Science.gov

Sample records for positive electrospray ionisation

  1. The effect of electrospray solvent composition on desorption electrospray ionisation (DESI) efficiency and spatial resolution.

    PubMed

    Green, F M; Salter, T L; Gilmore, I S; Stokes, P; O'Connor, G

    2010-04-01

    In desorption electrospray ionisation (DESI) the interaction between the electrospray and the surface is key to two important analytical parameters, the spatial resolution and the sensitivity. We evaluate the effect of the electrospray solvent type, organic solvent fraction with water, analyte solubility and substrate wettability on DESI erosion diameter and material transferral into useful ion signal. To do this five amino acids, glycine, alanine, valine, leucine and phenylalanine are prepared as thin films on three substrates, UV/ozone treated glass, glass and polytetrafluoroethylene (PTFE). Four different solvents, acetonitrile (ACN), methanol (MeOH), ethanol (EtOH) and propan-2-ol (IPA), are used with organic solvent fractions with water varying from 0.1 to 1. These model systems allow the solubility or wettability to be kept constant as other parameters are varied. Additionally, comparison with electrospray ionisation (ESI) allows effects of ionisation efficiency to be determined. It is shown that the DESI efficiency is linearly dependent on the solubility (for these materials at least) and for analytes with solubilities below 1.5 g kg(-1), additional strategies may be required for DESI to be effective. We show that the DESI erosion diameter improves linearly with organic solvent fraction, with an organic solvent fraction of 0.9 instead of 0.5 leading to a 2 fold improvement. Furthermore, this leads to a 35 fold increase in DESI efficiency, defined as the molecular ion yield per unit area. It is shown that these improvements correlate with smaller droplet sizes rather than surface wetting or ionisation. PMID:20349538

  2. Simultaneous determination of amiloride and hydrochlorothiazide in human plasma by liquid chromatography/tandem mass spectrometry with positive/negative ion-switching electrospray ionisation.

    PubMed

    Song, Min; Hang, Taijun; Zhao, Hua; Wang, Li; Ge, Ping; Ma, Pengcheng

    2007-01-01

    A new method for simultaneous determination of amiloride and hydrochlorothiazide by liquid chromatography/electrospray tandem mass spectrometry (LC/MS/MS) operated in positive and negative ionization switching mode was developed and validated. Protein precipitation with acetonitrile was selected for sample preparation. The analytes were separated on a Phenomenex Curosil-PFP (250x4.6 mm, 5 microm) column by a gradient elution with a mobile phase consisting of 0.15% formic acid solution containing 0.23% ammonium acetate and methanol pumped at a flow rate of 1.0 mL.min(-1). Rizatriptan was used as the internal standard (IS) for quantification. The determination was carried out on a Waters Quattro-micro triple-quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode using the following transitions monitored simultaneously: positive m/z 230-->171 for amiloride, m/z 270-->158 for rizatriptan, and negative m/z 296-->205 for hydrochlorothiazide. The lower limits of quantification (LLOQs) were 0.1 and 1.0 ng.mL(-1) for amiloride and hydrochlorothiazide, respectively, which were lower than other published methods by using ultraviolet (UV), fluorimetric or mass spectrometric detection. The intra- and inter-day precision and accuracy were studied at three different concentration levels and were always better than 15% (n=5). This simple and robust LC/MS/MS method was successfully applied to the pharmacokinetic study of compound amiloride and hydrochlorothiazide tablets in healthy male Chinese volunteers. PMID:17902196

  3. Analysis of oak tannins by liquid chromatography-electrospray ionisation mass spectrometry.

    PubMed

    Mämmelä, P; Savolainen, H; Lindroos, L; Kangas, J; Vartiainen, T

    2000-09-01

    Extractable tannins were analysed by liquid chromatography-electrospray ionisation mass spectrometry in two oak species, North American white oak (Quercus alba) and European red oak (Quercus robur). They mainly included various glucose gallic and ellagic acid esters. The structures were partially determined, and they included grandinin/roburin E, castalagin/vescalagin, gallic acid, valoneic acid bilactone, monogalloyl glucose, digalloyl glucose, trigalloyl glucose, ellagic acid rhamnose, quercitrin and ellagic acid. PMID:10999626

  4. Forensic applications of desorption electrospray ionisation mass spectrometry (DESI-MS).

    PubMed

    Morelato, Marie; Beavis, Alison; Kirkbride, Paul; Roux, Claude

    2013-03-10

    Desorption electrospray ionisation mass spectrometry (DESI-MS) is an emerging analytical technique that enables in situ mass spectrometric analysis of specimens under ambient conditions. It has been successfully applied to a large range of forensically relevant materials. This review assesses and highlights forensic applications of DESI-MS including the analysis and detection of illicit drugs, explosives, chemical warfare agents, inks and documents, fingermarks, gunshot residues and drugs of abuse in urine and plasma specimens. The minimal specimen preparation required for analysis and the sensitivity of detection achieved offer great advantages, especially in the field of forensic science. PMID:23498998

  5. Desorption electrospray ionisation mass spectrometry and tandem mass spectrometry of low molecular weight synthetic polymers.

    PubMed

    Jackson, Anthony T; Williams, Jonathan P; Scrivens, James H

    2006-01-01

    A range of low molecular weight synthetic polymers has been characterised by means of desorption electrospray ionisation (DESI) combined with both mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Accurate mass experiments were used to aid the structural determination of some of the oligomeric materials. The polymers analysed were poly(ethylene glycol) (PEG), polypropylene glycol (PPG), poly(methyl methacrylate) (PMMA) and poly(alpha-methyl styrene). An application of the technique for characterisation of a polymer used as part of an active ingredient in a pharmaceutical tablet is described. The mass spectra and tandem mass spectra of all of the polymers were obtained in seconds, indicating the sensitivity of the technique. PMID:16912984

  6. Chemical profile of mango (Mangifera indica L.) using electrospray ionisation mass spectrometry (ESI-MS).

    PubMed

    Oliveira, Bruno G; Costa, Helber B; Ventura, José A; Kondratyuk, Tamara P; Barroso, Maria E S; Correia, Radigya M; Pimentel, Elisângela F; Pinto, Fernanda E; Endringer, Denise C; Romão, Wanderson

    2016-08-01

    Mangifera indica L., mango fruit, is consumed as a dietary supplement with purported health benefits; it is widely used in the food industry. Herein, the chemical profile of the Ubá mango at four distinct maturation stages was evaluated during the process of growth and maturity using negative-ion mode electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry (ESI(-)FT-ICR MS) and physicochemical characterisation analysis (total titratable acidity (TA), total soluble solids (TSS), TSS/TA ratio, and total polyphenolic content). Primary (organic acids and sugars) and secondary metabolites (polyphenolic compounds) were mostly identified in the third maturation stage, thus indicating the best stage for harvesting and consuming the fruit. In addition, the potential cancer chemoprevention of the secondary metabolites (phenolic extracts obtained from mango samples) was evaluated using the induction of quinone reductase activity, concluding that fruit polyphenols have the potential for cancer chemoprevention. PMID:26988473

  7. High throughput volatile fatty acid skin metabolite profiling by thermal desorption secondary electrospray ionisation mass spectrometry.

    PubMed

    Martin, Helen J; Reynolds, James C; Riazanskaia, Svetlana; Thomas, C L Paul

    2014-09-01

    The non-invasive nature of volatile organic compound (VOC) sampling from skin makes this a priority in the development of new screening and diagnostic assays. Evaluation of recent literature highlights the tension between the analytical utility of ambient ionisation approaches for skin profiling and the practicality of undertaking larger campaigns (higher statistical power), or undertaking research in remote locations. This study describes how VOC may be sampled from skin and recovered from a polydimethylsilicone sampling coupon and analysed by thermal desorption (TD) interfaced to secondary electrospray ionisation (SESI) time-of-flight mass spectrometry (MS) for the high throughput screening of volatile fatty acids (VFAs) from human skin. Analysis times were reduced by 79% compared to gas chromatography-mass spectrometry methods (GC-MS) and limits of detection in the range 300 to 900 pg cm(-2) for VFA skin concentrations were obtained. Using body odour as a surrogate model for clinical testing 10 Filipino participants, 5 high and 5 low odour, were sampled in Manilla and the samples returned to the UK and screened by TD-SESI-MS and TD-GC-MS for malodour precursors with greater than >95% agreement between the two analytical techniques. Eight additional VFAs were also identified by both techniques with chains 4 to 15 carbons long being observed. TD-SESI-MS appears to have significant potential for the high throughput targeted screening of volatile biomarkers in human skin. PMID:24992564

  8. High-performance liquid chromatographic, capillary electrophoretic and capillary electrophoretic-electrospray ionisation mass spectrometric analysis of selected alkaloid groups.

    PubMed

    Stöckigt, Joachim; Sheludk, Yuri; Unger, Matthias; Gerasimenko, Irina; Warzecha, Heribert; Stöckigt, Detlef

    2002-08-16

    Systems for efficient separation of selected alkaloid groups by high performance liquid chromatography (HPLC), capillary electrophoresis (CE) and capillary electrophoresis coupled with electrospray ionisation mass spectrometry (CE-ESI-MS) are described. The optimized HPLC system was applied for the separation of 23 standard indole alkaloids as well as for qualitative and quantitative analyses of crude alkaloid extracts of Rauvolfia serpentina X Rhazya stricta hybrid cell cultures. The developed conditions for CE analysis proved to be efficient for separation of mixtures of standard indole and beta-carboline alkaloids. The described buffer system is also applicable in the combination of CE with electrospray ionisation mass spectrometry. This analytical technique allowed the separation and identification of components of standard indole alkaloid mixture as well as crude extracts of R. serpentina roots, R. serpentina cell suspension cultures and cortex of Aspidosperma quebracho-blanco. The influence of buffer composition and analyte structures on separation is discussed. PMID:12219932

  9. Investigating the degradation of the sympathomimetic drug phenylephrine by electrospray ionisation-mass spectrometry.

    PubMed

    Trommer, Hagen; Raith, Klaus; Neubert, Reinhard H H

    2010-06-01

    The frequently used sympathomimetic drug phenylephrine has been studied by electrospray ionisation-mass spectrometry. The stability of the adrenoceptor agonist was examined by investigations of the pharmaceutically used salts phenylephrine hydrochloride and phenylephrine bitartrate. Photostability has been studied by use of an irradiation equipment emitting a solar radiation spectrum. The experiments were carried out by analysis of aqueous drug solutions before and after irradiation treatment. The phenylephrine derivative with unsaturated side chain originating from the drug by loss of one water molecule has been detected as the major degradation product of both phenylephrine salts the hydrochloride and the bitartrate. Further degradation and oxidation products were detectable already in the full scan mode demonstrating a low stability of the drug. Tandem mass spectrometry and multiple stage mass spectrometry experiments enabled the establishment of fragmentation schemes of both salts for the first time. Irradiation treatment indicated that phenylephrine bitartrate is more prone to degradation than the hydrochloride because of an additional decomposition sensitivity of the tartaric acid counter ion. An interaction between phenylephrine and its counter ion degradation products via a nucleophilic addition mechanism is suggested to be the explanation for the detected ion signals after irradiation treatment of phenylephrine bitartrate. PMID:20122809

  10. Artificially-aged cachaça samples characterised by direct infusion electrospray ionisation mass spectrometry.

    PubMed

    de Souza, Patterson P; Resende, Ana M M; Augusti, Daniella V; Badotti, Fernanda; Gomes, Fátima de Cássia O; Catharino, Rodrigo R; Eberlin, Marcos N; Augusti, Rodinei

    2014-01-15

    Direct infusion electrospray ionisation mass spectrometry in the negative ion mode [ESI(-)-MS] was employed to evaluate the authenticity of aged cachaças, a traditional and valuable Brazilian alcoholic beverage prepared from the distillation of brewed sugarcane juice and aged in barrels made of common woods. Counterfeit samples were prepared by adding dyes, sawdust or essences to a freshly-distiled, much less valuable sample (white cachaça) to simulate the 1-2years long natural ageing in wooden barrels. A simple visual inspection revealed remarkable differences between the ESI(-)-MS of the authentic samples (aged in oak or amburana casks) and the artificially-aged counterfeit samples. A set of diagnostic ions were detectable in the ESI(-)-MS of the authentic samples aged in oak (m/z 197, 241, 301 and 307) and amburana (m/z 271 and 377/379). This fast and direct methodology seems useful as a routine procedure to monitor this highly profitable and common counterfeit practice. PMID:24054215

  11. Identification of synthetic dyes in early colour photographs using capillary electrophoresis and electrospray ionisation-mass spectrometry.

    PubMed

    López-Montes, Ana Ma; Dupont, Anne-Laurence; Desmazières, Bernard; Lavédrine, Bertrand

    2013-09-30

    Capillary electrophoresis with photodiode array detection (CE-PDA) and with electrospray ionisation-mass spectrometry (CE-ESI-MS) was used for the separation and the identification of 23 synthetic organic dyes, among those used in early 20th century colour photographs such as autochromes. Both cationic and anionic dyes could be separated within 15min using a single CE-PDA method. The method was used as the basis to develop a CE-ESI-MS methodology through the optimisation of the relevant ESI and MS parameters. Sheath liquid composition, nebulising gas pressure, drying gas flow rate and drying gas temperature were found to influence the sensitivity of the detection. These parameters were optimised in positive and negative ion modes for cationic dyes and anionic dyes, respectively. The two analyses could be carried out successively on a single sample. In view of the application to cultural heritage objects, the CE-ESI-MS analytical procedure was applied to identify the dyes in a Filmcolor artefact, late version of the autochrome. The results complemented and enhanced current knowledge as four cationic dyes and three anionic dyes were identified. Four additional dyes are proposed as possibly present as traces. PMID:23953463

  12. Characterisation of a proposed internet synthesis of N,N-dimethyltryptamine using liquid chromatography/electrospray ionisation tandem mass spectrometry.

    PubMed

    Martins, Cláudia P B; Freeman, Sally; Alder, John F; Brandt, Simon D

    2009-08-14

    The psychoactive properties of N,N-dimethyltryptamine (DMT) are known to induce altered states of consciousness in humans. These properties attract great interest from clinical, neuroscientific, clandestine and forensic communities. The Breath of Hope Synthesis was reported on an internet website as a convenient two-step methodology for the preparation of DMT. The analytical characterisation of the first stage was the subject of previous publications by the authors and involved the thermal decarboxylation of tryptophan and the formation of tryptamine. The present study reports on the characterisation of the second step of this procedure which was based on the methylation of tryptamine. This employed methyl iodide and benzyltriethylammonium chloride/sodium hydroxide as a phase transfer catalyst. The reaction product was characterised by liquid chromatography/electrospray ionisation tandem mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry. Quantitative evaluation was carried out in positive multiple reaction monitoring mode (MRM), which included synthesis of the identified reaction products. MRM screening of the product did not lead to the detection of DMT. Instead, 11.1% tryptamine starting material, 21.0% N,N,N-trimethyltryptammonium iodide (TMT) and 47.4% 1-N-methyl-TMT were detected. A 0.5% trace of the monomethylated N-methyltryptamine was also detected. This study demonstrated the impact on product purity of doubtful synthetic methodologies discussed on the internet. PMID:19592003

  13. Capillary electrophoresis with electrospray ionisation-mass spectrometry for the characterisation of degradation products in aged papers.

    PubMed

    Dupont, Anne-Laurence; Seemann, Agathe; Lavédrine, Bertrand

    2012-01-30

    A methodology for capillary electrophoresis/electrospray ionisation mass spectrometry (CE/ESI-MS) was developed for the simultaneous analysis of degradation products from paper among two families of compounds: low molar mass aliphatic organic acids, and aromatic (phenolic and furanic) compounds. The work comprises the optimisation of the CE separation and the ESI-MS parameters for improved sensitivity with model compounds using two successive designs of experiments. The method was applied to the analysis of lignocellulosic paper at different stages of accelerated hygrothermal ageing. The compounds of interest were identified. Most of them could be quantified and several additional analytes were separated. PMID:22284496

  14. Letter: characterisation and identification of spermine and spermidine derivatives in Microdesmis keayana and Microdesmis puberula roots by electrospray ionisation tandem mass spectrometry and high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry.

    PubMed

    Roumy, Vincent; Hennebelle, Thierry; Zamblé, Alexis; Zamblé Yao, Jacques; Sahpaz, Sevser; Bailleul, François

    2008-01-01

    Three new N(1),N(5),N(14)-tris(4- hydroxycinnamoyl)spermines were identified in hydromethanolic root extracts of Microdesmis keayana J. Léonard and Microdesmis puberula Hook f. The electrospray ionisation tandem mass spectrometry (ESI-MS/MS) technique with specific nuclear magnetic resonance analysis of hydrolysed products made it possible to identify N(1),N(5),N(14)-tris(p-coumaroyl)spermine, N(1)-feruloyl,N(5),N(14)-di(p-coumaroyl)spermine and N(1),N(5),N(14)-tris(feruloyl)spermine, named keayanines B, C and D, respectively. ESI-MS/MS analysis most effectively provided structural data although high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry was also used to characterise four other compounds from Microdesmis puberula-keayanidines A, B, C and keayanine A-which had already been identified in M. keayana. This chemical data is the first to be published for M. puberula which is a commonly used plant in Central African traditional medicine. PMID:18493101

  15. Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry.

    PubMed

    Carazzone, Chiara; Mascherpa, Dora; Gazzani, Gabriella; Papetti, Adele

    2013-06-01

    Phenolic acids and flavonoids extracted from several types of Cichorium intybus var. silvestre salads ("Chioggia", "Treviso", "Treviso tardivo", and "Verona") were characterised by high-performance liquid chromatography-electrospray ionisation/mass spectrometry. Among the 64 compounds detected, several hydroxycinnamic acid derivatives including 8 mono- and dicaffeoylquinic acids, 3 tartaric acid derivatives, 31 flavonol and 2 flavone glycosides, as well as 10 anthocyanins were characterised based on UV spectra and MS(n) fragmentation patterns. Furthermore, several isomers of caffeic acid derivatives were distinguished for the first time by their specific mass spectral data. This is the first study reporting the glycosylation type and position of mono- and diglycosylated flavonoids in red salads. PMID:23411215

  16. Characterisation of legumes by enzymatic hydrolysis, microdialysis sampling, and micro-high-performance anion-exchange chromatography with electrospray ionisation mass spectrometry.

    PubMed

    Okatch, Harriet; Torto, Nelson; Armateifio, Joan

    2003-04-11

    An assay based on enzymatic hydrolysisand microdialysis sampling, micro-high-performance anion-exchange chromatography (micro-HPAEC) with electrospray ionisation mass spectrometry (ESI-MS) for the characterisation of legumes is presented. Characterisation of two bean varieties; Phaseolus mungo and P. acutifilous was based upon enzymatic hydrolysis using an endo-beta-mannanase from Aspergillus niger with subsequent analysis of the hydrolysates with HPAEC-MS. The hydrolysates were detected in the positive ionisation mode after desalting the chromatographic effluent, employing a cation-exchange membrane desalting device with water as the regenerating liquid. Mass chromatograms, acquiredafter hydrolysis of both bean samples for 12 h, showed two different profiles of hydrolysates. The P. mungo bean hydrolysate showed the presence of saccharides with a degree of polymerisation (DP) in the range of 2-6, whereas that of P. acutifilous showed only DPs of 2-5. Both bean samples had one type of DP 2, but showed different types of DPs 3, 4 and 5. Only the P. mungo sample showed the presence of DP 6. The most abundant fraction for P. mungo was DP 4, whereas that for P. acutifilous was DP 5. Tandem MS of the hydrolysates showed that the DP 2 hydrolysates observed for the samples were of the same type, having a 1,6 linkage. Also tandem MS data for DPs 3, 4, and 5 showed that similar hydrolysates were present within the same sample as well as among the two samples. The data also showed the existence of 1,6 linkages for DP 3, 4, and 5 hydrolysates. The single enzymatic hydrolysis in combination with microdialysis and HPAEC with ESI-MS proved to be sufficient and reproducible for profiling and showing the difference between the two bean samples. PMID:12735463

  17. A derivatisation and liquid chromatography/electrospray ionisation multistage mass spectrometry method for the characterisation of naphthenic acids.

    PubMed

    Smith, B E; Rowland, S J

    2008-12-01

    Naphthenic acids (NAs) are partially uncharacterised complex mixtures of carboxylic acids, resulting from the microbial oxidation of petroleum hydrocarbons. They are associated with the fouling of pipelines and process equipment in oil production and with corrosion in oil refineries. As by-products of the rapidly expanding oil (tar) sands industries, NAs are also pollutants and have proved to be toxic to a range of organisms. They also have important beneficial uses as fungicides, tyre additives and, paradoxically, also in the manufacture of corrosion inhibitors. These features make the characterisation of NAs an important goal for analytical chemists. Here we describe the synthesis of amide derivatives of NAs for characterisation by liquid chromatography/electrospray ionisation multistage mass spectrometry (LC/ESI-MS(n)). The method was applied to commercially available carboxylic acids, novel synthetic NAs, commercial NAs refined from crude oils, crude oil NAs and Athabasca oil sands NAs. In addition to confirming the number of alicyclic rings and length of alkyl side chain substituents (confirming information from existing methods), the MS(n) results provided further structural information. Most important of these was the finding that bi- to polycyclic acids containing ethanoate side chains, in addition to alkyl substituents, were widespread amongst the oil and oil sands NAs. The latter NAs are known end members of the beta-oxidation of NAs with even carbon number alkanoate chains. Since such NA mixtures are toxic, they should be targets for bioremediation. Bioremediation of NAs can also be monitored better by application of the methods described herein. PMID:18988206

  18. Quantitative analysis of surfactant deposits on human skin by liquid chromatography/electrospray ionisation tandem mass spectrometry.

    PubMed

    Massey, Karen A; Snelling, Anna M; Nicolaou, Anna

    2010-05-15

    Surfactants are commonly used as cleansing agents and yet there are concerns that they may also have a role in skin irritation. The lack of suitable methods for the quantitative and qualitative analysis of surfactant deposition on skin has hindered the in-depth investigation of such effects. Here, we report the application of reversed-phase liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) assays for two surfactants commonly used in consumer products, namely sodium lauryl ether sulfate (SLES) and laurylamidopropyl betaine (LAPB), to a baseline study aiming to assess deposition levels on human skin. The linearity of the assays was established at 3-20 ng, with coefficient of variation below 5%. The detection limits were 100 pg for LAPB and 1 ng for SLES; quantitation limits were 500 pg for LAPB and 2.5 ng for SLES. The baseline study was conducted using a panel of 40 healthy volunteers. Skin extract samples were taken in triplicate from forearms, using ethanol. SLES was detected on most volunteers, with 75% of them having SLES deposits in the range of 100-600 ng/cm(2). LAPB was detected on the skin of all volunteers with 85% of them having deposit levels within the concentration range of 1-100 ng/cm(2). These results demonstrate the extent to which commonly used surfactants remain on the skin during the day. The analytical methods reported here can be applied to the investigation of surfactants in relation to general skin condition and to the development and optimisation of new consumer wash products. PMID:20391611

  19. Analysis of organophosphate flame retardant diester metabolites in human urine by liquid chromatography electrospray ionisation tandem mass spectrometry.

    PubMed

    Van den Eede, Nele; Neels, Hugo; Jorens, Philippe G; Covaci, Adrian

    2013-08-16

    A new analytical method was developed for the determination of dialkyl and diaryl phosphates (DAPs), which are metabolites of organophosphate triesters (PFRs), in human urine. Target DAPs included dibutyl phosphate (DBP), diphenyl phosphate (DPHP), bis(2-butoxyethyl) phosphate (BBOEP), bis(2-chloroethyl) phosphate (BCEP), bis(1-chloro-2-propyl) phosphate (BCPP), and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP). Sample preparation was based on solid phase extraction using a weak anion exchange sorbent (Oasis WAX). Although several instrumental techniques have been tested, best results were obtained with reversed phase liquid chromatography-negative electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) taking the total analysis time into account. Method accuracy at 3ng/mL in pooled urine ranged between 69 and 119% (recovery), while inter-day imprecision (as relative standard deviation) was <31%. The performance of the LC-MS/MS method was compared to a method based on gas chromatography-electron impact tandem mass spectrometry (GC-MS/MS) and a good correlation (Pearson r=0.82, p<0.01) between the results of these two methods was obtained for DPHP. LC-MS/MS analysis was more suitable for DPHP and BBOEP with respective method limits of quantification (mLOQ) of 0.3 and 0.15ng/mL. In contrast, GC-MS/MS had a better sensitivity for BCEP, BCIPP, and BDCIPP, their respective mLOQs being 0.1, 0.06, 0.02ng/mL, compared to 1.2, 3.7, and 0.5ng/mL by LC-MS/MS. A set of urine samples from volunteers was analysed, in which DPHP was the major DAP metabolite. A significant increase of DPHP levels was observed in the group of smokers (geometric mean of 1.55ng/mL) compared to the non-smokers (geometric mean of 0.88ng/mL). Metabolic transformation of triphenyl phosphate to DPHP by metabolic enzymes induced in smokers could be an explanation for this observation. PMID:23849782

  20. Single-stage accelerator mass spectrometer radiocarbon-interference identification and positive-ionisation characterisation

    NASA Astrophysics Data System (ADS)

    Wilcken, K. M.; Freeman, S. P. H. T.; Xu, S.; Dougans, A.

    2013-01-01

    A single-stage accelerator mass spectrometer (SSAMS) is a good alternative to conventional spectrometers based on tandem electrostatic acceleration for radiocarbon measurement and permits experimentation with both negative and positive carbon ions. However, such 14C AMS of either polarity ions is limited by an interference. In the case of anion acceleration we have newly determined this to be summed 13C and 16O by improvising an additional Wien filter on our SSAMS deck. Also, 14C AMS might be improved by removing its dependency on negative-ionisation in a sputter ion source. This requires negative-ionisation of sample atoms elsewhere to suppress the 14N interference, which we accomplish by transmitting initially positive ions through a thin membrane. The ionisation dependence on ion-energy is found to be consistent with previous experimentation with vapours and thicker foils.

  1. Rapid identification of vinca alkaloids by direct-injection electrospray ionisation tandem mass spectrometry and confirmation by high-performance liquid chromatography-mass spectrometry.

    PubMed

    Zhou, Hui; Tai, Yuanpo; Sun, Cuirong; Pan, Yuanjiang

    2005-01-01

    A simple and rapid method for the identification of Vinca alkaloids from a crude extract of Catharanthus roseus G. Don (Apocynaceae) by direct-injection electrospray ionisation (ESI) and tandem mass spectrometry (MS/MS) has been developed. The alkaloids vindoline, vindolidine, vincristine and vinblastine were evaluated in a commercial extract of C. roseus using this method. Catharanthine and its isomers 19S-vindolinine and vindolinine were detected in the commercial product by direct injection ESI/MS/MS and confirmed by preparation and by HPLC-ESI/MS. For the characterisation of different fragment fingerprints, ESI/MS/MS is a sensitive, rapid and convenient technique by which to identify some constituents in complex and mixed plant extracts. PMID:16223089

  2. Analysis of peptides and protein digests by reversed phase high performance liquid chromatography-electrospray ionisation mass spectrometry using neutral pH elution conditions.

    PubMed

    Yang, Yuanzhong; Boysen, Reinhard I; Chowdhury, Jamil; Alam, Asif; Hearn, Milton T W

    2015-05-01

    In this study, the advantages of carrying out the analysis of peptides and tryptic digests of proteins under gradient elution conditions at pH 6.5 by reversed-phase liquid chromatography (RP-HPLC) and in-line electrospray ionisation mass spectrometry (ESI-MS) are documented. For these RP separations, a double endcapped, bidentate anchored n-octadecyl wide pore silica adsorbent was employed in a capillary column format. Compared to the corresponding analysis of the same peptides and protein tryptic digests using low pH elution conditions for their RP-HPLC separation, this alternative approach provides improved selectivity and more efficient separation of these analytes, thus allowing a more sensitive identification of proteins at different abundance levels, i.e. more tryptic peptides from the same protein could be confidently identified, enabling higher sequence coverage of the protein to be obtained. This approach was further evaluated with very complex tryptic digests derived from a human plasma protein sample using an online two-dimensional (2D) strong cation-exchange (SCX)-RP-HPLC-ESI-MS/MS system. Again, at pH 6.5, with mobile phases of different compositions, improved chromatographic selectivities were obtained, concomitant with more sensitive on-line electrospray ionisation tandem mass spectrometric (ESI-MS/MS) analysis. As a consequence, more plasma proteins could be confidently identified, highlighting the potential of these RP-HPLC methods with elution at pH 6.5 to extend further the scope of proteomic investigations. PMID:25892073

  3. Identification of N-glycans from Ebola virus glycoproteins by matrix-assisted laser desorption/ionisation time-of-flight and negative ion electrospray tandem mass spectrometry

    PubMed Central

    Ritchie, Gayle; Harvey, David J.; Stroeher, Ute; Feldmann, Friederike; Feldmann, Heinz; Wahl-Jensen, Victoria; Royle, Louise; Dwek, Raymond A.; Rudd, Pauline M.

    2012-01-01

    The larger fragment of the transmembrane glycoprotein (GP1) and the soluble glycoprotein (sGP) of Ebola virus were expressed in human embryonic kidney cells and the secreted products were purified from the supernatant for carbohydrate analysis. The N-glycans were released with PNGase F from within sodium dodecyl sulphate/polyacrylamide gel electrophoresis (SDS-PAGE) gels. Identification of the glycans was made with normal-phase high-performance liquid chromatography (HPLC), matrix-assisted laser desorption/ionisation mass spectrometry, negative ion electrospray ionisation fragmentation mass spectrometry and exoglycosidase digestion. Most glycans were complex bi-, tri-and tetra-antennary compounds with reduced amounts of galactose. No bisected compounds were detected. Triantennary glycans were branched on the 6-antenna; fucose was attached to the core GlcNAc residue. Sialylated glycans were present on sGP but were largely absent from GP1, the larger fragment of the transmembrane glycoprotein. Consistent with this was the generally higher level of processing of carbohydrates found on sGP as evidenced by a higher percentage of galactose and lower levels of high-mannose glycans than were found on GP1. These results confirm and expand previous findings on partial characterisation of the Ebola virus transmembrane glycoprotein. They represent the first detailed data on carbohydrate structures of the Ebola virus sGP. PMID:20131323

  4. Simultaneous determination of volatile and non-volatile nitrosamines in processed meat products by liquid chromatography tandem mass spectrometry using atmospheric pressure chemical ionisation and electrospray ionisation.

    PubMed

    Herrmann, S S; Duedahl-Olesen, L; Granby, K

    2014-02-21

    A sensitive, selective and generic method has been developed for the simultaneous determination of the contents (μgkg(-1) range) of both volatile nitrosamines (VNA) and non-volatile nitrosamines (NVNA) in processed meat products. The extraction procedure only requires basic laboratory equipment and a small volume of organic solvent. Separation and quantification were performed by the developed LC-(APCI/ESI)MS/MS method. The method was validated using spiked samples of three different processed meat products. Satisfactory recoveries (50-130%) and precisions (2-23%) were obtained for eight VNA and six NVNAs with LODs generally between 0.2 and 1μgkg(-1), though for a few analyte/matrix combinations higher LODs were obtained (3 to 18μgkg(-1)). The validation results show that results obtained for one meat product is not always valid for other meat products. We were not able to obtain satisfactory results for N-nitrosohydroxyproline (NHPRO), N-nitrosodibenzylamine (NDBzA) and N-nitrosodiphenylamine (NDPhA). Application of the APCI interface improved the sensitivity of the method, because of less matrix interference, and gave the method a wider scope, as some NAs were ionisable only by APCI. However, it was only possible to ionize N-nitroso-thiazolidine-4-carboxylic acid (NTCA) and N-nitroso-2-methyl-thiazolidine-4-carboxylic acid (NMTCA) by ESI. The validated method was applied for the analysis of processed meat products and contents of N-nitrosodimethylamine (NDMA), N-nitrosopyrrolidine (NPYR), N-nitrosomethylaniline (NMA), N-nitrosoproline (NPRO), NTCA, and NMTCA were found in one or several nitrite cured meat products, whereas none were detected in non-nitrite cured bacon. PMID:24468241

  5. Fractionation and analysis of lipopolysaccharide-derived oligosaccharides by zwitterionic-type hydrophilic interaction liquid chromatography coupled with electrospray ionisation mass spectrometry.

    PubMed

    Man-Kupisinska, Aleksandra; Bobko, Ewelina; Gozdziewicz, Tomasz K; Maciejewska, Anna; Jachymek, Wojciech; Lugowski, Czeslaw; Lukasiewicz, Jolanta

    2016-06-01

    Lipopolysaccharide (LPS, endotoxin) is a main surface antigen and virulence factor of Gram-negative bacteria. Regardless of the source of LPS, this molecule, isolated from the smooth forms of bacteria, is characterised by a general structural layout encompassing three regions: (i) an O-specific polysaccharide (O-PS) - a polymer of repeating oligosaccharide units, (ii) core oligosaccharide (OS), and (iii) the lipid A anchoring LPS in the outer membrane of the cell envelope of Gram-negative bacteria. Structural analysis usually requires degradation of LPS and further efficient separation of various poly- and oligosaccharide glycoforms. The hydrophilic interaction liquid chromatography (HILIC) was shown as an efficient technique for separation of labelled or native neutral and acidic glycans, glycopeptides, sialylated glycans, glycosylated and nonglycosylated peptides. Herein we adopted ZIC(®) (zwitterionic stationary phase covalently attached to porous silica)-HILIC technology in combination with electrospray ionisation mass spectrometry to separate different LPS-derived oligosaccharides. As a result three effective procedures have been developed: (i) to separate different core oligosaccharides of Escherichia coli R1 LOS, (ii) to separate RU-[Hep]-Kdo oligosaccharides from core OS glycoforms of Hafnia alvei PCM 1200 LPS, and (iii) to separate Hep and Kdo-containing mono, di-, tri- and tetrasaccharides of H. alvei PCM 1200 LPS. Moreover, some of developed analytical procedures were scaled to semi-preparative protocols and used to obtain highly-purified fractions of the interest in larger quantities required for future evaluation, analysis, and biological applications. PMID:27085741

  6. Elucidating the structure of carbon nanoparticles by ultra-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry.

    PubMed

    Hu, Qin; Meng, Xiangpeng; Choi, Martin M F; Gong, Xiaojuan; Chan, Wan

    2016-03-10

    A fast and accurate ultra-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) method was developed for the separation and structural elucidation of fluorescent carbon nanoparticles (CNP). The CNP was synthesised from microwave-assisted pyrolysis of citric acid (CA) and 1,2-ethylenediamine (EDA). By using UPLC separation, the CNP product was well separated into ten fractions within 4.0 min. Based on high-accuracy MS and MS/MS analyses, the CNP species were revealed to display six kinds of chemical formulas, including (C10H20N4O5)n, (C8H12N2O5)n, (C16H22N4O9)n, (C6H8O7)n, (C14H18N2O11)n, and (C14H16N2O10)n. In particular, our study revealed for the first time that the CNP species exist as supramolecular clusters with their individual monomers units linked together through non-covalent bonding forces. These findings clearly indicated the usefulness of UPLC-ESI-Q-TOF-MS/MS in identifying the chemical composition of CNP product. It is anticipated that our proposed methodology can be applied to study the structure-property relationships of CNP, facilitating in the production of CNP with desirable spectral features. PMID:26893091

  7. Comprehensive metabolic profiling of mono- and polyglutamated folates and their precursors in plant and animal tissue using liquid chromatography/negative ion electrospray ionisation tandem mass spectrometry.

    PubMed

    Garratt, Lee C; Ortori, Catharine A; Tucker, Gregory A; Sablitzky, Fred; Bennett, Malcolm J; Barrett, David A

    2005-01-01

    This work reports the use of reversed-phase ion-pair chromatography coupled to electrospray ionisation mass spectrometry for the simultaneous profiling of folate-based metabolites including natural folates, their polyglutamatyl derivatives and their biosynthetic precursors in plant and animal tissue. A simple sample preparation method, using 0.1% citric acid and ascorbic acid in ice-cold methanol, was used to extract and stabilise the folates, and three internal standards were used. Chromatography was on a C18 column using slow gradient elution with a mobile phase consisting of methanol/water with 5 mM dimethylhexylamine. Mass spectrometric detection was performed by multiple reaction monitoring in seven separate time windows in negative ion mode over the 25 min run time. Full, quantitative analysis was obtained for 16 folates and a 'semi-quantitative' analysis was possible for all other folates with up to eight conjugated glutamate residues by reference to structurally related calibration standards. The precision, accuracy and recovery of the method were generally within the accepted guidelines for a quantitative bioanalytical method and the method was linear over the range 0.2 to 10 ng of individual folate per sample. The method was applied to profile mono- and polyglutamated tetrahydrofolates (including subcellular analysis) in a range of plant species, including Arabidopsis, spinach, Brassica and wheat; the technique was also successfully applied to the profiling of folates in mouse tissue. PMID:16047318

  8. The hydroxylase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath) exists in several forms as shown by electrospray-ionisation mass spectrometry.

    PubMed

    Buzy, A; Millar, A L; Legros, V; Wilkins, P C; Dalton, H; Jennings, K R

    1998-06-15

    The hydroxylase of the soluble methane monooxygenase from the bacterium Methylococcus capsulatus (Bath) has been investigated by means of electrospray-ionisation mass spectrometry (ESI-MS) and liquid chromatography ESI-MS (LC/ESI-MS). The hydroxylase is a non-heme diiron protein consisting of three pairs of non-identical subunits (alpha approximately 60 kDa, beta approximately 45 kDa and gamma approximately 20 kDa). Liquid chromatographic separation of the hydroxylase subunits was required before MS analysis in order to detect the alpha-subunit. The masses measured for the three subunits were found to disagree with those calculated from their gene sequences. Experiments involving the use of CNBr and trypsin cleavage followed by LC/ESI-MS and MS/MS analyses permitted the location and correction of errors in the sequences deduced from the use of cDNA. The ESI-MS results also showed that the alpha-subunit of the hydroxylase exists in multiple forms which result from cleavage of the protein. This observation explains a number of enigmatic features of the protein previously reported in the literature and illustrates the pivotal role of ESI-MS in complementing data obtained from molecular biology for the characterisation of the primary sequence of proteins. PMID:9688272

  9. Fast imaging of intermittent electrospraying of water with positive corona discharge

    NASA Astrophysics Data System (ADS)

    Pongrác, B.; Kim, H. H.; Janda, M.; Martišovitš, V.; Machala, Z.

    2014-08-01

    The effect of the electrospraying of water in combination with a positive direct current (dc) streamer corona discharge generated in air was investigated in this paper. We employed high-speed camera visualizations and oscilloscopic discharge current measurements in combination with an intensified charge-coupled device camera for fast time-resolved imaging. The repetitive process of Taylor cone formation and droplet formation from the mass fragments of water during the electrospray was visualized. Depending on the applied voltage, the following intermittent modes of electrospraying typical for water were observed: dripping mode, spindle mode, and oscillating-spindle mode. The observed electrospraying modes were repetitive with a frequency of a few hundreds of Hz, as measured from the fast image sequences. This frequency agreed well with the frequency of the measured streamer current pulses. The presence of filamentary streamer discharges at relatively low voltages probably prevented the establishment of a continuous electrospray in the cone-jet mode. After each streamer, a positive glow corona discharge was established on the water filament tip, and it propagated from the stressed electrode along with the water filament elongation. The results show a reciprocal character of intermittent electrospraying of water, and the presence of corona discharge, where both the electrospray and the discharge affect each other. The generation of a corona discharge from the water cone depended on the repetitive process of the cone formation. Also, the propagation and curvature of the water filament were influenced by the discharge and its resultant space charge. Furthermore, these phenomena were partially influenced by the water conductivity.

  10. Analysis of the monosaccharide composition of water-soluble polysaccharides from Sargassum fusiforme by high performance liquid chromatography/electrospray ionisation mass spectrometry.

    PubMed

    Wu, Xiaodan; Jiang, Wei; Lu, Jiajia; Yu, Ying; Wu, Bin

    2014-02-15

    Sargassum fusiforme (hijiki) is the well-known edible algae, whose polysaccharides have been proved to possess interesting bioactivities like antitumor, antioxidant, antimicrobial and immunomodulatory activities. A facile and sensitive method based on high-performance liquid chromatography method of pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP) coupled with electrospray ionisation mass spectrometry (HPLC/ESI-MS) has been established for the analysis of the monosaccharide composition of polysaccharides in S. fusiforme. Monosaccharides have been converted into PMP-labelled derivatives with aqueous ammonia as a catalyst at 70 °C for 30 min. The optimisation of the pre-column derivatization process was studied. The LODs of the monosaccharides were in the range from 0.01 to 0.02 nmol. PMP-labelled mixture of monosaccharides has been well separated by a reverse-phase HPLC and detected by on-line ESI-MS method under optimised conditions. The mobile phase of elution system was chosen as acetonitrile (solvent A) and 20mM aqueous ammonium acetate (solvent B) (pH 3.0) with Zorbax XDB-C18 column at 30 °C for the separation of the monosaccharide derivatives. Identification of the monosaccharides composition was carried out by analysis with mass spectral behaviour and chromatography characteristics of 1-phenyl-3-methyl-5-pyrazolone (PMP) labelled monosaccharides. All PMP-labelled derivatives display high chemical stabilities, whose regular MS fragmentation is specific for reducing labelled sugars. The result showed that the S. fusiforme polysaccharide consisted of mannose, glucose, galactose, xylose, fucose and glucuronic acid or galacturonic acid, or both uronic acids. PMID:24128572

  11. Histidine-containing host-defence skin peptides of anurans bind Cu2+. An electrospray ionisation mass spectrometry and computational modelling study.

    PubMed

    Wang, Tianfang; Andreazza, Hayley J; Pukala, Tara L; Sherman, Patrick J; Calabrese, Antonio N; Bowie, John H

    2011-05-15

    Anuran peptides which contain His, including caerin 1.8 (GLFKVLGSVAKHLLPHVVPVIAEKL-NH(2)), caerin 1.2 (GLLGVLGSVAKHVLPHVVPVIAEHL-NH(2)), Ala(15) maculatin 1.1 (GLFGVLAKVAAHVVAIEHF-NH(2)), fallaxidin 4.1 (GLLSFLPKVIGHLIHPPS-OH), riparin 5.1 (IVSYPDDAGEHAHKMG-NH(2)) and signiferin 2.1 (IIGHLIKTALGMLGL-NH(2)), all form MMet(2+) and (M + Met(2+)-2H(+))(2+) cluster ions (where Met is Cu, Mg and Zn) following electrospray ionisation (ESI) in a Waters QTOF 2 mass spectrometer. Peaks due to Cu(II) complexes are always the most abundant relative to other metal complexes. Information concerning metal(2+) connectivity in a complex has been obtained (at least in part) using b and y fragmentation data from ESI collision-induced dissociation tandem mass spectrometry (CID MS/MS). Theoretical calculations, using AMBER version 10, show that MCu(2+) complexes with the membrane active caerin 1.8, Ala(15) maculatin 1.1 and fallaxidin 4.1 are four-coordinate and approximating square planar, with ligands including His and Lys, together with the carbonyl oxygens of particular backbone amide groups. When binding can occur through two His, or one His and one Lys, the His/Lys ligand structure is the more stable for the studied systems. The three-dimensional (3D) structures of the complexes are always different from the previously determined structures of the uncomplexed model peptides (using 2D nuclear magnetic resonance (NMR) spectroscopy in membrane-mimicking solvents like trifluoroethanol/water). PMID:21488120

  12. Application of positive mode atmospheric chemical ionisation to distinguish epimeric oleanolic and ursolic acids.

    PubMed

    Townley, Chloe; Brettell, Rhea C; Bowen, Richard D; Gallagher, Richard T; Martin, William H C

    2015-01-01

    A new and more reliable method is reported for distinguishing the equatorial and axial epimers of oleanolic and ursolic acids and related triterpenoids based primarily on the relative abundance of the [M+H](+) and [M+-H(2)O](+) signals in their positive mode atmospheric pressure chemical ionisation mass spectra. The rate of elimination of water, which is the principal primary fragmentation of protonated oleanolic and ursolic acids, depends systematically on the stereochemistry of the hydroxyl group in the 3 position. For the b-epimer, in which the 3-hydroxyl substituent is in an equatorial position,[M+-H(2)O](+) is the base peak. In contrast, for the α-epimer, where the 3-hydroxyl group is axial, [M + H](+) is the base peak. This trend, which is general for a range of derivatives of oleanolic and ursolic acids, including the corresponding methyl esters, allows epimeric triterpenoids in these series to be securely differentiated. Confirmatory information is available from the collision-induced dissociation of the [M+-H(2)O](+) primary fragment ions, which follow different pathways for the species derived from axial and equatorial epimers of oleanolic and ursolic acids. These two pieces of independent spectral information permit the stereochemistry of epimeric oleanolic and ursolic acids (and selected derivatives) to be assigned with confidence without relying either on chromatographic retention times or referring to the spectra or other properties of authentic samples of these triterpenoids. PMID:26307724

  13. Quaternary structure of the extracellular haemoglobin of the lugworm Arenicola marina: a multi-angle-laser-light-scattering and electrospray-ionisation-mass-spectrometry analysis.

    PubMed

    Zal, F; Green, B N; Lallier, F H; Vinogradov, S N; Toulmond, A

    1997-01-15

    To elucidate the quaternary structure of the extracellular haemoglobin (Hb) of the marine polychaete Arenicola marina (lugworm) it was subjected to multi-angle laser-light scattering (MALLS) and to electrospray-ionisation mass spectrometry (ESI-MS). It was also subjected to SDS/PAGE analysis for comparative purposes. MALLS analysis gave a molecular mass of 3648 +/- 24 kDa and a gyration radius of 11.3 +/- 1.7 nm. Maximum entropy analysis of the multiply charged electrospray spectra of the native, dehaemed, reduced and carbamidomethylated Hb forms, provided its complete polypeptide chain and subunit composition. We found, in the reduced condition, eight globin chains of molecular masses 15952.5 Da (a1), 15974.8 Da (a2), 15920.9 Da (b1), 16020.1 Da (b2), 16036.2 Da (b3), 16664.8 Da (c), 16983.2 Da (d1), 17033.1 Da (d2) and two linker chains L1, 25174.1 Da, and L2, 26829.7 Da. In the native Hb, chains b, c, d occur as five disulphide-bonded trimer subunits T with masses of 49560.4 Da (T1), 49613.9 Da (T2), 49658.6 Da (T3), 49706.8 Da (T4), 49724.5 Da (T5). Linker chains L1 and L2 occur as one disulphide-bonded homodimer 2L1 (D1) of 50323.1 Da and one disulphide-bonded heterodimer L1-L2 (D2) of 51 981.5 Da. Polypeptide chains a and d possess one free cysteine residue and chains d possess an unusual total of five cysteine residues. Semi-quantitative analysis of ESI-MS data allowed us to propose the following model for the one-twelfth protomer: [(3a1)(3a2)2T] (T corresponding to either T3, T4 or T5). From electron micrograph data T1 and T2 are probably located at the centre of the molecule as mentioned in previous studies. The Hb would thus be composed of 198 polypeptide chains with 156 globin chains and 42 linker chains, each twelfth being in contact with 3.5 linker subunits, providing a total mass of 3682 kDa including haems in agreement with the experimental molecular mass determined by MALLS. From ESI-MS relative intensities and the model proposed above, the globin

  14. Effects of anions on the positive ion electrospray ionization mass spectra of peptides and proteins.

    PubMed

    Mirza, U A; Chait, B T

    1994-09-15

    Positive ion electrospray ionization mass spectra of polypeptides are usually obtained from solutions that are acidified and therefore contain relatively high concentrations of anions. The present study describes an investigation of the effects of these ubiquitous anions on the positive ion electrospray ionization mass spectra of peptides and proteins. Certain anionic species in the spray solutions were observed to cause a marked decrease in the net average charge of peptide and protein ions in the mass spectra compared to the average charge measured in the absence of these anions. This charge neutralization effect was found to depend solely on the nature of the anionic species and was independent of the source of the anion (acid or salt), with the propensity for neutralization following the order: CCl3COO- > CF3COO- > CH3COO- approximately Cl-. A mechanism for the observed charge reduction effect is proposed that involves two steps. The first step occurs in solution, where an anion pairs with a positively charged basic group on the peptide. The second step occurs during the process of desolvation or in the gas phase, where the ion pair dissociates to yield the neutral acid and the peptide with reduced charge state. The different propensities for charge neutralization of the different anionic species is presumed to reflect the avidity of the anion-peptide interaction. These findings demonstrate that any attempt to correlate the distribution of charge states observed on proteins in the gas phase (by positive ion electrospray ionization mass spectrometry) with the net charge residing on the protein in solution will require that the described anion effect be taken into account. In addition, it appears that some control over the distribution of charge states on peptides and protein ions can be exercised by an appropriate choice of anion in the electrospray solution. PMID:7978296

  15. Profile of phenolic compounds of Brazilian virgin olive oils by rapid resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry (RRLC-ESI-TOF-MS).

    PubMed

    Ballus, Cristiano Augusto; Quirantes-Piné, Rosa; Bakhouche, Abdelhakim; da Silva, Luiz Fernando de Oliveira; de Oliveira, Adelson Francisco; Coutinho, Enilton Fick; da Croce, Dorli Mario; Segura-Carretero, Antonio; Godoy, Helena Teixeira

    2015-03-01

    In recent years, agronomical researchers began to cultivate several olive varieties in different regions of Brazil to produce virgin olive oil (VOO). Because there has been no reported data regarding the phenolic profile of the first Brazilian VOO, the aim of this work was to determine phenolic contents of these samples using rapid-resolution liquid chromatography coupled to electrospray ionisation time-of-flight mass spectrometry. 25 VOO samples from Arbequina, Koroneiki, Arbosana, Grappolo, Manzanilla, Coratina, Frantoio and MGS Mariense varieties from three different Brazilian states and two crops were analysed. It was possible to quantify 19 phenolic compounds belonging to different classes. The results indicated that Brazilian VOOs have high total phenolic content because the values were comparable with those from high-quality VOOs produced in other countries. VOOs from Coratina, Arbosana and Grappolo presented the highest total phenolic content. These data will be useful in the development and improvement of Brazilian VOO. PMID:25306359

  16. Significant positive magnetoresistance of graphene/carbon composite films prepared by electrospraying and subsequent heat treatment

    NASA Astrophysics Data System (ADS)

    Chen, L. Q.; Liu, X.; Chen, J. T.; Zhang, Z. C.; Li, J. L.; Wang, L. J.; Jiang, W.

    2012-03-01

    Graphene/carbon composite films were prepared by electrospraying a graphene/polyacrylonitrile composite solution on SiO2-coated silicon substrates and subsequent heat treatment. The as-produced graphene/carbon composite films had a porous structure comprising graphene layers. With a magnetic field applied perpendicularly to the sample, an unexpectedly significant positive magnetoresistance attributed to e-e interaction and weak localization has been observed, which constantly increases with the magnetic field in the temperature range of 300-50 K from 0 to 80 kOe.

  17. Determination and separation of bisphenol A, phthalate metabolites and structural isomers of parabens in human urine with conventional high-pressure liquid chromatography combined with electrospray ionisation tandem mass spectrometry.

    PubMed

    Myridakis, Antonis; Balaska, Eirini; Gkaitatzi, Christina; Kouvarakis, Antonis; Stephanou, Euripides G

    2015-03-01

    Phthalates, bisphenol A (BPA) and parabens (PBs), organic chemicals widely used in everyday products, are considered to be endocrine disruptors. We propose a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of seven phthalate metabolites, six PBs and BPA in human urine. All three categories of the above endocrine disruptors were simultaneously extracted from 1 mL of human urine using solid phase extraction. In addition, with a conventional reversed phase LC column, we achieved for the first time the separation of three pairs of structural isomers, namely iso-/n-butyl paraben, propyl paraben and monobutyl phthalate. LC-MS/MS was operated and tested in both electrospray ionisation (ESI) and atmospheric pressure chemical ionisation (APCI). ESI was selected for the analysis due to its superior stability and repeatability. The method limit of detection (mLOD), achieved for a single set of high-performance LC conditions, ranged from 0.01 to 0.84 ng/mL for phthalate metabolites, from 0.06 to 0.24 ng/mL for PBs and was 2.01 ng/mL for BPA. Derivatisation of BPA with dansyl chloride lowered its mLOD to 0.007 ng/mL. Blank contamination was non-detectable. The present method was successfully applied for the analysis of the above-mentioned compounds in 80 male human urine samples. PMID:25644523

  18. Rapid characterisation and comparison of saponin profiles in the seeds of Korean Leguminous species using ultra performance liquid chromatography with photodiode array detector and electrospray ionisation/mass spectrometry (UPLC-PDA-ESI/MS) analysis.

    PubMed

    Ha, Tae Joung; Lee, Byong Won; Park, Ki Hun; Jeong, Seong Hun; Kim, Hyun-Tae; Ko, Jong-Min; Baek, In-Youl; Lee, Jin Hwan

    2014-03-01

    The present work was reported on investigation of saponin profiles in nine different legume seeds, including soybean, adzuki bean, cowpea, common bean, scarlet runner bean, lentil, chick pea, hyacinth bean, and broad bean using ultra performance liquid chromatography with photodiode array detector and electrospray ionisation/mass spectrometry (UPLC-PDA-ESI/MS) technique. A total of twenty saponins were characterised under rapid and simple conditions within 15min by the 80% methanol extracts of all species. Their chemical structures were elucidated as soyasaponin Ab (1), soyasaponin Ba (2), soyasaponin Bb (3), soyasaponin Bc (4), soyasaponin Bd (5), soyasaponin αg (6), soyasaponin βg (7), soyasaponin βa (8), soyasaponin γg (9), soyasaponin γa (10), azukisaponin VI (11), azukisaponin IV (12), azukisaponin II (13), AzII (14), AzIV (15), lablaboside E (16), lablaboside F (17), lablaboside D (18), chikusetusaponin IVa (19), and lablab saponin I (20). The individual and total saponin compositions exhibited remarkable differences in all legume seeds. In particular, soyasaponin βa (8) was detected the predominant composition in soybean, cowpea, and lentil with various concentrations. Interestingly, soybean, adzuki bean, common bean, and scarlet runner bean had high saponin contents, while chick pea and broad bean showed low contents. PMID:24176342

  19. Positive and negative electrospray LC-MS-MS methods for quantitation of the antiparasitic endectocide drugs, abamectin, doramectin, emamectin, eprinomectin, ivermectin, moxidectin and selamectin in milk.

    PubMed

    Durden, David A

    2007-05-01

    Avermectin endectocides are used for the treatment of cattle against a variety of nematode and arthropod parasites, and consequently may appear in milk after normal or off-label use. The compounds abamectin, doramectin, and ivermectin, contain only C, H and O and may be expected to be detected by LC-MS in negative ion mode. The others contain nitrogen in addition and would be expected to be preferentially ionized in positive mode. The use of positive ion and negative ion methods with electrospray LC-MS-MS were compared. Using negative ion the compounds abamectin, doramectin, ivermectin, emamectin, eprinomectin, and moxidectin gave a curvilinear response and were quantified in raw milk by LC-MS-MS with a triethylamine-acetonitrile buffer over the concentration range 1-60 ppb (microg/kg) using selamectin as the internal standard. The limits of detection (LOD) were between 0.19 ppb (doramectin) and 0.38 ppb (emamectin). The compounds gave maximum sensitivity with positive ionisation from a formic acid-ammonium formate-acetonitrile buffer and were detected in milk (LC-MS-MS) also with a curvilinear response over the range 0.5-60 ppb. Although the positive ion signals were larger, with somewhat lower limits of detection (LOD between 0.06 ppb (doramectin) and 0.32 ppb (moxidectin) the negative ion procedure gave a more linear response and more consistent results. Comparison of spiked samples in the range 2-50 ppb showed a high degree of correlation between the two methods. PMID:17129769

  20. Characterisation of serum transthyretin by electrospray ionisation-ion mobility mass spectrometry: Application to familial amyloidotic polyneuropathy type I (FAP-I).

    PubMed

    Pont, Laura; Benavente, Fernando; Vilaseca, Marta; Giménez, Estela; Sanz-Nebot, Victoria

    2015-11-01

    Transthyretin (TTR) is a homotetrameric protein which is known to misfold and aggregate causing different types of amyloidosis, such as familial amyloidotic polyneuropathy type I (FAP-I). FAP-I is associated with a specific TTR mutant variant (TTR (Met30)) that can be easily detected analysing the monomeric forms of the mutant protein. Meanwhile, the mechanism of protein aggregation onset, which could be triggered by structural changes on the native tetrameric protein complex, remains uncertain. We developed and described herein a new sample pretreatment based on immunoprecipitation (IP) to purify TTR from serum under non-denaturing conditions. Later, a nano-electrospray ionization-ion mobility mass spectrometry (nano-ESI-IM-MS or IM-MS) method was optimised to analyse the protein complexes in serum samples from healthy controls and FAP-I patients. IM-MS allowed separation and characterisation of tetrameric, trimeric and dimeric TTR gas ions due to their differential drift time, which is related to ion size and charge. The tetramer-to-dimer abundance ratio was differential between healthy controls and FAP-I patients (asymptomatic, symptomatic and an iatrogenic patient originally without the mutation who received a liver transplant from an FAP-I patient), and was also indicative of the effectiveness of liver transplantation as a treatment for FAP-I. PMID:26452950

  1. Validation of LC/MS electrospray ionisation method for the estimation of ursodiol in human plasma and its application in bioequivalence study.

    PubMed

    Sundd Singh, Sonu; Shah, Hiten; Gupta, Sapna; Jain, Manish; Sharma, Kuldeep; Patel, Harshvardhan; Shah, Bhavin; Thakkar, Purav; Patel, Nimesh; Shah, Ruchy; Bhushan Lohary, Braj

    2004-12-01

    A novel High Performance Liquid Chromatography-electrospray mass spectrometric method has been developed for the estimation of Ursodiol (Ursodeoxycholic acid)--a bile acid, in human plasma using Ornidazole as internal standard. The methodology involved solid phase extraction of the analyte from human plasma matrix. The chromatographic separation was achieved within seven minutes by an isocratic mobile phase containing 1.0 mM ammonium acetate and Acetonitrile (65:35, v/v), flowing through XTerra MS C18, 100 x 2.1, 3.5 microm analytical column, at a flow rate of 0.2 ml/min. Ion signals were measured in negative mode for Ursodiol and internal standard at m/z 391.3 and 278.1, respectively. A detailed validation of the method was performed as per USFDA guidelines and the standard curves were found to be linear in the range 50.0 ng/ml to 3000.0 ng/ml with the mean correlation coefficient more than 0.99. The absolute recovery was more than 54.90% for Ursodiol and 76.51% for internal standard. Ursodiol was stable for sixty-nine days at -70 degrees C and for eight hours at ambient temperature. After extraction from plasma, the reconstituted samples of Ursodiol were stable in autosampler at 10 degrees C for forty-eight hours. Upon subjecting to three freeze thaw cycles, there was no change in the recovery of the analyte. The integrity of the plasma samples remained unaffected even upon four-fold dilution with drug free human plasma. The method was simple, specific, sensitive, precise, accurate and suitable for bioequivalence and pharmacokinetic studies. It was successfully applied to the pilot bioequivalence study of Ursodiol in male human subjects. PMID:15689031

  2. Gas-phase intramolecular elimination reaction studies of steviol glycosides in positive electrospray and tandem mass spectrometry.

    PubMed

    Upreti, Mani; Clos, John F; Somayajula, Kasi V; Milanowski, Dennis J; Mocek, Ulla; Dubois, Grant E; Prakash, Indra

    2009-01-01

    This paper reports the first study of the gas-phase intramolecular elimination reaction of steviol glycosides in positive electrospray mass spectrometry. The observed glycosylated product ions are proposed to be formed via an intramolecular elimination of sugar units from the parent molecule ion. It was further proven by MS/MS studies and deuterium labeling experiments with one of the steviol glycosides, rebaudioside A. These mass spectrometric results confirmed that the new glycosylated product ions observed are most likely formed by the combination of glucose moieties (Glu) II-IV and Glu I via a gas-phase intramolecular elimination reaction. PMID:19174590

  3. Electrospray device

    NASA Technical Reports Server (NTRS)

    Demmons, Nathaniel (Inventor); Martin, Roy (Inventor); Hruby, Vladimir (Inventor); Roy, Thomas (Inventor); Spence, Douglas (Inventor); Ehrbar, Eric (Inventor); Zwahlen, Jurg (Inventor)

    2011-01-01

    An electrospray device includes an electrospray emitter adapted to receive electrospray fluid; an extractor plate spaced from the electrospray emitter and having at least one aperture; and a power supply for applying a first voltage between the extractor plate and emitter for generating at least one Taylor cone emission through the aperture to create an electrospray plume from the electrospray fluid, the extractor plate as well as accelerator and shaping plates may include a porous, conductive medium for transporting and storing excess, accumulated electrospray fluid away from the aperture.

  4. Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry.

    PubMed

    Wan, Eric Chun Hong; Yu, Jian Zhen

    2006-02-24

    We here report a method for the determination of sugar compounds of known presence in atmospheric aerosols using liquid chromatography (LC) combined with positive electrospray ionization mass spectrometry (MS). The target analytes include C(3)-C(6) monosaccharide alcohols (glycerol, erythritol, xylitol, mannitol), C(5)-C(6) monosaccharides (xylose, glucose, and levoglucosan), a disaccharide (sucrose), and a trisaccharide (melezitose). A mobile phase consisting of 20% 10 mM aqueous ammonium acetate, 8% methanol, and 72% water was found to provide abundant [M+NH(4)](+) adduct ions when coupled with electrospray ionization. Use of a polymer-based amino analytical column resolved the target compounds from the bulk solvent and provided limited separation among the target compounds. The target analytes were quantified using their [M+NH(4)](+) ions. Sample pretreatment was greatly simplified in comparison with the more commonly used gas chromatographic methods. It involved extraction of aerosol filters in methanol, evaporation of the solvent, and reconstitution with 5 mM ammonium acetate in water prior to the LC-MS analysis. The analyte recoveries were measured at the levels of 100, 500 and 1000 microg/L to be in the range of 78-102%, 94-112%, and 92-110%, respectively. The detection limits were lower than 10 pmol/injection for the tested target compounds except for xylose. Xylose had a detection limit of 95 pmol/injection. The method was applied to analyze 30 atmospheric aerosol samples to demonstrate its feasibility. The LC-MS method made possible the detection of trisaccharides as aerosol constituents for the first time. PMID:16405980

  5. Pilot Evaluation of RT-PCR/Electrospray Ionization Mass Spectrometry (PLEX-ID/Flu assay) on Influenza-Positive Specimens.

    PubMed

    Cordey, Samuel; Thomas, Yves; Suter, Patricia; Kaiser, Laurent

    2012-01-01

    The PLEX-ID/Flu assay has been recently developed to enable the detection and typing of influenza viruses based on the RT-PCR/electrospray ionization mass spectrometry technology.This novel assay was evaluated for typing performance on 201 positive influenza A or B nasopharyngeal swab specimens (NPS) detected by real-time RT-PCR during the 2010-2011 season. The PLEX-ID/Flu assay detected and characterized 91.3% and 95.3% of all influenza A and B samples, respectively. All non-typeable influenza A and B specimens by the assay showed low viral loads with threshold cycle values ≥ 33. Taken together, and although our results need to be confirmed by further prospective studies, the PLEX-ID/Flu assay detected positively and gave a typing result for 93% of all NPS detected positively by real-time RT-PCR, thus suggesting a potential role for influenza virus surveillance among other techniques. PMID:22611461

  6. Pilot Evaluation of RT-PCR/Electrospray Ionization Mass Spectrometry (PLEX-ID/Flu assay) on Influenza-Positive Specimens

    PubMed Central

    Cordey, Samuel; Thomas, Yves; Suter, Patricia; Kaiser, Laurent

    2012-01-01

    The PLEX-ID/Flu assay has been recently developed to enable the detection and typing of influenza viruses based on the RT-PCR/electrospray ionization mass spectrometry technology. This novel assay was evaluated for typing performance on 201 positive influenza A or B nasopharyngeal swab specimens (NPS) detected by real-time RT-PCR during the 2010-2011 season. The PLEX-ID/Flu assay detected and characterized 91.3% and 95.3% of all influenza A and B samples, respectively. All non-typeable influenza A and B specimens by the assay showed low viral loads with threshold cycle values ≥ 33. Taken together, and although our results need to be confirmed by further prospective studies, the PLEX-ID/Flu assay detected positively and gave a typing result for 93% of all NPS detected positively by real-time RT-PCR, thus suggesting a potential role for influenza virus surveillance among other techniques. PMID:22611461

  7. Quantitative analysis of positional isomers of triacylglycerols via electrospray ionization tandem mass spectrometry of sodiated adducts.

    PubMed

    Herrera, Lisandra Cubero; Potvin, Michael A; Melanson, Jeremy E

    2010-09-01

    Herein we report a reversed-phase high-performance liquid chromatography tandem mass spectrometry (RP-HPLC/MS/MS) method for the analysis of positional isomers of triacylglycerols (TAGs) in vegetable oils. The fragmentation behavior of [M + X](+) ions (X = NH(4), Li, Na or Ag) was studied on a quadrupole-time-of-flight (Q-TOF) mass spectrometer under low-energy collision-induced dissociation (CID) conditions. Mass spectra that were dependent on the X(+) ion and the nature and position of the acyl substituents were observed for four pairs of 'AAB/ABA'-type TAGs, namely PPO/POP, OOP/OPO, LLO/LOL and OOL/OLO (where P is 16:0, palmitic acid; O is 18:1, oleic acid; and L is 18:2, linoleic acid). For the majority of [M + X](+) adducts, the loss of the fatty acid in the outer positions (sn-1 or sn-3) was favored over the loss in the central position (sn-2), which enabled the determination of the fractional abundance of the isomers. Ratios of the intensity of fragment ions at various AAB/ABA compositions produced linear calibration curves with positive slopes, comparable to those obtained traditionally by ESI-MS/MS of [M + NH(4)](+) adducts. The only exceptions were the [M + Ag](+) adducts of the PPO/POP system, which produced calibration curves with negative slopes. Sodium adducts provided the most consistent level of isomeric discrimination for the TAGs studied and also offered the most convenience in that they required no additive to the mobile phase. Therefore, calibration curve data derived from [M + Na](+) adducts were applied to the quantification of TAG regioisomers in sunflower and olive oils. The regiospecific analysis showed that palmitic acid was typically located at positions sn-1 or sn-3, whereas unsaturated fatty acids, oleic and linoleic acids were mostly found at the sn-2 position. PMID:20814981

  8. Detection and identification of alkylphosphonic acids by positive electrospray ionization tandem mass spectrometry using a tricationic reagent.

    PubMed

    Tak, Vijay; Pardasani, Deepak; Purohit, Ajay; Dubey, D K

    2011-11-30

    The retrospective detection and identification of degradation products of chemical warfare agents are of immense importance in order to prove their spillage and use. A highly sensitive liquid chromatography/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method--using an imidazolium-based tricationic reagent--was developed for the detection and identification of the anionic degradation products of nerve agents. A commercially available solution of 1,3-imidazolium-bis-(1-hexylbenzylimidazolium) trifluoride (IBHBI) formed adducts with alkylphosphonic acids (APAs), allowing detection of the APAs by positive mode ESI-MS. Tandem mass spectrometry was used for the unambiguous identification of the APAs. Parameters influencing the formation and stability of these adduct during mass spectrometric analysis, such as solvent composition, concentration of IBHBI, effect of pH and interferences by salts, were optimized. The absolute limits of detection (0.1 ng) for achieved for the APAs were better than those previously reported, and linear dynamic ranges of 10-2000 ng mL(-1) were achieved. The method was repeatable with a relative standard deviation ≤7.3%. APAs present in aqueous samples provided by the Organization for the Prohibition of Chemical Weapons during the 22(nd) and 24(th) Official Proficiency tests were detected and identified as IBHBI adducts. The added advantage of this method is that low-mass analytes are detected at higher mass, thus obviating the problem with background noise at low mass. PMID:22002694

  9. Electrospray ion mobility mass spectrometry of positively charged sodium bis[2-ethythexyl)sulfosuccinate aggregates.

    PubMed

    Bongiorno, David; Indelicato, Serena; Giorgi, Gianluca; Scarpella, Simona; Liveri, Vincenzo Turco; Ceraulo, Leopoldo

    2014-01-01

    Collision cross-sections (CCS) of positively singly and multiply charged aggregates of the surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOTNa) in the gas phase have been measured by quadrupole ion mobility time-of-flight mass spectrometry. Calibration of the observed drift times to the CCS of the AOTNa non-covalent aggregates was achieved by collecting, under the same experimental conditions, the drift times of a range of singly and multiply charged polyalanine peptides whose CCS had been obtained by conventional ion mobility spectrometry. Together with an obvious increase of the aggregate cross-section with the aggregation number, it was found that the aggregate cross-section increases with the charge state due to the sodium counterions steric effect and the augmented electrostatic repulsion. This finding is consistent with the result of a previous molecular dynamics study on positively charged AOTNa aggregates in the gas phase showing that, by increasing the charge state, the aggregates become progressively more oblate; implying a rise of their CCS. Moreover, the occurrence at each aggregation number and extra charge of a unique value of cross section points toward aggregates whose conformations do not show discernible shape change in the experiment time scale. PMID:24895777

  10. Rapid and sensitive quantification of levoglucosan in aerosols by high-performance anion-exchange chromatography with positive electrospray ionization mass spectrometry (HPAEC-positive ESI-MS)

    NASA Astrophysics Data System (ADS)

    Asakawa, Daichi; Furuichi, Yuko; Yamamoto, Atsushi; Oku, Yuichiro; Funasaka, Kunihiro

    2015-12-01

    A convenient quantification method for underivatized levoglucosan, which is a tracer for biomass burning influenced particulate matter (PM), has been established using high-performance anion-exchange chromatography (HPAEC) coupled to positive electrospray ionization mass spectrometry ((+)ESI-MS). Levoglucosan was chromatographically separated from its isomers (mannosan and galactosan) and detected selectively with positive ESI-MS. Limits of detection and quantification for this method were 0.40 and 1.3 ng mL-1, respectively. A comparison of simultaneous measurements by this method and conventional derivatization gas chromatography/mass spectrometry showed a good linearity with a slope of 1.008 and a determination coefficient of 0.9932. The developed method was applied to ambient suspended particulate matter hourly collected by continuous particulate monitors at 10 stations. The hourly concentration of levoglucosan during August 9-11, 2011, was 1.7-918 ng m-3 and its distribution indicated the transportation of biomass burning aerosols of a forest fire. This is the first report of horizontal distribution of the hourly levoglucosan concentration in Japan.

