophysics Data System (ADS)
Kim, C. G.; Kim, B. H.; Bang, B. H.; Lee, Y. H.
2015-01-01
Sump model testing is mainly used to check flow conditions around the intake structure. In present paper, numerical simulation with SST turbulence model for a scaled sump model was carried out with air entrainment and two phases for prediction of locations of vortex generation. The sump model used for the CFD and experimental analysis was scaled down by a ratio of 1:10. The experiment was performed in Korea Maritime and Ocean University (KMOU) and the flow conditions around pump's intake structure were investigated. In this study, uniformity of flow distribution in the pump intake channel was examined to find out the specific causes of vortex occurrence. Furthermore, the effectiveness of an Anti Vortex Device (AVD) to suppress the vortex occurrence in a single intake pump sump model was examined. CFD and experimental analysis carried out with and without AVDs produced very similar results. Without the AVDs, the maximum swirl angle obtained for experimental and CFD analysis were 10.9 and 11.3 degree respectively. Similarly, with AVDs, the maximum swirl angle obtained for experimental and CFD analysis was 2.7 and 0.2 degree respectively. So, with reference to the ANSI/HI 98 standard that permits a maximum swirl angle of 5 degree, the use of AVDs in experimental and CFD analysis produced very desirable results which is well within the limit.
CFD Analysis of the Anti-Surge Effects by Water Hammering
NASA Astrophysics Data System (ADS)
Kim, Tae-oh; Jeong, Hyo-min; Chung, Han-shik; Lee, Sin-il; Lee, Kwang-sung
2015-09-01
Water hammering occurs due to the surge effect that comes from operating the pump, sudden stop during the operating due to a blackout and rapid open and close of the valve. By the water hammering of the pipeline and the pump, the valve are damaged. In this paper, transient analysis is conducted by CFD (Computational Fluid Dynamics). The purpose of this paper is to provide the research data about the change of the pressure and flow in the pipe that caused by the water hammering.
CFD analysis of sludge accumulation and hydraulic performance of a waste stabilization pond.
Alvarado, Andres; Sanchez, Esteban; Durazno, Galo; Vesvikar, Mehul; Nopens, Ingmar
2012-01-01
Sludge management in waste stabilization ponds (WSPs) is essential for safeguarding the system performance. Sludge accumulation patterns in WSPs are strongly influenced by the pond hydrodynamics. CFD modeling was applied to study the relation between velocity profiles and sludge deposition during 10 years of operation of the Ucubamba WSP in Cuenca (Ecuador). One tracer experiment was performed and three sludge accumulation scenarios based on bathymetric surveys were simulated. A residence time distribution (RTD) analysis illustrated the decrease of residence times due to sludge deposition. Sludge accumulation rates were calculated. The influence of flow pattern on the sludge deposition was studied, enabling better planning of future pond operation and desludging. PMID:23032767
CFD Analysis of Flexible Thermal Protection System Shear Configuration Testing in the LCAT Facility
NASA Technical Reports Server (NTRS)
Ferlemann, Paul G.
2014-01-01
This paper documents results of computational analysis performed after flexible thermal protection system shear configuration testing in the LCAT facility. The primary objectives were to predict the shear force on the sample and the sensitivity of all surface properties to the shape of the sample. Bumps of 0.05, 0.10,and 0.15 inches were created to approximate the shape of some fabric samples during testing. A large amount of information was extracted from the CFD solutions for comparison between runs and also current or future flight simulations.
CFD-Exergy analysis of the flow in a supersonic steam ejector
NASA Astrophysics Data System (ADS)
Boulenouar, M.; Ouadha, A.
2015-01-01
The current study aims to carry out a CFD-exergy based analysis to assess the main areas of loss in a supersonic steam ejector encountered in ejector refrigeration systems. The governing equations for a compressible flow are solved using finite volume approach based on SST k-ω model to handle turbulence effects. Flow rates and the computed mean temperatures and pressures have been used to calculate the exergy losses within the different regions of the ejector as well as its overall exergy efficiency. The primary mass flow rate, the secondary mass flow rate and the entrainment ratio predicted by the model have been compared with the experimental data from the literature.
Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle
NASA Technical Reports Server (NTRS)
Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.
2016-01-01
This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.
TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Myers, R. A.; Topp, D. A.; Delaney, R. A.
1995-01-01
The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document is intended to serve as a user's manual for the computer programs which comprise the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework.
Experimental investigation and CFD analysis on cross flow in the core of PMR200
Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; Jae, Moosung; Park, Goon -Cherl
2015-04-16
The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connectingmore » the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.« less
Experimental investigation and CFD analysis on cross flow in the core of PMR200
Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; Jae, Moosung; Park, Goon -Cherl
2015-04-16
The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connecting the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.
Development of a CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Athavale, Mahesh M.; Przekwas, Andrzej J.; Singhal, Ashok K.
1991-01-01
The aim is to develop a 3-D computational fluid dynamics (CFD) code for the analysis of fluid flow in cylindrical seals and evaluation of the dynamic forces on the seals. This code is expected to serve as a scientific tool for detailed flow analysis as well as a check for the accuracy of the 2D industrial codes. The features necessary in the CFD code are outlined. The initial focus was to develop or modify and implement new techniques and physical models. These include collocated grid formulation, rotating coordinate frames and moving grid formulation. Other advanced numerical techniques include higher order spatial and temporal differencing and an efficient linear equation solver. These techniques were implemented in a 2D flow solver for initial testing. Several benchmark test cases were computed using the 2D code, and the results of these were compared to analytical solutions or experimental data to check the accuracy. Tests presented here include planar wedge flow, flow due to an enclosed rotor, and flow in a 2D seal with a whirling rotor. Comparisons between numerical and experimental results for an annular seal and a 7-cavity labyrinth seal are also included.
Gas-Non-Newtonian liquid flow through helical coils—pressure drop and CFD analysis
NASA Astrophysics Data System (ADS)
Bandyopadhyay, T. K.; Biswas, A. B.; Das, S. K.
2010-10-01
The problem of determining the pressure losses in helical coil is important in design and analysis of the fluid machinery. It is well known that when a fluid flows through a curved pipe, the flow pattern becomes more complex than that of a straight pipe because of the generation of secondary flows due to the interaction between centrifugal and viscous forces. To understand the interaction between the two-phase gas- non-Newtonian liquid flow through helical coil tube, hydrodynamic modeling is being performed with a commercial computational fluid dynamics (CFD) code—FLUENT 6.3. The modeling has attempted to describe the results of flow visualization experiments performed in transparent helical coil tube. Both phases are first treated separately as homogeneous. Coupling is achieved through pressure and interphase exchange coefficients. Multiphase model Eulerian-Eulerian, viscous non-Newtonian laminar power law model is used to describe the interaction between the phases. The CFD modeling is compared with the experimental data.
YiXing pump turbine guide vane vibrations: Problem reso lution with advanced CFD analysis
NASA Astrophysics Data System (ADS)
Nennemann, B.; Parkinson, É.
2010-08-01
During commissioning of YiXing pump turbine (Jiangsu province, China) by - at the time - GE Energy Hydro a number of guide vane vibration issues occurred. An investigation was launched to determine the root causes of these vibration incidents including analysis of site measurement data from the incidents and a Computation Fluid Dynamics (CFD) study. Several interesting hydro-dynamic phenomena were discovered during the course of this investigation, notably circumferentially synchronized and amplified von Karman vortices at the guide vane trailing edges in pump mode, unexpected flow attachment to the guide vane trailing edge pump mode resulting in bi-stable flow conditions and a self-excited torsion mode flutter vibration. The latter two phenomena explain the vibration incidents at site. The CFD study helped in identifying and quantifying the geometric parameters that influence torsion mode flutter and therefore enabled a targeted modification of the guide vane profile that is stable with respect to self-excitation. Between May 2009 and April 2010 the modified guide vanes were - now by Andritz Hydro Ltd. - installed in all 4 units of the YiXing pumped storage plant and proved to be successful in eliminating the vibration problems. Opening and closing sequences of the guide vanes - including pump start from closed guide vanes and transition from pump to synchronous condenser operation - could be implemented as required by the contract.
Overview of the LaNCETS Flight Experiment and CFD Analysis. Supplemental Movies
NASA Technical Reports Server (NTRS)
Cliatt, Larry J., II; Haering, Edward A., Jr.; Bui, Trong
2008-01-01
This presentation focuses on nearfield airborne pressure signatures from the Lift and Nozzle Change Effect on Tail Shocks (LaNCETS) flight test experiment. The primary motivation for nearfield probing in the supersonic regime is to measure the shock structure of aircraft in an ongoing effort to overcome the overland sonic boom barrier for commercial supersonic transportation. LaNCETS provides the opportunity to investigate lift distribution and engine plume effects. During Phase 1 flight testing an F-15B was used to probe the F-15 LaNCETS aircraft in order to validate CFD and pre-flight prediction tools. A total of 29 probings were taken at 40,000 ft. altitude at Machs 1.2, 1.4 and 1.6. LaNCETS Phase 1 flight data are presented as a detailed pressure signature superimposed over a picture of the LaNCETS aircraft. The attenuation of the Inlet-Canard shocks with distance as well as its forward propagation and the coalescence of the noseboom shock are illustrated. A detailed CFD study on a simplified LaNCETS aircraft jet nozzle was performed providing the ability to more accurately capture the shocks from the propulsion system and emphasizing how under- and over-expanding the nozzle affects the existence of shock trains inside the jet plume. With Phase 1 being a success preparations are being made to move forward to Phase 2. Phase 2 will fly similar flight conditions, but this time changing the aircraft's lift distribution by biasing the canard positions, and changing the plume shape by under- and over-expanding the nozzle. Nearfield probing will again be completed in the same manner as in Phase 1. An additional presentation focuses on LaNCETS CFD solution methodology. Discussions highlight grid preprocessing, grid shearing and stretching, flow solving and contour plots. Efforts are underway to better capture the flow features via grid modification and flow solution methodology, which will help to achieve better agreement with flight data. An included CD-ROM provides
CFD Analysis of the Aerodynamics of a Business-Jet Airfoil with Leading-Edge Ice Accretion
NASA Technical Reports Server (NTRS)
Chi, X.; Zhu, B.; Shih, T. I.-P.; Addy, H. E.; Choo, Y. K.
2004-01-01
For rime ice - where the ice buildup has only rough and jagged surfaces but no protruding horns - this study shows two dimensional CFD analysis based on the one-equation Spalart-Almaras (S-A) turbulence model to predict accurately the lift, drag, and pressure coefficients up to near the stall angle. For glaze ice - where the ice buildup has two or more protruding horns near the airfoil's leading edge - CFD predictions were much less satisfactory because of the large separated region produced by the horns even at zero angle of attack. This CFD study, based on the WIND and the Fluent codes, assesses the following turbulence models by comparing predictions with available experimental data: S-A, standard k-epsilon, shear-stress transport, v(exp 2)-f, and differential Reynolds stress.
Data resulting from the CFD analysis of ten window frames according to the UNI EN ISO 10077-2.
Baglivo, Cristina; Malvoni, Maria; Congedo, Paolo Maria
2016-09-01
Data are related to the numerical simulation performed in the study entitled "CFD modeling to evaluate the thermal performances of window frames in accordance with the ISO 10077" (Malvoni et al., 2016) [1]. The paper focuses on the results from a two-dimensional numerical analysis for ten frame sections suggested by the ISO 10077-2 and performed using GAMBIT 2.2 and ANSYS FLUENT 14.5 CFD code. The dataset specifically includes information about the CFD setup and boundary conditions considered as the input values of the simulations. The trend of the isotherms points out the different impacts on the thermal behaviour of all sections with air solid material or ideal gas into the cavities. PMID:27489870
Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles
NASA Technical Reports Server (NTRS)
Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See
2010-01-01
This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.
NASA Astrophysics Data System (ADS)
Bai, YuGuang; Yang, Kai; Sun, DongKe; Zhang, YuGuang; Kennedy, David; Williams, Fred; Gao, XiaoWei
2013-02-01
This paper focuses on numerical simulations of bluff body aerodynamics with three-dimensional CFD (computational fluid dynamics) modeling, where a computational scheme for fluid-structure interactions is implemented. The choice of an appropriate turbulence model for the computational modeling of bluff body aerodynamics using both two-dimensional and three-dimensional CFD numerical simulations is also considered. An efficient mesh control method which employs the mesh deformation technique is proposed to achieve better simulation results. Several long-span deck sections are chosen as examples which were stationary and pitching at a high Reynolds number. With the proposed CFD method and turbulence models, the force coefficients and flutter derivatives thus obtained are compared with the experimental measurement results and computed values completely from commercial software. Finally, a discussion on the effects of oscillation amplitude on the flutter instability of a bluff body is carried out with extended numerical simulations. These numerical analysis results demonstrate that the proposed three-dimensional CFD method, with proper turbulence modeling, has good accuracy and significant benefits for aerodynamic analysis and computational FSI studies of bluff bodies.
Application of FUN3D and CFL3D to the Third Workshop on CFD Uncertainty Analysis
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Thomas, J. L.
2008-01-01
Two Reynolds-averaged Navier-Stokes computer codes - one unstructured and one structured - are applied to two workshop cases (for the 3rd Workshop on CFD Uncertainty Analysis, held at Instituto Superior Tecnico, Lisbon, in October 2008) for the purpose of uncertainty analysis. The Spalart-Allmaras turbulence model is employed. The first case uses the method of manufactured solution and is intended as a verification case. In other words, the CFD solution is expected to approach the exact solution as the grid is refined. The second case is a validation case (comparison against experiment), for which modeling errors inherent in the turbulence model and errors/uncertainty in the experiment may prevent close agreement. The results from the two computer codes are also compared. This exercise verifies that the codes are consistent both with the exact manufactured solution and with each other. In terms of order property, both codes behave as expected for the manufactured solution. For the backward facing step, CFD uncertainty on the finest grid is computed and is generally very low for both codes (whose results are nearly identical). Agreement with experiment is good at some locations for particular variables, but there are also many areas where the CFD and experimental uncertainties do not overlap.
CFD Analysis of Mixing Characteristics of Several Fuel Injectors at Hypervelocity Flow Conditions
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Drummond, J. Philip; Baurle, Robert A.
2016-01-01
CFD analysis is presented of the mixing characteristics and performance of three fuel injectors at hypervelocity flow conditions. The calculations were carried out using the VULCAN-CFD solver and Reynolds-Averaged Simulations (RAS). The high Mach number flow conditions match those proposed for the planned experiments conducted as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The EIMP aims to investigate scramjet fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than eight. Because of the high Mach number flow considered, the injectors consist of a fuel placement device, a strut; and a fluidic vortical mixer, a ramp. These devices accomplish the necessary task of distributing and mixing fuel into the supersonic cross-flow albeit via different strategies. Both of these devices were previously studied at lower flight Mach numbers where they exhibited promising performance in terms of mixing efficiency and total pressure recovery. For comparison, a flush-wall injector is also included. This type of injector generally represents the simplest method of introducing fuel into a scramjet combustor, however, at high flight Mach number conditions, the dynamic pressure needed to induce sufficient fuel penetration may be difficult to achieve along with other requirements such as achieving desired levels of fuel-to-air mixing at the required equivalence ratio. The three injectors represent the baseline configurations planned for the experiments. The current work discusses the mixing flow field behavior and differences among the three fuel injectors, mixing performance as described by the mixing efficiency and the total pressure recovery, and performance considerations based on the thrust potential.
Hydrodynamics Analysis and CFD Simulation of Portal Venous System by TIPS and LS.
Wang, Meng; Zhou, Hongyu; Huang, Yaozhen; Gong, Piyun; Peng, Bing; Zhou, Shichun
2015-06-01
In cirrhotic patients, portal hypertension is often associated with a hyperdynamic changes. Transjugular Intrahepatic Portosystemic Shunt (TIPS) and Laparoscopic splenectomy are both treatments for liver cirrhosis due to portal hypertension. While, the two different interventions have different effects on hemodynamics after operation and the possibilities of triggering PVT are different. How hemodynamics of portal vein system evolving with two different operations remain unknown. Based on ultrasound and established numerical methods, CFD technique is applied to analyze hemodynamic changes after TIPS and Laparoscopic splenectomy. In this paper, we applied two 3-D flow models to the hemodynamic analysis for two patients who received a TIPS and a laparoscopic splenectomy, both therapies for treating portal hypertension induced diseases. The current computer simulations give a quantitative analysis of the interplay between hemodynamics and TIPS or splenectomy. In conclusion, the presented computational model can be used for the theoretical analysis of TIPS and laparoscopic splenectomy, clinical decisions could be made based on the simulation results with personal properly treatment. PMID:26902048
NASA Technical Reports Server (NTRS)
2001-01-01
This document presents the full-scale analyses of the CFD RSRM. The RSRM model was developed with a 20 second burn time. The following are presented as part of the full-scale analyses: (1) RSRM embedded inclusion analysis; (2) RSRM igniter nozzle design analysis; (3) Nozzle Joint 4 erosion anomaly; (4) RSRM full motor port slag accumulation analysis; (5) RSRM motor analysis of two-phase flow in the aft segment/submerged nozzle region; (6) Completion of 3-D Analysis of the hot air nozzle manifold; (7) Bates Motor distributed combustion test case; and (8) Three Dimensional Polysulfide Bump Analysis.
"Tools For Analysis and Visualization of Large Time- Varying CFD Data Sets"
NASA Technical Reports Server (NTRS)
Wilhelms, Jane; vanGelder, Allen
1999-01-01
During the four years of this grant (including the one year extension), we have explored many aspects of the visualization of large CFD (Computational Fluid Dynamics) datasets. These have included new direct volume rendering approaches, hierarchical methods, volume decimation, error metrics, parallelization, hardware texture mapping, and methods for analyzing and comparing images. First, we implemented an extremely general direct volume rendering approach that can be used to render rectilinear, curvilinear, or tetrahedral grids, including overlapping multiple zone grids, and time-varying grids. Next, we developed techniques for associating the sample data with a k-d tree, a simple hierarchial data model to approximate samples in the regions covered by each node of the tree, and an error metric for the accuracy of the model. We also explored a new method for determining the accuracy of approximate models based on the light field method described at ACM SIGGRAPH (Association for Computing Machinery Special Interest Group on Computer Graphics) '96. In our initial implementation, we automatically image the volume from 32 approximately evenly distributed positions on the surface of an enclosing tessellated sphere. We then calculate differences between these images under different conditions of volume approximation or decimation.
NASA Technical Reports Server (NTRS)
Thompson, David E.; Brooks, Walt F. (Technical Monitor)
1994-01-01
A collaborative team of researchers from fields of Computational Fluid Dynamics (CFD), fluid physics, computer architectures, and computer science and knowledge engineering have begun work on a prototype system that addresses several of industry's concerns in using NASA-developed CFD codes as part of the design cycle. A major problem exists in the application of CFD technologies within the aeronautics design cycle due primarily to misunderstandings in the ranges of applicability of the various solver codes or turbulence models. Features that arise during the CFD solution process need to be discriminated and recognized as actual flow features with physical support in the geometry and flow conditions of the problem being solved, or as numerical or non-physical errors arising from mis-application of solver code and its parameters, gridding strategies, or discretization. interpolations. The fundamental concept is to develop an intelligent computational system that can accept the engineer's definition of the problem and construct an optimal CFD solution. To do this requires capturing both the knowledge of how to apply the various CFD tools and how to adapt the application of those tools to flow structures as they evolve during the flow simulation. Embedded within this adaptive system approach is the additional desire to automatically identify and quantify the quality of resolution of the pertinent flow structures, be they genuine or error-induced, and then to adjust the solution strategy accordingly. This paper discusses the status of that prototyping effort.
Application of CFD Analysis to Design Support and Problem Resolution for ASRM and RSRM
NASA Technical Reports Server (NTRS)
Dill, Richard A.; Whitesides, R. Harold
1993-01-01
The use of Navier-Stokes CFD codes to predict the internal flow field environment in a solid rocket motor is a very important analysis element during the design phase of a motor development program. These computational flow field solutions uncover a variety of potential problems associated with motor performance as well as suggesting solutions to these problems. CFD codes have also proven to be of great benefit in explaining problems associated with operational motors such as in the case of the pressure spike problem with the STS-54B flight motor. This paper presents results from analyses involving both motor design support and problem resolution. The issues discussed include the fluid dynamic/mechanical stress coupling at field joints relative to significant propellant deformations, the prediction of axial and radial pressure gradients in the motor associated with motor performance and propellant mechanical loading, the prediction of transition of the internal flow in the motor associated with erosive burning, the accumulation of slag at the field joints and in the submerged nozzle region, impingement of flow on the nozzle nose, and pressure gradients in the nozzle region of the motor. The analyses presented in this paper have been performed using a two-dimensional axisymmetric model. Fluent/BFC, a three dimensional Navier-Stokes flow field code, has been used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical pressure-velocity coupling algorithm. Wall functions are used to represent the character of the viscous sub-layer flow, and an adjusted k-epsilon turbulence model especially configured for mass injection internal flows, is used to model the growth of turbulence in the motor port. Conclusions discussed in this paper consider flow field effects on the forward, center, and aft propellant grains except for the head end star grain region of the forward propellant segment. The field joints and the
Research on Flow Characteristics of Supercritical CO2 Axial Compressor Blades by CFD Analysis
NASA Astrophysics Data System (ADS)
Takagi, Kazuhisa; Muto, Yasushi; Ishizuka, Takao; Kikura, Hiroshige; Aritomi, Masanori
A supercritical CO2 gas turbine of 20MPa is suitable to couple with the Na-cooled fast reactor since Na - CO2 reaction is mild at the outlet temperature of 800K, the cycle thermal efficiency is relatively high and the size of CO2 gas turbine is very compact. In this gas turbine cycle, a compressor operates near the critical point. The property of CO2 and then the behavior of compressible flow near the critical point changes very sharply. So far, such a behavior is not examined sufficiently. Then, it is important to clarify compressible flow near the critical point. In this paper, an aerodynamic design of the axial supercritical CO2 compressor for this system has been carried out based on the existing aerodynamic design method of Cohen1). The cycle design point was selected to achieve the maximum cycle thermal efficiency of 43.8%. For this point, the compressor design conditions were determined. They are a mass flow rate of 2035kg/s, an inlet temperature of 308K, an inlet static pressure of 8.26MPa, an outlet static pressure of 20.6MPa and a rotational speed of 3600rpm. The mean radius was constant through axial direction. The design point was determined so as to keep the diffusion factor and blade stress within the allowable limits. Number of stages and an expected adiabatic efficiency was 14 and 87%, respectively. CFD analyses by FLUENT have been done for this compressor blade. The blade model consists of one set of a guide vane, a rotor blade and a stator blade. The analyses were conducted under the assumption both of the real gas properties and also of the modified ideal gas properties. Using the real gas properties, analysis was conducted for the 14th blade, whose condition is remote from the critical point and the possibility of divergence is very small. Then, the analyses were conducted for the blade whose conditions are nearer to the critical point. Gradually, divergence of calculation was encountered. Convergence was relatively easy for the modified ideal
McCorkle, Douglas S.; Bryden, Kenneth M.
2011-01-01
Several recent reports and workshops have identified integrated computational engineering as an emerging technology with the potential to transform engineering design. The goal is to integrate geometric models, analyses, simulations, optimization and decision-making tools, and all other aspects of the engineering process into a shared, interactive computer-generated environment that facilitates multidisciplinary and collaborative engineering. While integrated computational engineering environments can be constructed from scratch with high-level programming languages, the complexity of these proposed environments makes this type of approach prohibitively slow and expensive. Rather, a high-level software framework is needed to provide the user with the capability to construct an application in an intuitive manner using existing models and engineering tools with minimal programming. In this paper, we present an exploratory open source software framework that can be used to integrate the geometric models, computational fluid dynamics (CFD), and optimization tools needed for shape optimization of complex systems. This framework is demonstrated using the multiphase flow analysis of a complete coal transport system for an 800 MW pulverized coal power station. The framework uses engineering objects and three-dimensional visualization to enable the user to interactively design and optimize the performance of the coal transport system.
CFD Analysis of Thermal Control System Using NX Thermal and Flow
NASA Technical Reports Server (NTRS)
Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)
2014-01-01
The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.
NASA Astrophysics Data System (ADS)
Shin, K. W.; Andersen, P.
2015-12-01
The blade tip loading is often reduced as an effort to restrain sheet and tip vortex cavitation in the design of marine propellers. This CFD analysis demonstrates that an excessive reduction of the tip loading can cause cloud cavitation responsible for much of noise and surface erosion. Detached eddy simulations (DES) are made for cavitating flows on three tip- modified propellers, of which one is a reference propeller having an experimental result from a cavitation tunnel test with a hull model, and the other two are modified from the reference propeller by altering the blade tip loading. DES results have been validated against the experiment in terms of sheet and cloud cavitation. In DES, non-uniform hull wake is modelled by using the inlet flow and momentum sources instead of including a hull model. A 4-bladed Kappel propeller with a smooth tip bending towards the suction side is used as the reference propeller. For the reference propeller, sheet cavitation extends over a whole chord length in the hull wake peak. As the blade gets out of the wake peak, the rear part of sheet cavity is detached in a form of cloud cavitation. For the reference propeller, the tip pitch reduction from the maximum is about 35%. When decreasing the tip pitch reduction to 10%, tip vortex cavitation is formed and cloud cavitation is significantly weakened. When increasing the tip pitch reduction to 60%, sheet cavitation slightly moves to inner radii and cloud cavitation grows larger.
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2005-01-01
Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.
Position Analysis in Education. Team Project.
ERIC Educational Resources Information Center
Boccuzzi, Anthony V.; And Others
The purpose of this study is to investigate the applicability of position analysis to administrative assignments in education, and to ascertain criteria to be used in adapting position analysis to public education. Position analysis techniques are used to determine the relative worth of jobs in an organization by placing their scope of…
CFD analysis of mine fire smoke spread and reverse flow conditions
Edwards, J.C.; Hwang, C.C.
1999-07-01
A Computational Fluid Dynamics (CFD) program was used to model buoyancy induced Product-Of-Combustion (POC) spread from experimental fires in the National Institute for Occupational Safety and Health (NIOSH), Pittsburgh Research Laboratory (PRL), safety research coal mine. In one application, the CFD program was used to predict spread from fires in an entry under zero airflow conditions. At a location, 0.41 m below the entry's roof at a distance of 30 m from the fire, the measured smoke spread rates were 0.093 and 0.23 m/s for a 30 and a 296 kw fire, respectively. The CFD program predicted spread rates of 0.15 and 0.26 m/s based upon the measured fire heat production rates. Based upon a computation with C{sub 3}H{sub 8} as the hydrocarbon fuel, a predicted 5 ppm CO alert time of 70 s at a distance of 30 m from the fire is to be compared with the measured alert time of 148 S. In a second application, the CFD program was used to analyze smoke flow reversal conditions, and the results were compared with visual observations of smoke reversal for 12 diesel fuel fires. The CFD predictions were in qualitative agreement with visual observations of smoke reversal.
Combining ray tracing and CFD in the thermal analysis of a parabolic dish tubular cavity receiver
NASA Astrophysics Data System (ADS)
Craig, Ken J.; Marsberg, Justin; Meyer, Josua P.
2016-05-01
This paper describes the numerical evaluation of a tubular receiver used in a dish Brayton cycle. In previous work considering the use of Computational Fluid Dynamics (CFD) to perform the calculation of the absorbed radiation from the parabolic dish into the cavity as well as the resulting conjugate heat transfer, it was shown that an axi-symmetric model of the dish and receiver absorbing surfaces was useful in reducing the computational cost required for a full 3-D discrete ordinates solution, but concerns remained about its accuracy. To increase the accuracy, the Monte Carlo ray tracer SolTrace is used to perform the calculation of the absorbed radiation profile to be used in the conjugate heat transfer CFD simulation. The paper describes an approach for incorporating a complex geometry like a tubular receiver generated using CFD software into SolTrace. The results illustrate the variation of CFD mesh density that translates into the number of elements in SolTrace as well as the number of rays used in the Monte Carlo approach and their effect on obtaining a resolution-independent solution. The conjugate heat transfer CFD simulation illustrates the effect of applying the SolTrace surface heat flux profile solution as a volumetric heat source to heat up the air inside the tube. Heat losses due to convection and thermal re-radiation are also determined as a function of different tube absorptivities.
Analysis of fluid flow and heat transfer in a rib grit roughened surface solar air heater using CFD
Karmare, S.V.; Tikekar, A.N.
2010-03-15
This paper presents the study of fluid flow and heat transfer in a solar air heater by using Computational Fluid Dynamics (CFD) which reduces time and cost. Lower side of collector plate is made rough with metal ribs of circular, square and triangular cross-section, having 60 inclinations to the air flow. The grit rib elements are fixed on the surface in staggered manner to form defined grid. The system and operating parameters studied are: e/D{sub h} = 0.044, p/e = 17.5 and l/s = 1.72, for the Reynolds number range 3600-17,000. To validate CFD results, experimental investigations were carried out in the laboratory. It is found that experimental and CFD analysis results give the good agreement. The optimization of rib geometry and its angle of attack is also done. The square cross-section ribs with 58 angle of attack give maximum heat transfer. The percentage enhancement in the heat transfer for square plate over smooth surface is 30%. (author)
CFD analysis of supercritical CO2 used as HTF in a solar tower receiver
NASA Astrophysics Data System (ADS)
Roldán, M. I.; Fernández-Reche, J.
2016-05-01
The relative cost of a solar receiver can be minimized by the selection of an appropriate heat transfer fluid capable of achieving high receiver efficiencies. In a conventional central receiver system, the concentrated solar energy is transferred from the receiver tube walls to the heat transfer fluid (HTF), which passes through a heat exchanger to generate steam for a Rankine cycle. Thus, higher working fluid temperature is associated with greater efficiency in receiver and power cycle. Emerging receiver designs that can enable higher efficiencies using advanced power cycles, such as supercritical CO2 (s-CO2) closed-loop Brayton cycles, include direct heating of s-CO2 in tubular receiver designs capable of withstanding high internal fluid pressures (around 20 MPa) and temperatures (900 K). Due to the high pressures required and the presence of moving components installed in pipelines (ball-joints and/or flexible connections), the use of s-CO2 presents many technical challenges due to the compatibility of seal materials and fluid leakages of the moving connections. These problems are solved in solar tower systems because the receiver is fixed. In this regard, a preliminary analysis of a tubular receiver with s-CO2 as HTF has been developed using the design of a molten-salt receiver which was previously tested at Plataforma Solar de Almería (PSA). Therefore, a simplified CFD model has been carried out in this study in order to analyze the feasibility of s-CO2 as HTF in solar towers. Simulation results showed that the heat gained by s-CO2 was around 75% greater than the one captured by molten salts (fluid inlet temperature of 715 K), but at a pressure range of 7.5-9.7 MPa. Thus, the use of s-CO2 as HTF in solar tower receivers appears to be a promising alternative, taking into account both the operating conditions required and their maintenance cost.
CFD mixing analysis of axially opposed rows of jets injected into confined crossflow
NASA Technical Reports Server (NTRS)
Bain, D. B.; Smith, C. E.; Holdeman, J. D.
1993-01-01
A computational fluid dynamics (CFD) parametric study was performed to analyze axially opposed rows of jets mixing with crossflow in a rectangular duct. Isothermal analysis was conducted to determine the influence of lateral geometric arrangement on mixing. Two lateral arrangements were analyzed: (1) inline (jets' centerlines aligned with each other on top and bottom walls), and (2) staggered (jets' centerlines offset with each other on top and bottom walls). For a jet-to-mainstream mass flow ratio (MR) of 2.0, design parameters were systematically varied for jet-to-mainstream momentum-flux ratios (J) between 16 and 64 and orifice spacing-to-duct height ratios (S/H) between 0.125 and 1.5. Comparisons were made between geometries optimized for S/H at a specified J. Inline configurations had a unique spacing for best mixing at a specified J. In contrast, staggered configurations had two 'good mixing' spacings for each J, one corresponding to optimum inline spacing and the other corresponding to optimum non-impinging jet spacing. The inline configurations, due to their smaller orifice size at optimum S/H, produced better initial mixing characteristics. At downstream locations (e.g. x/H of 1.5), the optimum non-impinging staggered configuration produced better mixing than the optimum inline configuration for J of 64; the opposite results were observed for J of 16. Increasing J resulted in better mixing characteristics if each configuration was optimized with respect to orifice spacing. Mixing performance was shown to be similar to results from previous dilution jet mixing investigations (MR less than 0.5).
CFD simulation and analysis of emulsion droplet formation from straight-through microchannels.
Kobayashi, Isao; Mukataka, Sukekuni; Nakajima, Mitsutoshi
2004-10-26
We recently proposed a technique for preparing monodisperse emulsions with a coefficient of variation below 5% from a silicon array of micrometer-sized channels perpendicular to the plate surface, named a straight-through microchannel (MC). This study involved three-dimensional computational fluid dynamics (CFD) simulations to calculate the formation of an oil-in-water (O/W) emulsion droplet from straight-through MCs with circular and elliptic cross sections. The CFD results demonstrated that the oil phase that passed through the elliptic MCs exceeding a threshold aspect ratio between 3 and 3.5 was cut off spontaneously into a small droplet with a diameter of approximately 40 microm. Sufficient space for water at the channel exit had to be maintained for successful droplet formation. The formation and shrinkage of a neck inside the channel caused an increased pressure difference inside the channel and an increased velocity value near the neck. The pressure and velocity values at the neck drastically changed, and the neck was cut off instantaneously just before the completion of droplet formation. This process was triggered by a gradually increased pressure difference between the circular neck and inflating oil phase. The findings obtained in this paper provide useful numerical and visual information about the droplet formation phenomena from the straight-through MCs. The CFD results were verified by the experimental results, showing that the CFD approach can help design a suitable channel structure. PMID:15491227
NASA Astrophysics Data System (ADS)
Allphin, Devin
Computational fluid dynamics (CFD) solution approximations for complex fluid flow problems have become a common and powerful engineering analysis technique. These tools, though qualitatively useful, remain limited in practice by their underlying inverse relationship between simulation accuracy and overall computational expense. While a great volume of research has focused on remedying these issues inherent to CFD, one traditionally overlooked area of resource reduction for engineering analysis concerns the basic definition and determination of functional relationships for the studied fluid flow variables. This artificial relationship-building technique, called meta-modeling or surrogate/offline approximation, uses design of experiments (DOE) theory to efficiently approximate non-physical coupling between the variables of interest in a fluid flow analysis problem. By mathematically approximating these variables, DOE methods can effectively reduce the required quantity of CFD simulations, freeing computational resources for other analytical focuses. An idealized interpretation of a fluid flow problem can also be employed to create suitably accurate approximations of fluid flow variables for the purposes of engineering analysis. When used in parallel with a meta-modeling approximation, a closed-form approximation can provide useful feedback concerning proper construction, suitability, or even necessity of an offline approximation tool. It also provides a short-circuit pathway for further reducing the overall computational demands of a fluid flow analysis, again freeing resources for otherwise unsuitable resource expenditures. To validate these inferences, a design optimization problem was presented requiring the inexpensive estimation of aerodynamic forces applied to a valve operating on a simulated piston-cylinder heat engine. The determination of these forces was to be found using parallel surrogate and exact approximation methods, thus evidencing the comparative
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.
CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades
NASA Astrophysics Data System (ADS)
Papadakis, G.; Voutsinas, S.; Sieros, G.; Chaviaropoulos, T.
2014-12-01
The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes.
Three-dimensional CFD simulation and aeroacoustics analysis of wind turbines
NASA Astrophysics Data System (ADS)
Khalili, Fardin
Wind turbines release aerodynamic noise that is one of the most barriers in wind energy development and public acceptance. Aeroacoustics is the noise generated by the interaction of blades, specifically the tip and trailing edge, with inflow turbulence structures and subsequent boundary layer separation and vortex shedding in the wake region. The objective of this study is to analyze the effects of different aerodynamic conditions on the performance and the aeroacoustic issue of wind turbines. Aerodynamic and aeroacoustic operation of a wind turbine is analyzed using a three-dimensional CFD and aeroacoustics model and using a commercial CFD Software, STAR-CCM+. Blades are modeled based on NREL S825 airfoil shape due to its high maximum lift and low profile drag. Wind turbine aerodynamic performance as well as broadband aeroacoustic noise with a focus on the trailing end, tip, inflow turbulence and boundary layer separation is investigated over a range of operating conditions.
Application of CFD to the analysis and design of high-speed inlets
NASA Technical Reports Server (NTRS)
Rose, William C.
1995-01-01
Over the past seven years, efforts under the present Grant have been aimed at being able to apply modern Computational Fluid Dynamics to the design of high-speed engine inlets. In this report, a review of previous design capabilities (prior to the advent of functioning CFD) was presented and the example of the NASA 'Mach 5 inlet' design was given as the premier example of the historical approach to inlet design. The philosophy used in the Mach 5 inlet design was carried forward in the present study, in which CFD was used to design a new Mach 10 inlet. An example of an inlet redesign was also shown. These latter efforts were carried out using today's state-of-the-art, full computational fluid dynamics codes applied in an iterative man-in-the-loop technique. The potential usefulness of an automated machine design capability using an optimizer code was also discussed.