  11. Sensitive monitoring of monoterpene metabolites in human urine using two-step derivatisation and positive chemical ionisation-tandem mass spectrometry.

    PubMed

    Schmidt, Lukas; Belov, Vladimir N; Göen, Thomas

    2013-09-01

    A gas chromatographic-positive chemical ionisation-tandem mass spectrometric (GC-PCI-MS/MS) method for the simultaneous determination of 10 oxidative metabolites of the monoterpenoid hydrocarbons α-pinene, (R)-limonene, and Δ(3)-carene ((+)-3-carene) in human urine was developed and tested for the monoterpene biomonitoring of the general population (n=36). The method involves enzymatic cleavage of the glucuronides followed by solid-supported liquid-liquid extraction and derivatisation using a two-step reaction with N,O-bis(trimethylsilyl)-trifluoroacetamide and N-(trimethylsilyl)imidazole. The method proved to be both sensitive and reliable with detection limits ranging from 0.1 to 0.3 μg L(-1). In contrast to the frequent and distinct quantities of (1S,2S,4R)-limonene-1,2-diol, the (1R,2R,4R)-stereoisomer could not be detected. The expected metabolite of (+)-3-carene, 3-caren-10-ol was not detected in any of the samples. All other metabolites were detected in almost all urine samples. The procedure enables for the first time the analysis of trace levels of a broad spectrum of mono- and bicyclic monoterpenoid metabolites (alcohols, diols, and carboxylic acids) in human urine. This analytical procedure is a powerful tool for population studies as well as for the discovery of human metabolism and toxicokinetics of monoterpenes. PMID:23953203

  12. Analysis of betamethasone, dexamethasone and related compounds by liquid chromatography/electrospray mass spectrometry.

    PubMed

    Arthur, Kathryn E; Wolff, Jean-Claude; Carrier, Dan J

    2004-01-01

    A reversed-phase high-performance liquid chromatography/electrospray ionisation mass spectrometry (HPLC/ESI-MS) method has been developed to conclusively differentiate the epimers betamethasone and dexamethasone and various esterification products (betamethasone and dexamethasone 21-acetate, betamethasone and dexamethasone 21-phosphate, betamethasone 17-valerate, betamethasone 21-valerate and betamethasone 17,21-dipropionate) in counterfeit drugs. Good separation with baseline resolution of all epimers or isomers was obtained on a Zorbax Eclipse XDB or Luna C8 column, using a step gradient with mobile phases of 0.05 M ammonium acetate and acetonitrile. Betamethasones can also be distinguished by the relative abundance of their m/z 279 ion in the positive electrospray tandem mass spectra. The LC/MS or LC/MS/MS method developed was successfully applied to the analysis of drug product samples, i.e. creams and tablets. PMID:15052579

  13. Synchronized Polarization Induced Electrospray: Comprehensively Profiling Biomolecules in Single Cells by Combining both Positive-Ion and Negative-Ion Mass Spectra.

    PubMed

    Hu, Jun; Jiang, Xiao-Xiao; Wang, Jiang; Guan, Qi-Yuan; Zhang, Pan-Ke; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-07-19

    In this work, a synchronized polarization induced electrospray ionization (SPI-ESI) method is developed and applied for the analysis of single-cell samples. In SPI-ESI, periodic alternating current square wave voltage (AC-SWV) is applied to induce the bipolar spray and both positive-ion and negative-ion mass spectra are obtained through one measurement by synchronizing the mode of mass analyzer with the bipolar spray process. Compared with conventional nanoelectrospray ionization (nESI, flow rate < 1000 nL/min), ultralow spray flow rate (pico-electrospray ionization, pESI, flow rate < 1000 pL/min) is achieved in SPI-ESI without loss of its sensitivity. The decrease of flow rate prolongs the MS signal duration from single-cell samples to acquire ms(2) data for components determination. To our knowledge, this is the first time to successfully achieve comprehensive analysis of single-cell samples by combining both positive-ion and negative-ion mass spectra. Ultimately, 86 components are profiled from single Allium cepa cells and 94 components are profiled from single PC-12 cells. PMID:27297455

  14. Halogenated phenolic compound determination in plasma and serum by solid phase extraction, dansylation derivatization and liquid chromatography-positive electrospray ionization-tandem quadrupole mass spectrometry.

    PubMed

    Chu, Shaogang; Letcher, Robert J

    2013-12-13

    A robust, sensitive and accurate method was developed for the simultaneous determination in plasma and serum of suite a halogenated phenolic compounds (HPCs) for which several are known to persist in the environment and analytically pure standards are available. Namely, 14 congeners of hydroxylated polybrominated diphenyl ethers (OH-PBDEs), six congeners of hydroxylated polychlorinated biphenyls (OH-PCBs), pentachlorophenol, pentabromophenol and the flame retardant tetrabromobisphenol A (TBBPA). Solid phase extraction (SPE) enriched the target compounds and cleaned up the samples as a result of efficient adsorption on a strong anion-exchange solid phase SPE cartridge (Oasis MAX). After final clean-up the HPCs were derivatized with dansyl chloride and analyzed by liquid chromatography-tandem mass spectrometry with electrospray ionization in positive mode (ESI(+)). Chromatographic separation was achieved on a Luna PFP(2) column (2mm×100mm, 3μm particle size) with mobile phases of water and acetonitrile (both containing 0.1% formic acid). The addition of the dansyl moiety to the HPCs greatly improved analyte sensitivity as the electrospray ionization efficiency was enhanced. Instrument limits of detection (ILODs) for LC-ESI(+)-MS/MS analysis of the HPCs were in the range of 0.01-0.07ng/mL and the method limits of quantification (MLOQs) were in the range of 0.02-0.15ng/g. Recovery efficiencies of the suite of HPCs ranged from 64% to 118% with relative standard deviations from 2% to 12% from fortified bovine serum samples. The method was successfully applied for HPC determination in representative polar bear and snapping turtle plasma samples. PMID:24210890

  15. Chromatographic enrichment and subsequent separation of nickel and vanadyl porphyrins from natural seeps and molecular characterization by positive electrospray ionization FT-ICR mass spectrometry.

    PubMed

    Putman, Jonathan C; Rowland, Steven M; Corilo, Yuri E; McKenna, Amy M

    2014-11-01

    We report a novel chromatographic method to enrich and separate nickel and vanadyl porphyrins from a natural seep sample and combine molecular level characterization by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Vanadyl and nickel porphyrin model compound elution from primary secondary amine (PSA) stationary phase combined with UV-vis spectroscopy confirms enrichment and subsequent fractionation of nickel and vanadyl porphyrins into polarity-based subfractions. A more than 100-fold increase in signal-to-noise ratio for nickel porphyrins enables unequivocal elemental composition assignment confirmed by isotopic fine structure for all isotopes >1% relative abundance, and the first mass spectral identification of (61)Ni porphyrin isotopologues derived from natural seeps. Oxygen-containing vanadyl porphyrins and sulfur-containing vanadyl porphyrins are isolated in the same fraction simultaneously from the same sample. We provide the first chromatographic evidence of carboxylic acid functionalities peripheral to the porphyrin core, in agreement with previous studies. PMID:25286139

  16. Determination of betamethasone and betamethasone 17-monopropionate in human plasma by liquid chromatography-positive/negative electrospray ionization tandem mass spectrometry.

    PubMed

    Zou, Jian-Jun; Dai, Li; Ding, Li; Xiao, Da-Wei; Bin, Zhu-Yu; Fan, Hong-Wei; Liu, Li; Wang, Guang-Ji

    2008-10-01

    This study presents a high-performance liquid chromatography-positive/negative electrospray ionization tandem mass spectrometric (LC-ESI(+/-)-MS-MS) method for the determination of betamethasone (BOH) and betamethasone 17-monopropionate (B17P) in human plasma using beclomethasone dipropionate as the internal standard (I.S.). Both compounds were extracted from human plasma with ether-cyclohexane (4:1, v/v) and were separated by HPLC on a Hanbon Lichrospher C(18) column with a mobile phase of methanol-water (85:15, v/v) at a flow rate of 0.7ml/min. Calibration curves were linear over the range of 0.10-50ng/ml for BOH and 0.050-50ng/ml for B17P. The inter-run relative standard deviations were less than 14.4% for BOH and 12.3% for B17P. The intra-run relative standard deviations were less than 9.3% for BOH and 7.9% for B17P. The mean plasma extraction recovery for BOH and B17P were in the ranges of 82.7-85.9% and 83.6-85.3%, respectively. The method was successfully applied to study the pharmacokinetics of a new formulation of betamethasone phosphate/betamethasone dipropionate injection in healthy Chinese volunteers. PMID:18757252

  17. Sensitive liquid chromatography positive electrospray tandem mass spectrometry method for the quantitation of tegaserod in human plasma using liquid-liquid extraction.

    PubMed

    Nirogi, Ramakrishna; Kandikere, Vishwottam; Mudigonda, Koteshwara

    2009-02-01

    A sensitive and rapid high-performance liquid chromatography-positive ion electrospray tandem mass spectrometry method is developed and validated for the quantitation of tegaserod in human plasma. Following liquid-liquid extraction, the analytes are separated using an isocratic mobile phase on a reversed-phase column and analyzed by tandem mass spectrometry in the multiple reaction monitoring mode using the respective (M+H)+ ions, m/z 302 to 173 for tegaserod and m/z 409 to 228 for the internal standard. The assay exhibits a linear dynamic range of 100-10000 pg/mL for tegaserod in human plasma. The lower limit of quantitation is 100 pg/mL with a relative standard deviation of less than 7%. Acceptable precision and accuracy are obtained for concentrations over the standard curve range. A run time of 2.0 min for each sample makes it possible to analyze more than 250 human plasma samples per day. The validated method is successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability, or bioequivalence studies. PMID:19222925

  18. Strong ionisation in carbon nanowires

    NASA Astrophysics Data System (ADS)

    Kaymak, V.; Pukhov, A.; Shlyaptsev, V. N.; Rocca, J. J.

    2016-04-01

    Surfaces covered with nanostructures, such as nanowire arrays, are shown to facilitate a significantly higher absorption of laser energy as compared to flat surfaces. Due to the efficient coupling of the laser energy, highly energetic electrons are produced, which in turn can emit intense ultrafast X-ray pulses. Full three dimensional PIC simulations are used to analyse the behaviour of arrays of carbon nanowires 400 nm in diameter, irradiated by a 400-nm laser pulse of 60-fs duration at FWHM and a vector potential of α0 = 18. We analyse the ionisation dynamics of the nanowires. The difference of the ionisation strength and structure between linearly and circularly polarised laser beam is investigated. The nanowires are found to be fully ionised after about 30 laser cycles. Circularly polarised light reveals a slightly stronger ionisation effect.

  19. The effectiveness of photocatalytic ionisation disinfection of filter materials.

    PubMed

    Pietrzak, Katarzyna; Gutarowska, Beata

    2013-01-01

    The purpose of this study was to determine the effectiveness of photocatalytic ionisation as a disinfection method for filter materials contaminated by microorganisms, and to assess how air relative humidity (RH), time and microbe type influence the effectiveness of this disinfection. In the quantitative analysis of a used car air filter, bacterial contamination equalled 1.2 x 10(5) cfu/cm2, fungal contamination was 3.8 x 10(6) cfu/cm2, and the isolated microorganisms were Aspergillus niger, Bacillus megaterium, Cladosporium herbarum, Cryptococcus laurenti, Micrococcus sp., Rhodotorula glutinis and Staphylococcus cohnii. In the model experiment, three isolates (C. herbarum, R. glutinis, S. cohnii) and 3 ATCC species (A. niger, E. coli, S. aureus) were used for photocatalytic ionisation disinfection. The conditions of effective photocatalytic ionisation disinfection (R > or = 99.9%) were established as 2-3 h at RH = 77% (bacteria) and 6-24 h at RH = 53% (fungi). RH has an influence on the effectiveness of the photocatalytic disinfection process; the highest effectiveness was obtained for bacteria at RH = 77%, with results 5% higher than for RH = 49%. The studies show that the sensitivity of microorganisms to photocatalytic ionisation disinfection is ordered as follows: Gram-positive bacteria (S. cohnii, S. aureus), Gram-negative bacteria (E. coli), yeasts (R. glutinis), and moulds (C. herbarum, A. niger). Of all the mathematical models used for the description of death dynamics after photocatalytic ionisation disinfection, the Chick-Watson model is the most useful, but for more resistant microorganisms, the delayed Chick-Watson model is highly recommended. It therefore seems, that the presented disinfection method of photocatalytic ionisation can be successfully used to clean filtration materials. PMID:24053016

  20. Recombination processes in ionised plasmas

    NASA Astrophysics Data System (ADS)

    Bastin, Robert

    The observational analysis of astrophysical plasmas relies on accurate calculations of the atomic processes involved. The recombination spectra of singly ionised oxygen (O il) and carbon (C il) present excellent tools for investigating regions such as planetary nebulae and H II regions. In this thesis, detailed treatments of the recombination processes of both O II and C II are presented. Using the R-matrix solution to the close coupling equations, I present the results of accurate photoionisation calculations. Bound state energy levels are determined and oscillator strengths calculated for both species. Recombination coefficients were evalu ated for low n and 1, for C II in LS-coupling, and 0 II in intermediate coupling, taking particular care to treat resonances effectively. Sample photoionisation cross-sections are presented for both species, and compared to previous work. A complete radiative-cascade model is treated for both species, in order to determine line emissivities under nebular conditions at a wide range of temperatures and densities. Collisional effects are treated for C II, along with, for the first time, the effects of high temperature dielectronic recombination, allowing the modelling of regions of much higher electron temperature than previous work. The O II calculations were performed under intermediate coupling for the first time, allowing the effects of non-statistical popula tions of the parent ion fine-structure levels and dielectronic recombination onto bound states within this fine-structure to be taken into account in line emissivities. Detailed comparison with previous theoretical work was made for both species. The application of the C II and 0 n recombination spectra to determining tempera ture and densities from the observed spectra of a number of ionised nebulae is considered. The potential for using the new recombination spectra as diagnostic tools to solve some of the key problems in the study of ionised nebulae is demonstrated.

  1. Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  2. Electrospray Droplet Impact/SIMS

    NASA Astrophysics Data System (ADS)

    Hiraoka, Kenzo

    A new type of cluster SIMS, named as electrospray droplet impact (EDI), has been developed in our laboratory. It was found that peptides deposited on the stainless steel substrate were ionized/desorbed without the accumulation of radiation products. The organic samples with film thickness thinner than 10 monolayers are desorbed/ionized with little damage underneath the surface. In general, rather strong negative ions as well as positive ions are generated. The mechanism for the ionization/desorption in EDI is much less complicated than those for MALDI and SIMS due to the fact that only very thin sample layers take part in the shock-wave excited selvedge and higher-order side reactions are largely suppressed.

  3. Multi-mycotoxin Analysis of Finished Grain and Nut Products Using Ultrahigh-Performance Liquid Chromatography and Positive Electrospray Ionization-Quadrupole Orbital Ion Trap High-Resolution Mass Spectrometry.

    PubMed

    Liao, Chia-Ding; Wong, Jon W; Zhang, Kai; Yang, Paul; Wittenberg, James B; Trucksess, Mary W; Hayward, Douglas G; Lee, Nathaniel S; Chang, James S

    2015-09-23

    Ultrahigh-performance liquid chromatography using positive electrospray ionization and quadrupole orbital ion trap high-resolution mass spectrometry was evaluated for analyzing mycotoxins in finished cereal and nut products. Optimizing the orbital ion trap mass analyzer in full-scan mode using mycotoxin-fortified matrix extracts gave mass accuracies, δM, of < ± 2.0 ppm at 70,000 full width at half maximum (FWHM) mass resolution (RFWHM). The limits of quantitation were matrix- and mycotoxin-dependent, ranging from 0.02 to 11.6 μg/kg. Mean recoveries and standard deviations for mycotoxins from acetonitrile/water extraction at their relevant fortification levels were 91 ± 10, 94 ± 10, 98 ± 12, 91 ± 13, 99 ± 15, and 93 ± 17% for corn, rice, wheat, almond, peanut, and pistachio, respectively. Nineteen mycotoxins with concentrations ranging from 0.3 (aflatoxin B1 in peanut and almond) to 1175 μg/kg (fumonisin B1 in corn flour) were found in 35 of the 70 commercial grain and nut samples surveyed. Mycotoxins could be identified at δM < ± 5 ppm by identifying the precursor and product ions in full-scan MS and data-dependent MS/MS modes. This method demonstrates a new analytical approach for monitoring mycotoxins in finished grain and nut products. PMID:25531669

  4. Differentiation of some positional and diastereomeric isomers of Boc-carbo-[beta]3 dipeptides containing galactose, xylose and mannose sugars by electrospray ionization tandem mass spectrometry (ESI MS/MS)

    NASA Astrophysics Data System (ADS)

    Reddy, P. Nagi; Ramesh, V.; Srinivas, R.; Sharma, G. V. M.; Nagendar, Pendem; Subash, V.

    2006-02-01

    Electrospray ionization (ESI) tandem mass spectrometry has been used to distinguish the positional and diastereomeric isomers of Boc-C-linked carbo-[beta]3 dipeptides (1-38) synthesized from glycine (Gly), [beta]-h-glycine ([beta]-hGly), [beta]-h-alanine ([beta]-hAla) and C-linked carbo-[beta]3-amino acid (Caa) that contain galactose, xylose and mannose sugars as side chains with "R" and "S" configurations at the amine center. The major fragmentation of [M + H]+ of the dipeptides (1-38) yields mainly two ions: (i) [M + H-C(CH3)3 + H]+ ([`]a') and (ii) [M + H-Boc + H]+ ([`]b') corresponding to losses of 2-methyl-prop-1-ene and -Boc moiety from [M + H]+ ions, respectively. The diastereomeric dipeptide isomers with Caa (R) and (S) configurations at the N-terminus can easily be distinguished by the difference in the abundance of ion [`]a' and [`]b'. The isomeric peptides with Caa (R) at the N-terminus gives prominent [M + H-C(CH3)3 + H]+ ([`]a') where as it is insignificant or totally absent for peptides which have Caa (S) at the N-terminus. This is presumably due to the different steric crowdings around the Boc-group in the different diastereomers. The positional isomers of dipeptides can also be differentiated by the difference in the abundance of ion [`]a' and [`]b' in the CID of [M + H]+ ions. The CID of [M + H-Boc + H]+ ions of the isomeric peptides also show y1+ ions at different m/z values. All these results suggest that the CID of [M + H]+ ions is highly useful for distinguishing the Boc-NH-Caa-[beta]3 dipeptide isomers with Caa of "S" configuration from the isomers with Caa of "R" configuration and the positional isomers.

  5. Ionisation Chambers and Secondary Emission Monitors at the PROSCAN Beam Lines

    SciTech Connect

    Doelling, Rudolf

    2006-11-20

    PROSCAN, the dedicated new medical facility at PSI using proton beams for the treatment of deep seated tumours and eye melanoma, is now in the commissioning phase. Air filled ionisation chambers in several configurations are used as current monitors, profile monitors, halo, position and loss monitors at the PROSCAN beam lines. Similar monitors based on secondary emission are used for profile and current measurements in the regime where saturation deteriorates the accuracy of the ionisation chambers.

  6. Identification of molecular species of simple lipids by normal phase liquid chromatography-positive electrospray tandem mass spectrometry, and application of developed methods in comprehensive analysis of low erucic acid rapeseed oil lipids

    NASA Astrophysics Data System (ADS)

    Kalo, P. J.; Ollilainen, V.; Rocha, J. M.; Malcata, F. X.

    2006-07-01

    Mono-, di- and triacylglycerol (MAG, DAG, TAG), sterol ester (SE), free sterol (S) and free fatty acid (FFA) standards were analyzed in the presence of ammonium ions and ammonia by flow injection MS2 and MS3, and by normal phase-liquid chromatography (NP-LC) MS2 positive electrospray ionization (ESI) mass spectrometry (MS). The MS data recorded for ammonium adducts ([M + NH4]+) of TAGs, DAGs, and MAGs were consistent with stepwise fragmentation mechanisms. In the first step, ammonium ion in [M + NH4]+ donates proton to acylglycerol and ammonia is released. In the second step, FFA is cleaved from protonated TAG, water from protonated 1,3-DAG and MAG, both FFA and water from protonated 1,2-DAG, hence leading to formation of [DAG]+ ion from TAG and 1,3-DAG, [DAG]+ and [MAG]+ ions from 1,2-DAG, and [MAG]+ ion from MAG. In the third step, [DAG]+ ion of TAG is fragmented to yield [Acyl]+, [Acyl + 74]+, [DAG - 74]+ ions, [DAG] ion of 1,3-DAG to [Acyl]+ ions, and [MAG]+ ion of MAG to protonated FAs, which are decomposed to water and [Acyl]+ ions in the fourth step. A stepwise mechanism for fragmentation of FFA was also evident from MS2 and MS3 data. Molecular species of low erucic acid rapeseed oil simple lipids were identified from characteristic ions produced in the NP-LC-ESI-MS2 of [M + NH4]+ ions. The percentage composition of the molecular species of each lipid class was calculated from integrated extracted ion chromatograms of [(M + NH4)]+ ions of SE, TAG, MAG, and FFA, of the sum of [(M + NH4)]+ and [(M + NH4) - NH3 - H2O]+ ions of both regioisomers of DAGs, and of sterol fragment ions of S.

  7. Simultaneous determination of lovastatin and its metabolite lovastatin acid in rat plasma using UPLC-MS/MS with positive/negative ion-switching electrospray ionization: Application to a pharmacokinetic study of lovastatin nanosuspension.

    PubMed

    Guo, Mengran; Zhao, Longshan; Li, Mo; Fu, Qiang; Pu, Xiaohui; Liu, Bingyang; He, Zhonggui; Yang, Li

    2016-06-15

    Lovastatin (LOV) is an antihyperlipidemic agent which exhibits low bioavailability due to its poor solubility. Therefore, a nanosuspension (NS) was developed as an efficient strategy to improve its oral bioavailability. To evaluate the pharmacokinetics of LOV-NS, a novel, sensitive, and rapid UPLC-MS/MS method was developed and validated for the simultaneous determination of LOV and its metabolite lovastatin acid (LOVA) in rat plasma. Simvastatin (IS) was chosen as the internal standard, and a liquid-liquid extraction method was used to isolate LOV and LOVA from biological matrices. The analytes were analyzed on an Acquity UPLC BEH C18 column, and a gradient program was applied at a flow rate of 0.2mL/min. Then, a tandem quadrupole mass spectrometer coupled with a positive/negative ion-switching electrospray ionization interface was employed to detect the analytes. Quantitation of the analytes was performed in the multiple reaction monitoring mode to monitor the transitions of m/z 427.1→325.0 for LOV and m/z 441.1→325.0 for IS in the positive ion mode and m/z 421.0→101.0 for LOVA in the negative ion mode, respectively. The method was validated over the concentration range 0.25-500ng/mL (r(2)≥0.99) for both LOV and LOVA. The intra-day and inter-day precision (RSD%) of LOV and LOVA were less than 12.87% and the accuracy (RE%) was less than 5.22%. The average extraction recoveries were 90.1% and 91.9% for LOV and LOVA, and the matrix effects were found to be between 85% and 115%. The stability study showed that both analytes were stable during the experiment. Finally, this method has been successfully applied to a pharmacokinetic study in rats following a single oral dose of 10mg/kg LOV-NS. PMID:27200472

  8. Ultra-pressure liquid chromatography-electrospray tandem mass spectrometry for multiresidue determination of pesticides in water.

    PubMed

    Gervais, G; Brosillon, S; Laplanche, A; Helen, C

    2008-08-22

    A multiresidue analysis method has been developed for the determination of pesticides in water by ultra-performance liquid chromatography (UPLC) combined with tandem mass spectrometry (MS/MS). The selected pesticides represent a broad range of polarity and volatility [benzoylcyclohexanedione (mesotrione and sulcotrione); chloroacetamide (acetochlor, alachlor, dimethenamide, and metolachlor); phenoxyacetic acid (2,4-D and MCPA); phenoxypropionic (dichloprop and mecoprop); phenylurea (chlortoluron, diuron, isoproturon, linuron, and metoxuron); sulfonylurea (foramsulfuron, iodosulfuron, and nicolsulfuron); triazine (atrazine, cyanazine, desethylatrazine (DEA), desisopropylatrazine (DIA), simazine, and terbutylazine)]. The analytes were extracted using solid-phase extraction (SPE). The separation was carried out on an acquity UPLC BEH C18 column (1.7 microm, 50 mm x 1 mm ID) using a gradient elution profile and mobile phase consisting of 0.1% formic acid in water and acetonitrile. The pesticides were detected with a tandem mass spectrometer after being ionised positively or negatively (depending on the molecule) using an electrospray ionisation (ESI) source. To achieve the suitable extraction conditions for sample preparation, several parameters affecting the efficiency of SPE such as the nature of the sorbent and the eluent, extractant volume and pH were studied. The best recovery was obtained by the extraction with an Oasis HLB cartridge and 3 mL of a solution of acetonitrile/dichloromethane (1:1, v/v) at pH 2. The average recoveries of the pesticides in different samples ranged from 82 to 109%. The weight least squares (WLS) linear regression was used to calculate the limits of detection and quantification (LOD and LOQ) because the dispersion was heteroskedastic. All the pesticides could be correctly quantified at a concentration level of 50 ng L(-1) and most of them could be detected at a concentration inferior or equal to 8 ng L(-1). Efficiency and robustness of

  9. Study of the mechanism of direct laser desorption/ionisation for some small organic molecules (M < 400 Daltons).

    PubMed

    Benazouz; Hakim; Debrun; Strivay; Weber

    1999-12-15

    Aspects of direct laser desorption/ionisation have been studied for three molecules, aminotriazole (positive ion), dinoterb and ioxynil (negative ion). The samples are deposited on metallic substrates, and a nitrogen laser is used for desorption/ionisation; ion yields are measured with a time-of-flight mass spectrometer. Previous work had shown that ion yields can strongly vary from one substrate to another, and that this variation does not reflect the (calculated) metal surface temperatures. New results obtained in this work indicate that the desorption/ionisation mechanism is linked to the physical state of the substrate surface. Copyright 1999 John Wiley & Sons, Ltd. PMID:10567927

  10. NICIL: Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library

    NASA Astrophysics Data System (ADS)

    Wurster, James

    2016-08-01

    NICIL (Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library) calculates the ionization values and the coefficients of the non-ideal magnetohydrodynamics terms of Ohmic resistivity, the Hall effect, and ambipolar diffusion. Written as a standalone Fortran90 module that can be implemented in existing codes, NICIL is fully parameterizable, allowing the user to choose which processes to include and decide the values of the free parameters. The module includes both cosmic ray and thermal ionization; the former includes two ion species and three species of dust grains (positively charged, negatively charged and neutral), and the latter includes five elements which can be doubly ionized.

  11. Bayesian analysis of nanodosimetric ionisation distributions due to alpha particles and protons.

    PubMed

    De Nardo, L; Ferretti, A; Colautti, P; Grosswendt, B

    2011-02-01

    Track-nanodosimetry has the objective to investigate the stochastic aspect of ionisation events in particle tracks, by evaluating the probability distribution of the number of ionisations produced in a nanometric target volume positioned at distance d from a particle track. Such kind of measurements makes use of electron (or ion) gas detectors with detecting efficiencies non-uniformly distributed inside the target volume. This fact makes the reconstruction of true ionisation distributions, which correspond to an ideal efficiency of 100%, non-trivial. Bayesian unfolding has been applied to ionisation distributions produced by 5.4 MeV alpha particles and 20 MeV protons in cylindrical volumes of propane of 20 nm equivalent size, positioned at different impact parameters with respect to the primary beam. It will be shown that a Bayesian analysis performed by subdividing the target volume in sub-regions of different detection efficiencies is able to provide a good reconstruction of the true nanodosimetric ionisation distributions. PMID:21112893

  12. Ionisation as indicator for cosmic ray acceleration

    NASA Astrophysics Data System (ADS)

    Schuppan, F.; Röken, C.; Fedrau, N.; Becker Tjus, J.

    2014-06-01

    Astrospheres and wind bubbles of massive stars are believed to be sources of cosmic rays with energies E ≲ 1 TeV. These particles are not directly detectable, but their impact on surrounding matter, in particular ionisation of atomic and molecular hydrogen, can lead to observable signatures. A correlation study of both gamma ray emission, induced by proton-proton interactions of cosmic ray protons with kinetic energies Ep ≥ 280 MeV with ambient hydrogen, and ionisation induced by cosmic ray protons of kinetic energies Ep < 280 MeV can be performed in order to study potential sources of (sub)TeV cosmic rays.

  13. Oxidation of amylose and amylopectin by hydroxyl radicals assessed by electrospray ionisation mass spectrometry.

    PubMed

    Simões, Joana; Moreira, Ana S P; da Costa, Elisabete; Evtyugin, Dmitry; Domingues, Pedro; Nunes, Fernando M; Coimbra, Manuel A; Domingues, M Rosário M

    2016-09-01

    The hydroxyl radicals (HO) are one of the most reactive oxygen species (ROS) involved in the oxidative damage of biological molecules, including carbohydrates. During the industrial processing of food, ROS can be formed. In order to identify the structural changes induced in starch by oxidation, amylose, amylopectin, and maltotriose, an oligosaccharide structurally related to these polysaccharides, were subjected to oxidation with HO generated under Fenton reaction conditions (Fe(2+)/H2O2). The oxidised polysaccharides were hydrolysed by α-amylase and the obtained oligosaccharides were fractionated by ligand-exchange/size-exclusion chromatography. Both acidic and neutral α-amylase resistant oligosaccharides were characterized by mass spectrometry. In oxidised neutral products, new keto, hydroxyl, and hydroperoxy moieties, and oxidative ring scission were observed at the reducing end of the oligosaccharides. The acid sugar residues occurred at the reducing end and included gluconic and glucuronic acid derivatives, and acids formed by oxidative ring scission, namely, arabinonic, erythronic, glyceric and glycolic acids. PMID:27185142

  14. High-performance liquid chromatography-diode array and electrospray-mass spectrometry analysis of non-allowed substances in cosmetic products for preventing hair loss and other hormone-dependent skin diseases.

    PubMed

    De Orsi, Daniela; Pellegrini, Manuela; Pichini, Simona; Mattioli, Donatella; Marchei, Emilia; Gagliardi, Luigi

    2008-11-01

    A simple high-performance liquid chromatography (HPLC) method with ultraviolet diode array (UV-DAD) and electrospray ionisation mass spectrometry (ESI-MS) detection has been developed for the determination of minoxidil, progesterone, estrone, spironolactone, canrenone, hydrocortisone and triamcinolone acetonide in cosmetic products. The presence of these substances in commercial cosmetic samples is prohibited. The compounds were separated by reversed phase chromatography with water (0.1% trifluoroacetic acid) and acetonitrile gradient elution and detected by UV-DAD at 230, 254 and 280 nm and by ESI-MS positive ionisation mode. Benzoic acid was used as internal standard. Linearity was studied with UV-DAD detection from 1.50 to 1,000 microg/ml or mug/g range, depending on the different compounds and type of cosmetic preparation and with ESI-MS in the 50-1,000 ng/ml or ng/g range. Good determination coefficients (r(2)>or=0.99) were found in both UV and ESI-MS. At three concentrations spanning the linear dynamic ranges of both UV-DAD and ESI-MS assay, mean recoveries were always higher than 90% for the different analytes. This method was successfully applied to the analysis of substances under investigations illegally added in cosmetic cream and lotions, sold on internet web sites to prevent hair loss and other hormone-dependent skin diseases, like acne and hirsutism. PMID:18656319

  15. Desorption electrospray ionization mass spectrometry of intact bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desorption electrospray ionization (DESI) mass spectrometry (MS) was used to differentiate 7 bacterial species based on their measured DESI-mass spectral profile. Both Gram positive and Gram negative bacteria were tested and included Escherichia coli, Staphyloccocus aureus, Enterococcus sp., Bordete...

  16. Electrospray of Solution Processed Nanomaterials

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas; Chiarot, Paul

    2013-11-01

    Electrospray is a technique that uses large electric fields to generate a spray of highly-charged, monodispersed droplets from a liquid solvent. Colloidal inks, consisting of nanoparticles dispersed in a volatile solvent, can be atomized using electrospray. In this study, we investigate the deposit structure of nanoparticle inks printed onto three different substrates: bare glass, silanized-patterned glass, and glass coated with a liquid film. The deposition morphology of colloidal inks printed onto these surfaces is predicted using mathematical modeling and statistical analysis. The goal of intervening at the substrate with surface patterns and liquid films is to exert control over the microstructure of the printed deposit. The advantage of electrospray is that it is an additive process which drastically reduces material waste that is inherent in other thin-film material processes.

  17. Cosmic ray induced ionisation of a molecular cloud shocked by the W28 supernova remnant

    NASA Astrophysics Data System (ADS)

    Vaupré, S.; Hily-Blant, P.; Ceccarelli, C.; Dubus, G.; Gabici, S.; Montmerle, T.

    2014-08-01

    Cosmic rays are an essential ingredient in the evolution of the interstellar medium, as they dominate the ionisation of the dense molecular gas, where stars and planets form. However, since they are efficiently scattered by the galactic magnetic fields, many questions remain open, such as where exactly they are accelerated, what is their original energy spectrum, and how they propagate into molecular clouds. In this work we present new observations and discuss in detail a method that allows us to measure the cosmic ray ionisation rate towards the molecular clouds close to the W28 supernova remnant. To perform these measurements, we use CO, HCO+, and DCO+ millimetre line observations and compare them with the predictions of radiative transfer and chemical models away from thermodynamical equilibrium. The CO observations allow us to constrain the density, temperature, and column density towards each observed position, while the DCO+/HCO+ abundance ratios provide us with constraints on the electron fraction and, consequently, on the cosmic ray ionisation rate. Towards positions located close to the supernova remnant, we find cosmic ray ionisation rates much larger (≳100) than those in standard galactic clouds. Conversely, towards one position situated at a larger distance, we derive a standard cosmic ray ionisation rate. Overall, these observations support the hypothesis that the γ rays observed in the region have a hadronic origin. In addition, based on CR diffusion estimates, we find that the ionisation of the gas is likely due to 0.1-1 GeV cosmic rays. Finally, these observations are also in agreement with the global picture of cosmic ray diffusion, in which the low-energy tail of the cosmic ray population diffuses at smaller distances than the high-energy counterpart.

  18. [Thyroid cancer following exposure to ionising radiation].

    PubMed

    Schlumberger, M; Chevillard, S; Ory, K; Dupuy, C; Le Guen, B; de Vathaire, F

    2011-08-01

    Exposure to ionising radiations during childhood increases the risk of thyroid cancer. Similar risk factors have been found after external radiation exposure or internal contamination with radioactive iodine isotopes. In case of contamination with radioiodines, administration of potassium iodide can prevent thyroid irradiation. PMID:21723770

  19. European Code against Cancer 4th Edition: Ionising and non-ionising radiation and cancer.

    PubMed

    McColl, Neil; Auvinen, Anssi; Kesminiene, Ausrele; Espina, Carolina; Erdmann, Friederike; de Vries, Esther; Greinert, Rüdiger; Harrison, John; Schüz, Joachim

    2015-12-01

    Ionising radiation can transfer sufficient energy to ionise molecules, and this can lead to chemical changes, including DNA damage in cells. Key evidence for the carcinogenicity of ionising radiation comes from: follow-up studies of the survivors of the atomic bombings in Japan; other epidemiological studies of groups that have been exposed to radiation from medical, occupational or environmental sources; experimental animal studies; and studies of cellular responses to radiation. Considering exposure to environmental ionising radiation, inhalation of naturally occurring radon is the major source of radiation in the population - in doses orders of magnitude higher than those from nuclear power production or nuclear fallout. Indoor exposure to radon and its decay products is an important cause of lung cancer; radon may cause approximately one in ten lung cancers in Europe. Exposures to radon in buildings can be reduced via a three-step process of identifying those with potentially elevated radon levels, measuring radon levels, and reducing exposure by installation of remediation systems. In the 4th Edition of the European Code against Cancer it is therefore recommended to: "Find out if you are exposed to radiation from naturally high radon levels in your home. Take action to reduce high radon levels". Non-ionising types of radiation (those with insufficient energy to ionise molecules) - including extremely low-frequency electric and magnetic fields as well as radiofrequency electromagnetic fields - are not an established cause of cancer and are therefore not addressed in the recommendations to reduce cancer risk. PMID:26126928

  20. Electrospray Collection of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Dziekan, Michael

    2012-01-01

    A report describes ElectroSpray Ionization based Electrostatic Precipitation (ESIEP) for collecting lunar dust particles. While some HEPA filtration processes may remove a higher fraction (>99.9 percent) of the particles, the high efficiency may not be appropriate from an overall system standpoint, especially in light of the relatively large power requirement that such systems demand. The new electrospray particle capture technology is described as a variant of electrostatic precipitation that eliminates the current drawbacks of electrostatic precipitation. The new approach replaces corona prone field with a mist of highly charged micro-droplets generated by electrospray ionization (ESI) as the mechanism by which incoming particles are attracted and captured. In electrospray, a miniscule flow rate (microliters/minute) of liquid (typically water and a small amount of salt to enhance conductivity) is fed from the tip of a needle held at a high voltage potential relative to an opposite counter electrode. At sufficient field strength, a sharp liquid meniscus forms , which emits a jet of highly charged droplets that drift through the surrounding gas and are collected on the walls of a conductive tube. Particles in the gas have a high probability of contact with the droplets either by adhering to the droplets or otherwise acquiring a high level of charge, causing them to be captured on the collecting electrode as well. The spray acts as a filtration material that is continuously introduced and removed from the gas flow, and thus can never become clogged.

  1. The fate of electrospray drops

    NASA Astrophysics Data System (ADS)

    Basaran, Osman; Collins, Robert; Sambath, Krishnaraj; Harris, Michael

    2015-11-01

    Drops subjected to strong electric fields emit thin fluid jets from conical structures (Taylor cones) that form at their surfaces. Such behavior has practical, e.g. electrospray mass spectrometry, and fundamental, e.g. raindrops in thunderclouds, implications. Theoretical analysis of the temporal development of such EHD tip-streaming phenomena is challenging given the large disparity in length scales between the macroscopic drops and the microscopic jets. Furthermore, there exist conflicting theories and measurements on the size and charge of these small electrospray droplets. We use theory and simulation to show that conductivity can be tuned to yield three scaling regimes for droplet radius and charge, a finding missed by previous studies. The amount of charge Q that electrospray droplets carry determines whether they are coulombically stable and charged below the Rayleigh limit of stability R or are unstable and hence prone to further explosions once formed. Previous experiments reported droplet charge values ranging from 1/10th to in excess of R. Simulations unequivocally show that electrospray droplets are coulombically stable at the instant they are created and that there exists a universal scaling law for droplet charge, Q=0.44 R.

  2. Radial arrays of nano-electrospray ionization emitters and methods of forming electrosprays

    DOEpatents

    Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2010-10-19

    Electrospray ionization emitter arrays, as well as methods for forming electrosprays, are described. The arrays are characterized by a radial configuration of three or more nano-electrospray ionization emitters without an extractor electrode. The methods are characterized by distributing fluid flow of the liquid sample among three or more nano-electrospray ionization emitters, forming an electrospray at outlets of the emitters without utilizing an extractor electrode, and directing the electrosprays into an entrance to a mass spectrometry device. Each of the nano-electrospray ionization emitters can have a discrete channel for fluid flow. The nano-electrospray ionization emitters are circularly arranged such that each is shielded substantially equally from an electrospray-inducing electric field.

  3. Positioning.

    ERIC Educational Resources Information Center

    Conone, Ruth M.

    The key to positioning is the creation of a clear benefit image in the consumer's mind. One positioning strategy is creating in the prospect's mind a position that takes into consideration the company's or agency's strengths and weaknesses as well as those of its competitors. Another strategy is to gain entry into a position ladder owned by…

  4. Romanian medical exposure to ionising radiation in 2012.

    PubMed

    Girjoaba, O; Cucu, A

    2015-07-01

    Medical exposure, the main source of artificial exposure, shows an increasing trend in the last years, manifested both by increasing the number of examinations with ionising radiation and by increasing the patient dose level. Annual results obtained for medical exposure to ionising radiation based on the data collected from Romanian hospitals are useful for the update of the national database and optimisation of diagnostic procedures in radiology and nuclear medicine. Medical exposure level is expressed in terms of annual collective dose and is evaluated from annual frequencies and the average effective dose per procedure for different types of radiological and nuclear medicine procedures. The Romanian hospitals reported during 2012 a number of 5,505,792 radiological examinations and 17,088 diagnostic procedures of nuclear medicine. Based on the data reported, the average effective doses and their contributions to the collective dose were evaluated. The main contributions to the collective dose of the radiological procedures are registered for CT abdomen and pelvis region, followed by thorax CT and head CT examinations. The next positions are fluoroscopic examination of the thorax and gastrointestinal disease and radiographic examination of the lumbar spine and thorax, which in spite of their low effective dose have an important contribution to the collective dose due to the large number of examinations. For nuclear medicine procedures, major contributions to collective dose are given by bone scintigraphy, followed by PET-CT and thyroid scintigraphy. PMID:25848102

  5. Effects of ionised or chelated water-soluble mineral mixture supplementation on growth performance, nutrient digestibility, blood characteristics, meat quality and intestinal microbiota in broilers.

    PubMed

    Upadhaya, S D; Lee, B R; Kim, I H

    2016-04-01

    An experiment was conducted to study the effects of dietary supplementation of water-soluble ionised or chelated mineral mixture on growth performance, nutrient digestibility, blood characteristics, relative organ weight, meat quality and excreta microflora in broilers. A total of 408 Arbor Acres broilers (17 birds in 8 replicate pens) were randomly allocated into one of the following three treatments: (1) Control/basal diet (CON), (2) T1 (basal diet + 0.5% ionised mineral mixture solution, pH 3.0) and (3) T2 (basal diet + 0.5% chelated mineral mixture solution, pH 3.0). The body weight gain was greater and feed conversion ratio was lower in broilers supplemented with ionised or chelated mineral liquid complex compared to CON during the grower and overall phase of the experiment. No significant effect in the concentration of Ca and P in the blood was observed in birds supplemented with ionised or chelated mineral mixture solution. No adverse effects were observed in organ weight and meat quality with ionised or chelated mineral mixture supplementation. Regarding intestinal microbiota counts there was a reduction of Escherichia coli counts in the small intestine in ionised mineral supplemented birds. In the large intestine, E. coli as well as Salmonella populations were reduced in ionised mineral supplemented birds. In conclusion, ionised or chelated minerals have partial positive effects in improving growth performance and reducing pathogenic bacteria load in the gastro-intestinal tract. PMID:27088481

  6. STRUCTURAL DETERMINATION AND QUANTITATIVE ANALYSIS OF BACTERIAL PHOSPHOLIPIDS USING LIQUID CHROMATOGRAPHY/ELECTROSPRAY IONIZATION/MASS SPECTROMETRY

    EPA Science Inventory

    This report presents a comprehensive spectral analysis of common bacterial phospholipids using electrospray/mass spectrometry (ESI/MS) under both negative and positive ionization conditions. Phospholipids under positive ionization yield sodium-adduct molecular ions which are mos...

  7. Digital electrospray for controlled deposition.

    PubMed

    Deng, Weiwei; Waits, C Mike; Gomez, Alessandro

    2010-03-01

    Many novel functional structures are now fabricated by controlled deposition as a maskless, bottom-up fabrication technique. These applications require rapid and precise deposition of minute amounts of solutions/suspensions or their ultimate particle products in predefined patterns. The electrospray is a promising alternative to the commonly used inkjet printing because it can easily handle highly viscous liquid, avoid high shear rates, and has low risk of clogging. We demonstrate a proof-of-concept digital electrospray. This system consists of a 61-nozzle array microfabricated in silicon and a 61-element digital extractor fabricated using flexible polyimide substrates. "Digital" refers to the state of each electrospray source that can be tuned either on or off independently and responsively. We showed a resolution of 675 mum and a response frequency up to 100 Hz. With similar design and industry standard fabrication procedures, it is feasible to scale up the system to O(1000) sources with spatial resolution better than 250 mum and a O(kHz) response frequency. The latter is controlled by the viscous damping time. PMID:20370220

  8. Effect of pressure on electrospray characteristics

    PubMed Central

    Marginean, Ioan; Page, Jason S.; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2009-01-01

    An experimental study of pulsating electrosprays operated at subambient pressure is reported. The pressure domain that affords stable electrospray operation appears to be limited by the vapor pressure of the liquid. The voltage driving the electrospray is shown to have a logarithmic dependence on pressure. The observed scaling amends the relationship currently used to calculate the electric field at the tip of the meniscus of an electrified liquid. PMID:19997584

  9. Effect of pressure on electrospray characteristics

    SciTech Connect

    Marginean, Ioan; Page, Jason S.; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2009-11-02

    An experimental study of sub-ambient pressure electrosprays is reported. The pressure domain that affords stable electrospray operation appears to be limited by the vapor pressure of the liquid. The voltage driving the electrospray is shown to have a logarithmic dependence on the pressure. This scaling amends the relationship currently in use to calculate the electric field at the tip of the meniscus of an electrified liquid

  10. Single event AC - DC electrospraying

    NASA Astrophysics Data System (ADS)

    Stachewicz, U.; Dijksman, J. F.; Marijnissen, J. C. M.

    2008-12-01

    Electrospraying is an innovative method to deposit very small amounts of, for example, biofluids (far less than 1 p1) that include DNA or protein molecules. An electric potential is applied between a nozzle filled with liquid and a counter electrode placed at 1-2 millimeter distance from the nozzle. In our set-up we use an AC field superposed on a DC field to control the droplet generation process. Our approach is to create single events of electrospraying triggered by one single AC pulse. During this pulse, the equilibrium meniscus (determined by surface tension, static pressure and the DC field) of the liquid changes rapidly into a cone and subsequently into a jet formed at the cone apex. Next, the jet breaks-up into fine droplets and the spraying stops. The meniscus returns to its equilibrium shape again. So far we obtained a stable and reproducible single event process for ethanol and ethylene glycol with water using glass pipettes. The results will be used to generate droplets on demand in a controlled way and deposit them on a pre-defined place on the substrate.

  11. Determination of structure parameters in molecular tunnelling ionisation model

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; Zhao, Song-Feng; Zhang, Cai-Rong; Li, Wei; Zhou, Xiao-Xin

    2014-04-01

    We extracted the accurate structure parameters in a molecular tunnelling ionisation model (the so-called MO-ADK model) for 23 selected linear molecules including some inner orbitals. The molecular wave functions with the correct asymptotic behaviour are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials numerically constructed using the modified Leeuwen-Baerends (LBα) model. We show that the orientation-dependent ionisation rate reflects the shape of the ionising orbitals in general. The influences of the Stark shifts of the energy levels on the orientation-dependent ionisation rates of the polar molecules are studied. We also examine the angle-dependent ionisation rates (or probabilities) based on the MO-ADK model by comparing with the molecular strong-field approximation calculations and with recent experimental measurements.

  12. Sampling probe for microarray read out using electrospray mass spectrometry

    DOEpatents

    Van Berkel, Gary J.

    2004-10-12

    An automated electrospray based sampling system and method for analysis obtains samples from surface array spots having analytes. The system includes at least one probe, the probe including an inlet for flowing at least one eluting solvent to respective ones of a plurality of spots and an outlet for directing the analyte away from the spots. An automatic positioning system is provided for translating the probe relative to the spots to permit sampling of any spot. An electrospray ion source having an input fluidicly connected to the probe receives the analyte and generates ions from the analyte. The ion source provides the generated ions to a structure for analysis to identify the analyte, preferably being a mass spectrometer. The probe can be a surface contact probe, where the probe forms an enclosing seal along the periphery of the array spot surface.

  13. Ionising radiation: are orthopaedic surgeons at risk?

    PubMed Central

    Smith, G. L.; Briggs, T. W.; Lavy, C. B.; Nordeen, H.

    1992-01-01

    Modern orthopaedic trauma practice involves increased exposure of the surgeon to ionising radiation. However, there have been no studies to investigate whether the doses received are within limits for non-classified workers. In this study, whole body, eye and extremity, namely hand, doses were measured in six orthopaedic surgeons during trauma cases requiring the use of X-rays in theatre. None of the subjects approached the recommended maximum dose levels for either the whole body, eyes or hands. This finding is reassuring. In orthopaedics, the limiting dose is that to the hands. This differs from previously studied groups, such as radiologists and cardiologists, in whom the limiting factor is the dose to the lens of the eye. Although current precautions appear to be adequate, safe practice in the future will depend on continuing vigilance and repetition of studies similar to this one as techniques and workloads change. PMID:1416705

  14. Novel experimental arrangement developed for direct fullerene analysis by electrospray time-of-flight mass spectrometry.

    PubMed

    Kozlovski, V; Brusov, V; Sulimenkov, I; Pikhtelev, A; Dodonov, A

    2004-01-01

    A novel electrospray setup was found effective for direct analysis of fullerene solutions by electrospray (ES) mass spectrometry. The electrospray capillary needle used for the analysis is equipped with a thin metal (copper, platinum or stainless steel) wire installed inside the capillary. The wire tip protrudes slightly from the capillary end. In this configuration the high electrical field formed by the wire tip stimulates a specific electrospray mode with a fine spray originating from the tip. The correlation of the acquired mass spectra with the magnified view of the spray at the capillary tip was investigated. The effective formation of fullerene ions in both negative and positive ion modes was observed in mass spectra only in the specific case of the electrospray originating from the wire tip. The fullerene di-anions observed in the negative ES mass spectra provide evidence for the electrochemical nature of this process occurring at the ES capillary tip. Observation of fullerene ions in mass spectra obtained using the suggested electrospray arrangement is assumed to be a consequence of the fine spray originating from the sharp metal wire tip. In this case the liquid/metal interface is near the Taylor cone apex. PMID:15052560

  15. Thin-channel electrospray emitter

    DOEpatents

    Van Berkel, Gary J.

    2004-08-31

    An electrospray device includes a high voltage electrode chamber. The high voltage electrode chamber includes an inlet for receiving a fluid to be ionized and for directing the fluid into the chamber and at least one electrode having an exposed surface within the chamber. A flow channel directs fluid over a surface of the electrode and out of the chamber. The length of the flow channel over the electrode is greater than the height of the flow channel over the electrode, thereby producing enhanced mass transport to the working electrode resulting in improved electrolysis efficiency. An outlet is provided for transmitting the fluid out from the electrode chamber. A method of creating charged droplets includes flowing a fluid over an electrode where the length over the electrode is greater than the height of the fluid flowing over the electrode.

  16. Electrospray Ionization on Solid Substrates

    PubMed Central

    So, Pui-Kin; Hu, Bin; Yao, Zhong-Ping

    2014-01-01

    Development of electrospray ionization on solid substrates (solid-substrate ESI) avoids the clogging problem encountered in conventional capillary-based ESI, allows more convenient sampling and permits new applications. So far, solid-substrate ESI with various materials, e.g., metals, paper, wood, fibers and biological tissue, has been developed, and applications ranging from analysis of pure compounds to complex mixtures as well as in vivo study were demonstrated. Particularly, the capability of solid-substrate ESI in direct analysis of complex samples, e.g., biological fluids and foods, has significantly facilitated mass spectrometric analysis in real-life applications and led to increasingly important roles of these techniques nowadays. In this review, various solid-substrate ESI techniques and their applications are summarized and the prospects in this field are discussed. PMID:26819900

  17. Remote mass spectrometric sampling of electrospray- and desorption electrospray-generated ions using an air ejector.

    PubMed

    Dixon, R Brent; Bereman, Michael S; Muddiman, David C; Hawkridge, Adam M

    2007-10-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data are presented. PMID:17716909

  18. Remote Mass Spectrometric Sampling of Electrospray- and Desorption Electrospray-Generated Ions Using an Air Ejector

    PubMed Central

    Dixon, R. Brent; Bereman, Michael S.; Muddiman, David C.; Hawkridge, Adam M.

    2007-01-01

    A commercial air ejector was coupled to an electrospray ionization linear ion trap mass spectrometer (LTQ) to transport remotely generated ions from both electrospray (ESI) and desorption electrospray ionization (DESI) sources. We demonstrate the remote analysis of a series of analyte ions that range from small molecules and polymers to polypeptides using the AE-LTQ interface. The details of the ESI-AE-LTQ and DESI-AE-LTQ experimental configurations are described and preliminary mass spectrometric data is presented. PMID:17716909

  19. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-08-23

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  20. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos; Van Berkel, Gary J

    2013-07-30

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  1. Generating Electrospray Ionization on Ballpoint Tips.

    PubMed

    Ji, Baocheng; Xia, Bing; Gao, Yuanji; Ma, Fengwei; Ding, Lisheng; Zhou, Yan

    2016-05-17

    In this study, we report a simple and economical ballpoint electrospray ionization mass spectrometry (BP-ESI-MS) technique. This combines a small ballpoint tip with a syringe pump for the direct loading and ionization of various samples in different phases (including solution, semisolid, and solid) and allows for additional applications in surface analysis. The tiny metal ball on the ballpoint tip exhibits a larger surface for ionization than that of a conventional sharp tip end, resulting in higher ionization efficiency and less sample consumption. The adamant properties of the ballpoint tip allow sampling by simply penetrating or scraping various surfaces, such as a fruit peel, paper, or fabric. Complex samples, such as fine herbal powders and small solid samples, could be stored in the hollow space in the ballpoint socket and subsequently extracted online, which greatly facilitated MS analysis with little to no sample preparation. Positive ion mode was attempted, and various compounds, including amino acids, carbohydrates, flavonoids, and alkaloids, were detected from different types of samples. The results demonstrated that the special and excellent physical characteristics of ballpoint tips allowed for fast and convenient sampling and ionization for mass spectrometry analysis by the BP-ESI-MS method. PMID:27111601

  2. Analysis of solvent dyes in refined petroleum products by electrospray ionization mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.

    2010-01-01

    Solvent dyes are used to color refined petroleum products to enable differentiation between gasoline, diesel, and jet fuels. Analysis for these dyes in the hydrocarbon product is difficult due to their very low concentrations in such a complex matrix. Flow injection analysis/electrospray ionization/mass spectrometry in both negative and positive mode was used to optimize ionization of ten typical solvent dyes. Samples of hydrocarbon product were analyzed under similar conditions. Positive electrospray ionization produced very complex spectra, which were not suitably specific for targeting only the dyes. Negative electrospray ionization produced simple spectra because aliphatic and aromatic moieties were not ionized. This enabled screening for a target dye in samples of hydrocarbon product from a spill.

  3. Electron interactions with positively and negatively multiply charged biomolecular clusters

    NASA Astrophysics Data System (ADS)

    Feketeová, Linda

    2012-07-01

    Interactions of positively and negatively multiply charged biomolecular clusters with low-energy electrons, from ~ 0 up to 50 eV of electron energy, were investigated in a high resolution Fourier-Transform Ion Cyclotron Resonance mass spectrometer equipped with an electrospray ionisation source. Electron-induced dissociation reactions of these clusters depend on the energy of the electrons, the size and the charge state of the cluster. The positively charged clusters [Mn+2H]2+ of zwitterionic betaines, M = (CH3)2XCH2CO2 (X = NCH3 and S), do capture an electron in the low electron energy region (< 10 eV). At higher electron energies neutral evaporation from the cluster becomes competitive with Coulomb explosion. In addition, a series of singly charged fragments arise from bond cleavage reactions, including decarboxylation and CH3 group transfer, due to the access of electronic excited states of the precursor ions. These fragmentation reactions depend on the type of betaine (X = NCH3 or S). For the negative dianionic clusters of tryptophan [Trp9-2H]2-, the important channel at low electron energies is loss of a neutral. Coulomb explosion competes from 19.8 eV and dominates at high electron energies. A small amount of [Trp2-H-NH3]- is observed at 21.8 eV.

  4. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    PubMed Central

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    Purpose The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Methods Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. Results All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of <200 nm with the drug present in the amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Conclusion Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate. PMID:26834471

  5. Oxidation Artifacts in the Electrospray Mass Spectrometry of Aβ Peptide

    PubMed Central

    Chen, Maolian; Cook, Kelsey D.

    2008-01-01

    Gradual corrosion of stainless steel electrospray emitters under conditions of normal use generates surface irregularities that can promote electrical discharge. The increased emission current affects the electrochemical reactions associated with the spray process. When sampling the peptide Aβ(1–40), this is manifest by oxidation of methionine at position 35 to methionine sulfoxide. The resultant mass shift and reduced sensitivity can adversely affect H/D exchange experiments. These effects can be avoided by adding a redox buffer or (preferably) by re-polishing the emitter, especially to a rounded geometry. PMID:17249640

  6. Single site double core level ionisation of OCS

    NASA Astrophysics Data System (ADS)

    Hedin, L.; Tashiro, M.; Linusson, P.; Eland, J. H. D.; Ehara, M.; Ueda, K.; Zhaunerchyk, V.; Karlsson, L.; Feifel, R.

    2014-08-01

    Single site O1s, C1s and S2p double ionisation of the OCS molecule has been investigated using a magnetic bottle multi-electron coincidence time-of-flight spectrometer. Photon energies of 1300, 750 and 520 eV, respectively, were used for the ionisation, and spectra were obtained from which the double core ionisation energies could be determined. The energies measured for 1s double ionisation are 1172 eV (O1s-2) and 659 eV (C1s-2). For the S2p double ionisation three dicationic states are expected, 3P, 1D and 1S. The ionisation energies obtained for these states are 373 eV (3P), 380 eV (1D) and 388 eV (1S). The ratio between the double and single core ionisation energies are in all cases equal or close to 2.20. Auger spectra of OCS, associated with the O1s-2, C1s-2 and S2p-2 dicationic states, were also recorded incorporating both electrons emitted as a result of the filling of the two core vacancies. As for other small molecules, the spectra show an atomic-like character with Auger bands located in the range 480-560 eV for oxygen, 235-295 eV for carbon and 100-160 eV for sulphur. The interpretation of the spectra is supported by CASSCF and CASCI calculations. The cross section ratio between double and single core hole creation was estimated as 3.7 × 10-4 for oxygen at 1300 eV, 3.7 × 10-4 for carbon at 750 eV and as 2.2 × 10-3 for sulphur at 520 eV.

  7. Production and properties of electrosprayed sericin nanopowder

    NASA Astrophysics Data System (ADS)

    Hazeri, Najmeh; Tavanai, Hossein; Moradi, Ali Reza

    2012-06-01

    Sericin is a proteinous substrate that envelops fibroin (silk) fiber, and its recovery provides significant economical and social benefits. Sericin is an antibacterial agent that resists oxidation and absorbs moisture and UV light. In powder form, sericin has a wide range of applications in food, cosmetics and drug delivery. Asides from other techniques of producing powder, such as precipitation and spray drying, electrospraying can yield solid nanoparticles, particularly in the submicron range. Here, we report the production of sericin nanopowder by electrospraying. Sericin sponge was recovered from Bombyx mori cocoons through a high-temperature, high-pressure process, followed by centrifugation and freeze drying of the sericin solution. The electrospraying solution was prepared by dissolving the sericin sponge in dimethyl sulfoxide. We demonstrate that electrospraying is capable of producing sericin nanopowder with an average particle size of 25 nm, which is by far smaller than the particles produced by other techniques. The electrosprayed sericin nanopowder consists of small crystallites and exhibits a high moisture absorbance.

  8. Cosmic-ray ionisation of dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Vaupre, Solenn

    2015-07-01

    Cosmic rays (CR) are of tremendous importance in the dynamical and chemical evolution of interstellar molecular clouds, where stars and planets form. CRs are likely accelerated in the shells of supernova remnants (SNR), thus molecular clouds nearby can be irradiated by intense fluxes of CRs. CR protons have two major effects on dense molecular clouds: 1) when they encounter the dense medium, high-energy protons (>280 MeV) create pions that decay into gamma-rays. This process makes SNR-molecular cloud associations intense GeV and/or TeV sources whose spectra mimic the CR spectrum. 2) at lower energies, CRs penetrate the cloud and ionise the gas, leading to the formation of molecular species characteristic of the presence of CRs, called tracers of the ionisation. Studying these tracers gives information on low-energy CRs that are unaccessible to any other observations. I studied the CR ionisation of molecular clouds next to three SNRs: W28, W51C and W44. These SNRs are known to be interacting with the nearby clouds, from the presence of shocked gas, OH masers and pion-decay induced gamma-ray emission. My work includes millimeter observations and chemical modeling of tracers of the ionisation in these dense molecular clouds. In these three regions, we determined an enhanced CR ionisation rate, supporting the hypothesis of an origin of the CRs in the SNR nearby. The evolution of the CR ionisation rate with the distance to the SNR brings valuable constraints on the propagation properties of low-energy CRs. The method used relies on observations of the molecular ions HCO+ and DCO+, which shows crucial limitations at high ionisation. Therefore, I investigated, both through modeling and observations, the chemical abundances of several other species to try and identity alternative tracers of the ionisation. In particular, in the W44 region, observations of N2H+ bring additional constraints on the physical conditions, volatile abundances in the cloud, and the ionisation

  9. On-line micellar electrokinetic chromatography-electrospray ionization mass spectrometry using anodically migrating micelles

    SciTech Connect

    Yang, L.; Harrata, A.K.; Lee, C.S. |

    1997-05-15

    On-line micellar electrokinetic chromatography (MEKC)-electrospray ionization mass spectrometry (ESIMS) is demonstrated for the analysis of chlorotriazine herbicides and barbiturates. In this study, the micellar velocity is directly manipulated by the adjustment of electroosmosis rather than the electrophoretic velocity of the micelle. The electroosmotic flow is adjusted against the electrophoretic velocity of the micelle by changing the solution pH in MEKC. The elimination of MEKC surfactant introduction into ESIMS is achieved with an anodically migrating micelle, moving away from the electrospray interface. The effects of moving surfactant boundary in the MEKC capillary on separation efficiency and resolution of triazine herbicides and barbiturates are investigated. The mass detection of herbicides and barbiturates sequentially eluted from the MEKC capillary is acquired using the positive and negative electrospray modes, respectively. 30 refs., 8 figs., 3 tabs.

  10. CAPILLARY ELECTROPHORESIS-ELECTROSPRAY MASS SPECTRA OF THE HERBICIDES PARAQUAT AND DIQUAT

    EPA Science Inventory

    The positive ion electrospray mass spectra of the quaternary ammonium salt herbicides paraquat and diquat are examined by on-line separation with capillary electrophoresis (CE) and by direct infusion of the analytes. The analytes are separated by CE in 7-10 min at pH 3.9 in 50% m...

  11. Analysis of regiospecific triacylglycerols in vegetable oils and animal fats by electrospray mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method of regiospecific analysis of triacylglycerols (TAG) in vegetable oils and animal fats is reported here using the electrospray ionization MS3 of TAG lithiated adducts. The fragment ions of the MS3 from the loss of fatty acids at the sn-2 position as alpha, Beta-unsaturated fatty acids were u...

  12. Capillary electrophoresis electrospray ionization mass spectrometry interface

    SciTech Connect

    Smith, R.D.; Severs, J.C.

    1999-11-30

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an analyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  13. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  14. A soft on-column metal coating procedure for robust sheathless electrospray emitters used in capillary electrophoresis-mass spectrometry.

    PubMed

    Trapp, Oliver; Pearce, Evan W; Kimmel, Joel R; Yoon, Oh Kyu; Zuleta, Ignacio A; Zare, Richard N

    2005-04-01

    An on-column metal coating procedure was developed for sheathless electrospray emitters, based on Justus von Liebig's electroless silver mirror reaction followed by electrochemical deposition of gold onto the silver layer. The coating procedure is straightforward, mild, inexpensive, and can be performed with standard laboratory equipment. A long-term (600 h) stability investigation of the conductive coating was carried out by continuous electrospray in the positive electrospray mode, and no degradation in performance was found. The simplicity of the coating procedure and the robustness of the spray tips makes the spray tips highly suitable to couple delicate wall-coated or monolithic capillary columns to mass spectrometry. Peptide mixtures were separated by capillary electrophoresis and injected into either a Hadamard-transform time-of-flight mass analyzer or a commercial quadrupole mass analyzer using the described sheathless electrospray emitters. The performance was judged to be excellent. PMID:15759300

  15. Surface tension effects on submerged electrosprays

    PubMed Central

    Marín, Álvaro G.; Loscertales, Ignacio G.; Barrero, Antonio

    2012-01-01

    Electrosprays are a powerful technique to generate charged micro/nanodroplets. In the last century, the technique has been extensively studied, developed, and recognized with a shared Nobel price in Chemistry in 2002 for its wide spread application in mass spectrometry. However, nowadays techniques based on microfluidic devices are competing to be the next generation in atomization techniques. Therefore, an interesting development would be to integrate the electrospray technique into a microfluidic liquid-liquid device. Several works in the literature have attempted to build a microfluidic electrospray with disputable results. The main problem for its integration is the lack of knowledge of the working parameters of the liquid-liquid electrospray. The “submerged electrosprays” share similar properties as their counterparts in air. However, in the microfluidic generation of micro/nanodroplets, the liquid-liquid interfaces are normally stabilized with surface active agents, which might have critical effects on the electrospray behavior. In this work, we review the main properties of the submerged electrosprays in liquid baths with no surfactant, and we methodically study the behavior of the system for increasing surfactant concentrations. The different regimes found are then analyzed and compared with both classical and more recent experimental, theoretical and numerical studies. A very rich phenomenology is found when the surface tension is allowed to vary in the system. More concretely, the lower states of electrification achieved with the reduced surface tension regimes might be of interest in biological or biomedical applications in which excessive electrification can be hazardous for the encapsulated entities. PMID:24155865

  16. Electrospray Ionization-Induced Protein Unfolding

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Kitova, Elena N.; Johnson, Margaret A.; Eugenio, Luiz; Ng, Kenneth K. S.; Klassen, John S.

    2012-12-01

    Electrospray ionization mass spectrometry (ESI-MS) measurements were performed under a variety of solution conditions on a highly acidic sub-fragment (B3C) of the C-terminal carbohydrate-binding repeat region of Clostridium difficile toxin B, and two mutants (B4A and B4B) containing fewer acidic residues. ESI-MS measurements performed in negative ion mode on aqueous ammonium acetate solutions of B3C at low ionic strength ( I < 80 mM) revealed evidence, based on the measured charge state distribution, of protein unfolding. In contrast, no evidence of unfolding was detected from ESI-MS measurements made in positive ion mode at low I or in either mode at higher I. The results of proton nuclear magnetic resonance and circular dichroism spectroscopy measurements and gel filtration chromatography performed on solutions of B3C under low and high I conditions suggest that the protein exists predominantly in a folded state in neutral aqueous solutions with I > 10 mM. The results of ESI-MS measurements performed on B3C in a series of solutions with high I at pH 5 to 9 rule out the possibility that the structural changes are related to ESI-induced changes in pH. It is proposed that unfolding of B3C, observed in negative mode for solutions with low I, occurs during the ESI process and arises due to Coulombic repulsion between the negatively charged residues and liquid/droplet surface charge. ESI-MS measurements performed in negative ion mode on B4A and B4B also reveal a shift to higher charge states at low I but the magnitude of the changes are smaller than observed for B3C.

  17. Liquid chromatography/electrospray ionisation-tandem mass spectrometry quantification of GM2 gangliosides in human peripheral cells and plasma.

    PubMed

    Fuller, Maria; Duplock, Stephen; Hein, Leanne K; Rigat, Brigitte A; Mahuran, Don J

    2014-08-01

    GM2 gangliosidosis is a group of inherited neurodegenerative disorders resulting primarily from the excessive accumulation of GM2 gangliosides (GM2) in neuronal cells. As biomarkers for categorising patients and monitoring the effectiveness of developing therapies are lacking for this group of disorders, we sought to develop methodology to quantify GM2 levels in more readily attainable patient samples such as plasma, leukocytes, and cultured skin fibroblasts. Following organic extraction, gangliosides were partitioned into the aqueous phase and isolated using C18 solid-phase extraction columns. Relative quantification of three species of GM2 was achieved using LC/ESI-MS/MS with d35GM1 18:1/18:0 as an internal standard. The assay was linear over the biological range, and all GM2 gangliosidosis patients were demarcated from controls by elevated GM2 in cultured skin fibroblast extracts. However, in leukocytes only some molecular species could be used for differentiation and in plasma only one was informative. A reduction in GM2 was easily detected in patient skin fibroblasts after a short treatment with media from normal cells enriched in secreted β-hexosaminidase. This method may show promise for measuring the effectiveness of experimental therapies for GM2 gangliosidosis by allowing quantification of a reduction in the primary storage burden. PMID:24769373

  18. An electrospray ionisation-mass spectrometry screening of triacylglycerols in developing cultivated and wild peanut kernels (Arachis hypogaea L.).

    PubMed

    Cherif, Aicha O; Leveque, Nathalie; Ben Messaouda, Mhamed; Kallel, Habib; Moussa, Fathi

    2013-06-01

    The accumulation of triacylglycerols during the development of three varieties of peanuts was monitored in two Tunisian cultivated peanut (Trabelsia (AraT) and Chounfakhi (AraC)) and one wild Tunisian peanut (Arbi (AraA)). The presence of TAGs composed of rare fatty acid residues such as hexacosanoic acid (C(23:0)) and heneicosanoic acid (C(21:0)) among the triacylglycerols C(23:0) LL, C(23:0) OO and C(21:0) LL was noted. The major molecular species of triacylglycerol detected in the three peanut varieties were dioleoyl linoleoyl (OOL), 1,2,3-trioleyl (OOO), 1,2-dioleyl-3-palmitoyl (POO), 1,2-dilinoleoyl-3-oleyl (OLL) and 1-oleoyl-2-linoleoyl-3-linolenoyl (OLLn). The TAG composition and content were significantly different among the three peanut varieties. The three major TAGs were OOL (20.6%), OOO (15.6%) and OLLn (13.2%) in AraA; OOL (21.4%), OOO (20.1%) and POO (17.5%) in AraC and finally OLL (20.7%), OOO (19.8%) and OLL (17.7%) in AraT. PMID:23411219

  19. Some characteristics of the glutathione cycle revealed by ionising and non-ionising electromagnetic radiation.

    PubMed

    Holt, J A

    1995-10-01

    The cyclic reaction of GSH-->GSSG-->GSH (designated R(exp) or R(e)) obeys the three specific features of life by producing energy in exponential quantities relative to time, is in effect irreversible and is inherited from generation to generation. In multicellular life, this reaction produces the energy for mitosis and is kept in controlled inactivity until needed to maintain perfection of form and function by energising mitosis. The immediate control of Re appears to be feedback process-dependent on the concentration of GSSG. Ultra high-frequency electromagnetic radiation of 434 MHz (UHF) will change Re from inactive to active and, in so doing, it causes resonance and/or fluorescence of the glutathione cycle which changes its radiosensitivity. Re is the primary direct target of ionising radiation and produces the energy for mitosis. Clinical observations suggest that, in the normal cell, Re is inactive and is not killed by 3 x 2700 rads or 6 x 1650 rads yet, when active, its sensitivity value (DO) is approximately 160 rads. Using the standard radiobiological equation of response to ionising radiation, it can be deduced that radiosensitive cancers have two or three Re units active per cell and radioresistance increases in proportion to the number of potentially active Re units per cell. Re appears to be the main cause of cancers' increased conductivity of electricity compared with normal tissue. In cancer therapy, UHF is the best radiosensitiser ever discovered (up to two or more decades). Re is also intelligent compared with non-exponential reactions but cannot be the basis of intellectual brain functions which must be based on non-electrical chemical processes. PMID:8577298

  20. Binary-Encounter-Bethe ionisation cross sections for simulation of DNA damage by the direct effect of ionising radiation.