Coupled CFD-Thermal Analysis of Erosion Patterns Resulting from Nozzle Wedgeouts on the SRTMV-N2
NASA Technical Reports Server (NTRS)
Ables, Catherine; Davis, Philip
2014-01-01
The objective of this analysis was to study the effects of the erosion patterns from the introduction of nozzle flaws machined into the nozzle of the SRTMV-N2 (Solid Rocket Test Motor V Nozzle 2). The SRTMV-N2 motor was a single segment static subscale solid rocket motor used to further develop the RSRMV (Redesigned Solid Rocket Motor V Segment). Two flaws or "wedgeouts" were placed in the nozzle inlet parallel to the ply angles of that section to study erosion effects. One wedgeout was placed in the nose cap region and the other placed in the inlet ring on the opposite side of the bondline, separated 180 degrees circumferentially. A coupled CFD (Computational Fluid Analysis)-thermal iterative analytical approach was utilized at the wedgeouts to analyze the erosion profile during the burn time. The iterative CFD thermal approach was applied at five second intervals throughout the motor burn. The coupled fluid thermal boundary conditions were derived from a steady state CFD solution at the beginning of the interval. The derived heat fluxes were then applied along the surface and a transient thermal solution was developed to characterize the material response over the specified interval. Eroded profiles of each of the nozzle's wedgeouts and the original contour were created at each of the specified intervals. The final iteration of the erosion profile showed that both wedgeouts were "washedout," indicating that the erosion profile of the wedgeout had rejoined the original eroded contour, leaving no trace of the wedgeouts post fire. This analytical assessment agreed with post-fire observations made of the SRTMV-N2 wedgeouts, which noted a smooth eroded contour.
SCISEAL: A CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Althavale, Mahesh M.; Ho, Yin-Hsing; Przekwas, Andre J.
1996-01-01
A 3D CFD code, SCISEAL, has been developed and validated. Its capabilities include cylindrical seals, and it is employed on labyrinth seals, rim seals, and disc cavities. State-of-the-art numerical methods include colocated grids, high-order differencing, and turbulence models which account for wall roughness. SCISEAL computes efficient solutions for complicated flow geometries and seal-specific capabilities (rotor loads, torques, etc.).
Validation of CFD Simulations of Cerebral Aneurysms With Implication of Geometric Variations
Hoi, Yiemeng; Woodward, Scott H.; Kim, Minsuok; Taulbee, Dale B.; Meng, Hui
2009-01-01
Background Computational fluid dynamics (CFD) simulations using medical-image-based anatomical vascular geometry are now gaining clinical relevance. This study aimed at validating the CFD methodology for studying cerebral aneurysms by using particle image velocimetry (PIV) measurements, with a focus on the effects of small geometric variations in aneurysm models on the flow dynamics obtained with CFD. Method of Approach. An experimental phantom was fabricated out of silicone elastomer to best mimic a spherical aneurysm model. PIV measurements were obtained from the phantom and compared with the CFD results from an ideal spherical aneurysm model (S1). These measurements were also compared with CFD results, based on the geometry reconstructed from three-dimensional images of the experimental phantom. We further performed CFD analysis on two geometric variations, S2 and S3, of the phantom to investigate the effects of small geometric variations on the aneurysmal flow field. Results. We found poor agreement between the CFD results from the ideal spherical aneurysm model and the PIV measurements from the phantom, including inconsistent secondary flow patterns. The CFD results based on the actual phantom geometry, however, matched well with the PIV measurements. CFD of models S2 and S3 produced qualitatively similar flow fields to that of the phantom but quantitatively significant changes in key hemodynamic parameters such as vorticity, positive circulation, and wall shear stress. Conclusion. CFD simulation results can closely match experimental measurements as long as both are performed on the same model geometry. Small geometric variations on the aneurysm model can significantly alter the flow-field and key hemodynamic parameters. Since medical images are subjected to geometric uncertainties, image-based patient-specific CFD results must be carefully scrutinized before providing clinical feedback. PMID:17154684
Validation of CFD/Heat Transfer Software for Turbine Blade Analysis
NASA Technical Reports Server (NTRS)
Kiefer, Walter D.
2004-01-01
I am an intern in the Turbine Branch of the Turbomachinery and Propulsion Systems Division. The division is primarily concerned with experimental and computational methods of calculating heat transfer effects of turbine blades during operation in jet engines and land-based power systems. These include modeling flow in internal cooling passages and film cooling, as well as calculating heat flux and peak temperatures to ensure safe and efficient operation. The branch is research-oriented, emphasizing the development of tools that may be used by gas turbine designers in industry. The branch has been developing a computational fluid dynamics (CFD) and heat transfer code called GlennHT to achieve the computational end of this analysis. The code was originally written in FORTRAN 77 and run on Silicon Graphics machines. However the code has been rewritten and compiled in FORTRAN 90 to take advantage of more modem computer memory systems. In addition the branch has made a switch in system architectures from SGI's to Linux PC's. The newly modified code therefore needs to be tested and validated. This is the primary goal of my internship. To validate the GlennHT code, it must be run using benchmark fluid mechanics and heat transfer test cases, for which there are either analytical solutions or widely accepted experimental data. From the solutions generated by the code, comparisons can be made to the correct solutions to establish the accuracy of the code. To design and create these test cases, there are many steps and programs that must be used. Before a test case can be run, pre-processing steps must be accomplished. These include generating a grid to describe the geometry, using a software package called GridPro. Also various files required by the GlennHT code must be created including a boundary condition file, a file for multi-processor computing, and a file to describe problem and algorithm parameters. A good deal of this internship will be to become familiar with these
APPLICATIONS OF CFD METHOD TO GAS MIXING ANALYSIS IN A LARGE-SCALED TANK
Lee, S; Richard Dimenna, R
2007-03-19
The computational fluid dynamics (CFD) modeling technique was applied to the estimation of maximum benzene concentration for the vapor space inside a large-scaled and high-level radioactive waste tank at Savannah River site (SRS). The objective of the work was to perform the calculations for the benzene mixing behavior in the vapor space of Tank 48 and its impact on the local concentration of benzene. The calculations were used to evaluate the degree to which purge air mixes with benzene evolving from the liquid surface and its ability to prevent an unacceptable concentration of benzene from forming. The analysis was focused on changing the tank operating conditions to establish internal recirculation and changing the benzene evolution rate from the liquid surface. The model used a three-dimensional momentum coupled with multi-species transport. The calculations included potential operating conditions for air inlet and exhaust flows, recirculation flow rate, and benzene evolution rate with prototypic tank geometry. The flow conditions are assumed to be fully turbulent since Reynolds numbers for typical operating conditions are in the range of 20,000 to 70,000 based on the inlet conditions of the air purge system. A standard two-equation turbulence model was used. The modeling results for the typical gas mixing problems available in the literature were compared and verified through comparisons with the test results. The benchmarking results showed that the predictions are in good agreement with the analytical solutions and literature data. Additional sensitivity calculations included a reduced benzene evolution rate, reduced air inlet and exhaust flow, and forced internal recirculation. The modeling results showed that the vapor space was fairly well mixed and that benzene concentrations were relatively low when forced recirculation and 72 cfm ventilation air through the tank boundary were imposed. For the same 72 cfm air inlet flow but without forced recirculation
CFD Analysis of Spray Combustion and Radiation in OMV Thrust Chamber
NASA Technical Reports Server (NTRS)
Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.; Gross, K.
1993-01-01
The Variable Thrust Engine (VTE), developed by TRW, for the Orbit Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The propellants are pressure fed into the combustion chamber through a single pintle injection element. The performance of this engine is dependent on the pintle geometry and a number of complex physical phenomena and their mutual interactions. The most important among these are (1) atomization of the liquid jets into fine droplets; (2) the motion of these droplets in the gas field; (3) vaporization of the droplets (4) turbulent mixing of the fuel and oxidizer; and (5) hypergolic reaction between MMH and NTO. Each of the above phenomena by itself poses a considerable challenge to the technical community. In a reactive flow field of the kind occurring inside the VTE, the mutual interactions between these physical processes tend to further complicate the analysis. The objective of this work is to develop a comprehensive mathematical modeling methodology to analyze the flow field within the VTE. Using this model, the effect of flow parameters on various physical processes such as atomization, spray dynamics, combustion, and radiation is studied. This information can then be used to optimize design parameters and thus improve the performance of the engine. The REFLEQS CFD Code is used for solving the fluid dynamic equations. The spray dynamics is modeled using the Eulerian-Lagrangian approach. The discrete ordinate method with 12 ordinate directions is used to predict the radiative heat transfer in the OMV combustion chamber, nozzle, and the heat shield. The hypergolic reaction between MMH and NTO is predicted using an equilibrium chemistry model with 13 species. The results indicate that mixing and combustion is very sensitive to the droplet size. Smaller droplets evaporate faster than bigger droplets, leading to a well mixed zone in the
Three dimensional analysis of turbulent steam jets in enclosed structures : a CFD approach.
Ishii, M.; NguyenLe, Q.
1999-04-20
This paper compares the three-dimensional numerical simulation with the experimental data of a steam blowdown event in a light water reactor containment building. The temperature and pressure data of a steam blowdown event was measured at the Purdue University Multi-Dimensional Integrated Test Assembly (PUMA), a scaled model of the General Electric simplified Boiling Water Reactor. A three step approach was used to analyze the steam jet behavior. First, a 1-Dimensional, system level RELAP5/Mod3.2 model of the steam blowdown event was created and the results used to set the initial conditions for the PUMA blowdown experiments. Second, 2-Dimensional CFD models of the discharged steam jets were computed using PHOENICS, a commercially available CFD package. Finally, 3-Dimensional model of the PUMA drywell was created with the boundary conditions based on experimental measurements. The results of the 1-D and 2-D models were reported in the previous meeting. This paper discusses in detail the formulation and the results of the 3-Dimensional PHOENICS model of the PUMA drywell. It is found that the 3-D CFD solutions compared extremely well with the measured data.
Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries
Gruber, Mathias F.; Johnson, Carl J.; Tang, Chuyang; Jensen, Mogens H.; Yde, Lars; Hélix-Nielsen, Claus
2012-01-01
In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer. PMID:24958428
Validation and Analysis of Forward Osmosis CFD Model in Complex 3D Geometries.
Gruber, Mathias F; Johnson, Carl J; Tang, Chuyang; Jensen, Mogens H; Yde, Lars; Hélix-Nielsen, Claus
2012-01-01
In forward osmosis (FO), an osmotic pressure gradient generated across a semi-permeable membrane is used to generate water transport from a dilute feed solution into a concentrated draw solution. This principle has shown great promise in the areas of water purification, wastewater treatment, seawater desalination and power generation. To ease optimization and increase understanding of membrane systems, it is desirable to have a comprehensive model that allows for easy investigation of all the major parameters in the separation process. Here we present experimental validation of a computational fluid dynamics (CFD) model developed to simulate FO experiments with asymmetric membranes. Simulations are compared with experimental results obtained from using two distinctly different complex three-dimensional membrane chambers. It is found that the CFD model accurately describes the solute separation process and water permeation through membranes under various flow conditions. It is furthermore demonstrated how the CFD model can be used to optimize membrane geometry in such as way as to promote the mass transfer. PMID:24958428
Shape design and CFD analysis on a 1MW-class horizontal axis tidal current turbine blade
NASA Astrophysics Data System (ADS)
Singh, P. M.; Choi, Y. D.
2013-12-01
This study aims to develop a 1MW-class horizontal axis tidal current turbine rotor blade which can be applied near the southwest island regions of South Korea. On the basis of actual tidal current conditions of southern region of Korea, configuration design of 1MW class turbine rotor blade is carried out by BEMT (Blade element momentum theory). The hydrodynamic performance including the lift and drag forces, is conducted with the variation of the angle of attack using an open source code of X-Foil. The purpose of the study is to study the shape of the hydrofoil used and how it affects the performance of the turbine. After a thorough study of many airfoils, a new hydrofoil is developed using the S814 and DU-91-W2- 250 airfoils, which show good performance for rough conditions. A combination of the upper and lower surface of the two hydrofoils is tested. Three dimensional models were developed and the optimized blade geometry is used for CFD (Computational Fluid Dynamics) analysis with hexahedral numerical grids. Power coefficient, pressure coefficient and velocity distributions are investigated according to Tip Speed Ratio by CFD analysis.
Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows
NASA Technical Reports Server (NTRS)
Slater, John W.
2002-01-01
Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.
CFD analysis of fluid flow in an axial multi-stage partial-admission ORC turbine
NASA Astrophysics Data System (ADS)
Surwilo, Jan; Lampart, Piotr; Szymaniak, Mariusz
2015-10-01
Basic operational advantages of the Organic Rankine Cycle (ORC) systems and specific issues of turbines working in these systems are discussed. The strategy for CFD simulation of the considered ORC turbine and the main issues of the numerical model are presented. The method of constructing the 3D CAD geometry as well as discretisation of the flow domain are also shown. Main features of partial admission flow in the multi-stage axial turbine are discussed. The influence of partial admission on the working conditions of the subsequent stage supplied at the full circumference is also described.
A Coupled CFD/FEM Structural Analysis to Determine Deformed Shapes of the RSRM Inhibitors
NASA Technical Reports Server (NTRS)
Dill, Richard A.; Whitesides, R. Harold
1996-01-01
Recent trends towards an increase in the stiffness of the acrylonitrile butadiene rubber (NBR) insulation material used in the construction of the redesigned solid rocket motor (RSRM) propellant inhibitors prompted questions about possible effects on RSRM performance. The specific objectives of the computational fluid dynamics (CFD) task included: (1) the definition of pressure loads to calculate the deformed shape of stiffer inhibitors, (2) the calculation of higher port velocities over the inhibitors to determine shifts in the vortex shedding or edge tone frequencies, and (3) the quantification of higher slag impingement and collection rates on the inhibitors and in the submerged nose nozzle cavity.
A 3-D CFD Analysis of the Space Shuttle RSRM With Propellant Fins @ 1 sec. Burn-Back
NASA Technical Reports Server (NTRS)
Morstadt, Robert A.
2003-01-01
In this study 3-D Computational Fluid Dynamic (CFD) runs have been made for the Space Shuttle RSRM using 2 different grids and 4 different turbulent models, which were the Standard KE, the RNG KE, the Realizable KE, and the Reynolds stress model. The RSRM forward segment consists of 11 fins. By taking advantage of the forward fin symmetry only half of one fin along the axis had to be used in making the grid. This meant that the 3-D model consisted of a pie slice that encompassed 1/22nd of the motor circumference and went along the axis of the entire motor. The 3-D flow patterns in the forward fin region are of particular interest. Close inspection of these flow patterns indicate that 2 counter-rotating axial vortices emerge from each submerged solid propellant fin. Thus, the 3-D CFD analysis allows insight into complicated internal motor flow patterns that are not available from the simpler 2-D axi-symmetric studies. In addition, a comparison is made between the 3-D bore pressure drop and the 2-D axi-symmetric pressure drop.
Assessment of low-order theories for analysis and design of shrouded wind turbines using CFD
NASA Astrophysics Data System (ADS)
Aranake, Aniket C.; Lakshminarayan, Vinod K.; Duraisamy, Karthik
2014-06-01
The use of a shroud around the rotor of a wind turbine has been known to augment the airflow through the rotor plane and hence result in improved performance. This work uses Computational Fluid Dynamics (CFD) to assess the validity of several simple theories which attempt to extend Betz theory to shrouded turbines. Two CFD models are employed and compared to predictions of previously published models. The first makes use of a fixed pressure-drop actuator disk, while the second incorporates the twist and chord distribution of the turbine blade as well as an airfoil polar using a technique much like the classical blade element momentum (BEM) method. Calculations are performed for a sweep of turbine loadings using the fixed pressure-drop model and a sweep of tip speed ratios using the BEM model for both an open and shrouded turbine. Power is computed using a control volume approach for the fixed pressure-drop model and by integrating tangential forces for the BEM model. Information including mass flow ratio, power coefficient ratio, axial induction, and shroud force is extracted from the solution fields and compared against the predictions of low-order theories. Finally, the blade element model is used to redesign the turbine twist distribution to achieve greater performance across a range of tip speed ratios.
2D CFD Analysis of an Airfoil with Active Continuous Trailing Edge Flap
NASA Astrophysics Data System (ADS)
Jaksich, Dylan; Shen, Jinwei
2014-11-01
Efficient and quieter helicopter rotors can be achieved through on-blade control devices, such as active Continuous Trailing-Edge Flaps driven by embedded piezoelectric material. This project aims to develop a CFD simulation tool to predict the aerodynamic characteristics of an airfoil with CTEF using open source code: OpenFOAM. Airfoil meshes used by OpenFOAM are obtained with MATLAB scripts. Once created it is possible to rotate the airfoil to various angles of attack. When the airfoil is properly set up various OpenFOAM properties, such as kinematic viscosity and flow velocity, are altered to achieve the desired testing conditions. Upon completion of a simulation, the program gives the lift, drag, and moment coefficients as well as the pressure and velocity around the airfoil. The simulation is then repeated across multiple angles of attack to give full lift and drag curves. The results are then compared to previous test data and other CFD predictions. This research will lead to further work involving quasi-steady 2D simulations incorporating NASTRAN to model aeroelastic deformation and eventually to 3D aeroelastic simulations. NSF ECE Grant #1358991 supported the first author as an REU student.
NASA Astrophysics Data System (ADS)
Yun, Kukchol; Tajč, L.; Kolovratník, M.
2016-03-01
The aim of the paper is to present the CFD analysis of the steam flow in the two-stage turbine with a drum rotor and balancing slots. The balancing slot is a part of every rotor blade and it can be used in the same way as balancing holes on the classical rotor disc. The main attention is focused on the explanation of the experimental knowledge about the impact of the slot covering and uncovering on the efficiency of the individual stages and the entire turbine. The pressure and temperature fields and the mass steam flows through the shaft seals, slots and blade cascades are calculated. The impact of the balancing slots covering or uncovering on the reaction and velocity conditions in the stages is evaluated according to the pressure and temperature fields. We have also concentrated on the analysis of the seal steam flow through the balancing slots. The optimized design of the balancing slots has been suggested.
CFD Analysis of Turbulent Flow Phenomena in the Lower Plenum of a Prismatic Gas-Cooled Reactor
T. Gallaway; S.P. Antal; M.Z. Podowski; D.P. Guillen
2007-09-01
This paper is concerned with the implementation of a computational model of turbulent flow in a section of the lower plenum of Very High Temperature Reactor (VHTR). The proposed model has been encoded in a state-of-the-art CFD code, NPHASE. The results of NPHASE predictions have been compared against the experimental data collected using a scaled model of a sub-region in the lower plenum of a modular prismatic gas-cooled reactor. It has been shown that the NPHASE-based model is capable of predicting a three-dimensional velocity field in a complex geometrical configuration of VHTR lower plenum. The current and future validations of computational predictions are necessary for design and analysis of new reactor concepts, as well as for safety analysis and licensing calculations.
Zaïdi, H; Taïar, R; Fohanno, S; Polidori, G
2008-01-01
The aim of this numerical work is to analyze the effect of the position of the swimmer's head on the hydrodynamic performances in swimming. In this initial study, the problem was modeled as 2D and in steady hydrodynamic state. The geometry is generated by the CAD software CATIA and the numerical simulation is carried out by the use of the CFD Fluent code. The standard k-epsilon turbulence model is used with a specific wall law. Three positions of the head were studied, for a range of Reynolds numbers about 10(6). The obtained numerical results revealed that the position of the head had a noticeable effect on the hydrodynamic performances, strongly modifying the wake around the swimmer. The analysis of these results made it possible to propose an optimal position of the head of a swimmer in underwater swimming. PMID:18374343
A CFD Analysis of Easterly Wind Flow Impacting the Vehicle Assembly Building
NASA Technical Reports Server (NTRS)
Vu, B. T.; Zysko, J. A.
2005-01-01
In an attempt to explain the high loss of panels from the south face of the Vehicle Assembly Building (VAB) during Hurricane Frances, a three-dimensional computational fluid dynamics (3-D CFD) model was developed to simulate local velocity and pressure distributions resulting from such a storm. A preconditioned compressible Navier-Stokes flow solver 1 was used to compute the flow field around the VAB complex, including the Launch Control Center, the Low and High Bays of the VAB, and several outbuildings in the immediate LC-39 area. The mapping of the forces and velocities on and along the affected faces of the VAB correlated surprisingly well with the extensive damage areas realized on both on the south face and on the southeast section of the roof. The model results were also consistent with the minimal damage seen on the east, north, and west faces of the structure.
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.
1996-01-01
An incremental iterative formulation together with the well-known spatially split approximate-factorization algorithm, is presented for solving the large, sparse systems of linear equations that are associated with aerodynamic sensitivity analysis. This formulation is also known as the 'delta' or 'correction' form. For the smaller two dimensional problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. However, iterative methods are needed for larger two-dimensional and three dimensional applications because direct methods require more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioned coefficient matrix; this problem is overcome when these equations are cast in the incremental form. The methodology is successfully implemented and tested using an upwind cell-centered finite-volume formulation applied in two dimensions to the thin-layer Navier-Stokes equations for external flow over an airfoil. In three dimensions this methodology is demonstrated with a marching-solution algorithm for the Euler equations to calculate supersonic flow over the High-Speed Civil Transport configuration (HSCT 24E). The sensitivity derivatives obtained with the incremental iterative method from a marching Euler code are used in a design-improvement study of the HSCT configuration that involves thickness. camber, and planform design variables.
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.
1993-01-01
In this study involving advanced fluid flow codes, an incremental iterative formulation (also known as the delta or correction form) together with the well-known spatially-split approximate factorization algorithm, is presented for solving the very large sparse systems of linear equations which are associated with aerodynamic sensitivity analysis. For smaller 2D problems, a direct method can be applied to solve these linear equations in either the standard or the incremental form, in which case the two are equivalent. Iterative methods are needed for larger 2D and future 3D applications, however, because direct methods require much more computer memory than is currently available. Iterative methods for solving these equations in the standard form are generally unsatisfactory due to an ill-conditioning of the coefficient matrix; this problem can be overcome when these equations are cast in the incremental form. These and other benefits are discussed. The methodology is successfully implemented and tested in 2D using an upwind, cell-centered, finite volume formulation applied to the thin-layer Navier-Stokes equations. Results are presented for two sample airfoil problems: (1) subsonic low Reynolds number laminar flow; and (2) transonic high Reynolds number turbulent flow.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Anderson, Kevin
2013-01-01
The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to 50 C range. The RHRS harnesses some of the waste heat generated from the rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 W of electrical power while generating waste heat equivalent to approximately 2000 W. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer. Winds on Mars can be as fast as 15 m/s for extended periods. They can lead to significant heat loss from the MMRTG and the hot plates due to convective heat pick up from these surfaces. Estimation of this convective heat loss cannot be accurately and adequately achieved by simple textbook based calculations because of the very complicated flow fields around these surfaces, which are a function of wind direction and speed. Accurate calculations necessitated the employment of sophisticated Computational Fluid Dynamics (CFD) computer codes. This paper describes the methodology and results of these CFD calculations. Additionally, these results are compared to simple textbook based calculations that served as benchmarks and sanity checks for them. And finally, the overall RHRS system performance predictions will be shared to show how these results affected the overall rover thermal performance.
TADS--A CFD-Based Turbomachinery Analysis and Design System with GUI: User's Manual. 2.0
NASA Technical Reports Server (NTRS)
Koiro, M. J.; Myers, R. A.; Delaney, R. A.
1999-01-01
The primary objective of this study was the development of a Computational Fluid Dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a Graphical User Interface (GUI). The computer codes resulting from this effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is intended to serve as a User's Manual for the computer programs which comprise the TADS system, developed under Task 18 of NASA Contract NAS3-27350, ADPAC System Coupling to Blade Analysis & Design System GUI and Task 10 of NASA Contract NAS3-27394, ADPAC System Coupling to Blade Analysis & Design System GUI, Phase II-Loss, Design and, Multi-stage Analysis. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis and design capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a highly loaded fan, a compressor stator, a low speed turbine blade and a transonic turbine vane.
TADS: A CFD-Based Turbomachinery Analysis and Design System with GUI: Methods and Results. 2.0
NASA Technical Reports Server (NTRS)
Koiro, M. J.; Myers, R. A.; Delaney, R. A.
1999-01-01
The primary objective of this study was the development of a Computational Fluid Dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a Graphical User Interface (GUI). The computer codes resulting from this effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is the Final Report describing the theoretical basis and analytical results from the TADS system developed under Task 10 of NASA Contract NAS3-27394, ADPAC System Coupling to Blade Analysis & Design System GUI, Phase II-Loss, Design and. Multi-stage Analysis. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) or a 3-D solver with slip condition on the end walls (B2BADPAC) in an interactive package. Throughflow analysis and design capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a multistage compressor, a multistage turbine, two highly loaded fans, and several single stage compressor and turbine example cases.
TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 1: Method and results
NASA Technical Reports Server (NTRS)
Topp, D. A.; Myers, R. A.; Delaney, R. A.
1995-01-01
The primary objective of this study was the development of a CFD (Computational Fluid Dynamics) based turbomachinery airfoil analysis and design system, controlled by a GUI (Graphical User Interface). The computer codes resulting from this effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is the Final Report describing the theoretical basis and analytical results from the TADS system, developed under Task 18 of NASA Contract NAS3-25950, ADPAC System Coupling to Blade Analysis & Design System GUI. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a highly loaded fan, a compressor stator, a low speed turbine blade and a transonic turbine vane.
Job Evaluation with the Position Analysis Questionnaire
ERIC Educational Resources Information Center
Harris, Alma F.; Matson, G. Albion
1976-01-01
Assessment of the Position Analysis Questionnaire (PAQ) at a four-year state college with 8,000 students indicates that the PAQ job evaluation method is sufficiently valid and has enough unique advantages to warrant its serious consideration for use by college and university personnel administrators. (LBH)
Positive Behavior Support and Applied Behavior Analysis
ERIC Educational Resources Information Center
Johnston, J. M.; Foxx, R. M.; Jacobson, J. W.; Green, G.; Mulick, J. A.
2006-01-01
This article reviews the origins and characteristics of the positive behavior support (PBS) movement and examines those features in the context of the field of applied behavior analysis (ABA). We raise a number of concerns about PBS as an approach to delivery of behavioral services and its impact on how ABA is viewed by those in human services. We…
The Effect of Depth on Drag During the Streamlined Glide: A Three-Dimensional CFD Analysis.
Novais, Maria L; Silva, António J; Mantha, Vishveshwar R; Ramos, Rui J; Rouboa, Abel I; Vilas-Boas, J Paulo; Luís, Sérgio R; Marinho, Daniel A
2012-06-01
The aim of this study was to analyze the effects of depth on drag during the streamlined glide in swimming using Computational Fluid Dynamics. The Computation Fluid Dynamic analysis consisted of using a three-dimensional mesh of cells that simulates the flow around the considered domain. We used the K-epsilon turbulent model implemented in the commercial code Fluent(®) and applied it to the flow around a three-dimensional model of an Olympic swimmer. The swimmer was modeled as if he were gliding underwater in a streamlined prone position, with hands overlapping, head between the extended arms, feet together and plantar flexed. Steady-state computational fluid dynamics analyses were performed using the Fluent(®) code and the drag coefficient and the drag force was calculated for velocities ranging from 1.5 to 2.5 m/s, in increments of 0.50m/s, which represents the velocity range used by club to elite level swimmers during the push-off and glide following a turn. The swimmer model middle line was placed at different water depths between 0 and 1.0 m underwater, in 0.25m increments. Hydrodynamic drag decreased with depth, although after 0.75m values remained almost constant. Water depth seems to have a positive effect on reducing hydrodynamic drag during the gliding. Although increasing depth position could contribute to decrease hydrodynamic drag, this reduction seems to be lower with depth, especially after 0.75 m depth, thus suggesting that possibly performing the underwater gliding more than 0.75 m depth could not be to the benefit of the swimmer. PMID:23487502
The Effect of Depth on Drag During the Streamlined Glide: A Three-Dimensional CFD Analysis
Novais, Maria L.; Silva, António J.; Mantha, Vishveshwar R.; Ramos, Rui J.; Rouboa, Abel I.; Vilas-Boas, J. Paulo; Luís, Sérgio R.; Marinho, Daniel A.
2012-01-01
The aim of this study was to analyze the effects of depth on drag during the streamlined glide in swimming using Computational Fluid Dynamics. The Computation Fluid Dynamic analysis consisted of using a three-dimensional mesh of cells that simulates the flow around the considered domain. We used the K-epsilon turbulent model implemented in the commercial code Fluent® and applied it to the flow around a three-dimensional model of an Olympic swimmer. The swimmer was modeled as if he were gliding underwater in a streamlined prone position, with hands overlapping, head between the extended arms, feet together and plantar flexed. Steady-state computational fluid dynamics analyses were performed using the Fluent® code and the drag coefficient and the drag force was calculated for velocities ranging from 1.5 to 2.5 m/s, in increments of 0.50m/s, which represents the velocity range used by club to elite level swimmers during the push-off and glide following a turn. The swimmer model middle line was placed at different water depths between 0 and 1.0 m underwater, in 0.25m increments. Hydrodynamic drag decreased with depth, although after 0.75m values remained almost constant. Water depth seems to have a positive effect on reducing hydrodynamic drag during the gliding. Although increasing depth position could contribute to decrease hydrodynamic drag, this reduction seems to be lower with depth, especially after 0.75 m depth, thus suggesting that possibly performing the underwater gliding more than 0.75 m depth could not be to the benefit of the swimmer. PMID:23487502
Analysis of a pico tubular-type hydro turbine performance by runner blade shape using CFD
NASA Astrophysics Data System (ADS)
Park, J. H.; Lee, N. J.; Wata, J. V.; Hwang, Y. C.; Kim, Y. T.; Lee, Y. H.
2012-11-01
There has been a considerable interest recently in the topic of renewable energy. This is primarily due to concerns about environmental impacts of fossil fuels. Moreover, fluctuating and rising oil prices, increase in demand, supply uncertainties and other factors have led to increased calls for alternative energy sources. Small hydropower, among other renewable energy sources, has been evaluated to have adequate development value because it is a clean, renewable and abundant energy resource. In addition, small hydropower has the advantage of low cost development by using rivers, agricultural reservoirs, sewage treatment plants, waterworks and water resources. The main concept of the tubular-type hydro turbine is based on the difference in water pressure levels in pipe lines, where the energy which was initially wasted by using a reducing valve at the pipeline of waterworks, is collected by turbine in the hydro power generator. In this study, in order to acquire the performance data of a pico tubular-type hydro turbine, the output power, head and efficiency characteristics by different runner blade shapes are examined. The pressure and velocity distributions with the variation of guide vane and runner vane angle on turbine performance are investigated by using a commercial CFD code.
Aeroelastic Analysis of Rotor Blades Using Cfd/csd Coupling in Hover Mode
NASA Astrophysics Data System (ADS)
Chen, Long; Wu, Yizhao; Xia, Jian
A computational fluid dynamics (CFD) is coupled with a computational structural dynamics (CSD) to simulate the unsteady rotor flow with aeroelasticity effects. An unstructured upwind Navier-Stokes solver was developed for this simulation, with 2nd order time-accurate dual-time stepping method for temporal discretization and low Mach number preconditioning method. For turbulent flows, both the Spalart-Allmaras and Menter's SST model are available. Mesh deformation is achieved through a fast dynamic grid method called Delaunay graph map method for unsteady flow simulation. The rotor blades are modeled as Hodges & Dowell's nonlinear beams coupled flap-lag-torsion. The rotorcraft computational structural dynamics code employs the 15-dof beam finite element formulation for modeling. The structure code was validated by comparing the natural frequencies of a rotor model with UMARC. The flow and structure codes are coupled tightly with information exchange several times at every time step. A rotor blade model's unsteady flow field in the hover mode is simulated using the coupling method. Effect of blade elasticity with aerodynamic loads was compared with rigid blade.
Statistical Analysis of CFD Solutions from 2nd Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Hemsch, M. J.; Morrison, J. H.
2004-01-01
In June 2001, the first AIAA Drag Prediction Workshop was held to evaluate results obtained from extensive N-Version testing of a series of RANS CFD codes. The geometry used for the computations was the DLR-F4 wing-body combination which resembles a medium-range subsonic transport. The cases reported include the design cruise point, drag polars at eight Mach numbers, and drag rise at three values of lift. Although comparisons of the code-to-code medians with available experimental data were similar to those obtained in previous studies, the code-to-code scatter was more than an order-of-magnitude larger than expected and far larger than desired for design and for experimental validation. The second Drag Prediction Workshop was held in June 2003 with emphasis on the determination of installed pylon-nacelle drag increments and on grid refinement studies. The geometry used was the DLR-F6 wing-body-pylon-nacelle combination for which the design cruise point and the cases run were similar to the first workshop except for additional runs on coarse and fine grids to complement the runs on medium grids. The code-to-code scatter was significantly reduced for the wing-body configuration compared to the first workshop, although still much larger than desired. However, the grid refinement studies showed no sign$cant improvement in code-to-code scatter with increasing grid refinement.
Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD
NASA Astrophysics Data System (ADS)
Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.
2013-12-01
As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.
Investigation of mucus transport in an idealized lung airway model using multiphase CFD analysis
NASA Astrophysics Data System (ADS)
Rajendran, Rahul; Banerjee, Arindam
2015-11-01
Mucus, a Bingham fluid is transported in the pulmonary airways by consistent beating of the cilia and exhibits a wide range of physical properties in response to the core air flow and various pathological conditions. A better understanding of the interfacial instability is required as it plays a crucial role in gas transport, mixing, mucus clearance and drug delivery. In the current study, mucus is modelled as a Newtonian fluid and the two phase gas-liquid flow in the airways is investigated using an inhomogeneous Eulerian-Eulerian approach. The complex interface between the phases is tracked using the conventional VOF (Volume of Fluid) method. Results from our CFD simulations which are performed in idealized single and double bifurcation geometries will be presented and the influence of airflow rate, mucus layer thickness, mucus viscosity, airway geometry (branching & diameter) and surface tension on mucus flow behavior will be discussed. Mean mucus layer thickness, pressure drop due to momentum transfer & increased airway resistance, mucus transport speed and the flow morphology will be compared to existing experimental and theoretical data.
CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.
Frank, Alex; Castaldi, Marco J
2014-08-01
Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2. PMID:25005043
Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.; Hemsch, Michael J.
2007-01-01
The first AIAA Drag Prediction Workshop, held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third Drag Prediction Workshop focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This work evaluated the effect of grid refinement on the code-to-code scatter for the clean attached flow test cases and the separated flow test cases.
TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 1: Method and results
NASA Technical Reports Server (NTRS)
Topp, D. A.; Myers, R. A.; Delaney, R. A.
1995-01-01
The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document describes the theoretical basis and analytical results from the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a highly loaded fan, a compressor stator, a low-speed turbine blade, and a transonic turbine vane.
CFD MODELING AND ANALYSIS FOR A-AREA AND H-AREA COOLING TOWERS
Lee, S.; Garrett, A.; Bollinger, J.
2009-09-02
Mechanical draft cooling towers are designed to cool process water via sensible and latent heat transfer to air. Heat and mass transfer take place simultaneously. Heat is transferred as sensible heat due to the temperature difference between liquid and gas phases, and as the latent heat of the water as it evaporates. Mass of water vapor is transferred due to the difference between the vapor pressure at the air-liquid interface and the partial pressure of water vapor in the bulk of the air. Equations to govern these phenomena are discussed here. The governing equations are solved by taking a computational fluid dynamics (CFD) approach. The purpose of the work is to develop a three-dimensional CFD model to evaluate the flow patterns inside the cooling tower cell driven by cooling fan and wind, considering the cooling fans to be on or off. Two types of the cooling towers are considered here. One is cross-flow type cooling tower located in A-Area, and the other is counterflow type cooling tower located in H-Area. The cooling tower located in A-Area is mechanical draft cooling tower (MDCT) consisting of four compartment cells as shown in Fig. 1. It is 13.7m wide, 36.8m long, and 9.4m high. Each cell has its own cooling fan and shroud without any flow communications between two adjacent cells. There are water distribution decks on both sides of the fan shroud. The deck floor has an array of about 25mm size holes through which water droplet falls into the cell region cooled by the ambient air driven by fan and wind, and it is eventually collected in basin area. As shown in Fig. 1, about 0.15-m thick drift eliminator allows ambient air to be humidified through the evaporative cooling process without entrainment of water droplets into the shroud exit. The H-Area cooling tower is about 7.3 m wide, 29.3 m long, and 9.0 m high. Each cell has its own cooling fan and shroud, but each of two corner cells has two panels to shield wind at the bottom of the cells. There is some
NASA Technical Reports Server (NTRS)
Elrod, David; Christensen, Eric; Brown, Andrew
2011-01-01
At NASA/MSFC, Structural Dynamics personnel continue to perform advanced analysis for the turbomachinery in the J2X Rocket Engine, which is under consideration for the new Space Launch System. One of the most challenging analyses in the program is predicting turbine blade structural capability. Resonance was predicted by modal analysis, so comprehensive forced response analyses using high fidelity cyclic symmetric finite element models were initiated as required. Analysis methodologies up to this point have assumed the flow field could be fully described by a sector, so the loading on every blade would be identical as it travelled through it. However, in the J2X the CFD flow field varied over the 360 deg of a revolution because of the flow speeds and tortuous axial path. MSFC therefore developed a complex procedure using Nastran Dmap's and Matlab scripts to apply this circumferentially varying loading onto the cyclically symmetric structural models to produce accurate dynamic stresses for every blade on the disk. This procedure is coupled with static, spin, and thermal loading to produce high cycle fatigue safety factors resulting in much more accurate analytical assessments of the blades.