    PubMed

    Plante, I; Cucinotta, F A

    2015-09-01

    DNA damage is of crucial importance in the understanding of the effects of ionising radiation. To refine existing DNA damage models, an approach using the Binary-Encounter-Bethe (BEB) cross sections was developed. The differential cross sections for ionisation of the molecular orbitals of the DNA bases, sugars and phosphates are calculated using the electron binding energy, the mean kinetic energy and the occupancy number of each orbital as parameters. The resulting cross section has an analytic form which is quite convenient to use for Monte-Carlo codes that randomly sample the energy loss occurring during an ionisation event. We also describe an algorithm to simulate the interactions of electrons with DNA in the radiation transport code RITRACKS using the integrated BEB cross section for the bases, sugar and phosphates. PMID:25870431

  1. Development of a RILIS ionisation scheme for gold at ISOLDE, CERN

    NASA Astrophysics Data System (ADS)

    Marsh, B. A.; Fedosseev, V. N.; Kosuri, P.

    2006-07-01

    At the ISOLDE on-line isotope separation facility, the resonance ionisation laser ion source (RILIS) can be used to ionise reaction products as they effuse from the target. The RILIS process of laser step-wise resonance ionisation of atoms in a hot metal cavity provides a highly element selective stage in the preparation of the radioactive ion beam. As a result, the ISOLDE mass separators can provide beams of a chosen isotope with greatly reduced isobaric contamination. With the addition of a new three-step ionisation scheme for gold, the RILIS is now capable of ionising 26 of the elements. The optimal scheme was determined during an extensive study of the atomic energy levels and auto-ionising states of gold, carried out by means of in-source resonance ionisation spectroscopy. Details of the ionisation scheme and a summary of the spectroscopy study are presented.

  2. Development of a RILIS ionisation scheme for gold at ISOLDE, CERN

    NASA Astrophysics Data System (ADS)

    Marsh, B. A.; Fedosseev, V. N.; Kosuri, P.

    At the ISOLDE on-line isotope separation facility, the resonance ionisation laser ion source (RILIS) can be used to ionise reaction products as they effuse from the target. The RILIS process of laser step-wise resonance ionisation of atoms in a hot metal cavity provides a highly element selective stage in the preparation of the radioactive ion beam. As a result, the ISOLDE mass separators can provide beams of a chosen isotope with greatly reduced isobaric contamination. With the addition of a new three-step ionisation scheme for gold, the RILIS is now capable of ionising 26 of the elements. The optimal scheme was determined during an extensive study of the atomic energy levels and auto-ionising states of gold, carried out by means of in-source resonance ionisation spectroscopy. Details of the ionisation scheme and a summary of the spectroscopy study are presented.

  3. Combined electrophoresis-electrospray interface and method

    SciTech Connect

    Smith, Richard D.; Udseth, Harold R.; Barinaga, Charles J.

    1995-01-01

    An improvement to the system and method for analyzing molecular constituents of a composition sample that comprises improvements to an electrospray ionization source for interfacing to mass spectrometers and other detection devices. The improvement consists of establishing a unique electrical circuit pattern and nozzle configuration, a metallic coated and conical shaped capillary outlet, coupled with sizing of the capillary to obtain maximum sensitivity.

  4. A hydrophilic interaction liquid chromatography electrospray tandem mass spectrometry method for the simultaneous determination of γ-hydroxybutyrate and its precursors in forensic whole blood.

    PubMed

    Sørensen, Lambert K; Hasselstrøm, Jørgen B

    2012-10-10

    A liquid-chromatography-tandem-mass-spectrometry method using pneumatically assisted electrospray ionisation (LC-ESI-MS/MS) was developed for the simultaneous determination of γ-hydroxybutyric acid (GHB), γ-butyrolactone (GBL) and 1,4-butanediol (1,4-BD) in human ante-mortem and post-mortem whole blood. The blood proteins were precipitated using a mixture of methanol and acetonitrile, and the extract was cleaned-up by passage through a polymeric strong cation exchange sorbent. Separation of the analytes and their structural isomers was obtained using a column with a zwitterionic stationary phase. Matrix-matched calibrants, combined with isotope dilution, were used for quantitative analysis. GHB was determined in both positive and negative ion modes. The relative intra-laboratory reproducibility standard deviations were better than 10% and 6% for blood samples at concentrations of 2 mg/L and 20-150 mg/L, respectively. The mean true extraction recoveries were 80% for GHB and greater than 90% for GBL and 1,4-BD at concentration levels of 20-50 mg/L. The limits of detection were approximately 0.5 mg/L for GHB and GBL, and 0.02 mg/L for 1,4-BD in ante-mortem blood. The corresponding lower limits of quantification were less than 1 mg/L for GHB and GBL, and less than 0.1 mg/L for 1,4-BD. GBL was unstable in whole blood freshly preserved with a sodium fluoride oxalate mixture, but the stability could be improved significantly by preservation with a sodium fluoride citrate EDTA mixture. PMID:22917943

  5. Occupational Exposure to Natural Sources of Ionising Radiation in Ireland

    NASA Astrophysics Data System (ADS)

    Organo, Catherine; Colgan, Tony; Fenton, David; Synnott, Hugh; Currivan, Lorraine

    2008-08-01

    The Radiological Protection Institute of Ireland (RPII) has recently completed a detailed evaluation of all radiation exposure pathways from sources of both natural and artificial radiation in the Irish environment. This paper presents a compilation of the occupational doses received by Irish workers exposed to natural sources of ionising radiation.

  6. Occupational Exposure to Natural Sources of Ionising Radiation in Ireland

    SciTech Connect

    Organo, Catherine; Colgan, Tony; Fenton, David; Synnott, Hugh; Currivan, Lorraine

    2008-08-07

    The Radiological Protection Institute of Ireland (RPII) has recently completed a detailed evaluation of all radiation exposure pathways from sources of both natural and artificial radiation in the Irish environment. This paper presents a compilation of the occupational doses received by Irish workers exposed to natural sources of ionising radiation.

  7. Analysis of intact bacteria using rapid evaporative ionisation mass spectrometry.

    PubMed

    Strittmatter, Nicole; Jones, Emrys A; Veselkov, Kirill A; Rebec, Monica; Bundy, Jacob G; Takats, Zoltan

    2013-07-14

    An identification system for microorganisms based on recently developed rapid evaporative ionisation mass spectrometry (REIMS) is presented. Nine bacterial species cultured on various growth media were correctly identified to family-, genus-, and species-level based on their different mass spectral fingerprints using a cross-validated maximum margin criterion model. PMID:23736664

  8. Resonance laser-induced ionisation of sodium vapour taking radiative transfer into account

    SciTech Connect

    Kosarev, N I; Shaparev, N Ya

    2006-04-30

    The problem of ionisation of atomic sodium in the field of resonance laser radiation is numerically solved taking radiative transfer into account. Seed electrons are produced due to the mechanism of associative ionisation, then they gain energy in superelastic processes (collisions of the second kind) and initiate the avalanche ionisation of the medium by electron impact. We studied the effect of secondary radiation on the laser pulse propagation upon competition between the ionising and quenching electron collisions with excited atoms, on the kinetics of ionisation-induced vapour bleaching, and the plasma channel expansion in the form of a halo. (interaction of laser radiation with matter)

  9. Formation of metal-ion adducts and evidence for surface-catalyzed ionization in electrospray analysis of pharmaceuticals and pesticides

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.

    2002-01-01

    The formation of metal ion adducts in liquid chromatography/mass spectrometry positive-ion electrospray analysis of pharmaceuticals and pesticides was investigated. The evidence of surface-catalyzed ionization in the electrospray analysis was also studied. Both positive and negative ion mass spectrometry were used for the analysis of the products. It was found that the sodium adducts formed in the analysis included single, double, and triple sodium adducts. Adduction was found to occur by attachment of the metal ion to carboxyl, carbonyl and aromatic pi electrons of the molecule.

  10. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.D.; Udseth, H.R.; Barinaga, C.J.

    1995-06-13

    An improvement to the system and method is disclosed for analyzing molecular constituents of a composition sample that comprises improvements to an electrospray ionization source for interfacing to mass spectrometers and other detection devices. The improvement consists of establishing a unique electrical circuit pattern and nozzle configuration, a metallic coated and conical shaped capillary outlet, coupled with sizing of the capillary to obtain maximum sensitivity. 10 figs.

  11. Electrospray ionization of volatiles in breath

    NASA Astrophysics Data System (ADS)

    Martínez-Lozano, P.; de La Mora, J. Fernández

    2007-08-01

    Recent work by Zenobi and colleagues [H. Chen, A. Wortmann, W. Zhang, R. Zenobi, Angew. Chem. Int. Ed. 46 (2007) 580] reports that human breath charged by contact with an electrospray (ES) cloud yields many mass peaks of species such as urea, glucose, and other ions, some with molecular weights above 1000 Da. All these species are presumed to be involatile, and to originate from breath aerosols by so-called extractive electrospray ionization EESI [H. Chen, A. Venter, R.G. Cooks, Chem. Commun. (2006) 2042]. However, prior work by Fenn and colleagues [C.M. Whitehouse, F. Levin, C.K. Meng, J.B. Fenn, Proceedings of the 34th ASMS Conference on Mass Spectrometry and Allied Topics, Denver, 1986 p. 507; S. Fuerstenau, P. Kiselev, J.B. Fenn, Proceedings of the 47th ASMS Conference on Mass Spectrometry, 1999, Dallas, TX, 1999] and by Hill and colleagues [C. Wu, W.F. Siems, H.H. Hill Jr., Anal. Chem. 72 (2000) 396] have reported the ability of electrospray drops to ionize a variety of low vapor pressure substances directly from the gas phase, without an apparent need for the vapor to be brought into the charging ES in aerosol form. The Ph.D. Thesis of Martínez-Lozano [P. Martínez-Lozano Sinués, Ph.D. Thesis, Department of Thermal and Fluid Engineering, University Carlos III of Madrid; April 5, 2006 (in Spanish); http://hdl.handle.net/10016/655] had also previously argued that the numerous human breath species observed via a similar ES ionization approach were in fact ionized directly from the vapor. Here, we observe that passage of the breath stream through a submicron filter does not eliminate the majority of the breath vapors seen in the absence of the filter. We conclude that direct vapor charging is the leading mechanism in breath ionization by electrospray drops, though aerosol ionization may also play a role.

  12. Modeling Electrospray Deposition of Nanoparticle Inks

    NASA Astrophysics Data System (ADS)

    Li, Ao; Fideles da Silva, Jefferson; Yong, Xin

    2015-11-01

    Electrospray of nanoparticle inks is of great importance to the manufacturing of functional materials. In this study, we develop a new three-dimensional multiphysics method to model the electrospray of colloidal suspension to a flat substrate. The Lagrangian Particle Tracking (LPT) transport equation is coupled to mass and heat transfer using convective droplet vaporization model, which allow us to track each particle-laden ink droplets and dry nanoparticles in the electrospray plume and probe the deposit structures. Herein, we consider dilute inks that are experimentally relevant, assuming monodisperse nanoparticles. We characterize the overall statistics of the plume and the dynamics of individual ink droplet or dry nanoparticle. It is shown that the segregation effect affects not only primary and satellite droplets but also dry nanoparticles. We observe nanoparticles deposit structure changing process, in particular time evolution of the density profile along radial direction. Our results show that the region of high nanoparticle density transitioning from only the edge to both the edge and center, which agrees with previous experimental studies.

  13. Ionised outflows in z ~ 2.4 quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; Feruglio, C.; La Franca, F.; Mainieri, V.; Mannucci, F.; Nagao, T.; Netzer, H.; Piconcelli, E.; Risaliti, G.; Schneider, R.; Shemmer, O.

    2015-08-01

    Aims: Outflows driven by active galactic nuclei (AGN) are invoked by galaxy evolutionary models to quench star formation and to explain the origin of the relations observed locally between super-massive black holes and their host galaxies. We here aim to detect extended ionised outflows in luminous quasars, where we expect the highest activity both in star formation and in black-hole accretion. Currently, there are only a few studies based on spatially resolved observations of outflows at high redshift, z > 2. Methods: We analysed a sample of six luminous (L > 1047 erg/s) quasars at z ~ 2.4, observed in H-band using the near-IR integral field spectrometer SINFONI at the VLT. We performed a kinematic analysis of the [Oiii] emission line at λ = 5007 Å. Results: We detect fast, spatially extended outflows in five out of six targets. [Oiii]λ5007 has a complex gas kinematic, with blue-shifted velocities of a few hundreds of km s-1 and line widths up to 1500 km s-1. Using the spectroastrometric method, we infer a size of the ionised outflows of up to ~2 kpc. The properties of the ionised outflows, mass outflow rate, momentum rate, and kinetic power, are correlated with the AGN luminosity. The increase in outflow rate with increasing AGN luminosity is consistent with the idea that a luminous AGN pushes away the surrounding gas through fast outflows that are driven by radiation pressure, which depends on the emitted luminosity. Conclusions: We derive mass outflow rates of about 6-700 M⊙ yr-1 for our sample, which are lower than those observed in molecular outflows. The physical properties of ionised outflows show dependences on AGN luminosity that are similar to those of molecular outflows, but indicate that the mass of ionised gas is lower than that of molecular outflows. Alternatively, this discrepancy between ionised and molecular outflows could be explained with different acceleration mechanisms. Based on Observations collected at the European Organisation for

  14. Planar flow-by electrode capacitive electrospray ion source

    DOEpatents

    Van Berkel, Gary J.

    2004-01-13

    An electrospray ion source includes a chamber including a channel region therein, the channel including at least one inlet for directing a solution into the channel and at least a first and a second outlet for transmitting the solution or derivatives therefrom out from channel. Structure for separating ions in the solution is provided from separating the solution into at least a first and a second flow stream portion. The first flow stream portion is enriched in negative ions and the second flow stream portion is enriched in positive ions. The first flow stream portion is adapted to exit the chamber through the first outlet while the second flow stream portion is adapted to exit the chamber through the second outlet. A method of charge separation can include the step of simultaneously providing at least two gas phase ion stream portions having opposite polarity.

  15. High ionisation absorption in low mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Ponti, G.; Bianchi, S.; Muñoz-Darias, T.; De, K.; Fender, R.; Merloni, A.

    2016-05-01

    The advent of the new generation of X-ray telescopes yielded a significant step forward in our understanding of ionised absorption generated in the accretion discs of X-ray binaries. It has become evident that these relatively weak and narrow absorption features, sporadically present in the X-ray spectra of some systems, are actually the signature of equatorial outflows, which might carry away more matter than that being accreted. Therefore, they play a major role in the accretion phenomenon. These outflows (or ionised atmospheres) are ubiquitous during the softer states but absent during the power-law dominated, hard states, suggesting a strong link with the state of the inner accretion disc, presence of the radio-jet and the properties of the central source. Here, we discuss the current understanding of this field.

  16. Airborne laser-spark for ambient desorption/ionisation.

    PubMed

    Bierstedt, Andreas; Riedel, Jens

    2016-01-01

    A novel direct sampling ionisation scheme for ambient mass spectrometry is presented. Desorption and ionisation are achieved by a quasi-continuous laser induced plasma in air. Since there are no solid or liquid electrodes involved the ion source does not suffer from chemical interferences or fatigue originating from erosive burning or from electrode consumption. The overall plasma maintains electro-neutrality, minimising charge effects and accompanying long term drift of the charged particles trajectories. In the airborne plasma approach the ambient air not only serves as the plasma medium but at the same time also slows down the nascent ions via collisional cooling. Ionisation of the analyte molecules does not occur in the plasma itself but is induced by interaction with nascent ionic fragments, electrons and/or far ultraviolet photons in the plasma vicinity. At each individual air-spark an audible shockwave is formed, providing new reactive species, which expands concentrically and, thus, prevents direct contact of the analyte with the hot region inside the plasma itself. As a consequence the interaction volume between plasma and analyte does not exceed the threshold temperature for thermal dissociation or fragmentation. Experimentally this indirect ionisation scheme is demonstrated to be widely unspecific to the chemical nature of the analyte and to hardly result in any fragmentation of the studied molecules. A vast ensemble of different test analytes including polar and non-polar hydrocarbons, sugars, low mass active ingredients of pharmaceuticals as well as natural biomolecules in food samples directly out of their complex matrices could be shown to yield easily accessible yet meaningful spectra. Since the plasma medium is humid air, the chemical reaction mechanism of the ionisation is likely to be similar to other ambient ionisation techniques. Wir stellen hier eine neue Ionisationsmethode für die Umgebungsionisation (ambient ionisation) vor. Sowohl die

  17. Ionisation of a quantum dot by electric fields

    SciTech Connect

    Eminov, P A; Gordeeva, S V

    2012-08-31

    We have derived analytical formulas for differential and total ionisation probabilities of a two-dimensional quantum dot by a constant electric field. In the adiabatic approximation, we have calculated the probability of this process in the field of a plane electromagnetic wave and in a superposition of constant and alternating electric fields. The imaginary-time method is used to obtain the momentum distribution of the ionisation probability of a bound system by an intense field generated by a superposition of parallel constant and alternating electric fields. The total probability of the process per unit time is calculated with exponential accuracy. The dependence of the results obtained on the characteristic parameters of the problem is investigated. (laser applications and other topics in quantum electronics)

  18. Wedge Absorber Design for the Muon Ionisation Cooling Experiment

    SciTech Connect

    Rogers, C.; Snopok, P.; Coney, L.; Jansson, A.; /Fermilab

    2010-05-01

    In the Muon Ionisation Cooling Experiment (MICE), muons are cooled by ionisation cooling. Muons are passed through material, reducing the total momentum of the beam. This results in a decrease in transverse emittance and a slight increase in longitudinal emittance, but overall reduction of 6d beam emittance. In emittance exchange, a dispersive beam is passed through wedge-shaped absorbers. Muons with higher energy pass through more material, resulting in a reduction in longitudinal emittance as well as transverse emittance. We consider the cooling performance of different wedge materials and geometries and propose a set of measurements that would be made in MICE.We outline the resources these measurements would require and detail some constraints that guide the choice of wedge parameters.

  19. Ionisation of C60: is it temperature dependent?

    NASA Astrophysics Data System (ADS)

    Baba, M. Sai; Narasimhan, T. S. Lakshmi; Balasubramanian, R.; Mathews, C. K.

    1994-01-01

    In a recent paper, Drewello [T. Drewello, W. Kratschmer, M. Fieber-Erdmann and A. Ding, Int. J. Mass Spectrom. Ion Processes, 124 (1993) R1] reported a temperature dependent ionisation cross section for the formation of C2+60 in their photoionisation dynamic studies on C60 using synchrotron radiation. To check this, the ratio of ion intensities of C2+60 to that of C60 was determined as a function of temperature of C60 samples using a Knudsen effusion mass spectrometer. Our results indicate the absence of any temperature dependence of cross section for the formation of C2+60 in the temperature range of measurement (600-800 K) using electron impact ionisation.

  20. Perspective on Electrospray Ionization and Its Relation to Electrochemistry

    NASA Astrophysics Data System (ADS)

    Pozniak, Boguslaw P.; Cole, Richard B.

    2015-03-01

    The phenomenon of electrospraying of liquids is presented from the perspective of the electrochemistry involved. Basics of current and liquid flow in the capillary and spray tip are discussed, followed by specifics of charging and discharging of the sprayed liquid surface. Fundamental theories and numerical modeling relating electrospray current to solution and spray parameters are described and then compared with our own experimentally obtained data. The method of mapping potentials and currents inside the electrospray capillary by using an inserted electrically-isolated small wire probe electrode is discussed in detail with illustrations from new and published data. Based on these experimentally obtained results, a new mathematical model is derived. The introduced "nonlinear resistor electrospray capillary model" divides the electrospray capillary into small sections, adds their contributions, and then, by transition to infinitely small section thickness, produces analytical formulas that relate current and potential maps to other properties of the electrospraying liquid: primarily conductivity and current density. The presentation of the model is undertaken from an elementary standpoint, and it offers the possibility to obtain quantitative information regarding operating parameters from typical analytical systems subjected to electrospray. The model stresses simplicity and ease of use; examples applying experimental data are shown and some predictions of the model are also presented. The developed nonlinear resistor electrospray capillary model is intended to provide a new quantitative basis for improving the understanding of electrochemical transformations occurring in the electrospray emitter. A supplemental material section gives full derivation of the model and discusses other consequences.

  1. IEC STANDARDS FOR INDIVIDUAL MONITORING OF IONISING RADIATION

    SciTech Connect

    Voytchev, Miroslav; Ambrosi, P.; Behrens, R.; Chiaro Jr, Peter John

    2011-01-01

    This paper presents IEC/SC 45B Radiation protection instrumentation and its standards for individual monitoring of ionising radiation: IEC 61526 Ed. 3 for active personal dosemeters and IEC 62387-1 for passive integrating dosimetry systems. The transposition of these standards as CENELEC (European) standards is also discussed together with the collaboration between IEC/SC 45B and ISO/TC 85/SC 2.

  2. Erich Regener and the ionisation maximum of the atmosphere

    NASA Astrophysics Data System (ADS)

    Carlson, P.; Watson, A. A.

    2014-12-01

    In the 1930s the German physicist Erich Regener (1881-1955) did important work on the measurement of the rate of production of ionisation deep under water and in the atmosphere. Along with one of his students, Georg Pfotzer, he discovered the altitude at which the production of ionisation in the atmosphere reaches a maximum, often, but misleadingly, called the Pfotzer maximum. Regener was one of the first to estimate the energy density of cosmic rays, an estimate that was used by Baade and Zwicky to bolster their postulate that supernovae might be their source. Yet Regener's name is less recognised by present-day cosmic ray physicists than it should be, largely because in 1937 he was forced to take early retirement by the National Socialists as his wife had Jewish ancestors. In this paper we briefly review his work on cosmic rays and recommend an alternative naming of the ionisation maximum. The influence that Regener had on the field through his son, his son-in-law, his grandsons and his students, and through his links with Rutherford's group in Cambridge, is discussed in an appendix. Regener was nominated for the Nobel Prize in Physics by Schrödinger in 1938. He died in 1955 at the age of 73.

  3. Direct analysis by electrospray ionization tandem mass spectrometry of mixtures of phosphatidyldiacylglycerols from Lactobacillus.

    PubMed

    Cabrera, G M; Murga, M L; de Valdez, G F; Seldes, A M

    2000-12-01

    Electrospray ionization followed by collision-induced dissociation in a quadrupole ion trap mass spectrometer of mixtures of deprotonated phosphatidyldiacylglycerols afforded a group of three diagnostic ions of convenient abundance for each phosphatidyldiacylglycerol (PG) present in the mixture. Thus, it was possible to determine unmistakably the identity and substitution positions (sn-1 or sn-2) for both acyl groups of each PG present in the mixture. The method also allows the study of isomeric mixtures of PG and mixtures containing minor amounts of some PG from crude extracts of Lactobacillus acidophillus. The present results improve those of previous studies using fast atom bombardment and electrospray ionization tanden mass spectrometry, in which it was reported that it was possible to differentiate the identity and position of the sn-2 acyl substituent only by the presence of one ion, with variable abundance. PMID:11180636

  4. Characterisation of an inexpensive sonic spray ionisation source using laser-induced fluorescence imaging and mass spectrometry.

    PubMed

    Stindt, Arne; Warschat, Carsten; Bierstedt, Andreas; Panne, Ulrich; Riedel, Jens

    2014-01-01

    A commercially available airbrush gun as a new source for spray ionisation is presented. It is best operated employing moderate stagnation pressures, resulting in a sonic gas flow. A mass spectrometric investigation on the amino acid Lysine and several peptides reveals that this inexpensive approach results in reproducible mass spectra. The ion patterns strongly resemble the results from other studies obtained with custom-made sonic spray vaporisers. The patterns also resemble the mass spectra recorded with electrospray devices. For a better understanding of the vaporisation process, the mass spectrometry experiments are accompanied by laser-induced fluorescence experiments. Inverse Abel Transform of the obtained fluorescence maps allows the determination of the full three-dimensional distribution of the spray cone. Furthermore, via exploitation of the solvatochromism of the used dye the solvation-state distribution can be visualised. In addition, expansion parameters, such as droplet size and velocity, are obtained by laser stroboscopy. The experiments demonstrate that the analyte hardly desolvates throughout the expansion. This indicates a subsequent vaporisation of the residual solvent in the intermediate pressure region of the mass spectrometer. PMID:24881452

  5. Transport and Deposition of Electrosprayed Nanoparticles

    NASA Astrophysics Data System (ADS)

    Brown, Nicholas; Chiarot, Paul

    2015-11-01

    In an electrospray, high electric potentials are utilized to generate a fine aerosol of a conductive solvent. For this study, the solvent consisted of nanoparticles dispersed in alcohol. The nanoparticle suspensions act as printable nanoparticle inks. In this process, a glass capillary tube is held as a high electric potential relative to a grounded reference plate located below the tip. Droplets are ejected from the tube and are directed towards the ground plate. If the solvent is sufficiently volatile, it will rapidly evaporate while the droplets are in flight (due to the high surface area to volume ratio) leaving behind dry, highly charged nanoparticles. The droplets/nanoparticles are deposited onto a target substrate that is place onto the grounded plate. The transport of any individual droplet/nanoparticle from the emitter tip to the target substrate is a stochastic process. This transport can be modeled using a Monte Carlo simulation. The probability of an individual particle being deposited at a given location on the target substrate is directly related to the electric potential at that location. In other words, the probability function that determines the deposition is directly related to the electric potential at the substrate. The total potential is comprised of the applied electric potential required to generate the electrospray, the induced charge on the surface of the target dielectric, and the charge on the individual particles themselves. We report on the structure of droplet/nanoparticle deposits printed using electrospray. The evolution of the deposit is investigated over time using experimental studies and Monte Carlo simulations. The deposit structure passes through four distinct regimes that are characterized by repeatable bulk features.

  6. The electrospray: Fundamentals and combustion applications

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro

    1993-01-01

    Liquid fuel dispersion in practical systems is typically achieved by spraying the fuel into a polydisperse distribution of droplets evaporating and burning in a turbulent gaseous environment. In view of the nearly unsurmountable difficulties of this two-phase flow, it would be useful to use an experimental arrangement that allow a systematic study of spray evolution and burning in configurations of gradually increasing levels of complexity, starting from laminar sprays to fully turbulent ones. An Electrostatic Spray (ES) of charged droplets lends itself to this type of combustion experiments under well-defined conditions and can be used to synthesize gradually more complex spray environments. In its simplest configuration, a liquid is fed into a small metal tube maintained at several kilovolts relative to a ground electrode few centimeters away. Under the action of the electric field, the liquid meniscus at the outlet of the capillary takes a conical shape, with a thin jet emerging from the cone tip. This jet breaks up farther downstream into a fine spray of charged droplets. Several advantages distinguish the electrospray from alternative atomization techniques: the self-dispersion property of the spray due to coulombic repulsion; the absence of droplet coalescence; the potential control of the trajectories of charged droplets by suitable disposition of electrostatic fields; and the decoupling of atomization, which is strictly electrostatic, from gas flow processes. Furthermore, as recently shown in our laboratory, the electrospray can produce quasi-monodisperse droplets over a very broad size range (1-100 microns). The ultimate objective of this research project is to study the formation and burning of electrosprays of liquid fuels first in laminar regimes and then in turbulent ones. Combustion will eventually be investigated in conditions of three-dimensional droplet-droplet interaction, for which experimental studies have been limited to either qualitative

  7. Electron impact ionisation cross sections for atomic and molecular allotropes of phosphorous and arsenic

    NASA Astrophysics Data System (ADS)

    Bhutadia, Harshad; Chaudhari, Ashok; Vinodkumar, Minaxi

    2015-12-01

    We report electron impact total ionisation cross sections for phosphorous (P), arsenic (As), diphosphorous (P2), diarsenic (As2), tetra phosphorous (P4) and tetra arsenic (As4) from the threshold of the target to 2000 eV. We employed spherical complex optical potential to compute total inelastic cross sections (Qinel). The total ionisation cross section is extracted from the total inelastic cross section using the complex scattering potential-ionisation contribution method. The results of most of the targets studied here compare well with the measurements and the theoretical data wherever available. The correlation between the peak of ionisation cross sections with the number of target electrons and polarisability is also reported. It is observed that the maximum ionisation cross sections depend linearly on the number of target electrons and polarisability of the target. This linear correlation is used to predict the maximum ionisation cross sections for the targets (I2, HI and PF3) where no experimental data are available.

  8. Coaxial electrospray of microparticles and nanoparticles for biomedical applications

    PubMed Central

    Zhang, Leilei; Huang, Jiwei; Si, Ting; Xu, Ronald X

    2013-01-01

    Coaxial electrospray is an electrohydrodynamic process that produces multilayer microparticles and nanoparticles by introducing coaxial electrified jets. In comparison with other microencapsulation/nanoencapsulation processes, coaxial electrospray has several potential advantages such as high encapsulation efficiency, effective protection of bioactivity and uniform size distribution. However, process control in coaxial electrospray is challenged by the multiphysical nature of the process and the complex interplay of multiple design, process and material parameters. This paper reviews the previous works and the recent advances in design, modeling and control of a coaxial electrospray process. The review intends to provide general guidance for coaxial electrospray and stimulate further research and development interests in this promising microencapsulation/nanoencapsulation process. PMID:23249155

  9. Simple and double emulsions via electrospray

    NASA Astrophysics Data System (ADS)

    Barrero, Antonio; Loscertales, Ignacio G.

    2005-11-01

    Generation of nanoemulsions is of great interest in medical and pharmaceutical applications; drug delivery or antiviral emulsions are typical examples. The use of electrosprays for dispersing liquids inside liquid insulator baths have been recently reported, (Barrero et al. J. Colloid Interf. Sci. 272, 104, 2004). Capsules, nanotubes and coaxial nanofibers have been obtained from electrified coaxial jets (Loscertales et al. Science 295, n. 5560, 1695, 2002; J. American Chem. Soc. 126, 5376, 2004). Here we present a method for making double emulsions (both water-oil-water and o/w/o) based on the generation of compound electrosprays inside insulator liquid baths. Basically, a conducting liquid injected throughout a capillary needle is electroatomized in cone-jet mode inside a dielectric liquid bath. A third insulating liquid is injected inside the Taylor cone to form a second meniscus. Then, a steady coaxial jet, in which the insulating liquid is coated by the conducting one, develops. A double emulsion forms as a result of the jet breaking up into compound droplets electrically charged. Experimental results carried out with glycerine and different oils in a bath of heptane are reported.

  10. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    SciTech Connect

    Jackson, Ayanna U.; Talaty, Nari; Cooks, R G; Van Berkel, Gary J

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  11. Conical singularities inside cone-jet electrosprays

    NASA Astrophysics Data System (ADS)

    Marin, Alvaro G.; Loscertales, Ignacio G.; Barrero, Antonio

    2007-11-01

    In coaxial jet electrosprays inside liquid baths, a conductive liquid forms a cone-jet electrospray in a bath containing a dielectric liquid. An additional dielectric liquid is injected inside the Taylor cone forming a liquid meniscus. In certain circumstances, however, we have observed that the dielectric menisci present extremely sharp tips, without mass emission, that can be stabilized and made completely steady. In this presentation we will first explore the parametrical range of liquid properties, mainly viscosities and surface tensions, under which these sharp tips take place. Secondly, we have developed a simple analytical model for the very complex electro-hydrodynamical flow, which predicts the angle of the tip as a function of the liquid properties. Therefore, we are able to compare it with the results of the experiments. When the liquid meniscus is slowly fed, the cusped interface turns into a spout which flows coated by the conducting liquid forming the electrified coaxial jet which has been successfully employed for the production of double emulsions (Marin et al., Phys. Rev. Lett. 98, 014502, 2007).

  12. Determination of macrolide antibiotics in chicken tissues by liquid chromatography-electrospray mass spectrometry

    NASA Astrophysics Data System (ADS)

    Salikin, Jamilah; Abdullah, Aminah

    2013-11-01

    A methodusingliquid chromatography-electrospray mass spectrometry (LC-(ESI)MS) for the simultaneous determination of three macrolides (tylosin, spiramycin and tilmicosin) in poultry muscle has been developed. The drugs were extracted with EDTA McIlvaine buffer, filter through celite 545 and the extracts were cleaned up by SPE Oasis HLB cartridge. Separation was carried out in end-capped silica-based C18 column and mobile phases containing trifluoroacetic acid-acetonitrile with a binary gradient system at a flow rate 0.5 ml/min. Detection was performed by single mass spectrometry with electrospray ionization in the positive mode. Several parameters affecting the mass spectra were studied. Chicken samples from the market were analyzed to check the residue of macrolide antibiotics.

  13. System and method for liquid extraction electrospray-assisted sample transfer to solution for chemical analysis

    DOEpatents

    Kertesz, Vilmos; Van Berkel, Gary J.

    2016-07-12

    A system for sampling a surface includes a surface sampling probe comprising a solvent liquid supply conduit and a distal end, and a sample collector for suspending a sample collection liquid adjacent to the distal end of the probe. A first electrode provides a first voltage to solvent liquid at the distal end of the probe. The first voltage produces a field sufficient to generate electrospray plume at the distal end of the probe. A second electrode provides a second voltage and is positioned to produce a plume-directing field sufficient to direct the electrospray droplets and ions to the suspended sample collection liquid. The second voltage is less than the first voltage in absolute value. A voltage supply system supplies the voltages to the first electrode and the second electrode. The first electrode can apply the first voltage directly to the solvent liquid. A method for sampling for a surface is also disclosed.

  14. Compound coverage enhancement of electrospray ionization mass spectrometry through the addition of a homemade needle.

    PubMed

    Xiao, Shun; Qian, Shuai; Wang, Yi; Zhang, Yufeng; Cheng, Yiyu

    2013-03-21

    The response of many previously low-detectable or undetectable compounds in electrospray ionization mass spectrometry (ESI-MS) has been enhanced by the addition of a simple, homemade needle into the traditional ESI interface. The needle located between the ESI emitter and the ion sweep cone (inlet of the detector) would ionize those neutral gaseous compounds, formed during electrospray, by a corona discharge process. The mobile phases, ESI parameters and positions of the needle were investigated and optimized. Several groups of compounds and herbal extracts were tested using the homemade set-up. Both the results of the flow injection and the hyphenated MS analyses showed significant enhancement effects of our homemade needle. The advantages of the proposed method include low cost, simplicity and practicality. PMID:23364279

  15. Threshold law for positron-atom impact ionisation

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1982-01-01

    The threshold law for ionisation of atoms by positron impact is adduced in analogy with our approach to the electron-atom ionization. It is concluded the Coulomb-dipole region of the potential gives the essential part of the interaction in both cases and leads to the same kind of result: a modulated linear law. An additional process which enters positron ionization is positronium formation in the continuum, but that will not dominate the threshold yield. The result is in sharp contrast to the positron threshold law as recently derived by Klar on the basis of a Wannier-type analysis.

  16. Multidisciplinary approach to assess the sensitivity of dwarf tomato plants to low-LET ionising radiation

    NASA Astrophysics Data System (ADS)

    De Micco, Veronica; De Pascale, Stefania; Aronne, Giovanna; Paradiso, Roberta; Vitaglione, Paola; Turano, Mimmo; Arena, Carmen

    Ionising radiation, acting alone or in interaction with microgravity and other environmental constraints, may affect plant at molecular, morpho-structural and physiological level. The intensity of the plant’s response depends on the properties of radiation and on the features of the plant itself. Indeed, different species are characterised by different susceptibility to radiation which may change during the life course. The aim of this research was to study the radiosensitivity to low-LET ionising radiation of plants of dwarf tomato (Solanum lycopersicum L. ‘Microtom’) at two phenological phases (vegetative and reproductive), within the purpose of analysing plants for consideration as candidates for Bioregenerative Life Support Systems (BLSS) in Space. To pursue this objective, plants of the cultivar Microtom were irradiated with different doses of X-rays either at the stage of the second true leaf (VP - vegetative phase) or when at least one flower was blossomed (RP - reproductive phase). Plant’s response to ionising radiation was assessed through a multidisciplinary approach combining genetic analyses, ecophysiological measurements, morpho-anatomical characterisation of leaves and fruits, nutritional analyses of fruits. Growth, molecular and morpho-functional traits were measured during plant development up to fruiting in both VP and RP plant groups, and compared with non-irradiated control plants. Plant growth was monitored weekly recording parameters such as plant height, number of leaves, leaf area, flowering and fruiting rate. Potential DNA alterations were explored through Random Amplified Polymorphic DNA (RAPD) technique. The efficiency of the photosynthetic apparatus was evaluated by determining photosynthetic pigment composition, photochemistry and leaf gas exchanges. Leaf and fruit structure were analysed through light and epi-fluorescence microscopy. Leaf anatomical traits related to photosynthetic efficiency, and to structural radioprotection

  17. Nanoparticle preparation of Mefenamic acid by electrospray drying

    SciTech Connect

    Zolkepali, Nurul Karimah Bakar, Noor Fitrah Abu Anuar, Nornizar; Naim, M. Nazli; Bakar, Mohd Rushdi Abu

    2014-02-24

    Nanoparticles preparation of Mefenamic acid (MA) by using an electrospray drying method was conducted in this study. Electrospray drying is a process that uses electrostatic force to disperse a conductive liquid stream into fine charged droplets through the coulomb fission of charges in the liquid and finally dry into fine particles. Electrospray drying modes operation usually in Taylor cone jet, and it was formed by controlling applied voltage and liquid flow rate. A conductive liquid (2.77–8.55μScm{sup −1}) which is MA solution was prepared by using acetone with concentration 0.041 and 0.055 M before pumping at a flow rate of 3–6ml/h. By applying the applied voltage at 1.3–1.5 kV, Taylor cone jet mode was formed prior to the electrospray. During electrospray drying process, solvent evaporation from the droplet was occurring that leads to coulomb disruption and may generate to nanoparticles. The dried nanoparticles were collected on a grounded substrate that was placed at varying distance from the electrospray. MA particle with size range of 100–400 nm were produced by electrospray drying process. Characterization of particles by using X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) show that particles formed into polymorph I.

  18. Chemotaxonomy of bacteria by comprehensive GC and GC-MS in electron impact and chemical ionisation mode.

    PubMed

    David, Frank; Tienpont, Bart; Sandra, Pat

    2008-10-01

    The analysis of the cellular lipidic fraction of bacteria is described. After hydrolysis and methylation, the fatty acid methyl esters (FAMEs) are determined by 1-D GC using the Sherlock MIDI bacteria identification system, by comprehensive GC (GC x GC) and by GC-MS in electron impact (EI) and positive chemical ionisation (PCI) mode. With GC x GC, the enhanced selectivity and group type separation provides a more complete elucidation of the fatty acids in microorganisms. GC-EI-MS and GC-PCI-MS were helpful for confirmation. The bacteria selected in this study are Brevundimonas diminuta, Chryseobacterium gleum and Stenotrophomonas maltophilia. PMID:18792008

  19. EDDIX--a database of ionisation double differential cross sections.

    PubMed

    MacGibbon, J H; Emerson, S; Liamsuwan, T; Nikjoo, H

    2011-02-01

    The use of Monte Carlo track structure is a choice method in biophysical modelling and calculations. To precisely model 3D and 4D tracks, the cross section for the ionisation by an incoming ion, double differential in the outgoing electron energy and angle, is required. However, the double differential cross section cannot be theoretically modelled over the full range of parameters. To address this issue, a database of all available experimental data has been constructed. Currently, the database of Experimental Double Differential Ionisation Cross sections (EDDIX) contains over 1200 digitalised experimentally measured datasets from the 1960s to present date, covering all available ion species (hydrogen to uranium) and all available target species. Double differential cross sections are also presented with the aid of an eight parameter functions fitted to the cross sections. The parameters include projectile species and charge, target nuclear charge and atomic mass, projectile atomic mass and energy, electron energy and deflection angle. It is planned to freely distribute EDDIX and make it available to the radiation research community for use in the analytical and numerical modelling of track structure. PMID:21113060

  20. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.D.; Udseth, H.R.; Olivares, J.A.

    1994-10-18

    A system and method for analyzing molecular constituents of a composition sample include: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g.,{+-}2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit. 21 figs.

  1. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, R.P.; Udseth, H.R.; Olivares, J.A.

    1989-12-05

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit. 21 figs.

  2. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, Richard P.; Udseth, Harold R.; Olivares, Jose A.

    1989-01-01

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit.

  3. Combined electrophoresis-electrospray interface and method

    DOEpatents

    Smith, Richard D.; Udseth, Harold R.; Olivares, Jose A.

    1994-10-18

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit, or by conduction through a sheath electrode discharged in an annular sheath flow about the capillary exit.

  4. Electrospray and tandem mass spectrometry in biochemistry.

    PubMed Central

    Griffiths, W J; Jonsson, A P; Liu, S; Rai, D K; Wang, Y

    2001-01-01

    Over the last 20 years, biological MS has changed out of all recognition. This is primarily due to the development in the 1980s of 'soft ionization' methods that permit the ionization and vaporization of large, polar, and thermally labile biomolecules. These developments in ionization mode have driven the design and manufacture of smaller and cheaper mass analysers, making the mass spectrometer a routine instrument in the biochemistry laboratory today. In the present review the revolutionary 'soft ionization' methods will be discussed with particular reference to electrospray. The mass analysis of ions will be described, and the concept of tandem MS introduced. Where appropriate, examples of the application of MS in biochemistry will be provided. Although the present review will concentrate on the MS of peptides/proteins and lipids, all classes of biomolecules can be analysed, and much excellent work has been done in the fields of carbohydrate and nucleic acid biochemistry. PMID:11311115

  5. Generation of gas-phase zirconium fluoroanions by electrospray of an ionic liquid

    SciTech Connect

    Gary S. Groenewold; James E. Delmore; Michael T. Benson; Tetsuya Tsuda; Rika Hagiwara

    2014-06-01

    RATIONALE: When measuring extremely wide isotope ratios (= 1 x 109) accelerator mass spectrometry (AMS) is the instrument of choice, however it requires an anion for injection into the tandem accelerator. Since many elements do not have positive electronegativities they do not form stable negative atomic ions, and hence are not compatible for isotope ratio measurement using AMS. Thus new approaches for forming anions are sought; fluoroanions are particularly attractive because fluorine is monoisotopic, and thus will not have overlapping isobars with the isotope of interest. METHODS: An approach is described for making zirconium fluoroanions using the fluorinating ionic liquid (IL) 1-ethyl-3-methylimidazolium fluorohydrogenate, which was used to generate abundant [ZrF5-] using electrospray ionization. The IL was dissolved in acetonitrile, combined with a dilute solution of either Zr4+ or ZrO2+, and then electrosprayed. Mass analysis and collision induced dissociation were conducted using a time-of-flight mass spectrometer. Cluster structures were predicted using density functional theory calculations. RESULTS: The fluorohydrogenate IL solutions generated abundant [ZrF5-] starting from solutions of both Zr4+ and ZrO2+. The mass spectra also contained IL-bearing cluster ions, whose compositions indicated the presence of [ZrF6]2- in solution, a conclusion supported by the structural calculations. Rinsing out the zirconium-IL solution with acetonitrile decreased the IL clusters, but enhanced [ZrF5]-, which was sorbed by the polymeric electrospray supply capillary, and then released upon rinsing. This reduced the ion background in the mass spectrum. CONCLUSIONS: The fluorohydrogenate-IL solutions are a facile way to form zirconium fluoroanions in the gas phase using electrospray. The approach has potential as a source of fluoroanions for injection into an AMS, which would enable high-sensitivity measurement of minor zirconium isotopes, and benefits from the absence of

  6. Evaluations of the stability of sheathless electrospray ionization mass spectrometry emitters using electrochemical techniques.

    PubMed

    Nilsson, S; Svedberg, T M; Pettersson, J; Björefors, T F; Markides, K; Nyholm, L

    2001-10-01

    The processes that cause the failure of sheathless electrospray ionization (ESI) emitters, based on different kinds of gold coatings on fused-silica capillaries, are described and explained. The methods chosen for this study include electrochemical methods, ICPMS analysis of the electrolytes used, SEM studies, and electrospray experiments. Generally, the failure occurs by loss of the conductive coating. It is shown that emitters with sputter-coated gold lose their coatings because of mechanical stress caused by the gas evolution accompanying water oxidation or reduction. Emitters with gold coatings on top of adhesion layers of chromium and nickel alloy withstand this mechanical stress and have excellent durability when operating as cathodes. When operating as anodes, the adhesion layer is electrochemically dissolved through the gold film, and the gold film then flakes off. It is shown that the conductive coating behaves as a cathode even in the positive electrospray mode when the magnitude of a superimposed reductive electrophoretic current exceeds that of the oxidative electrospray current. Fairy-dust coatings developed in our laboratory (see Barnidge, D. R.; etal.Anal. Chem. 1999, 71, 4115-4118,) bygluing gold dust onto the emitter, are unaffected by the mechanical stress due to gas evolution. When oxidized, the fairy-dust coatings show an increased surface roughness and decreased conductivities due to the formation of gold oxide. The resistance of this oxide layer is however negligible in comparison with that of the gas phase in ESI. Furthermore, since no flaking and only negligible electrochemical etching of gold was found, practically unlimited emitter lifetimes may be achieved with fairy-dust coatings. PMID:11605837

  7. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications

    PubMed Central

    Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2013-01-01

    Nanotechnology based Pharma has emerged significantly and has influenced the Pharma industry up to a considerable extent. Nanoparticles technology holds a good share of the nanotech Pharma and is significant in comparison with the other domains. Electrospraying technology answers the potential needs of nanoparticle production such as scalability, reproducibility, effective encapsulation etc. Many drugs have been electrosprayed with and without polymer carriers. Drug release characteristics are improved with the incorporation of biodegradable polymer carriers which sustain the release of encapsulated drug. Electrospraying is acknowledged as an important technique for the preparation of nanoparticles with respect to pharmaceutical applications. Herein we attempted to consolidate the reports pertaining to electrospraying and their corresponding therapeutic application area. PMID:23512013

  8. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  9. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  10. Aerodynamic mass spectrometry interfacing of microdevices without electrospray tips.

    PubMed

    Grym, Jakub; Otevrel, Marek; Foret, Frantisek

    2006-10-01

    A new concept for electrospray coupling of microfluidic devices with mass spectrometry was developed. The sampling orifice of the time-of-flight mass spectrometer was modified with an external adapter assisting in formation and transport of the electrosprayed plume from the multichannel polycarbonate microdevice. The compact disk sized microdevice was designed with radial channels extending to the circumference of the disk. The electrospray exit ports were formed by the channel openings on the surface of the disk rim. No additional tips at the channel exits were used. Electrospray was initiated directly from the channel openings by applying high voltage between sample wells and the entrance of the external adapter. The formation of the spatially unstable droplet at the electrospray openings was eliminated by air suction provided by a pump connected to the external adapter. Compared with the air intake through the original mass spectrometer sampling orifice, more than an order of magnitude higher flow rate was achieved for efficient transport of the electrospray plume into the mass spectrometer. Additional experiments with electric potentials applied between the entrance sections of the external adapter and the mass spectrometer indicated that the air flow was the dominant transport mechanism. Basic properties of the system were tested using mathematical modeling and characterized using ESI/TOF-MS measurements of peptide and protein samples. PMID:17102844

  11. Sensitivity of LHC experiments to exotic highly ionising particles

    NASA Astrophysics Data System (ADS)

    De Roeck, A.; Katre, A.; Mermod, P.; Milstead, D.; Sloan, T.

    2012-04-01

    The experiments at the Large Hadron Collider (LHC) are able to discover or set limits on the production of exotic particles with TeV-scale masses possessing values of electric and/or magnetic charge such that they behave as highly ionising particles (HIPs). In this paper the sensitivity of the LHC experiments to HIP production is discussed in detail. It is shown that a number of different detection methods are required to investigate as fully as possible the charge-mass range. These include direct detection as the HIPs pass through either passive or active detectors and, in the case of magnetically charged objects, the so-called induction method with which magnetic monopoles which stop in accelerator and detector material could be observed. The benefit of using complementary approaches to HIP detection is discussed.

  12. Hazards of ionising radiation: 100 years of observations on man.

    PubMed Central

    Doll, R.

    1995-01-01

    In November 1895, when Conrad Röntgen serendipitously discovered X-rays, epidemiology was effectively limited to the study of infectious disease. What little epidemiological work was done in other fields was done as part of clinical medicine or under the heading of geographical pathology. The risks from exposure to X-rays and subsequently from other types of ionising radiation were consequently discovered by qualitative association or animal experiment. They did not begin to be quantified in humans until half a century later, when epidemiology emerged as a scientific discipline capable of quantifying risks of non-infectious disease and the scientific world was alerted to the need for assessing the effects of the radiation to which large populations might be exposed by the use of nuclear energy in peace and war. PMID:8519643

  13. Effects of peptide acetylation and dimethylation on electrospray ionization efficiency.

    PubMed

    Cho, Kyung-Cho; Kang, Jeong Won; Choi, Yuri; Kim, Tae Woo; Kim, Kwang Pyo

    2016-02-01

    Peptide acetylation and dimethylation have been widely used to derivatize primary amino groups (peptide N-termini and the ε-amino group of lysines) for chemical isotope labeling of quantitative proteomics or for affinity tag labeling for selection and enrichment of labeled peptides. However, peptide acetylation results in signal suppression during electrospray ionization (ESI) due to charge neutralization. In contrast, dimethylated peptides show increased ionization efficiency after derivatization, since dimethylation increases hydrophobicity and maintains a positive charge on the peptide under common LC conditions. In this study, we quantitatively compared the ESI efficiencies of acetylated and dimethylated model peptides and tryptic peptides of BSA. Dimethylated peptides showed higher ionization efficiency than acetylated peptides for both model peptides and tryptic BSA peptides. At the proteome level, peptide dimethylation led to better protein identification than peptide acetylation when tryptic peptides of mouse brain lysate were analyzed with LC-ESI-MS/MS. These results demonstrate that dimethylation of tryptic peptides enhanced ESI efficiency and provided up to two-fold improved protein identification sensitivity in comparison with acetylation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26889926

  14. Imaging of Biological Tissues by Desorption Electrospray Ionization Mass Spectrometry

    PubMed Central

    Fernández, Facundo M.

    2013-01-01

    Mass spectrometry imaging (MSI) provides untargeted molecular information with the highest specificity and spatial resolution for investigating biological tissues at the hundreds to tens of microns scale. When performed under ambient conditions, sample pre-treatment becomes unnecessary, thus simplifying the protocol while maintaining the high quality of information obtained. Desorption electrospray ionization (DESI) is a spray-based ambient MSI technique that allows for the direct sampling of surfaces in the open air, even in vivo. When used with a software-controlled sample stage, the sample is rastered underneath the DESI ionization probe, and through the time domain, m/z information is correlated with the chemical species' spatial distribution. The fidelity of the DESI-MSI output depends on the source orientation and positioning with respect to the sample surface and mass spectrometer inlet. Herein, we review how to prepare tissue sections for DESI imaging and additional experimental conditions that directly affect image quality. Specifically, we describe the protocol for the imaging of rat brain tissue sections by DESI-MSI. PMID:23892773

  15. Effect of Electrospray Ionization Source Conditions on the Tautomer Distribution of Deprotonated p-Hydroxybenzoic Acid in the Gas Phase.

    PubMed

    Xia, Hanxue; Attygalle, Athula B

    2016-06-01

    The deprotonation site of p-hydroxybenzoic acid upon electrospray ionization has been a subject of fervent debate in several articles in the Journal of the American Chemical Society and elsewhere. General consensus is that electrospray ionization mass spectrometry (ESI-MS) experimental results reflect the situation in solution to a considerable extent. Our research, using ion-mobility mass spectrometry, challenges the notion that ESI-MS results directly reflect solution-phase structures and demonstrates that the relative populations of the thermodynamically less favored gaseous carboxylate tautomer or the thermodynamically more favored gaseous phenoxide tautomer, generated from the same aqueous solution of p-hydroxybenzoic acid by ESI, can be varied back and forth by changing the probe position, capillary voltage, desolvation-gas temperature, sample infusion flow rate, and cone voltage. In other words, solvent effects are not the primary criteria that determine the relative population distributions of tautomeric carboxylate (C(-)) and phenoxide (P(-)) ions (m/z 137) generated by electrospray ionization of p-hydroxybenzoic acid. In addition, we propose that the observed ratio of the P(-) and C(-) forms indirectly reflects the relative contribution of the charge-residue or ion-evaporation process that occurs during the electrospray ion generation process. PMID:27164186

  16. Ionisation Equilibrium for the Non-Maxwellian Electron n-Distributions in Solar Flares: Updated Calculations

    NASA Astrophysics Data System (ADS)

    Dzifčáková, Elena; Dudík, Jaroslav

    2015-12-01

    We use the latest available atomic data to calculate the ionisation and recombination rates for the non-Maxwellian n-distributions, which were shown previously to provide a good fit to the enhanced intensities of dielectronic satellite lines during solar flares. The ionisation and recombination coefficients are subsequently used to derive the ionisation equilibrium. To do so, we consider odd values of n ranging from 1 to 19, i.e., from Maxwellian to strongly non-Maxwellian cases. These calculations involve all elements with proton number up to 30, i.e., H to Zn. The n-distributions modify both the ionisation and the recombination rates. The ionisation rates decrease more steeply at lower pseudo-temperatures, while the radiative recombination rate is reduced due to a lower number of low-energy electrons. The peaks of the dielectronic recombination rates become narrower. These changes are reflected in the ionisation equilibrium. Ion abundance peaks become narrower and can also be shifted, mostly towards higher temperatures. The He-like ions are an important exception, as they are formed in a larger temperature range than that for the Maxwellian distribution. The ions Si xiii - xiv used previously for the diagnostics of the n-distributions are affected only weakly, confirming the determination of n. The ionisation equilibria are available as the electronic supplementary material in a format compatible with the CHIANTI database.

  17. On the mechanism of extractive electrospray ionization.

    PubMed

    Law, Wai Siang; Wang, Rui; Hu, Bin; Berchtold, Christian; Meier, Lukas; Chen, Huanwen; Zenobi, Renato

    2010-06-01

    Extractive electrospray ionization (EESI) is a powerful ambient ionization technique that can provide comprehensive mass spectrometric (MS) information on aerosols, complex liquids, or suspensions without any sample pretreatment. An understanding of the EESI mechanism is critical for defining its range of application, the advantages, and limitations of EESI, and for improving its repeatability, sensitivity, and selectivity. However, no systematic study of EESI mechanisms has been conducted so far. In this work, fluorescence studies in the EESI plume using rhodamine 6G and H-acid sodium salt directly demonstrate that liquid-phase interactions occur between charged ESI droplets and neutral sample droplets. Moreover, the effect of the composition of the primary ESI spray and sample spray on signals of the analyte in EESI-MS was investigated systematically. The results show that the analyte signals strongly depend on its solubility in the solvents involved, indicating that selective extraction is the dominant mechanism involved in the EESI process. This mechanistic study provides valuable insights for optimizing the performance of EESI in future applications. PMID:20443546

  18. Ionisation effect on the electron localisation in the subcycle waveform shaping scheme

    NASA Astrophysics Data System (ADS)

    Wang, Zhuo; Feng, Zhengpeng; Long, Hua

    2015-03-01

    We have theoretically studied the ionisation effect on the asymmetric dissociation of H+2 exposed to the synthesised multicycle infrared pulses of different wavelengths by solving the time-dependent Schr?dinger equation without using the Born-Oppenheimer approximation. It has been demonstrated that the ionisation does slightly influence the electron localisation for the relatively low pulse intensity (less than 1014 W/cm2). However, our further results show that the ionisation effect becomes much more significant when increasing the pulse intensity, leading to a distinctly different mechanism responsible for the enhancement of the electron localisation.

  19. Photo-ionisation mass spectrometry as detection method for gas chromatography. Optical selectivity and multidimensional comprehensive separations.

    PubMed

    Zimmermann, Ralf; Welthagen, Werner; Gröger, Thomas

    2008-03-14

    Mass spectrometry (MS) with soft ionisation techniques (i.e. ionisation without fragmentation of the analyte molecules) for gaseous samples exhibits interesting analytical properties for direct analysis applications (i.e. direct inlet mass spectrometric on-line monitoring) as well as mass spectrometric detection method for gas chromatography (GC-MS). Commonly either chemical ionisation (CI) or field ionisation (FI) is applied as soft ionisation technology for GC-MS. An interesting alternative to the CI and FI technologies methods are photo-ionisation (PI) methods. PI overcomes some of the limitations of CI and FI and furthermore add some unique analytical properties. The resonance enhanced multi-photon ionisation (REMPI) method uses intense UV-laser pulses (wavelength range approximately 350-193 nm) for highly selective, sensitive and soft ionisation of predominately aromatic compounds. The single photon ionisation (SPI) method utilises VUV light (from lamps or laser sources, wavelengths range approximately 150-110 nm) can be used for a universal soft ionisation of organic molecules. In this article the historical development as well as the current status and concepts of gas chromatography hyphenated to photo-ionisation mass spectrometry are reviewed. PMID:17915237

  20. Composites for delivery of therapeutics: combining melt electrospun scaffolds with loaded electrosprayed microparticles.

    PubMed

    Bock, Nathalie; Woodruff, Maria A; Steck, Roland; Hutmacher, Dietmar W; Farrugia, Brooke L; Dargaville, Tim R

    2014-02-01

    A novel strategy is reported to produce biodegradable microfiber-scaffolds layered with high densities of microparticles encapsulating a model protein. Direct electrospraying on highly porous melt electrospun scaffolds provides a reproducible scaffold coating throughout the entire architecture. The burst release of protein is significantly reduced due to the immobilization of microparticles on the surface of the scaffold and release mechanisms are dependent on protein-polymer interactions. The composite scaffolds have a positive biological effect in contact with precursor osteoblast cells up to 18 days in culture. The scaffold design achieved with the techniques presented here endorses these new composite scaffolds as promising templates for growth factor delivery. PMID:24106032

  1. Electrospray methodologies for characterization and deposition of nanoparticles

    NASA Astrophysics Data System (ADS)

    Modesto Lopez, Luis Balam

    Electrospray is an aerosolization method that generates highly charged droplets from solutions or suspensions and, after a series of solvent evaporation -- droplet fission cycles, it results in particles carrying multiple charges. Highly charged particles are used in a variety of applications, including particle characterization, thin film deposition, nanopatterning, and inhalation studies among several others. In this work, a soft X-ray photoionization was coupled with an electrospray to obtain monodisperse, singly charged nanoparticles for applications in online size characterization with electrical mobility analysis. Photoionization with the soft X-ray charger enhanced the diffusion neutralization rate of the highly charged bacteriophages, proteins, and solid particles. The effect of nanoparticle surface charge and nanoparticle agglomeration in liquids on the electrospray process was studied experimentally and a modified expression to calculate the effective electrical conductivity of nanosuspensions was proposed. The effective electrical conductivity of TiO2 nanoparticle suspensions is strongly dependent on the electrical double layer and the agglomeration dynamics of the particles; and such dependence is more remarkable in liquids with low ionic strength. TiO2 nanoparticle agglomerates with nearly monodisperse sizes in the nanometer and submicrometer ranges were generated, by electrospraying suspensions with tuned effective electrical conductivity, and used to deposit photocatalytic films for water-splitting. Nanostructured films of iron oxide with uniform distribution of particles over the entire deposition area were formed with an electrospray system. The micro-Raman spectra of the iron oxide films showed that transverse and longitudinal optical modes are highly sensitive to the crystallize size of the electrospray-deposited films. The fabrication of films of natural light-harvesting complexes, with the aim of designing biohybrid photovoltaic devices, was

  2. A compact high resolution electrospray ionization ion mobility spectrometer.

    PubMed

    Reinecke, T; Kirk, A T; Ahrens, A; Raddatz, C-R; Thoben, C; Zimmermann, S

    2016-04-01

    Electrospray is a commonly used ionization method for the analysis of liquids. An electrospray is a dispersed nebular of charged droplets produced under the influence of a strong electrical field. Subsequently, ions are produced in a complex process initiated by evaporation of neutral solvent molecules from these droplets. We coupled an electrospray ionization source to our previously described high resolution ion mobility spectrometer with 75mm drift tube length and a drift voltage of 5kV. When using a tritium source for chemical gas phase ionization, a resolving power of R=100 was reported for this setup. We replaced the tritium source and the field switching shutter by an electrospray needle, a desolvation region with variable length and a three-grid shutter for injecting ions into the drift region. Preliminary measurements with tetraalkylammonium halides show that the current configuration with the electrospray ionization source maintains the resolving power of R=100. In this work, we present the characterization of our setup. One major advantage of our setup is that the desolvation region can be heated separately from the drift region so that the temperature in the drift region stays at room temperature even up to desolvation region temperatures of 100°C. We perform parametric studies for the investigation of the influence of temperature on solvent evaporation with different ratios of water and methanol in the solvent for different analyte substances. Furthermore, the setup is operated in negative mode and spectra of bentazon with different solvents are presented. PMID:26838374

  3. Increasing Protein Charge State When Using Laser Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Flanigan, Paul M.; Perez, Johnny J.; Archer, Jieutonne J.; Levis, Robert J.

    2015-05-01

    Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol ( m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.

  4. Experimental investigation of ionisation track structure of carbon ions at HIL Warsaw.

    PubMed

    Bantsar, A; Hilgers, G; Pszona, S; Rabus, H; Szeflinski, Z

    2015-09-01

    In view of the upcoming radiation therapy with carbon ions, the ionisation structure of the carbon ion track at the nanometre scale is of particular interest. Two different nanodosimeters capable of measuring track structure of ionising particles in a gas target equivalent to a nanometric site in condensed matter were involved in the presented experimental investigation, namely the NCBJ Jet Counter and the PTB Ion Counter. At the accelerator facility of the HIL in Warsaw, simulated nanometric volumes were irradiated with carbon ions of 45 and 76 MeV of kinetic energy, corresponding to a range in the tissue of ∼85 µm and ∼190 µm, respectively. The filling gas of both nanodosimeters' ionisation volume was molecular nitrogen N2, and the ionisation cluster size distributions, i.e. the statistical distribution of the number of ionizations produced by one single primary carbon ion in the filling gas, were measured for the two primary particle energies. PMID:25897141

  5. Education and training issues in individual monitoring of ionising radiation.

    PubMed

    Dimitriou, P; Kamenopoulou, V

    2011-03-01

    The present article deals with the education and training (E&T) issues of individual monitoring (IM) of ionising radiation, based on the requirements provided by the Basic Safety Standards Euratom Directive and the European Commission Technical Recommendations for IM of external radiation. The structure and the objectives of E&T programmes addressed to the staff of dosimetry services, in order to allow the recognition and ensure the continuity of expertise are discussed. The necessity for the establishment of a national strategy for building competence in IM through information, education, training and retraining programmes, addressed to the individually monitored personnel is underlined. The train the trainers' concept is recognised as being an important tool for optimising resources and transferring the skills necessary for building competence. The conditions under which an efficient train the trainers' approach can be established are discussed. Examples of curricula concerning the key persons involved in the provision of E&T in occupational radiation protection are also given. PMID:21131663

  6. Dosimetry of ionising radiation in modern radiation oncology

    NASA Astrophysics Data System (ADS)

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B.

    2016-07-01

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these.

  7. Dosimetry of ionising radiation in modern radiation oncology.

    PubMed

    Kron, Tomas; Lehmann, Joerg; Greer, Peter B

    2016-07-21

    Dosimetry of ionising radiation is a well-established and mature branch of physical sciences with many applications in medicine and biology. In particular radiotherapy relies on dosimetry for optimisation of cancer treatment and avoidance of severe toxicity for patients. Several novel developments in radiotherapy have introduced new challenges for dosimetry with small and dynamically changing radiation fields being central to many of these applications such as stereotactic ablative body radiotherapy and intensity modulated radiation therapy. There is also an increasing awareness of low doses given to structures not in the target region and the associated risk of secondary cancer induction. Here accurate dosimetry is important not only for treatment optimisation but also for the generation of data that can inform radiation protection approaches in the future. The article introduces some of the challenges and highlights the interdependence of dosimetric calculations and measurements. Dosimetric concepts are explored in the context of six application fields: reference dosimetry, small fields, low dose out of field, in vivo dosimetry, brachytherapy and auditing of radiotherapy practice. Recent developments of dosimeters that can be used for these purposes are discussed using spatial resolution and number of dimensions for measurement as sorting criteria. While dosimetry is ever evolving to address the needs of advancing applications of radiation in medicine two fundamental issues remain: the accuracy of the measurement from a scientific perspective and the importance to link the measurement to a clinically relevant question. This review aims to provide an update on both of these. PMID:27351409

  8. Size and distribution controllable silica microballs fabricated by electrospraying

    NASA Astrophysics Data System (ADS)

    Xu, Bojing; Wu, Pan; Jiang, Qi; Gu, Wenhua

    2015-10-01

    Silica microballs have a wide range of applications in the field of optics, electronics, biotechnology chemical industry, and so on. In this work, a new approach, electrospraying, was used to coat the silica microballs onto the glass substrate, and the coating results were compared to spin-coating and dip-coating. Good microball size control could be achieved using the electrospraying method. X-Ray Diffraction (XRD) results showed that amorphous silica microballs were obtained. From Scanning Electron Microscopy (SEM) images, we can see that uniform microball size was achieved. In general, the results are better than what can be achieved by spin-coating, and comparable to that of dip-coating. However, electrospraying has great potential in mass production, especially for large-area fabrication.

  9. Kinematic alignment of non-interacting CALIFA galaxies. Quantifying the impact of bars on stellar and ionised gas velocity field orientations

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; Falcón-Barroso, J.; García-Lorenzo, B.; van de Ven, G.; Aguerri, J. A. L.; Mendez-Abreu, J.; Spekkens, K.; Lyubenova, M.; Sánchez, S. F.; Husemann, B.; Mast, D.; García-Benito, R.; Iglesias-Paramo, J.; Del Olmo, A.; Márquez, I.; Masegosa, J.; Kehrig, C.; Marino, R. A.; Verdes-Montenegro, L.; Ziegler, B.; McIntosh, D. H.; Bland-Hawthorn, J.; Walcher, C. J.; Califa Collaboration

    2014-08-01

    We present 80 stellar and ionised gas velocity maps from the Calar Alto Legacy Integral Field Area (CALIFA) survey in order to characterise the kinematic orientation of non-interacting galaxies. The study of galaxies in isolation is a key step towards understanding how fast-external processes, such as major mergers, affect kinematic properties in galaxies. We derived the global and individual (projected approaching and receding sides) kinematic position angles (PAs) for both the stellar and ionised gas line-of-sight velocity distributions. When compared to the photometric PA, we find that morpho-kinematic differences are smaller than 22 degrees in 90% of the sample for both stellar and nebular components and that internal kinematic misalignments are generally smaller than 16 degrees. We find a tight relation between the global stellar and ionised gas kinematic PA consistent with circular-flow pattern motions in both components (~90% of the sample has differences smaller than 16 degrees). This relation also holds, generally in barred galaxies across the bar and galaxy disc scales. Our findings suggest that even in the presence of strong bars, both the stellar and the gaseous components tend to follow the gravitational potential of the disc. As a result, kinematic orientation can be used to assess the degree of external distortions in interacting galaxies. Appendices are available in electronic form at http://www.aanda.org

  10. Low pressure electrospray ionization system and process for effective transmission of ions

    DOEpatents

    Tang, Keqi; Page, Jason S; Kelly, Ryan T; Smith, Richard D

    2012-05-08

    Systems and methods that provide up to complete transmission of ions between coupled stages with low effective ion losses. An "interfaceless" electrospray ionization system is further described that operates an electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer. Furthermore, chambers maintained at different pressures can allow for more optimal operating conditions for an electrospray emitter and an ion guide.

  11. Determination of cathinones and related ephedrines in forensic whole-blood samples by liquid-chromatography-electrospray tandem mass spectrometry.

    PubMed

    Sørensen, Lambert K

    2011-04-01

    A liquid-chromatography-tandem-mass-spectrometry method using pneumatically assisted electrospray ionisation (LC-ESI-MS/MS) was developed for the simultaneous determination of cathinone, methcathinone, ethcathinone, amfepramone, mephedrone, flephedrone, methedrone, methylone, butylone, cathine, norephedrine, ephedrine, pseudoephedrine, methylephedrine and methylpseudoephedrine in human live and post-mortem whole blood. The blood proteins were precipitated by the addition of methanol, and the extract was purified by ultrafiltration. The separation of diastereomeric ephedrines was achieved on an ethyl-linked phenyl column. Matrix-matched calibrants combined with the isotope dilution of selected substances were used for quantitative analysis. The relative intra-laboratory reproducibility standard deviations were generally better than 7% at concentrations of 20 μg/L, and the mean true recoveries were 87-106% in the concentration range of 10-250 μg/L. The detection limits were in the range of 0.5-3 μg/L. The cathinones were unstable in whole blood and sample extracts under neutral conditions, but the stability could be improved by the acidification of the sample matrix. PMID:21376674

  12. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOEpatents

    Vertes, Akos; Stolee, Jessica A.