CFD simulation and experimental analysis of erosion in a slurry tank test rig
NASA Astrophysics Data System (ADS)
Azimian, Mehdi; Bart, Hans-Jörg
2013-04-01
Erosion occurring in equipment dealing with liquid-solid mixtures such as pipeline parts, slurry pumps, liquid-solid stirred reactors and slurry mixers in various industrial applications results in operational failure and economic costs. A slurry erosion tank test rig is designed and was built to investigate the erosion rates of materials and the influencing parameters such as flow velocity and turbulence, flow angle, solid particle concentration, particles size distribution, hardness and target material properties on the material loss and erosion profiles. In the present study, a computational fluid dynamics (CFD) tool is used to simulate the erosion rate of sample plates in the liquid-solid slurry mixture in a cylindrical tank. The predictions were made in a steady state and also transient manner, applying the flow at the room temperature and using water and sand as liquid and solid phases, respectively. The multiple reference frame method (MRF) is applied to simulate the flow behavior and liquid-solid interactions in the slurry tank test rig. The MRF method is used since it is less demanding than sliding mesh method (SM) and gives satisfactory results. The computational domain is divided into three regions: a rotational or MRF zone containing the mixer, a rotational zone (MRF) containing the erosion plates and a static zone (outer liquid zone). It is observed that changing the MRF zone diameter and height causes a very low impact on the results. The simulated results were obtained for two kinds of hard metals namely stainless steel and ST-50 under some various operating conditions and are found in good agreement with the experimental results.
NASA Technical Reports Server (NTRS)
Schreiber, Robert; Simon, Horst D.
1992-01-01
We are surveying current projects in the area of parallel supercomputers. The machines considered here will become commercially available in the 1990 - 1992 time frame. All are suitable for exploring the critical issues in applying parallel processors to large scale scientific computations, in particular CFD calculations. This chapter presents an overview of the surveyed machines, and a detailed analysis of the various architectural and technology approaches taken. Particular emphasis is placed on the feasibility of a Teraflops capability following the paths proposed by various developers.
A CFD Analysis of Hydrogen Leakage During On-Pad Purge in the ORION/ARES I Shared Volume
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Edwards, Daryl A.
2011-01-01
A common open volume is created by the stacking of the Orion vehicle onto the Ares I Upper Stage. Called the Shared Volume, both vehicles contribute to its gas, fluid, and thermal environment. One of these environments is related to hazardous hydrogen gas. While both vehicles use inert purge gas to mitigate any hazardous gas buildup, there are concerns that hydrogen gas may still accumulate and that the Ares I Hazardous Gas Detection System will not be sufficient for monitoring the integrated volume. This Computational Fluid Dynamics (CFD) analysis has been performed to examine these topics. Results of the analysis conclude that the Ares I Hazardous Gas Detection System will be able to sample the vent effluent containing the highest hydrogen concentrations. A second conclusion is that hydrogen does not accumulate under the Orion Service Module (SM) avionics ring as diffusion and purge flow mixing sufficiently dilute the hydrogen to safe concentrations. Finally the hydrogen concentrations within the Orion SM engine nozzle may slightly exceed the 1 percent volume fraction when the entire worse case maximum full leak is directed vertically into the engine nozzle.
NASA Astrophysics Data System (ADS)
Zhai, Liming; Luo, Yongyao; Wang, Zhengwei; Liu, Xin
2016-01-01
The thermal elastic hydro dynamic (TEHD) lubrication analysis for the thrust bearing is usually conducted by combining Reynolds equation with finite element analysis (FEA). But it is still a problem to conduct the computation by combining computational fluid dynamics (CFD) and FEA which can simulate the TEHD more accurately. In this paper, by using both direct and separate coupled solutions together, steady TEHD lubrication considering the viscosity-temperature effect for a bidirectional thrust bearing in a pump-turbine unit is simulated combining a 3D CFD model for the oil film with a 3D FEA model for the pad and mirror plate. Cyclic symmetry condition is used in the oil film flow as more reasonable boundary conditions which avoids the oil temperature assumption at the leading and trailing edge. Deformations of the pad and mirror plate are predicted and discussed as well as the distributions of oil film thickness, pressure, temperature. The predicted temperature shows good agreement with measurements, while the pressure shows a reasonable distribution comparing with previous studies. Further analysis of the three-coupled-field reveals the reason of the high pressure and high temperature generated in the film. Finally, the influence of rotational speed of the mirror plate on the lubrication characteristics is illustrated which shows the thrust load should be balanced against the oil film temperature and pressure in optimized designs. This research proposes a thrust bearing computation method by combining CFD and FEA which can do the TEHD analysis more accurately.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.; Hafez, Mohamed M.; Moin, Parviz
1992-01-01
The part that universities should play in the future development of CFD, which must be evaluated in light of CFD's pacing elements and challenges, is discussed. Attention is given to CFD pacing items that must be in place before routine aerodynamic simulation can be performed including grid generation and geometry surface definition, solution adaptive meshing, more efficient time-accurate simulation, modeling of real-gas effects, multiple relative body motion, and prediction of transition and turbulence modeling. As universities have contributed to research in CFD from its inception, this research should continue to enhance and motivate teaching, improve CFD as a discipline, and stimulate faculty and students.
Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation
NASA Technical Reports Server (NTRS)
Massey, Steven J.; Kreshock, Andrew R.; Sekula, Martin K.
2015-01-01
An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements.
Positive Behavior Support and Applied Behavior Analysis
Johnston, J.M; Foxx, Richard M; Jacobson, John W; Green, Gina; Mulick, James A
2006-01-01
This article reviews the origins and characteristics of the positive behavior support (PBS) movement and examines those features in the context of the field of applied behavior analysis (ABA). We raise a number of concerns about PBS as an approach to delivery of behavioral services and its impact on how ABA is viewed by those in human services. We also consider the features of PBS that have facilitated its broad dissemination and how ABA might benefit from emulating certain practices of the PBS movement. PMID:22478452
CFD Analysis of Turbo Expander for Cryogenic Refrigeration and Liquefaction Cycles
NASA Astrophysics Data System (ADS)
Verma, Rahul; Sam, Ashish Alex; Ghosh, Parthasarathi
Computational Fluid Dynamics analysis has emerged as a necessary tool for designing of turbomachinery. It helps to understand the various sources of inefficiency through investigation of flow physics of the turbine. In this paper, 3D turbulent flow analysis of a cryogenic turboexpander for small scale air separation was performed using Ansys CFX®. The turboexpander has been designed following assumptions based on meanlineblade generation procedure provided in open literature and good engineering judgement. Through analysis of flow field, modifications and further analysis required to evolve a more robust design procedure, have been suggested.
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, marcel; Shallhorn, Paul A.
2014-01-01
Computational Fluid Dynamics (CFD) is the standard numerical tool used by Fluid Dynamists to estimate solutions to many problems in academia, government, and industry. CFD is known to have errors and uncertainties and there is no universally adopted method to estimate such quantities. This paper describes an approach to estimate CFD uncertainties strictly numerically using inputs and the Student-T distribution. The approach is compared to an exact analytical solution of fully developed, laminar flow between infinite, stationary plates. It is shown that treating all CFD input parameters as oscillatory uncertainty terms coupled with the Student-T distribution can encompass the exact solution.
Hules, K.R.; Bradshaw, W. Jr.; Little, L.E.
1999-07-01
This project is the first application of low NOx circular-type burners to a Turbo Furnace coal-fired utility boiler design. It is an important part of Conectiv's (formerly Delmarva Power and Light Co.) compliance strategy for the Clean Air Act Amendment of 1990 (CAAA). In project Phase 1, installation of dynamic classifiers successfully reduced flyash unburned carbon loss by nearly 50%. This paper describes Phase 2, the design and retrofit of new low-NOx burners. The two phases met all performance requirement, including a NOx guarantee of 0.42 lbs/10{sup 6} Btu at 105% load. Initially the Model 2 Tertiary Staged Venturi (TSV{reg{underscore}sign}) burner design installed at Conectiv Indian River Station Unit 4 did not meet required NOx levels. Field observations indicated poor flame retention as well as poor flame scanner signals, particularly at lower loads. Using computational fluid dynamics (CFD) modeling and working with DB Riley Inc.'s (DBR) parent company Deutsche Babcock, DBR engineers developed a promising design solution incorporating elements of other DBR low-NOx coal burner technology into the TSV{reg{underscore}sign} burner design. The CFD modeling goal was to improve burner aerodynamics in the burner near-field region to produce better flame retention while limiting hardware changes. Past experience has shown that better flame retention promotes lower NOx. Although the design process consisted of a series of 2-D axi-symmetric, purely aerodynamic CFD models with no combustion or NOx calculations, several key CFD models added coal combustion for flame visualization purpose. A significant NOx improvement was expected with the final design chosen, based on significantly improved burner aerodynamics and flame attachment. This analysis ultimately proved to be correct.
Positionalities, Personal Epistemologies, and Instruction: An Analysis
ERIC Educational Resources Information Center
Avci, Omer
2016-01-01
Individuals' sense of who they are and what their positions are in relation to others is known to be their positionality. Positionalities influence individuals' conception of the world, thus their epistemologies. A few of the positionalities that exist, and included in this paper, are gender, spirituality, race/ethnicity, and social class. All…
NASA Technical Reports Server (NTRS)
Perrell, Eric R.
2005-01-01
The recent bold initiatives to expand the human presence in space require innovative approaches to the design of propulsion systems whose underlying technology is not yet mature. The space propulsion community has identified a number of candidate concepts. A short list includes solar sails, high-energy-density chemical propellants, electric and electromagnetic accelerators, solar-thermal and nuclear-thermal expanders. For each of these, the underlying physics are relatively well understood. One could easily cite authoritative texts, addressing both the governing equations, and practical solution methods for, e.g. electromagnetic fields, heat transfer, radiation, thermophysics, structural dynamics, particulate kinematics, nuclear energy, power conversion, and fluid dynamics. One could also easily cite scholarly works in which complete equation sets for any one of these physical processes have been accurately solved relative to complex engineered systems. The Advanced Concepts and Analysis Office (ACAO), Space Transportation Directorate, NASA Marshall Space Flight Center, has recently released the first alpha version of a set of computer utilities for performing the applicable physical analyses relative to candidate deep-space propulsion systems such as those listed above. PARSEC, Preliminary Analysis of Revolutionary in-Space Engineering Concepts, enables rapid iterative calculations using several physics tools developed in-house. A complete cycle of the entire tool set takes about twenty minutes. PARSEC is a level-zero/level-one design tool. For PARSEC s proof-of-concept, and preliminary design decision-making, assumptions that significantly simplify the governing equation sets are necessary. To proceed to level-two, one wishes to retain modeling of the underlying physics as close as practical to known applicable first principles. This report describes results of collaboration between ACAO, and Embry-Riddle Aeronautical University (ERAU), to begin building a set of
Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.
2013-01-01
A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.
Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.
2010-01-01
A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from the U.S., Europe, Asia, and Russia using a variety of grid systems and turbulence models for the June 2009 4th Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was a new subsonic transport model, the Common Research Model, designed using a modern approach for the wing and included a horizontal tail. The fourth workshop focused on the prediction of both absolute and incremental drag levels for wing-body and wing-body-horizontal tail configurations. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with earlier workshops using the statistical framework.
Using tightly-coupled CFD/CSD simulation for rotorcraft stability analysis
NASA Astrophysics Data System (ADS)
Zaki, Afifa Adel
Dynamic stall deeply affects the response of helicopter rotor blades, making its modeling accuracy very important. Two commonly used dynamic stall models were implemented in a comprehensive code, validated, and contrasted to provide improved analysis accuracy and versatility. Next, computational fluid dynamics and computational structural dynamics loose coupling methodologies are reviewed, and a general tight coupling approach was implemented and tested. The tightly coupled computational fluid dynamics and computational structural dynamics methodology is then used to assess the stability characteristics of complex rotorcraft problems. An aeroelastic analysis of rotors must include an assessment of potential instabilities and the determination of damping ratios for all modes of interest. If the governing equations of motion of a system can be formulated as linear, ordinary differential equations with constant coefficients, classical stability evaluation methodologies based on the characteristic exponents of the system can rapidly and accurately provide the system's stability characteristics. For systems described by linear, ordinary differential equations with periodic coefficients, Floquet's theory is the preferred approach. While these methods provide excellent results for simplified linear models with a moderate number of degrees of freedom, they become quickly unwieldy as the number of degrees of freedom increases. Therefore, to accurately analyze rotorcraft aeroelastic periodic systems, a fully nonlinear, coupled simulation tool is used to determine the response of the system to perturbations about an equilibrium configuration and determine the presence of instabilities and damping ratios. The stability analysis is undertaken using an algorithm based on a Partial Floquet approach that has been successfully applied with computational structural dynamics tools on rotors and wind turbines. The stability analysis approach is computationally inexpensive and consists
VAPOR: A desktop tool for visualization aided analysis of earth sciences CFD data
NASA Astrophysics Data System (ADS)
Clyne, J.; Norton, A.
2009-12-01
Continual advancements in microprocessor technology are permitting numerical modelers in the earth sciences to run simulations at unprecedented scale. For many computational scientists their most daunting challenge has become analyzing the ever-growing data outputs resulting from these simulations. Computing resources suitable for interactive analysis are rarely available at a scale comparable with the batch computing systems employed to run a model. Moreover, computing technologies essential to supporting interactive analysis work, such as storage, are advancing at more modest rates than the microprocessor. The result is often a deluge of data and a poor return on our scientific investments. We will present a visual data analysis tool that recognizes the current HPC environment and computing technology landscape by taking an intelligent approach to large data handling unlike those tools solely relying on the existence of large scale, highly-parallel interactive computing platforms. VAPOR employs of form of progressive data refinement akin to the techniques used by GoogleEarthTM to display 2D image data at progressively finer resolutions. A VAPOR user is able to make speed/quality trade offs when navigating through data sets that may be Terabytes in size. VAPOR has been used in practice on simulation outputs computed on grids up to 2048^3 using only a commodity Linux PC. Though VAPOR’s roots are in numerical turbulence, recent developments have focused on scientific groups with geo-referenced data sets such as the weather research community. Flapping magnetic field lines visualized with VAPOR by Aake Nordlund, Niels Bohr Institute
Liquid rocket propulsion impeller CFD modeling
NASA Technical Reports Server (NTRS)
Ratcliff, Mark L.; Athavale, Mahesh M.; Thomas, Matthew E.; Williams, Robert W.
1993-01-01
Steady-state impeller geometric modeling and typical Navier-Stokes CFD algorithm analysis procedures are assessed using two benchmark quality impeller data sets. Two geometric modeling and grid generation software packages, ICEM-CFD and PATRAN, are considered. Results show that a significant advantage of PATRAN's open-ended architecture is the potential interaction between CFD and structural/thermal analysts inside the mechanical computer-aided engineering environment. However the time required to construct the inducer grid would be unacceptable in a design and engineering environment. The ICEM-CFD package is considered to be more appropriate for structural grid generation but lacks the mature link to structural/thermal analysis arena as compared to PATRAN.
Application of the CFD CONV code to the analysis of LIVE L6 test
Palagin, A.; Kretzschmar, F.; Miassoedov, A.; Chudanov, V.
2012-07-01
The thermo-physical behaviour of a corium pool in reactor pressure vessel of a pressurised water reactor is of principal importance for the prediction of core melt down accident development. This concerns, in general, the understanding of a severe accident with core melting, its course, major critical phases and timing, and the influence of these processes on the accident progression in terms of assessing the possibility to remove the released heat by external vessel cooling. The general objective of the LIVE program at KIT is to study phenomena resulting from core melting experimentally in large-scale 3D geometry with emphasis on the transient behaviour. The presented paper describes analysis and interpretation of the LIVE L6 experiment, in which the molten pool (non-eutectic melt KNO{sub 3}-NaNO{sub 3}) was separated by horizontal copper plate in order to develop the approach to the analysis of layering and focusing effects as the most challenging factors. (authors)
Tools for Analysis and Visualization of Large Time-Varying CFD Data Sets
NASA Technical Reports Server (NTRS)
Wilhelms, Jane; VanGelder, Allen
1997-01-01
In the second year, we continued to built upon and improve our scanline-based direct volume renderer that we developed in the first year of this grant. This extremely general rendering approach can handle regular or irregular grids, including overlapping multiple grids, and polygon mesh surfaces. It runs in parallel on multi-processors. It can also be used in conjunction with a k-d tree hierarchy, where approximate models and error terms are stored in the nodes of the tree, and approximate fast renderings can be created. We have extended our software to handle time-varying data where the data changes but the grid does not. We are now working on extending it to handle more general time-varying data. We have also developed a new extension of our direct volume renderer that uses automatic decimation of the 3D grid, as opposed to an explicit hierarchy. We explored this alternative approach as being more appropriate for very large data sets, where the extra expense of a tree may be unacceptable. We also describe a new approach to direct volume rendering using hardware 3D textures and incorporates lighting effects. Volume rendering using hardware 3D textures is extremely fast, and machines capable of using this technique are becoming more moderately priced. While this technique, at present, is limited to use with regular grids, we are pursuing possible algorithms extending the approach to more general grid types. We have also begun to explore a new method for determining the accuracy of approximate models based on the light field method described at ACM SIGGRAPH '96. In our initial implementation, we automatically image the volume from 32 equi-distant positions on the surface of an enclosing tessellated sphere. We then calculate differences between these images under different conditions of volume approximation or decimation. We are studying whether this will give a quantitative measure of the effects of approximation. We have created new tools for exploring the
NASA Technical Reports Server (NTRS)
Dash, S. M.; York, B. J.; Sinha, N.; Dvorak, F. A.
1987-01-01
An overview of parabolic and PNS (Parabolized Navier-Stokes) methodology developed to treat highly curved sub and supersonic wall jets is presented. The fundamental data base to which these models were applied is discussed in detail. The analysis of strong curvature effects was found to require a semi-elliptic extension of the parabolic modeling to account for turbulent contributions to the normal pressure variations, as well as an extension to the turbulence models utilized, to account for the highly enhanced mixing rates observed in situations with large convex curvature. A noniterative, pressure split procedure is shown to extend parabolic models to account for such normal pressure variations in an efficient manner, requiring minimal additional run time over a standard parabolic approach. A new PNS methodology is presented to solve this problem which extends parabolic methodology via the addition of a characteristic base wave solver. Applications of this approach to analyze the interaction of wave and turbulence processes in wall jets is presented.
CFD Analysis of Heat Transfer to Transcritical Fluids in Liquid Rocket Engines
NASA Astrophysics Data System (ADS)
Pizzarelli, M.; Urbano, A.; Nasuti, F.; Onofri, M.
2009-01-01
The modeling and the analysis of the coolant flow in rocket engine applications is a challenging task because of its particular features, such as the extremely high entering heat flux (up to 10 MW/m2 ), the high Reynolds number (up to 107 ) and the three-dimensional geometry of the channel. In case of methane as coolant, a further complication is the transcritical operating condition of the fluid. In this thermodynamic regime large changes of the fluid properties can greatly influence the coolant flow-field and the heat transfer. In the present work numerical simulations of 2D-axisymmetric flow-fields of fluids in trans- critical regime are presented. The numerical solutions are validated against experimental data of transcritical- hydrogen flow in heated circular channel. Then numeri- cal simulations of transcritical-methane in circular channel are carried out; each simulation is characterized by a different heat flux (from zero to 15 MW/m2 ). Results are discussed in detail and the transcritical-methane flow condition that exhibits the heat transfer deterioration is identified and emphasized.
Progress Toward an Efficient and General CFD Tool for Propulsion Design/Analysis
NASA Technical Reports Server (NTRS)
Cox, C. F.; Cinnella, P.; Westmoreland, S.
1996-01-01
The simulation of propulsive flows inherently involves chemical activity. Recent years have seen substantial strides made in the development of numerical schemes for reacting flowfields, in particular those involving finite-rate chemistry. However, finite-rate calculations are computationally intensive and require knowledge of the actual kinetics, which are not always known with sufficient accuracy. Alternatively, flow simulations based on the assumption of local chemical equilibrium are capable of obtaining physically reasonable results at far less computational cost. The present study summarizes the development of efficient numerical techniques for the simulation of flows in local chemical equilibrium, whereby a 'Black Box' chemical equilibrium solver is coupled to the usual gasdynamic equations. The generalization of the methods enables the modelling of any arbitrary mixture of thermally perfect gases, including air, combustion mixtures and plasmas. As demonstration of the potential of the methodologies, several solutions, involving reacting and perfect gas flows, will be presented. Included is a preliminary simulation of the SSME startup transient. Future enhancements to the proposed techniques will be discussed, including more efficient finite-rate and hybrid (partial equilibrium) schemes. The algorithms that have been developed and are being optimized provide for an efficient and general tool for the design and analysis of propulsion systems.
Advanced multi-phase flow CFD model development for solid rocket motor flowfield analysis
NASA Astrophysics Data System (ADS)
Liaw, Paul; Chen, Yen-Sen
1995-03-01
A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of
Advanced Multi-phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
NASA Technical Reports Server (NTRS)
Liaw, Paul; Chen, Yen-Sen
1995-01-01
A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of
Advanced Multi-Phase Flow CFD Model Development for Solid Rocket Motor Flowfield Analysis
NASA Technical Reports Server (NTRS)
Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise
1993-01-01
prediction of the ASRM performance. The multi-phase flow analysis using the FDNS code in the present research can be used as a design tool for solid rocket motor applications.
Advanced multi-phase flow CFD model development for solid rocket motor flowfield analysis
NASA Astrophysics Data System (ADS)
Liaw, Paul; Chen, Y. S.; Shang, H. M.; Doran, Denise
1993-07-01
prediction of the ASRM performance. The multi-phase flow analysis using the FDNS code in the present research can be used as a design tool for solid rocket motor applications.
NASA Technical Reports Server (NTRS)
Whitesides, R. Harold; Dill, Richard A.
1996-01-01
The redesigned solid rocket motor (RSRM) Pressure Perturbation Investigation Team concluded that the cause of recent pressure spikes during both static and flight motor burns was the expulsion of molten aluminum oxide slag from a pool which collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes which may relate to subtle differences in propellant ingredient characteristics such as particle size distribution, contaminants, or processing variations. In order to determine the effect of suspect propellant ingredient characteristics on the propensity for slag production in a real motor environment, a subscale motor experiment was designed. An existing 5 inch ballistic test motor was selected as the basic test vehicle due to low cost and quick turn around times. The standard converging/diverging nozzle was replaced with a submerged nozzle nose design to provide a positive trap for the slag which would increase both the quantity and repeatability of measured slag weights. Computational fluid dynamics (CFD) was used to assess a variety of submerged nose configurations to identify the design which possessed the best capability to reliably collect slag. CFD also was used to assure that the final selected nozzle design would result in flow field characteristics such as dividing streamline location, nose attach point, and separated flow structure which would have similtude with the RSRM submerged nozzle nose flow field. It also was decided to spin the 5 inch motor about its longitudinal axis to further enhance slag collection quantities. Again, CFD was used to select an appropriate spin rate along with other considerations, including the avoidance of burn rate enhancement from radial acceleration effects.
Analysis of strand positions in CIC conductor
NASA Astrophysics Data System (ADS)
Teshima, S.; Nakazawa, S.; Tsuda, M.; Hamajima, T.; Yagai, T.; Nunoya, Y.; Okuno, K.; Takahata, K.
2011-11-01
Information of 3D strand locations in a Cable-in-Conduit (CIC) conductor is necessary for accurate estimation of conductor performance, e.g., AC losses, current distribution or strain effect. However, it is difficult to derive strand positions after compaction, and there have been no analytical methods to accurately estimate strand positions. In our previous work, we measured strand positions in the CIC conductor, whose length is about 1 m, with 81 NbTi strands and it was verified that some strands were displaced from their original positions. In order to estimate strand locations in a long conductor, we developed a method to analyze three dimensional strand positions taking into account the cable deformation caused by compaction. In this method, we use strand positions in only one cross section of conductor and twist pitches of each sub-cable to calculate the center of gravity of each sub-cable. The strand positions are obtained in a manner that the same order sub-cables rotate around the center of gravity of one order higher sub-cable according to a function of the cabling pitch. We derive the twist pitches after compaction by using measured and calculated strand positions. The calculated strand locations by using the derived twist pitches agree well with the measured ones, with errors of about 0.7 mm.
Moving Forward: Positive Behavior Support and Applied Behavior Analysis
ERIC Educational Resources Information Center
Tincani, Matt
2007-01-01
A controversy has emerged about the relationship between positive behavior support and applied behavior analysis. Some behavior analysts suggest that positive behavior support and applied behavior analysis are the same (e.g., Carr & Sidener, 2002). Others argue that positive behavior support is harmful to applied behavior analysis (e.g., Johnston,…
NASA Astrophysics Data System (ADS)
Hussain, Alamin; Fsadni, Andrew M.
2016-03-01
Due to their ease of manufacture, high heat transfer efficiency and compact design, helically coiled heat exchangers are increasingly being adopted in a number of industries. The higher heat transfer efficiency over straight pipes is due to the secondary flow that develops as a result of the centrifugal force. In spite of the widespread use of helically coiled heat exchangers, and the presence of bubbly two-phase flow in a number of systems, very few studies have investigated the resultant flow characteristics. This paper will therefore present the results of CFD simulations for the two-phase bubbly flow in helically coiled heat exchangers as a function of the volumetric void fraction and the tube cross-section design. The CFD results are compared to the scarce flow visualisation experimental results available in the open literature.
Thomas, J. W.; Fanning, T. H.; Vilim, R.; Briggs, L. L.
2012-07-01
Recent analyses have demonstrated the need to model multidimensional phenomena, particularly thermal stratification in outlet plena, during safety analyses of loss-of-flow transients of certain liquid-metal cooled reactor designs. Therefore, Argonne's reactor systems safety code SAS4A/SASSYS-1 is being enhanced by integrating 3D computational fluid dynamics models of the plena. A validation exercise of the new tool is being performed by analyzing the protected loss-of-flow event demonstrated by the EBR-II Shutdown Heat Removal Test 17. In this analysis, the behavior of the coolant in the cold pool is modeled using the CFD code STAR-CCM+, while the remainder of the cooling system and the reactor core are modeled with SAS4A/SASSYS-1. This paper summarizes the code integration strategy and provides the predicted 3D temperature and velocity distributions inside the cold pool during SHRT-17. The results of the coupled analysis should be considered preliminary at this stage, as the exercise pointed to the need to improve the CFD model of the cold pool tank. (authors)
Vilas-Boas, João Paulo; Ramos, Rui J; Fernandes, Ricardo J; Silva, António J; Rouboa, Abel I; Machado, Leandro; Barbosa, Tiago M; Marinho, Daniel A
2015-02-01
The aim of this research was to numerically clarify the effect of finger spreading and thumb abduction on the hydrodynamic force generated by the hand and forearm during swimming. A computational fluid dynamics (CFD) analysis of a realistic hand and forearm model obtained using a computer tomography scanner was conducted. A mean flow speed of 2 m · s(-1) was used to analyze the possible combinations of three finger positions (grouped, partially spread, totally spread), three thumb positions (adducted, partially abducted, totally abducted), three angles of attack (a = 0°, 45°, 90°), and four sweepback angles (y = 0°, 90°, 180°, 270°) to yield a total of 108 simulated situations. The values of the drag coefficient were observed to increase with the angle of attack for all sweepback angles and finger and thumb positions. For y = 0° and 180°, the model with the thumb adducted and with the little finger spread presented higher drag coefficient values for a = 45° and 90°. Lift coefficient values were observed to be very low at a = 0° and 90° for all of the sweepback angles and finger and thumb positions studied, although very similar values are obtained at a = 45°. For y = 0° and 180°, the effect of finger and thumb positions appears to be much most distinct, indicating that having the thumb slightly abducted and the fingers grouped is a preferable position at y = 180°, whereas at y = 0°, having the thumb adducted and fingers slightly spread yielded higher lift values. Results show that finger and thumb positioning in swimming is a determinant of the propulsive force produced during swimming; indeed, this force is dependent on the direction of the flow over the hand and forearm, which changes across the arm's stroke. PMID:25222969
Preparation and Analysis of Positioned Mononucleosomes
Kulaeva, Olga; Studitsky, Vasily M.
2016-01-01
Short DNA fragments containing single nucleosomes have been extensively employed as simple model experimental systems for analysis of many intranuclear processes, including binding of proteins to nucleosomes, covalent histone modifications, transcription, DNA repair and ATP-dependent chromatin remodeling. Here we describe several recently developed procedures for obtaining and analysis of mononucleosomes assembled on 200–350-bp DNA fragments. PMID:25827872
Analysis of Tissue Factor Positive Microparticles
Key, Nigel S.
2010-01-01
There has recently been intense interest in the clinical measurement of tissue factor (TF)-positive microparticles (MPs) in clinical disease states. This interest has been driven by the demonstration of an putative role for circulating TF-positive MPs in animal models of thrombus propagation. Both immunological and functional assays for MP-TF have been described. While each approach has its own advantages and drawbacks, neither has yet been truly established as the ‘gold standard’. Heterogeneity of TF-bearing MPs, such as the variable co-expression of surface phosphatidylserine, may determine not only their procoagulant potential, but also additional properties including rate of clearance from the circulation. PMID:20189224
Optical-fiber pyrometer positioning accuracy analysis
NASA Astrophysics Data System (ADS)
Tapetado, A.; García, E.; Díaz-Álvarez, J.; Miguélez, M. H.; Vazquez, C.
2016-05-01
The influence of the distance between the fiber end and the machined surface on temperature measurements in a two-color fiber-optic pyrometer is analyzed. The propose fiber-optic pyrometer is capable of measuring highly localized temperatures, while avoiding the use of lenses or fiber bundles, by using a standard graded index glass fiber OM1 with 62.5/125 core and cladding diameters. The fiber is placed very close to the target and below the tool insert. The output optical power at both wavelength bands is theoretically and experimentally analyzed for a temperature of 650°C at different fiber positions in a range of 2mm. The results show that there is no influence of the fiber position on the measured optical power and therefore, on the measured temperature.
A physical analysis of nucleosome positioning
NASA Astrophysics Data System (ADS)
Gerland, Ulrich
2015-03-01
The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. A high nucleosome coverage is essential for cells, e.g. to prevent cryptic transcription, and the local positions of specific nucleosomes can play an important role in gene regulation. It is known that in vivo nucleosome positions are affected by a complex mix of passive and active mechanisms, including sequence-specific histone-DNA binding, nucleosome-nucleosome interactions, ATP-dependent remodeling enzymes, transcription, and DNA replication. Yet, the statistical distribution of nucleosome positions is extremely well described by simple physical models that treat the chromatin fiber as an interacting one-dimensional gas. I will discuss how can we interpret this surprising observation from a mechanistic perspective. I will also discuss the kinetics of the interacting gas model, which is pertinent to the question of how cells achieve the high nucleosome coverage within a short time, e.g. after DNA replication.
Propellant Chemistry for CFD Applications
NASA Technical Reports Server (NTRS)
Farmer, R. C.; Anderson, P. G.; Cheng, Gary C.
1996-01-01
Current concepts for reusable launch vehicle design have created renewed interest in the use of RP-1 fuels for high pressure and tri-propellant propulsion systems. Such designs require the use of an analytical technology that accurately accounts for the effects of real fluid properties, combustion of large hydrocarbon fuel modules, and the possibility of soot formation. These effects are inadequately treated in current computational fluid dynamic (CFD) codes used for propulsion system analyses. The objective of this investigation is to provide an accurate analytical description of hydrocarbon combustion thermodynamics and kinetics that is sufficiently computationally efficient to be a practical design tool when used with CFD codes such as the FDNS code. A rigorous description of real fluid properties for RP-1 and its combustion products will be derived from the literature and from experiments conducted in this investigation. Upon the establishment of such a description, the fluid description will be simplified by using the minimum of empiricism necessary to maintain accurate combustion analyses and including such empirical models into an appropriate CFD code. An additional benefit of this approach is that the real fluid properties analysis simplifies the introduction of the effects of droplet sprays into the combustion model. Typical species compositions of RP-1 have been identified, surrogate fuels have been established for analyses, and combustion and sooting reaction kinetics models have been developed. Methods for predicting the necessary real fluid properties have been developed and essential experiments have been designed. Verification studies are in progress, and preliminary results from these studies will be presented. The approach has been determined to be feasible, and upon its completion the required methodology for accurate performance and heat transfer CFD analyses for high pressure, tri-propellant propulsion systems will be available.
Visual Environments for CFD Research
NASA Technical Reports Server (NTRS)
Watson, Val; George, Michael W. (Technical Monitor)
1994-01-01
This viewgraph presentation gives an overview of the visual environments for computational fluid dynamics (CFD) research. It includes details on critical needs from the future computer environment, features needed to attain this environment, prospects for changes in and the impact of the visualization revolution on the human-computer interface, human processing capabilities, limits of personal environment and the extension of that environment with computers. Information is given on the need for more 'visual' thinking (including instances of visual thinking), an evaluation of the alternate approaches for and levels of interactive computer graphics, a visual analysis of computational fluid dynamics, and an analysis of visualization software.
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.
1992-01-01
Fundamental equations of aerodynamic sensitivity analysis and approximate analysis for the two dimensional thin layer Navier-Stokes equations are reviewed, and special boundary condition considerations necessary to apply these equations to isolated lifting airfoils on 'C' and 'O' meshes are discussed in detail. An efficient strategy which is based on the finite element method and an elastic membrane representation of the computational domain is successfully tested, which circumvents the costly 'brute force' method of obtaining grid sensitivity derivatives, and is also useful in mesh regeneration. The issue of turbulence modeling is addressed in a preliminary study. Aerodynamic shape sensitivity derivatives are efficiently calculated, and their accuracy is validated on two viscous test problems, including: (1) internal flow through a double throat nozzle, and (2) external flow over a NACA 4-digit airfoil. An automated aerodynamic design optimization strategy is outlined which includes the use of a design optimization program, an aerodynamic flow analysis code, an aerodynamic sensitivity and approximate analysis code, and a mesh regeneration and grid sensitivity analysis code. Application of the optimization methodology to the two test problems in each case resulted in a new design having a significantly improved performance in the aerodynamic response of interest.
Position location technique and GDOP analysis in multistatic systems
NASA Astrophysics Data System (ADS)
He, Lixing; Sun, Zhongkang
Position location methods and GDOP analysis in multistatic systems are presented, and a unified equation of position location and that of location error for several kinds of location methods is introduced. A unified mathematical expression for GDOP is also derived. A method for arranging the geometrical position of stations is discussed as an illustration.
Use of HART-II Measured Motion in CFD
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.
2008-01-01
This presentation examines the use of HART-II measured rotor blade motion in computational fluid dynamics (CFD). Historically, comprehensive analyses were used for input to acoustic calculations. These analyses focused on lifting line aerodynamics and beam models. However, there is a a need to evolve lifting line aerodynamics to first principles, notably the use of CFD instead of lifting line. The current analysis focuses on CFD and computational structural dynamics (CSD) coupling. Beam models are still very good (CSD is typically from comprehensive analysis), but generally CFD replaced aerodynamics in comprehensive analysis. This presentation examines both CFD and CSD individually and includes predictions using measured motion as well as predictions using measured motion versus coupled motion and calculations of "correct" airloads, noise and vibration.
NASA Astrophysics Data System (ADS)
Fan, Deqiu; Mohassab, Yousef; Elzohiery, Mohamed; Sohn, H. Y.
2016-02-01
A computational fluid dynamics (CFD) approach, coupled with experimental results, was developed to accurately evaluate the kinetic parameters of iron oxide particle reduction. Hydrogen reduction of magnetite concentrate particles was used as a sample case. A detailed evaluation of the particle residence time and temperature profile inside the reactor is presented. This approach eliminates the errors associated with assumptions like constant particle temperature and velocity while the particles travel down a drop tube reactor. The gas phase was treated as a continuum in the Eulerian frame of reference, and the particles are tracked using a Lagrangian approach in which the trajectory and velocity are determined by integrating the equation of particle motion. In addition, a heat balance on the particle that relates the particle temperature to convection and radiation was also applied. An iterative algorithm that numerically solves the governing coupled ordinary differential equations was developed to determine the pre-exponential factor and activation energy that best fit the experimental data.
NASA Astrophysics Data System (ADS)
Fan, Deqiu; Mohassab, Yousef; Elzohiery, Mohamed; Sohn, H. Y.
2016-06-01
A computational fluid dynamics (CFD) approach, coupled with experimental results, was developed to accurately evaluate the kinetic parameters of iron oxide particle reduction. Hydrogen reduction of magnetite concentrate particles was used as a sample case. A detailed evaluation of the particle residence time and temperature profile inside the reactor is presented. This approach eliminates the errors associated with assumptions like constant particle temperature and velocity while the particles travel down a drop tube reactor. The gas phase was treated as a continuum in the Eulerian frame of reference, and the particles are tracked using a Lagrangian approach in which the trajectory and velocity are determined by integrating the equation of particle motion. In addition, a heat balance on the particle that relates the particle temperature to convection and radiation was also applied. An iterative algorithm that numerically solves the governing coupled ordinary differential equations was developed to determine the pre-exponential factor and activation energy that best fit the experimental data.
NASA Astrophysics Data System (ADS)
Chandramohan, V. P.
2016-01-01
Convective drying of rectangular-shaped moist object has been analyzed both experimentally and numerically. Transient mass of the potato sample is measured experimentally. Moisture content, diffusivity, and density of the object are calculated at different drying air temperatures from 40°C to 70°C with an air velocity of 2 m/s. A three-dimensional (3D) finite volume method (FVM) based numerical model is developed to predict the temperature and moisture distribution. A computational fluid dynamics (CFD) code is used for predicting heat and mass transfer coefficients required in the boundary conditions of the heat and mass transfer model. The experimental and numerical data are compared and good agreement is observed.