    2016-06-07

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  13. Applications of electrospinning/electrospraying in drug delivery

    PubMed Central

    Jahangiri, Azin; Adibkia, Khosro

    2016-01-01

    During recent years, nanoscaled materials have gained much attention because of their applications in the field of pharmaceutical and biomedical sciences. Electrospinning/electrospraying, as simple, effective and single-step methods, are used in the preparation of nanostructured materials (nanofibers and nanobeads). They offer an opportunity for direct encapsulation of the different types of drug molecules. The generated nanomaterials possess high surface area with porous characteristics, and the liberation of the loaded drugs follows a controlled-release pattern. Because of their wide applications in medical/pharmaceutical researches, the aim of this editorial is to highlight the importance of electrospinning/electrospraying technologies in drug delivery. PMID:27340617

  14. Plume collimation for laser ablation electrospray ionization mass spectrometry

    SciTech Connect

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  15. Multiplexed electrospray deposition for protein microarray with micromachined silicon device

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Parijat

    2007-07-01

    Multiplexed electrospray deposition device capable of delivering picoliter volumes made by silicon micromachining technology has been developed as a deposition tool for making protein microarrays in a noncontact mode. Upon application of potential difference in the range of 7-9kV, biomolecules dissolved in suitable buffer with nonionic surfactant and loaded on the electrospray tips were dispensed on the substrate with microfabricated hydrogel features (1-10μm) in cone-jet mode. Schiff base chemistry followed by reductive amination was utilized for covalent immobilization.

  16. Rapid separation of phosphopeptides by microchip electrophoresis-electrospray ionization mass spectrometry.

    PubMed

    Ollikainen, Elisa; Bonabi, Ashkan; Nordman, Nina; Jokinen, Ville; Kotiaho, Tapio; Kostiainen, Risto; Sikanen, Tiina

    2016-04-01

    Protein phosphorylation is a significant biological process, but separation of phosphorylated peptide isomers is often challenging for many analytical techniques. We developed a microchip electrophoresis (MCE) method for rapid separation of phosphopeptides with on-chip electrospray ionization (ESI) facilitating online sample introduction to the mass spectrometer (MS). With the method, two monophosphorylated positional isomers of insulin receptor peptide (IR1A and IR1B) and a triply phosphorylated insulin receptor peptide (IR3), all with the same amino acid sequence, were separated from the nonphosphorylated peptide (IR0) in less than one minute. For efficient separation of the positional peptide isomers from each other derivatization with 9-fluorenylmethyl reagents (either chloroformate, Fmoc-Cl, or N-succinimidyl carbonate, Fmoc-OSu) was required before the analysis. The derivatization improved not only the separation of the monophosphorylated positional peptide isomers in MCE, but also identification of the phosphorylation site based on MS/MS. PMID:26931427

  17. Reduced matrix effects for anionic compounds with paired ion electrospray ionization mass spectrometry.

    PubMed

    Guo, Hongyue; Breitbach, Zachary S; Armstrong, Daniel W

    2016-03-17

    It is well-known that matrix effects in high performance liquid chromatography coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) can seriously compromise quantitative analysis and affect method reproducibility. Paired ion electrospray ionization (PIESI) mass spectrometry is an approach for analyzing ultra-low levels of anions in the positive ion mode. This approach uses a structurally optimized ion pairing reagent to post-column associate with the anionic analyte, subsequently forming positively charged complexes. These newly formed complex ions are often more surface-active as compared to either the native anion or the ion pairing reagent. No studies have examined whether or not the PIESI approach mitigates matrix effects. Consequently, a controlled study was done using five analytes in highly controlled and reproducible synthetic groundwater and urine matrices. In addition, two different mass spectrometers (linear ion trap and triple quadrupole) were used. Compared to the negative ion mode, the PIESI-MS approach was less susceptible to matrix effects when performed on two different MS platforms. Using PIESI-MS, less dilution of the sample is needed to eliminate ionization suppression which, in turn, permits lower limits of detection and quantitation. PMID:26920775

  18. Electrospray tandem mass spectrometric analysis of a dimeric conjugate, salvialeriafone and related compounds

    PubMed Central

    2012-01-01

    Background Electrospray tandem mass spectrometry approach is widely used for the rapid characterization of natural products. This paper describes the gas-phased ESI-MS/MS fragmentation of abietane-type diterpenoids and their novel dimeric conjugate, salvialeriafone (1) using both positive and negative ion electrospray ionization quadropole time-of-flight mass spectrometry (ESI-QqTOF-MS/MS) hybrid instrument. Diterpenoids are widely distributed throughout the plant kingdom and posses interesting biological activities. Results ESI-QqTOF-MS (positive ion mode) of diterpenoids 1–6 under collision-induced dissociation tandem mass spectrometric analysis (CID-MS/MS) showed the characteristic losses of water, carbonmonoxide and propene molecules, while analysis in negative ion mode showed the characteristic losses of water, carbon monoxide, methane molecules and methyl radical. Results demonstrated the differences in the product ions and base peaks due to the differences in the skeleton. A novel dimeric conjugate, salvialeriafone (1) showed characteristic fragmentation pattern and was found to be more prone to form radical ions, as compared to monomeric diterpenoids. The fragmentation pathways of characteristic fragments were proposed with the aid of HRESIMS. Conclusions Extensive tandem mass spectrometric studies of salvialeriafone (1) and related diterpenoids 2–6 were conducted and their characteristic fragments were identified. The knowledge of the fragmentation pattern of these diterpenoids will be useful for the characterization of new dimers of this class of compounds. PMID:23079186

  19. Chemical derivatization for electrospray ionization mass spectrometry. 1. Alkyl halides, alcohols, phenols, thiols, and amines

    SciTech Connect

    Quirke, J.M.E.; Adams, C.L.; Van Berkel, G.J. )

    1994-04-15

    Derivatization strategies and specific derivatization reactions for conversion of simple alkyl halides, alcohols, phenols, thiols, and amines to ionic or solution-ionizable derivatives, that is [open quotes]electrospray active[close quotes] (ES-active) forms of the analyte, are presented. Use of these reactions allows detection of analytes among those listed that are not normally amenable to analysis by electrospray ionization mass spectrometry (ES-MS). In addition, these reactions provide for analysis specificity and flexibility through functional group specific derivatization and through the formation of derivatives that can be detected in positive ion or in negative ion mode. For a few of the functional groups, amphoteric derivatives are formed that can be analyzed in either positive or negative ion modes. General synthetic strategies for transformation of members of these five compound classes to ES-active species are presented along with illustrative examples of suitable derivatives. Selected derivatives were prepared using model compounds and the ES mass spectra obtained for these derivatives are discussed. The analytical utility of derivatization for ES-MS analysis is illustrated in three experiments: (1) specific detection of the major secondary alcohol in oil of peppermint, (2) selective detection of phenols within a synthetic mixture of phenols, and (3) identification of the medicinal amines within a commercially available cold medication as primary, secondary or tertiary. 65 refs., 3 figs., 3 tabs.

  20. What Protein Charging (and Supercharging) Reveal about the Mechanism of Electrospray Ionization

    PubMed Central

    Loo, Rachel R. Ogorzalek; Lakshmanan, Rajeswari

    2014-01-01

    Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate to those observed by ESI– MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase the extent of charging. This region incorporates properties, e.g., basicities, intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging (“supercharging”) such as m–NBA, sulfolane, and 3–nitrobenzonitrile increase analyte charge from “denaturing” and “native” solvent systems. It is suggested that additives’ Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carryingfewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte). PMID:25135609

  1. High-resolution mobility analysis of charge-reduced electrosprayed protein ions.

    PubMed

    Fernandez de la Mora, Juan

    2015-04-01

    Many mobility studies (IMS) of electrospray ions with charge states z reduced to unity have shown a singular ability to analyze large protein complexes and viruses, though with wide mobility peaks (fwhm ∼ 20%). Here we confirm that this limitation arises primarily when early charge reduction precedes drop evaporation (suppressing secondary atomization by the usual sequence of many Coulomb explosions). By drying before neutralizing, we achieve a protein fwhm of ∼3.7%. A positively biased electrospraying capillary is coaxial with a cylindrical charge-reduction (CR) chamber coated with radioactive Ni-63 (10 mCi) that fills the CR chamber with a bipolar ionic atmosphere. A screen interposed between the spraying capillary and the CR chamber limits penetration of the neutralizing anions into the electrospray (ES) chamber, precluding destabilization of the ES tip, even when brought very close to the grid to enhance ion transmission. As ES cations cross the grid, driven by their own space charge, they recombine with CR ions reducing their charge state as well as space charge dispersion. The setup is tested with the protein ovalbumin (MW ∼ 44.3 kDa) and its clusters up to the tetramer, by analyzing the charge-reduced ions with a differential mobility analyzer (DMA). At gas sample flow rates of ∼1 L/min, the dominant peaks are singly charged (z = 1). They are widened by clustering of involatile solution impurities, depending on spray quality and solution cleanness, with fwhm as small as 3.7% achieved in desalted and acidified solutions. When using sharp nanospray capillaries, the grid may be removed, resulting in ∼2-fold increased ion transmission. In the absence of the grid, however, spray stability and quality are often compromised, even with capillary tip diameters as small as 30 μm. PMID:25803189

  2. What Protein Charging (and Supercharging) Reveal about the Mechanism of Electrospray Ionization

    NASA Astrophysics Data System (ADS)

    Ogorzalek Loo, Rachel R.; Lakshmanan, Rajeswari; Loo, Joseph A.

    2014-10-01

    Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range, and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate with those observed by ESI-MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase, the extent of charging. This region incorporates properties (e.g., basicities) intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging ("supercharging") such as m-NBA, sulfolane, and 3-nitrobenzonitrile increase analyte charge from "denaturing" and "native" solvent systems. It is suggested that additives' Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte's solution ionization, excess spray charge is bestowed on evaporating ions carrying fewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte).

  3. Excitation and Ionisation dynamics in high-frequency plasmas

    NASA Astrophysics Data System (ADS)

    O'Connell, D.

    2008-07-01

    Non-thermal low temperature plasmas are widely used for technological applications. Increased demands on plasma technology have resulted in the development of various discharge concepts based on different power coupling mechanisms. Despite this, power dissipation mechanisms in these discharges are not yet fully understood. Of particular interest are low pressure radio-frequency (rf) discharges. The limited understanding of these discharges is predominantly due to the complexity of the underlying mechanisms and difficult diagnostic access to important parameters. Optical measurements are a powerful diagnostic tool offering high spatial and temporal resolution. Optical emission spectroscopy (OES) provides non-intrusive access, to the physics of the plasma, with comparatively simple experimental requirements. Improved advances in technology and modern diagnostics now allow deeper insight into fundamental mechanisms. In low pressure rf discharges insight into the electron dynamics within the rf cycle can yield vital information. This requires high temporal resolution on a nano-second time scale. The optical emission from rf discharges exhibits temporal variations within the rf cycle. These variations are particularly strong, in for example capacitively coupled plasmas (CCPs), but also easily observable in inductively coupled plasmas (ICPs), and can be exploited for insight into power dissipation. Interesting kinetic and non-linear coupling effects are revealed in capacitive systems. The electron dynamics exhibits a complex spatio-temporal structure. Excitation and ionisation, and, therefore, plasma sustainment is dominated through directed energetic electrons created through the dynamics of the plasma boundary sheath. In the relatively simple case of an asymmetric capacitively coupled rf plasma the complexity of the power dissipation is exposed and various mode transitions can be clearly observed and investigated. At higher pressure secondary electrons dominate the

  4. Electrokinetic supercharging-electrospray ionisation-mass spectrometry for separation and on-line preconcentration of hypolipidaemic drugs in water samples.

    PubMed

    Dawod, Mohamed; Breadmore, Michael C; Guijt, Rosanne M; Haddad, Paul R

    2010-04-01

    Electrokinetic supercharging, a powerful on-line preconcentration technique in CE, was for the first time hyphenated with ESI-MS for the on-line concentration and separation of five hypolipidaemic drugs. The electrophoretic separation was performed in a co-EOF mode using the EOF reversal agent, hexadimethrine bromide, in ammonium bicarbonate electrolyte, pH 9.00. The ionic strength and the amount of methanol in the buffer were optimised in a multivariate manner using artificial neural networks, with the optimal conditions being 60 mM ammonium bicarbonate containing 60% methanol, providing baseline resolution of the five hypolipidaemics within 20 min. Using electrokinetic supercharging, the sensitivity of the method was improved 1000-fold over a conventional injection under field-amplified sample stacking conditions with LODs of 180 ng/L. This is the first report of the separation of hypolipidaemics by CE. The developed method was validated and then applied to the determination of the target drugs in water samples from Hobart city. PMID:20349512

  5. Validation of a method for the analysis of quinolones residues in bovine muscle by liquid chromatography with electrospray ionisation tandem mass spectrometry detection.

    PubMed

    Rubies, A; Vaquerizo, R; Centrich, F; Compañó, R; Granados, M; Prat, M D

    2007-04-15

    A liquid chromatography-tandem mass spectrometry method for the determination and confirmation of nine quinolones was optimised and validated according to Commission Decision 2002/657/EC. Analytes were extracted from veal muscle with water and extracts purified with 96-well plates Oasis HLB cartridges. Separation was carried out in a silica-based C(18) column (50mmx2.1mm) with mobile phases consisting of water/acetonitrile mixtures containing acetic acid. Linear calibration curves in the ranges 4-400 and 50-800ngg(-1), with correlation coefficients at least 0.995, were obtained for all the analytes. At concentration levels above 10ngg(-1), quantification errors were lower than 10% and repeatability and within-laboratory reproducibility standard deviations below 6% and 10%, respectively. Decision limits and detection capabilities are reported. PMID:19071613

  6. Fundamentals of Biomolecule Analysis by Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Weinecke, Andrea; Ryzhov, Victor

    2005-01-01

    Electrospray ionization (ESI) is a soft ionization technique that allows transfer of fragile biomolecules directly from solution into the gas phase. An instrumental analysis laboratory experiment is designed that would introduce the students to the ESI technique, major parameters of the ion trap mass spectrometers and some caveats in…

  7. Desorption electrospray ionization-mass spectrometry of proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desorption electrospray ionization-mass spectrometry (DESI-MS) was evaluated for the detection of proteins ranging in molecular mass from 12 to 66 kDa. Proteins were uniformly deposited on a solid surface without pretreatment and analyzed with a DESI source coupled to a quadrupole ion trap mass spec...

  8. A VLT VIMOS IFU study of the ionisation nebula surrounding the supersoft X-ray source CAL 83

    NASA Astrophysics Data System (ADS)

    Gruyters, P.; Exter, K.; Roberts, T. P.; Rappaport, S.

    2012-08-01

    Context. CAL 83 is a prototype of the class of Super Soft X-ray Sources (SXS). It is a binary consisting of a low mass secondary that is transferring mass onto a white dwarf primary and is the only known SXS surrounded by an ionisation nebula, made up of the interstellar medium (ISM) ionised by the source itself. We study this nebula using integral field spectroscopy. Aims: The study of ionised material can inform us about the source that is responsible for the ionisation, in a way that is complementary to studying the source directly. Since CAL 83 is the only SXS known with an ionisation nebula, we have an opportunity to see if such studies are as useful for SXSs as they have been for other X-ray ionised nebulae. We can use these data to compare to models of how CAL 83 should ionise its surroundings, based on what we know about the source emission spectrum and the physical conditions of the surrounding ISM. Methods: With the VIMOS integral field spectrograph we obtained spectra over a 25 × 25'' field of view, encompassing one quarter of the nebula. Emission line maps - H i, He II λ4686, [OIII] λλ4959,5007, [NII] λλ6548,5683, and [SII] λλ6716,6731 - are produced in order to study the morphology of the ionised gas. We include CAL 83 on diagrams of various diagnostic ion ratios to compare it to other X-ray ionised sources. Finally we computed some simple models of the ionised gas around CAL 83 and compare the predicted to the observed spectra. Results: CAL 83 appears to have a fairly standard ionisation nebula as far as the morphology goes: the edges where H is recombining are strong in the low stage ionisation lines and the central, clumpy regions are stronger in the higher stage ionisation lines. But the He ii emission is unusual in being confined to one side of CAL 83 rather than being homogeneously distributed as with the other ions. We model the CAL 83 nebula with cloudy using model parameters for SXSs found in the literature. The He ii emission does not

  9. Development of a new ionisation chamber, for HP(10) measurement, using Monte-Carlo simulation and experimental methods.

    PubMed

    Silva, H; Cardoso, J; Oliveira, C

    2011-03-01

    An ionisation chamber that directly measures the quantity personal dose equivalent, H(p)(10), is used as a secondary standard in some metrology laboratories. An ionisation chamber of this type was first developed by Ankerhold. Using the Monte-Carlo simulation, the dose in the sensitive volume as a function of the IC dimensions and the effects of the several components of the ionising chamber have been investigated. Based on these results, a new ionising chamber, lighter than the previous ones, is constructed and experimentally tested. PMID:21208934

  10. No evidence for large-scale outflows in the extended ionised halo of ULIRG Mrk273

    NASA Astrophysics Data System (ADS)

    Spence, R. A. W.; Zaurín, J. Rodríguez; Tadhunter, C. N.; Rose, M.; Cabrera-Lavers, A.; Spoon, H.; Muñoz-Tuñón, C.

    2016-03-01

    We present deep new GTC/OSIRIS narrow-band images and optical WHT/ISIS long-slit spectroscopy of the merging system Mrk273 that show a spectacular extended halo of warm ionised gas out to a radius of ˜45 kpc from the system nucleus. Outside of the immediate nuclear regions (r > 6 kpc), there is no evidence for kinematic disturbance in the ionised gas: in the extended regions covered by our spectroscopic slits the emission lines are relatively narrow (FWHM ≲ 350 kms^{-1}) and velocity shifts small (|ΔV| ≲250 kms^{-1}). This is despite the presence of powerful near-nuclear outflows (FWHM > 1000 kms^{-1}; |ΔV| > 400 kms^{-1}; r < 6 kpc). Diagnostic ratio plots are fully consistent with Seyfert 2 photo-ionisation to the NE of the nuclear region, however to the SW the plots are more consistent with low-velocity radiative shock models. The kinematics of the ionised gas, combined with the fact that the main structures are aligned with low-surface-brightness tidal continuum features, are consistent with the idea that the ionised halo represents tidal debris left over from a possible triple-merger event, rather than a reservoir of outflowing gas.

  11. Multiphoton ionisation and dissociation of NO 2 by 50 fs laser pulses

    NASA Astrophysics Data System (ADS)

    Singhal, R. P.; Kilic, H. S.; Ledingham, K. W. D.; Kosmidis, C.; McCanny, T.; Langley, A. J.; Shaikh, W.

    1996-04-01

    Multiphoton ionisation and dissociation of NO 2 has been studied experimentally at 375 nm for laser pulse widths of 10 ns and 50 fs. The parent NO 2 ion peak is not seen in the ns data. In all spectra, the main peak observed is due to the ionisation of the NO molecule which results from the dissociation of excited NO 2 formed after absorbing a 375 nm photon. The intensity dependencies of both NO and NO 2 ion peaks have also been measured. The data has been analysed within the context of a rate equation model using published cross-sections and dissociation rates except for the two-photon ionisation cross-section for NO 2 which was chosen to reproduce the NO 2/NO ion signal ratios at 50 fs. The rate equation model provides a good description of the complete set of data. Indirectly, it may be concluded that coherence effects do not play an important role in the multiphoton excitation/ionisation of NO 2. The data also rules out the importance of above-ionisation dissociation in NO 2 — a conclusion which is consistent with previous data at 496 and 248 nm for laser pulse widths ⩾ 300 fs.

  12. Mass determination of megadalton-DNA Electrospray Ions usingCharge Detection Mass Spectrometry

    SciTech Connect

    Schultz, Jocelyn C.; Hack, Christopher; Benner, Henry W.

    1997-10-01

    Charge detection mass spectrometry (CD-MS) has been used to determine the mass of double-stranded, circular DNA and single-stranded, circular DNA in the range of 2500 to 8000 base pairs (1.5-5.0 MDa). Simultaneous measurement of the charge and velocity of an electrostatically accelerated ion allows a mass determination of the ion, with instrument calibration determined independently of samples. Positive ion mass spectra of electrosprayed commercial DNA samples supplied in tris(hydroxymethyl)ethylenediamine tetraacetic acid buffer, diluted in 50 vol. percent acetonitrile, were obtained without cleanup of the sample. ACD mass spectrum constructed from 3000 ion measurements takes 10 min to acquire and yields the DNA molecular mass directly (mass resolution = 6). The data collected represent progress toward a more automatable alternative to sizing of DNA by gel electrophoresis. In addition to the mass spectra, CD-MS generates charge versus mass plots, which provide another means to investigate the creation and fate of large electrospray ions.

  13. Insights into the Mechanism of Protein Electrospray Ionization From Salt Adduction Measurements

    NASA Astrophysics Data System (ADS)

    Yue, Xuanfeng; Vahidi, Siavash; Konermann, Lars

    2014-08-01

    The mechanisms whereby protein ions are liberated from charged droplets during electrospray ionization (ESI) remain under investigation. Compact conformers electrosprayed from aqueous solution in positive ion mode likely follow the charged residue model (CRM), which envisions analyte release after solvent evaporation to dryness. The concentration of nonvolatile salts such as NaCl increases sharply within vanishing CRM droplets, promoting nonspecific pairing of Cl- and Na+ with charged groups on the protein surface. For unfolded proteins, it has been proposed that ion formation occurs via the chain ejection model (CEM). During the CEM proteins are expelled from the droplet long before complete solvent evaporation has taken place. Here we examine whether salt adduction levels support the view that folded and unfolded proteins follow different ESI mechanisms. Solvent evaporation during the CEM is expected to be less extensive and, hence, the salt concentration at the point of protein release should be substantially lower than for the CRM. CEM ions should therefore exhibit lower adduction levels than CRM species. We explore the adduction behavior of several proteins that were chosen to allow comparative studies on folded and unfolded structures in the same solution. In-source activation eliminates chloride adducts via HCl release, generating protein ions that are heterogeneously charged because of sodiation and protonation. Sodiation levels measured under such conditions provide estimates of the salt adduction behavior experienced by the "nascent" analyte ions. Sodiation levels are significantly reduced for unfolded proteins, supporting the view that these species are indeed formed via the CEM.

  14. Electrosprayed nanocomposites based on hyaluronic acid derivative and Soluplus for tumor-targeted drug delivery.

    PubMed

    Lee, Song Yi; Lee, Jeong-Jun; Park, Ju-Hwan; Lee, Jae-Young; Ko, Seung-Hak; Shim, Jae-Seong; Lee, Jongkook; Heo, Moon Young; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-09-01

    Nanocomposite (NC) based on hyaluronic acid-ceramide (HACE) and Soluplus (SP) was fabricated by electrospraying for the tumor-targeted delivery of resveratrol (RSV). Amphiphilic property of both HACE and SP has been used to entrap RSV in the internal cavity of NC. Electrospraying with established experimental conditions produced HACE/SP/RSV NC with 230nm mean diameter, narrow size distribution, negative zeta potential, and >80% drug entrapment efficiency. Sustained and pH-dependent drug release profiles were observed in drug release test. Cellular uptake efficiency of HACE/SP NC was higher than that of SP NC, mainly based on HA-CD44 receptor interaction, in MDA-MB-231 (CD44 receptor-positive human breast cancer) cells. Selective tumor targetability of HACE/SP NC, compared to SP NC, was also confirmed in MDA-MB-231 tumor-xenograted mouse model using a near-infrared fluorescence (NIRF) imaging. According to the results of pharmacokinetic study in rats, decreased in vivo clearance and increased half-life of RSV in NC group, compared to drug solution group, were shown. Given that these experimental results, developed HACE/SP NC can be a promising theranostic nanosystem for CD44 receptor-expressed cancers. PMID:27208440

  15. Neutral and ionised gas around the post-red supergiant IRC +10 420 at AU size scales

    NASA Astrophysics Data System (ADS)

    Oudmaijer, R. D.; de Wit, W. J.

    2013-03-01

    Context. IRC +10 420 is one of the few known massive stars in rapid transition from the red supergiant phase to the Wolf-Rayet or luminous blue variable phase. Aims: The star has an ionised wind and using the Brγ line we assess the mass-loss on spatial scales of ~1 AU. Methods: We present new VLT Interferometer AMBER data which are combined with all other AMBER data present in the literature. The final dataset covers a position angle range of ~180° and baselines up to 110 m. The spectrally dispersed visibilities, differential phases and line flux are conjointly analysed and modelled. We also present the first AMBER/FINITO observations which cover a larger wavelength range and allow us to observe the Na i doublet at 2.2 μm. The data are complemented by X-Shooter data, which provide a higher spectral resolution view. Results: The Brγ emission line and the Na i doublet are both spatially resolved. After correcting the AMBER data for the fact that the lines are not spectrally resolved, we find that Brγ traces a ring with a diameter of 4.18 mas, in agreement with higher spectral resolution data. We consider a geometric model in which the Brγ emission emerges from the top and bottom rings of an hour-glass shaped structure, viewed almost pole-on. It provides satisfactory fits to most visibilities and differential phases. The fact that we detect line emission from a neutral metal like Na i within the ionised region, a very unusual occurrence, suggests the presence of a dense pseudo-photosphere. Conclusions: The ionised wind can be reproduced with a polar wind, which could well have the shape of an hour-glass. Closer in, the resolved Na i emission is found to occur on scales barely larger than the continuum. This fact and that many yellow hypergiants exhibit this comparatively rare emission hints at the presence of a "Yellow" or even "White Wall" in the Hertzsprung-Russell diagram, preventing them from visibly evolving to the blue. Based on observations at ESO, and in

  16. Thin-layer chromatography and mass spectrometry coupled using proximal probe thermal desorption with electrospray or atmospheric pressure chemica lionization

    SciTech Connect

    Ovchinnikova, Olga S; Van Berkel, Gary J

    2010-01-01

    An atmospheric pressure proximal probe thermal desorption sampling method coupled with secondary ionization by electrospray or atmospheric pressure chemical ionization was demonstrated for the mass spectrometric analysis of a diverse set of compounds (dyestuffs, pharmaceuticals, explosives and pesticides) separated on various high-performance thin-layer chromatography plates. Line scans along or through development lanes on the plates were carried out by moving the plate relative to a stationary heated probe positioned close to or just touching the stationary phase surface. Vapors of the compounds thermally desorbed from the surface were drawn into the ionization region of a combined electrospray ionization/atmospheric pressure chemical ionization source where they merged with reagent ions and/or charged droplets from a corona discharge or an electrospray emitter and were ionized. The ionized components were then drawn through the atmospheric pressure sampling orifice into the vacuum region of a triple quadrupole mass spectrometer and detected using full scan, single ion monitoring, or selected reaction monitoring mode. Studies of variable parameters and performance metrics including the proximal probe temperature, gas flow rate into the ionization region, surface scan speed, read-out resolution, detection limits, and surface type are discussed.

  17. A ToF-MS with a highly efficient electrostatic ion guide for characterization of ionic liquid electrospray sources.

    PubMed

    Chakraborty, Subha; Ataman, Caglar; Courtney, Daniel G; Dandavino, Simon; Shea, Herbert

    2014-08-01

    We report on the development of a time-of-flight (ToF) mass spectrometer with a highly efficient electrostatic ion guide for enhancing detectability in ToF mass spectrometry. This 65-cm long ion guide consists of 13 cascaded stages of Einzel lens to collect a large fraction of emitted charges over a wide emission angle and energy spread for time-of-flight measurements. Simulations show that the ion guide can collect 100% of the charges with up to 23° emission half-angle or 30% energy spread irrespective of their specific charge. We demonstrate this ion guide as applied to electrospray ion sources. Experiments performed with tungsten needle electrospraying the ionic liquid EMI-BF4 showed that up to 80% of the emitted charges could be collected at the end of the flight tube. Flight times of monomers and dimers emitted from the needles were measured in both positive and negative emission polarities. The setup was also used to characterize the electrospray from microfabricated silicon capillary emitters and nearly 30% charges could be collected even from a 40(°) emission half-angle. This setup can thus increase the fraction of charge collection for ToF measurement and spray characteristics can be obtained from a very large fraction of the emission in real time. PMID:24833357

  18. A ToF-MS with a Highly Efficient Electrostatic Ion Guide for Characterization of Ionic Liquid Electrospray Sources

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subha; Ataman, Caglar; Courtney, Daniel G.; Dandavino, Simon; Shea, Herbert

    2014-08-01

    We report on the development of a time-of-flight (ToF) mass spectrometer with a highly efficient electrostatic ion guide for enhancing detectability in ToF mass spectrometry. This 65-cm long ion guide consists of 13 cascaded stages of Einzel lens to collect a large fraction of emitted charges over a wide emission angle and energy spread for time-of-flight measurements. Simulations show that the ion guide can collect 100% of the charges with up to 23° emission half-angle or 30% energy spread irrespective of their specific charge. We demonstrate this ion guide as applied to electrospray ion sources. Experiments performed with tungsten needle electrospraying the ionic liquid EMI-BF4 showed that up to 80% of the emitted charges could be collected at the end of the flight tube. Flight times of monomers and dimers emitted from the needles were measured in both positive and negative emission polarities. The setup was also used to characterize the electrospray from microfabricated silicon capillary emitters and nearly 30% charges could be collected even from a 40° emission half-angle. This setup can thus increase the fraction of charge collection for ToF measurement and spray characteristics can be obtained from a very large fraction of the emission in real time.

  19. Identification of main corticosteroids as illegal feed additives in milk replacers by liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry.

    PubMed

    Fiori, M; Pierdominici, E; Longo, F; Brambilla, G

    1998-05-22

    Corticosteroids were proposed as growth promoting agents to improve commercial quality of meat. We developed a liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry (LC-APCI-MS) method able to identify the presence in milk replacers, when given by mouth, of dexamethasone, betamethasone, flumethasone, triamcinolone, predinisotone, prednisolone, methylprednisolone, fludrocortisone and beclomethasone, at levels in the range of 20-100 ppb. C18 solid-phase extraction, LC-RP C8 column separation, data acquisition (positive ions) in the scan range m/z 200-550 allowed us to differentiate and identify compounds by protonated molecules, their methanolic adducts and fragmentation patterns. PMID:9646497

  20. The ionisation energy of cyclopentadienone: a photoelectron-photoion coincidence study

    NASA Astrophysics Data System (ADS)

    Ormond, Thomas K.; Hemberger, Patrick; Troy, Tyler P.; Ahmed, Musahid; Stanton, John F.; Ellison, G. Barney

    2015-08-01

    Imaging photoelectron photoion coincidence (iPEPICO) spectra of cyclopentadienone (C5H4=O and C5D4=O) have been measured at the Swiss Light Source Synchrotron (Paul Scherrer Institute, Villigen, Switzerland) at the Vacuum Ultraviolet (VUV) Beamline. Complementary to the photoelectron spectra, photoionisation efficiency curves were measured with tunable VUV radiation at the Chemical Dynamics Beamline at the Advanced Light Source Synchrotron (Lawrence Berkeley National Laboratory, Berkeley, CA, USA). For both experiments, molecular beams diluted in argon and helium were generated from the vacuum flash pyrolysis of o-phenylene sulphite in a resistively heated microtubular SiC flow reactor. The Franck-Condon profiles and ionisation energies were calculated at the CCSD(T) level of theory, and are in excellent agreement with the observed iPEPICO spectra. The ionisation energies of both cyclopentadienone-d0, IE(C5H4=O), and cyclopentadienone-d4, IE(C5D4=O), were observed to be the same: 9.41 ± 0.01 eV. The mass-selected threshold photoelectron spectrum (ms-TPES) of cyclopentadienone reveals that the C=C stretch in the ground state of the cation is excited upon ionisation, supporting computational evidence that the ground state of the cation is ? 2A2, and is in agreement with previous studies. However, the previously reported ionisation potential has been improved considerably in this work. In addition, since o-benzoquinone (o-O=C6H4=O and o-O=C6D4=O) is also produced in this process, its ms-TPES has been recorded. From the iPEPICO and photoionisation efficiency spectra, we infer an adiabatic ionisation energy of IE(o-O=C6H4=O) = 9.3 ± 0.1 eV, but the rather structureless spectrum indicates a strong change in geometry upon ionisation making this value less reliable.

  1. A micro-gap, air-filled ionisation chamber as a detector for criticality accident dosimetry.

    PubMed

    Murawski, Ł; Zielczyński, M; Golnik, N; Gryziński, M A

    2014-10-01

    A micro-gap air-filled ionisation chamber was designed for criticality dosimetry. The special feature of the chamber is its very small gap between electrodes of only 0.3 mm. This prevents ion recombination at high dose rates and minimises the influence of gas on secondary particles spectrum. The electrodes are made of polypropylene because of higher content of hydrogen in this material, when compared with soft tissue. The difference between neutron and gamma sensitivity in such chamber becomes practically negligible. The chamber's envelope contains two specially connected capacitors, one for polarising the electrodes and the other for collecting the ionisation charge. PMID:24324250

  2. Dynamics of ionisation and entanglement in the 'atom + quantum electromagnetic field' system

    SciTech Connect

    Sharapova, P R; Tikhonova, O V

    2012-03-31

    The dynamics of a model Rydberg atom in a strong nonclassical electromagnetic field is investigated. The field-induced transitions to the continuum involving different numbers of photons (with intermediate states in the discrete spectrum) are taken into account and the specific features of ionisation in 'squeezed' field states are considered in comparison with the case of classical light. A significant decrease in the ionisation rate is found, which is caused by the interference stabilisation of the atomic system. The entanglement of the atomic and field subsystems, the temporal dynamics of the correlations found, and the possibility of measuring them are analysed.

  3. Quantification of ethylenediamine-N,N'-bis(hydroxysulfophenylacetic) acid regioisomers and structural characterisation of its related polycondensation products by porous graphitic carbon high-performance liquid chromatography coupled to electrospray tandem mass spectrometry.

    PubMed

    Biasone, Alessandro; Cianci, Giusto; Di Tommaso, Donata; Piaggesi, Alberto; D'Alessandro, Nicola

    2013-10-18

    Among the commercial ethylenediamine-N,N'-bis(2-hydroxy)phenylacetic acid/iron(III) derivatives, ethylenediamine-N,N'-bis(2-hydroxy-5-sulphophenylacetic) acid/iron(III) (EDDHSA/Fe) represents one of the promising chelates for the treatment of chlorotic plants. Industrial synthesis of EDDHSA/Fe leads to relevant amounts of o,o-EDDHSA condensation products (o,o-EDDHSAcps) and other secondary products that might have important relevance from the agronomic point of view. However, their chemical structures have remained unknown to date. Analysis of iron complexes by ion-pair reversed-phase chromatography, coupled with electrospray tandem mass spectrometry revealed the presence of the meso-o,o-EDDHSA/Fe, rac-o,o-EDDHSA/Fe, o,p-EDDHSA/Fe regioisomers, the hydroxyl derivative of o,o-EDDHSA/Fe, and the three main EDDHSA condensation products chelating the iron(III) (EDDHSAcps/nFe). However, the chromatographic peaks of EDDHSAcps/Fe are not well resolved due to the large numbers of stereoisomers and the poor efficiency of the ion-pair reversed-phase separation method. An alternative chromatographic method is based on porous graphitic carbon (PGC) separation after pre-column decomplexation of the chelates with trifluoracetic acid, which was developed to allow detection of EDDHSA stereo/regioisomers, EDDHSAcps, and low-molecular-weight by-products. This extensive PGC-HPLC-ESI-MS/MS investigation provides quantitative determination of meso-o,o-EDDHSA, rac-o,o-EDDHSA and o,p-EDDHSA, in addition to characterisation of EDDHSAcps and the low-molecular-weight by-products. PGC separation coupled to a triple quadrupole ESI-MS detector allowed characterisation of free ligands using collision-induced dissociation experiments in positive and negative ionisation mode, providing comparative evaluation of EDDHSAcps in three commercial samples. For detection, the PGC-HPLC-ESI-MS/MS is the best method according to the limit of quantification and limit of detection (picomolar and sub

  4. Mortality and ionising radiation exposures among workers employed at the Fernald Feed Materials Production Center (1951–1985)

    PubMed Central

    Silver, Sharon R; Bertke, Stephen J; Hein, Misty Jena; Daniels, Robert D; Fleming, Donald A; Anderson, Jeri L; Pinney, Susan M; Hornung, Richard W; Tseng, Chih-Yu

    2015-01-01

    Objectives To examine mortality patterns and dose-response relations between ionising radiation and mortality outcomes of a priori interest in 6409 uranium workers employed for at least 30 days (1951–1985), and followed through 2004. Methods Cohort mortality was evaluated through standardised mortality ratios (SMR). Linear excess relative risk (ERR) regression models examined associations between cause-specific mortality and exposures to internal ionising radiation from uranium deposition, external gamma and x-ray radiation, and radon decay products, while adjusting for non-radiologic covariates. Results Person-years at risk totalled 236 568 (mean follow-up 37 years), and 43% of the cohort had died. All-cause mortality was below expectation only in salaried workers. Cancer mortality was significantly elevated in hourly males, primarily from excess lung cancer (SMR=1.25, 95% CI 1.09 to 1.42). Cancer mortality in salaried males was near expectation, but lymphohaematopoietic malignancies were significantly elevated (SMR=1.52, 95% CI 1.06 to 2.12). A positive dose-response relation was observed for intestinal cancer, with a significant elevation in the highest internal organ dose category and a significant dose-response with organ dose from internal uranium deposition (ERR=1.5 per 100 µGy, 95% CI 0.12 to 4.1). Conclusions A healthy worker effect was observed only in salaried workers. Hourly workers had excess cancer mortality compared with the US population, although there was little evidence of a dose-response trend for any cancer evaluated except intestinal cancer. The association between non-malignant respiratory disease and radiation dose observed in previous studies was not apparent, possibly due to improved exposure assessment, different outcome groupings, and extended follow-up. PMID:23322915

  5. Age at exposure to ionising radiation and cancer mortality among Hanford workers: follow up through 1994

    PubMed Central

    Wing, S; Richardson, D

    2005-01-01

    Background: Studies of workers at the plutonium production factory in Hanford, WA have led to conflicting conclusions about the role of age at exposure as a modifier of associations between ionising radiation and cancer. Aims: To evaluate the influence of age at exposure on radiation risk estimates in an updated follow up of Hanford workers. Methods: A cohort of 26 389 workers hired between 1944 and 1978 was followed through 1994 to ascertain vital status and causes of death. External radiation dose estimates were derived from personal dosimeters. Poisson regression was used to estimate associations between mortality and cumulative external radiation dose at all ages, and in specific age ranges. Results: A total of 8153 deaths were identified, 2265 of which included cancer as an underlying or contributory cause. Estimates of the excess relative risk per Sievert (ERR/Sv) for cumulative radiation doses at all ages combined were negative for all cause and leukaemia and positive for all cancer and lung cancer. Cumulative doses accrued at ages below 35, 35–44, and 45–54 showed little association with mortality. For cumulative dose accrued at ages 55 and above (10 year lag), the estimated ERR/Sv for all cancers was 3.24 (90% CI: 0.80 to 6.17), primarily due to an association with lung cancer (ERR/Sv: 9.05, 90% CI: 2.96 to 17.92). Conclusions: Associations between radiation and cancer mortality in this cohort are primarily a function of doses at older ages and deaths from lung cancer. The association of older age radiation exposures and cancer mortality is similar to observations from several other occupational studies. PMID:15961623

  6. A corona discharge initiated electrochemical electrospray ionization technique.

    PubMed

    Lloyd, John R; Hess, Sonja

    2009-11-01

    We report here the development of a corona discharge (CD) initiated electrochemical (EC) electrospray ionization (ESI) technique using a standard electrospray ion source. This is a new ionization technique distinct from ESI, electrochemistry inherent to ESI, APCI, and techniques using hydroxyl radicals produced under atmospheric pressure conditions. By maximizing the observable CD at the tip of a stainless steel ESI capillary, efficient electrochemical oxidation of electrochemically active compounds is observed. For electrochemical oxidation to be observed, the ionization potential of the analyte must be lower than Fe. Ferrocene labeled compounds were chosen as the electrochemically active moiety. The electrochemical cell in the ESI source was robust, and generated ions with selectivity according to the ionization potential of the analytes and up to zeptomolar sensitivity. Our results indicate that CD initiated electrochemical ionization has the potential to become a powerful technique to increase the dynamic range, sensitivity, and selectivity of ESI experiments. PMID:19747843

  7. Micro- and nanoparticles by electrospray: advances and applications in foods.

    PubMed

    Tapia-Hernández, José A; Torres-Chávez, Patricia I; Ramírez-Wong, Benjamín; Rascón-Chu, Agustín; Plascencia-Jatomea, Maribel; Barreras-Urbina, Carlos G; Rangel-Vázquez, Norma A; Rodríguez-Félix, Francisco

    2015-05-20

    Micro- and nanotechnology are tools being used strongly in the area of food technology. The electrospray technique is booming because of its importance in developing micro- and nanoparticles containing an active ingredient as bioactive compounds, enhancing molecules of flavors, odors, and packaging coatings, and developing polymers that are obtained from food (proteins, carbohydrates), as chitosan, alginate, gelatin, agar, starch, or gluten. The electrospray technique compared to conventional techniques such as nanoprecipitation, emulsion-diffusion, double-emulsification, and layer by layer provides greater advantages to develop micro- and nanoparticles because it is simple, low cost, uses a low amount of solvents, and products are obtained in one step. This technique could also be applied in the agrifood sector for the preparation of controlled and/or prolonged release systems of fertilizer or agrochemicals, for which more research must be conducted. PMID:25938374

  8. Electrosprayed inulin microparticles for microbiota triggered targeting of colon.

    PubMed

    Jain, Arvind K; Sood, Vishesh; Bora, Meghali; Vasita, Rajesh; Katti, Dhirendra S

    2014-11-01

    Inulin, a naturally occurring polysaccharide, was acetylated to make it processable by electrospraying, a facile and single step method for microparticle fabrication. Electrospraying process parameters were optimized for fabrication of spherical and monodisperse indomethacin (IDM) loaded inulin acetate (INA) microparticles. The apparent entrapment efficiency of IDM was determined to be 100%, whereas working encapsulation efficiency was estimated to be 35.39 ± 1.63%. Differential scanning calorimetry and X-ray diffraction analysis confirmed molecular dispersion of IDM in an amorphous state within the INA matrix. Finally, the results from in vitro release study performed in simulated gastro-intestinal fluids demonstrated that IDM was released only in simulated colonic fluid that contained inulinase. Therefore, this study demonstrates that acetylation of inulin does not alter its susceptibility to inulinase and that microparticles fabricated from INA can be developed as a colon targeting drug delivery system. PMID:25129739

  9. Multishell encapsulation using a triple coaxial electrospray system.

    PubMed

    Kim, Woojin; Kim, Sang Soo

    2010-06-01

    To overcome the limitations of the conventional encapsulation methods and improve the potential use of the electrospray method as a drug delivery system, an electrospray system using a triple coaxial nozzle was developed to generate multishell capsules. Two conducting fluids, ethylene glycol and 4-hydroxybutyl acrylate, and one nonconducting fluid, olive oil, were chosen to manufacture the multishell capsules. The capsules were solidified by a photopolymerization device. We investigated the size distributions and visualized the capsules changing fluid flow rates. Dispersive Raman spectra were also monitored to determine the chemical composition of the capsules. The multishell capsules were generated in the overlapped cone-jet mode regime of the conducting fluids, and the sizes and shell thicknesses were controlled by the flow rates and applied voltages. PMID:20459114

  10. Profiling an electrospray plume using surface-enhanced Raman spectroscopy.

    PubMed

    Davis, Douglas; Portelius, Erik; Zhu, Yu; Feigerle, Charles; Cook, Kelsey D

    2005-12-15

    We report the use of silver nanoparticles to obtain surface-enhanced Raman spectra of Crystal Violet in an electrospray plume. Surface enhancement allowed detection at low concentrations with the high specificity afforded by vibrational spectroscopy. SERS spectra were used to obtain an axial concentration profile closely matching that obtained in previous fluorescence experiments. SERS can provide more analyte structural information than has been obtainable from fluorescence studies of the plume. PMID:16351168

  11. Ultrasonically Aided Electrospray source for monodisperse, charged nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, Weidong

    This dissertation presents a new method of producing nearly monodisperse electrospray using charged capillary standing waves. This method, based on the Ultrasonically Aided Electrospraying (UAE) technology concept invented by the author, includes the steps of dispensing a liquid on the top surface of a diaphragm so as to form a liquid film on the surface of the diaphragm, setting the diaphragm into vibration using piezoelectric transducers so as to induce capillary standing waves in the liquid film, applying electric charge to the capillary standing waves so that electrospray is extracted from the crests of the capillary standing waves. Theoretical analysis on the formation of charged particles from charged capillary standing waves at critically stable condition is performed. An experimental UAE system is designed, built, and tested and the performance of this new technology concept is assessed. Experimental results validate the capabilities of the UAE concept. The method has several applications including electric space propulsion, nano particulate technologies, nanoparticle spray coating and painting techniques, semiconductor fabrication and biomedical processes. Two example applications in electric space propulsion and nanoparticle spray coating are introduced.

  12. Screening Anti-Cancer Drugs against Tubulin using Catch-and-Release Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rezaei Darestani, Reza; Winter, Philip; Kitova, Elena N.; Tuszynski, Jack A.; Klassen, John S.

    2016-05-01

    Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.

  13. Screening Anti-Cancer Drugs against Tubulin using Catch-and-Release Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Rezaei Darestani, Reza; Winter, Philip; Kitova, Elena N.; Tuszynski, Jack A.; Klassen, John S.

    2016-03-01

    Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities.

  14. Quantitative determination of capsaicinoids by liquid chromatography-electrospray mass spectrometry.

    PubMed

    Thompson, Robert Q; Phinney, Karen W; Welch, Michael J; White, Edward

    2005-04-01

    Eight naturally occurring capsaicinoids have been determined in Capsicum by use of high-purity standards, with norcapsaicin as an internal standard. The solid standards were rigorously checked for purity. The sensitivity of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), and coordination ion-spray (CIS; with silver) toward the capsaicinoids were measured and compared. The highest sensitivity was found for positive-ion ESI. Method validation of the liquid chromatography-ESI-mass spectrometry (LC-ESI-MS) determination is reported, including tests for repeatability (4%), detection limit (5 pg injected), linear range (20-6 ng injected), quantitation (excellent linearity; < 2% relative standard deviation), and recovery (99-103%). The major and minor capsaicinoids in a commercial plant extract and in chili pepper fruits were quantified. PMID:15803309

  15. Screening Anti-Cancer Drugs against Tubulin using Catch-and-Release Electrospray Ionization Mass Spectrometry.

    PubMed

    Rezaei Darestani, Reza; Winter, Philip; Kitova, Elena N; Tuszynski, Jack A; Klassen, John S

    2016-05-01

    Tubulin, which is the building block of microtubules, plays an important role in cell division. This critical role makes tubulin an attractive target for the development of chemotherapeutic drugs to treat cancer. Currently, there is no general binding assay for tubulin-drug interactions. The present work describes the application of the catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS) assay to investigate the binding of colchicinoid drugs to αβ-tubulin dimers extracted from porcine brain. Proof-of-concept experiments using positive (ligands with known affinities) and negative (non-binders) controls were performed to establish the reliability of the assay. The assay was then used to screen a library of seven colchicinoid analogues to test their binding to tubulin and to rank their affinities. Graphical Abstract ᅟ. PMID:26944280

  16. Examining Pre-Service Teachers' Use of Atomic Models in Explaining Subsequent Ionisation Energy Values

    ERIC Educational Resources Information Center

    Wheeldon, Ruth

    2012-01-01

    Chemistry students' explanations of ionisation energy phenomena often involve a number of non-scientific or inappropriate ideas being used to form causality arguments. Research has attributed this to many science teachers using these ideas themselves (Tan and Taber, in "J Chem Educ" 86(5):623-629, 2009). This research extends this work by…

  17. Low pressure electrospray ionization system and process for effective transmission of ions

    DOEpatents

    Tang, Keqi; Page, Jason S.; Kelly, Ryan T.; Smith, Richard D.

    2010-03-02

    A system and method are disclosed that provide up to complete transmission of ions between coupled stages with low effective ion losses. A novel "interfaceless" electrospray ionization system is further described that operates the electrospray at a reduced pressure such that standard electrospray sample solutions can be directly sprayed into an electrodynamic ion funnel which provides ion focusing and transmission of ions into a mass analyzer.

  18. A study of electrospray ionization emitters with differing geometries with respect to flow rate and electrospray voltage.

    PubMed

    Reschke, Brent R; Timperman, Aaron T

    2011-12-01

    The performance of several electrospray ionization emitters with different orifice inside diameters (i.d.s), geometries, and materials are compared. The sample solution is delivered by pressure driven flow, and the electrospray ionization voltage and flow rate are varied systematically for each emitter investigated, while the signal intensity of a standard is measured. The emitters investigated include a series of emitters with a tapered outside diameters (o.d.) and unaltered i.d.s, a series of emitters with tapered o.d.s and i.d.s, an emitter with a monolithic frit and a tapered o.d., and an emitter fabricated from polypropylene. The results show that for the externally etched emitters, signal was nearly independent of i.d. and better ion utilization was achieved at lower flow rates. Furthermore, emitters with a 50 μm i.d. and an etched o.d. produced about 1.5 times more signal than etched emitters with smaller i.d.s and about 3.5 times more signal than emitters with tapered inner and outer dimensions. Additionally, the work presented here has important implications for applications in which maximizing signal intensity and reducing frictional resistance to flow are necessary. Overall, the work provides an initial assessment of the critical parameters that contribute to maximizing the signal for electrospray ionization sources interfaced with pressure driven flows. PMID:21989703

  19. A Study of Electrospray Ionization Emitters with Differing Geometries with Respect to Flow Rate and Electrospray Voltage

    NASA Astrophysics Data System (ADS)

    Reschke, Brent R.; Timperman, Aaron T.

    2011-12-01

    The performance of several electrospray ionization emitters with different orifice inside diameters (i.d.s), geometries, and materials are compared. The sample solution is delivered by pressure driven flow, and the electrospray ionization voltage and flow rate are varied systematically for each emitter investigated, while the signal intensity of a standard is measured. The emitters investigated include a series of emitters with a tapered outside diameters (o.d.) and unaltered i.d.s, a series of emitters with tapered o.d.s and i.d.s, an emitter with a monolithic frit and a tapered o.d., and an emitter fabricated from polypropylene. The results show that for the externally etched emitters, signal was nearly independent of i.d. and better ion utilization was achieved at lower flow rates. Furthermore, emitters with a 50 μm i.d. and an etched o.d. produced about 1.5 times more signal than etched emitters with smaller i.d.s and about 3.5 times more signal than emitters with tapered inner and outer dimensions. Additionally, the work presented here has important implications for applications in which maximizing signal intensity and reducing frictional resistance to flow are necessary. Overall, the work provides an initial assessment of the critical parameters that contribute to maximizing the signal for electrospray ionization sources interfaced with pressure driven flows.

  20. Thin-Layer Chromatography/Desorption Electrospray Ionization Mass Spectrometry: Investigation of Goldenseal Alkaloids

    SciTech Connect

    Van Berkel, Gary J; Tomkins, Bruce A; Kertesz, Vilmos

    2007-01-01

    Desorption electrospray ionization mass spectrometry was investigated as a means to qualitatively identify and to quantify analytes directly from developed normal-phase thin layer chromatography plates. The atmospheric sampling capillary of a commercial ion trap mass spectrometer was extended to permit sampling and ionization of analytes in bands separated on intact TLC plates (up to 10 cm x 10 cm). A surface positioning software package and the appropriate hardware enabled computer-controlled surface scanning along the length of development lanes or at fixed RF value across the plates versus the stationary desorption electrospray emitter. Goldenseal (Hydrastis canadensis) and related alkaloids and commercial dietary supplements were used as standards and samples. Alkaloid standards and samples were spotted and separated on aluminum- or glass-backed plates using established literature methods. The mass spectral signal levels as a function of desorption spray solvent were investigated with acetonitrile proving superior to methanol. The detection levels (ca. 5 ng each or 14 -28 pmol) in mass spectral full scan mode were determined statistically from the calibration curves (2.5 - 100 pmol) for the standards berberine, palmatine and hydrastinine spotted as a mixture and separated on the plates. Qualitative screening of the major alkaloids present in six different over-the-counter "goldenseal" dietary supplements was accomplished by obtaining full scan mass spectra during surface scans along the development lane in the direction of increasing RF value. In one sample, alkaloids were detected that strongly suggested the presence of at least one additional herb undeclared on the product label. These same data indicated the misidentification of one of the alkaloids in the TLC literature. Quantities of the alkaloids present in two of the samples determined using the mass spectral data were in reasonable agreement with the label values indicating the quantitative ability of

  1. Comprehensive Biothreat Cluster Identification by PCR/Electrospray-Ionization Mass Spectrometry

    PubMed Central

    Sampath, Rangarajan; Mulholland, Niveen; Blyn, Lawrence B.; Massire, Christian; Whitehouse, Chris A.; Waybright, Nicole; Harter, Courtney; Bogan, Joseph; Miranda, Mary Sue; Smith, David; Baldwin, Carson; Wolcott, Mark; Norwood, David; Kreft, Rachael; Frinder, Mark; Lovari, Robert; Yasuda, Irene; Matthews, Heather; Toleno, Donna; Housley, Roberta; Duncan, David; Li, Feng; Warren, Robin; Eshoo, Mark W.; Hall, Thomas A.; Hofstadler, Steven A.; Ecker, David J.

    2012-01-01

    Technology for comprehensive identification of biothreats in environmental and clinical specimens is needed to protect citizens in the case of a biological attack. This is a challenge because there are dozens of bacterial and viral species that might be used in a biological attack and many have closely related near-neighbor organisms that are harmless. The biothreat agent, along with its near neighbors, can be thought of as a biothreat cluster or a biocluster for short. The ability to comprehensively detect the important biothreat clusters with resolution sufficient to distinguish the near neighbors with an extremely low false positive rate is required. A technological solution to this problem can be achieved by coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS). The biothreat assay described here detects ten bacterial and four viral biothreat clusters on the NIAID priority pathogen and HHS/USDA select agent lists. Detection of each of the biothreat clusters was validated by analysis of a broad collection of biothreat organisms and near neighbors prepared by spiking biothreat nucleic acids into nucleic acids extracted from filtered environmental air. Analytical experiments were carried out to determine breadth of coverage, limits of detection, linearity, sensitivity, and specificity. Further, the assay breadth was demonstrated by testing a diverse collection of organisms from each biothreat cluster. The biothreat assay as configured was able to detect all the target organism clusters and did not misidentify any of the near-neighbor organisms as threats. Coupling biothreat cluster-specific PCR to electrospray ionization mass spectrometry simultaneously provides the breadth of coverage, discrimination of near neighbors, and an extremely low false positive rate due to the requirement that an amplicon with a precise base composition of a biothreat agent be detected by mass spectrometry. PMID:22768032

  2. Selection of the Optimum Electrospray Voltage for Gradient Elution LC-MS Measurements

    SciTech Connect

    Marginean, Ioan; Kelly, Ryan T.; Moore, Ronald J.; Prior, David C.; Lamarche, Brian L.; Tang, Keqi; Smith, Richard D.

    2009-04-01

    Changes in liquid composition during gradient elution liquid chromatography (LC) and mass spectrometry (MS) analyses affect the electrospray operation. To establish methodologies for judicious selection of the electrospray voltage, we monitored in real-time the effect of the LC gradient on the spray current. The optimum range of the electrospray voltage shifted to lower values as the concentration of organic solvent in the eluent increased during reversed-phase LC analyses. These results provided the means to rationally select the voltage that ensured successful electrospray operation throughout gradient elution LC-MS experiments. A small run-to-run drift in the spray current was observed for electrosprays operated at constant voltage. This could be the result of fouling or degradation of the electrospray emitter, which affected the electric field driving the electrospray. Algorithms using feedback from spray current measurements to maintain the electrospray voltage within the optimum operating range throughout gradient elution LC-MS were evaluated. The electrospray operation with voltage regulation and at constant, judiciously selected voltage during gradient elution LC-MS measurements produced data with similar reproducibility.

  3. Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars.

    PubMed

    Dartnell, Lewis R; Page, Kristian; Jorge-Villar, Susana E; Wright, Gary; Munshi, Tasnim; Scowen, Ian J; Ward, John M; Edwards, Howell G M

    2012-04-01

    Raman spectroscopy has proven to be a very effective approach for the detection of microorganisms colonising hostile environments on Earth. The ExoMars rover, due for launch in 2018, will carry a Raman laser spectrometer to analyse samples of the martian subsurface collected by the probe's 2-m drill in a search for similar biosignatures. The martian surface is unprotected from the flux of cosmic rays, an ionising radiation field that will degrade organic molecules and so diminish and distort the detectable Raman signature of potential martian microbial life. This study employs Raman spectroscopy to analyse samples of two model organisms, the cyanobacterium Synechocystis sp. PCC 6803 and the extremely radiation resistant polyextremophile Deinococcus radiodurans, that have been exposed to increasing doses of ionising radiation. The three most prominent peaks in the Raman spectra are from cellular carotenoids: deinoxanthin in D. radiodurans and β-carotene in Synechocystis. The degradative effect of ionising radiation is clearly seen, with significant diminishment of carotenoid spectral peak heights after 15 kGy and complete erasure of Raman biosignatures by 150 kGy of ionising radiation. The Raman signal of carotenoid in D. radiodurans diminishes more rapidly than that of Synechocystis, believed to be due to deinoxanthin acting as a superior scavenger of radiolytically produced reactive oxygen species, and so being destroyed more quickly than the less efficient antioxidant β-carotene. This study highlights the necessity for further experimental work on the manner and rate of degradation of Raman biosignatures by ionising radiation, as this is of prime importance for the successful detection of microbial life in the martian near subsurface. PMID:22349404

  4. Electrospray mass spectrum of a per(onio)-substituted benzene: retention of coulombic charge upon collisionally activated decomposition.

    PubMed

    Zhang, X K; Fales, H M

    1998-01-01

    The hexakis (4-diemthylaminopyridyl) benzene hexacation of 1 is investigated as an extreme example of the ability of electrospray ionization to allow transfer of small multivalent ions to the gas phase. The hexacationized benzene ring ions are stabilized by forming gas phase complexes with two to five trifluoromethanesulfonate counterions. MS/MS analysis reveals that their fragmentation takes place by loss of neutrals such as trifluoromethanesulfonic acid and 4-dimethylaminopyridine; no rupture of the benzene or pyridine rings was observed in spite of accumulation of positive charge in a restricted geometry. PMID:9679592

  5. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    DOE PAGESBeta

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to comparemore » internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.« less

  6. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    SciTech Connect

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to compare internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.

  7. A peptidomic approach for monitoring and characterising peptide cyanotoxins produced in Italian lakes by matrix-assisted laser desorption/ionisation and quadrupole time-of-flight mass spectrometry.

    PubMed

    Ferranti, Pasquale; Nasi, Antonella; Bruno, Milena; Basile, Adriana; Serpe, Luigi; Gallo, Pasquale

    2011-05-15

    In recent years, the occurrence of cyanobacterial blooms in eutrophic freshwaters has been described all over the world, including most European countries. Blooms of cyanobacteria may produce mixtures of toxic secondary metabolites, called cyanotoxins. Among these, the most studied are microcystins, a group of cyclic heptapeptides, because of their potent hepatotoxicity and activity as tumour promoters. Other peptide cyanotoxins have been described whose structure and toxicity have not been thoroughly studied. Herein we present a peptidomic approach aimed to characterise and quantify the peptide cyanotoxins produced in two Italian lakes, Averno and Albano. The procedure was based on matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry mass spectrometry (MALDI-TOF-MS) analysis for rapid detection and profiling of the peptide mixture complexity, combined with liquid chromatography/electrospray ionisation quadrupole time-of- flight tandem mass spectrometry (LC/ESI-Q-TOF-MS/MS) which provided unambiguous structural identification of the main compounds, as well as accurate quantitative analysis of microcystins. In the case of Lake Averno, a novel variant of microcystin-RR and two novel anabaenopeptin variants (Anabaenopeptins B(1) and Anabaenopeptin F(1)), presenting homoarginine in place of the commonly found arginine, were detected and characterised. In Lake Albano, the peculiar peptide patterns in different years were compared, as an example of the potentiality of the peptidomic approach for fast screening analysis, prior to fine structural analysis and determination of cyanotoxins, which included six novel aeruginosin variants. This approach allows for wide range monitoring of cyanobacteria blooms, and to collect data for evaluating possible health risks to consumers, through the panel of the compounds produced along different years. PMID:21488115

  8. An integrated strategy for rapid and accurate determination of free and cell-bound microcystins and related peptides in natural blooms by liquid chromatography-electrospray-high resolution mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry using both positive and negative ionization modes.

    PubMed

    Flores, Cintia; Caixach, Josep

    2015-08-14

    An integrated high resolution mass spectrometry (HRMS) strategy has been developed for rapid and accurate determination of free and cell-bound microcystins (MCs) and related peptides in water blooms. The natural samples (water and algae) were filtered for independent analysis of aqueous and sestonic fractions. These fractions were analyzed by MALDI-TOF/TOF-MS and ESI-Orbitrap-HCD-MS. MALDI, ESI and the study of fragmentation sequences have been provided crucial structural information. The potential of combined positive and negative ionization modes, full scan and fragmentation acquisition modes (TOF/TOF and HCD) by HRMS and high resolution and accurate mass was investigated in order to allow unequivocal determination of MCs. Besides, a reliable quantitation has been possible by HRMS. This composition helped to decrease the probability of false positives and negatives, as alternative to commonly used LC-ESI-MS/MS methods. The analysis was non-target, therefore covered the possibility to analyze all MC analogs concurrently without any pre-selection of target MC. Furthermore, archived data was subjected to retrospective "post-targeted" analysis and a screening of other potential toxins and related peptides as anabaenopeptins in the samples was done. Finally, the MS protocol and identification tools suggested were applied to the analysis of characteristic water blooms from Spanish reservoirs. PMID:26141269

  9. Suppression of the contribution of short trajectories into above-threshold ionisation spectra by a two-colour laser field

    NASA Astrophysics Data System (ADS)

    Vvedenskii, N. V.; Zheltukhin, A. N.; Silaev, A. A.; Knyazeva, D. V.; Manakov, N. L.; Flegel', A. V.; Frolov, M. V.

    2016-04-01

    We have studied spectra of above-threshold ionisation of atoms by a two-colour laser field with collinear linearly polarised components. We have found a sharp (gap-like) dependence of the length of the high-energy plateau in above-threshold ionisation spectra on the relative phase of the two-colour field at comparable intensities of the field components. Using the quasi-classical analysis we have shown that this effect results from the suppression of partial above-threshold ionisation amplitudes, associated with closed classical trajectories of an electron in the laser field, within a certain range of relative phase values.

  10. Fragmentation of Electrospray-Produced Deprotonated Ions of Oligodeoxyribonucleotides Containing an Alkylated or Oxidized Thymidine

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Williams, Renee T.; Guerrero, Candace R.; Ji, Debin; Wang, Yinsheng

    2014-07-01

    Alkylation and oxidation constitute major routes of DNA damage induced by endogenous and exogenous genotoxic agents. Understanding the biological consequences of DNA lesions often necessitates the availability of oligodeoxyribonucleotide (ODN) substrates harboring these lesions, and sensitive and robust methods for validating the identities of these ODNs. Tandem mass spectrometry is well suited for meeting these latter analytical needs. In the present study, we evaluated how the incorporation of an ethyl group to different positions (i.e., O 2, N3, and O 4) of thymine and the oxidation of its 5-methyl carbon impact collisionally activated dissociation (CAD) pathways of electrospray-produced deprotonated ions of ODNs harboring these thymine modifications. Unlike an unmodified thymine, which often manifests poor cleavage of the C3'-O3' bond, the incorporation of an alkyl group to the O 2 position and, to a much lesser extent, the O 4 position, but not the N3 position of thymine, led to facile cleavage of the C3'-O3' bond on the 3' side of the modified thymine. Similar efficient chain cleavage was observed when thymine was oxidized to 5-formyluracil or 5-carboxyluracil, but not 5-hydroxymethyluracil. Additionally, with the support of computational modeling, we revealed that proton affinity and acidity of the modified nucleobases govern the fragmentation of ODNs containing the alkylated and oxidized thymidine derivatives, respectively. These results provided important insights into the effects of thymine modifications on ODN fragmentation.

  11. Theoretical investigation of the ultrafast dissociation of ionised biomolecules immersed in water: direct and indirect effects.

    PubMed

    Gaigeot, M-P; Lopez-Tarifa, P; Martin, F; Alcami, M; Vuilleumier, R; Tavernelli, I; Hervé du Penhoat, M-A; Politis, M-F

    2010-01-01

    Theoretical simulations are particularly well suited to investigate, at a molecular level, direct and indirect effects of ionising radiations in DNA, as in the particular case of irradiation by swift heavy ions such as those used in hadron therapy. In the past recent years, we have developed the modeling at the microscopic level of the early stages of the Coulomb explosion of DNA molecules immersed in liquid water that follows the irradiation by swift heavy ions. To that end, Time-Dependent Density Functional Theory molecular dynamics simulations (TD-DFT MD) have been developed where localised Wannier orbitals are propagated. This latter enables to separate molecular orbitals of each water molecule from the molecular orbitals of the biomolecule. Our main objective is to demonstrate that the double ionisation of one molecule of the liquid sample, either one water molecule from the solvent or the biomolecule, may be in some cases responsible for the formation of an atomic oxygen as a direct consequence of the molecule Coulomb explosion. Our hypothesis is that the molecular double ionisation arising from irradiation by swift heavy ions (about 10% of ionisation events by ions whose velocity is about the third of speed of light), as a primary event, though maybe less probable than other events resulting from the electronic cascading (for instance, electronic excitations, electron attachments), may be systematically more damageable (and more lethal), as supported by experiments that have been carried out in our group in the 1990s (in studies of damages created by K holes in DNA). The chemical reactivity of the produced atomic oxygen with other radicals present in the medium will ultimately lead to chemical products that are harmful to DNA. In the present paper, we review our theoretical methodology in an attempt that the community be familiar with our new approach. Results on the production of atomic oxygen as a result of the double ionisation of water or as a result of

  12. Structure-response relationship in electrospray ionization-mass spectrometry of sartans by artificial neural networks.

    PubMed

    Golubović, Jelena; Birkemeyer, Claudia; Protić, Ana; Otašević, Biljana; Zečević, Mira

    2016-03-18

    Quantitative structure-property relationship (QSPR) methods are based on the hypothesis that changes in the molecular structure are reflected in changes in the observed property of the molecule. Artificial neural network is a technique of data analysis, which sets out to emulate the human brain's way of working. For the first time a quantitative structure-response relationship in electrospray ionization-mass spectrometry (ESI-MS) by means of artificial neural networks (ANN) on the group of angiotensin II receptor antagonists--sartans has been established. The investigated descriptors correspond to different properties of the analytes: polarity (logP), ionizability (pKa), surface area (solvent excluded volume) and number of proton acceptors. The influence of the instrumental parameters: methanol content in mobile phase, mobile phase pH and flow rate was also examined. Best performance showed a multilayer perceptron network with the architecture 6-3-3-1, trained with backpropagation algorithm. It showed high prediction ability on the previously unseen (test) data set with a coefficient of determination of 0.994. High prediction ability of the model would enable prediction of ESI-MS responsiveness under different conditions. This is particularly important in the method development phase. Also, prediction of responsiveness can be important in case of gradient-elution LC-MS and LC-MS/MS methods in which instrumental conditions are varied during time. Polarity, chargeability and surface area all appeared to be crucial for electrospray ionization whereby signal intensity appeared to be the result of a simultaneous influence of the molecular descriptors and their interactions. Percentage of organic phase in the mobile phase showed a positive, while flow rate showed a negative impact on signal intensity. PMID:26884139

  13. Iron Fluoroanions and Their Clusters by Electrospray Ionization of a Fluorinating Ionic Liquid

    NASA Astrophysics Data System (ADS)

    Zarzana, Christopher A.; Groenewold, Gary S.; Benson, Michael T.; Delmore, James; Tsuda, Tetsuya; Hagiwara, Rika

    2015-09-01

    Metal fluoroanions are of significant interest for fundamental structure and reactivity studies and for making isotope ratio measurements that are free from isobaric overlap. Iron fluoroanions [FeF4]- and [FeF3]- were generated by electrospray ionization of solutions of Fe(III) and Fe(II) with the fluorinating ionic liquid 1-ethyl-3-methylimidazolium fluorohydrogenate [EMIm]+[F(HF)2.3]-. Solutions containing Fe(III) salts produce predominately uncomplexed [FeF4]- in the negative ion spectrum, as do solutions containing salts of Fe(II). This behavior contrasts with that of solutions of FeCl3 and FeCl2 (without [EMIm]+[F(HF)2.3]-) that preserve the solution-phase oxidation state by producing the gas-phase halide complexes [FeCl4]- and [FeCl3]-, respectively. Thus, the electrospray-[EMIm]+[F(HF)2.3]- process is oxidative with respect to Fe(II). The positive ion spectra of Fe with [EMIm]+[F(HF)2.3]- displays cluster ions having the general formula [EMIm]+ (n+1)[FeF4]- n, and DFT calculations predict stable complexes, both of which substantiate the conclusion that [FeF4]- is present in solution stabilized by the imidazolium cation. The negative ion ESI mass spectrum of the Fe-ionic liquid solution has a very low background in the region of the [FeF4]- complex, and isotope ratios measured for both [FeF4]- and adventitious [SiF5]- produced values in close agreement with theoretical values; this suggests that very wide isotope ratio measurements should be attainable with good accuracy and precision when the ion formation scheme is implemented on a dedicated isotope ratio mass spectrometer.

  14. Desorption electrospray ionization mass spectrometry for trace analysis of agrochemicals in food.

    PubMed

    García-Reyes, Juan F; Jackson, Ayanna U; Molina-Díaz, Antonio; Cooks, R Graham

    2009-01-15

    Desorption electrospray ionization (DESI) is applied to the rapid, in situ, direct qualitative and quantitative (ultra)trace analysis of agrochemicals in foodstuffs. To evaluate the potential of DESI mass spectrometry (MS) in toxic residue testing in food, 16 representative multiclass agricultural chemicals (pesticides, insecticides, herbicides, and fungicides) were selected (namely, ametryn, amitraz, azoxystrobin, bitertanol, buprofezin, imazalil, imazalil metabolite, isofenphos-methyl, malathion, nitenpyram, prochloraz, spinosad, terbuthylazine, thiabendazole, and thiacloprid). The DESI-MS experiments were performed using 3 microL of solution spotted onto conventional smooth poly(tetrafluoroethylene) (PTFE) surfaces, with examination by MS and tandem mass spectrometry (MS/MS) using an ion trap mass spectrometer. Optimization of the spray solvent led to the use of acetonitrile/water (80:20) (v/v), with 1% formic acid. Most of the compounds tested showed remarkable sensitivity in the positive ion mode, approaching that attainable with conventional direct infusion electrospray mass spectrometry. To evaluate the potential of the proposed approach in real samples, different experiments were performed including the direct DESI-MS/MS analysis of fruit peels and also of fruit/vegetable extracts. The results proved that DESI allows the detection and confirmation of traces of agrochemicals in actual market-purchased samples. In addition, MS/MS confirmation of selected pesticides in spiked vegetable extracts was obtained at absolute levels as low as 1 pg for ametryn. Quantitation of imazalil residues was also undertaken using an isotopically labeled standard. The data obtained were in agreement with those from the liquid chromatography mass spectrometry (LC-MS) reference method, with relative standard deviation (RSD) values consistently below 15%. The results obtained demonstrate the sensitivity of DESI as they meet the stringent European Union pesticide regulation

  15. Characterization of Coordination Complexes by Desorption Electrospray Mass Spectrometry with a Capillary Target

    SciTech Connect

    Gary S. Groenewold; Anthony D. Appelhans; Michael E. McIlwain; Garold L. Gresham

    2011-03-01

    Metal coordination complexes were formed directly from liquid surfaces using desorption electrospray ionization (DESI) mass spectrometry. The approach is attractive because it separates complexities of ESI spray droplet formation from delivery of the analyte solution, and thereby gets around difficulty resulting from alteration of the spray process by changes in solution chemistry. Cs+, Ba2+, and La3+ coordination complexes were formed using 18-crown-6 (18c6) and triethylphosphate (TEP) as ligands (L), that had the general formula [Mn+(NO3-)n-1(L)m]+. Formation of singly charged cation complexes was preferred, with charge reduction at the metal site accomplished by attachment of nitrate. Using TEP as a model phosphoryl ligand, alkali metals coordinate with up to three ligands, with Cs+ preferring fewer than Na+. Ba2+ and La3+ are formed as ion pair complexes [Ba(NO3)]+ and [La(NO3)2]+, and both will coordinate with up to four TEP ligands. Using 18c6, Cs+ forms a bis-ligand complex. In contrast, [Ba(NO3)]+ prefers a single 18c6 ligand, while La forms mainly [La(NO3)2(18c6)]+, for which DFT calculations suggested a structure in which the nitrate ligands occupy pseudo-axial positions on opposing sides of the crown. Lower abundances of bis-18c6 complexes were also formed together with doubly charged [La(NO3)(18c6)n]2+ complexes (n = 2 – 4). The results suggest an alternative strategy for probing metal speciation in solution that is less perturbed by the droplet formation and ionization mechanisms operating in conventional electrospray ionization mass spectrometry.

  16. Numerical simulation of electrospray in the cone-jet mode.

    PubMed

    Herrada, M A; López-Herrera, J M; Gañán-Calvo, A M; Vega, E J; Montanero, J M; Popinet, S

    2012-08-01

    We present a robust and computationally efficient numerical scheme for simulating steady electrohydrodynamic atomization processes (electrospray). The main simplification assumed in this scheme is that all the free electrical charges are distributed over the interface. A comparison of the results with those calculated with a volume-of-fluid method showed that the numerical scheme presented here accurately describes the flow pattern within the entire liquid domain. Experiments were performed to partially validate the numerical predictions. The simulations reproduced accurately the experimental shape of the liquid cone jet, providing correct values of the emitted electric current even for configurations very close to the cone-jet stability limit. PMID:23005852

  17. Desorption electrospray ionization imaging of small organics on mineral surfaces.

    PubMed

    Bennett, Rachel V; Fernández, Facundo M

    2015-01-01

    Desorption electrospray ionization (DESI)-mass spectrometry facilitates the ambient chemical analysis of a variety of surfaces. Here we describe the protocol for using DESI imaging to measure the distributions of small prebiotically relevant molecules on granite surfaces. Granites that contain a variety of juxtaposed mineral species were reacted with formamide in order to study the role of local mineral environment on the production of purines and pyrimidines. The mass spectrometry imaging (MSI) methods described here can also be applied to the surface analysis of rock samples involved in other applications such as petroleum or environmental chemistries. PMID:25361668

  18. Generation of fluorescent nanodroplets of liquid crystal utilizing electrospray deposition

    NASA Astrophysics Data System (ADS)

    Ohdaira, Yasuo; Oka, Hisaki; Shinbo, Kazunari; Baba, Akira; Kato, Keizo; Kaneko, Futao

    2016-02-01

    Fluorescent nanodroplets of liquid crystal (LC) were generated by the electrospray deposition of LC solvent containing rhodamine 6G (Rh6G) dye molecules. The shape and density of the nanodroplets strongly depended on the concentration of LC diluted with ethanol solution. The fluorescent spectra from the Rh6G molecules in LC nanodroplets were obviously blue-shifted compared with the LC films of the bulk state. Furthermore, the LC nanodroplets were dispersed on a metallic nanograting formed by optically modifying an azobenzene thin-film layer under the metallic film. The nanodroplets were size-selectively aligned on the metallic nanograting.

  19. A simple and selective method for determination of phthalate biomarkers in vegetable samples by high pressure liquid chromatography-electrospray ionization-tandem mass spectrometry.

    PubMed

    Zhou, Xi; Cui, Kunyan; Zeng, Feng; Li, Shoucong; Zeng, Zunxiang

    2016-06-01

    In the present study, solid-phase extraction cartridges including silica reversed-phase Isolute C18, polymeric reversed-phase Oasis HLB and mixed-mode anion-exchange Oasis MAX, and liquid-liquid extractions with ethyl acetate, n-hexane, dichloromethane and its mixtures were compared for clean-up of phthalate monoesters from vegetable samples. Best recoveries and minimised matrix effects were achieved using ethyl acetate/n-hexane liquid-liquid extraction for these target compounds. A simple and selective method, based on sample preparation by ultrasonic extraction and liquid-liquid extraction clean-up, for the determination of phthalate monoesters in vegetable samples by liquid chromatography/electrospray ionisation-tandem mass spectrometry was developed. The method detection limits for phthalate monoesters ranged from 0.013 to 0.120 ng g(-1). Good linearity (r(2)>0.991) between MQLs and 1000× MQLs was achieved. The intra- and inter-day relative standard deviation values were less than 11.8%. The method was successfully used to determine phthalate monoester metabolites in the vegetable samples. PMID:26830597

  20. Novel characterisation of minor α-linolenic acid isomers in linseed oil by gas chromatography and covalent adduct chemical ionisation tandem mass spectrometry.

    PubMed

    Gómez-Cortés, P; Brenna, J T; Lawrence, P; de la Fuente, M A

    2016-06-01

    Discrimination between polyunsaturated fatty acid isomers with three double bonds is a great challenge, due to structural similarities and similar polarities. In this study, we report the identification of four minor geometrical isomers of α-linolenic acid (ALA) present in linseed oil samples: (9E,12Z,15E)-, (9Z,12Z,15E)-, (9Z,12E,15Z)- and (9E,12Z,15Z)-octadeca-9,12,15-trienoic acids, chromatographically resolved by gas chromatography (GC) using a new and highly polar ionic phase column (SLB-IL111). Gas chromatography-electron ionisation mass spectrometry (GC-EIMS) determined that the four unknown compounds were C18:3 n-3 isomers. The positional 9-12-15 C18:3 configuration was achieved by covalent adduct chemical ionisation tandem mass spectrometry (CACI-MS/MS) while geometrical configuration was established with analytical standards based on relative retention. We hypothesised that these isomers are formed during linseed oil deodorisation and postulate preferred and unfavoured isomerisation pathways of ALA. PMID:26830571

  1. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture/Electrospray Ionization

    NASA Astrophysics Data System (ADS)

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.; Van Berkel, Gary J.

    2015-09-01

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed noncontact liquid-vortex capture probe has been used to efficiently collect material ablated by a 355 nm UV laser in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appears to be classic electrospray ionization spectra; however, the `softness' of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. In this work, a series of benzylpyridinium salts were employed as thermometer ions to compare internal energy distributions between electrospray ionization and the UV laser ablation/liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. These data, along with results from the analysis the biological molecules bradykinin and angiotensin III indicated that the ions or their fragments formed directly by UV laser ablation that survive the liquid capture/electrospray ionization process were likely to be an extremely small component of the total ion signal observed. Instead, the preponderate neutral molecules, clusters, and particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream, then electrosprayed, were the principal source of the ion signal observed. Thus, the electrospray ionization process used controls the overall `softness' of this technique.

  2. Continuous flow-extractive desorption electrospray ionization: analysis from "non-electrospray ionization-friendly" solvents and related mechanism.

    PubMed

    Li, Li; Yang, Samuel H; Lemr, Karel; Havlicek, Vladimir; Schug, Kevin A

    2013-03-26

    Due to their low polarities and dielectric constants, analytes in solvents such as hexane, chloroform, and ethyl acetate exhibit poor electrospray ionization (ESI) efficiency. These are deemed to be "non-ESI-friendly" solvents. Continuous flow extractive desorption electrospray ionization (CF-EDESI) is a novel ambient ionization technique that was recently developed in our group to manipulate protein charge distributions. Here we demonstrate its potential for ionizing analytes from non-ESI-friendly solvents. This feature makes CF-EDESI attractive to the general analytical community due to its apparent potential in lipidomics, normal phase separations, and hyphenation of mass spectrometry with HPLC-NMR systems. In this context, interest was subsequently initiated to discern mechanistic aspects of CF-EDESI. To achieve this, mechanistic experiments associated with a seemingly similar ambient ionization technique, extractive electrospray ionization (EESI), were emulated to compare CF-EDESI and EESI. Analysis of a series of fatty acids in multiple solvents in the negative ionization mode revealed differences between the two techniques. Whereas EESI has been previously shown to operate via extraction of analytes into the spray solvent, data presented here for CF-EDESI point toward a liquid-liquid mixing process to facilitate ionization. Further, a partial factorial design experiment was performed to evaluate the effects of different experimental variables on signal intensity. Sample flow rate was confirmed to be among the most significant factors to affect sensitivity. As a whole, the work presented provides greater insight into a new ambient ionization process, which exhibits expanded capabilities over conventional ESI; in this case, for direct analysis from non-ESI-friendly solvents. PMID:23498125

  3. Exploring the Powerful Ionised Wind in the Seyfert Galaxy PG1211+143

    NASA Astrophysics Data System (ADS)

    Pounds, Ken

    2013-10-01

    Highly-ionised high-speed winds in AGN (UFOs) were first detected with XMM-Newton a decade ago, and are now established as a key factor in the study of SMBH accretion, and in the growth and metal enrichment of their host galaxies. However, information on the ionisation and dynamical structure, and the ultimate fate of UFOs remains very limited. We request a 600ks extended XMM-Newton study of the prototype UFO PG1211+143 in AO-13, to obtain high quality EPIC and RGS spectra, to map the flow structure and variability, while seeking evidence for the anticipated interaction with the ISM and possible conversion of the energetic wind to a momentum-driven flow.

  4. Classification of the Spectra of Highly Ionised Atoms During the Last Seven Years

    NASA Astrophysics Data System (ADS)

    Fawcett, B. C.

    1981-10-01

    This review of recent contributions to the classification of the spectra of highly ionised atoms emphasises how major research projects have influenced progress. These projects include experiments on board orbiting space satellites and SKYLAB, those of fusion research (notably involving TOKAMAK devices), studies with giant pulse laser-produced-plasmas and beam-foil spectroscopy. In addition, the large volume of data gathered through the application of traditional methods and the impact of theoretical calculations are discussed. A comprehensive reference list of papers reporting emission line identifications for elements lighter than nickel and ionisation stages higher than the fourth is included, along with references to other bibliographies and compilations of energy levels, or wavelengths and identifications.

  5. The effect of highly ionising particles on the CMS silicon strip tracker

    NASA Astrophysics Data System (ADS)

    Adam, W.; Bergauer, T.; Friedl, M.; Fruehwirth, R.; Hrubec, J.; Krammer, M.; Pernicka, M.; Waltenberger, W.; Beaumont, W.; de Langhe, E.; de Wolf, E.; Tasevsky, M.; Bouhali, O.; Clerbaux, B.; de Lentdecker, G.; Dewulf, J.-P.; Neuckermans, L.; Vander-Velde, C.; Vanlaer, P.; Wickens, J.; D'Hondt, J.; Goorens, R.; Heyninck, J.; Lowette, S.; Tavernier, S.; Van Lancker, L.; Yu, C.; Assouak, S.; Bonnet, J.-L.; Bruno, G.; De-Callatay, B.; De-Favereau-de-Jeneret, J.; Delaere, C.; De-Visscher, S.; Favart, D.; Gregoire, G.; Keutgen, Th.; Leibenguth, G.; Lemaitre, V.; Michotte, D.; Militaru, O.; Ninane, A.; Ovyn, S.; Piotrzkowski, K.; Roberfroid, V.; Rouby, X.; Van-der-Aa, O.; Vander-Donckt, M.; Boulogne, I.; Daubie, E.; Defontaines, F.; Herquet, P.; Czellar, S.; Härkönen, J.; Karimäki, V.; Katajisto, H.; Linden, T.; Luukka, P.; Lampen, T.; Mäenpää, T.; Tuominen, E.; Tuominiemi, J.; Tuuva, T.; Ageron, M.; Chabanat, E.; Contardo, D.; Estre, N.; Haroutunian, R.; Lumb, N.; Mirabito, L.; Perries, S.; Trocme, B.; Blaes, R.; Charles, F.; Drouhin, F.; Ernenwein, J. P.; Fontaine, J. C.; Berst, J. D.; Brom, J. M.; Didierjean, F.; Goerlach, U.; Gross, L.; Juillot, P.; Lounis, A.; Maazouzi, C.; Olivetto, C.; Strub, R.; Vanhove, P.; Vintache, D.; Adolphi, R.; Brauer, R.; Braunschweig, W.; Esser, H.; Feld, L.; Heister, A.; Karpinski, W.; Klein, K.; König, S.; Kukulies, C.; Olzem, J.; Ostaptchouk, A.; Pandoulas, D.; Pierschel, G.; Raupach, F.; Schael, S.; Schultz von Dratzig, A.; Schwering, G.; Siedling, R.; Thomas, M.; Wlochal, M.; Beissel, F.; Boffin, K.-D.; Duda, M.; Flossdorf, A.; Flugge, G.; Franke, T.; Hangarter, K.; Hegner, B.; Hermanns, Th.; Kasselmann, S.; Kress, Th.; Linn, A.; Mnich, J.; Nowack, A.; Poettgens, M.; Pooth, O.; Reinhold, B.; Bleyl, M.; Holm, U.; Klanner, R.; Pein, U.; Schleper, P.; Schirm, N.; Steinbrück, G.; Stoye, M.; Tesch, S.; van Staa, R.; Wick, K.; Atz, B.; Barvich, T.; Blum, P.; de Boer, W.; Boegelspacher, F.; Dirkes, G.; Fahrer, M.; Fernandez, J.; Frey, M.; Furgeri, A.; Grigoriev, E.; Hartmann, F.; Heier, S.; Muller, T.; Ortega-Gomez, T.; Simonis, H.-J.; Steck, P.; Theel, A.; Weiler, T.; Zhukov, V.; Creanza, D.; De Filippis, N.; de Palma, M.; De Robertis, G.; Fiore, L.; Giordano, D.; Maggi, G.; Mennea, M.; My, S.; Radicci, V.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Albergo, S.; Bellini, V.; Chiorboli, M.; Costa, S.; Potenza, R.; Sutera, C.; Tricomi, A.; Tuvè, C.; Bocci, A.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Landi, G.; Macchiolo, A.; Magini, N.; Mersi, S.; Marchettini, C.; Meschini, M.; Paoletti, S.; Parrini, G.; Ranieri, R.; Sani, M.; Bacchetta, N.; Bisello, D.; Candelori, A.; Dorigo, T.; Giubilato, P.; Kaminsky, A.; Loreti, M.; Nigro, M.; Paccagnella, A.; Rando, R.; Angarano, M. M.; Babucci, E.; Benedetti, D.; Biasini, M.; Bilei, G. M.; Brunetti, M. T.; Checcucci, B.; Dinu, N.; Fanò, L.; Giorgi, M.; Lariccia, P.; Mantovani, G.; Postolache, V.; Puscalau, M.; Ricci, D.; Santinelli, R.; Santocchia, A.; Servoli, L.; Zucchetti, C.; Azzurri, P.; Bagliesi, G.; Basti, A.; Bernardini, J.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; D'Alfonso, M.; Dell'Orso, R.; Dutta, S.; Foa, L.; Gennai, S.; Giammanco, A.; Giassi, A.; Lomtadze, T.; Mangano, B.; Messineo, A.; Moggi, A.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Rizzi, D.; Segneri, G.; Sentenac, D.; Sguazzoni, G.; Spagnolo, P.; Tonelli, G.; Verdini, P. G.; Biino, C.; Costa, M.; Demaria, N.; Favro, G.; Trapani, P.; Peroni, C.; Romero, A.; Migliore, E.; Abbaneo, D.; Ahmed, F.; Bartalini, P.; Bernardino-Rodriguez, N.; Breuker, H.; Buchmuller, O.; Carrone, E.; Cattai, A.; Chierici, R.; Cucciarelli, S.; Dierlamm, A.; Eppard, M.; Frey, A.; Gill, K.; Grabit, R.; Honma, A.; Huhtinen, M.; Magazzu, G.; Mannelli, M.; Marchioro, A.; Onnela, A.; Perea-Solano, B.; Petagna, P.; Postema, H.; Risoldi, M.; Rolandi, G.; Siegrist, P.; Troska, I.; Tsirou, A.; Vasey, F.; Weber, M.; Wittmer, B.; Bertl, W.; Gabathuler, K.; Horisberger, R.; Kästli, H.-Ch.; Kotlinski, D.; MacPherson, A.; Rohe, T.; Freudenreich, K.; Lustermann, W.; Pauss, F.; Eichler, R.; Erdmann, W.; Grab, C.; Schoning, A.; Amsler, C.; Chiochia, V.; Dorokhov, A.; Hörmann, C.; Pruys, H.; Prokofiev, K.; Regenfus, C.; Robmann, P.; Speer, T.; Bell, K. W.; Coughlan, J.; French, M.; Halsall, R.; Jones, L.; Pearson, M.; Rogers, G.; Tomalin, I.; Bainbridge, R.; Barrillon, P.; Colling, D.; Dris, S.; Foudas, C.; Fulcher, J.; Hall, G.; Iles, G.; Jones, J.; Leaver, J.; Macevoy, B. C.; Noy, M.; Raymond, D. M.; Takahashi, M.; Zorba, O.; Barnett, B.; Chien, C.-Y.; Kim, D. W.; Liang, G.; Swartz, M.; Atac, M.; Demarteau, M.; Joshi, U.; Kwan, S.; Spiegel, L.; Tkaczyk, S.; Gerber, C. E.; Shabalina, E.; Ten, T.; Lander, R.; Pellett, D.; Gobbi, B.; Kubantsev, M.; Malik, S.; Tilden, R.; Baringer, P.; Bean, A.; Christofek, L.; Coppage, D.; Bolton, T. A.; Demina, R.; Kahl, W. E.; Khanov, A.; Korjenevski, S.; Pukhaeva, N.; Reay, N. W.; Rizatdinova, F.; Sidwell, R. A.; Stanton, N. R.; Cremaldi, L.; Sanders, D.; Bartz, E.; Doroshenko, J.; Koeth, T.; Perera, L.; Schnetzer, S.; Stone, R.; Worm, S.; Gartung, P.; Hanson, G. G.; Jeng, G. Y.; Páztor, G.; Eusebi, R.; Halkiadakis, E.; Hocker, A.; Tipton, P.; Affolder, A.; Campagnari, C.; Hale, D.; Incandela, J.; Kyre, S.; Lamb, J.; Taylor, R.; White, D.; Bolla, G.; Bortoletto, D.; Garfinkel, A.; Rott, C.; Roy, A.

    2005-05-01

    Inelastic nuclear collisions of hadrons incident on silicon sensors can generate secondary highly ionising particles (HIPs) and deposit as much energy within the sensor bulk as several hundred minimum ionising particles. The large signals generated by these 'HIP events' can momentarily saturate the APV25 front-end readout chip for the silicon strip tracker (SST) sub-detector of the compact muon solenoid (CMS) experiment, resulting in deadtime in the detector readout system. This paper presents studies of this phenomenon through simulation, laboratory measurements and dedicated beam tests. A proposed change to a front-end component to reduce the APV25 sensitivity to HIP events is also examined. The results are used to infer the expected effect on the performance of the CMS SST at the future large hadron collider. The induced inefficiencies are at the percent level and will have a negligible effect on the physics performance of the SST.

  6. The Interplay Between Molecular and Ionised Gas Surrounding the Massive Embedded Star AFGL 4176

    NASA Astrophysics Data System (ADS)

    Johnston, Katharine G.; Beuther, Henrik; Linz, Hendrik; Boley, P.; Robitaille, Thomas P.; Keto, E.; Wood, K.; van Boekel, R.

    In order to investigate whether the feedback produced by photo-ionisation has an important effect on the geometry of the circumstellar dust and gas around forming massive stars, we have observed the luminous southern embedded star AFGL 4176 in transitions of NH3 and the hydrogen recombination line H68α. We present our preliminary results, which show a compact HII region embedded in a parsec-scale (radius ˜ 0.7 pc) rotating envelope/torus. In addition, the HII region is found to be offset from the centre of the envelope, and the velocity gradient in the ionised gas is not aligned with the rotation axis of the envelope, suggesting complex dynamics and multiplicity.

  7. The nature of the ionised nebula surrounding the red supergiant W26

    NASA Astrophysics Data System (ADS)

    Wesson, Roger

    2015-08-01

    The red supergiant W26 in the massive star cluster Westerlund 1 is surrounded by a compact ionised nebula. This is unique among RSGs, and the excitation mechanism of the nebula is not yet known - it may be ionised by an unseen compact companion, or by a nearby blue supergiant. We present new observations of the nebula: high resolution spatially resolved spectra taken with FLAMES at the VLT show that the nebula is a ring, with velocities consistent with that expected for red supergiant ejecta, and ruling out the possibility of a Luminous Blue Variable-type eruption preceding the RSG phase as the origin of the nebula. A triangular patch of nebulosity outside the ring appears to be associated with W26, and may be material stripped from the expanding ring by the cumulative cluster wind and radiation field.

  8. Oxidative degradation of bis (2,4,4-trimethylpentyl) dithiophosphinic acid in nitric acid studied by electrospray ionization mass spectrometry

    SciTech Connect

    G. S. Groenewold; D. R. Peterman

    2012-10-01

    Samples of bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex-301) were analyzed using direct infusion electrospray ionization mass spectrometry. Positive ion spectra of standard and stereo-pure acids displayed ions typical of the unmodified compound, cationized monomeric and dimeric cluster ion species. In addition, a significant ions 2 u less than the dimeric clusters were seen, that correspond to an oxidatively coupled species designated Cyx2 that is observed as H- or Na-cationized species in the electrospray analyses. Based on uncorrected ion intensities, Cyx2 is estimated to account for about 20% of the total in the standard materials. When samples that were contacted with 3 M HNO3 were analyzed, the positive ion spectrum consisted nearly entirely of ions derived from the oxidatively coupled product, indicating that the acid promotes coupling. The negative ion spectra of the standard acids consisted nearly entirely of the conjugate base that is formed by deprotonation of the acids, and cluster ions containing multiple acid molecules. The negative spectra of the HNO3-contacted samples also contained the conjugate base of the unmodified acid, but also two other species that correspond to the dioxo- and perthio- derivatives. It is concluded that HNO3 contact causes significant oxidation, forming at least three major products, Cyx2, the perthio-acid, and the dioxo-acid.

  9. An improved thin-layer chromatography/mass spectrometry coupling using a surface sampling probe electrospray ion trap system

    SciTech Connect

    Ford, Michael J; Van Berkel, Gary J

    2004-01-01

    A combined surface sampling probe/electrospray emitter coupled with an ion trap mass spectrometer was used for the direct read out of unmodified reversed-phase C18 thin-layer chromatography (TLC) plates. The operation of the surface sampling electrospray ionization interface in positive and negative ionization modes was demonstrated through the direct analysis of TLC plates on which a commercial test mix comprised of four dye compounds viz., rhodamine B, fluorescein, naphthol blue black, and fast green FCF, and an extract of the caffeine-containing plant Ilex vomitoria, were spotted and developed. Acquisition of full-scan mass spectra and automated collection of MS/MS product ion spectra while scanning a development lane along the surface of a TLC plate demonstrated the advantages of using an ion trap in this combination. Details of the sampling system, benefits of analyzing a developed lane in both positive ion and negative ion modes, levels of detection while surface scanning, surface scan speed effects, and the utility of three-dimensional data display, are also discussed.

  10. Mobility of Proteins in Porous Substrates under Electrospray Ionization Conditions.

    PubMed

    Hu, Bin; Yao, Zhong-Ping

    2016-06-01

    Proteins are important substances in living organisms and characterization of proteins is an indispensible part for protein study. Analysis of proteins using electrospray ionization-mass spectrometry (ESI-MS) with porous substrates was investigated in this study. The results revealed that the ionization process had two stages. At the first stage, mobility and resulting spectra of proteins were similar to those obtained with conventional capillary-based ESI-MS. At the second stage, hydrophobic-hydrophobic interactions between proteins and the tip surfaces played an important role in mobility and detectability of protein ions, which were size and shape dependent, and a linear relationship could be found between the peak area of selected ion chromatogram and the cross section of protein ions. Preparative separation of proteins could be achieved by collecting the proteins remained on the porous substrates. These results led us to propose that electrospray ionization from porous substrates offer a potential approach for analysis of proteins and investigation of protein structures and conformations. PMID:27149434

  11. A Corona Discharge Initiated Electrochemical Electrospray Ionization Technique

    PubMed Central

    Lloyd, John R.; Hess, Sonja

    2009-01-01

    We report here the development of a corona discharge (CD) initiated electrochemical (EC) electrospray ionization (ESI) technique using a standard electrospray ion source. This is a new ionization technique distinct from ESI, electrochemistry inherent to ESI, APCI, and techniques using hydroxyl radicals produced under atmospheric pressure conditions. By maximizing the observable CD at the tip of a stainless steel ESI capillary, efficient electrochemical oxidation of electrochemically active compounds is observed. For electrochemical oxidation to be observed, the ionization potential of the analyte must be lower than Fe. Ferrocene labeled compounds were chosen as the electrochemically active moiety. The electrochemical cell in the ESI source was robust and generated ions with selectivity according to the ionization potential of the analytes and up to zeptomolar sensitivity. Our results indicate that CD initiated electrochemical ionization has the potential to become a powerful technique to increase the dynamic range, sensitivity and selectivity of ESI experiments. Synopsis Using a standard ESI source a corona discharge initiated electrochemical ionization technique was established resulting from the electrochemistry occurring at the CD electrode surface. PMID:19747843

  12. Photodetachment photoelectron spectroscopy of multiply charged anions using electrospray ionization

    SciTech Connect

    Wang, L.; Ding, C.; Wang, X. |; Barlow, S.E.

    1999-04-01

    A magnetic-bottle time-of-flight (TOF) photoelectron spectrometer, coupled with an electrospray ionization source, has been developed for the investigation of multiply charged anions in the gas phase. Anions formed in the electrospray source are guided by a radio-frequency quadrupole ion guide into a quadrupole ion trap, where the ions are accumulated. A unique feature of this apparatus involves the coupling of a TOF mass spectrometer to the ion trap with perpendicular ion extraction. The ion trap significantly improves the duty cycle of the experiments and allows photodetachment experiments to be performed with low repetition-rate lasers (10{endash}20 Hz). This novel combination makes the photodetachment photoelectron spectroscopy studies of multiply charged anions possible for the first time. Furthermore, the perpendicular extraction of ions, pulsed out of the ion trap, to the TOF mass spectrometer allows the ion energies to be conveniently referenced to ground, simplifying the configuration of the TOF mass spectrometer and the subsequent magnetic-bottle TOF photoelectron spectrometer. The mass resolution (M/{Delta}M) achieved is about 800 for smaller ions. The magnetic-bottle photoelectron spectrometer resolution is about 11 meV full width at half maximum for 0.5 eV photoelectrons with an overall resolution of {Delta}E/E{approximately}2{percent}. The detailed design, construction, and operation of the new apparatus are presented. {copyright} {ital 1999 American Institute of Physics.}

  13. Unexpected Analyte Oxidation during Desorption Electrospray Ionization - Mass Spectrometry

    SciTech Connect

    Pasilis, Sofie P; Kertesz, Vilmos; Van Berkel, Gary J

    2008-01-01

    During the analysis of surface spotted analytes using desorption electrospray ionization mass spectrometry (DESI-MS), abundant ions are sometimes observed that appear to be the result of oxygen addition reactions. In this investigation, the effect of sample aging, the ambient lab environment, spray voltage, analyte surface concentration, and surface type on this oxidative modification of spotted analytes, exemplified by tamoxifen and reserpine, during analysis by desorption electrospray ionization mass spectrometry was studied. Simple exposure of the samples to air and to ambient lighting increased the extent of oxidation. Increased spray voltage lead also to increased analyte oxidation, possibly as a result of oxidative species formed electrochemically at the emitter electrode or in the gas - phase by discharge processes. These oxidative species are carried by the spray and impinge on and react with the sampled analyte during desorption/ionization. The relative abundance of oxidized species was more significant for analysis of deposited analyte having a relatively low surface concentration. Increasing spray solvent flow rate and addition of hydroquinone as a redox buffer to the spray solvent were found to decrease, but not entirely eliminate, analyte oxidation during analysis. The major parameters that both minimize and maximize analyte oxidation were identified and DESI-MS operational recommendations to avoid these unwanted reactions are suggested.

  14. Gain Calculations for Inner-Shell Lasing by Electron Collisional Ionisation

    NASA Astrophysics Data System (ADS)

    Upcraft, L. M.

    2002-11-01

    Current high power femtosecond lasers have been shown to produce electron pulses which may be appropriate for the pumping of X-Ray lasers through collisional ionisation. Non-radiative Coster-Kronig type decay processes may be fast enough to form an inverted state and allow X-ray lasing within the biologically interesting "water window". Calculations of the atomic processes in metallic Ti, Mn and Cu are presented that potentially useable gains on the M1 - L3 transition.

  15. Occupational exposure to ionising radiation and mortality among workers of the former Spanish Nuclear Energy Board.

    PubMed Central

    Rodríguez Artalejo, F; Castaño Lara, S; de Andrés Manzano, B; García Ferruelo, M; Iglesias Martín, L; Calero, J R

    1997-01-01

    OBJECTIVES: Firstly, to ascertain whether mortality among workers of the former Spanish Nuclear Energy Board (Junta de Energía Nuclear-JEN) was higher than that for the Spanish population overall; and secondly, if this were so, to ascertain whether this difference was associated with exposure to ionising radiation. METHODS: A retrospective follow up of a cohort of 5657 workers was carried out for the period 1954-92. Cohort mortality was compared with that for the Spanish population overall, with standardised mortality ratios (SMRs) adjusted for sex, age, and calendar period. Also, Poisson models were used to analyse mortality from lung cancer in the cohort by level of exposure to ionising radiation. RESULTS: Workers' median and mean cumulative exposures were 4.04 and 11.42 mSv, respectively. Mean annual exposure was 1.33 mSv. Excess mortality due to bone tumours was found for the cohort as a whole (six deaths observed; SMR 2.95; 95% confidence interval (95% CI) 1.08 to 6.43). Among miners, excess mortality was found for non-malignant respiratory diseases (SMR 2.94; 95% CI 2.27 to 3.75), and for lung cancer bordering on statistical significance (SMR 1.50; 95% CI 0.96 to 2.23; P = 0.055). Relative risks of dying of lung cancer from ionising radiation in the dose quartiles 2, 3, and 4 versus the lowest dose quartile, were 1.00, 1.64, and 0.94, respectively. CONCLUSIONS: Excess mortality from lung cancer was found among JEN miners. Nevertheless, no clear relation was found between mortality from lung cancer and level of exposure to ionising radiation in the JEN cohort. Continued follow up of the cohort is required to confirm excess mortality from bone tumours. PMID:9155782

  16. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    NASA Astrophysics Data System (ADS)

    Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.

    2016-07-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.

  17. Electrospray Ionization Mass Spectrometry of hexanitrohexaazaisowurtzitane (CL-20)

    SciTech Connect

    Campbell, James A.; Szecsody, Jim E.; Devary, Brooks J.; Valenzuela, Blandina R.

    2007-09-03

    Hexanitrohexaazaisowurtzitane, (C6H6N12O12, MW 438) {CL-20}, is a high-energy propellent that has been recently developed and successfully tested (Nielsen et al. 1998). CL-20 releases more energy on ignition and is more stable to accidental detonation than currently used energetic materials. It is expected to replace many of the energetic materials currently being used by the Department of Defense (DoD). The EPA method 8330 (EPA 1997) for the analysis of explosives and metabolites in soils calls for the use of UV/Vis detection. High performance liquid chromatography has been used to quantify CL-20 and precursor concentration (Bazaki et al. 1998`) at relatively high concentrations. Fourier transform infrared (FTIR) spectroscopy has been used to identify different crystal forms of CL-20 (4 isomers; Kim et al. 1998). Campbell et al. (1997) utilized particle beam mass spectrometry for the analysis of enzymatic degradation of explosives. Introduction and recent improvements of ionization techniques such as electrospray (ES) have allowed the mass spectrometer to become more widely used in liquid chromatography. Schilling(1996) also examined explosive components and metabolites using electrospray (ES) and atmospheric pressure chemical ionization (APCI) liquid chromatography/mass spectrometry (LC/MS). Schilling’s results showed that compared to thermospray LC/MS, APCI and ES were more sensitive than thermospray by at least an order of magnitude. 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), 10 nitroso-RDX metabolites, and other munitions in ground water have been analyzed using solid phase extraction and isotope dilution liquid chromatography-APCI mass spectrometry (Cassada et al. 1999). The method detection limits indicate that nitramine and nitroaromatic compounds can be routinely determined in ground water samples using electrospray LC/MS with concentration techniques utilizing solid-phase extraction. Miller et al. (1996) studied nitrated explosives with mobile phase

  18. A Carbon Nano Tube electron impact ionisation source for low-power, compact spacecraft mass spectrometers

    NASA Astrophysics Data System (ADS)

    Sheridan, S.; Bardwell, M. W.; Morse, A. D.; Morgan, G. H.

    2012-04-01

    A novel ionisation source which uses commercially available Carbon Nano Tube devices is demonstrated as a replacement for a filament based ionisation source in an ion trap mass spectrometer. The carbon nanotube ion source electron emission was characterised and exhibited typical emission of 30 ± 1.7 μA with an applied voltage differential of 300 V between the carbon nanotube tips and the extraction grid. The ion source was tested for longevity and operated under a condition of continuous emission for a period of 44 h; there was an observed reduction in emission current of 26.5% during operation. Spectra were generated by installing the ion source into a Finnigan Mat ITD700 ion trap mass spectrometer; the spectra recorded showed all of the characteristic m/z peaks from m/z 69 to m/z 219. Perfluorotributylamine spectra were collected and averaged contiguously for a period of 48 h with no significant signal loss or peak mass allocation shift. The low power requirements and low mass of this novel ionisation source are considered be of great value to future space missions where mass spectrometric technology will be employed.

  19. Examining Pre-Service Teachers' Use of Atomic Models in Explaining Subsequent Ionisation Energy Values

    NASA Astrophysics Data System (ADS)

    Wheeldon, Ruth

    2012-06-01

    Chemistry students' explanations of ionisation energy phenomena often involve a number of non-scientific or inappropriate ideas being used to form causality arguments. Research has attributed this to many science teachers using these ideas themselves (Tan and Taber, in J Chem Educ 86(5):623-629, 2009). This research extends this work by considering which atomic models are used in pre-service teachers' explanations and how that relates to the causality ideas expressed. Thirty-one pre-service teachers were interviewed. Each was asked to describe and explain four different atomic representations (Rutherford, Electron cloud micrograph, Bohr and Schrödinger types) in as much detail as they could. They also provided an explanation for the subsequent ionisation energy values for an oxygen atom and identified which representations were helpful in explaining the values. Significantly, when pre-service teachers only used Bohr type representations, they did not use repelling electron ideas in their explanations. However, arguments that were based on electron-electron repulsion used features from Schrödinger type atoms. These findings suggest that many pre-service teachers need to develop their atomic modelling skills so that they select and use models more expertly and that subsequent ionisation explanations offer a context in which to explore different atomic models' limitations and their deployment as explanatory resources.

  20. A liquid ionisation detector for digital radiography of therapeutic megavoltage photon beams.

    PubMed

    Meertens, H; van Herk, M; Weeda, J

    1985-04-01

    Experiments with an ionisation detector were performed in order to determine whether it was possible to obtain high energy photon beam images for radiotherapy treatment verification. A small prototype detector with a field of view of 78 mm X 78 mm and constructed from printed circuit boards was used. The imaging area was a matrix ionisation chamber, filled with air or liquid (2,2,4-trimethylpentane). A minicomputer was used to control the data acquisition electronics and to reconstruct and restore the images. The images were displayed on a viewing console for computed tomography images. The liquid filled detector with a front-rear board separation of 1.0 mm gave the best results. The spatial resolution was about 3.8 mm with a density resolution of 0.5% for a data acquisition time of 120 s. Comparison of the liquid detector images with corresponding metal screen-film detector images showed that the image qualities were the same. An important advantage of the ionisation detector image is that grey scale modification, sharpening and smoothing by digital processing can easily be performed. PMID:3923505

  1. {sup 14}C-atrazine metaboite identification in field-grown sugarcane and sorghum by using radioactive detection and electrospray tandem mass spectrometry

    SciTech Connect

    Larson, J.D.; Ash, S.G.; Talaat, R.E

    1996-10-01

    The metabolism of [2,4,6-{sup 14}C]-atrazine in field-grown sugarcane and sorghum produced several dechlorinated, dealkylated, and/or glutathione metabolites. These metabolites were identified by gas chromatography-mass spectrometry and electrospray-tandem mass spectrometry. The subsequent metabolism of glutathione adducts of atrazine and N-dealkylated atrazine to novel metabolites were studied. Lanthionine, lanthionine sulfoxide, glucose-thiolactate and glutamine adducts of atrazine are examples of metabolites that we postulate arise from a common intermediate metabolite of atrazine, i.e., atrazine-glutathione adduct at position 2. The mass spectra as well as the postulated metabolic pathways will be discussed. The identification of such metabolites at trace levels in plant tissues were made possible by the coupling of the radioactive detector and electrospray interface on-line to the tandem mass spectrometer.

  2. Observations of a groove in the interplanetary Lyman alpha pattern as the signature of enhanced ionisation in the neutral sheet

    NASA Astrophysics Data System (ADS)

    Bertaux, J. L.; Quemerais, E.; Lallement, R.; Summanen, T.; Kyrola, E.

    1995-06-01

    We report several observations of the Lyman alpha interplanetary emission recorded by a photometer flown in 1976-1977 on board the Soviet spacecraft Prognoz-5 and Prognoz-6. Several scans made in a plane perpendicular to the sun were cutting through the maximum emission region. where the interstellar hydrogen is approaching nearest to the sun (upwind region). On each of these scans is observed a dip in the intensity curve near the ecliptic plane. about 30 deg wide and approximately equals 10% deep. They reveal the presence of a new feature of the interplanetary emission. a 'groove' aligned approximately with the ecliptic plane. This groove is present only near the upwind direction, and is interpreted as the result of enhanced ionisation of interstellar H by charge-exchange with the solar wind in a sheet of approximately 30 deg around the average position of the neutral sheet at this time of solar this Lyman alpha groove is a prime target for future observations with SWAN experiment on SOHO.

  3. Observations of a groove in the interplanetary Lyman alpha pattern as the signature of enhanced ionisation in the neutral sheet

    NASA Technical Reports Server (NTRS)

    Bertaux, J. L.; Quemerais, E.; Lallement, R.; Summanen, T.; Kyrola, E.

    1995-01-01

    We report several observations of the Lyman alpha interplanetary emission recorded by a photometer flown in 1976-1977 on board the Soviet spacecraft Prognoz-5 and Prognoz-6. Several scans made in a plane perpendicular to the sun were cutting through the maximum emission region. where the interstellar hydrogen is approaching nearest to the sun (upwind region). On each of these scans is observed a dip in the intensity curve near the ecliptic plane. about 30 deg wide and approximately equals 10% deep. They reveal the presence of a new feature of the interplanetary emission. a 'groove' aligned approximately with the ecliptic plane. This groove is present only near the upwind direction, and is interpreted as the result of enhanced ionisation of interstellar H by charge-exchange with the solar wind in a sheet of approximately 30 deg around the average position of the neutral sheet at this time of solar this Lyman alpha groove is a prime target for future observations with SWAN experiment on SOHO.

  4. Thin-layer chromatography-matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry using particle suspension matrices.

    PubMed

    Crecelius, Anna; Clench, Malcolm R; Richards, Don S; Parr, Vic

    2002-06-01

    Particle suspension matrices have been successfully utilized for the analysis of tetracycline antibiotics by thin-layer chromatography-matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (TLC-MALDI-TOF-MS). Particles of different materials and sizes have been investigated (Co-UFP, TiN, TiO2, Graphite and Silicon) by applying particle suspensions to eluted TLC plates. Mass spectra and mass chromatograms have been recorded directly from the TLC plates. Strong cationization by sodium and potassium was obtained in the positive ion mode, with [M+Na-NH3]+ ions being the predominant signals. The TLC-MALDI mass spectra recorded from graphite suspensions showed the lowest background noise and the highest peak intensities from the range of suspension matrices studied. The mass accuracy from graphite films was improved by adding the peptide Phe-Phe to the graphite suspensions. This allowed internal recalibration of the TLC-MALDI mass spectra acquired during a run. One major potential advantage of TLC-MALDI-TOF-MS has been demonstrated in the analysis of chlortetracycline and tetracycline in a mixture of oxytetracycline, chlortetracycline, tetracycline and minocycline. Examination of the TLC plate prior to MALDI analysis showed only an unresolved spot for chlortetracycline and tetracycline. However by investigation of the MALDI mass spectra and plotting of single ion chromatograms separate peaks for chlortetracycline and tetracycline could be obtained. PMID:12134822

  5. Differentiating microbial forensic qPCR target and control products by electrospray ionization mass spectrometry.

    PubMed

    Motley, S Timothy; Redden, Cassie L; Sannes-Lowery, Kristin A; Eshoo, Mark W; Hofstadler, Steven A; Burans, James P; Rosovitz, M J

    2013-06-01

    Molecular bioforensic research is dependent on rapid and sensitive methods such as real-time PCR (qPCR) for the identification of microorganisms. The use of synthetic positive control templates containing small modifications outside the primer and probe regions is essential to ensure all aspects of the assay are functioning properly, including the primers and probes. However, a typical qPCR or reverse transcriptase qPCR (qRT-PCR) assay is limited in differentiating products generated from positive controls and biological samples because the fluorescent probe signals generated from each type of amplicon are indistinguishable. Additional methods used to differentiate amplicons, including melt curves, secondary probes, and amplicon sequencing, require significant time to implement and validate and present technical challenges that limit their use for microbial forensic applications. To solve this problem, we have developed a novel application of electrospray ionization mass spectrometry (ESI-MS) to rapidly differentiate qPCR amplicons generated with positive biological samples from those generated with synthetic positive controls. The method has sensitivity equivalent to qPCR and supports the confident and timely determination of the presence of a biothreat agent that is crucial for policymakers and law enforcement. Additionally, it eliminates the need for time-consuming methods to confirm qPCR results, including development and validation of secondary probes or sequencing of small amplicons. In this study, we demonstrate the effectiveness of this approach with microbial forensic qPCR assays targeting multiple biodefense agents (bacterial, viral, and toxin) for the ability to rapidly discriminate between a positive control and a positive sample. PMID:23675878

  6. Born total ionisation cross sections: An algebraic computing program using Maple

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2003-08-01

    The software described in this paper uses the Maple algebraic computing environment to calculate an analytic form for the matrix element of the plane-wave Born approximation of the electron-impact ionisation of an atomic orbital, with arbitrary orbital and angular momentum quantum numbers. The atomic orbitals are approximated by Hartree-Fock Slater functions, and the ejected electron is modelled by a hydrogenic Coulomb wave, made orthogonal to all occupied orbitals of the target atom. Clenshaw-Curtis integration techniques are then used to calculate the total ionisation cross-section. For improved performance, the numerical integrations are performed using FORTRAN by automatically converting the analytic matrix element for each orbital into a FORTRAN subroutine. The results compare favourably with experimental data for a wide range of elements, including the transition metals, with excellent convergence at high energies. Program summaryTitle of program: BIX Catalogue identifier:ADRZ Program summary URL:http://www.cpc.cs.qub.ac.uk/cpc/summaries/ADRZ Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computers: Platform independent Operating systems: Tested on DEC Alpha Unix, Windows NT 4.0 and Windows XP Professional Edition Programming language used: Maple V Release 5.1 and FORTRAN 90 Memory required: 256 MB No. of processors used: 1 No. of bytes in distributed program, including test data, etc.:61754 Distributed format:tar gzip file Keywords: Born approximation, electron-impact ionisation cross-section, Maple, Hartree-Fock Nature of physical problem: Calculates the total electron impact ionisation cross-section for neutral and ionised atomic species using the first-Born approximation. The scattered electron is modelled by a plane wave, and the ejected electron is modelled by a hydrogenic Coulomb wave, which is made orthogonal to all occupied atomic orbitals, and the atomic orbitals are approximated by Hartree-Fock Slater

  7. Variable thrust/specific-impulse of multiplexed electrospray microthrusters

    NASA Astrophysics Data System (ADS)

    Lenguito, G.; Fernandez de la Mora, J.; Gomez, A.

    We report on the development of a single-propellant ElectroSpray (ES) microthruster able to: (a) cover a wide range of specific impulse (Isp) and thrust at high propulsion efficiency, and (b) provide macroscopic thrust via micro-fabricated emitter arrays. The electrospray is a mature technology for the emission of fast nanodroplets at a propulsive efficiency larger than 50% over the full Isp range. The size of the droplets depends on the propellant flow rate and the physical properties of the electrolyte, especially the electric conductivity. To achieve a useful thrust one needs to multiplex the ES by operating many in parallel, which we achieve via silicon microfabrication of arrays of multiple and identical nozzles. The Multiplexed Electrospray (MES) micro-thruster is composed mainly of two electrodes: a nozzle-array and an extractor electrode, between which the electric field needed to form the ES is established. We tested nozzle arrays with up to 37 capillaries, that are spaced 1mm apart, with ID/OD = 10/30μ m. The capillaries are filled with 2.01μ m silicon dioxide beads to increase the hydraulic impedance and ensure uniform flow rate through the different emitters. A third electrode (accelerator) is mounted downstream the extractor to accelerate the droplets, thereby increasing the microthruster performance. The system is packaged in an alumina casing for electrical insulation and propellant feed. Tests run in a vacuum chamber at a pressure ≤ 10-5 mbar demonstrated reliable operation for several hours with a relatively high beam energy of 7.56kV. The 37-nozzle MES device was tested with the ionic liquid ethylammonium nitrate (EAN), at estimated total flow rates between 1.2 and 14 μ L/h, emitted currents between 14.2 and 23.0 μ A, specific impulse ranging between 710 and 1930s, and thrust ranging between 7.5 and 33 μ N. EAN is well suited to cover a relatively broad range of charge/mass- at an average propulsion efficiency of 66%. With further scale

  8. Merits of online electrochemistry liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS).

    PubMed

    Looi, Wen Donq; Brown, Blake; Chamand, Laura; Brajter-Toth, Anna

    2016-03-01

    A new online electrochemistry/liquid sample desorption electrospray ionization mass spectrometry (EC/LS DESI MS) system with a simple electrochemical thin-layer flow-through cell was developed and tested using N,N-dimethyl-p-phenylenediamine (DMPA) as a model probe. Although oxidation of DMPA is observed as a result of ionization of LS in positive ion mode LS DESI, application of voltage to the online electrochemical (EC) cell in EC/LS DESI MS increases yields of oxidation products. An advantage of LS DESI MS is its sensitivity in aqueous electrolyte solutions, which improves efficiency of electrochemical reactions in EC/LS DESI MS. In highly conductive low pH aqueous buffer solutions, oxidation efficiency is close to 100 %. EC/ESI MS typically requires mixed aqueous/organic solvents and low electrolyte concentrations for efficient ionization in MS, limiting efficiency of electrochemistry online with MS. Independently, the results verify higher electrochemical oxidation efficiency during positive mode ESI than during LS DESI. Graphical abstract Detection of DMPA oxidation in online electrochemical cell with EC/LS DESI MS. PMID:26886744

  9. Studying the Chemistry of Cationized Triacylglycerols Using Electrospray Ionization Mass Spectrometry and Density Functional Theory Computations

    NASA Astrophysics Data System (ADS)

    Grossert, J. Stuart; Herrera, Lisandra Cubero; Ramaley, Louis; Melanson, Jeremy E.

    2014-08-01

    Analysis of triacylglycerols (TAGs), found as complex mixtures in living organisms, is typically accomplished using liquid chromatography, often coupled to mass spectrometry. TAGs, weak bases not protonated using electrospray ionization, are usually ionized by adduct formation with a cation, including those present in the solvent (e.g., Na+). There are relatively few reports on the binding of TAGs with cations or on the mechanisms by which cationized TAGs fragment. This work examines binding efficiencies, determined by mass spectrometry and computations, for the complexation of TAGs to a range of cations (Na+, Li+, K+, Ag+, NH4 +). While most cations bind to oxygen, Ag+ binding to unsaturation in the acid side chains is significant. The importance of dimer formation, [2TAG + M]+ was demonstrated using several different types of mass spectrometers. From breakdown curves, it became apparent that two or three acid side chains must be attached to glycerol for strong cationization. Possible mechanisms for fragmentation of lithiated TAGs were modeled by computations on tripropionylglycerol. Viable pathways were found for losses of neutral acids and lithium salts of acids from different positions on the glycerol moiety. Novel lactone structures were proposed for the loss of a neutral acid from one position of the glycerol moiety. These were studied further using triple-stage mass spectrometry (MS3). These lactones can account for all the major product ions in the MS3 spectra in both this work and the literature, which should allow for new insights into the challenging analytical methods needed for naturally occurring TAGs.

  10. Characterization of metal and nucleotide liganded forms of adenylate kinase by electrospray ionization mass spectrometry.

    PubMed

    Briand, G; Perrier, V; Kouach, M; Takahashi, M; Gilles, A M; Bârzu, O

    1997-03-15

    Complexes of adenylate kinase from Escherichia coli, Bacillus subtilis, and Bacillus stearothermophilus with the bisubstrate nucleotide analog P1,P5-di(adenosine 5')-pentaphosphate and with metal ions (Zn2+ and/or Mg2+) were analyzed by electrospray ionization mass spectrometry. P1,P5-di(adenosine 5')-pentaphosphate. adenylate kinase complex was detected in the positive mode at pH as low as 3.8. Binding of nucleotide to adenylate kinase stabilizes the overall structure of the protein and preserves the Zn2+ chelated form of the enzyme from the gram-positive organisms. In this way, it is possible in a single mass spectrometry experiment to screen metal-chelating adenylate kinases, without use of radioactively labeled compounds. Binding of Mg2+ to enzyme via P1,P5-di(adenosine 5')-pentaphosphate was also demonstrated by mass spectrometry. Although no amino acid side chain in adenylate kinase is supposed to interact with Mg2+, Asp93 in porcine muscle cytosolic enzyme, equivalent to Asp84 in the E. coli adenylate kinase, was proposed to stabilize the nucleotide.Mg2+ complex via water molecules. PMID:9056261

  11. Thin-layer chromatography and mass spectrometry coupled using desorption electrospray ionization.

    PubMed

    Van Berkel, Gary J; Ford, Michael J; Deibel, Michael A

    2005-03-01

    Desorption electrospray ionization (DESI) was demonstrated as a means to couple thin-layer chromatography (TLC) with mass spectrometry. The experimental setup and its optimization are described. Development lanes were scanned by moving the TLC plate under computer control while directing the stationary DESI emitter charged droplet plume at the TLC plate surface. Mass spectral data were recorded in either selected reaction monitoring mode or in full scan ion trap mode using a hybrid triple quadrupole linear ion trap mass spectrometer. Fundamentals and practical applications of the technique were demonstrated in positive ion mode using selected reaction monitoring detection of rhodamine dyes separated on hydrophobic reversed-phase C8 plates and reversed-phase C2 plates, in negative ion full scan mode using a selection of FD&C dyes separated on a wettable reversed-phase C18 plate, and in positive ion full scan mode using a mixture of aspirin, acetaminophen, and caffeine from an over-the-counter pain medication separated on a normal-phase silica gel plate. PMID:15732898

  12. Electrohydrodynamic simulation of an electrospray in a colloid thruster

    NASA Astrophysics Data System (ADS)

    Jugroot, Manish; Forget, Martin; Malardier-Jugroot, Cecile

    2012-02-01

    A precise understanding of electrosprays is highly interesting as the complexity of micro-technology (such as nano-material processing, spacecraft propulsion and mass-spectrometers) systems increases. A multi-component CFD-based model coupling fluid dynamics, charged species dynamics and electric field is developed. The simulations describe the charged fluid interface with emphasis on the Taylor cone formation and cone-jet transition under the effect of a electric field. The goal is to recapture this transition from a rounded liquid interface into a Taylor cone from an initial uniform distribution, without making assumptions on the behaviour, geometry or charge distribution of the system. The time evolution of the interface highlights the close interaction among space charge, coulombic forces and the surface tension, which appear as governing and competing processes in the transition. The results from the coupled formalism provide valuable insights on the physical phenomena and will be applied to a colloid thruster for small spacecrafts.

  13. Morphology of water electrosprays in the simple-jet mode.

    PubMed

    Agostinho, L L F; Tamminga, G; Yurteri, C U; Brouwer, S P; Fuchs, E C; Marijnissen, J C M

    2012-12-01

    Experiments were conducted in order to study and characterize electrohydrodynamic atomization in the simple-jet mode for inviscid liquids. The operational window of this mode regarding the electric potential and liquid flow rate is presented. From the data it could be concluded that this mode can be divided by the characteristics of its breakup mechanism and that these characteristics are a function of the liquid Weber number and the electric Bond number for a given setup. Additionally we were also able to calculate the average charge per droplet and define the average size of primary and satellite droplets. The dispersion of the spray was also studied regarding its relation to the liquid Weber number and to the electric Bond number. We conclude that simple-jet mode electrosprays are a good option for applications which require monodisperse micrometer droplets with high throughput. PMID:23368048

  14. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, Richard D.; Olivares, Jose A.

    1989-01-01

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5-100 KVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., .+-.2-8 KVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit.

  15. Analysis of tear glucose concentration with electrospray ionization mass spectrometry.

    PubMed

    Taormina, Christopher R; Baca, Justin T; Asher, Sanford A; Grabowski, Joseph J; Finegold, David N

    2007-02-01

    We have developed a mass spectrometry-based method that allows one to accurately determine the glucose concentration of tear fluid. We used a 1 microL micro-capillary to collect tear fluid from the tear meniscus with minimal irritation of the eye. We analyzed the 1 muL volume of collected tear fluid with liquid-chromatography electrospray ionization mass spectrometry with the use of D-glucose-6,6-d2 as an internal standard. Repeated measurements and a recovery experiment on pooled, onion-induced tears showed that the analysis of the glucose in tears was precise (4% relative standard deviation) and provided 100% recovery. We found the tear glucose concentration of one fasting nondiabetic subject to be 13 to 51 microM while the onion-induced tear glucose concentration of a different nondiabetic subject to be 211 to 256 microM. PMID:17084090

  16. Analysis of Tear Glucose Concentration with Electrospray Ionization Mass Spectrometry

    PubMed Central

    Taormina, Christopher R.; Baca, Justin T.; Finegold, David N.; Asher, Sanford A.; Grabowski, Joseph J.

    2007-01-01

    We have developed a mass spectrometry-based method which allows one to accurately determine the glucose concentration of tear fluid. We used a 1 μL micro-capillary to collect tear fluid from the tear meniscus with minimal irritation of the eye. We analyzed the 1 μL volume of collected tear fluid with liquid-chromatography electrospray ionization mass spectrometry with the use of D-glucose-6,6-d2 as an internal standard. Repeated measurements and a recovery experiment on pooled, onion-induced tears showed that the analysis of the glucose in tears was precise (4% relative standard deviation) and provided 100% recovery. We found the tear glucose concentration of one fasting non-diabetic subject to be 13 to 51 μM while the onion-induced tear glucose concentration of a different non-diabetic subject to be 211 to 256 μM. PMID:17084090

  17. Probing protein stabilization by glycerol using electrospray mass spectrometry.

    PubMed

    Grandori, R; Matecko, I; Mayr, P; Müller, N

    2001-08-01

    This study shows that electrospray ionization mass spectrometry (ESI-MS), combined with a heated turbo ion-spray interface, allows monitoring protein stabilization by glycerol in solution. Measurements obtained with the two proteins lysozyme and cytochrome c are presented. The observed mass-to-charge (m/z) distributions reveal the stabilizing effect of the additive on the protein conformations against temperature and acid-induced unfolding, as well as against denaturation by acetonitrile. The data obtained with lysozyme allow detection of minor conformational changes upon glycerol addition to the native protein, and suggest that the protein structure in the presence of the additive is slightly compressed compared with its state in water. This result corroborates previous evidence obtained by nuclear magnetic resonance. It is also shown that analysis of the m/z distributions obtained by ESI-MS can lead to detection of partially folded and partially populated states in protein samples. PMID:11523091

  18. Profiling oligosaccharidurias by electrospray tandem mass spectrometry: quantifying reducing oligosaccharides.

    PubMed

    Ramsay, Steven L; Meikle, Peter J; Hopwood, John J; Clements, Peter R

    2005-10-01

    A method to semiquantify urinary oligosaccharides from patients suffering from oligosaccharidurias is presented. 1-Phenyl-3-methyl-5-pyrazolone has been used to derivatize urinary oligosaccharides prior to analysis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Disease-specific oligosaccharides were identified for several oligosaccharidurias, including GM1 gangliosidosis, GM2 gangliosidosis, sialic acid storage disease, sialidase/neuraminidase deficiency, galactosialidosis, I-cell disease, fucosidosis, Pompe and Gaucher diseases, and alpha-mannosidosis. The oligosaccharides were referenced against the internal standard, methyl lactose, to produce ratios for comparison with control samples. Elevations in specific urinary oligosaccharides were indicative of lysosomal disease and the defective catabolic enzyme. This method has been adapted to enable assay of large sample numbers and could readily be extended to other oligosaccharidurias and to monitor oligosaccharide levels in patients receiving treatment. It also has immediate potential for incorporation into a newborn screening program. PMID:16111643

  19. Combined electrophoretic-separation and electrospray method and system

    DOEpatents

    Smith, R.D.; Olivares, J.A.

    1989-06-27

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit. 10 figs.

  20. Improved Imaging Resolution in Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J

    2008-01-01

    Imaging resolution of desorption electrospray ionization mass spectrometry (DESI-MS) was investigated using printed patterns on paper and thin-layer chromatography (TLC) plate surfaces. Resolution approaching 40 m was achieved with a typical DESI-MS setup, which is approximately 5 times better than the best resolution reported previously. This improvement was accomplished with careful control of operational parameters (particularly spray tip-to-surface distance, solvent flow rate, and spacing of lane scans). Also, an appropriately strong analyte/surface interaction and uniform surface texture on the size scale no larger that the desired imaging resolution were required to achieve this resolution. Overall, conditions providing the smallest possible effective desorption/ionization area in the DESI impact plume region and minimizing the analyte redistribution on the surface during analysis led to the improved DESI-MS imaging resolution.

  1. Deposition of PLA/CDHA composite coating via electrospraying.

    PubMed

    Zhou, Huan; Bhaduri, Sarit B

    2013-01-01

    Composite coatings composed of carbonated calcium deficient hydroxyapatite (CDHA) and polylactic acid (PLA) were deposited on a PLA substrate surface via electrospraying. The operation parameters, structural properties, bioactivity, cell adhesion, and growth capability of as-fabricated PLA/CDHA coatings were investigated. The composite coating showed good biocompatibility and bioactivity. The deposited coating was also applied as a carrier to assist alendronate sodium (AS) local release. AS, an approved bisphosphonate drug used for the treatment of osteoporosis, was incorporated into a composite coating matrix via coelectrospraying. Its release behavior showed a long-term sustained release. This approach can be a potential coating technique for the surface modification of biopolymer implants. PMID:23594068

  2. Electrospray ionization-tandem mass spectrometry analysis of phospholipid molecular species from Antarctic and non-Antarctic yeasts.

    PubMed

    Bhuiyan, Mohammad; Tucker, David; Watson, Kenneth

    2014-10-01

    High performance liquid chromatography-electrospray ionization tandem mass spectrometry was applied to the comprehensive analysis of phospholipids from seven Antarctic and seven non-Antarctic yeasts. Identification of specific fatty acyl moieties to the sn-1 and sn-2 positions of phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidylinositol (PI) were determined by relative abundance of fragment ions associated with formation of carboxylate anions and loss of fragment ions as free fatty carboxylic acid and ketene. Modulations with growth temperature in fatty acyl moieties in the sn-1 and sn-2 positions were characterized. Principal component analysis demonstrated that PE, PC and to a lesser extent PS, but not PI, were grouped into three distinct clusters consisting of seven Antarctic yeasts (Cryptococcus victoriae, Holtermanniella wattica, H. nyarrowii, Candida psychrophila, Leucosporidium fellii, Glaciozyma antarctica, Rhodotorula mucilaginosa), four non-Antarctic yeasts (C. albicans, Zygosaccharomyces rouxii, Cr. humicolus, R. mucilaginosa) and three strains of Saccharomyces cerevisiae. PMID:25019517

  3. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOEpatents

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  4. Effect of Mobile Phase on Electrospray Ionization Efficiency

    NASA Astrophysics Data System (ADS)

    Liigand, Jaanus; Kruve, Anneli; Leito, Ivo; Girod, Marion; Antoine, Rodolphe

    2014-08-01

    Electrospray (ESI) ionization efficiencies (IE) of a set of 10 compounds differing by chemical nature, extent of ionization in solution (basicity), and by hydrophobicity (tetrapropylammonium and tetraethylammonium ion, triethylamine, 1-naphthylamine, N,N-dimethylaniline, diphenylphthalate, dimethylphtahalate, piperidine, pyrrolidine, pyridine) have been measured in seven mobile phases (three acetonitrile percentages 20%, 50%, and 80%, and three different pH-adjusting additives, 0.1% formic acid, 1 mM ammonia, pH 5.0 buffer combination) using the relative measurement method. MS parameters were optimized separately for each ion. The resulting relative IE data were converted into comparable logIE values by anchoring them to the logIE of tetrapropylammonium ion taking into account the differences of ionization in different solvents and thereby making the logIE values of the compounds comparable across solvents. The following conclusions were made from analysis of the data. The compounds with pK a values in the range of the solution pH values displayed higher IE at lower pH. The sensitivity of IE towards pH depends on hydrophobicity being very strong with pyridine, weaker with N,N-dimethylaniline, and weakest with 1-naphthylamine. IEs of tetraalkylammonium ions and triethylamine were expectedly insensitive towards solution pH. Surprisingly high IEs of phthalate esters were observed. The differences in solutions with different acetonitrile content and similar pH were smaller compared with the pH effects. These results highlight the importance of hydrophobicity in electrospray and demonstrate that high hydrophobicity can sometimes successfully compensate for low basicity.

  5. A Combined Desorption Ionization by Charge Exchange (DICE) and Desorption Electrospray Ionization (DESI) Source for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B.

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.

  6. A combined desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) source for mass spectrometry.

    PubMed

    Chan, Chang-Ching; Bolgar, Mark S; Miller, Scott A; Attygalle, Athula B

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H](+) or [M + metal](+) ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies. PMID:21472555

  7. Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry

    SciTech Connect

    Eckert, Peter A.; Roach, Patrick J.; Laskin, Alexander; Laskin, Julia

    2012-02-07

    Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was used for the first time for the analysis of liquid petroleum crude oil samples. The analysis was performed in both positive and negative ionization modes using three solvents one of which (acetonitrile/toluene mixture) is commonly used in petroleomics studies while two other polar solvents (acetonitrile/water and methanol/water mixtures) are generally not compatible with petroleum characterization using mass spectrometry. The results demonstrate that nano-DESI analysis efficiently ionizes petroleum constituents soluble in a particular solvent. When acetonitrile/toluene is used as a solvent, nano-DESI generates electrospray-like spectra. In contrast, strikingly different spectra were obtained using acetonitrile/water and methanol/water. Comparison with the literature data indicates that these solvents selectively extract water-soluble constituents of the crude oil. Water-soluble compounds are predominantly observed as sodium adducts in nano-DESI spectra indicating that addition of sodium to the solvent may be a viable approach for efficient ionization of water-soluble crude oil constituents. Nano-DESI enables rapid screening of different classes of compounds in crude oil samples using solvents that are rarely used for petroleum characterization.

  8. Paired-ion electrospray ionization--triple quadrupole tandem mass spectrometry for quantification of anionic surfactants in waters.

    PubMed

    Santos, Inês C; Guo, Hongyue; Mesquita, Raquel B R; Rangel, António O S S; Armstrong, Daniel W; Schug, Kevin A

    2015-10-01

    A new paired ion electrospray ionization tandem mass spectrometry method for determination of anionic surfactants in water samples was developed. In this method, dicationic ion-pairing reagents were complexed with monoanionic analytes to facilitate analyte detection in positive mode electrospray ionization - mass spectrometry. Single ion monitoring and selected reaction monitoring on a triple quadrupole instrument were performed and compared. Four dicationic reagents were tested for the determination of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBS), and stearic acid (SA), among other common anions. The obtained limits of detection were compared with those from previous literature. Solid phase extraction using a C18 cartridge was performed in order to eliminate matrix interferences. A literature review was compiled for the methods published between 2010 and 2015 for determination of anionic surfactants. The optimized method was more sensitive than previously developed methods with LOD values of 2.35, 35.4, 37.0, 1.68, and 0.675 pg for SDS, SA, DBS, PFOS, and PFOA, respectively. The developed method was effectively applied for the determination of anionic surfactants in different water samples such as bottled drinking water, cooking water, tap water, and wastewater. PMID:26078166

  9. Multifunctional ZnO/Nylon 6 nanofiber mats by an electrospinning-electrospraying hybrid process for use in protective applications

    NASA Astrophysics Data System (ADS)

    Vitchuli, Narendiran; Shi, Quan; Nowak, Joshua; Kay, Kathryn; Caldwell, Jane M.; Breidt, Frederick; Bourham, Mohamed; McCord, Marian; Zhang, Xiangwu

    2011-10-01

    ZnO/Nylon 6 nanofiber mats were prepared by an electrospinning-electrospraying hybrid process in which ZnO nanoparticles were dispersed on the surface of Nylon 6 nanofibers without becoming completely embedded. The prepared ZnO/Nylon 6 nanofiber mats were evaluated for their abilities to kill bacteria or inhibit their growth and to catalytically detoxify chemicals. Results showed that these ZnO/Nylon 6 nanofiber mats had excellent antibacterial efficiency (99.99%) against both the Gram-negative Escherichia coli and Gram-positive Bacillus cereus bacteria. In addition, they exhibited good detoxifying efficiency (95%) against paraoxon, a simulant of highly toxic chemicals. ZnO/Nylon 6 nanofiber mats were also deposited onto nylon/cotton woven fabrics and the nanofiber mats did not significantly affect the moisture vapor transmission rates and air permeability values of the fabrics. Therefore, ZnO/Nylon 6 nanofiber mats prepared by the electrospinning-electrospraying hybrid process are promising material candidates for protective applications.

  10. Athabasca oil sands process water: characterization by atmospheric pressure photoionization and electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Barrow, Mark P; Witt, Matthias; Headley, John V; Peru, Kerry M

    2010-05-01

    The Athabasca oil sands in Canada are a less conventional source of oil which have seen rapid development. There are concerns about the environmental impact, with particular respect to components in oil sands process water which may enter the aquatic ecosystem. Naphthenic acids have been previously targeted for study, due to their implications in toxicity toward aquatic wildlife, but it is believed that other components, too, contribute toward the potential toxicity of the oil sands process water. When mass spectrometry is used, it is necessary to use instrumentation with a high resolving power and mass accuracy when studying complex mixtures, but the technique has previously been hindered by the range of compounds that have been accessible via common ionization techniques, such as electrospray ionization. The research described here applied Fourier transform ion cyclotron resonance mass spectrometry in conjunction with electrospray ionization and atmospheric pressure photoionization, in both positive-ion and negative-ion modes, to the characterization of oil sands process water for the first time. The results highlight the need for broader characterization when investigating toxic components within oil sands process water. PMID:20359201

  11. Thin-layer chromatography/desorption electrospray ionization mass spectrometry: investigation of goldenseal alkaloids.

    PubMed

    Van Berkel, Gary J; Tomkins, Bruce A; Kertesz, Vilmos

    2007-04-01

    Desorption electrospray ionization mass spectrometry was investigated as a means to qualitatively identify and to quantify analytes directly from developed normal-phase thin-layer chromatography plates. The atmospheric sampling capillary of a commercial ion trap mass spectrometer was extended to permit sampling and ionization of analytes in bands separated on intact TLC plates (up to 10 cmx10 cm). A surface positioning software package and the appropriate hardware enabled computer-controlled surface scanning along the length of development lanes or at fixed Rf value across the plates versus the stationary desorption electrospray emitter. Goldenseal (Hydrastis canadensis) and related alkaloids and commercial dietary supplements were used as standards and samples. Alkaloid standards and samples were spotted and separated on aluminum- or glass-backed plates using established literature methods. The mass spectral signal levels as a function of desorption spray solvent were investigated with acetonitrile proving superior to methanol. The detection levels (approximately 5 ng each or 14-28 pmol) in mass spectral full-scan mode were determined statistically from the calibration curves (2.5-100 pmol) for the standards berberine, palmatine, and hydrastinine spotted as a mixture and separated on the plates. Qualitative screening of the major alkaloids present in six different over-the-counter "goldenseal" dietary supplements was accomplished by obtaining full-scan mass spectra during surface scans along the development lane in the direction of increasing Rf value. In one sample, alkaloids were detected that strongly suggested the presence of at least one additional herb undeclared on the product label. These same data indicated the misidentification of one of the alkaloids in the TLC literature. Quantities of the alkaloids present in two of the samples determined using the mass spectral data were in reasonable agreement with the label values, indicating the quantitative

  12. Nanojets, electrospray, and ion field evaporation: molecular dynamics simulations and laboratory experiments.

    PubMed

    Luedtke, W D; Landman, Uzi; Chiu, Y-H; Levandier, D J; Dressler, R A; Sok, S; Gordon, M S

    2008-10-01

    The energetics, interfacial properties, instabilities, and fragmentation patterns of electrosprays made from formamide salt solutions are investigated in a mass spectrometric vacuum electrospray experiment and using molecular dynamics (MD) simulations. The electrospray source is operated in a Taylor cone-jet mode, with the nanojet that forms being characterized by high surface-normal electric field strengths in the vicinity of 1 V/nm. Mass-to-charge ratios were determined for both positive and negative currents sprayed from NaI-formamide solutions with solute-solvent mole ratios of 1:8.4 and 1:36.9, and from KI-formamide solutions with mole ratios of 1:41 and 1:83. The molecular dynamics simulations were conducted on isolated 10 nm NaI-formamide droplets at mole ratios of 1:8 and 1:16. The droplet was subjected to a uniform electric field with strengths ranging between 0.5 and 1.5 V/nm. Both the experiments and simulations demonstrate a mixed charge emission regime where field-induced desorption of solvated ions and charged droplets occurs. The macroscopic parameters, such as average mass-to-charge ratio and maximum surface-normal field strengths deduced from the simulations are found to be in good agreement with the experimental work and consistent with electrohydrodynamic theory of cone-jets. The observed mass spectrometric Na (+) and I (-) solvated ion distributions are consistent with a thermal evaporation process, and are correctly reproduced by the simulation after incorporation of the different flight times and unimolecular ion dissociation rates in the analysis. Alignment of formamide dipoles and field-induced reorganization of the positive and negative ionic charges in the interfacial region are both found to contribute to the surface-normal field near the points of charge emission. In the simulations the majority of cluster ions are found to be emitted from the tip of the jet rather than from the neck region next to the Taylor cone. This finding is

  13. Detection of the improvised explosives ammonium nitrate (AN) and urea nitrate (UN) using non-aqueous solvents with electrospray ionization and MS/MS detection.