CFD Analysis of Coolant Flow in VVER-440 Fuel Assemblies with the Code ANSYS CFX 10.0
Toth, Sandor; Legradi, Gabor; Aszodi, Attila
2006-07-01
From the aspect of planning the power upgrading of nuclear reactors - including the VVER-440 type reactor - it is essential to get to know the flow field in the fuel assembly. For this purpose we have developed models of the fuel assembly of the VVER-440 reactor using the ANSYS CFX 10.0 CFD code. At first a 240 mm long part of a 60 degrees segment of the fuel pin bundle was modelled. Implementing this model a sensitivity study on the appropriate meshing was performed. Based on the development of the above described model, further models were developed: a 960 mm long part of a 60-degree-segment and a full length part (2420 mm) of the fuel pin bundle segment. The calculations were run using constant coolant properties and several turbulence models. The impacts of choosing different turbulence models were investigated. The results of the above-mentioned investigations are presented in this paper. (authors)
NASA Astrophysics Data System (ADS)
Castro, Marcelo A.; Ahumada Olivares, María. C.; Putman, Christopher M.; Cebral, Juan R.
2014-03-01
The optimal management of unruptured aneurysms is controversial, and current decision making is mainly based on aneurysm size and location. Incidentally detected unruptured aneurysms less than 5mm in diameter should be treated conservatively. However, small unruptured aneurysms also bleed. Risk factors based on the hemodynamic forces exerted over the arterial wall have been investigated using image-based computational fluid dynamic (CFD) methodologies during the last decade. Accurate estimation of wall shear stress (WSS) is required to properly study associations between flow features and aneurysm processes. Previous works showed that Newtonian and non-Newtonian (Casson) models produce similar WSS distributions and characterization, with no significant differences. Other authors showed that the WSS distribution computed from time-averaged velocity fields is significantly higher for the Newtonian model where WSS is low. In this work we reconstructed ten patient-specific CFD models from angiography images to investigate the time evolution of WSS at selected locations such as aneurysm blebs (low WSS), and the parent artery close to the aneurysm neck (high WSS). When averaging all cases it is seen that the estimation of the time-averaged WSS, the peak WSS and the minimum WSS value before the systolic peak were all higher when the Casson rheology was considered. However, none of them showed statistically significant differences. At the afferent artery Casson rheology systematically predicted higher WSS values. On the other hand, at the selected blebs either Newtonian or Casson WSS estimations are higher in some phases of the cardiac cycle. Those observations differ among individual cases.
Tzanos, C. P.
2007-05-16
The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The United States Department of Energy has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convection Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the RCCS; and to support the design and safety analysis of the RCCS. At this time no reference design is available for the NGNP. The General Atomics (GA) gas turbine - modular helium reactor (GT-MHR) has been used in many analyses as a starting reference design. In the GT-MHR the reactor outlet temperature is 850 C, while the target outlet reactor temperature in VHTR is 1000 C. VHTR scoping studies with a reactor outlet temperature of 1000 C have been performed at GA and INEL. Although the reactor outlet temperature in the VHTR is significantly higher than in the GT-MHR, the peak temperature in the reactor vessel (which is the heat source for the RCCS) is not drastically different. In this work, analyses have been performed using reactor vessel
NASA Technical Reports Server (NTRS)
Yee, H. C.; Rai, Man Mohan (Technical Monitor)
1994-01-01
This lecture attempts to illustrate the basic ideas of how the recent advances in nonlinear dynamical systems theory (dynamics) can provide new insights into the understanding of numerical algorithms used in solving nonlinear differential equations (DEs). Examples will be given of the use of dynamics to explain unusual phenomena that occur in numerics. The inadequacy of the use of linearized analysis for the understanding of long time behavior of nonlinear problems will be illustrated, and the role of dynamics in studying the nonlinear stability, accuracy, convergence property and efficiency of using time- dependent approaches to obtaining steady-state numerical solutions in computational fluid dynamics (CFD) will briefly be explained.
Requirements for effective use of CFD in aerospace design
NASA Technical Reports Server (NTRS)
Raj, Pradeep
1995-01-01
This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology must meet for its effective use in aerospace design. General observations are made on current aerospace design practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier. Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD. Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community must address if CFD is to play its rightful role in supporting the IPPD design environment needed to produce high quality yet affordable designs.
NASA Technical Reports Server (NTRS)
1995-01-01
An evaluation of the effect of model inlet air temperature drift during a test run was performed to aid in the decision on the need for and/or the schedule for including heaters in the SRMAFTE. The Sverdrup acceptance test data was used to determine the drift in air temperature during runs over the entire range of delivered flow rates and pressures. The effect of this temperature drift on the model Reynolds number was also calculated. It was concluded from this study that a 2% change in absolute temperature during a test run could be adequately accounted for by the data analysis program. A handout package of these results was prepared and presented to ED35 management.
ERIC Educational Resources Information Center
Conone, Ruth M.
The key to positioning is the creation of a clear benefit image in the consumer's mind. One positioning strategy is creating in the prospect's mind a position that takes into consideration the company's or agency's strengths and weaknesses as well as those of its competitors. Another strategy is to gain entry into a position ladder owned by…
CFD Process Automation Using Overset Grids
NASA Technical Reports Server (NTRS)
Buning, Pieter G.; George, Michael W. (Technical Monitor)
1995-01-01
This talk summarizes three applications of the overset grid method for CFD using some level of automated grid generation, flow solution and post-processing. These applications are 2D high-lift airfoil analysis (INS2D code), turbomachinery applications (ROTOR2/3 codes), and subsonic transport wing/body configurations (OVERFLOW code). These examples provide a forum for discussing the advantages and disadvantages of overset gridding for use in an automated CFD process. The goals and benefits of the automation incorporated in each application will be described, as well as the shortcomings of the approaches.
An introduction to chaos theory in CFD
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.
1990-01-01
The popular subject 'chaos theory' has captured the imagination of a wide variety of scientists and engineers. CFD has always been faced with nonlinear systems and it is natural to assume that nonlinear dynamics will play a role at sometime in such work. This paper will attempt to introduce some of the concepts and analysis procedures associated with nonlinear dynamics theory. In particular, results from computations of an airfoil at high angle of attack which exhibits a sequence of bifurcations for single frequency unsteady shedding through period doublings cascading into low dimensional chaos are used to present and demonstrate various aspects of nonlinear dynamics in CFD.
Unsteady Analysis of Inlet-Compressor Acoustic Interactions Using Coupled 3-D and 1-D CFD Codes
NASA Technical Reports Server (NTRS)
Suresh, A.; Cole, G. L.
2000-01-01
It is well known that the dynamic response of a mixed compression supersonic inlet is very sensitive to the boundary condition imposed at the subsonic exit (engine face) of the inlet. In previous work, a 3-D computational fluid dynamics (CFD) inlet code (NPARC) was coupled at the engine face to a 3-D turbomachinery code (ADPAC) simulating an isolated rotor and the coupled simulation used to study the unsteady response of the inlet. The main problem with this approach is that the high fidelity turbomachinery simulation becomes prohibitively expensive as more stages are included in the simulation. In this paper, an alternative approach is explored, wherein the inlet code is coupled to a lesser fidelity 1-D transient compressor code (DYNTECC) which simulates the whole compressor. The specific application chosen for this evaluation is the collapsing bump experiment performed at the University of Cincinnati, wherein reflections of a large-amplitude acoustic pulse from a compressor were measured. The metrics for comparison are the pulse strength (time integral of the pulse amplitude) and wave form (shape). When the compressor is modeled by stage characteristics the computed strength is about ten percent greater than that for the experiment, but the wave shapes are in poor agreement. An alternate approach that uses a fixed rise in duct total pressure and temperature (so-called 'lossy' duct) to simulate a compressor gives good pulse shapes but the strength is about 30 percent low.
NASA Astrophysics Data System (ADS)
Salman, Sami D.; Kadhum, Abdul Amir H.; Takriff, Mohd S.; Bakar Mohamad, Abu
2013-12-01
Swirl/vortex flow generator is an important form of passive augmentation techniques. Twisted-tape is one of the most important members of this form which is used extensively in different type heat exchangers. This paper reports the effect of twisted tape inserts on heat transfer and friction factor characteristics in circular tube under constant heat flux and laminar flow conditions using CFD simulation. Plain twisted tape inserts with twist ratios (y = 2.93, 3.91) and baffled twisted tape inserts with twist ratio (y = 2.93) have been used for the simulation using Fluent version 6.3.26. The results obtained by simulation matched with the literature correlations for plain tube with the discrepancy of less than ± 8% for Nusselt number and ± 6.25% for friction factor. The results have also revealed that the heat transfer in term of the Nusselt number enhanced with increases of Reynolds number, decreases of twist ratio and baffle insert. Among the various twist ratios, the twisted tape with twist ratio of y=2.93 and baffle is offered a maximum heat transfer enhancement.
NASA Technical Reports Server (NTRS)
Tucker, P. K.; Warsi, S. A.
1993-01-01
Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.
NASA Technical Reports Server (NTRS)
Bain, D. B.; Smith, C. E.; Holdeman, J. D.
1992-01-01
A CFD study was performed to analyze the mixing potential of opposed rows of staggered jets injected into confined crossflow in a rectangular duct. Three jet configurations were numerically tested: (1) straight (0 deg) slots; (2) perpendicular slanted (45 deg) slots angled in opposite directions on top and bottom walls; and (3) parallel slanted (45 deg) slots angled in the same direction on top and bottom walls. All three configurations were tested at slot spacing-to-duct height ratios (S/H) of 0.5, 0.75, and 1.0; a jet-to-mainstream momentum flux ratio (J) of 100; and a jet-to-mainstream mass flow ratio of 0.383. Each configuration had its best mixing performance at S/H of 0.75. Asymmetric flow patterns were expected and predicted for all slanted slot configurations. The parallel slanted slot configuration was the best overall configuration at x/H of 1.0 for S/H of 0.75.
Liu, Huolong; Li, Mingzhong
2014-11-20
In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. PMID:25181553
CFD study on local fluid-to-wall heat transfer in packed beds and field synergy analysis
NASA Astrophysics Data System (ADS)
Peng, Wenping; Xu, Min; Huai, Xiulan; Liu, Zhigang
2016-04-01
To reach the target of smaller pressure drop and better heat transfer performance, packed beds with small tube-to-particle diameter ratio ( D/d p<10) have now been considered in many areas. Fluid-to-wall heat transfer coefficient is an important factor determining the performance of this type of beds. In this work, local fluid- to-wall heat transfer characteristic in packed beds was studied by Computational Fluid Dynamics (CFD) at different Reynolds number for D/d p=1.5, 3.0 and 5.6. The results show that the fluid-to-wall heat transfer coefficient is oscillating along the bed with small tube-to-particle diameter ratio. Moreover, this phenomenon was explained by field synergy principle in detail. Two arrangement structures of particles in packed beds were recommended based on the synergy characteristic between flow and temperature fields. This study provides a new local understanding of fluid-to-wall heat transfer in packed beds with small tube-to-particle diameter ratio.
Tzanos, C. P.; Nuclear Engineering Division
2007-05-16
The Very High Temperature gas cooled reactor (VHTR) is one of the GEN IV reactor concepts that have been proposed for thermochemical hydrogen production and other process-heat applications like coal gasification. The USDOE has selected the VHTR for further research and development, aiming to demonstrate emissions-free electricity and hydrogen production at a future time. One of the major safety advantages of the VHTR is the potential for passive decay heat removal by natural circulation of air in a Reactor Cavity Cooling System (RCCS). The air-side of the RCCS is very similar to the Reactor Vessel Auxiliary Cooling System (RVACS) that has been proposed for the PRISM reactor design. The design and safety analysis of the RVACS have been based on extensive analytical and experimental work performed at ANL. The Natural Convective Shutdown Heat Removal Test Facility (NSTF) at ANL that simulates at full scale the air-side of the RVACS was built to provide experimental support for the design and analysis of the PRISM RVACS system. The objective of this work is to demonstrate that the NSTF facility can be used to generate RCCS experimental data: to validate CFD and systems codes for the analysis of the RCCS; and to support the design and safety analysis of the RCCS.
A supportive architecture for CFD-based design optimisation
NASA Astrophysics Data System (ADS)
Li, Ni; Su, Zeya; Bi, Zhuming; Tian, Chao; Ren, Zhiming; Gong, Guanghong
2014-03-01
Multi-disciplinary design optimisation (MDO) is one of critical methodologies to the implementation of enterprise systems (ES). MDO requiring the analysis of fluid dynamics raises a special challenge due to its extremely intensive computation. The rapid development of computational fluid dynamic (CFD) technique has caused a rise of its applications in various fields. Especially for the exterior designs of vehicles, CFD has become one of the three main design tools comparable to analytical approaches and wind tunnel experiments. CFD-based design optimisation is an effective way to achieve the desired performance under the given constraints. However, due to the complexity of CFD, integrating with CFD analysis in an intelligent optimisation algorithm is not straightforward. It is a challenge to solve a CFD-based design problem, which is usually with high dimensions, and multiple objectives and constraints. It is desirable to have an integrated architecture for CFD-based design optimisation. However, our review on existing works has found that very few researchers have studied on the assistive tools to facilitate CFD-based design optimisation. In the paper, a multi-layer architecture and a general procedure are proposed to integrate different CFD toolsets with intelligent optimisation algorithms, parallel computing technique and other techniques for efficient computation. In the proposed architecture, the integration is performed either at the code level or data level to fully utilise the capabilities of different assistive tools. Two intelligent algorithms are developed and embedded with parallel computing. These algorithms, together with the supportive architecture, lay a solid foundation for various applications of CFD-based design optimisation. To illustrate the effectiveness of the proposed architecture and algorithms, the case studies on aerodynamic shape design of a hypersonic cruising vehicle are provided, and the result has shown that the proposed architecture
Arbitrary Shape Deformation in CFD Design
NASA Technical Reports Server (NTRS)
Landon, Mark; Perry, Ernest
2014-01-01
Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.
The CFD Simulation on Thermal Comfort in a library Building in the Tropics
Yau, Y. H.; Ghazali, N. N. N.; Badarudin, A.; Goh, F. C.
2010-05-21
This paper presents a three-dimensional analysis for thermal comfort in a library. The room model includes library layout, equipment and peripheral positions as well as the positions of inlet and outlet air for IAQ controls. Cold clean air is supplied to the room through ceiling-mounted air grilles and exhausted through air grilles situated on the same ceiling. A commercial CFD package was used in this study to achieve solutions of the distribution of airflow velocity and temperature. Using high quality meshes is vital to the overall accuracy of the results. Simulation results show a good agreement with experimental data from the literature. This study has thoroughly analysed the indoor thermal conditions and airflow characteristics of the building. In addition, verification of the CFD program with experimental data showed that the program can provide reasonable and reliable predictions on thermal comfort performance with the help of precise boundary conditions.
Surveying Professionals' Views of Positive Behavior Support and Behavior Analysis
ERIC Educational Resources Information Center
Filter, Kevin J.; Tincani, Matt; Fung, Daniel
2009-01-01
Positive behavior support (PBS) is an empirically driven approach to improve quality of life influenced by the science of behavior analysis. Recent discussions have evolved around PBS, behavior analysis, and their relationship within education and human services fields. To date, few data have been offered to guide behaviorally oriented…
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1990-01-01
An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
1991-01-01
An overview is given of research activity on the application of computational fluid dynamics (CDF) for hypersonic propulsion systems. After the initial consideration of the highly integrated nature of air-breathing hypersonic engines and airframe, attention is directed toward computations carried out for the components of the engine. A generic inlet configuration is considered in order to demonstrate the highly three dimensional viscous flow behavior occurring within rectangular inlets. Reacting flow computations for simple jet injection as well as for more complex combustion chambers are then discussed in order to show the capability of viscous finite rate chemical reaction computer simulations. Finally, the nozzle flow fields are demonstrated, showing the existence of complex shear layers and shock structure in the exhaust plume. The general issues associated with code validation as well as the specific issue associated with the use of CFD for design are discussed. A prognosis for the success of CFD in the design of future propulsion systems is offered.
Improvements in Accurate GPS Positioning Using Time Series Analysis
NASA Astrophysics Data System (ADS)
Koyama, Yuichiro; Tanaka, Toshiyuki
Although the Global Positioning System (GPS) is used widely in car navigation systems, cell phones, surveying, and other areas, several issues still exist. We focus on the continuous data received in public use of GPS, and propose a new positioning algorithm that uses time series analysis. By fitting an autoregressive model to the time series model of the pseudorange, we propose an appropriate state-space model. We apply the Kalman filter to the state-space model and use the pseudorange estimated by the filter in our positioning calculations. The results of the authors' positioning experiment show that the accuracy of the proposed method is much better than that of the standard method. In addition, as we can obtain valid values estimated by time series analysis using the state-space model, the proposed state-space model can be applied to several other fields.
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
NASA Technical Reports Server (NTRS)
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
CFD applications: The Lockheed perspective
NASA Technical Reports Server (NTRS)
Miranda, Luis R.
1987-01-01
The Numerical Aerodynamic Simulator (NAS) epitomizes the coming of age of supercomputing and opens exciting horizons in the world of numerical simulation. An overview of supercomputing at Lockheed Corporation in the area of Computational Fluid Dynamics (CFD) is presented. This overview will focus on developments and applications of CFD as an aircraft design tool and will attempt to present an assessment, withing this context, of the state-of-the-art in CFD methodology.
Bootstrap position analysis for forecasting low flow frequency
Tasker, Gary D.; Dunne, P.
1997-01-01
A method of random resampling of residuals from stochastic models is used to generate a large number of 12-month-long traces of natural monthly runoff to be used in a position analysis model for a water-supply storage and delivery system. Position analysis uses the traces to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows conditioned on the current reservoir levels and streamflows. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality, fewer parameters need to be estimated directly from the data, and accounting for parameter uncertainty is easily done. For a given set of operating rules and water-use requirements for a system, water managers can use such a model as a decision-making tool to evaluate different operating rules. ?? ASCE,.
Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances †
Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A.; Al-Khalifa, Hend S.
2016-01-01
In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906
Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.
Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S
2016-01-01
In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906
The Role of CFD in Undergraduate Fluid Mechanics Education
NASA Astrophysics Data System (ADS)
Cimbala, John
2006-11-01
Instruction of undergraduate fluid mechanics is greatly enhanced through integration of computational fluid dynamics (CFD) into fluid mechanics courses and labs. Specifically, students are able to visualize fluid flows with CFD and are better able to understand those flows by performing parametric studies. At Penn State, CFD has been carefully integrated into our introductory junior-level fluid mechanics course, yet displaces only about one class period. The key is to show demonstrations and assign homework that use CFD as a tool that helps students learn the basic concepts of fluid mechanics. The application of CFD (grid generation, boundary conditions, etc.), rather than numerical algorithms, is stressed. This is done through use of short, pre-defined templates for FlowLab, a student-friendly analysis and visualization package created by Fluent, Inc. The textbook by Cengel and Cimbala (McGraw-Hill 2006) contains 46 end-of-chapter homework problems that are used in conjunction with 42 FlowLab templates. Each exercise has been designed with two major learning objectives in mind: (1) enhance student understanding of a specific fluid mechanics concept, and (2) introduce the student to a specific capability and/or limitation of CFD through hands-on practice. More templates are being developed that emphasize the first objective. The flow of fluid between two concentric rotating cylinders is a good example of a problem that is solved approximately, analytically, and with CFD, and the results are compared to enhance learning.