    PubMed

    Corbin, Inge; McCord, Bruce

    2013-10-15

    In this study methods for the detection of trace levels of the improvised explosives urea nitrate and ammonium nitrate were developed using electrospray ionization with infusion. By using a non-aqueous solvent mixture containing 95% acetone with 5% 2-methoxyethanol we were able to preserve the urea and ammonium nitrate ion pairs and discriminate between these and other similar salts. Negative ion electrospray ionization was used for urea nitrate detection and positive ion electrospray ionization was used for ammonium nitrate. Two specific adduct ions were detected for each explosive with ammonium nitrate producing m/z 178 [2AN+NH4](+) and m/z 258 ions [3AN+NH4](+) while urea nitrate produced m/z 185 [UN+NO3](-) and m/z 248 [UN+HNO3+NO3](-) The specificity of the analysis was examined by mixing the different explosives with various salts and interferents. Adduct ions formed in the gas phase were found to be useful in distinguishing between ion pairs and mixed salts. Overall the method demonstrates the sensitive detection of both explosives, and more specifically the potential to determine intact urea nitrate. PMID:24054629

  14. Comparison of low and high dose ionising radiation using topological analysis of gene coexpression networks

    PubMed Central

    2012-01-01

    Background The growing use of imaging procedures in medicine has raised concerns about exposure to low-dose ionising radiation (LDIR). While the disastrous effects of high dose ionising radiation (HDIR) is well documented, the detrimental effects of LDIR is not well understood and has been a topic of much debate. Since little is known about the effects of LDIR, various kinds of wet-lab and computational analyses are required to advance knowledge in this domain. In this paper we carry out an “upside-down pyramid” form of systems biology analysis of microarray data. We characterised the global genomic response following 10 cGy (low dose) and 100 cGy (high dose) doses of X-ray ionising radiation at four time points by analysing the topology of gene coexpression networks. This study includes a rich experimental design and state-of-the-art computational systems biology methods of analysis to study the differences in the transcriptional response of skin cells exposed to low and high doses of radiation. Results Using this method we found important genes that have been linked to immune response, cell survival and apoptosis. Furthermore, we also were able to identify genes such as BRCA1, ABCA1, TNFRSF1B, MLLT11 that have been associated with various types of cancers. We were also able to detect many genes known to be associated with various medical conditions. Conclusions Our method of applying network topological differences can aid in identifying the differences among similar (eg: radiation effect) yet very different biological conditions (eg: different dose and time) to generate testable hypotheses. This is the first study where a network level analysis was performed across two different radiation doses at various time points, thereby illustrating changes in the cellular response over time. PMID:22594378

  15. The updated bottom up solution applied to atmospheric pressure photoionization and electrospray ionization mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Updated Bottom Up Solution (UBUS) was recently applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglycerols (TAGs). This report demonstrates that the UBUS applies equally well to atmospheric pressure photoionization (APPI) MS and to electrospray ionizatio...

  16. DEVELOPMENT OF AN ELECTROSPRAY MASS SPECTROMETRIC METHOD FOR DETERMINING PERCHLORATE IN FERTILIZERS

    EPA Science Inventory

    An electrospray mass spectrometric method has been developed for application to agricultural and horticultural fertilizers to determine perchlorate. After fertilizers are leached or dissolved in water, the method relies on the formation of stable ion pair complex of the perchlor...

  17. Design and performance of an ionisation chamber for the measurement of low alpha-activities

    NASA Astrophysics Data System (ADS)

    Hartmann, A.; Hutsch, J.; Krüger, F.; Sobiella, M.; Wilsenach, H.; Zuber, K.

    2016-04-01

    A new ionisation chamber for alpha-spectroscopy has been built from radio-pure materials for the purpose of investigating long lived alpha-decays. The measurement makes use of pulse shape analysis to discriminate between signal and background events. The design and performance of the chamber is described in this paper. A background rate of (10.9 ± 0.6) counts per day in the energy region of 1-9 MeV was achieved with a run period of 30.8 days. The background is dominantly produced by radon daughters.

  18. Characterisation of the muon beams for the Muon Ionisation Cooling Experiment

    SciTech Connect

    Adams, D.; et al.,

    2013-10-01

    A novel single-particle technique to measure emittance has been developed and used to characterise seventeen different muon beams for the Muon Ionisation Cooling Experiment (MICE). The muon beams, whose mean momenta vary from 171 to 281 MeV/c, have emittances of approximately 1.5--2.3 \\pi mm-rad horizontally and 0.6--1.0 \\pi mm-rad vertically, a horizontal dispersion of 90--190 mm and momentum spreads of about 25 MeV/c. There is reasonable agreement between the measured parameters of the beams and the results of simulations. The beams are found to meet the requirements of MICE.

  19. Estimation of useful yield in surface analysis using single photon ionisation

    NASA Astrophysics Data System (ADS)

    King, B. V.; Pellin, M. J.; Moore, J. F.; Veryovkin, I. V.; Savina, M. R.; Tripa, C. E.

    2003-01-01

    Secondary ion mass spectrometry (SIMS), laser sputter neutral mass spectrometry (SNMS) and laser desorption photoionisation (LDPI) have been used to investigate the desorption of molecules from self-assembled monolayers of phenylsulphides. LDPI, using an F 2 excimer laser to single photon ionise gave the lowest fragmentation. A useful yield greater than 0.5% was found for analysis of diphenyldisulphide self-assembled monolayers. It is shown that using a free electron laser to postionise will lead, in the future, to analysis of many atoms and molecules with useful yields approaching 30%.

  20. EVOLUTION OF THE IEC AND EN STANDARDS FOR INDIVIDUAL MONITORING OF IONISING RADIATION.

    PubMed

    Voytchev, M; Behrens, R; Ambrosi, P; Radev, R; Chiaro, P

    2016-09-01

    This article presents the evolution of the International Electrotechnical Commission (IEC) and the European standards for individual monitoring of ionising radiation issued, respectively, from the committees IEC/Sub Committee 45B and European Committee for Electro-technical Standardization/Technical Committee 45B 'Radiation protection instrumentation'. Standards for passive individual photon and beta dosimetry systems as well as those for active individual monitors are discussed. A neutron ambient dose equivalent (rate) meter standard and a technical report concerning the determination of uncertainty in measurement are also covered. PMID:26443545

  1. Skin dose measurements using radiochromic films, TLDS and ionisation chamber and comparison with Monte Carlo simulation.

    PubMed

    Alashrah, Saleh; Kandaiya, Sivamany; Maalej, Nabil; El-Taher, A

    2014-12-01

    Estimation of the surface dose is very important for patients undergoing radiation therapy. The purpose of this study is to investigate the dose at the surface of a water phantom at a depth of 0.007 cm as recommended by the International Commission on Radiological Protection and International Commission on Radiation Units and Measurement with radiochromic films (RFs), thermoluminescent dosemeters and an ionisation chamber in a 6-MV photon beam. The results were compared with the theoretical calculation using Monte Carlo (MC) simulation software (MCNP5, BEAMnrc and DOSXYZnrc). The RF was calibrated by placing the films at a depth of maximum dose (d(max)) in a solid water phantom and exposing it to doses from 0 to 500 cGy. The films were scanned using a transmission high-resolution HP scanner. The optical density of the film was obtained from the red component of the RGB images using ImageJ software. The per cent surface dose (PSD) and percentage depth dose (PDD) curve were obtained by placing film pieces at the surface and at different depths in the solid water phantom. TLDs were placed at a depth of 10 cm in a solid water phantom for calibration. Then the TLDs were placed at different depths in the water phantom and were exposed to obtain the PDD. The obtained PSD and PDD values were compared with those obtained using a cylindrical ionisation chamber. The PSD was also determined using Monte Carlo simulation of a LINAC 6-MV photon beam. The extrapolation method was used to determine the PSD for all measurements. The PSD was 15.0±3.6% for RF. The TLD measurement of the PSD was 16.0±5.0%. The (0.6 cm(3)) cylindrical ionisation chamber measurement of the PSD was 50.0±3.0%. The theoretical calculation using MCNP5 and DOSXYZnrc yielded a PSD of 15.0±2.0% and 15.7±2.2%. In this study, good agreement between PSD measurements was observed using RF and TLDs with the Monte Carlo calculation. However, the cylindrical chamber measurement yielded an overestimate of the PSD

  2. Electrospray-assisted ultraviolet aerodynamic particle sizer spectrometer for real-time characterization of bacterial particles.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Hwang, Gi Byoung; Lee, Byung Uk; Lee, Seung Bok; Jurng, Jong Soo; Bae, Gwi Nam

    2010-01-15

    The ultraviolet aerodynamic particle sizer (UVAPS) spectrometer is a novel, commercially available aerosol counter for real-time, continuous monitoring of viable bioaerosols based on the fluorescence induced from living microorganisms. For aerosolization of liquid-based microorganisms, general aerosolization methods such as atomization or nebulization may not be adequate for an accurate and quantitative characterization of the microorganisms because of the formation of agglomerated particles. In such cases, biological electrospray techniques have an advantage because they generate nonagglomerated particles, attributable to the repulsive electrical forces among particles with unipolar charges. Biological electrosprays are quickly gaining potential for the detection and control of living organisms in applications ranging from mass spectrometry to developmental microbiology. In this study, we investigated the size distribution, total concentration, and fluorescence percentage of bacterial particles in a real-time manner by electrospray-assisted UVAPS. A suspension containing Escherichia coli as a test microorganism was sprayed in a steady cone-jet mode using a specially designed electrospray system with a point-to-orifice-plate configuration based on charge-reduced electrospray size spectrometry. With the electrospray process, 98% of the total E. coli particle number concentration had a size of <1 mum and the geometric mean diameter was 0.779 mum, as compared with the respective values of 78% and 0.907 mum after nebulization. The fractions of fluorescence responsive particles and of particles that contained viable organisms in culture were 12% and 7%, respectively, from the electrospray process and 34% and 24% from nebulization. These results demonstrate that (1) the presence of agglomerated particles can lead to markedly overestimated fluorescence and culturability percentages compared with the values obtained from nonagglomerated particles, and (2) electrospray

  3. Secondary electrospray ionization of complex vapor mixtures. Theoretical and experimental approach.

    PubMed

    Vidal-de-Miguel, Guillermo; Herrero, Ana

    2012-06-01

    In secondary electrospray ionization (SESI) systems, gaseous analytes exposed to an electrospray plume become ionized after charge is transferred from the charging electrosprayed particles (the charging agent) to the vapor species. Currently available SESI models are valid for simplified systems having only one type of electrosprayed species, which ionizes only one single vapor species, and for the limit of low vapor concentration. More realistic models require considering other effects. Here we develop a theoretical model that accounts for the effects of high vapor concentration, saturation effects, interferences between different vapor species, and electrosprays producing different types of species from the liquid phase. In spite of the relatively high complexity of the problem, we find simple relations between the different ionic species concentrations that hold independently of the particular ion source configuration. Our model suggests that an ideal SESI system should use highly concentrated charging agents composed preferably of only one dominating species with low mobility. Experimental measurements with a MeOH-H(2)O-NH(3) electrospray and a mixture of fatty acids and lactic acid served to test the theory, which gives good qualitative results. These results also suggest that the SESI ionization mechanism is primarily based on ions rather than on charged droplets. PMID:22528202

  4. Analytical Characterization of the Electrospray Ion Source in the Nanoflow Regime

    SciTech Connect

    Marginean, Ioan; Kelly, Ryan T.; Prior, David C.; Lamarche, Brian L.; Tang, Keqi; Smith, Richard D.

    2008-09-01

    We provide a thorough characterization of the low-flow electrospray as an ionization source for mass spectrometry (MS) using solutions typical for reversed-phase liquid chromatography. As expected, the electrospray operating regime strongly affects the MS signal; however, contrary to conventional wisdom, the pulsating regime consistently offers better performance than the cone-jet regime in these experimental conditions. We explain this observation by a highly efficient ionization achieved by the pulsating electrospray at low flow rates, rendering the increased charge generated by a cone-jet electrospray detrimental for transmission from atmospheric pressure to vacuum through a heated capillary interface. Over a wide range of voltages, the pulsating electrospray provides a relatively constant MS signal intensity, which depends significantly on the distance between the emitter and the MS inlet. For cone-jet electrosprays the MS signal decreases slightly with increasing voltage, but the signal is less affected by the emitter-inlet distance. At flow rates up to 100 nL/min the MS signal increases with increasing flow rate due to the larger number of ions supplied into the gas phase. At flow rates greater than 100 nL/min, the signal reaches a plateau due to increasingly unsatisfactory ionization efficiency at larger flow rates.

  5. Study of electrospray assisted electrophoretic deposition of carbon nanotubes on insulator substrates

    NASA Astrophysics Data System (ADS)

    Kanakamedala, Kalyan; DeSoto, Jared; Sarkar, Anirban; Race, Theda Daniels

    2015-11-01

    In recent years, electrophoretic deposition (EPD) has been adopted as a cost-effective and reliable single-step solution-based room temperature coating method for carbon nanotubes (CNTs), predominantly on conducting surfaces. Contrary to this general pre-requisite of conductive target substrates, in this work we have explored a fabrication strategy for the scalable deposition of CNTs on insulating glass surfaces by the sequential combination of electrospraying and the EPD technique. This combined process flow has been referred to as "electrospray-assisted EPD", where an initial CNT coating on glass substrates is obtained by electrospraying which, in turn, further assists CNT film growth by EPD. The successful integration of the electrospray technique in the EPD process flow also eliminates the need for surface functionalization of the insulator substrates prior to the deposition step. Electrospray-assisted EPD has resulted in the successful fabrication of uniform, homogenous, and thick CNT deposits (˜4.5 - 5 μm) with precise thickness control. A detailed investigation of the effect of the initial electrosprayed coating on the final CNT film growth and thickness is also presented in this report. This research endeavor presents a significant opportunity for the integration of this deposition model into a wider platform of materials research and technology, chemical sensing, and applications based upon printable and flexible electronics. [Figure not available: see fulltext.

  6. Study of superhydrophobic electrosprayed catalyst layers using a localized reference electrode technique

    NASA Astrophysics Data System (ADS)

    Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Brightman, E.; Hinds, G.

    2016-09-01

    The performance of electrosprayed cathode catalyst layers in a polymer electrolyte membrane fuel cell (PEMFC) is studied using a localized reference electrode technique. Single cells with an electrosprayed cathode catalyst layer show an increase of >20% in maximum power density under standard testing conditions, compared with identical cells assembled with a conventional, state-of-the-art, gas diffusion cathode. When operated at high current density (1.2 A cm-2) the electrosprayed catalyst layers show more homogeneous distribution of the localized cathode potential, with a standard deviation from inlet to outlet of <50 mV, compared with 79 mV for the conventional gas diffusion cathode. Higher performance and homogeneity of cell response is attributed to the superhydrophobic nature of the macroporous electrosprayed catalyst layer structure, which enhances the rate of expulsion of liquid water from the cathode. On the other hand, at low current densities (<0.5 A cm-2), the electrosprayed layers exhibit more heterogeneous distribution of cathode potential than the conventional cathodes; this behavior is attributed to less favorable kinetics for oxygen reduction in very hydrophobic catalyst layers. The optimum performance may be obtained with electrosprayed catalyst layers employing a high Pt/C catalyst ratio.

  7. Controlled release behaviour of protein-loaded microparticles prepared via coaxial or emulsion electrospray

    PubMed Central

    Wang, Ying; Yang, Xiaoping; Liu, Wentao; Zhang, Feng; Cai, Qing; Deng, Xuliang

    2013-01-01

    Biodegradable poly (lactic-co-glycolic acid) (PLGA) microparticles are an effective way to achieve sustained drug release. In this study, we investigated a sustained release model of PLGA microparticles with incorporated protein via either emulsion or coaxial electrospray techniques. PLGA (75:25) was used as the carrier, and bovine serum albumin as a model protein. Coaxial electrospray resulted in a type of core–shell structure with mean diameters of 2.41 ± 0.60 µm and a centralised protein distribution within the core. Emulsion electrospray formed bigger microparticles with mean diameters of 22.75 ± 8.05 µm and a heterogeneous protein distribution throughout the microparticles. The coaxial electrospray microparticles presented a much slighter burst release than the emulsion electrospray microparticles. Loading efficiency was significantly higher (p < 0.05) in the coaxial group than emulsion group. This indicated that both emulsion and coaxial electrospray could produce protein-loaded microparticles with sustained release behaviour, but the former revealed a superior approach for drug delivery. PMID:23346923

  8. Influence of water conductivity on particular electrospray modes with dc corona discharge — optical visualization approach

    NASA Astrophysics Data System (ADS)

    Pongrác, Branislav; Kim, Hyun-Ha; Negishi, Nobuaki; Machala, Zdenko

    2014-08-01

    The effect of water conductivity on electrospraying of water was studied in combination with positive DC corona discharge generated in air. We used a point-to-plane geometry of electrodes with a hollow syringe needle anode opposite to the metal mesh cathode. We employed total average current measurements and high-speed camera fast time-resolved imaging. We visualized the formation of a water jet (filament) and investigated corona discharge behavior for various water conductivities. Depending on the conductivity, various jet properties were observed: pointy, prolonged, and fast spreading water filaments for lower conductivity; in contrast to rounder, broader, and shorter quickly disintegrating filaments for higher conductivity. The large acceleration values (4060 m/s2 and 520 m/s2 for 2 μS/cm and 400 μS/cm, respectively) indicate that the process is mainly governed by the electrostatic force. In addition, with increasing conductivity, the breakdown voltage for corona-to-spark transition was decreasing.

  9. Residual Agar Determination in Bacterial Spores by Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Wahl, Karen L.; Colburn, Heather A.; Wunschel, David S.; Petersen, Catherine E.; Jarman, Kristin H.; Valentine, Nancy B.

    2010-02-15

    Presented here is an analytical method to detect residual agar from a bacterial spore sample as an indication of culturing on an agar plate. This method is based on the resolubilization of agar polysaccharide from a bacterial spore sample, enzymatic digestion, followed by electrospray ionization tandem mass spectrometry (ESI-MSn) analysis for detection of a specific agar fragment ion. A range of Bacillus species and strains were selected to demonstrate the effectiveness of this approach. The characteristic agar fragment ion was detected in the spores grown on agar that were washed from 1 to 5 times, irradiated or non-irradiated and not in the spores grown in broth. A sample containing approximately 108 spores is currently needed for confident detection of residual agar from culture on agar plates in the presence of bacterial spores with a limit of detection of approximately 1 ppm agar spiked into a broth-grown spore sample. The results of a proficiency test with 42 blinded samples are presented demonstrating the utility of this method with no false positives and only 3 false negatives for samples that were below the detection level of the method as documented.

  10. Minimizing analyte electrolysis in electrospray ionization mass spectrometry using a redox buffer coated emitter electrode

    SciTech Connect

    Peintler-Krivan, Emese; Van Berkel, Gary J; Kertesz, Vilmos

    2010-01-01

    An emitter electrode with an electroactive poly(pyrrole) (PPy) polymer film coating was constructed for use in electrospray ionization mass spectrometry (ESI-MS). The PPy film acted as a surface-attached redox buffer limiting the interfacial potential of the emitter electrode. While extensive oxidation of selected analytes (reserpine and amodiaquine) was observed in positive ion mode ESI using a bare metal (gold) emitter electrode, the oxidation was suppressed for these same analytes when using the PPy-coated electrode. A semi-quantitative relationship between the rate of oxidation observed and the interfacial potential of the emitter electrode was shown. The redox buffer capacity, and therefore the lifetime of the redox buffering effect, correlated with the oxidation potential of the analyte and with the magnitude of the film charge capacity. Online reduction of the PPy polymer layer using negative ion mode ESI between analyte injections was shown to successfully restore the redox buffering capacity of the polymer film to its initial state.

  11. Desorption Electrospray Ionization Mass Spectrometry Reveals Lipid Metabolism of Individual Oocytes and Embryos

    PubMed Central

    González-Serrano, Andrés Felipe; Pirro, Valentina; Ferreira, Christina R.; Oliveri, Paolo; Eberlin, Livia S.; Heinzmann, Julia; Lucas-Hahn, Andrea; Niemann, Heiner; Cooks, Robert Graham

    2013-01-01

    Alteration of maternal lipid metabolism early in development has been shown to trigger obesity, insulin resistance, type 2 diabetes and cardiovascular diseases later in life in humans and animal models. Here, we set out to determine (i) lipid composition dynamics in single oocytes and preimplantation embryos by high mass resolution desorption electrospray ionization mass spectrometry (DESI-MS), using the bovine species as biological model, (ii) the metabolically most relevant lipid compounds by multivariate data analysis and (iii) lipid upstream metabolism by quantitative real-time PCR (qRT-PCR) analysis of several target genes (ACAT1, CPT 1b, FASN, SREBP1 and SCAP). Bovine oocytes and blastocysts were individually analyzed by DESI-MS in both positive and negative ion modes, without lipid extraction and under ambient conditions, and were profiled for free fatty acids (FFA), phospholipids (PL), cholesterol-related molecules, and triacylglycerols (TAG). Principal component analysis (PCA) and linear discriminant analysis (LDA), performed for the first time on DESI-MS fused data, allowed unequivocal discrimination between oocytes and blastocysts based on specific lipid profiles. This analytical approach resulted in broad and detailed lipid annotation of single oocytes and blastocysts. Results of DESI-MS and transcript regulation analysis demonstrate that blastocysts produced in vitro and their in vivo counterparts differed significantly in the homeostasis of cholesterol and FFA metabolism. These results should assist in the production of viable and healthy embryos by elucidating in vivo embryonic lipid metabolism. PMID:24073231

  12. Design and Performance of a High-Flux Electrospray Ionization Source for Ion Soft-Landing

    SciTech Connect

    Gunaratne, Kalupathirannehelage Don D.; Prabhakaran, Venkateshkumar; Ibrahim, Yehia M.; Norheim, Randolph V.; Johnson, Grant E.; Laskin, Julia

    2015-01-01

    We report the design and evaluation of a new high-intensity electrospray ionization source for ion soft-landing experiments. The source incorporates a dual ion funnel, which enables operation with a higher gas load through an expanded heated inlet into the additional first region of differential pumping. This capability allowed us to examine the effect of the inner diameter (ID) of the heated stainless steel inlet on the total ion current transmitted through the dual funnel interface and, more importantly, the mass-selected ion current delivered to the deposition target. The ion transmission of the dual funnel is similar to the transmission of the single funnel used in our previous soft landing studies. However, substantially higher ion currents were obtained using larger ID heated inlets and an orthogonal inlet geometry, in which the heated inlet is positioned perpendicular to the direction of ion propagation through the instrument. The highest ion currents were obtained using the orthogonal geometry and a 1.4 mm ID heated inlet. The corresponding stable deposition rate of ~1 μg of mass-selected ions per day will facilitate future studies focused on the controlled deposition of biological molecules on substrates and preparation of materials for studies in catalysis, energy storage, and self-assembly

  13. Distillation of fermented sugarcane juice: fractions characterized by electrospray ionization mass spectrometry and multivariate data treatment.

    PubMed

    Canuto, Marcus H; Rosa, Carlos A; de Moura, Fabiana; Augusti, Rodinei; Siebald, Helmuth G L

    2012-07-01

    Direct infusion electrospray ionization mass spectrometry in the negative ion mode (ESI(-)-MS) was employed to discriminate among fractions arising from the distillation of fermented sugarcane juice during the production of cachaça, a typical Brazilian alcoholic beverage. Aliquots were collected in the course of distillation and their ESI(-)-MS shown to be almost indistinguishable by a simple visual inspection. However, when the ESI(-)-MS data were treated by the principal component analysis (PCA) and hierarchical clustering analysis (HCA) statistical methods, four major groups were clearly determined, the so-called head (two distinct clusters), heart and tail fractions. Furthermore, the recognition of diagnostic ions (and their respective intensities) enabled a more confident establishment of the cutoff position (i.e. the initial and final points of each fraction). In conclusion, ESI-MS, in conjunction with PCA or HCA approaches, proved to be a quite efficient method that allowed for a prompt characterization of each fraction derived from the distillation of brewed sugarcane. The results described herein can, therefore, be useful not only to optimize the production of cachaça but also to improve the quality of the final product. PMID:22791258

  14. Droplet Electrospray Ionization Mass Spectrometry for High Throughput Screening for Enzyme Inhibitors

    PubMed Central

    2015-01-01

    High throughput screening (HTS) is important for identifying molecules with desired properties. Mass spectrometry (MS) is potentially powerful for label-free HTS due to its high sensitivity, speed, and resolution. Segmented flow, where samples are manipulated as droplets separated by an immiscible fluid, is an intriguing format for high throughput MS because it can be used to reliably and precisely manipulate nanoliter volumes and can be directly coupled to electrospray ionization (ESI) MS for rapid analysis. In this study, we describe a “MS Plate Reader” that couples standard multiwell plate HTS workflow to droplet ESI-MS. The MS plate reader can reformat 3072 samples from eight 384-well plates into nanoliter droplets segmented by an immiscible oil at 4.5 samples/s and sequentially analyze them by MS at 2 samples/s. Using the system, a label-free screen for cathepsin B modulators against 1280 chemicals was completed in 45 min with a high Z-factor (>0.72) and no false positives (24 of 24 hits confirmed). The assay revealed 11 structures not previously linked to cathepsin inhibition. For even larger scale screening, reformatting and analysis could be conducted simultaneously, which would enable more than 145 000 samples to be analyzed in 1 day. PMID:25137241

  15. Development of Non-proximate Probe Electrospray Ionization for Real-Time Analysis of Living Animal

    PubMed Central

    Yoshimura, Kentaro; Chen, Lee Chuin; Johno, Hisashi; Nakajima, Mayutaka; Hiraoka, Kenzo; Takeda, Sen

    2014-01-01

    Ambient ionization mass spectrometry is one of the most challenging analytical tools in the field of biomedical research. We previously demonstrated that probe electrospray ionization mass spectrometry (PESI-MS) could potentially be used in the rapid diagnosis of cancer. Although this technique does not require a tedious sample pretreatment process, it was not possible for our previously reported setup to be applied to cases involving the direct sampling of tissues from living animal and large animal subjects, because there would not be enough room to accommodate the larger bodies juxtaposed to the ion inlet. To make PESI-MS more applicable for the real-time analysis of living animals, a long auxiliary ion sampling tube has been connected to the ion inlet of the mass spectrometer to allow for the collection of ions and charged droplets from the PESI source (hereafter, referred to as non-proximate PESI). Furthermore, an additional ion sampling tube was connected to a small diaphragm pump to increase the uptake rate of air carrying the ions and charged droplets to the ion inlet. This modification allows for the extended ion sampling orifice to be positioned closer to the specimens, even when they are too large to be placed inside the ionization chamber. In this study, we have demonstrated the use of non-proximate PESI-MS for the real-time analysis for biological molecules and pharmacokinetic parameters from living animals. PMID:26819892

  16. Control of Analyte Electrolysis in Electrospray Ionization Mass Spectrometry Using Repetitively Pulsed High Voltage

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary J

    2011-01-01

    Analyte electrolysis using a repetitively pulsed high voltage ion source was investigated and compared to that using a regular, continuously operating direct current high voltage ion source in electrospray ionization mass spectrometry. The extent of analyte electrolysis was explored as a function of the length and frequency of the high voltage pulse using the model compound reserpine in positive ion mode. Using +5 kV as the maximum high voltage amplitude, reserpine was oxidized to its 2, 4, 6 and 8-electron oxidation products when direct current high voltage was employed. In contrast, when using a pulsed high voltage, oxidation of reserpine was eliminated by employing the appropriate high voltage pulse length and frequency. This effect was caused by inefficient mass transport of the analyte to the electrode surface during the duration of the high voltage pulse and the subsequent relaxation of the emitter electrode/ electrolyte interface during the time period when the high voltage was turned off. This mode of ESI source operation allows for analyte electrolysis to be quickly and simply switched on or off electronically via a change in voltage pulse variables.

  17. Simultaneous determination of 15 nitroimidazoles in cosmetics by HPLC coupled with electrospray ionization- tandem mass spectrometry.

    PubMed

    Meng, Xian-Shuang; Bai, Hua; Zhang, Qing; Lv, Qing; Chen, Yun-Xia; Ma, Hui-Juan; Li, Jing-Rui; Ma, Qiang

    2014-01-01

    A sensitive and reliable analytical method based on HPLC/MSIMS has been developed for the simultaneous determination of 15 nitroimidazoles in cosmetics. A diversity of cosmetic samples, including powder, lotion, shampoo, and cream were collected. The samples were ultrasonically extracted with aqueous methanol, and the extracts were then subjected to cleanup bySPE using an Oasis HLB cartridge followed by filtration with a 0.20 pm membrane filter. Afterwards, chromatographic separation was performed on an XSelect CSH C18 column (2.1 x 150 mm, 3.5 pm) maintained at 30°C within 15 min by a gradient of acetonitrile-0.1% aqueous formic acid solution at a flow rate of 0.25 mL/min. The mass spectrometric detection was carried, out using electrospray positive ionization under the multiple reaction monitoring mode. A good linearity was observed over the concentration range from 0.5 to 500 ng/mL. The intraday and interday precisions, which were investigated by determining all target compounds in cosmetics seven times/day and on 7 consecutive days, were below 5.00%. The mean recoveries at three spiked levels ranged from 80.42 to 100.83% with the RSDs from 0.45 to 9.02%. The LOQs were determined to be between 0.01 and 0.1 mg/kg. The method was sufficiently rapid, reliable, and sensitive for the determination of 15 nitroimidazoles in cosmetics. PMID:25632431

  18. Chemical Analysis of Organic Aerosols Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Laskin, A.; Laskin, J.; Nizkorodov, S.

    2013-12-01

    Nanospray Desorption Electrospray Ionization (nano-DESI) technique integrated with high resolution mass spectrometry (HR-MS) enables molecular level analysis of organic aerosol (OA) samples. In nano-DESI, analyte is desorbed into a small volume solvent bridge formed between two capillaries positioned in contact with analyte and enables fast and efficient characterization of OA collected on substrates without sample preparation. We report applications of the nano-DESI/HR-MS approach in a number of our recent studies focused on molecular identification of organic compounds in laboratory and in field collected OA samples. Reactive nano-DESI approach where selected reagent is added to the solvent is used for examining the presence of individual species containing specific functional groups and for their quantification within complex mixtures of OA. Specifically, we use the Girard's reagent T (GT) to probe and quantify carbonyl compounds in the SOA mixtures. We estimate for the first time the amounts of dimers and trimers in the SOA mixtures. We found that the most abundant dimer in limonene/O3 SOA was detected at the ˜0.5 pg level and the total amount of dimers and trimers in the analyzed sample was ˜11 pg. Understanding of the OA composition at the molecular level allowed us to identify key aging reactions, including the transformation of carbonyls to imines and carbonyl-imine oligomerization, that may contribute to the formation of brown carbon in the atmosphere.

  19. Stretchability of Silver Films on Thin Acid-Etched Rough Polydimethylsiloxane Substrates Fabricated by Electrospray Deposition

    NASA Astrophysics Data System (ADS)

    Mehdi, S. M.; Cho, K. H.; Kang, C. N.; Choi, K. H.

    2015-07-01

    This paper investigates the fabrication of Ag films through the electrospray deposition (ESD) technique on sub-millimeter-thick acid-etched rough polydimethylsiloxane (PDMS) substrates having both low and high modulus of elasticity. The main focus of the study is on the stretchable behavior of ESD-deposited Ag nanoparticles-based thin films on these substrates when subjected to axial strains. Experimental results suggest that the as-fabricated films on thin acid-etched rough low modulus PDMS has an average stretchability of 5.6% with an average increase in the resistance that is 23 times that of the initial resistance at electrical failure (complete rupture of the films). Comparatively, the stretchability of Ag films on the high modulus PDMS was found to be 3 times higher with 4.65 times increase in the resistance at electrical failure. Also, a high positive value of the piezoresistive coefficient for these films suggests that the resistivity changes during stretching, and thus deviation from the simplified models is inevitable. Based on these results, new models are presented that quantify the changes in resistance with strain.

  20. Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry.

    PubMed

    Jackson, Ayanna U; Tata, Alessandra; Wu, Chunping; Perry, Richard H; Haas, George; West, Leslie; Cooks, R Graham

    2009-05-01

    The analysis of Stevia leaves has been demonstrated without any sample preparation using desorption electrospray ionization (DESI) mass spectrometry. Direct rapid analysis was achieved using minimal amounts of sample ( approximately 0.15 cm x 0.15 cm leaf fragment). Characteristic constituents of the Stevia plant are observed in both the positive and negative ion modes including a series of diterpene 'sweet' glycosides. The presence of the glycosides was confirmed via tandem mass spectrometry analysis using collision-induced dissociation and further supported by exact mass measurements using an LTQ-Orbitrap. The analysis of both untreated and hexane-extracted dry leaves proved that DESI can be successfully used to analyze untreated leaf fragments as identical profiles were obtained from both types of samples. Characterization and semi-quantitative determination of the glycosides was achieved based on the glycoside profile within the full mass spectrum. In addition, the presence of characteristic glycosides in an all-natural commercial Stevia dietary supplement was confirmed. This study provides an example of the application of DESI to direct screening of plant materials, in this case diterpene glycosides. PMID:19381377

  1. Investigating ionisation cluster size distribution due to sub-1 keV electrons in view of Heisenberg's Uncertainty

    NASA Astrophysics Data System (ADS)

    Li, B.; Palmans, H.; Hao, L.; Nisbet, A.

    2015-09-01

    As the wavelengths of low energy electrons become comparable with the length scale of the mean ionisation step size, each event particle should be treated with care as the condition outlined in Heisenberg's uncertainty principle (HUP) should also be satisfied. Within this quantum-classical regime, spatial delocalisations of individual ionisation event sites that are generated outside the target region are calculated, and particular attention is given to the validity of using classical transport methods in simulations of nanodosimetric parameters such as mean cluster size, first and second moments, variance and cumulative frequency of ionisation cluster-size probability distributions. This paper presents the comparison between conventionally calculated nanodosimetric quantities and the ones where interacting particles are treated semi-classically with spatial uncertainties satisfied by HUP. The simulated primary charged particles are electrons of energies between 100 eV and 1 keV in DNA equivalent target aqueous water volumes using GEANT4-DNA.

  2. Electrospray Charging of Minerals: Surface Chemistry and Applications to High-Velocity Microparticle Impacts

    NASA Astrophysics Data System (ADS)

    Daly, T.; Call, S.; Austin, D. E.

    2010-12-01

    Electrospray is a soft ionization technique commonly used to charge large biomolecules; it has, however, also been applied to inorganic compounds. We are extending this technique to mineral microparticles. Electrospray-charged mineral microparticles are interesting in the context of surface science because surface chemistry dictates where and how charge carriers can bond to mineral surfaces. In addition, using electrospray to charge mineral particles allows these particles to be electrostatically accelerated as projectiles in high- and hyper-velocity impacts. Since current techniques for producing high- and hyper-velocity microparticle impacts are largely limited to metal or metal-coated projectiles, using minerals as projectiles is a significant innovation. Electrospray involves three steps: creation of charged droplets containing solute/particles, evaporation and bifurcation of droplets, and desolvation of the solute/particles. An acidified solution is slowly pumped through a needle in a strong DC field, which causes the solution to break into tiny, charged droplets laden with protons. Solvent evaporates from the electrosprayed droplets as they move through the electric field toward a grounded plate, causing the charge on the droplet to increase relative to its mass. When the electrosprayed droplet’s charge becomes such that the droplet is no longer stable, it bifurcates, and each of the resulting droplets carries some of the original droplet’s charge. Evaporation and bifurcation continues until the solute particle is completely desolvated. The result is a protonated solute molecule or particle. We built an instrument that electrosprays particles into vacuum and measures them using an image charge detector. Mineral microparticles were prepared by grinding natural mineral samples to ~2 µm diameter. These microparticles are then added to a 4:1 methanol:water solution to create a 0.005% w/v suspension. The suspension is electrosprayed into vacuum, where the

  3. Using the Electrochemistry of the Electrospray Ion Source

    SciTech Connect

    Van Berkel, Gary J; Kertesz, Vilmos

    2007-01-01

    Electrospray mass spectrometry (ES-MS) is one of the more widely used analysis methods in science today, impacting fields as diverse as conventional chemistry to biotechnology and materials science. , Even 20 years after bursting onto the mass spectrometry scene, the underlying processes in ES ionization continue to be better understood exposing new opportunities for the technique. , , , , Such is the case for the improved understanding related to the electrochemical processes inherent to the operation of this ion source, , , which is the topic of this report. Electrospray ionization involves three main steps prior to mass analysis: the generation and charging of the ES droplets; droplet evaporation and the production of gas-phase ions; and secondary processes that modify the gas-phase ions in the atmosphere and the sub-atmospheric pressure sampling regions of the mass spectrometer. Integral to the generation and charging of the ES droplets are electrochemical reactions that occur at the conductive contact/solution interface within or near the ES emitter to maintain the quasi-continuous production of charged droplets and ultimately gas-phase ions. The basic electrochemical phenomena concerning the ES ion source were first brought to wide attention in the mass spectrometry community by Kebarle and co-workers in the early 1990's,8 but the electrochemistry of electrostatic spray devices and possible analytical consequences resulting from this phenomenon were realized and discussed in the literature at least as far back as the mid-1970's. When asked to intercede in a debate on the significance of electrochemistry in the ES ionization (ESI) process, 2002 Nobel Laureate in Chemistry John Fenn noted that to him " the idea that electrochemical reactions might be taking place in an ES ion source was too obvious to mention. That products of such reactions are of vital significance in the overall ESI process was much less obvious. Indeed, it seems fair to say that with few

  4. Ionisation effects on the permeation of pharmaceutical compounds through silicone membrane.

    PubMed

    Waters, L J; Bhuiyan, A K M M H

    2016-05-01

    Silicone membrane is frequently used as an in vitro skin mimic whereby experiments incorporate a range of buffered media which may vary in pH. As a consequence of such variability in pH there is a corresponding variability in the degree of ionisation which in turn, could influence permeation through the mainly hydrophobic-rich membrane structure. This study reports the effect of pH on the permeation of five model compounds (benzoic acid, benzotriazole, ibuprofen, ketoprofen and lidocaine). For the five compounds analysed, each at three distinct percentages of ionisation, it was found that the greater extent of permeation was always for the more 'neutral', i.e. more greatly unionised, species rather than the anionic or cationic species. These findings fit with the theory that the hydrophobic membrane encourages permeation of 'lipid-like' structures, i.e. the more unionised form of compounds. However, results obtained with an Inverse Gas Chromatography Surface Energy Analyser (iGC SEA) indicate the membrane surface to be an electron dense environment. In the knowledge that unionised forms of compounds permeate (rather than the charged species) this negatively charged surface was not anticipated, i.e. the basic membrane surface did not appear to affect permeation. PMID:26896663

  5. Glioblastoma stem cells: radiobiological response to ionising radiations of different qualities.

    PubMed

    Pecchia, I; Dini, V; Ricci-Vitiani, L; Biffoni, M; Balduzzi, M; Fratini, E; Belli, M; Campa, A; Esposito, G; Cirrone, G; Romano, F; Stancampiano, C; Pelacchi, F; Pallini, R; Tabocchini, M A

    2015-09-01

    Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumour, with very poor prognosis. The high recurrence rate and failure of conventional treatments are expected to be related to the presence of radio-resistant cancer stem cells (CSCs) inside the tumour mass. CSCs can both self-renew and differentiate into the heterogeneous lineages of cancer cells. Recent evidence showed a higher effectiveness of C-ions and protons in inactivating CSCs, suggesting a potential advantage of Hadrontherapy compared with conventional radiotherapy for GBM treatment. To investigate the mechanisms involved in the molecular and cellular responses of CSCs to ionising radiations, two GBM stem cell (GSC) lines, named lines 1 and 83, which were derived from patients with different clinical outcomes and having different metabolic profiles (as shown by NMR spectroscopy), were irradiated with (137)Cs photons and with protons or C-ions of 62 MeV u(-1) in the dose range of 5-40 Gy. The biological effects investigated were: cell death, cell cycle progression, and DNA damage induction and repair. Preliminary results show a different response to ionising radiation between the two GSC lines for the different end points investigated. Further experiments are in progress to consolidate the data and to get more insights on the influence of radiation quality. PMID:25969527

  6. Adaptive response to ionising radiation induced by cadmium in zebrafish embryos.

    PubMed

    Choi, V W Y; Ng, C Y P; Kong, M K Y; Cheng, S H; Yu, K N

    2013-03-01

    An adaptive response is a biological response where the exposure of cells or animals to a low priming exposure induces mechanisms that protect the cells or animals against the detrimental effects of a subsequent larger challenging exposure. In realistic environmental situations, living organisms can be exposed to a mixture of stressors, and the resultant effects due to such exposures are referred to as multiple stressor effects. In the present work we demonstrated, via quantification of apoptosis in the embryos, that embryos of the zebrafish (Danio rerio) subjected to a priming exposure provided by one environmental stressor (cadmium in micromolar concentrations) could undergo an adaptive response against a subsequent challenging exposure provided by another environmental stressor (alpha particles). We concluded that zebrafish embryos treated with 1 to 10 μM Cd at 5 h postfertilisation (hpf) for both 1 and 5 h could undergo an adaptive response against subsequent ~4.4 mGy alpha-particle irradiation at 10 hpf, which could be interpreted as an antagonistic multiple stressor effect between Cd and ionising radiation. The zebrafish has become a popular vertebrate model for studying the in vivo response to ionising radiation. As such, our results suggested that multiple stressor effects should be carefully considered for human radiation risk assessment since the risk may be perturbed by another environmental stressor such as a heavy metal. PMID:23296313

  7. High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

    NASA Astrophysics Data System (ADS)

    Cocolios, T. E.; de Groote, R. P.; Billowes, J.; Bissell, M. L.; Budinčević, I.; Day Goodacre, T.; Farooq-Smith, G. J.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heylen, H.; Kron, T.; Li, R.; Lynch, K. M.; Marsh, B. A.; Neyens, G.; Rossel, R. E.; Rothe, S.; Smith, A. J.; Stroke, H. H.; Wendt, K. D. A.; Wilkins, S. G.; Yang, X.

    2016-06-01

    The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219,221 Fr, and has measured isotopes as short lived as 5 ms with 214 Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of single-isotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems.

  8. Correlation of the ionisation response at selected points of IC sensitive regions with SEE sensitivity parameters under pulsed laser irradiation

    SciTech Connect

    Gordienko, A V; Mavritskii, O B; Egorov, A N; Pechenkin, A A; Savchenkov, D V

    2014-12-31

    The statistics of the ionisation response amplitude measured at selected points and their surroundings within sensitive regions of integrated circuits (ICs) under focused femtosecond laser irradiation is obtained for samples chosen from large batches of two types of ICs. A correlation between these data and the results of full-chip scanning is found for each type. The criteria for express validation of IC single-event effect (SEE) hardness based on ionisation response measurements at selected points are discussed. (laser applications and other topics in quantum electronics)

  9. Determination of diallyldimethylammonium chloride in drinking water by reversed-phase ion-pair chromatography-electrospray ionization mass spectrometry.

    PubMed

    Jin, Fen; Hu, Jianying; Yang, Min; Jin, Xiaohui; He, Wenjie; Han, Hongda

    2006-01-01

    A method for the direct determination of diallyldimethylammonium chloride (DADMAC) in water samples, using ion-pair liquid chromatography-mass spectrometry system was developed. The chromatographic separation was performed using a C18 column. The type, the concentration of ion-pair reagent and the pH were optimized to give good chromatographic retention and sensitivity for DADMAC. Quantification was achieved in the positive electrospray ionization mode using selected ion monitoring. The cone voltage was also studied to establish the optimal experimental conditions. Finally, the reproducibility of the proposed method was shown by good run-to-run and day-to-day precision values. No sample preparation was required and the detection limit was 0.1 microg/L. The method was used to detect residual DADMAC at drinking water treatment plants in Tianjin, north China. The concentration of DADMAC observed in drinking water ranged from below quantitation limit to 22.0 microg/L. PMID:16243342

  10. Fragmentation patterns of novel dispirocyclopiperazinium dibromides with strong analgesic activity under electrospray ionization tandem mass spectrometry conditions

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Sha, Yaowu; Li, Runtao

    2004-07-01

    The fragmentation patterns of a series of dispirocyclopiperazinium dibromides with strong analgesic activity were analyzed by positive ion electrospray ionization mass spectrometry in conjunction with tandem mass spectrometry (ESI-MSn). The [C2+Br-]+ ions showed the characteristic isotopic peaks with high intensity. In each of their MS2 spectra, only the [C2+Br----HBr]+ ion peak was observable. Further analysis indicated that a selective rearrangement occurred in the unsaturated spirocyclopiperazine ring to achieve dihydropyrrole moiety. Meanwhile, the [C]2+ ions were unique and always the base peaks. The ions [C2+Br-]+ and [C]2+ were formed from the equilibrium of precursor molecules 1 in solution, and the latter ions could not be observed in the MS2 spectra of ions [C2+Br-]+. The related fragmentation mechanisms were proposed.

  11. Quantitative analysis of human serum corticosterone by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry.

    PubMed

    Ghulam, A; Kouach, M; Racadot, A; Boersma, A; Vantyghem, M C; Briand, G

    1999-04-30

    An original method based upon high-performance liquid chromatography coupled to electrospray ionization mass spectrometry has been developed for corticosterone (B) quantification in human serum. After extraction by diethyl ether using triamcinolone (T) as an internal standard, solutes are separated on a C18 microbore column (250 X 1.0 mm, I.D.), using acetonitrile-water-formic acid (40:59.9:0.1, v/v/v) as the mobile phase (flow-rate 40 microl/min). Detection is performed on an API 1 single quadrupole mass spectrometer equipped with a ESI interface and operated in positive ionization mode. Corticosterone quantifications were realized by computing peak area ratios (B/T) of the serum extracts analyzed in SIM mode (m/z 347 and m/z 395 for B and T. respectively), and comparing them with the calibration curve (r=0.998). PMID:10360442

  12. Fragmentation study and analysis of benzoylurea insecticides and their analogs by liquid chromatography-electrospray ionization-mass spectrometry.

    PubMed

    Yang, Xia; Xia, Yan; Liao, Xun; Zuo, Yumin; Liao, Yiping; Liu, Huwei

    2006-08-15

    Two insecticides, diflubenzuron and hexaflumuron, and their analogs have been separated by liquid chromatography (LC) and their fragmentation mechanisms were studied by electrospray ionization-ion trap mass spectrometry (ESI-MS(n)) in both positive- and negative-ion modes. Sequential product ion fragmentation experiments were performed in order to explain the degradation pathways and identify their predominant fragment ions. It was indicated that the characteristic fragmentations are the loss of neutral molecules such as HF, HNO(2), and HCl to form stable ring structure or the cleavage of the acyl amine to form conjugated structure. Furthermore, the separation and determination of two benzoylurea (BU) insecticides and their analogs in the water samples from Weiming Lake have been described by LC-ESI-MS in negative mode. By the use of deprotonated molecule for quantitative analysis at low capillary exit voltage, low detection limits, good linearity and reproducibility for standard solutions were presented. PMID:18970732

  13. Amorphization of hard crystalline materials by electrosprayed nanodroplet impact

    SciTech Connect

    Gamero-Castaño, Manuel Torrents, Anna; Borrajo-Pelaez, Rafael; Zheng, Jian-Guo

    2014-11-07

    A beam of electrosprayed nanodroplets impacting on single-crystal silicon amorphizes a thin surface layer of a thickness comparable to the diameter of the drops. The phase transition occurs at projectile velocities exceeding a threshold, and is caused by the quenching of material melted by the impacts. This article demonstrates that the amorphization of silicon is a general phenomenon, as nanodroplets impacting at sufficient velocity also amorphize other covalently bonded crystals. In particular, we bombard single-crystal wafers of Si, Ge, GaAs, GaP, InAs, and SiC in a range of projectile velocities, and characterize the samples via electron backscatter diffraction and transmission electron microscopy to determine the aggregation state under the surface. InAs requires the lowest projectile velocity to develop an amorphous layer, followed by Ge, Si, GaAs, and GaP. SiC is the only semiconductor that remains fully crystalline, likely due to the relatively low velocities of the beamlets used in this study. The resiliency of each crystal to amorphization correlates well with the specific energy needed to melt it except for Ge, which requires projectile velocities higher than expected.

  14. Electrospray ionization with aluminum foil: A versatile mass spectrometric technique.

    PubMed

    Hu, Bin; So, Pui-Kin; Yao, Zhong-Ping

    2014-03-19

    In this study, we developed a novel electrospray ionization (ESI) technique based on household aluminum foil (Al foil) and demonstated the desirable features and applications of this technique. Al foil can be readily cut and folded into desired configuration for effective ionization and for holding sample solution in bulk to allowing acquisition of durable ion signals. The present technique was demonstrated to be applicable in analysis of a wide variety of samples, ranging from pure chemical and biological compounds, e.g., organic compounds and proteins, to complex samples in liquid, semi-solid, and solid states, e.g., beverages, skincare cream, and herbal medicines. The inert, hydrophobic and impermeable surface of Al foil allows convenient and effective on-target extraction of solid samples and on-target sample clean-up, i.e., removal of salts and detergents from proteins and peptides, extending ESI device from usually only for sample loading and ionization to including sample processing. Moreover, Al foil is an excellent heat-conductor and highly heat-tolerant, permitting direct monitoring of thermal reactions, e.g., thermal denaturation of proteins. Overall, the present study showed that Al-foil ESI could be an economical and versatile method that allows a wide range of applications. PMID:24594810

  15. A New Electrospray Aerosol Generator with High Particle Transmission Efficiency

    PubMed Central

    Fu, Huijing; Patel, Anand C.; Holtzman, Michael J.; Chen, Da-Ren

    2012-01-01

    A new single-capillary electrospray (ES) aerosol generator has been developed for monodisperse particle production with maximal transmission efficiency. The new generator consists of both a spray chamber in a point-to-orifice-plate configuration and a charge reduction chamber that can hold up to 4 Nuclespot ionizers (Model P-2042, NRD Inc.). The 2 chambers are partitioned by an orifice plate. To optimize the particle transmission efficiency of the prototype, a systematic study was performed on the generator by varying the system setup and operation. Two key dimensions of the generator setup, the orifice diameter and the distance from the capillary tip to the orifice plate, were varied. Fluorescence analysis was applied to characterize the loss of ES-generated particles at different locations of the prototype. It was found that particle loss in the generator could be reduced by either increasing the orifice diameter or decreasing the distance between the capillary tip and the orifice plate. Increasing either the total radioactivity of the ionizers or the flowrate of the particle carrier gas also further decreased the particle loss in the system. The maximum particle transmission efficiency of 88.0% was obtained with the spray chamber fully opened to the charge reduction chamber, the capillary tip at the same level as the orifice plate, and 4 bipolar ionizers installed. PMID:22829715

  16. Electrospray-printed nanostructured graphene oxide gas sensors.

    PubMed

    Taylor, Anthony P; Velásquez-García, Luis F

    2015-12-18

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors' response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ∼5 × 10(-4) T) at ∼1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems. PMID:26579701

  17. Electrospray-printed nanostructured graphene oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Taylor, Anthony P.; Velásquez-García, Luis F.

    2015-12-01

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ˜5 × 10-4 T) at ˜1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.

  18. Is electrospray emission really due to columbic forces?

    SciTech Connect

    Aliotta, Francesco Ponterio, Rosina C.; Salvato, Gabriele; Vasi, Cirino; Calandra, Pietro; Pochylski, Mikolaj

    2014-09-15

    Electrospray ionization (ESI) is a widely adopted soft ionization method for mass spectroscopy (MS). In spite of the undeniable success of the technique, its mechanisms are difficult to be analytically modelled because the process is characterized by non-equilibrium conditions. The common belief is that the formation of gas-phase ions takes place at the apex of the Taylor cone via electrophoretic charging. The charge balance implies that a conversion of electrons to ions should occur at the metal-liquid interface of the injector needle. We have detected that the above description is based on unproved assumptions which are not consistent with the correct evaluation of the problem. The comparison between experiments performed under the usual geometry and observations obtained under symmetric field configurations suggests that the emitted droplets cannot be significantly charged or, at least, that any possible ionization mechanism is so poorly efficient to ensure that columbic forces cannot play a major role in jet formation, even in cases where the liquid consists of a solution of ionic species. Further work is required to clearly understand how ionization occurs in ESI-MS.

  19. Continuous full filling capillary electrochromatography-electrospraying chromatographic nanoparticles.

    PubMed

    Malmström, David; Axén, Jakob; Bergquist, Jonas; Viberg, Peter; Spégel, Peter

    2011-01-01

    The influence of instrumental parameters affecting the ionization in continuous full filling capillary electrochromatography/electrospray ionization mass spectrometry (CFF-CEC/ESI-MS) was investigated. The investigated parameters were the BGE and sheath liquid ion strength and organic modifier content, the nebulizer gas pressure, and the concentration of nanoparticles in the BGE. It was found that the nebulizer pressure had the largest influence on the separation efficiency and apparent retention. It was shown that even the lowest pressure investigated was sufficient to guide the nanoparticle flow away from the mass spectrometer inlet. A nebulizer pressure of 5 psi was found to be optimal; increasing the pressure significantly decreased the separation efficiency due to the generation of a hydrodynamic flow. Generally, the ion strength of both the BGE and the sheath liquid were found to have very moderate effects on the separation of a homologous series of dialkyl phthalates, whereas the ionization efficiency was found to be unaffected by the nanoparticles and the separation efficiency was found to increase with increasing concentrations up to 3.8 mg/mL, whereafter it was observed to drop. The optimized method was linear over a wide concentration range and presented LOD and LOQ more than threefold lower than those previously reported using CFF-CEC/ESI-MS. PMID:21254124

  20. Next Generation of Electrosprayed Fibers for Tissue Regeneration

    PubMed Central

    Hong, Jong Kyu

    2011-01-01

    Electrospinning is a widely established polymer-processing technology that allows generation of fibers (in nanometer to micrometer size) that can be collected to form nonwoven structures. By choosing suitable process parameters and appropriate solvent systems, fiber size can be controlled. Since the technology allows the possibility of tailoring the mechanical properties and biological properties, there has been a significant effort to adapt the technology in tissue regeneration and drug delivery. This review focuses on recent developments in adapting this technology for tissue regeneration applications. In particular, different configurations of nozzles and collector plates are summarized from the view of cell seeding and distribution. Further developments in obtaining thick layers of tissues and thin layered membranes are discussed. Recent advances in porous structure spatial architecture parameters such as pore size, fiber size, fiber stiffness, and matrix turnover are summarized. In addition, possibility of developing simple three-dimensional models using electrosprayed fibers that can be utilized in routine cell culture studies is described. PMID:21210761

  1. Electrospray of multifunctional microparticles for image-guided drug delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei; Yan, Yan; Mena, Joshua; Sun, Jingjing; Letson, Alan; Roberts, Cynthia; Zhou, Chuanqing; Chai, Xinyu; Ren, Qiushi; Xu, Ronald

    2012-03-01

    Anti-VEGF therapies have been widely explored for the management of posterior ocular disease, like neovascular age-related macular degeneration (AMD). Loading anti-VEGF therapies in biodegradable microparticles may enable sustained drug release and improved therapeutic outcome. However, existing microfabrication processes such as double emulsification produce drug-loaded microparticles with low encapsulation rate and poor antibody bioactivity. To overcome these limitations, we fabricate multifunctional microparticles by both single needle and coaxial needle electrospray. The experimental setup for the process includes flat-end syringe needles (both single needle and coaxial needle), high voltage power supplies, and syringe pumps. Microparticles are formed by an electrical field between the needles and the ground electrode. Droplet size and morphology are controlled by multiple process parameters and material properties, such as flow rate and applied voltage. The droplets are collected and freezing dried to obtain multifunctional microparticles. Fluorescent beads encapsulated poly(DL-lactide-co-glycolide) acid (PLGA) microparticles are injected into rabbits eyes through intravitreal injection to test the biodegradable time of microparticles.

  2. Application and Analysis of Biological Electrospray in Tissue Engineering

    PubMed Central

    Yunmin, Ma; Yuanyuan, Liu; Haiping, Chen; Qingxi, Hu

    2015-01-01

    Nan-fiber scaffolds are suitable tools for tissue engineering. Electro spinning materials together with cells presents not adequate to obtain a high cellular zing tissue constructs as the shear force, tensile force, and other physical effects excited in the electro spinning process, which are harmful to cellular differentiation, development and function. However, this limitation has been overcome by a micro integration system of simultaneously bio-electro spraying human adipose stem cells (ASCs) and electro spinning Polyvinyl alcohol (PVA). Then it was compared to the single electro spinning nan-fiber scaffolds in relation to cell viability, which showed that the scaffolds by micro integration approach has a larger number of surviving cells and more suitable for cell growth and proliferation. In addition, the relationship between different parameters of biological electrospray (voltage, flow rate and distance of the needle from the collecting board) and droplet size of cell suspension was elucidated and the droplets with a near-mono distribution (<50um) could be generated to deposit a single living cell within a droplet. The association of bio-electro spraying with electro spinning (a scaffold preparation technique) has been demonstrated to be a promising and suitable tissue engineering approach in producing nan-fiber based three-dimensional (3-D) cell seeded scaffolds. PMID:26089992

  3. A high-frequency electrospray driven by gas volume charges

    SciTech Connect

    Lastochkin, Dmitri; Chang, H.-C.

    2005-06-15

    High-frequency (>10 kHz) ac electrospray is shown to eject volatile dielectric liquid drops by an entirely different mechanism from dc sprays. The steady dc Taylor conic tip is absent and continuous spraying of submicron drops is replaced by individual dynamic pinchoff events involving the entire drop. We attribute this spraying mechanism to a normal Maxwell force produced by an undispersed plasma cloud in front of the meniscus that produces a visible glow at the spherical tip. The volume charge within the cloud is formed by electron-induced gas ionization of the evaporated liquid and produces a large normal field that is much higher than the nominal applied field such that drop ejection occurs at a voltage (at high frequencies) that is as much as ten times lower than that for dc sprays. The ejection force is sensitive to the liquid properties (but not its electrolyte composition), the ac frequency and trace amounts of inert gases, which are believed to catalyze the ionization reactions. As electroneutral drops are ejected, due to the large (>100) ratio between individual drop ejection time and the ac frequency, this mechanism can produce large (microns) electroneutral drops at relatively low voltages.

  4. Electrospray Ionization Tandem Mass Spectrometry of Ammonium Cationized Polyethers

    NASA Astrophysics Data System (ADS)

    Nasioudis, Andreas; Heeren, Ron M. A.; van Doormalen, Irene; de Wijs-Rot, Nicolette; van den Brink, Oscar F.

    2011-05-01

    Quaternary ammonium salts (Quats) and amines are known to facilitate the MS analysis of high molar mass polyethers by forming low charge state adduct ions. The formation, stability, and behavior upon collision-induced dissociation (CID) of adduct ions of polyethers with a variety of Quats and amines were studied by electrospray ionization quadrupole time-of-flight, quadrupole ion trap, and linear ion trap tandem mass spectrometry (MS/MS). The linear ion trap instrument was part of an Orbitrap hybrid mass spectrometer that allowed accurate mass MS/MS measurements. The Quats and amines studied were of different degree of substitution, structure, and size. The stability of the adduct ions was related to the structure of the cation, especially the amine's degree of substitution. CID of singly/doubly charged primary and tertiary ammonium cationized polymers resulted in the neutral loss of the amine followed by fragmentation of the protonated product ions. The latter reveals information about the monomer unit, polymer sequence, and endgroup structure. In addition, the detection of product ions retaining the ammonium ion was observed. The predominant process in the CID of singly charged quaternary ammonium cationized polymers was cation detachment, whereas their doubly charged adduct ions provided the same information as the primary and tertiary ammonium cationized adduct ions. This study shows the potential of specific amines as tools for the structural elucidation of high molar mass polyethers.

  5. Electrospray deposition of organic molecules on bulk insulator surfaces

    PubMed Central

    Pawlak, Rémy; Glatzel, Thilo

    2015-01-01

    Summary Large organic molecules are of important interest for organic-based devices such as hybrid photovoltaics or molecular electronics. Knowing their adsorption geometries and electronic structures allows to design and predict macroscopic device properties. Fundamental investigations in ultra-high vacuum (UHV) are thus mandatory to analyze and engineer processes in this prospects. With increasing size, complexity or chemical reactivity, depositing molecules by thermal evaporation becomes challenging. A recent way to deposit molecules in clean conditions is Electrospray Ionization (ESI). ESI keeps the possibility to work with large molecules, to introduce them in vacuum, and to deposit them on a large variety of surfaces. Here, ESI has been successfully applied to deposit triply fused porphyrin molecules on an insulating KBr(001) surface in UHV environment. Different deposition coverages have been obtained and characterization of the surface by in-situ atomic force microscopy working in the non-contact mode shows details of the molecular structures adsorbed on the surface. We show that UHV-ESI, can be performed on insulating surfaces in the sub-monolayer regime and to single molecules which opens the possibility to study a variety of complex molecules. PMID:26665062

  6. Advances in drug delivery via electrospun and electrosprayed nanomaterials

    PubMed Central

    Zamani, Maedeh; Prabhakaran, Molamma P; Ramakrishna, Seeram

    2013-01-01

    Electrohydrodynamic (EHD) techniques refer to procedures that utilize electrostatic forces to fabricate fibers or particles of different shapes with sizes in the nano-range to a few microns through electrically charged fluid jet. Employing different techniques, such as blending, surface modification, and coaxial process, there is a great possibility of incorporating bioactive such molecules as drugs, DNA, and growth factors into the nanostructures fabricated via EHD techniques. By careful selection of materials and processing conditions, desired encapsulation efficiency as well as preserved bioactivity of the therapeutic agents can be achieved. The drug-loaded nanostructures produced can be applied via different routes, such as implantation, injection, and topical or oral administration for a wide range of disease treatment. Taking advantage of the recent developments in EHD techniques like the coaxial process or multilayered structures, individually controlled delivery of multiple drugs is achievable, which is of great demand in cancer therapy and growth-factor delivery. This review summarizes the most recent techniques and postmodification methods to fabricate electrospun nanofibers and electrosprayed particles for drug-delivery applications. PMID:23976851

  7. Transient Ion-Pair Separations for Electrospray Mass Spectrometry.

    PubMed

    Liu, Hanghui; Lam, Lily; Chi, Bert; Kadjo, Akinde F; Dasgupta, Purnendu K

    2016-02-16

    We report a novel ion-pair chromatography (IPC) approach for liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS), where the eluent does not contain any ion-pairing reagent (IPR). The IPR is injected on the column, much like the sample, and moves down the column. Significant amounts of a high retention factor IPR is injected, resulting in a transient but reproducible regional coating that progresses along the column. The sample is injected after a brief interval. The sample components interact with the IPR coated region during their passage; the chosen eluent gradient elutes the analytes of interest into the mass spectrometer before the IPR. Following analyte elution, the gradient is steeply raised, the IPR is washed out, and the effluent is sent to waste via a diverter valve until it is fully removed. As the nature of the analyte retention continuously changes along the column and with time, we call this transient ion-pair separation (TIPS). As the IPR never enters the MS, TIPS addresses two major drawbacks of IPC for ESI-MS: it avoids both ion suppression and ion source contamination. The potential of the generic approach for other modes of separation is discussed. An illustrative separation of two small inorganic ions, iodate and nitrate, is demonstrated on a reverse phase column by a transient prior injection of hexadecyltrimethylammonium chloride as IPR. PMID:26765166

  8. [Theory and practice of electrospray crystallization in particle size reduction].

    PubMed

    Szunyogh, Tímea; Ambrus, Rita; Szabóné Révész, Piroska

    2015-01-01

    Nowdays, one of the most challenges for the researchers is the formulation of poorly water soluble drugs. Reduction of particle size of active agents to submicron range could result in a faster dissolution rate and higher bioavailability. Integration as crystallization process is an often used particle size decreasing technique. The aim of this study was to show the theoretical background and practical application of the electros pray crystallization as an innovative particle size decreasing technique. Our model drug was the niflumic acid (NIF), which belongs to the BCS Class II. After the optimization of the process parameters, the physico-chemical properties of the samples were characterized. Particle size and shape were visualized by scanning electron microscopy (SEM). Crystalline state of NIF and the samples were investigated using differential scanning calorimetry (DSC) and X-ray powder diffraction. Physico-chemical properties were determined using dissolution test from simulated media. The electrospray crytallization resulted in particle size reduction but the aggregation of nanonized NIF crystals (NIF-nano) could not avoid without excipient. Aggregates with poor secondary forces are suitable for production of the interactive physical mixture. It was found that NIF-nano could be well distributed on the surface of the mannitol as carrier and the Poloxamer R protected the NIF-nano crystals (320 nm)from aggregation. Consequently, the physical mixture resulted in product with higher polarity, better wettability and faster dissolution rate of NIF as raw NIF or NIF-nano. PMID:26390735

  9. Thin Film Formation and Morphology of Electrosprayed Polydimethylsiloxane.

    PubMed

    Weiss, Florian M; Töpper, Tino; Osmani, Bekim; Deyhle, Hans; Kovacs, Gabor; Müller, Bert

    2016-04-01

    Low-voltage dielectric actuators (DEAs) can be fabricated using submicrometer-thin polydimethylsiloxane (PDMS) films. The two established techniques, namely spin coating and molecular beam deposition, however, are inappropriate to produce multistack DEAs in an efficient way. Therefore, we propose an alternative deposition technique, i.e., the alternating current electrospray deposition (ACESD) of 5 vol % PDMS in ethyl acetate solution and subsequent ultraviolet light curing. Atomic force microscopy makes possible the three-dimensional analysis of cured droplet-like islands. These circular islands, prepared on 2 in. Si(100) wafers from four polymers with molecular masses between 800 and 62 700 g/mol, reveal a characteristic morphology with an increasing height-to-diameter ratio. Using the 6000 g/mol polymer for ACESD, the film morphology evolution was tracked by applying conventional optical microscopy and spectroscopic ellipsometry. When the deposition was terminated after 13 s, circular islands with a mean height of 30 nm were found, while terminating the deposition after about 155 s led to a confluent layer with a mean height of 91 ± 10 nm. Potential electrostatic interactions between the droplets could not be identified through the analysis of spatial island distribution. Nevertheless, ACESD is a budget-priced and competitive deposition technique that can be employed to fabricate submicrometer-thin PDMS films with true nanometer roughness. PMID:26978236

  10. Electrosprayed 4-carboxybenzenesulfonamide-chitosan microspheres for acetazolamide delivery.

    PubMed

    Suvannasara, Phruetchika; Siralertmukul, Krisana; Muangsin, Nongnuj

    2014-03-01

    4-Carboxybenzensulfonamide-chitosan (4-CBS-chitosan) microspheres were prepared by electrospraying with acetazolamide (ACZ) as a model drug. The obtained 4-CBS-chitosan microspheres with or without ACZ-loading were characterized by Fourier transform infrared spectroscopy, differential scanning colorimetry, scanning electron microscopy and particle size analyses. The crystalline form and the stability of ACZ in a basic solution was determined using X-ray single crystal analysis. 4-CBS-chitosan had 90% encapsulation efficiency for ACZ compared to 47% of encapsulation efficiency (EE) obtained from native chitosan, forming 3.1 μm diameter microspheres with a low polydispersity index (0.4). After an initial burst release (58% in 5 min), ACZ-loaded 4-CBS-chitosan gave a sustained release of ACZ (∼ 100% over 3h) in simulated gastric fluid (0.1N HCl; pH 1.2), which was better than that seen for the release from ACZ-loaded chitosan (44% over 1.5h). Thus, 4-CBS-chitosan microspheres are a possible drug carrier in acidic conditions, such as at the gastric mucosal wall. PMID:24360896

  11. A New Electrospray Aerosol Generator with High Particle Transmission Efficiency.

    PubMed

    Fu, Huijing; Patel, Anand C; Holtzman, Michael J; Chen, Da-Ren

    2011-01-01

    A new single-capillary electrospray (ES) aerosol generator has been developed for monodisperse particle production with maximal transmission efficiency. The new generator consists of both a spray chamber in a point-to-orifice-plate configuration and a charge reduction chamber that can hold up to 4 Nuclespot ionizers (Model P-2042, NRD Inc.). The 2 chambers are partitioned by an orifice plate. To optimize the particle transmission efficiency of the prototype, a systematic study was performed on the generator by varying the system setup and operation. Two key dimensions of the generator setup, the orifice diameter and the distance from the capillary tip to the orifice plate, were varied. Fluorescence analysis was applied to characterize the loss of ES-generated particles at different locations of the prototype. It was found that particle loss in the generator could be reduced by either increasing the orifice diameter or decreasing the distance between the capillary tip and the orifice plate. Increasing either the total radioactivity of the ionizers or the flowrate of the particle carrier gas also further decreased the particle loss in the system. The maximum particle transmission efficiency of 88.0% was obtained with the spray chamber fully opened to the charge reduction chamber, the capillary tip at the same level as the orifice plate, and 4 bipolar ionizers installed. PMID:22829715

  12. Formation of enriched black tea extract loaded chitosan nanoparticles via electrospraying

    NASA Astrophysics Data System (ADS)

    Hammond, Samuel James

    Creating nanoparticles of beneficial nutraceuticals and pharmaceuticals has had a large surge of research due to the enhancement of absorption and bioavailability by decreasing their size. One of these ways is by electrohydrodynamic atomization, also known as electrospraying. In general, this novel process is done by forcing a liquid through a capillary nozzle and which is subjected to an electrical field. While there are different ways to create nanoparticles, the novel method of electrospraying can be beneficial over other types of nanoparticle formation. Reasons include high control over particle size and distribution by altering electrospray parameters (voltage, flow rate, distance, and time), higher encapsulation efficiency than other methods, and also it is a one step process without exposure to extreme conditions (Gomez-Estaca et. al. 2012, Jaworek and Sobcyzk 2008). The current study aimed to create a chitosan encapsulated theaflavin-2 enriched black tea extract (BTE) nanoparticles via electrospraying. The first step of this process was to create the smallest chitosan nanoparticles possible by altering the electrospray parameters and the chitosan-acetic acid solution parameters. The solution properties altered include chitosan molecular weight, acetic acid concentration, and chitosan concentration. Specifically, the electrospray parameters such as voltage, flow rate and distance from syringe to collector are the most important in determining particle size. After creating the smallest chitosan particles, the TF-2 enriched black tea extract was added to the chitosan-acetic acid solution to be electrosprayed. The particles were assessed with the following procedures: Atomic force microscopy (AFM) and scanning electron microscopy (SEM) for particle morphology and size, and loading efficiency with ultraviolet--visible spectrophotometer (UV-VIS). Chitosan-BTE nanoparticles were successfully created in a one step process. Diameter of the particles on average

  13. A study of the non-covalent interaction between flavonoids and DNA triplexes by electrospray ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wan, Cuihong; Cui, Meng; Song, Fengrui; Liu, Zhiqiang; Liu, Shuying

    2009-06-01

    The binding interactions of 22 flavonoids (9 aglycones and 13 glycosides) with DNA triplexes were investigated using electrospray ionization mass spectrometry (ESI-MS). The results revealed that the hydroxyl positions of aglycones, the locations and numbers of saccharide, as well as the aglycone skeletons play roles in the triplex-binding properties of flavonoids. The presence of 3-OH, or 3'-OH, or replacement of 4'-OH with methoxy group in aglycones decreased the fraction of bound DNA sharply. Flavonoid glycosides exhibit higher binding affinities towards the DNA triplexes than their aglycone counterparts. Glycosylations of flavones at the 8-C position and isoflavones at the 7-O position show higher binding affinities than those on the other positions of ring A of aglycones. Glycosylation with a disaccharide on C3 position of flavonol results in higher binding affinity than that with monosaccharide. Flexibility of the ring B is favorable for its interaction with DNA triplex. According to sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments, glycosylation and non-planarity of flavonoid aglycones lead to different dissociation pathways of the flavonoid/triplex complexes. The differences between dissociation patterns suggest different DNA-binding modes or DNA-binding affinities. Although the exact binding geometry of the flavonoid-triplex complexes cannot be specified, the results may be helpful for understanding the triplex-binding properties of flavonoids and give a clue to design of triplex-binding ligands.

  14. Are liquid chromatography/electrospray tandem quadrupole fragmentation ratios unequivocal confirmation criteria?

    PubMed

    Kaufmann, Anton; Butcher, Patrick; Maden, Kathryn; Widmer, Mirjam; Giles, Kevin; Uría, Diana

    2009-04-01

    Multiple reaction monitoring (MRM) ratios as provided by tandem mass spectrometers are used to confirm positive residue findings (e.g. veterinary drugs or pesticides). The Commission Decision 2002/657/EEC defines tolerance levels for MRM ratios, which are intended to prevent the reporting of false positives. This paper reports findings where blank sample extracts have been spiked by a drug (difloxacin) and the corresponding measured MRM ratios significantly deviated from MRM ratios observed in matrix-free solution. The observation was explained by the formation of two different [M+H](+) analyte ions within the electrospray ionization (ESI) interface. These two ions vary only by the site of analyte protonation. Since they are isobaric, they are equally transmitted through the first quadrupole, but are differently fragmented in the collision chamber. The existence of two isobaric ions was deduced by statistical data and the observation of a doubly charged analyte ion. It was hypothesized that the combined presence of [M+H](+) and [M+2H](2+) implies the existence of two different singly charged ion species differing only by the site of protonation. Low- and high-energy interface-induced fragmentation was performed on the samples. The surviving precursor ion population was mass selected and again fragmented in the collision chamber. Equal product ion spectra would be expected. However, very different product ion spectra were observed for the two interface regimes. This is consistent with the assumption that the two postulated isobaric precursor ions show different stability in the interface. Hence the abundance ratio among the two types of surviving precursor ions will shift and change the resulting product ion spectra. The existence of the postulated singly charged ions with multiple chargeable sites was finally confirmed by successful ion mobility separation. PMID:19241450

  15. Fabrication of Polymeric Coatings with Controlled Microtopographies Using an Electrospraying Technique.

    PubMed

    Guo, Qiongyu; Mather, Jason P; Yang, Pine; Boden, Mark; Mather, Patrick T

    2015-01-01

    Surface topography of medical implants provides an important biophysical cue on guiding cellular functions at the cell-implant interface. However, few techniques are available to produce polymeric coatings with controlled microtopographies onto surgical implants, especially onto implant devices of small dimension and with complex structures such as drug-eluting stents. Therefore, the main objective of this study was to develop a new strategy to fabricate polymeric coatings using an electrospraying technique based on the uniqueness of this technique in that it can be used to produce a mist of charged droplets with a precise control of their shape and dimension. We hypothesized that this technique would allow facile manipulation of coating morphology by controlling the shape and dimension of electrosprayed droplets. More specifically, we employed the electrospraying technique to coat a layer of biodegradable polyurethane with tailored microtopographies onto commercial coronary stents. The topography of such stent coatings was modulated by controlling the ratio of round to stretched droplets or the ratio of round to crumped droplets under high electric field before deposition. The shape of electrosprayed droplets was governed by the stability of these charged droplets right after ejection or during their flight in the air. Using the electrospraying technique, we achieved conformal polymeric coatings with tailored microtopographies onto conductive surgical implants. The approach offers potential for controlling the surface topography of surgical implant devices to modulate their integration with surrounding tissues. PMID:26090663

  16. Electrospray deposition of carbon nanotube thin films for flexible transparent electrodes.

    PubMed

    Meng, Yinan; Xin, Guoqing; Nam, Jaewook; Cho, Sung Min; Chae, Heeyeop

    2013-09-01

    Flexible transparent carbon nanotube (CNT) electrodes were fabricated by electrospray deposition, a large-area scalable and cost-effective process. The carbon nanotubes were dispersed in N,N-dimethylformamide (DMF) and deposited on polyethylene terephthalate (PET) substrates by electrospray deposition process at room temperature and atmospheric pressure. Major process variables were characterized and optimized for the electrospray process development such as electric field between nozzle and substrates, CNT solution flowrate, gap between nozzle and substrates, solution concentration, solvent properties and surface temperature. The sheet resistance of the electrospray deposited CNT films were reduced by HNO3 doping process. 169 Omega/sq sheet resistance and 86% optical transmittance was achieved with low surface roughness of 1.2 nm. The films showed high flexibility and transparency, making them potential replacements of ITO or ZnO in such as solid state lighting, touch panels, and solar cells. Electrospray process is a scalable process and we believe that this process can be applied for large area carbon nanotube film formation. PMID:24205613

  17. Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies.

    PubMed

    Malik, Salman A; Ng, Wing H; Bowen, James; Tang, Justin; Gomez, Alessandro; Kenyon, Anthony J; Day, Richard M

    2016-04-01

    Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol. PMID:26803601

  18. Elastomeric Microchip Electrospray Emitter for Stable Cone-Jet Mode Operation in the Nanoflow Regime.

    SciTech Connect

    Kelly, Ryan T.; Tang, Keqi; Irimia, Daniel; Toner, Mehmet; Smith, Richard D.

    2008-05-15

    Despite widespread interest in applying lab-on-a-chip technologies to mass spectrometry (MS)-based analyses, the coupling of microfluidics to electrospray ionization (ESI)-MS remains challenging. We report a robust, integrated poly(dimethylsiloxane) microchip interface for ESI-MS using simple and widely accessible microfabrication procedures. The interface uses an auxiliary channel to provide electrical contact in the Taylor cone of the electrospray without sample loss or dilution. The electric field at the channel terminus is enhanced by two vertical cuts that cause the interface to taper to a line rather than to a point, and the formation of small Taylor cones at the channel exit ensures sub-nL post-column dead volumes. While comparable ESI-MS sensitivities were achieved using both microchip and conventional fused silica capillary emitters, stable cone-jet mode electrospray could be established over a far broader range of flow rates (from 50–1000 nL/min) and applied potentials using the microchip emitters. This special feature of the microchip emitter should minimize the fine tuning required for electrospray optimization and make the stable electrospray more resistant to external perturbations.

  19. Controlling microencapsulation and release of micronized proteins using poly(ethylene glycol) and electrospraying.

    PubMed

    Bock, Nathalie; Dargaville, Tim R; Woodruff, Maria A

    2014-07-01

    The fabrication of tailored microparticles for delivery of therapeutics is a challenge relying upon a complex interplay between processing parameters and materials properties. The emerging use of electrospraying allows better tailoring of particle morphologies and sizes than current techniques, critical to reproducible release profiles. While dry encapsulation of proteins is essential for the release of active therapeutics from microparticles, it is currently uncharacterized in electrospraying. To this end, poly(ethylene glycol) (PEG) was assessed as a micronizing and solubilizing agent for dry protein encapsulation and release from electrosprayed particles made from polycaprolactone (PCL). The physical effect of PEG in protein-loaded poly(lactic-co-glycolic acid) (PLGA) particles was also studied, for comparison. The addition of 5-15 wt% PEG 6 kDa or 35 kDa resulted in reduced PCL particle sizes and broadened distributions, which could be improved by tailoring the electrospraying processing parameters, namely by reducing polymer concentration and increasing flow rate. Upon micronization, protein particle size was reduced to the micrometer domain, resulting in homogenous encapsulation in electrosprayed PCL microparticles. Microparticle size distributions were shown to be the most determinant factor for protein release by diffusion and allowed specific control of release patterns. PMID:24657821

  20. Fabrication of Polymeric Coatings with Controlled Microtopographies Using an Electrospraying Technique

    PubMed Central

    Guo, Qiongyu; Mather, Jason P.; Yang, Pine; Boden, Mark; Mather, Patrick T.

    2015-01-01

    Surface topography of medical implants provides an important biophysical cue on guiding cellular functions at the cell-implant interface. However, few techniques are available to produce polymeric coatings with controlled microtopographies onto surgical implants, especially onto implant devices of small dimension and with complex structures such as drug-eluting stents. Therefore, the main objective of this study was to develop a new strategy to fabricate polymeric coatings using an electrospraying technique based on the uniqueness of this technique in that it can be used to produce a mist of charged droplets with a precise control of their shape and dimension. We hypothesized that this technique would allow facile manipulation of coating morphology by controlling the shape and dimension of electrosprayed droplets. More specifically, we employed the electrospraying technique to coat a layer of biodegradable polyurethane with tailored microtopographies onto commercial coronary stents. The topography of such stent coatings was modulated by controlling the ratio of round to stretched droplets or the ratio of round to crumped droplets under high electric field before deposition. The shape of electrosprayed droplets was governed by the stability of these charged droplets right after ejection or during their flight in the air. Using the electrospraying technique, we achieved conformal polymeric coatings with tailored microtopographies onto conductive surgical implants. The approach offers potential for controlling the surface topography of surgical implant devices to modulate their integration with surrounding tissues. PMID:26090663

  1. Multistage Reactive Transmission-Mode Desorption Electrospray Ionization Mass Spectrometry.

    PubMed

    Peters, Kevin C; Comi, Troy J; Perry, Richard H

    2015-09-01

    Elucidating reaction mechanisms is important for advancing many areas of science such as catalyst development. It is often difficult to probe fast reactions at ambient conditions with high temporal resolution. In addition, systems involving reagents that cross-react require analytical methods that can minimize interaction time and specify their order of introduction into the reacting system. Here, we explore the utility of transmission mode desorption electrospray ionization (TM-DESI) for reaction monitoring by directing a microdroplet spray towards a series of meshes with micrometer-sized openings coated with reagents, an approach we call multistage reactive TM-DESI (TM (n) -DESI, where n refers to the number of meshes; n = 2 in this report). Various stages of the reaction are initiated at each mesh surface, generating intermediates and products in microdroplet reaction vessels traveling towards the mass spectrometer. Using this method, we investigated the reactivity of iron porphyrin catalytic hydroxylation of propranolol and other substrates. Our experimental results indicate that TM (n) -DESI provides the ability to spatially separate reagents and control their order of introduction into the reacting system, thereby minimizing unwanted reactions that lead to catalyst deactivation and degradation products. In addition, comparison with DESI-MS analyses (the Zare and Latour laboratories published results suggesting accessible reaction times <1 ms) of the reduction of dichlorophenolindophenol by L-ascorbic acid suggest that TM (1) -DESI can access reaction times less than 1 ms. Multiple meshes allow sequential stages of desorption/ionization per MS scan, increasing the number of analytes and reactions that can be characterized in a single experiment. PMID:26091888

  2. Electrospray ionization mass spectrometry and its environmental applications

    SciTech Connect

    Long, J.M.

    1993-01-01

    An electrospray ionization (ESI) source was designed, fabricated and then installed on a VG TRIO-2 quadrupole mass spectrometer. A gold coated 50-[mu]m fused silica capillary was used instead of the conventional stainless steel needle. Analytes are desorbed into the gas phase via a heated metal transport capillary and are focused through a set of five electrostatic lenses into the analyzer region of the mass spectrometer. Environmentally significant compounds such as pesticides and herbicides that are polar, nonvolatile and thermally labile are not readily analyzed by conventional gas chromatography/mass spectrometry (GC/MS). Thirty pesticides from the 13 classes of carbamate, organophosphorus, organochlorine, bipyridyl, phthalimide, urea, carboxyllic acid, hydroxycoumarin, triazine, indandione, dinitroaniline, pyrethrin, and thiocarbamate were analyzed using this method. Analysis of these samples showed that addition of acid to the neat sample did not appreciably increase the protonated analyte signal nor the total ion current for any of the samples analyzed. This observation together with the extremely low pKa values of these pesticides, calculated by SPARC, indicates that the protonated analytes are formed in the gas rather than in the condensed phase. Sodium and ammonium ions were added to these pesticides but in no case was the total ion current increased over that from the neat sample. Solvent studies showed that 50/50 mixtures of methanol/water and acetonitrile/water are both suitable solvent systems but that a methanol fraction of 30% appears to be ideal for some of the pesticides studied. Evidence of radical cation formation was observed when pure acetonitrile was used. It was demonstrated, by spiking 5 carbamate pesticides into Yellowstone River water, that ESI/MS by the direct injection method is a potential candidate as a rapid screening method for pesticides in natural waters.

  3. Gas phase salt clusters from electrosprayed alkaline earth colloids

    NASA Astrophysics Data System (ADS)

    Pope, R. Marshall; Shen, Nanzhu; Nicoll, Jeremy; Tarnawiecki, Boris; Dejsupa, Chadin; Dearden, David V.

    1997-03-01

    Several distributions of small polynuclear ions of general form [nM + mA + pS]q+ (where M represents an alkaline earth cation (Mg, Ca, Sr or Ba), n = 2-10, A represents a halide, acetate or nitrate counterion originating in the divalent salt, and S represents an acetic acid or methanol adduct) are detected by FTICR when water/methanol solutions of alkaline earth salts are electrosprayed. For example, the largest cluster ion derived from 6.3 mM solutions of calcium acetate acidified with 2%x acetic acid have n= 10, m = 18, p = 5 and q = 2. Characteristics of these solutions suggest the presence of colloidal dispersions. These characteristics include stability upon aging, light scattering response and the requisite pre-etching of the glass containers. Aqueous mixtures of two group II salts produce mixed-salt cluster ions. For instance, from a mixture of calcium and magnesium acetate we trap mixed-cation clusters characterized by a complete set of binary partitions of n, for n = 2-6. Specifically, the manifold of clusters with four cations contains 4:0, 3:1, 2:2, 1:3 and 0:4 ratios of magnesium to calcium. Isolated alkaline earth clusters react with a low-pressure background of 18-crown-6 (C6) by salt abstraction exclusively. In general, the more facile abstraction from a mixed cluster produces a pair of products in which the neutral conforms to the hard-soft acid-base principle. The reactions of C6 with [MgSr(OAc)3]+ provide evidence for the existence of isomeric clusters at m/z 289. This is supported by bimodal kinetics and preliminary results of ab initio calculations.

  4. Surface effects and electrochemical cell capacitance in desorption electrospray ionization.

    PubMed

    Volný, Michael; Venter, Andre; Smith, Scott A; Pazzi, Marco; Cooks, R Graham

    2008-04-01

    Time resolved measurements show that during a desorption electrospray ionization (DESI) experiment, the current initially rises sharply, followed by an exponential decrease to a relatively steady current. When the high voltage on the spray emitter is switched off, the current drops to negative values, suggesting that the direction of current flow in the equivalent DESI circuit is reversed. These data demonstrate that the DESI source behaves as a dc capacitor and that the addition of a surface between the sprayer and the counter electrode in DESI introduces a new electrically active element into the system. The charging and discharging behavior was observed using different surfaces and it could be seen both by making current measurements on a plate at the entrance to the mass spectrometer as well as by measuring ion current in the linear ion trap within the vacuum system of the mass spectrometer. The magnitude of the steady state current obtained without analyte present on the surface is different for different surface materials, and different capacitor time constants of the equivalent RC circuits were calculated for different DESI surfaces. The PTFE surface has by far the greatest time constant and is also able to produce the highest DESI currents. Surface properties play a crucial role in charge transfer during DESI in addition to the effects of the chemical properties of the analyte. It is suggested that surface energy (wettability) is an important factor controlling droplet behavior on the surface. The experimental data are correlated with critical surface tension values of different materials. It is proposed, based on the results presented, that super-hydrophobic materials with extremely high contact angles have the potential to be excellent DESI substrates. It is also demonstrated, using the example of the neurotransmitter dopamine, that the surface charge that develops during a DESI-MS experiment can cause electrochemical oxidation of the analyte. PMID

  5. Infrared Laser Ablation Sample Transfer for MALDI and Electrospray

    NASA Astrophysics Data System (ADS)

    Park, Sung-Gun; Murray, Kermit King

    2011-08-01

    We have used an infrared laser to ablate materials under ambient conditions that were captured in solvent droplets. The droplets were either deposited on a MALDI target for off-line analysis by MALDI time-of-flight mass spectrometry or flow-injected into a nanoelectrospray source of an ion trap mass spectrometer. An infrared optical parametric oscillator (OPO) laser system at 2.94 μm wavelength and approximately 1 mJ pulse energy was focused onto samples for ablation at atmospheric pressure. The ablated material was captured in a solvent droplet 1-2 mm in diameter that was suspended from a silica capillary a few millimeters above the sample target. Once the sample was transferred to the droplet by ablation, the droplet was deposited on a MALDI target. A saturated matrix solution was added to the deposited sample, or in some cases, the suspended capture droplet contained the matrix. Peptide and protein standards were used to assess the effects of the number of IR laser ablation shots, sample to droplet distance, capture droplet size, droplet solvent, and laser pulse energy. Droplet collected samples were also injected into a nanoelectrospray source of an ion trap mass spectrometer with a 500 nL injection loop. It is estimated that pmol quantities of material were transferred to the droplet with an efficiency of approximately 1%. The direct analysis of biological fluids for off-line MALDI and electrospray was demonstrated with blood, milk, and egg. The implications of this IR ablation sample transfer approach for ambient imaging are discussed.

  6. Evidence For The Tongue of Ionisation In The Winter Dayside Ionosphere Over Svalbard

    NASA Astrophysics Data System (ADS)

    Pryse, S. E.; Sims, R. W.; Moen, J.

    Results are presented from a multi-instrument investigation of the dayside ionosphere at high latitudes, under conditions of Bz<0, that provide evidence for the tongue- of-ionisation (TOI) in winter over Svalbard. The TOI, transporting photoionisation from sub-auroral latitudes into the polar cap, has been identified in three successive tomography images at latitudes on the equatorward edge of the auroral region in the post-noon sector. Simultaneous observations by the ESR incoherent scatter radar re- veal cold plasma of increased density in the vicinity of the throat region where the TOI enters the polar cap. Supporting evidence for the feature is provided by optical emissions measured by meridian scanning photometers, together with plasma drift and particle observations from DMSP satellites. The observations are discussed in light of earlier modelling studies of the TOI.

  7. The risk of childhood leukaemia following exposure to ionising radiation--a review.

    PubMed

    Wakeford, Richard

    2013-03-01

    Since the early years of follow-up of the Japanese atomic-bomb survivors, it has been apparent that childhood leukaemia has a particular sensitivity to induction by ionising radiation, the excess relative risk (ERR) being expressed as a temporal wave with time since exposure. This pattern has been generally confirmed by studies of children treated with radiotherapy. Case-control studies of childhood leukaemia and antenatal exposure to diagnostic x-rays, a recent large cohort study of leukaemia following CT examinations of young people, and a recent large case-control study of natural background γ-radiation and childhood leukaemia have found evidence of raised risks following low-level exposure. These findings indicate that an ERR/Sv for childhood leukaemia of ~50, which may be derived from risk models based upon the Japanese atomic-bomb survivors, is broadly applicable to low dose or low dose-rate exposure circumstances. PMID:23296257

  8. The perturbation correction factor of ionisation chambers in beta-radiation fields.

    PubMed

    Böhm, J

    1980-01-01

    In determining the absorbed dose in a solid medium by means of gas-filled ionisation chambers, the perturbation of the radiation field by the chamber needs to be taken into account. So far, an appropriate correction factor has neither been calculated nor measured for beta-radiation. This work describes its experimental determination for an extrapolation chamber and beta-radiation fields of 147Pm, 204Tl, and 90Sr + 90Y. The results show that the correction factor may be assumed to be the product of a shield factor and a scatter factor the magnitudes of which depend on the chamber geometry and the radiation field. The change of the perturbation correction factor with phantom depth is important for the measurement of depth dose curves. This is demonstrated by an example. PMID:7360793

  9. Laser Ablation/Ionisation Mass Spectrometry: Sensitive and Quantitative Chemical Depth Profiling of Solid Materials.

    PubMed

    Riedo, Andreas; Grimaudo, Valentine; Moreno-García, Pavel; Neuland, Maike B; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-01-01

    Direct quantitative and sensitive chemical analysis of solid materials with high spatial resolution, both in lateral and vertical direction is of high importance in various fields of analytical research, ranging from in situ space research to the semiconductor industry. Accurate knowledge of the chemical composition of solid materials allows a better understanding of physical and chemical processes that formed/altered the material and allows e.g. to further improve these processes. So far, state-of-the-art techniques such as SIMS, LA-ICP-MS or GD-MS have been applied for chemical analyses in these fields of research. In this report we review the current measurement capability and the applicability of our Laser Ablation/Ionisation Mass Spectrometer (instrument name LMS) for the chemical analysis of solids with high spatial resolution. The most recent chemical analyses conducted on various solid materials, including e.g. alloys, fossils and meteorites are discussed. PMID:27131112

  10. Preparation of (K:Eu) NaSO4 phosphor for lyoluminescence dosimetry of ionising radiation.

    PubMed

    Dhoble, S J

    2002-01-01

    Gamma ray dosimetry using lyoluminescence is a low cost and simple system. As sulphate based phosphors are used for TL radiation dosimetry they therefore seem to be a promising material for LL gamma ray dosimetry. A study on LL properties of Eu activated KNaSO4 and K3Na(SO4)2 gamma irradiated materials is reported. Eu doped KNaSO4 shows maximum LL yield in the above system. It shows a linear response from 0.06 to 10 C.kg(-1) and there is not much fading of LL intensity, indicating the phosphor to be suitable as a lyoluminescence dosimetry phosphor of ionising radiation. The doped Eu ion acts as an activator and thus enhances the LL intensity of the phosphor. PMID:12382879

  11. Carrier-envelope phase effects in few-cycle ionisation of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Kielpinski, David; Wallace, W. C.; Pullen, M. G.; Ghafur, O.; Laban, D. E.; Palmer, A. J.; Hanne, G. F.; Grum-Grzhimailo, A. N.; Bartschat, K.; Ivanov, I. A.; Kheifets, A. S.; Tong, X.-M.; Quiney, H. M.; Litvinyuk, I. V.; Sang, R. T.

    2012-06-01

    The control of strong-field photoionization with laser carrier-envelope phase (CEP) is the key enabling technique for attosecond science. Currently, quantitatively accurate ab initio simulations of this process can only be carried out for atomic hydrogen. We have observed CEP effects in the above-threshold ionisation of atomic hydrogen for the first time. The modulation due to CEP is mapped over a wide range of laser intensity and electron energy. The data is compared with ab initio simulations for the time dependent Schr"odinger equation carried out using three separate methodologies, as well as a semi-ab initio simulation method. We find reasonable agreement between experiment and all simulations over the entire sampled parameter space. Our results point the way toward accurate calibration of absolute laser CEP by means of the uniquely calculable hydrogen system.

  12. Application of Lithium Attachment Mass Spectrometry for Knudsen Evaporation and Chemical Ionisation Mass Spectrometry (KEMS, CIMS)

    NASA Astrophysics Data System (ADS)

    Bannan, T.; Booth, M.; Benyezzar, M.; Bacak, A.; Alfarra, M. R. R.; Topping, D. O.; Percival, C.

    2015-12-01

    Lithium ion attachment mass spectrometry provides a non-specific, non-fragmenting and sensitive method for detection of volatile species in the gas phase. The design, manufacture, and results from lithium ion attachment ionisation sources for two mass spectrometry systems are presented. Trace gas analysis is investigated using a modified Chemical Ionization Mass Spectrometer (CIMS) and vapour pressure (VP) measurements using a modified Knudsen Effusion Mass Spectrometer (KEMS) are presented. The Li+ modified CIMS provided limits of detection of 4 ppt for acetone, 0.2 ppt for formic acid, 15 ppt for nitric acid and 120 ppt from ammonia. Despite improvements, the problem of burnout remained persistent. The Li+ CIMS would unlikely be suitable for field or aircraft work, but could be appropriate for certain lab applications. The KEMS currently utilizes an electron impact (EI) ionisation source which provides a highly sensitive source, with the drawback of fragmentation of ionized molecules (Booth et al., 2009). Using Li+ KEMS the VP of samples can be measured without fragmentation and can therefore be used to identify VPs of individual components in mixtures. The validity of using Li+ for determining the VP of mixtures was tested by making single component VP measurements, which showed good agreement with EI measurements of Poly ethylene glycol (PEG) 3 and PEG 4, both when individually measured and when mixed. The Li+ KEMS was then used to investigate a system of atmospheric relevance, α-pinene secondary organic aerosol, generated in a reaction chamber (Alfarra et al., 2012). The VPs of the individual components from this generated sample are within the range we expect for compounds capable of partitioning between the particle and gas phase of an aerosol (0.1-10-5 Pa). Li+ source has a calculated sensitivity approximately 75 times less than that of EI, but the lack of fragmentation using the Li+ source is a significant advantage.

  13. Application of Lithium Attachment Mass Spectrometry for Knudsen Evaporation and Chemical Ionisation Mass Spectrometry (KEMS, CIMS)

    NASA Astrophysics Data System (ADS)

    Bannan, Thomas; Booth, A. Murray; Alfarra, Rami; Bacak, Asan; Pericval, Carl

    2016-04-01

    Lithium ion attachment mass spectrometry provides a non-specific, non-fragmenting and sensitive method for detection of volatile species in the gas phase. The design, manufacture, and results from lithium ion attachment ionisation sources for two mass spectrometry systems are presented. Trace gas analysis is investigated using a modified Chemical Ionization Mass Spectrometer (CIMS) and vapour pressure (VP) measurements using a modified Knudsen Effusion Mass Spectrometer (KEMS) are presented. The Li+ modified CIMS provided limits of detection of 4 ppt for acetone, 0.2 ppt for formic acid, 15 ppt for nitric acid and 120 ppt from ammonia. Despite improvements, the problem of burnout remained persistent. The Li+ CIMS would unlikely be suitable for field or aircraft work, but could be appropriate for certain lab applications. The KEMS currently utilizes an electron impact (EI) ionisation source which provides a highly sensitive source, with the drawback of fragmentation of ionized molecules (Booth et al., 2009). Using Li+ KEMS the VP of samples can be measured without fragmentation and can therefore be used to identify VPs of individual components in mixtures. The validity of using Li+ for determining the VP of mixtures was tested by making single component VP measurements, which showed good agreement with EI measurements of Poly ethylene glycol (PEG) 3 and PEG 4, both when individually measured and when mixed. The Li+ KEMS was then used to investigate a system of atmospheric relevance, α-pinene secondary organic aerosol, generated in a reaction chamber (Alfarra et al., 2012). The VPs of the individual components from this generated sample are within the range we expect for compounds capable of partitioning between the particle and gas phase of an aerosol (0.1-10-5 Pa). Li+ source has a calculated sensitivity approximately 75 times less than that of EI, but the lack of fragmentation using the Li+ source is a significant advantage.

  14. Enhanced Diagnostic Yields of Bacteremia and Candidemia in Blood Specimens by PCR-Electrospray Ionization Mass Spectrometry

    PubMed Central

    Laffler, Thomas G.; Cummins, Lendell L.; McClain, Colt M.; Quinn, Criziel D.; Toro, Michelle A.; Carolan, Heather E.; Toleno, Donna M.; Rounds, Megan A.; Eshoo, Mark W.; Stratton, Charles W.; Sampath, Rangarajan; Blyn, Lawrence B.; Ecker, David J.

    2013-01-01

    A prospective study was performed to determine the value of direct molecular testing of whole blood for detecting the presence of culturable and unculturable bacteria and yeasts in patients with suspected bloodstream infections. A total of 464 adult and pediatric patients with positive blood cultures matched with 442 patients with negative blood cultures collected during the same period were recruited during a 10-month study. PCR amplification coupled with electrospray ionization mass spectrometry (PCR-ESI-MS) plus blood culture reached an overall agreement of 78.6% in the detection and species-level identification of bacterial and candidal pathogens. Of 33 culture-negative/PCR-ESI-MS-positive specimens, 31 (93.9%) were judged to be truly bacteremic and/or candidemic based on a medical chart review and analytical metrics. Among the 15 culture-positive specimens in which PCR-ESI-MS detected additional bacterial or yeast species, 66.7% and 20.0% of the additional positive specimens by PCR-ESI-MS were judged to be truly or possibly bacteremic and/or candidemic, respectively. Direct analysis of blood samples by PCR-ESI-MS rapidly detects bacterial and yeast pathogens in patients with bloodstream infections. When used in conjunction with blood culture, PCR-ESI-MS enhances the diagnostics of septicemia by shortening test turnaround time and improving yields. PMID:23966503

  15. Investigation of the Impact of Desorption Electrospray Ionization Sprayer Geometry on Its Performance in Imaging of Biological Tissue.

    PubMed

    Tillner, Jocelyn; McKenzie, James S; Jones, Emrys A; Speller, Abigail V M; Walsh, James L; Veselkov, Kirill A; Bunch, Josephine; Takats, Zoltan; Gilmore, Ian S

    2016-05-01

    In this study, the impact of sprayer design and geometry on performance in desorption electrospray ionization mass spectrometry (DESI-MS) is assessed, as the sprayer is thought to be a major source of variability. Absolute intensity repeatability, spectral composition, and classification accuracy for biological tissues are considered. Marked differences in tissue analysis performance are seen between the commercially available and a lab-built sprayer. These are thought to be associated with the geometry of the solvent capillary and the resulting shape of the primary electrospray. Experiments with a sprayer with a fixed solvent capillary position show that capillary orientation has a crucial impact on tissue complex lipid signal and can lead to an almost complete loss of signal. Absolute intensity repeatability is compared for five lab-built sprayers using pork liver sections. Repeatability ranges from 1 to 224% for individual sprayers and peaks of different spectral abundance. Between sprayers, repeatability is 16%, 9%, 23%, and 34% for high, medium, low, and very low abundance peaks, respectively. To assess the impact of sprayer variability on tissue classification using multivariate statistical tools, nine human colorectal adenocarcinoma sections are analyzed with three lab-built sprayers, and classification accuracy for adenocarcinoma versus the surrounding stroma is assessed. It ranges from 80.7 to 94.5% between the three sprayers and is 86.5% overall. The presented results confirm that the sprayer setup needs to be closely controlled to obtain reliable data, and a new sprayer setup with a fixed solvent capillary geometry should be developed. PMID:27014929

  16. A study of inter-species ion suppression in electrospray ionization-mass spectrometry of some phospholipid classes.

    PubMed

    Khoury, Spiro; El Banna, Nadine; Tfaili, Sana; Chaminade, Pierre

    2016-02-01

    Phospholipid quantification in biological samples is crucial and is increasingly studied in lipidomics. Quantitative studies are often performed using commercially available standards of phospholipid classes in order to mimic the composition of biological samples. For this, studies are conducted by liquid chromatography coupled to electrospray ionization-mass spectrometry. In liquid chromatography coupled to mass spectrometry (LC-MS) analysis, the matrix components and the co-elution of several phospholipid species lead to the phenomenon of ion suppression. As a result, a decrease in the response of phospholipid species in mass spectrometry MS is observed. In fact, inter-species ion suppression affects the efficiency of phospholipid (PL) ionization and might also influence the quantitative results. The aim of this work is to study the PL inter-species ion suppression phenomenon in electrospray ionization (ESI)-mass spectrometry on a triple quadrupole TQ and an LTQ-Orbitrap in order to improve quantification in natural and biological samples. Thus, the phospholipid MS response was evaluated to study the effect of acyl chain length, the degree, and the position of unsaturation on acyl chain and the effect of the polar head group structure. A number of saturated and unsaturated phospholipid species and mixtures were analyzed in different ionization modes to a better understanding of inter-species ion suppression phenomenon. PL molecular species responded differently according to the length of fatty acid chains, the number of unsaturation, and the nature of the polar head group. Fatty acid chain length showed to have the most marked effect on MS response. PMID:26780707

  17. [Determination of 5 polyether antibiotics in chicken tissues by liquid chromatography-electrospray ionization tandem mass spectrometry].

    PubMed

    Liang, Chunlai; Cheng, Linli; Shen, Jianzhong; Zhang, Yujie; Zhang, Suxia

    2009-11-01

    A liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) method for the determination of 5 polyether antibiotics (lasalocid, salinomycin, monensin, narasin and maduramicin) in chicken tissues was developed. The polyether antibiotics were extracted from chicken tissues with methanol. The extract was evaporated to dry, and redissolved in hexane, then cleaned up on a Sep-Pak Silica solid-phase extraction cartridge. The target drugs were eluted with 6 mL methylene chloride-methanol (90:10, v/v), and the eluate was collected and dried under a gentle stream of nitrogen gas, then the residue was dissolved with 1 mL acetonitrile (containing 0.1% formic acid) and analyzed by LC-MS/MS. The LC separation was performed on a Symmetry Shield reversed phase C18 bonded silica column with acetonitrile (containing 0.1% formic acid)-0.1% formic acid (97:3, v/v) as mobile phase. The quantification was carried out by positive electrospray ionization and multiple reaction monitoring (MRM) mode. The validation was carried out on spiked chicken muscle (spiked at 0.1 -1500 microg/kg) and chicken liver (spiked at 0.2-4500 microg/kg), the average recoveries of target drugs ranged from 71.6%-99.1% with intra-day relative standard deviations (RSDs) of 3.2%-10.7% and inter-day RSDs of 4.6%-14.7%. The limits of quantification (LOQs) in chicken muscle and liver were 0.1-1.0 kg/kg. The results demonstrated that the sensitivity, accuracy and precision of this method meet the requirements of veterinary drug residue analysis. The method is applicable to detect 5 polyether antibiotics in chicken muscle and liver. PMID:20352937

  18. Release of Native-like Gaseous Proteins from Electrospray Droplets via the Charged Residue Mechanism: Insights from Molecular Dynamics Simulations.

    PubMed

    McAllister, Robert G; Metwally, Haidy; Sun, Yu; Konermann, Lars

    2015-10-01

    The mechanism whereby gaseous protein ions are released from charged solvent droplets during electrospray ionization (ESI) remains a matter of debate. Also, it is unclear to what extent electrosprayed proteins retain their solution structure. Molecular dynamics (MD) simulations offer insights into the temporal evolution of protein systems. Surprisingly, there have been no all-atom simulations of the protein ESI process to date. The current work closes this gap by investigating the behavior of protein-containing aqueous nanodroplets that carry excess positive charge. We focus on "native ESI", where proteins initially adopt their biologically active solution structures. ESI proceeds while the protein remains entrapped within the droplet. Protein release into the gas phase occurs upon solvent evaporation to dryness. Droplet shrinkage is accompanied by ejection of charge carriers (Na(+) for the conditions chosen here), keeping the droplet at ∼85% of the Rayleigh limit throughout its life cycle. Any remaining charge carriers bind to the protein as the final solvent molecules evaporate. The outcome of these events is largely independent of the initial protein charge and the mode of charge carrier binding. ESI charge states and collision cross sections of the MD structures agree with experimental data. Our results confirm the Rayleigh/charged residue model (CRM). Field emission of excess Na(+) plays an ancillary role by governing the net charge of the shrinking droplet. Models that envision protein ejection from the droplet are not supported. Most nascent CRM ions retain native-like conformations. For unfolded proteins ESI likely proceeds along routes that are different from the native state mechanism explored here. PMID:26325619

  19. Characterization of microstructured fibre emitters: in pursuit of improved nano electrospray ionization performance.

    PubMed

    Wu, Xinyun; Oleschuk, Richard D; Cann, Natalie M

    2012-09-21

    Full-dimensional computational fluid dynamics (CFD) simulations are presented for nano electrospray ionization (ESI) with various emitter designs. Our CFD electrohydrodynamic simulations are based on the Taylor-Melcher leaky-dielectric model, and the volume of fluid technique for tracking the fast-changing liquid-gas interface. The numerical method is first validated for a conventional 20 μm inner diameter capillary emitter. The impact of ESI voltage, flow rate, emitter tapering, surface hydrophobicity, and fluid conductivity on the nano-ESI behavior are thoroughly investigated and compared with experiments. Multi-electrospray is further simulated with 2-hole and 3-hole emitters with the latter having a linear or triangular hole arrangement. The simulations predict multi-electrospray behavior in good agreement with laboratory observations. PMID:22706328

  20. A Low-Waste Electrospray Method for Applying Chemicals and Finishing Agents to Textiles Zh

    SciTech Connect

    Alexander, D.A.; Zhang, X.

    1999-08-01

    This electrospray technology works by applying the desired chemicals onto a substrate as electrically generated, charged sprays. By imposing a potential difference between the application nozzle and the target, it is possible to precisely direct and control the spray. This electrospray method of application gives a small droplet size and a relatively uniform size distribution, with the added advantage of an easily controllable spray angle. It potentially offers substantial improvement over traditional methods in the area of application uniformity, resulting in improved product quality. Additionally, since the chemicals are electrically directed straight onto the fiber with a minimum of overspray, the electrospray method holds promise in the area of waste reduction, resulting in lowered production cost.

  1. Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids.

    PubMed

    Shiea, Jentaie; Huang, Min-Zon; Hsu, Hsiu-Jung; Lee, Chi-Yang; Yuan, Cheng-Hui; Beech, Iwona; Sunner, Jan

    2005-01-01

    A new method of electrospray-assisted laser desorption/ionization (ELDI) mass spectrometry, which combines laser desorption with post-ionization by electrospray, was applied to rapid analysis of solid materials under ambient conditions. Analytes were desorbed from solid metallic and insulating substrata using a pulsed nitrogen laser. Post-ionization produced high-quality mass spectra characteristic of electrospray, including protein multiple charging. For the first time, mass spectra of intact proteins were obtained using laser desorption without adding a matrix. Bovine cytochrome c and an illicit drug containing methaqualone were chosen in this study to demonstrate the applicability of ELDI to the analysis of proteins and synthetic organic compounds. PMID:16299699

  2. Titanium dioxide thin film deposited on flexible substrate by multi-jet electrospraying

    NASA Astrophysics Data System (ADS)

    Ni, Daihong; Yi, Wuming; Cao, Zhoubin; Gu, Wenhua

    2015-10-01

    Titanium dioxide thin film plays an important role in thin film solar cells, and has promising future in everyday applications including air cleaning and self-cleaning glass. With the concepts of flexible solar cells and wearable devices being more and more popular, there is increasing interest to coat titanium dioxide thin films on flexible substrates, such as aluminum foils. Many methods have been used to fabricate titanium dioxide thin films, such as dip-coating, spin coating, aerosol spray, plasma-assisted coating, electrospraying, and so on. Among them, electrospraying is especially suitable for thin film deposition on flexible substrates. This work reports fabrication of dense and uniform titanium dioxide thin films on glass as well as flexible aluminum foil using multi-jet electrospraying technique.

  3. Selective and sensitive detection of chromium(VI) in waters using electrospray ionization mass spectrometry.

    PubMed

    Weldy, Effie; Wolff, Chloe; Miao, Zhixin; Chen, Hao

    2013-09-01

    From 2000 through 2011, there were 14 criminal cases of violations of the Clean Water Act involving the discharge of chromium, a toxic heavy metal, into drinking and surface water sources. As chromium(VI), a potential carcinogen present in the environment, represents a significant safety concern, it is currently the subject of an EPA health risk assessment. Therefore, sensitive and selective detection of this species is highly desired. This study reports the analysis of chromium(VI) in water samples by electrospray ionization mass spectrometry (ESI-MS) following its reduction and complexation with ammonium pyrrolidinedithiocarbamate (APDC). The reduction and subsequent complexation produce a characteristic [Cr(III)O]-PDC complex which can be detected as a protonated ion of m/z 507 in the positive ion mode. The detection is selective to chromium(VI) under acidic pH, even in the presence of chromium(III) and other metal ions, providing high specificity. Different water samples were examined, including deionized, tap, and river waters, and sensitive detection was achieved. In the case of deionized water, quantification over the concentration range of 3.7 to 148ppb gave an excellent correlation coefficient of 0.9904 using the enhanced MS mode scan. Using the single-reaction monitoring (SRM) mode (monitoring the characteristic fragmentation of m/z 507 to m/z 360), the limit of detection (LOD) was found to be 0.25ppb. The LOD of chromium(VI) for both tap and river water samples was determined to be 2.0ppb. A preconcentration strategy using simple vacuum evaporation of the aqueous sample was shown to further improve the ESI signal by 15 fold. This method, with high sensitivity and selectivity, should provide a timely solution for the real-world analysis of toxic chromium(VI). PMID:23937937

  4. Extractive electrospray ionization mass spectrometry toward in situ analysis without sample pretreatment.

    PubMed

    Li, Ming; Hu, Bin; Li, Jianqiang; Chen, Rong; Zhang, Xie; Chen, Huanwen

    2009-09-15

    A homemade novel nanoextractive electrospray ionization (nanoEESI) source has been characterized for in situ mass spectrometric analysis of ambient samples without sample pretreatment. The primary ions generated using a nanospray emitter interact with the neutral sample plume created by manually nebulizing liquid samples, allowing production of the analyte ions in the spatial cross section of the nanoEESI source. The performance of nanoEESI is experimentally investigated by coupling the nanoEESI source to a commercial LTQ mass spectrometer for rapid analysis of various ambient samples using positive/negative ion detection modes. Compounds of interest in actual samples such as aerosol drug preparations, beverages, milk suspensions, farmland water, and groundwater were unambiguously detected using tandem nanoEESI ion trap mass spectrometry. The limit of detection was low picogram per milliliter levels for the compounds tested. Acceptable relative standard deviation (RSD) values (5-10%) were obtained for direct measurement of analytes in complex matrixes, providing linear dynamic signal responses using manual sample introduction. A single sample analysis was completed within 1.2 s. Requiring no sheath gas for either primary ion production or neutral sample introduction, the nanoEESI has advantages including readiness for miniaturization and integration, simple maintenance, easy operation, and low cost. The experimental data demonstrate that the nanoEESI is a promising tool for high-throughput, sensitive, quantitative, in situ analysis of ambient complex samples, showing potential applications for in situ analysis in multiple disciplines including but not limited to pharmaceutical analysis, food quality control, pesticides residue detection, and homeland security. PMID:19673501

  5. Electrospray liquid chromatography quadrupole ion trap mass spectrometry determination of phenyl urea herbicides in water.

    PubMed

    Draper, W M

    2001-06-01

    Phenyl urea herbicides were determined in water by electrospray quadrupole ion trap liquid chromatography-mass spectrometry (ES-QIT-LC-MS). Over a wide concentration range [M - H](-) and MH(+) ions were prominent in ES spectra. At high concentrations dimer and trimer ions appeared, and sodium, potassium, and ammonium adducts also were observed. In the case of isopturon, source collision-induced dissociation (CID) fragmentation with low offset voltages increased the ion current associated with MH(+) and diminished dimer and trimer ion abundance. In the mass analyzer CID involved common pathways, for example, daughter ions of [M - H](-) resulted from loss of R(2)NH in N',N'-dialkyl ureas or loss of C(3)H(5)NO(2) (87 amu) in N'-methoxy ureas. A 2 mm (i.d.) x 15 cm C(18) reversed phase column was used for LC-MS with a linear methanol/water gradient and 0.5 mL/min flow rate. Between 1 and 100 pg/microg/L the response was highly linear with instrument detection limits ranging from <10 to 50 pg injected. Whereas the positive ES signal intensity was greater for each of the compounds except fluometuron, negative ion monitoring gave the highest signal-to-noise ratio. Analysis of spiked Colorado River water, a source high in total dissolved solids and total organic carbon, demonstrated that ES-QIT-LC-MS was routinely capable of quantitative analysis at low nanogram per liter concentrations in conjunction with a published C(18) SPE method. Under these conditions experimental method detection limits were between 8.0 and 36 ng/L, and accuracy for measurements in the 20-50 parts per trillion range was from 77 to 96%. Recoveries were slightly lower in surface water (e.g., 39-76%), possibly due to suppression of ionization. PMID:11409961

  6. A new model for multiply charged adduct formation between peptides and anions in electrospray mass spectrometry.

    PubMed

    Liu, Xiaohua; Cole, Richard B

    2011-12-01

    A new model has been developed to account for adduct formation on multiply charged peptides observed in negative ion electrospray mass spectrometry. To obtain a stable adduct, the model necessitates an approximate matching of apparent gas-phase basicity (GB(app)) of a given proton bearing site on the peptide with the gas-phase basicity (GB) of the anion attaching at that site. Evidence supporting the model is derived from the fact that for [Glu] Fibrinopeptide B, higher GB anions dominated in adducts observed at higher negative charge states, whereas lower GB anions appeared predominately in lower charge state adducts. Singly charged adducts were only observed for lower GB anions: HSO(4)(-), I(-), CF(3)COO(-). Ions that have medium GBs (NO(3) (-), Br(-), H(2)PO(4)(-)) only form adducts having -2 charge states, whereas Cl(-) (higher GB) can form adducts having -3 charge states. The model portends that (1) carboxylate groups are much more basic than available amino groups; (2) apparent GBs of the various carboxylate groups on peptides do not vary substantially from one another; and (3) apparent GBs of the individual carboxylate and amino sites do not behave independently. This model was developed for negative ion attachment but an analogous mechanism is also proposed for the positive ion mode wherein (1) binding of a neutral at an amino site polarizes this amino group, but hardly affects apparent GBs of other sites; (2) proton addition (charge state augmentation) at one site can decrease the instrinsic GBs of other potential protonation sites and lower their apparent GBs. PMID:21997579

  7. A New Model for Multiply Charged Adduct Formation Between Peptides and Anions in Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Cole, Richard B.

    2011-12-01

    A new model has been developed to account for adduct formation on multiply charged peptides observed in negative ion electrospray mass spectrometry. To obtain a stable adduct, the model necessitates an approximate matching of apparent gas-phase basicity (GBapp) of a given proton bearing site on the peptide with the gas-phase basicity (GB) of the anion attaching at that site. Evidence supporting the model is derived from the fact that for [Glu] Fibrinopeptide B, higher GB anions dominated in adducts observed at higher negative charge states, whereas lower GB anions appeared predominately in lower charge state adducts. Singly charged adducts were only observed for lower GB anions: HSO{4/-}, I-, CF3COO-. Ions that have medium GBs (NO{3/-}, Br-, H2PO{4/-}) only form adducts having -2 charge states, whereas Cl- (higher GB) can form adducts having -3 charge states. The model portends that (1) carboxylate groups are much more basic than available amino groups; (2) apparent GBs of the various carboxylate groups on peptides do not vary substantially from one another; and (3) apparent GBs of the individual carboxylate and amino sites do not behave independently. This model was developed for negative ion attachment but an analogous mechanism is also proposed for the positive ion mode wherein (1) binding of a neutral at an amino site polarizes this amino group, but hardly affects apparent GBs of other sites; (2) proton addition (charge state augmentation) at one site can decrease the instrinsic GBs of other potential protonation sites and lower their apparent GBs.

  8. Rapid differentiation of refined fuels using negative electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2005-01-01

    An application of electrospray ionization/mass spectrometry for identification of various commercially refined fuels using the unique signature of polar components, was investigated. The samples were analyzed by mass spectrometry using negative electrospray on an Agilent Series 1100 liquid chromatograph/mass spectrometer. These analysis were applied to hydrocarbon samples from a large, long-term fuel spill which were taken from the subsurface and different extent of biodegradation or weathering. The technique provided rapid identification of hydrocarbons released into the environment because these polar compounds are unique in different fuels.

  9. Electrospray/Ion Trap Mass Spectrometry for the Detection and Identification of Organisms

    SciTech Connect

    McLuckey, Scott A.; Stephenson, James L., Jr.

    1997-12-31

    Current electrospray ion trap methodology for rapid mixture analysis of proteins used for the identification of microorganisms is described. Development of ion/ion reaction techniques (e.g. reactions of multiply-charged protein cations with singly-charged anions) from both a fundamental and practical approach are presented, detailing the necessary steps and considerations involved in complex mixture analysis. Data describing the reduction of the initial charge states of electrospray ions to arbitrarily low values, the utility of ion/ion reactions for mixture separation on the millisecond time scale, and effects of excess singly-charged reactants on detection and storage efficiency are illustrated.

  10. The use of particle beam mass spectrometry for the measurement of impurities in a nabumetone drug substance, not easily amenable to atmospheric pressure ionisation techniques.

    PubMed

    Wolff, J C; Hawtin, P N; Monté, S; Balogh, M; Jones, T

    2001-01-01

    Liquid chromatography/particle beam mass spectrometry (LC/PB-MS) was used for the structural elucidation of some impurities in nabumetone as this compound poorly ionises by atmospheric pressure ionisation (API) techniques. PB-MS was optimised for nabumetone and a sensitivity study was carried out. To obtain full scan electron ionisation spectra a minimum of 100 ng of compound on column was needed. By using 20 mg/mL solutions of nabumetone, impurities at levels of about 250 ppm mass fraction relative to nabumetone could be detected. Results were compared with LC/API-MS and previous GC/MS. PMID:11223957

  11. Enhanced Raman Scattering from Aromatic Dithiols Electrosprayed into Plasmonic Nanojunctions

    SciTech Connect

    El-Khoury, Patrick Z.; Johnson, Grant E.; Novikova, Irina V.; Gong, Yu; Joly, Alan G.; Evans, James E.; Zamkov, Mikhail; Laskin, Julia; Hess, Wayne P.

    2015-12-01

    We describe surface enhanced Raman spectroscopy (SERS) experiments in which molecular coverage is systematically varied from 3.8 x 105 to 3.8 x 102 to 0.38 molecules/μm2 using electrospray deposition of ethanolic 4,4’-dimercaptostilbene (DMS) solutions. The plasmonic SERS substrate used herein consists of a well-characterized 2-dimensional (2D) array of silver nanospheres [see El-Khoury et al., J. Chem. Phys., 2014, 141, 214308], previously shown to feature uniform topography and plasmonic response, as well as intense SERS activity. When compared to their ensemble averaged analogues, the spatially and temporally averaged spectra of a single molecule exhibit several unique features including: (i) distinct relative intensities of the observable Raman-active vibrational states, (ii) more pronounced SERS backgrounds, and (iii) broader Raman lines indicative of faster vibrational dephasing. The first observation may be understood on the basis of an intuitive physical picture in which removal of averaging over multiple molecules exposes the tensorial nature of Raman scattering. When an oriented single molecule gives rise to the recorded SERS spectra, the relative orientation of the molecule with respect to vector components of the local electric field determines the relative intensities of the observable vibrational states. Using a single molecule SERS framework described herein, we derive a unique molecular orientation in which a single DMS molecule is isolated at a nanojunction formed between two silver nanospheres in the 2D array. The DMS molecule is found lying nearly flat with respect to the metal surface. The derived orientation of a single molecule at a plasmonic nanojunction is consistent with observations (ii) and (iii). In particular, a careful inspection of the temporal spectral variations along the recorded single molecule SERS time sequences reveals that the time-averaged SERS backgrounds arise from individual molecular events, marked by broadened SERS

  12. Search for liquids electrospraying the smallest possible nanodrops in vacuo

    SciTech Connect

    Alonso-Matilla, R.; Fernández-García, J.; Congdon, H.; Fernández de la Mora, J.

    2014-12-14

    Prior work with electrosprays in vacuum of mixtures of ionic liquids (ILs) and the moderately high boiling point (T{sub b}) solvents formamide (FM) and propylene carbonate (PC) (T{sub b} of 210 and 241 °C) has shown that the charged drops produced have reasonably narrow charge/mass distributions, controllable over a wide mass/charge range. This enables their use as propellants in electrical propulsion with specific impulse I{sub sp} varying from a few hundred to a few thousand seconds (10 kV beam energy) and with excellent propulsion efficiency. However, some limitations are imposed by the finite room temperature volatility of FM and PC. Here, we seek improved performance from propellants based on the polar but viscous solvent Sulfolane (SF; ε = 43.2, μ = 10.3 cP) and the low viscosity but less polar solvent tributyl phosphate (TBP; ε = 8.9, μ = 3.4 cP), both with T{sub b} > 280 °C. Neither TBP nor its low viscosity mixtures with SF achieve the electrical conductivities needed to yield high I{sub sp}. Most ILs used in SF/IL mixtures tested were based on the 1-ethyl-3-methylimidazolium (EMI) or 1,3-dimethylimidazolium (DMI) cations, including EMI-BF{sub 4}, EMI-N(CN){sub 2}, and DMI-N(CN){sub 2}. These combinations reach high conductivities, some approaching 3 S/m, but have limited propulsive performance because evaporation of ions directly from the electrified meniscus produces undesirable mixed beams of drops and ions. Exceptional characteristics are found in mixtures of SF with ethylammonium nitrate (EAN), where the small EA{sup +} cation is strongly bound to the solvent, greatly delaying ion evaporation from the meniscus. Evidence on the formation of nano-jets with diameters as small as 1 nm is seen. Although unprecedented, this finding agrees with what would be expected if ion evaporation were suppressed. SF/EAN mixtures thus provide the best available sources to produce the smallest possible nanodrops, minimally polluted by

  13. Search for liquids electrospraying the smallest possible nanodrops in vacuo

    NASA Astrophysics Data System (ADS)

    Alonso-Matilla, R.; Fernández-García, J.; Congdon, H.; Fernández de la Mora, J.

    2014-12-01

    Prior work with electrosprays in vacuum of mixtures of ionic liquids (ILs) and the moderately high boiling point (Tb) solvents formamide (FM) and propylene carbonate (PC) (Tb of 210 and 241 °C) has shown that the charged drops produced have reasonably narrow charge/mass distributions, controllable over a wide mass/charge range. This enables their use as propellants in electrical propulsion with specific impulse Isp varying from a few hundred to a few thousand seconds (10 kV beam energy) and with excellent propulsion efficiency. However, some limitations are imposed by the finite room temperature volatility of FM and PC. Here, we seek improved performance from propellants based on the polar but viscous solvent Sulfolane (SF; ɛ = 43.2, μ = 10.3 cP) and the low viscosity but less polar solvent tributyl phosphate (TBP; ɛ = 8.9, μ = 3.4 cP), both with Tb > 280 °C. Neither TBP nor its low viscosity mixtures with SF achieve the electrical conductivities needed to yield high Isp. Most ILs used in SF/IL mixtures tested were based on the 1-ethyl-3-methylimidazolium (EMI) or 1,3-dimethylimidazolium (DMI) cations, including EMI-BF4, EMI-N(CN)2, and DMI-N(CN)2. These combinations reach high conductivities, some approaching 3 S/m, but have limited propulsive performance because evaporation of ions directly from the electrified meniscus produces undesirable mixed beams of drops and ions. Exceptional characteristics are found in mixtures of SF with ethylammonium nitrate (EAN), where the small EA+ cation is strongly bound to the solvent, greatly delaying ion evaporation from the meniscus. Evidence on the formation of nano-jets with diameters as small as 1 nm is seen. Although unprecedented, this finding agrees with what would be expected if ion evaporation were suppressed. SF/EAN mixtures thus provide the best available sources to produce the smallest possible nanodrops, minimally polluted by ions.

  14. Newborn screening of inborn errors of metabolism by capillary electrophoresis-electrospray ionization-mass spectrometry: a second-tier method with improved specificity and sensitivity.

    PubMed

    Chalcraft, Kenneth R; Britz-McKibbin, Philip

    2009-01-01

    The advent of electrospray-ionization mass spectrometry (ESI-MS) has given rise to expanded newborn screening programs for the early detection of inborn errors of metabolism (IEM). Despite the benefit of high-throughput screening for disease prognosis, conventional ESI-MS methods are limited by inadequate specificity, complicated sample handling, and low positive predictive outcome that can contribute to a high rate of false-positives. Herein, we report a robust strategy for neonatal screening based on capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) that offers a convenient platform for the direct analysis of amino acids, acylcarnitines, and their stereoisomers from dried blood spot (DBS) extracts without chemical derivatization. On-line sample preconcentration with desalting by CE-ESI-MS allowed for improved concentration sensitivity when detecting poorly responsive metabolites in complex biological samples without ionization suppression or isomeric/isobaric interferences. Method validation demonstrated that accurate yet precise quantification can be achieved for 20 different amino acid and acylcarnitine biomarkers associated with IEMs when using a single non-deuterated internal standard. CE-ESI-MS represents a promising second-tier method in newborn screening programs that is compatible with ESI-MS/MS technology in cases when improved specificity and sensitivity is warranted for diagnosis confirmation and subsequent monitoring. PMID:19117458

  15. Influence of ionisation zone motion in high power impulse magnetron sputtering on angular ion flux and NbO x film growth

    NASA Astrophysics Data System (ADS)

    Franz, Robert; Clavero, César; Kolbeck, Jonathan; Anders, André

    2016-02-01

    The ion energies and fluxes in the high power impulse magnetron sputtering plasma from a Nb target were analysed angularly resolved along the tangential direction of the racetrack. A reactive oxygen-containing atmosphere was used as such discharge conditions are typically employed for the synthesis of thin films. Asymmetries in the flux distribution of the recorded ions as well as their energies and charge states were noticed when varying the angle between mass-energy analyser and target surface. More positively charged ions with higher count rates in the medium energy range of their distributions were detected in +\\mathbf{E}× \\mathbf{B} than in -\\mathbf{E}× \\mathbf{B} direction, thus confirming the notion that ionisation zones (also known as spokes or plasma bunches) are associated with moving potential humps. The motion of the recorded negatively charged high-energy oxygen ions was unaffected. Nb{{\\text{O}}x} thin films at different angles and positions were synthesised and analysed as to their structure and properties in order to correlate the observed plasma properties to the film growth conditions. The chemical composition and the film thickness varied with changing deposition angle, where the latter, similar to the ion fluxes, was higher in +\\mathbf{E}× \\mathbf{B} than in -\\mathbf{E}× \\mathbf{B} direction.

  16. Choosing between atmospheric pressure chemical ionization and electrospray ionization interfaces for the HPLC/MS analysis of pesticides

    USGS Publications Warehouse

    Thurman, E.M.; Ferrer, I.; Barcelo, D.

    2001-01-01

    An evaluation of over 75 pesticides by high-performance liquid chromatography/mass spectrometry (HPLC/MS) clearly shows that different classes of pesticides are more sensitive using either atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI). For example, neutral and basic pesticides (phenylureas, triazines) are more sensitive using APCI (especially positive ion). While cationic and anionic herbicides (bipyridylium ions, sulfonic acids) are more sensitive using ESI (especially negative ion). These data are expressed graphically in a figure called an ionization-continuum diagram, which shows that protonation in the gas phase (proton affinity) and polarity in solution, expressed as proton addition or subtraction (pKa), is useful in selecting APCI or ESI. Furthermore, sodium adduct formation commonly occurs using positive ion ESI but not using positive ion APCI, which reflects the different mechanisms of ionization and strengthens the usefulness of the ionization-continuum diagram. The data also show that the concept of "wrong-way around" ESI (the sensitivity of acidic pesticides in an acidic mobile phase) is a useful modification of simple pKa theory for mobile-phase selection. Finally, this finding is used to enhance the chromatographic separation of oxanilic and sulfonic acid herbicides while maintaining good sensitivity in LC/MS using ESI negative.

  17. Lithium Formate Ion Clusters Formation during Electrospray Ionization: Evidence of Magic Number Clusters by Mass Spectrometry and ab initio Calculations

    SciTech Connect

    Shukla, Anil K.; Bogdanov, Bogdan

    2015-02-10

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry. Singly as well as multiply charged clusters were formed with the general formulae, (HCOOLi)nLi+, (HCOOLi)nLimm+, (HCOOLi)nHCOO- and (HCOOLi)n(HCOO)mm-. Several magic number cluster ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi)3Li+ being the most abundant and stable cluster ions. Fragmentations of singly charged clusters proceed first by the loss of a dimer unit ((HCOOLi)2) followed by sequential loss of monomer units (HCOOLi). In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi)3Li+ at higher collision energies which later fragments to dimer and monomer ions in lower abundance. Quantum mechanical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.

  18. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.

    2004-01-01

    Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra. ?? 2004 Elsevier B.V. All rights reserved.

  19. Electrospray deposition of chalcogenide glass films for gradient refractive index and quantum dot incorporation

    NASA Astrophysics Data System (ADS)

    Novak, Spencer

    Chalcogenide glasses (ChGs) are well-known for their optical properties, making them ideal candidates for emerging applications of mid-infrared microphotonic devices, such as lab-on-a-chip chemical sensing devices, which currently demand additional flexibility in processing and materials available to realize new device designs. Solution-derived processing of ChG films, initially developed in the 1980s by Chern and Lauks, has consisted mainly of spin-coating and offers unique advantages over the more traditional physical vapor deposition techniques. In the present effort, the nanoparticles of interest are luminescent quantum dots (QDs), which can be used as an on-chip source of light for a planar chemical sensing device. Prior efforts of QD incorporation have exposed limitations of spin-coating of ChG solutions, namely QD aggregation and material waste, along with incompatibility with larger scale manufacturing methods such roll-to-roll processing. This dissertation has evaluated electrospray (ES) as an alternative method of solution-derived chalcogenide glass film deposition. While employed in other materials systems, deposition of optical quality ChG films via electrospray has not been previously attempted, nor have parameters until now, been defined. This study has defined pre-cursor solution chemistry, electrospray jet process parameters required for formation of stable films, annealing protocols and resulting film attributes, yielding important correlations needed to realize high optical quality films. Electrosprayed films attributes were compared to those seen for spin coating and trade-offs in processing route and resulting quality, were identified. Optical properties of importance to device applications were defined, including surface roughness, refractive index, and infrared transmission. The use of a serpentine path of the spray over the substrate was demonstrated to obtain uniform thickness, blanket films, and demonstrates process compatibility with roll

  20. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Shukla, Anil; Bogdanov, Bogdan

    2015-02-01

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N2). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi)nLi+, (HCOOLi)nLimm+, (HCOOLi)nHCOO-, and (HCOOLi)n(HCOO)mm-. Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi)3Li+ being the most abundant and stable cluster ion. Fragmentations of singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi)2) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi)3Li+ as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.

  1. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    SciTech Connect

    Shukla, Anil; Bogdanov, Bogdan

    2015-02-14

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N{sub 2}). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi){sub n}Li{sup +}, (HCOOLi){sub n}Li{sub m}{sup m+}, (HCOOLi){sub n}HCOO{sup −}, and (HCOOLi){sub n}(HCOO){sub m}{sup m−}. Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi){sub 3}Li{sup +} being the most abundant and stable cluster ion. Fragmentations of singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi){sub 2}) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi){sub 3}Li{sup +} as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability.

  2. Electrospray deposition of titanium dioxide (TiO{sub 2}) nanoparticles

    SciTech Connect

    Halimi, Siti Umairah Bakar, Noor Fitrah Abu Ismail, Siti Norazian Hashib, Syafiza Abd; Naim, M. Nazli

    2014-02-24

    Deposition of titanium dioxide (TiO{sub 2}) nanoparticles was conducted by using eletrospray method. 0.05wt% of titanium dioxide suspension was prepared and characterized by using Malvern Zetasizer prior to the experiment. From Zetasizer results, stable suspension condition was obtained which is at pH 2 with zeta potential value of ±29.0 mV. In this electrospraying, the suspension was pumped at flowrate of 5 ml/hr by using syringe pump. The input voltage of 2.1 kV was applied at the nozzle tip and counter electrode. Electrosprayed particles were collected on the grounded aluminium plate substrate which was placed at 10–20 cm from counter electrode. Particles were then characterized using FESEM and average size of electrosprayed particles obtained. Initial droplet size was calculated by scaling law and compared with FE-SEM results in order to prove droplet fission occur during electrospray. Due to the results obtained, as the working distance increase from 10–20 cm the deposited TiO{sub 2} droplet size decrease from 247–116 nm to show droplet fission occur during the experiment.

  3. The analysis of aqueous mixtures using liquid chromatography-electrospray mass spectrometry

    SciTech Connect

    Johnson, S.

    1999-02-12

    The focus of this dissertation is the use of chromatographic methods coupled with electrospray mass spectrometry (ES-MS) for the determination of both organic and inorganic compounds in aqueous solutions. The combination of liquid chromatography (LC) methods and ES-MS offers one of the foremost methods for determining compounds in complex aqueous solutions. In this work, LC-ES-MS methods are devised using ion exclusion chromatography, reversed phase chromatography, and ion exchange chromatography, as well as capillary electrophoresis (CE). For an aqueous sample, these LC-ES-MS and CE-ES-MS techniques require no sample preparation or analyte derivatization, which makes it possible to observe a wide variety of analytes as they exist in solution. The majority of this work focuses on the use of LC-ES-MS for the determination of unknown products and intermediates formed during electrochemical incineration (ECI), an experimental waste remediation process. This report contains a general introduction to the project and the general conclusions. Four chapters have been removed for separate processing. Titles are: Chapter 2: Determination of small carboxylic acids by ion exclusion chromatography with electrospray mass spectrometry; Chapter 3: Electrochemical incineration of benzoquinone in aqueous media using a quaternary metal oxide electrode in the absence of a soluble supporting electrolyte; Chapter 4: The determination of electrochemical incineration products of 4-chlorophenol by liquid chromatography-electrospray mass spectrometry; and Chapter 5: Determination of small carboxylic acids by capillary electrophoresis with electrospray mass spectrometry.

  4. Direct protein detection from biological media through electrospray-assisted laser desorption ionization/mass spectrometry.

    PubMed

    Huang, Min-Zong; Hsu, Hsiu-Jung; Lee, Jen-Yih; Jeng, Jingyueh; Shiea, Jentaie

    2006-05-01

    We report here using a novel technology-electrospray-assisted laser desorption ionization (ELDI)/mass spectrometry-for the rapid and sensitive detection of the major proteins that exist in dried biological fluids (e.g., blood, tears, saliva, serum), bacterial cultures, and tissues (e.g., porcine liver and heart) under ambient conditions. This technique required essentially no sample pretreatment. The proteins in the samples were desorbed using a pulsed nitrogen laser without the assistance of an organic matrix. The desorbed protein molecules were then post-ionized through their fusion into the charged solvent droplets produced from the electrospray of an acidic methanol solution; electrospray ionization (ESI) proceeded from the newly formed droplets to generate the ESI-like protein ions. This new ionization approach combines some of the features of electrospray ionization with those of matrix-assisted laser desorption ionization (MALDI), that is, sampling of a solid surface with spatial resolution, generating ESI-like mass spectra of the desorbed proteins, and operating under ambient conditions. PMID:16674100

  5. Hands-on Electrospray Ionization-Mass Spectrometry for Upper-Level Undergraduate and Graduate Students

    ERIC Educational Resources Information Center

    Stock, Naomi L.; March, Raymond E.

    2014-01-01

    Electrospray ionization-mass spectrometry (ESI-MS) is a powerful technique for the detection, identification, and quantification of organic compounds. As mass spectrometers have become more user-friendly and affordable, many students--often with little experience in mass spectrometry--find themselves needing to incorporate mass spectrometry into…

  6. Analysis of regiospecific triacylglycerols by electrospray ionization-mass spectrometry 3 of lithiated adducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some regiospecific triacylglycerol standards containing normal fatty acids, e.g., 1,3-dioleoyl-2-palmitoyl-glycerol (OPO) and 1,2-dioleoyl-3-palmitoyl-rac-glycerol (OOP), were analyzed by the electrospray ionization MS3 of their lithiated adducts. The fragment ions of the MS3 from the loss of alpha,...

  7. Regiospecific analysis of diricinoleoylacylglycerols in castor (Ricinus communis L.) oil by electrospray ionization-mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    HPLC fractions of diricinoleoyl-acyl-glycerols containing one non-ricinoleoyl chain from castor oil were used to identify the regiospecific location of this non-ricinoleoyl chain on glycerol backbone using electrospray ionization-MS3 of lithium adducts. The regiospecific ions used were from the loss...

  8. Identification of tetraacylglycerols in lesquerella oil by electrospray ionization mass spectrometry of the lithium adducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tetraacylglycerol (an acylglycerol estolide) contains an acyl chain attached to the hydroxyl group of another acyl chain attached to the glycerol backbone. Lequerolic acid (Ls, OH1420:111) is the main fatty acid in lequerella oil and can be used in industry. We have used electrospray ionization mass...