Analysis of differences between seating positions in simulators and orbiters
NASA Technical Reports Server (NTRS)
Mongan, Philip T.
1993-01-01
Crew comments indicate that Space Shuttle simulator seats place crewmembers in a position different from that of the actual Orbiter seats. The crew feel that they launch in a different position, and with a different reach and visibility, from that in which they had trained. This study examined three factors in differences between training and flight positions. Key dimensions, which were considered important to spatial orientation, were compared in the Orbiters and simulators. These were dimensions such as seat back to glare shield and seat pan to overhead. The differences between flight and training crew equipment, and how these differences may contribute to the problem were discussed with engineers and technicians responsible for the equipment. Eye position measurements were taken on subjects to assess any differences that could be attributed to different ingress methods in the Orbiters and the simulators. This report presents the data, analysis, and recommendations.
Positive Behavior Support and Applied Behavior Analysis: A Familial Alliance
ERIC Educational Resources Information Center
Dunlap, Glen; Carr, Edward G.; Horner, Robert H.; Zarcone, Jennifer R.; Schwartz, Ilene
2008-01-01
Positive behavior support (PBS) emerged in the mid-1980s as an approach for understanding and addressing problem behaviors. PBS was derived primarily from applied behavior analysis (ABA). Over time, however, PBS research and practice has incorporated evaluative methods, assessment and intervention procedures, and conceptual perspectives associated…
Recent Updates to the CFD General Notation System (CGNS)
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Wedan, Bruce; Hauser, Thomas; Poinot, Marc
2012-01-01
The CFD General Notation System (CGNS) - a general, portable, and extensible standard for the storage and retrieval of computational fluid dynamics (CFD) analysis data has been in existence for more than a decade (Version 1.0 was released in May 1998). Both structured and unstructured CFD data are covered by the standard, and CGNS can be easily extended to cover any sort of data imaginable, while retaining backward compatibility with existing CGNS data files and software. Although originally designed for CFD, it is readily extendable to any field of computational analysis. In early 2011, CGNS Version 3.1 was released, which added significant capabilities. This paper describes these recent enhancements and highlights the continued usefulness of the CGNS methodology.
Gawande, Vipin B.; Dhoble, A. S.; Zodpe, D. B.
2014-01-01
CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251
Gawande, Vipin B; Dhoble, A S; Zodpe, D B
2014-01-01
CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251
A CFD/CSD Interaction Methodology for Aircraft Wings
NASA Technical Reports Server (NTRS)
Bhardwaj, Manoj K.
1997-01-01
With advanced subsonic transports and military aircraft operating in the transonic regime, it is becoming important to determine the effects of the coupling between aerodynamic loads and elastic forces. Since aeroelastic effects can contribute significantly to the design of these aircraft, there is a strong need in the aerospace industry to predict these aero-structure interactions computationally. To perform static aeroelastic analysis in the transonic regime, high fidelity computational fluid dynamics (CFD) analysis tools must be used in conjunction with high fidelity computational structural fluid dynamics (CSD) analysis tools due to the nonlinear behavior of the aerodynamics in the transonic regime. There is also a need to be able to use a wide variety of CFD and CSD tools to predict these aeroelastic effects in the transonic regime. Because source codes are not always available, it is necessary to couple the CFD and CSD codes without alteration of the source codes. In this study, an aeroelastic coupling procedure is developed which will perform static aeroelastic analysis using any CFD and CSD code with little code integration. The aeroelastic coupling procedure is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas CFD code) and NASTRAN. In addition, the Aeroelastic Research Wing (ARW-2) is used for demonstration of the aeroelastic coupling procedure by using ENSAERO (NASA Ames Research Center CFD code) and a finite element wing-box code (developed as part of this research).
NASA Astrophysics Data System (ADS)
Suatean, Bogdan; Colidiuc, Alexandra; Galetuse, Slelian
2012-11-01
The purpose of this paper is to present different CFD models used to determine the aerodynamic performance of horizontal axis wind turbine (HAWT). The models presented have various levels of complexity to calculate the aerodynamic performances of HAWT, starting with a simple model, the actuator line method, and ending with a CFD approach.
3D CFD Simulation of Horizontal Spin Casting of High Speed Steel Roll
NASA Astrophysics Data System (ADS)
Redkin, Konstantin; Balakin, Boris; Hrizo, Christopher; Vipperman, Jeffrey; Garcia, Isaac; University Of Pittsburgh Team; Whemco Collaboration; University Of Bergen Collaboration
2013-11-01
The present paper reports some preliminary results on the multiphase modeling of the melt behavior in the horizontal spinning chamber. Three-dimensional (3D) computational fluid dynamics (CFD) model of the high speed steel (HSS) melt was developed in a novel way on the base of volume-of-fluid technique. Preliminary 3D CFD of the horizontal centrifugal casting process showed that local turbulences can take place depending on the geometrical features of the ``feeding'' arm (inlet), its position relative to the chamber, pouring rates and temperatures. The distribution of the melt inside the mold is directly related to the melt properties (viscosity and diffusivity), which depend on the temperature and alloy composition. The predicted liquid properties, used in the modeling, are based on actual chemical composition analysis performed on different heats. Acknowledgement of WHEMCO and United Rolls Inc. for supporting the program. Special appreciation for Kevin Marsden.
Combustion Devices CFD Simulation Capability Roadmap
NASA Technical Reports Server (NTRS)
West, Jeff; Tucker, P. Kevin; Williams, Robert W.
2003-01-01
The objective of this roadmap is to enable the use of CFD for simulation of pre-burners, ducting, thrust chamber assembly and supporting infrastructure in terms of performance, life, and stability so as to affect the design process in a timely fashion. To enable flange to exit analysis of real(3D) propulsion hardware within the last 5 years (2008). To meet this objective all model problems must be sufficiently mastered.
Analysis of Links Positions in Landing Gear Mechanism
NASA Astrophysics Data System (ADS)
Brewczyński, D.; Tora, G.
2014-08-01
This article contains a kinematic analysis of an aircraft chassis mechanism in a range of positions. The mechanism of the chassis is made up of several smaller subsystems with different functions. The first mechanism is used to eject the chassis before landing (touchdown) and fold it to hatchway after the lift off. The second mechanism is designed to perform rotation of the crossover with the wheel, in order to adjust the position of the wheel to fit it in the limited space in the hold. The third mechanism allows movement of the chassis resulting from the change in length of the damper. To determine the position of the following links of the mechanism calculus of vectors was applied in which unit vectors were used to represent the angular position of the links. The aim of the analysis is to determine the angle of convergence and the angle of heel wheels as a function of the variable length of hydraulic cylinder, length of the shock absorber, length of the regulations rods
Use-Misuse Case Driven Analysis of Positive Train Control
NASA Astrophysics Data System (ADS)
Hartong, Mark; Goel, Rajni; Wijesekera, Duminda
Forensic analysis helps identify the causes of crimes and accidents. Determination of cause, however, requires detailed knowledge of a system's design and operational characteristics. This paper advocates that "use cases," which specify operational interactions and requirements, and "misuse cases," which specify potential misuse or abuse scenarios, can be used to analyze and link forensic evidence and create postincident reconstructions. Use-misuse case analysis techniques involving non-probabilistic and probabilistic methods are described and applied to Positive Train Control (PTC) Systems — a network-based automated system that controls the movements of passenger and freight trains.
CFD propels NASP propulsion progress
NASA Astrophysics Data System (ADS)
Povinelli, Louis A.; Dwoyer, Douglas L.; Green, Michael J.
1990-07-01
The most complex aerothermodynamics encountered in the National Aerospace Plane (NASP) propulsion system are associated with the fuel-mixing and combustion-reaction flows of its combustor section; adequate CFD tools must be developed to model shock-wave systems, turbulent hydrogen/air mixing, flow separation, and combustion. Improvements to existing CFD codes have involved extension from two dimensions to three, as well as the addition of finite-rate hydrogen-air chemistry. A novel CFD code for the treatment of reacting flows throughout the NASP, designated GASP, uses the most advanced upwind-differencing technology.
Combustion Devices CFD Team Analyses Review
NASA Technical Reports Server (NTRS)
Rocker, Marvin
2008-01-01
A variety of CFD simulations performed by the Combustion Devices CFD Team at Marshall Space Flight Center will be presented. These analyses were performed to support Space Shuttle operations and Ares-1 Crew Launch Vehicle design. Results from the analyses will be shown along with pertinent information on the CFD codes and computational resources used to obtain the results. Six analyses will be presented - two related to the Space Shuttle and four related to the Ares I-1 launch vehicle now under development at NASA. First, a CFD analysis of the flow fields around the Space Shuttle during the first six seconds of flight and potential debris trajectories within those flow fields will be discussed. Second, the combusting flows within the Space Shuttle Main Engine's main combustion chamber will be shown. For the Ares I-1, an analysis of the performance of the roll control thrusters during flight will be described. Several studies are discussed related to the J2-X engine to be used on the upper stage of the Ares I-1 vehicle. A parametric study of the propellant flow sequences and mixture ratios within the GOX/GH2 spark igniters on the J2-X is discussed. Transient simulations will be described that predict the asymmetric pressure loads that occur on the rocket nozzle during the engine start as the nozzle fills with combusting gases. Simulations of issues that affect temperature uniformity within the gas generator used to drive the J-2X turbines will described as well, both upstream of the chamber in the injector manifolds and within the combustion chamber itself.
High-precision position-specific isotope analysis
Corso, Thomas N.; Brenna, J. Thomas
1997-01-01
Intramolecular carbon isotope distributions reflect details of the origin of organic compounds and may record the status of complex systems, such as environmental or physiological states. A strategy is reported here for high-precision determination of 13C/12C ratios at specific positions in organic compounds separated from complex mixtures. Free radical fragmentation of methyl palmitate, a test compound, is induced by an open tube furnace. Two series of peaks corresponding to bond breaking from each end of the molecule are analyzed by isotope ratio mass spectrometry and yield precisions of SD(δ-13C) < 0.4‰. Isotope labeling in the carboxyl, terminal, and methyl positions demonstrates the absence of rearrangement during activation and fragmentation. Negligible isotopic fractionation was observed as degree of fragmentation was adjusted by changing pyrolysis temperature. [1-13C]methyl palmitate with overall δ-13C = 4.06‰, yielded values of +457‰ for the carboxyl position, in agreement with expectations from the dilution, and an average of −27.95‰ for the rest of the molecule, corresponding to −27.46‰ for the olefin series. These data demonstrate the feasibility of automated high-precision position-specific analysis of carbon for molecules contained in complex mixtures. PMID:11038597
NASA Astrophysics Data System (ADS)
Zhou, Jun; Zhou, Jieming; Chen, Zhuo; Mao, Yongning
2014-09-01
The Outokumpu flash smelting process is a very successful technology for copper extraction from sulfide concentrate. Numerical simulation has been used for several decades in the analysis and evaluation of the smelting process. However, significant delay in the particle ignition was found in computations of flash furnaces that had great expansion in their productivity. A study was thereafter carried out to investigate how the gaseous flows influence the particle dispersion and combustion. A momentum ratio was defined to describe the effective portion of the pressure forces caused by the lateral and the vertical gaseous flows. Simulations were carried out with Fluent 6.3 (Fluent Inc. The software package is now known as Ansys Fluent of Ansys Inc.) for cases with different momentum ratios as well as of the same momentum value. A detailed analysis and discussion of influences of the gaseous momentum on the particle dispersion are presented. The result reveals that a large momentum ratio combined with large amount of distribution air is helpful for good particle dispersions and thus quicker combustions. Also the process air is found to perform a constraint influence on the particle dispersions, particularly for those of medium and small sizes.
Beam line error analysis, position correction, and graphic processing
NASA Astrophysics Data System (ADS)
Wang, Fuhua; Mao, Naifeng
1993-12-01
A beam transport line error analysis and beam position correction code called ``EAC'' has been enveloped associated with a graphics and data post processing package for TRANSPORT. Based on the linear optics design using TRANSPORT or other general optics codes, EAC independently analyzes effects of magnet misalignments, systematic and statistical errors of magnetic fields as well as the effects of the initial beam positions, on the central trajectory and upon the transverse beam emittance dilution. EAC also provides an efficient way to develop beam line trajectory correcting schemes. The post processing package generates various types of graphics such as the beam line geometrical layout, plots of the Twiss parameters, beam envelopes, etc. It also generates an EAC input file, thus connecting EAC with general optics codes. EAC and the post processing package are small size codes, that are easy to access and use. They have become useful tools for the design of transport lines at SSCL.
Joshi, Saumitra V; Ghosh, Sat
2014-11-21
The detrimental impact of rising air pollution levels in urban landscapes has become conspicuous over the last decade, particularly in developing countries. This novel numerical study quantifies the cleansing efficiency of green façades draped with a copiously growing tropical creeper Vernonia elaeagnifolia. Turbulent transport of SO2 to the leaf boundary layer and subsequent diffusion across stomatal pores into the mesophyllic cells is modeled at the micro level, including its ionic dissociation in the leaf׳s interior. A SEM analysis indicates stomatal dimensions and density. Whilst previous studies have used either spatially averaged equations or resistance models, a spatially discretized computational approach is adopted in this study. The resulting concentration distribution is used to calculate the deposition velocity on stomatal pores, which is then extrapolated over the entire façade to yield bulk pollutant removal rates. A deposition velocity of 1.53mms(-1) and 0.72mms(-1) is obtained for open and closed pores respectively, with removal rates equal to 1.11×10(-6)s(-1) and 1.05×10(-6)s(-1) for dry and humid weather respectively. Sensitivity studies on the removal rate are carried out based on humidity, stomatal aperture and leaf temperature. The removal rate dependence on the Leaf Area Index (LAI) is also investigated. It is inferred from simulations that vegetated façades are efficient at mitigation of residual pollution. PMID:25084039
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Baumeister, Joseph F.
1994-01-01
An analytical procedure is presented, called the modal element method, that combines numerical grid based algorithms with eigenfunction expansions developed by separation of variables. A modal element method is presented for solving potential flow in a channel with two-dimensional cylindrical like obstacles. The infinite computational region is divided into three subdomains; the bounded finite element domain, which is characterized by the cylindrical obstacle and the surrounding unbounded uniform channel entrance and exit domains. The velocity potential is represented approximately in the grid based domain by a finite element solution and is represented analytically by an eigenfunction expansion in the uniform semi-infinite entrance and exit domains. The calculated flow fields are in excellent agreement with exact analytical solutions. By eliminating the grid surrounding the obstacle, the modal element method reduces the numerical grid size, employs a more precise far field boundary condition, as well as giving theoretical insight to the interaction of the obstacle with the mean flow. Although the analysis focuses on a specific geometry, the formulation is general and can be applied to a variety of problems as seen by a comparison to companion theories in aeroacoustics and electromagnetics.
Performance analysis of unmanned vehicle positioning and obstacle mapping
NASA Astrophysics Data System (ADS)
Bostelman, Roger; Hong, Tsai; Madhavan, Raj; Chang, Tommy; Scott, Harry
2006-05-01
As unmanned ground vehicles take on more and more intelligent tasks, determination of potential obstacles and accurate estimation of their position become critical for successful navigation and path planning. The performance analysis of obstacle mapping and unmanned vehicle positioning in outdoor environments is the subject of this paper. Recently, the National Institute of Standards and Technology's (NIST) Intelligent Systems Division has been a part of the Defense Advanced Research Project Agency LAGR (Learning Applied to Ground Robots) Program. NIST's objective for the LAGR Project is to insert learning algorithms into the modules that make up the NIST 4D/RCS (Four Dimensional/Real-Time Control System) standard reference model architecture which has been successfully applied to many intelligent systems. We detail world modeling techniques used in the 4D/RCS architecture and then analyze the high precision maps generated by the vehicle world modeling algorithms as compared to ground truth obtained from an independent differential GPS system operable throughout most of the NIST campus. This work has implications, not only for outdoor vehicles but also, for indoor automated guided vehicles where future systems will have more and more onboard intelligence requiring non-contact sensors to provide accurate vehicle and object positioning.
Reducing False Positives in Runtime Analysis of Deadlocks
NASA Technical Reports Server (NTRS)
Bensalem, Saddek; Havelund, Klaus; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper presents an improvement of a standard algorithm for detecting dead-lock potentials in multi-threaded programs, in that it reduces the number of false positives. The standard algorithm works as follows. The multi-threaded program under observation is executed, while lock and unlock events are observed. A graph of locks is built, with edges between locks symbolizing locking orders. Any cycle in the graph signifies a potential for a deadlock. The typical standard example is the group of dining philosophers sharing forks. The algorithm is interesting because it can catch deadlock potentials even though no deadlocks occur in the examined trace, and at the same time it scales very well in contrast t o more formal approaches to deadlock detection. The algorithm, however, can yield false positives (as well as false negatives). The extension of the algorithm described in this paper reduces the amount of false positives for three particular cases: when a gate lock protects a cycle, when a single thread introduces a cycle, and when the code segments in different threads that cause the cycle can actually not execute in parallel. The paper formalizes a theory for dynamic deadlock detection and compares it to model checking and static analysis techniques. It furthermore describes an implementation for analyzing Java programs and its application to two case studies: a planetary rover and a space craft altitude control system.
NASA Astrophysics Data System (ADS)
Tan, Yan
Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical
CFD simulation of coaxial injectors
NASA Technical Reports Server (NTRS)
Landrum, D. Brian
1993-01-01
The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial
NASA Technical Reports Server (NTRS)
Applebaum, Michael P.; Hall, Leslie, H.; Eppard, William M.; Purinton, David C.; Campbell, John R.; Blevins, John A.
2015-01-01
This paper describes the development, testing, and utilization of an aerodynamic force and moment database for the Space Launch System (SLS) Service Module (SM) panel jettison event. The database is a combination of inviscid Computational Fluid Dynamic (CFD) data and MATLAB code written to query the data at input values of vehicle/SM panel parameters and return the aerodynamic force and moment coefficients of the panels as they are jettisoned from the vehicle. The database encompasses over 5000 CFD simulations with the panels either in the initial stages of separation where they are hinged to the vehicle, in close proximity to the vehicle, or far enough from the vehicle that body interference effects are neglected. A series of viscous CFD check cases were performed to assess the accuracy of the Euler solutions for this class of problem and good agreement was obtained. The ultimate goal of the panel jettison database was to create a tool that could be coupled with any 6-Degree-Of-Freedom (DOF) dynamics model to rapidly predict SM panel separation from the SLS vehicle in a quasi-unsteady manner. Results are presented for panel jettison simulations that utilize the database at various SLS flight conditions. These results compare favorably to an approach that directly couples a 6-DOF model with the Cart3D Euler flow solver and obtains solutions for the panels at exact locations. This paper demonstrates a method of using inviscid CFD simulations coupled with a 6-DOF model that provides adequate fidelity to capture the physics of this complex multiple moving-body panel separation event.
Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv
2009-01-01
This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.