  9. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    ERIC Educational Resources Information Center

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  10. Design, simulation, and fabrication of a MEMS-based air amplifier for electrospray ionization

    NASA Astrophysics Data System (ADS)

    Jurčíček, Petr; Zou, Helin; Gao, Shuai

    2013-04-01

    Recent developments in electrospray ionization mass spectrometry (ESI-MS) show that air amplifiers can be utilized to significantly enhance droplet desolvation and to focus gas-phase ions when provided between an electrospray (ES) source and the mass spectrometer (MS). However, these devices are bulky and expensive, which may be a factor prohibiting their broader utilization. We have developed a simple but effective method based on Bernoulli's principle, the Coanda effect and MEMS processing to focus electrosprayed droplets and liberated gas-phase ions. We demonstrate a computer simulation and fabrication process for a micromachined air amplifier. The simulation results are used to optimize the geometry and to meet performance requirements. The optimized results then provide a design guideline for the device's fabrication. The air amplifier is formed from two bonded polydimethylsiloxane (PDMS) casts. Each PDMS cast is fabricated through a molding process using a micromachined two-layer SU-8 mold. Experimental results show a 30-fold improvement in the ES current for certain operation conditions while the air amplifier is incorporated in the nano-electrospray ionization (nano-ESI) process. Compared with traditional air amplifiers, the micro-electro-mechanical systems (MEMS) based air amplifier provides good performance while keeping the fabrication process simple and cost effective.

  11. One Step Encapsulation of Small Molecule Drugs in Liposomes via Electrospray-Remote Loading.

    PubMed

    Duong, Anthony D; Collier, Michael A; Bachelder, Eric M; Wyslouzil, Barbra E; Ainslie, Kristy M

    2016-01-01

    Resiquimod is a Toll-like receptor (TLR) 7/8 agonist that has previously been used as a vaccine adjuvant, as a topical treatment of viral lesions and skin cancer, and as an antiviral treatment. We report on the combined application of remote loading and electrospray to produce liposomal resiquimod, with the broader goals of improving drug encapsulation efficiency and scalability of liposome production methods. Drug loading in liposomes increased from less than 1% to greater that 3% by mass when remote loading was used, whether the liposomes were generated by thin-film hydration or electrospray methods. Dynamic light scattering (DLS) determined mean vesicle diameters of 137 ± 11 nm and 103 ± 4 for the thin-film and electrospray methods, respectively. Transmission electron microscopy (TEM) images showed spherical vesicles with sizes consistent with the DLS measurements. In vitro drug release profiles found that most of the drug remained within the liposomes at both pH 5.5 and 7.4. The in vitro bioactivity of the liposomal drug was also demonstrated by the increase in nitrite production when RAW macrophages were exposed to the drug. Our findings indicate that the remotely loaded liposomes formed via the scalable electrospray method have characteristics comparable to those produced via conventional batch methods. The methods discussed here are not limited to the enhanced delivery of resiquimod. Rather, they should be readily adaptable to other compounds compatible with remote loading. PMID:26568143

  12. Electrospray painted article containing thermally exfoliated graphite oxide and method for their manufacture

    NASA Technical Reports Server (NTRS)

    Korkut, Sibel (Inventor); Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A painted polymer part containing a conductive polymer composition containing at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the painted polymer part has been electrospray painted.

  13. Charge ratio analysis method: approach for the deconvolution of electrospray mass spectra.

    PubMed

    Maleknia, Simin D; Downard, Kevin M

    2005-01-01

    A new method to interpret electrospray mass spectral data based on calculating the ratio of mass-to-charge (m/z) values of multiply charged ions is described. The mass-to-charge ratios of any two multiply charged ions corresponding to a single compound are unique numbers that enable the charge states for each ion to be unequivocally identified. The multiply charged ions in electrospray mass spectra originate from the addition or abstraction of protons, cations, or anions to and from a compound under analysis. In contrast to existing deconvolution processes, the charge ratio analysis method (CRAM), identifies the charge states of multiply charged ions without any prior knowledge of the nature of the charge-carrying species. In the case of high-resolution electrospray mass spectral data, in which multiply charged ions are resolved to their isotopic components, the CRAM is capable of correlating the isotope peaks of different multiply charged ions that share the same isotopic composition. This relative ratio method is illustrated here for electrospray mass spectral data of lysozyme and oxidized ubiquitin recorded at low- to high-mass resolution on quadrupole ion trap and Fourier transform ion cyclotron mass spectrometers, and theoretical data for the protein calmodulin based upon a reported spectrum recorded on the latter. PMID:15623285

  14. An electrodynamic ion funnel for electrospray ionization source based time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Bhushan, K. G.; Rao, K. C.; Sule, U.; Reddy, P.; Rodrigues, S. M.; Gaikwad, D. T.; Mukundhan, R.; Gupta, S. K.

    2016-04-01

    An electrodynamic ion funnel has been developed for improving the sensitivity of electrospray ionization sources widely used in the mass spectrometric study of proteins and other biological macromolecules. The ion funnel consists of 52 electrodes and works under the combined influence of RF and DC voltages in the pressure range of 0.1 to 5 mbar. A novel feature of this ion funnel is the specific shape of the exit electrode that improves transmission of lower mass ions by reducing the depth of effective trapping potentials. In this paper, we report on the optimization of the ion funnel design using ion trajectory simulation software SIMION 8.0 especially in the mass range 500–5000 amu, followed by experimental observations of the ion transmission from the electrospray interface. It is seen that the electrospray-ion funnel combination greatly enhances the transmission when compared with an electrospray-skimmer interface. Ion currents > 1 nA could be obtained at the exit of the ion funnel for dilute Streptomycin Sulphate (~ 1500 amu) solution with the ion funnel operating in the 500–900 kHz frequency range, amplitude of 70 Vp‑p, under a DC gradient of about 20 Volts/cm at a background pressure of 0.3 mbar. Details of the construction of the ion funnel along with the experimental results are presented.

  15. Biases in ion transmission through an electrospray ionization – mass spectrometry capillary inlet

    PubMed Central

    Page, Jason S.; Marginean, Ioan; Baker, Erin S.; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2010-01-01

    A heated capillary inlet for an electrospray ionization mass spectrometry (ESI-MS) interface was compared with shorter versions of the inlet to determine the effects on transmission and ionization efficiencies for low-flow (nano) electrosprays. Five different inlet lengths were studied, ranging from 6.4 to 1.3 cm. As expected, the electrospray current transmission efficiency increased with decreasing capillary length due to reduced losses to the inside walls of the capillary. This increase in transmission efficiency with shorter inlets was coupled with reduced desolvation of electrosprayed droplets. Surprisingly, as the inlet length was decreased, some analytes showed little or no increase in sensitivity, while others showed as much as a15 – fold gain. The variation was shown to beat least partially correlated with analyte mobilities, with the largest gains observed for higher mobility species, but also affected by solution conductivity, flow rate, and inlet temperature. Strategies for maximizing sensitivity while minimizing biases in ion transmission through the heated capillary interface are proposed. PMID:19815425

  16. Surface modification and characterization of electrosprayed Sn-doped In2O3 thin films.

    PubMed

    Koo, Bon-Ryul; Ahn, Hyo-Jin

    2014-12-01

    We synthesized Sn-doped In2O3 (Indium tin oxide, ITO) thin films using electrospray and spin-coating. Scanning electron microscopy, atomic force spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Hall-effect measurement, and UV-vis spectrophotometry measurements were performed to investigate the morphological, structural, chemical, electrical, and optical properties of the electrosprayed ITO films with a sol-layer coating for surface modification. To obtain the optimum performance of the resultant ITO thin films after surface modification, we heat-treated them at four different temperatures of 450 degrees C (sample A), 550 degrees C (sample B), 650 degrees C (sample C), and 750 degrees C (sample D) using microwave heating. Surface modified ITO thin films calcined at 550 degrees C (sample B) using electrospray and spin-coating are observed to have superior resistivity (9.9 x 10(-3) 2 Ω x cm) and optical transmittance (-92.08%) owing to the improved densification of the ITO surface by spin-coating and the formation of uniform ITO thin films by electrospraying. PMID:25971111

  17. REGIOSPECIFIC ANALYSIS OF DIRICINOLEOYL-ACYL-GLYCEROL IN CASTOR OIL USING ELECTROSPRAY IONIZATION-MASS SPECTROMETRY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    HPLC fractions of castor oil were used to identify the regiospecific location of non-hydroxyl fatty acids on glycerol backbone in diricinoleoyl-acyl-glycerols using electrospray ionization MS3 of lithium adducts. The regiospecific ions in MS3 spectra were from the loss of 'a,B'-unsaturated fatty aci...

  18. Quantifying Protein-Fatty Acid Interactions Using Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Lan; Kitova, Elena N.; Klassen, John S.

    2011-02-01

    The application of the direct electrospray ionization mass spectrometry (ESI-MS) assay to quantify interactions between bovine β-lactoglobulin (Lg) and a series of fatty acids (FA), CH3(CH2)xCOOH, where x = 6 (caprylic acid, CpA), 8 (capric acid, CA), 10 (lauric acid, LA), 12 (myristic acid, MA), 14 (palmitic acid, PA) and 16 (stearic acid, SA), is described. Control ESI-MS binding measurements performed on the Lg-PA interaction revealed that both the protonated and deprotonated gas phase ions of the (Lg + PA) complex are prone to dissociate in the ion source, which leads to artificially small association constants ( K a ). The addition of imidazole, a stabilizing solution additive, at high concentration (10 mM) increased the relative abundance of (Lg + PA) complex measured by ESI-MS in both positive and negative ion modes. The K a value measured in negative ion mode and using sampling conditions that minimize in-source dissociation is in good agreement with a value determined using a competitive fluorescence assay. The K a values measured by ESI-MS for the Lg interactions with MA and SA are also consistent with values expected based on the fluorescence measurements. However, the K a values measured using optimal sampling conditions in positive ion mode are significantly lower than those measured in negative ion mode for all of the FAs investigated. It is concluded that the protonated gaseous ions of the (Lg + FA) complexes are kinetically less stable than the deprotonated ions. In-source dissociation was significant for the complexes of Lg with the shorter FAs (CpA, CA, and LA) in both modes and, in the case of CpA, no binding could be detected by ESI-MS. The affinities of Lg for CpA, CA, and LA determined using the reference ligand ESI-MS assay, a method for quantifying labile protein-ligand complexes that are prone to in-source dissociation, were found to be in good agreement with reported values.

  19. Investigation of the ionisation density dependence of the glow curve characteristics of LIF:MG,TI (TLD-100)

    PubMed Central

    Horowitz, Y. S.; Horowitz, A.; Oster, L.; Marino, S.; Datz, H.; Margaliot, M.

    2008-01-01

    The dependence of the shape of the glow curve of LiF:Mg,Ti (TLD-100) on ionisation density was investigated using irradiation with 90Sr/90Y beta rays, 60 and 250 kVp X rays, various heavy-charged particles and 0.2 and 14 MeV neutrons. Special attention is focused on the properties of high-temperature thermoluminescence; specifically, the behaviour of the high-temperature ratio (HTR) of Peaks 7 and 8 as a function of batch and annealing protocol. The correlation of Peaks 7 and 8 with average linear-energy-transfer (LET) is also investigated. The HTR of Peak 7 is found to be independent of LET for values of LET approximately >30 keV µm−1. The behaviour of the HTR of Peak 8 with LET is observed to be erratic, which suggests that applications using the HTR should separate the contributions of Peaks 7 and 8 using computerised glow curve deconvolution. The behaviour of the HTR following neutron irradiation is complex and not fully understood. The shape of composite Peak 5 is observed to be broader following high ionisation alpha particle irradiation, suggesting that the combined use of the HTR and the shape of Peak 5 could lead to improved ionisation density discrimination for particles of high LET. PMID:18667402

  20. Matrix-free mass spectrometric imaging using laser desorption ionisation Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Goodwin, Richard J A; Pitt, Andrew R; Harrison, David; Weidt, Stefan K; Langridge-Smith, Pat R R; Barrett, Michael P; Logan Mackay, C

    2011-04-15

    Mass spectrometry imaging (MSI) is a powerful tool in metabolomics and proteomics for the spatial localization and identification of pharmaceuticals, metabolites, lipids, peptides and proteins in biological tissues. However, sample preparation remains a crucial variable in obtaining the most accurate distributions. Common washing steps used to remove salts, and solvent-based matrix application, allow analyte spreading to occur. Solvent-free matrix applications can reduce this risk, but increase the possibility of ionisation bias due to matrix adhesion to tissue sections. We report here the use of matrix-free MSI using laser desorption ionisation performed on a 12 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. We used unprocessed tissue with no post-processing following thaw-mounting on matrix-assisted laser desorption ionisation (MALDI) indium-tin oxide (ITO) target plates. The identification and distribution of a range of phospholipids in mouse brain and kidney sections are presented and compared with previously published MALDI time-of-flight (TOF) MSI distributions. PMID:21416534

  1. Formation of 2-propanol in condensed molecular films of acetaldehyde following electron impact ionisation-induced proton transfer*

    NASA Astrophysics Data System (ADS)

    Borrmann, Tobias; Swiderek, Petra

    2016-06-01

    Experimental studies on thin condensed layers of acetaldehyde have previously revealed that electron exposure at an energy above the ionisation threshold leads to formation of 2-propanol. However, the mechanism of this reaction remained unclear. Therefore, a computational approach is used to explore the electron-induced reactions of acetaldehyde yielding 2-propanol. Starting from hydrogen-bonded dimers of acetaldehyde we show that the initial ionisation event triggers proton transfer between the two acetaldehyde moieties resulting in a hydrogen-bonded complex of a [OCCH3] radical and a protonated acetaldehyde cation. Given an excess energy of up to 0.75 eV and a favourable arrangement, a methyl radical released upon dissociation of the CC bond within the [OCCH3] radical can migrate to the carbonyl carbon of the protonated acetaldehyde cation. This produces a 2-propanol radical cation and CO. Neutral 2-propanol is then obtained by recombination with a second electron. A mechanism involving ionisation-driven proton transfer is thus proposed as pathway to the formation of 2-propanol during electron exposure of condensed layers of acetaldehyde.

  2. Genotoxicity in earthworm after combined treatment of ionising radiation and mercury.

    PubMed

    Ryu, Tae Ho; An, Kwang-Guk; Kim, Jin Kyu

    2014-06-01

    This study was performed to investigate the acute genotoxic effects of mercury and radiation on earthworms (Eisenia fetida). The levels of DNA damage and the repair kinetics in the coelomocytes of E. fetida treated with mercuric chloride (HgCl₂) and ionising radiation (gamma rays) were analysed by means of the comet assay. For detection of DNA damage and repair, E. fetida was exposed to HgCl₂ (0-160 mg kg(-1)) and irradiated with gamma rays (0-50 Gy) in vivo. The increase in DNA damage depended on the concentration of mercury or dose of radiation. The results showed that the more the oxidative stress induced by mercury and radiation the longer the repair time that was required. When a combination of HgCl₂ and gamma rays was applied, the cell damage was much higher than those treated with HgCl₂ or radiation alone, which indicated that the genotoxic effects were increased after the combined treatment of mercury and radiation. PMID:24870361

  3. Resolving Ionisation and Metallicity on Parsec Scales Across Primordial Analogues with HST-WFC3

    NASA Astrophysics Data System (ADS)

    James, B. L.; Auger, M.; Calzetti, D.; Kewley, L.; Aloisi, A.; Pettini, M.; Trussler, J.

    2016-06-01

    Nearby Blue Compact Dwarf (BCD) galaxies are excellent laboratories for conducting detailed spatially resolved spectroscopic analyses of star-formation (SF), feedback, and chemical evolution in relatively pristine, low-metallicity environments analogous to those thought to exist in the early Universe. In this talk I will show a new, extensive dataset of narrow-band HST-WFC3 imaging where I essentially use HST as a high-spatial-resolution IFU to map six major emission lines in unprecedented detail, including HeII emission from WR stars. In this pioneering study, I spatially resolve diagnostic line ratios on sub-pc scales in two BCDs and deduce which ionisation mechanisms (e.g. shocks and/or photoionisation) are at work and assess their role in shaping the global galaxy properties. Moreover, I will present the first 'metallicity image' of a star-forming galaxy, revealing inhomogeneities on scales as small as <50~pc. This work not only demonstrates the benefits of high-resolution spatially-resolved observations in assessing the effects of feedback mechanisms and accurate chemical abundances, but also the limitations of emission line diagnostic tools which can break down on scales smaller than a H II region. Both aspects are especially relevant as we enter the era of extremely large telescopes, when observing structure on ˜~10~pc scales will no longer be limited to the local universe.

  4. A gas ionisation Direct-STIM detector for MeV ion microscopy

    NASA Astrophysics Data System (ADS)

    Norarat, Rattanaporn; Guibert, Edouard; Jeanneret, Patrick; Dellea, Mario; Jenni, Josef; Roux, Adrien; Stoppini, Luc; Whitlow, Harry J.

    2015-04-01

    Direct-Scanning Transmission Ion Microscopy (Direct-STIM) is a powerful technique that yields structural information in sub-cellular whole cell imaging. Usually, a Si p-i-n diode is used in Direct-STIM measurements as a detector. In order to overcome the detrimental effects of radiation damage which appears as a broadening in the energy resolution, we have developed a gas ionisation detector for use with a focused ion beam. The design is based on the ETH Frisch grid-less off-axis Geiger-Müller geometry. It is developed for use in a MeV ion microscope with a standard Oxford Microbeams triplet lens and scanning system. The design has a large available solid angle for other detectors (e.g. proton induced fluorescence). Here we report the performance for imaging ReNcells VM with μm resolution where energy resolutions of <24 keV fwhm could be achieved for 1 MeV protons using isobutane gas.

  5. 100 years of Cosmic Rays - from the ionisation of air to beyond the LHC

    NASA Astrophysics Data System (ADS)

    Watson, Alan

    2012-03-01

    The study of cosmic rays has impacted on many disciplines, including astrophysics, particle physics, carbon dating and radio astronomy: it has thus had scientific and societal impact. They were discovered in 1912 as a result of the efforts by some of the most distinguished scientists of that era, puzzled by their inability to explain the discharge of ionisation chambers. I will describe some of the early work that led, inter alia, to the discovery of the positron, the muon and the first strange particles and thus to the birth of particle physics. In 1938 it was found that showers of particles that arrive at the earth simultaneously are produced by primary cosmic rays of ˜10^15 eV, about 10^5 times more energetic than any particles that had been contemplated before. I will discuss how study of these showers has led to the discovery of cosmic rays of energies as great as 3 x 10^20 eV, challenging our understanding of where and how they are created. Data from the Pierre Auger Observatory, the largest cosmic-ray detector ever built, is now being used for astrophysical studies and to give glimpses of some hadronic physics at centre-of-mass energies more than 4 times greater than are accessible at the LHC.

  6. Calibration, performance and type testing of personal dosemeters used in ionising-radiation applications in Greece.

    PubMed

    Boziari, A; Hourdakis, C J

    2007-01-01

    Active Personal Dosemeters (APDs) are widely used in real-time personal dosimetry. Their performance, operational characteristics and limitations, as well as their calibration should be routinely checked to assure satisfactory operation and safe use. This study summarises the results of such type tests and calibrations performed in almost 4750 dosemeters at Ionising Radiation Calibration Laboratory (HIRCL) of Greek Atomic Energy Commission (GAEC). About 13.8% of the pencil type and 4.3% of the electronic dosemeters were found to be out of limits of acceptable performance. For the pencil type dosemeters, the mean calibration factor (CF+/-SD) for high- and low-dose categories was found to be 1.014+/-0.102 (range 0.793-1.458) and 0.995+/-0.059 (range 0.794-1.311), respectively. Of these >85% of them had reproducibility better than 90%, while <1% showed remarkable non-linearity and approximately 10% of them failed to retain the dose reading within the limits after 24 h. For the electronic dosemeters, the mean CF was 1.034+/-0.046 (range 0.967-1.238). The majority of them showed good reproducibility and linearity results while, after irradiation, the dose readings were not shifted through time. The energy response varies with the dosemeter type, reaching in one dosemeter type down to 50%. Both electronic and pencil did not showed electronic equilibrium problems. PMID:17185312

  7. An isotopic analysis of ionising radiation as a source of sulphuric acid

    NASA Astrophysics Data System (ADS)

    Enghoff, M. B.; Bork, N.; Hattori, S.; Meusinger, C.; Nakagawa, M.; Pedersen, J. O. P.; Danielache, S.; Ueno, Y.; Johnson, M. S.; Yoshida, N.; Svensmark, H.

    2012-06-01

    Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing source. In this study the production of sulphuric acid from SO2 through a number of different pathways is investigated. The production methods are standard gas phase oxidation by OH radicals produced by ozone photolysis with UV light, liquid phase oxidation by ozone, and gas phase oxidation initiated by gamma rays. The distributions of stable sulphur isotopes in the products and substrate were measured using isotope ratio mass spectrometry. All methods produced sulphate enriched in 34S and we find an enrichment factor (δ34S) of 8.7 ± 0.4‰ (1 standard deviation) for the UV-initiated OH reaction. Only UV light (Hg emission at 253.65 nm) produced a clear non-mass-dependent excess of 33S. The pattern of isotopic enrichment produced by gamma rays is similar, but not equal, to that produced by aqueous oxidation of SO2 by ozone. This, combined with the relative yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion.

  8. An isotope view on ionising radiation as a source of sulphuric acid

    NASA Astrophysics Data System (ADS)

    Enghoff, M. B.; Bork, N.; Hattori, S.; Meusinger, C.; Nakagawa, M.; Pedersen, J. O. P.; Danielache, S.; Ueno, Y.; Johnson, M. S.; Yoshida, N.; Svensmark, H.

    2012-02-01

    Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism has remained undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing source. In this study the production of sulphuric acid from SO2 through a number of different pathways is investigated. The production methods are standard gas phase oxidation by OH radicals produced by ozone photolysis with UV light, liquid phase oxidation by ozone, and gas phase oxidation initiated by gamma rays. The distributions of stable sulphur isotopes in the products and substrate were measured using isotope ratio mass spectrometry. All methods produced sulphate enriched in 34S and we find a δ34S value of 8.7 ± 0.4‰ (1 standard deviation) for the UV-initiated OH reaction. Only UV light (Hg emission at 253.65 nm) produced a clear non-mass-dependent excess of 33S. The pattern of isotopic enrichment produced by gamma rays is similar, but not equal, to that produced by aqueous oxidation of SO2 by ozone. This, combined with the relative yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion.

  9. An isotopic view of ionising radiation as a source of sulphuric acid

    NASA Astrophysics Data System (ADS)

    Enghoff, M. B.; Bork, N.; Hattori, S.; Meusinger, C.; Nakagawa, M.; Pedersen, J. O. P.; Danielache, S. O.; Ueno, Y.; Johnson, M. S.; Yoshida, N.; Svensmark, H.

    2012-04-01

    Sulphuric acid is an important factor in aerosol nucleation and growth. It has been shown that ions enhance the formation of sulphuric acid aerosols, but the exact mechanism remains undetermined. Furthermore some studies have found a deficiency in the sulphuric acid budget, suggesting a missing source. In this study the production of sulphuric acid from SO2 through a number of different pathways is investigated. The production methods are standard gas phase oxidation by OH radicals produced by ozone photolysis with UV light, liquid phase oxidation by ozone, and gas phase oxidation initiated by gamma rays. The distributions of stable sulphur isotopes in the products and substrate were measured using isotope ratio mass spectrometry. All methods produced sulphate enriched in 34S and we find a d34S value of 8.7 ± 0.4 ‰ (1 standard deviation) for the UV-initiated OH reaction. Only UV light (Hg emission at 253.65 nm) produced a clear non-mass-dependent excess of 33S. The pattern of isotopic enrichment produced by gamma rays is similar, but not equal, to that produced by aqueous oxidation of SO2 by ozone. This, combined with the relative yields of the experiments, suggests a mechanism in which ionising radiation may lead to hydrated ion clusters that serve as nanoreactors for S(IV) to S(VI) conversion.

  10. Effect of penetrating ionising radiation on the mechanical properties of pericardium

    NASA Astrophysics Data System (ADS)

    Daar, Eman; Woods, E.; Keddie, J. L.; Nisbet, A.; Bradley, D. A.

    2010-07-01

    The pericardium is an anistropic composite material made up of collagen and elastin fibres embedded in an amorphous matrix mainly composed of proteoglycan and hyaluronan. The collagen fibres are arranged in layers, with different directions of alignment in each layer, giving rise to interesting mechanical properties of pericardium, including the ability to undergo large deformation during performance of regular physiological functions. The present study aims to investigate the effect of penetrating photon ionising radiation on bovine pericardium tissue, being part of a study of the effect of cardiac doses received in breast radiotherapy and the possibility that this can give rise to cardiovascular complications. Irradiation doses in the range 5-80 Gy were used. To characterise the various mechanical properties [elastic modulus, stress relaxation, ultimate tensile strength (UTS) and fracture] a uniaxial tensile test method was applied. The preliminary results reflect the wide inter-sample variations that are expected in dealing with tissues, with only a weak indication of increase in the UTS of the pericardium tissue with increase in radiation dose. Such an effect has also been observed by others, with reduction in UTS at doses of 80 Gy.

  11. Les neuropeptides gastro-intestinaux cibles des effets des rayonnements ionisants : altérations fonctionnelles

    NASA Astrophysics Data System (ADS)

    Linard, C.; Esposito, V.; Wysocki, J.; Griffiths, N. M.

    1998-04-01

    The symptoms associated with exposure to ionizing radiation are nausea, vomiting, diarrhoea. The response of the gut is complex involving modifications of motility and fluid and electrolyte transport. Gastrointestinal regulatory peptides have an important role in these functions. This study showed that radiation-induced tissue variations of neuropeptides have some repercussions on intestinal biological activity of these peptides soon after irradiation. In addition such modifications are also seen a few years after irradiation. Les symptômes associés à l'exposition aux rayonnements ionisants sont des nausées, vomissements et diarrhées. La réponse du système digestif est complexe, impliquant des modifications de la motilité et du transport d'eau et d'électrolytes. les neuropeptides gastro-intestinaux ont un rôle important dans ces fonctions. Cette étude montre que les variations tissulaires de ces neuropeptides induites par l'irradiation ont des répercussions sur l'activité biologique intestinale pour des temps précoces mais que ces perturbations sont encore visibles quelques années après l'irradiation.

  12. Resveratrol and its methoxy-derivatives as modulators of DNA damage induced by ionising radiation.

    PubMed

    Traversi, Gianandrea; Fiore, Mario; Leone, Stefano; Basso, Emiliano; Di Muzio, Elena; Polticelli, Fabio; Degrassi, Francesca; Cozzi, Renata

    2016-07-01

    Various naturally occurring stilbene-like compounds that are related to resveratrol (RSV) possess some of the beneficial effects of the parent molecule and provide even further benefits. Therefore, a series of methoxylated analogues of RSV were prepared with the aim of increasing antitumour and proapoptotic activity. In a previous article, we studied two methoxy-derivatives, pterostilbene (PTERO) and trimethoxystilbene (TRIMETHOXY), in which the first was formed by the substitution of two hydroxyl groups with two methoxy groups (trans-3,5-dimethoxy-4'-hydroxystilbene) and the second was formed by the replacement of all three OH groups with methoxy groups (trans-3,5,4'-trimethoxystilbene). Both methoxy-derivatives showed stronger antioxidant activity when compared with RSV. In the present article, we focused on the analysis of the ability of RSV and its two methoxylated derivatives to protect proliferating non-tumoural cells from the damage induced by ionising radiation (IR). First we showed that the methoxy derivatives, contrary to their parental compound, are unable to affect topoisomerase enzyme and consequently are not clastogenic per se Second we showed that both PTERO and TRIMETHOXY more efficiently reduce the chromosome damage induced by IR. Furthermore, TRIMETHOXY, but not PTERO, causes a delay in cell proliferation, particularly in mitosis progression increasing the number of cells in metaphase at the expense of prophases and ana/telophases. PMID:26819346

  13. Beer fingerprinting by Matrix-Assisted Laser Desorption-Ionisation-Time of Flight Mass Spectrometry.

    PubMed

    Šedo, Ondrej; Márová, Ivana; Zdráhal, Zbyněk

    2012-11-15

    A method allowing parallel fingerprinting of proteins and maltooligosaccharides directly from untreated beer samples is presented. These two classes of compounds were detected by Matrix-Assisted Laser Desorption-Ionisation-Time of Flight-Mass Spectrometry (MALDI-TOF-MS) analysis of beer mixed with 2,5-dihydroxybenzoic acid solution. The maltooligosaccharide profiles acquired from the MALDI sample spot center were not found characteristic for beers of different source and technology. On the other hand, according to profiles containing protein signals acquired from crystals formed on the border of the MALDI sample spot, we were able to distinguish beer samples of the same brand produced by different breweries. The discriminatory abilities of the method were further examined on a set of 17 lager beers, where the fingerprints containing protein signals enabled resolution of majority of examined brands. We propose MALDI-TOF-MS profiling as a rapid tool for beer brewing technology process monitoring, quality control, and determination of beer authenticity. PMID:22868116

  14. Xpg limits the expansion of haematopoietic stem and progenitor cells after ionising radiation.

    PubMed

    Avila, Alush I; Illing, Anett; Becker, Friedrich; Maerz, Lars D; Morita, Yohei; Philipp, Melanie; Burkhalter, Martin D

    2016-07-27

    Reduced capacity of genome maintenance represents a problem for any organism, potentially causing premature death, carcinogenesis, or accelerated ageing. Strikingly though, loss of certain genome stability factors can be beneficial, especially for the maintenance of tissue stem cells of the intestine and the haematopoietic system. We therefore screened for genome stability factors negatively impacting maintenance of haematopoietic stem cells (HSC) in the context of ionising radiation (IR). We found that in vivo knock down of Xeroderma pigmentosum, complementation group G (Xpg) causes elevation of HSC numbers after IR treatment, while numbers of haematopoietic progenitors are elevated to a lesser extent. IR rapidly induces Xpg both on mRNA and on protein level. Prevention of this induction does not influence activation of the checkpoint cascade, yet attenuates late checkpoint steps such as induction of p21 and Noxa. This causes a leaky cell cycle arrest and lower levels of apoptosis, both contributing to increased colony formation and transformation rates. Xpg thus helps to adequately induce DNA damage responses after IR, thereby keeping the expansion of damaged cells under control. This represents a new function of Xpg in the response to IR, in addition to its well-characterized role in nucleotide excision repair. PMID:27137888

  15. Radiation safety in the nuclear medicine department: impact of the UK Ionising Radiations Regulations.

    PubMed

    Harding, L K

    1987-09-01

    The practice of nuclear medicine requires integration of radiation safety with patient care and radiopharmaceutical standards. Nationally there was useful discussion in the UK before the Ionising Radiations Regulations and Approved Code of Practice were published, although such consultation had been lacking when the Medicines Act was implemented. Most of the new considerations relating to nuclear medicine stem from Schedule 6 of the Regulations. Generally, the presence of a single patient does not require a controlled area. However, when several patients are present, or radiopharmaceuticals are being prepared prior to injection, a controlled area is required. Classification of workers is not likely to be required in a typical nuclear medicine department in the UK, although most parts of the nuclear medicine department will need to be controlled areas. These include the radiopharmacy, radionuclide dispensary, injection room, and imaging rooms if patients are injected in them. The importance of finger dose measurements is emphasised. Patient wards, however, need not be controlled areas. A particular concern in nuclear medicine was that patients should not need to be admitted to hospital merely to comply with legislation. This is possibly the case and clarification will probably be available when the Notes for Guidance are published. Most procedures in nuclear medicine departments will remain unchanged. Further information is required, however, on patient waiting rooms, handling flood sources, pregnancy, and breast feeding. Within the hospital, detailed and multidisciplinary discussion will need to take place within the forum of the radiation safety committee. PMID:3664186

  16. Identification of Streptococcus intermedius Central Nervous System Infection by Use of PCR and Electrospray Ionization Mass Spectrometry

    PubMed Central

    Bhatia, Nisha S.; Sampath, Rangarajan; Ranken, Raymond; Rounds, Megan A.; Ecker, David J.; Bonomo, Robert A.

    2012-01-01

    We describe the utility of PCR and electrospray ionization with mass spectrometry (PCR/ESI-MS) of culture-negative cerebrospinal fluid (CSF) in order to identify Gram-positive cocci noted on a Gram stain of CSF from a previously healthy 26-year-old man with community-acquired pneumonia (CAP) and multiple brain abscesses. CSF samples were obtained 2 weeks apart, first by lumbar puncture and 2 weeks later from an external ventricular drain that was inserted into the right ventricle. Both CSF cultures were negative. A Gram stain of bronchoalveolar lavage (BAL) fluid was notable for many Gram-positive cocci (GPC), but cultures of BAL fluid and subcarinal lymph node biopsy tissue were negative. PCR/ESI-MS detected Streptococcus intermedius, a common cause of brain abscesses, in both CSF samples as well as in the fixed tissue from the biopsy. This unique case confirms S. intermedius pulmonary infection as the source of metastatic CNS infection and reveals the potential of PCR/ESI-MS to detect a streptococcal pathogen not captured by conventional cultures. PMID:23035188

  17. An approach toward quantification of organic compounds in complex environmental samples using high-resolution electrospray ionization mass spectrometry

    SciTech Connect

    Nguyen, Tran B.; Nizkorodov, Sergey; Laskin, Alexander; Laskin, Julia

    2013-01-07

    Quantitative analysis of individual compounds in complex mixtures using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) is complicated by differences in the ionization efficiencies of analyte molecules in the mixture, resulting in signal suppression during ionization. However, the ability to obtain concentration estimates of compounds in an environmental sample is important for data interpretation and comparison. We introduce an approach for estimating mass concentrations of analytes observed in a multicomponent mixture by HR-ESI-MS, without prior separation. The approach relies on a calibration of the instrument using appropriate standards added to the mixture of studied analytes. An illustration of how the proposed calibration can be applied in practice is provided for aqueous extracts of isoprene photooxidation organic aerosol, with multifunctional organic acids standards. We show that the observed ion sensitivities in ESI-MS are positively correlated with the “adjusted mass,” defined as a product of the molecular mass and the H/C ratio in the molecule (adjusted mass = H/C x molecular mass). The correlation of the observed ESI sensitivity with adjusted mass is justified by considering trends of the physical and chemical properties of organic compounds that affect ionization in the positive ion mode, i.e., gas-phase basicity, polarizability, and molecular size.

  18. Desorption electrospray ionization-high resolution mass spectrometry for the screening of veterinary drugs in cross-contaminated feedstuffs.

    PubMed

    Seró, Raquel; Núñez, Oscar; Bosch, Jaume; Grases, José M; Rodríguez, Pilar; Moyano, Encarnacion; Galceran, Martia Teresa

    2015-09-01

    In this study, a desorption electrospray ionization-high resolution mass spectrometry (DESI-HRMS) screening method was developed for fast identification of veterinary drugs in cross-contaminated feedstuffs. The reliable detection was performed working at high resolution (70,000 full width half maximum, FWHM) using an orbitrap mass analyzer. Among the optimized DESI parameters, the solvent (acetonitrile/water, 80:20, v/v) and the sample substrate (poly-tetrafluoroethylene, PTFE) were critical to obtain the best sensitivity. To analyze the solid feed samples, different approaches were tested and a simple solid-liquid extraction and the direct analysis of an aliquot (2 μL) of the extract after letting it dry on the PTFE printed spot provided the best results. The identification of the veterinary drugs (target and non-target) in the cross-contaminated feedstuffs based on the accurate mass measurement and the isotopic pattern fit was performed automatically using a custom-made database. The positive cross-contaminated feed samples were quantified by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The results obtained demonstrate that DESI-HRMS can be proposed as a fast and suitable screening method to identify positive cross-contaminated feedstuffs reducing the number of samples to be subsequently quantified by UHPLC-MS/MS, thus improving the productivity in quality control laboratories. PMID:26168975

  19. Nursing Positions

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Nursing Positions KidsHealth > For Parents > Nursing Positions Print A ... and actually needs to feed. Getting Comfortable With Breastfeeding Nursing can be one of the most challenging ...

  20. Positive Psychology

    ERIC Educational Resources Information Center

    Peterson, Christopher

    2009-01-01

    Positive psychology is a deliberate correction to the focus of psychology on problems. Positive psychology does not deny the difficulties that people may experience but does suggest that sole attention to disorder leads to an incomplete view of the human condition. Positive psychologists concern themselves with four major topics: (1) positive…

  1. Biotransformation of the triketone herbicide mesotrione by a Bacillus strain. Metabolite profiling using liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry.

    PubMed

    Durand, Stéphanie; Légeret, Bertrand; Martin, Anne-Sophie; Sancelme, Martine; Delort, Anne-Marie; Besse-Hoggan, Pascale; Combourieu, Bruno

    2006-01-01

    The metabolic pathway involved in the biotransformation of the herbicide mesotrione by the bacterial strain Bacillus sp. 3B6 was investigated by a reliable liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (LC/ESI-QTOF-MS) method. The LC/ESI-MS method, both in positive and negative mode, with the assistance of MS(2) fragments and isotopic pattern analyses, allowed us to identify five metabolites. This work constitutes the first complete monitoring of mesotrione degradation kinetics. Among the transformation products found by both techniques, one was formed by intramolecular cyclization between a hydroxylamine and a keto function, which is quite a rare biological reactivity process. For each identified metabolite, a fragmentation pathway is proposed for negative and positive mode. PMID:16878338

  2. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry.

    PubMed

    Koc, Anna; Cañuelo, Ana; Garcia-Reyes, Juan F; Molina-Diaz, Antonio; Trojanowicz, Marek

    2012-06-01

    In this work, the use of liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC-TOFMS) has been evaluated for the profiling of relatively low-molecular weight protein species in both genetically modified (GM) and non-GM maize. The proposed approach consisted of a straightforward sample fractionation with different water and ethanol-based buffer solutions followed by separation and detection of the protein species using liquid chromatography with a small particle size (1.8 μm) C(18) column and electrospray-time-of-flight mass spectrometry detection in the positive ionization mode. The fractionation of maize reference material containing different content of transgenic material (from 0 to 5% GM) led to five different fractions (albumins, globulins, zeins, zein-like glutelins, and glutelins), all of them containing different protein species (from 2 to 52 different species in each fraction). Some relevant differences in the quantity and types of protein species were observed in the different fractions of the reference material (with different GM contents) tested, thus revealing the potential use of the proposed approach for fast protein profiling and to detect tentative GMO markers in maize. PMID:22740254

  3. On-Tissue Derivatization via Electrospray Deposition for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Endogenous Fatty Acids in Rat Brain Tissues.

    PubMed

    Wu, Qian; Comi, Troy J; Li, Bin; Rubakhin, Stanislav S; Sweedler, Jonathan V

    2016-06-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is used for the multiplex detection and characterization of diverse analytes over a wide mass range directly from tissues. However, analyte coverage with MALDI MSI is typically limited to the more abundant compounds, which have m/z values that are distinct from MALDI matrix-related ions. On-tissue analyte derivatization addresses these issues by selectively tagging functional groups specific to a class of analytes, while simultaneously changing their molecular masses and improving their desorption and ionization efficiency. We evaluated electrospray deposition of liquid-phase derivatization agents as a means of on-tissue analyte derivatization using 2-picolylamine; we were able to detect a range of endogenous fatty acids with MALDI MSI. When compared with airbrush application, electrospray led to a 3-fold improvement in detection limits and decreased analyte delocalization. Six fatty acids were detected and visualized from rat cerebrum tissue using a MALDI MSI instrument operating in positive mode. MALDI MSI of the hippocampal area allowed targeted fatty acid analysis of the dentate gyrus granule cell layer and the CA1 pyramidal layer with a 20-μm pixel width, without degrading the localization of other lipids during liquid-phase analyte derivatization. PMID:27181709

  4. Ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry coupled with hierarchical cluster analysis to evaluate Wikstroemia indica (L.) C. A. Mey. from different geographical regions.

    PubMed

    Wei, Lan; Wang, Xiaobo; Mu, Shanxue; Sun, Lixin; Yu, Zhiguo

    2015-06-01

    A sensitive, rapid and simple ultra high performance liquid chromatography with electrospray ionization tandem mass spectrometry method was developed to determine seven constituents (umbelliferone, apigenin, triumbelletin, daphnoretin, arctigenin, genkwanin and emodin) in Wikstroemia indica (L.) C. A. Mey. The chromatographic analysis was performed on an ACQUITY UPLC® BEH C18 column (2.1 × 50 mm, 1.7 μm) by gradient elution with the mobile phase of 0.05% formic acid aqueous solution (A) and acetonitrile (B). Multiple reaction monitoring mode with positive and negative electrospray ionization interface was carried out to detect the components. This method was validated in terms of specificity, linearity, accuracy, precision and stability. Excellent linear behavior was observed over the certain concentration ranges with the correlation coefficient values higher than 0.999. The intraday and innerday precisions were within 2.0%. The recoveries of seven analytes were 99.4-101.1% with relative standard deviation less than 1.2%. The 18 Wikstroemia indica samples from different origins were classified by hierarchical clustering analysis according to the contents of seven components. The results demonstrated that the developed method could successfully be used to quantify simultaneously of seven components in Wikstroemia indica and could be a helpful tool for the detection and confirmation of the quality of traditional Chinese medicines. PMID:25866087

  5. Applications of High-Resolution Electrospray Ionization Mass Spectrometry to Measurements of Average Oxygen to Carbon Ratios in Secondary Organic Aerosols

    SciTech Connect

    Bateman, Adam P.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey

    2012-07-02

    The applicability of high resolution electrospray ionization mass spectrometry (HR ESI-MS) to measurements of the average oxygen to carbon ratio (O/C) in organic aerosols was investigated. Solutions with known average O/C containing up to 10 standard compounds representative of secondary organic aerosol (SOA) were analyzed and corresponding electrospray ionization efficiencies were quantified. The assumption of equal ionization efficiency commonly used in estimating O/C ratios of organic aerosols was found to be reasonably accurate. We found that the accuracy of the measured O/C ratios increases by averaging the values obtained from both (+) and (-) modes. A correlation was found between the ratio of the ionization efficiencies in the positive and negative ESI modes with the octanol-water partition constant, and more importantly, with the compound's O/C. To demonstrate the utility of this correlation for estimating average O/C values of unknown mixtures, we analyzed the ESI (+) and ESI (-) data for SOA produced by oxidation of limonene and isoprene and compared to online O/C measurements using an aerosol mass spectrometer (AMS). This work demonstrates that the accuracy of the HR ESI-MS methods is comparable to that of the AMS, with the added benefit of molecular identification of the aerosol constituents.

  6. Boron neutron capture therapy of brain tumors: investigation of urinary metabolites and oxidation products of sodium borocaptate by electrospray ionization mass spectrometry.

    PubMed

    Gibson, C R; Staubus, A E; Barth, R F; Yang, W; Kleinholz, N M; Jones, R B; Green-Church, K; Tjarks, W; Soloway, A H

    2001-12-01

    Boron neutron capture therapy (BNCT) is based on a nuclear capture reaction that occurs when boron-10, a stable isotope, is irradiated with low energy neutrons to produce high-energy alpha particles and recoiling lithium-7 nuclei. The purpose of the present study was to determine what urinary metabolites, if any, could be detected in patients with brain tumors who were given sodium borocaptate (BSH), a drug that has been used clinically for BNCT. BSH was infused intravenously over a 1-h time period at doses of 26.5, 44.1, or 88.2 mg/kg of body weight to patients with high-grade brain tumors. Electrospray ionization mass spectrometry has been used to investigate possible urinary metabolites of BSH. Chemical and instrument conditions were established to detect BSH and its possible metabolites in both positive and negative electrospray ionization modes. Using this methodology, boronated ions were found in patients' urine samples that appeared to be consistent with the following chemical structures: BSH sulfenic acid (BSOH), BSH sulfinic acid (BSO(2)H), BSH disulfide (BSSB), BSH thiosulfinate (BSOSB), and a BSH-S-cysteine conjugate (BSH-CYS). Although BSH has been used clinically for BNCT since the late 1960s, this is the first report of specific biotransformation products following administration to patients. Further studies will be required to determine both the biological significance of these metabolites and whether any of these accumulate in significant amounts in brain tumors. PMID:11717178

  7. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry

    USGS Publications Warehouse

    Ye, Z.; Weinberg, H.S.; Meyer, M.T.

    2007-01-01

    A multirun analytical method has been developed and validated for trace determination of 24 antibiotics including 7 sulfonamides, 3 macrolides, 7 quinolones, 6 tetracyclines, and trimethoprim in chlorine-disinfected drinking water using a single solid-phase extraction method coupled to liquid chromatography with positive electrospray tandem mass spectrometry detection. The analytes were extracted by a hydrophilic-lipophilic balanced resin and eluted with acidified methanol (0.1% formic acid), resulting in analyte recoveries generally above 90%. The limits of quantitation were mostly below 10 ng/L in drinking water. Since the concentrated sample matrix typically caused ion suppression during electrospray ionization, the method of standard addition was used for quantitation. Chlorine residuals in drinking water can react with some antibiotics, but ascorbic acid was found to be an effective chlorine quenching agent without affecting the analysis and stability of the antibiotics in water. A preliminary occurrence study using this method revealed the presence of some antibiotics in drinking waters, including sulfamethoxazole (3.0-3.4 ng/L), macrolides (1.4-4.9 ng/L), and quinolones (1.2-4.0 ng/L). ?? 2007 American Chemical Society.

  8. On-Tissue Derivatization via Electrospray Deposition for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of Endogenous Fatty Acids in Rat Brain Tissues

    PubMed Central

    2016-01-01

    Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is used for the multiplex detection and characterization of diverse analytes over a wide mass range directly from tissues. However, analyte coverage with MALDI MSI is typically limited to the more abundant compounds, which have m/z values that are distinct from MALDI matrix-related ions. On-tissue analyte derivatization addresses these issues by selectively tagging functional groups specific to a class of analytes, while simultaneously changing their molecular masses and improving their desorption and ionization efficiency. We evaluated electrospray deposition of liquid-phase derivatization agents as a means of on-tissue analyte derivatization using 2-picolylamine; we were able to detect a range of endogenous fatty acids with MALDI MSI. When compared with airbrush application, electrospray led to a 3-fold improvement in detection limits and decreased analyte delocalization. Six fatty acids were detected and visualized from rat cerebrum tissue using a MALDI MSI instrument operating in positive mode. MALDI MSI of the hippocampal area allowed targeted fatty acid analysis of the dentate gyrus granule cell layer and the CA1 pyramidal layer with a 20-μm pixel width, without degrading the localization of other lipids during liquid-phase analyte derivatization. PMID:27181709

  9. Development of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous analysis of intact glucosinolates and isothiocyanates in Brassicaceae seeds and functional foods.

    PubMed

    Franco, P; Spinozzi, S; Pagnotta, E; Lazzeri, L; Ugolini, L; Camborata, C; Roda, A

    2016-01-01

    A new high pressure liquid chromatography-electrospray ionization-tandem mass spectrometry method for the simultaneous determination of glucosinolates, as glucoraphanin and glucoerucin, and the corresponding isothiocyanates, as sulforaphane and erucin, was developed and applied to quantify these compounds in Eruca sativa defatted seed meals and enriched functional foods. The method involved solvent extraction, separation was achieved in gradient mode using water with 0.5% formic acid and acetonitrile with 0.5% formic acid and using a reverse phase C18 column. The electrospray ion source operated in negative and positive mode for the detection of glucosinolates and isothiocyanates, respectively, and the multiple reaction monitoring (MRM) was selected as acquisition mode. The method was validated following the ICH guidelines. Replicate experiments demonstrated a good accuracy (bias%<10%) and precision (CV%<10%). Detection limits and quantification limits are in the range of 1-400ng/mL for each analytes. Calibration curves were validated on concentration ranges from 0.05 to 50μg/mL. The method proved to be suitable for glucosinolates and isothiocyanates determination both in biomasses and in complex matrices such as food products enriched with glucosinolates, or nutraceutical bakery products. In addition, the developed method was applied to the simultaneous determination of glucosinolates and isothiocyanates in bakery product enriched with glucosinolates, to evaluate their thermal stability after different industrial processes from cultivation phases to consumer processing. PMID:26363943

  10. Cloud-point extraction is compatible with liquid chromatography coupled to electrospray ionization mass spectrometry for the determination of bisoprolol in human plasma.

    PubMed

    Giebułtowicz, Joanna; Kojro, Grzegorz; Buś-Kwaśnik, Katarzyna; Rudzki, Piotr J; Marszałek, Ryszard; Leś, Andrzej; Wroczyński, Piotr

    2015-12-01

    Cloud-point extraction (CPE) draws increasing interest in a number of analytical fields including bioanalysis, but combining CPE and LC-MS with electrospray ionization (ESI) in the determination of drugs in biological fluids such as plasma, serum or blood has not been reported so far. Bisoprolol was determined in human plasma by CPE using Trition X-114 as a surfactant and metoprolol as the internal standard. NaOH concentration, temperature and Trition X-114 concentration were optimized. All analyses were performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). All validation experiments met international acceptance criteria and no significant matrix effect was observed. The compatibility of CPE and LC-ESI-MS/MS was confirmed using clinical plasma samples and appropriate statistical tests. The determination of bisoprolol concentration in human plasma in the range 1.0-70ngmL(-1) by the CPE method leads to the results which are equivalent to those obtained by the widely used liquid-liquid extraction method. The results revealed that a structural analogue may be an appropriate internal standard when CPE is used as the extraction technique. CPE offers significant practical advantages over the classical extraction methods, including a positive impact on the environment, therefore its wider application in future pharmacokinetic studies is justifiable. PMID:26572051

  11. Combined effect of solvent content, temperature and pH on the chromatographic behaviour of ionisable compounds. III: Considerations about robustness.

    PubMed

    Pous-Torres, S; Torres-Lapasió, J R; Baeza-Baeza, J J; García-Alvarez-Coque, M C

    2009-12-18

    We previously reported a model able to predict the retention time of ionisable compounds as a function of the solvent content, temperature and pH [J. Chromatogr. A 1163 (2007) 49]. The model was applied further, developing an optimisation of the resolution based on the peak purity concept [J. Chromatogr. A 1193 (2008) 117]. However, we left aside an important issue: we did not consider incidental overlaps caused by shifts in the predicted peak positions, owing either to uncertainties in the source data, modelling errors, or the practical implementation in the chromatograph of the optimal mobile phase (or any other). These shifts can ruin the predicted separation, since they can easily amount several peak-width units at pH values close to the logarithm of the solutes' acid-base constants. A probabilistic optimisation is proposed here, which is able to evaluate the uncertainties associated with the model and the consequences when the optimal mobile phase is implemented in the chromatograph. This approach assumes peak fluctuations in replicated assays obtained through Monte Carlo simulations, which gives rise to a distribution of elementary peak purities. The results yielded by the conventional (i.e. non-robust), derivative-penalised, and probabilistic optimisations were compared, checking the predicted and experimental chromatograms at several critical experimental conditions. Among the three approaches, only the probabilistic one was able to appraise properly the practical difficulties of the separation problem. PMID:19909960

  12. A novel method for the analysis of the substitution pattern of O-methyl-[alpha]- and [beta]-1,4-glucans by means of electrospray ionisation-mass spectrometry/collision induced dissociation

    NASA Astrophysics Data System (ADS)

    Adden, Roland; Mischnick, Petra

    2005-03-01

    The substitution pattern of O-methyl amylose and O-methyl cellulose was analysed after per-O-methylation (Me-d3), and partial hydrolysis by subsequent ESI-MS/CID of the sodium (MS2) and the lithium adducts (MS3). Based on previous studies about the influence of regioselective O-methylation on the fragmentation pathways of malto- and cello-oligosaccharides, we could calculate the contribution of a certain methyl pattern to a distinct signal in the reproducible ESI-MS2 daughter spectrum. Signal intensities obtained from each O-methyl-O-methyl-d3 disaccharide were distributed on the corresponding methyl patterns and accumulated for all peaks of the mother mass spectrum. Data from ESI-MS2 were not sufficient for disaccharides bearing methyl and deuteromethyl groups in the combination 2 and 4, 3 and 3, or 4 and 2. Further independent information was obtained by ESI-MS3 of the lithium adducts. Monomer composition of methyl celluloses and methyl amyloses obtained by this novel approach were in very good agreement with reference data from GLC of the partially methylated glucitol acetates after complete hydrolysis, reduction and acetylation.

  13. Positional plagiocephaly

    PubMed Central

    Cummings, Carl

    2011-01-01

    Cranial asymmetry occurring as a result of forces that deform skull shape in the supine position is known as deformational plagiocephaly. The risk of plagiocephaly may be modified by positioning the baby on alternate days with the head to the right or the left side, and by increasing time spent in the prone position during awake periods. When deformational plagiocephaly is already present, physiotherapy (including positioning equivalent to the preventive positioning, and exercises as needed for torticollis and positional preference) has been shown to be superior to counselling about preventive positioning only. Helmet therapy (moulding therapy) to reduce skull asymmetry has some drawbacks: it is expensive, significantly inconvenient due to the long hours of use per day and associated with skin complications. There is evidence that helmet therapy may increase the initial rate of improvement of asymmetry, but there is no evidence that it improves the final outcome for patients with moderate or severe plagiocephaly. PMID:23024590

  14. Detection of saccharides by reactive desorption electrospray ionization (DESI) using modified phenylboronic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Chen, Hao

    2010-01-01

    We have reported previously a method for the detection of sugars via in-situ derivatization with phenylboronic acid PhB(OH)2 using reactive desorption electrospray ionization (DESI, Chen et al., Chem. Commun. (2006) 597-599). The present study describes an improved method that employs modified phenylboronic acids including 3-nitrophenylboronic acid and N-methyl-4-pyridineboronic acid iodide. In contrast to using PhB(OH)2, enhanced sensitivity of using 3-nitrophenylboronic acid was observed due to the stabilization of the resulting boronate ester anion by the electron-withdrawing nitro group and the limit of detections (LODs) for glucose in water using 3-nitrophenylbornic acid and phenylboronic acid were determined to be 0.11 mM and 0.40 mM, respectively. In the case of N-methyl-4-pyridineboronic acid iodide, the corresponding LOD is 6.9 [mu]M and the higher sensitivity obtained is attributed to the efficient ionization of both the reactive DESI reagent and reaction product since the precursor acid with a quaternary ammonium group is pre-charged. In this case, additional important features are found: (i) unlike using phenylboronic acid or 3-nitrophenylbornic acid, the experiment, performed in the positive ion mode, is applicable to neutral and acidic saccharide solutions, facilitating the analysis of biological fluids without the need to adjust pH; (ii) simply by changing the spray solvent from water to acetonitrile, the method can be used for direct glucose analyses of both urine and serum samples via online desalting, due to the low solubility of salts of these biofluids in the sprayed organic solvent; (iii) in comparison with other sugar derivatizing reagents such as the Girard's reagent T, the N-methyl-4-pyridineboronic acid iodide shows higher reactivity in the reactive DESI; and (iv) the ions of saccharide DESI reaction products undergo extensive ring or glycosidic bond cleavage upon CID, a feature that might be useful in the structure elucidation of

  15. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    SciTech Connect

    Lentz, Nicholas B.

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  16. Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries

    PubMed Central

    Cardis, E; Vrijheid, M; Blettner, M; Gilbert, E; Hakama, M; Hill, C; Howe, G; Kaldor, J; Muirhead, C R; Schubauer-Berigan, M; Yoshimura, T; Bermann, F; Cowper, G; Fix, J; Hacker, C; Heinmiller, B; Marshall, M; Thierry-Chef, I; Utterback, D; Ahn, Y-O; Amoros, E; Ashmore, P; Auvinen, A; Bae, J-M; Solano, J Bernar; Biau, A; Combalot, E; Deboodt, P; Sacristan, A Diez; Eklof, M; Engels, H; Engholm, G; Gulis, G; Habib, R; Holan, K; Hyvonen, H; Kerekes, A; Kurtinaitis, J; Malker, H; Martuzzi, M; Mastauskas, A; Monnet, A; Moser, M; Pearce, M S; Richardson, D B; Rodriguez-Artalejo, F; Rogel, A; Tardy, H; Telle-Lamberton, M; Turai, I; Usel, M; Veress, K

    2005-01-01

    Objectives To provide direct estimates of risk of cancer after protracted low doses of ionising radiation and to strengthen the scientific basis of radiation protection standards for environmental, occupational, and medical diagnostic exposures. Design Multinational retrospective cohort study of cancer mortality. Setting Cohorts of workers in the nuclear industry in 15 countries. Participants 407 391 workers individually monitored for external radiation with a total follow-up of 5.2 million person years. Main outcome measurements Estimates of excess relative risks per sievert (Sv) of radiation dose for mortality from cancers other than leukaemia and from leukaemia excluding chronic lymphocytic leukaemia, the main causes of death considered by radiation protection authorities. Results The excess relative risk for cancers other than leukaemia was 0.97 per Sv, 95% confidence interval 0.14 to 1.97. Analyses of causes of death related or unrelated to smoking indicate that, although confounding by smoking may be present, it is unlikely to explain all of this increased risk. The excess relative risk for leukaemia excluding chronic lymphocytic leukaemia was 1.93 per Sv (< 0 to 8.47). On the basis of these estimates, 1-2% of deaths from cancer among workers in this cohort may be attributable to radiation. Conclusions These estimates, from the largest study of nuclear workers ever conducted, are higher than, but statistically compatible with, the risk estimates used for current radiation protection standards. The results suggest that there is a small excess risk of cancer, even at the low doses and dose rates typically received by nuclear workers in this study. PMID:15987704

  17. The Vertical Structure of Warm Ionised Gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Gaensler, B. M.; Madsen, G. J.; Chatterjee, S.; Mao, S. A.

    2008-11-01

    We present a new joint analysis of pulsar dispersion measures and diffuse Hα emission in the Milky Way, which we use to derive the density, pressure and filling factor of the thick disk component of the warm ionised medium (WIM) as a function of height above the Galactic disk. By excluding sightlines at low Galactic latitude that are contaminated by Hii regions and spiral arms, we find that the exponential scale-height of free electrons in the diffuse WIM is 1830-250+120 pc, a factor of two larger than has been derived in previous studies. The corresponding inconsistent scale heights for dispersion measure and emission measure imply that the vertical profiles of mass and pressure in the WIM are decoupled, and that the filling factor of WIM clouds is a geometric response to the competing environmental influences of thermal and non-thermal processes. Extrapolating the properties of the thick-disk WIM to mid-plane, we infer a volume-averaged electron density 0.014 +/- 0.001 cm-3, produced by clouds of typical electron density 0.34 +/- 0.06 cm-3 with a volume filling factor 0.04 +/- 0.01. As one moves off the plane, the filling factor increases to a maximum of ~30% at a height of ~1-1.5 kpc, before then declining to accommodate the increasing presence of hot, coronal gas. Since models for the WIM with a ~1 kpc scale-height have been widely used to estimate distances to radio pulsars, our revised parameters suggest that the distances to many high-latitude pulsars have been substantially underestimated.

  18. Ionising Radiation Exposure to Orthopaedic Trainees: The Effect of Sub-Specialty Training

    PubMed Central

    Oddy, MJ; Aldam, CH

    2006-01-01

    INTRODUCTION We monitored image intensifier use by orthopaedic trainees to assess their exposure to ionising radiation and to investigate the influence of sub-specialty training. MATERIALS AND METHODS Five different orthopaedic registrars recorded their monthly image intensifier screening times and exposure doses for all cases (trauma and elective), for a combined total of 12 non-consecutive months. Radiation exposure was monitored using shoulder and waist film badges worn both by surgeons and radiographers screening their cases. RESULTS Registrars in spinal sub-specialties were exposed to significantly higher doses per case and cumulative doses per month than non-spinal trainees (P < 0.05), but significantly lower screening times per case (P < 0.05). There were no significant differences in cumulative screening times per month (P > 0.05). Regression analysis for all surgeons showed a significant relationship between shoulder film badge reading and cumulative dose exposed per month (P < 0.05), but not for cumulative screening time. Shoulder film badge recordings were significantly higher for spinal compared with non-spinal registrars (P < 0.05), although all badges were below the level for radiation reporting. Only one radiographer badge recorded a dose above threshold. CONCLUSIONS Whilst the long-term effects of sub-reporting doses of radiation are not fully understood, we consider that this study demonstrates that trainees should not be complacent in accepting inadequate radiation protection. The higher doses encountered with spinal imaging means that sub-specialty trainees should be alerted to the risk of their increased exposure. The principle of minimising radiation exposure must be maintained by all trainees at all times. PMID:16720002

  19. Low-dose ionising radiation and cardiovascular diseases--Strategies for molecular epidemiological studies in Europe.

    PubMed

    Kreuzer, Michaela; Auvinen, Anssi; Cardis, Elisabeth; Hall, Janet; Jourdain, Jean-Rene; Laurier, Dominique; Little, Mark P; Peters, Annette; Raj, Ken; Russell, Nicola S; Tapio, Soile; Zhang, Wei; Gomolka, Maria

    2015-01-01

    It is well established that high-dose ionising radiation causes cardiovascular diseases. In contrast, the evidence for a causal relationship between long-term risk of cardiovascular diseases after moderate doses (0.5-5 Gy) is suggestive and weak after low doses (<0.5 Gy). However, evidence is emerging that doses under 0.5 Gy may also increase long-term risk of cardiovascular disease. This would have major implications for radiation protection with respect to medical use of radiation for diagnostic purposes and occupational or environmental radiation exposure. Therefore, it is of great importance to gain information about the presence and possible magnitude of radiation-related cardiovascular disease risk at doses of less than 0.5 Gy. The biological mechanisms implicated in any such effects are unclear and results from epidemiological studies are inconsistent. Molecular epidemiological studies can improve the understanding of the pathogenesis and the risk estimation of radiation-induced circulatory disease at low doses. Within the European DoReMi (Low Dose Research towards Multidisciplinary Integration) project, strategies to conduct molecular epidemiological studies in this field have been developed and evaluated. Key potentially useful European cohorts are the Mayak workers, other nuclear workers, uranium miners, Chernobyl liquidators, the Techa river residents and several diagnostic or low-dose radiotherapy patient cohorts. Criteria for informative studies are given and biomarkers to be investigated suggested. A close collaboration between epidemiology, biology and dosimetry is recommended, not only among experts in the radiation field, but also those in cardiovascular diseases. PMID:26041268

  20. Ionised concentrations in calcium and magnesium buffers: Standards and precise measurement are mandatory.

    PubMed

    McGuigan, John A S; Kay, James W; Elder, Hugh Y

    2016-09-01

    In Ca(2+) and Mg(2+) buffer solutions the ionised concentrations ([X(2+)]) are either calculated or measured. Calculated values vary by up to a factor of seven due to the following four problems: 1) There is no agreement amongst the tabulated constants in the literature. These constants have usually to be corrected for ionic strength and temperature. 2) The ionic strength correction entails the calculation of the single ion activity coefficient, which involves non-thermodynamic assumptions; the data for temperature correction is not always available. 3) Measured pH is in terms of activity i.e. pHa. pHa measurements are complicated by the change in the liquid junction potentials at the reference electrode making an accurate conversion from H(+) activity to H(+) concentration uncertain. 4) Ligands such as EGTA bind water and are not 100% pure. Ligand purity has to be measured, even when the [X(2+)] are calculated. The calculated [X(2+)] in buffers are so inconsistent that calculation is not an option. Until standards are available, the [X(2+)] in the buffers must be measured. The Ligand Optimisation Method is an accurate and independently verified method of doing this (McGuigan & Stumpff, Anal. Biochem. 436, 29, 2013). Lack of standards means it is not possible to compare the published [Ca(2+)] in the nmolar range, and the apparent constant (K(/)) values for Ca(2+) and Mg(2+) binding to intracellular ligands amongst different laboratories. Standardisation of Ca(2+)/Mg(2+) buffers is now essential. The parameters to achieve this are proposed. PMID:26975789

  1. Positive Psychotherapy

    ERIC Educational Resources Information Center

    Seligman, Martin E. P.; Rashid, Tayyab; Parks, Acacia C.

    2006-01-01

    Positive psychotherapy (PPT) contrasts with standard interventions for depression by increasing positive emotion, engagement, and meaning rather than directly targeting depressive symptoms. The authors have tested the effects of these interventions in a variety of settings. In informal student and clinical settings, people not uncommonly reported…

  2. A new strategy based on electrospray technique to prepare dual-responsive poly(ether urethane) nanogels.

    PubMed

    Chen, Jiaming; Dai, Huafeng; Lin, Hui; Tu, Kehua; Wang, Hongjun; Wang, Li-Qun

    2016-05-01

    In this work, we proposed a new strategy based on electrospray technique to prepare nanogels. Compared with other methods of preparing nanogels, electrospray technique is more simple and efficient. A biodegradable and multi-responsive poly(ether urethane) (PEU) was synthesized via a facile one-pot method and used as the electrospray material. By using electrospray technique, pH- and redox-responsive poly(ether urethane) nanogels were prepared. The morphologies of the electrospray nanoparticles before and after swelling were demonstrated to be spherical and uniform, as characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM). Dynamic light scattering (DLS) results showed that the mean hydrodynamic diameter of nanogels was about 500nm. The pH- and redox-sensitive behaviors of nanogels were studied with DLS and TEM. In acidic media the nanogels dissociated, while in the presence of GSH the nanogels degraded. The nanogels suspension was stored at 4°C and was stable without aggregation for at least 30 days. Doxorubicin (DOX) can be further loaded into the poly(ether urethane) nanogels. The electrospray nanogels can change the release rate of loaded drug in response to pH and GSH stimuli. PMID:26859119

  3. Continuous-flow extractive desorption electrospray ionization coupled to normal phase separations and for direct lipid analysis from cell extracts.

    PubMed

    Li, Li; Schug, Kevin A

    2014-09-01

    Normal phase liquid chromatography is a common mode for chiral separations. Many chiral amines are used as drugs or are important intermediates for drug synthesis. Electrospray ionization mass spectrometry is well known for its high sensitivity. However, when using normal phase liquid chromatography, electrospray ionization is hampered by the poor ionization efficiency of analytes from organic eluents. Continuous-flow extractive desorption electrospray ionization, which introduces the eluents through a hypodermic needle into the electrospray plume is demonstrated here for its success to interface normal phase liquid chromatography to mass spectrometry detection. Such an approach was shown to be as or more sensitive than ultraviolet detection for a selected set of aromatic amine-functionalized enantiomers. Also demonstrated is the direct infusion of cell extracts to monitor phospholipids from three different bacterial cells. Despite their presence in non-electrospray-ionization-friendly extraction solvents, continuous-flow extractive desorption electrospray ionization enabled the sensitive detection of phospholipids and the ability to tune ion forms through incorporation of different spray modifiers. PMID:24923254

  4. Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives.

    PubMed

    Gómez-Mascaraque, Laura G; López-Rubio, Amparo

    2016-03-01

    This work shows the potential of emulsion electrospraying of proteins using food-grade emulsions for the microencapsulation and enhanced protection of a model thermosensitive hydrophobic bioactive. Specifically, gelatin, a whey protein concentrate (WPC) and a soy protein isolate (SPI) were compared as emulsion stabilizers and wall matrices for encapsulation of α-linolenic acid. In a preliminary stage, soy bean oil was used as the hydrophobic component for the implementation of the emulsion electrospraying process, investigating the effect of protein type and emulsion protocol used (i.e. with or without ultrasound treatment) on colloidal stability. This oil was then substituted by the ω-3 fatty acid and the emulsions were processed by electrospraying and spray-drying, comparing both techniques. While the latter resulted in massive bioactive degradation, electrospraying proved to be a suitable alternative, achieving microencapsulation efficiencies (MEE) of up to ∼70%. Although gelatin yielded low MEEs due to the need of employing acetic acid for its processing by electrospraying, SPI and WPC achieved MEEs over 60% for the non-sonicated emulsions. Moreover, the degradation of α-linolenic acid at 80°C was significantly delayed when encapsulated within both matrices. Whilst less than an 8% of its alkene groups were detected after 27h of thermal treatment for free α-linolenic acid, up to 43% and 67% still remained intact within the electrosprayed SPI and WPC capsules, respectively. PMID:26674243

  5. Production of Polymer Core-Shell Colloids with High Uniformity via Coaxial Electrospray

    NASA Astrophysics Data System (ADS)

    Hwang, Yoon Kyun; Jeong, Unyong

    2008-03-01

    Although nanofibers fabricated by electrospinning have been attracting wide interest, the production of colloids by electrospraying has not much studied so far. We have developed a simple method for the production of core-shell colloids with high uniformity by means of the coaxial electrospray. Contrary to usual coaxial setup, the inner nozzle was set to touch the inside wall of the outer nozzle for reproducible production. A polymer solution for the core was introduced through the outer nozzle and another solution for the shell was provided through the inner nozzle. The structure of the colloids was dependent on the polymer concentration, relative feed ratio between the polymer solutions. Especially, core-shell structured colloids are our primary interest due to their promising uses in drug-delivery systems, cosmetics, and food industries. This talk will present the production of core-shell colloids consisting of two polymer components.

  6. Pulsed voltage electrospray ion source and method for preventing analyte electrolysis

    SciTech Connect

    Kertesz, Vilmos; Van Berkel, Gary

    2011-12-27

    An electrospray ion source and method of operation includes the application of pulsed voltage to prevent electrolysis of analytes with a low electrochemical potential. The electrospray ion source can include an emitter, a counter electrode, and a power supply. The emitter can include a liquid conduit, a primary working electrode having a liquid contacting surface, and a spray tip, where the liquid conduit and the working electrode are in liquid communication. The counter electrode can be proximate to, but separated from, the spray tip. The power system can supply voltage to the working electrode in the form of a pulse wave, where the pulse wave oscillates between at least an energized voltage and a relaxation voltage. The relaxation duration of the relaxation voltage can range from 1 millisecond to 35 milliseconds. The pulse duration of the energized voltage can be less than 1 millisecond and the frequency of the pulse wave can range from 30 to 800 Hz.

  7. Electrospray ionization phenomena and the interface of capillary electrophoresis and mass spectrometry. [Quaternary phosphonium salts

    SciTech Connect

    Smith, R.D.; Barinaga, C.J.; Udseth, H.R.

    1988-06-01

    Recently a new electrospray ionization interface for capillary electrophoresis-mass spectroscopy (CE-MS) has been developed. The interface uses a sheath flow of liquid to make electrical contact at the CZE terminus, thus defining both the CZE and electrospray field gradients. Ions created by the ESI process are sampled through a 1 mm nozzle into a region mechanically pumped at 50 L/s using a single-stage roots blower. The ions entering this region are sampled through a 2 mm dia skimmer orifice located 0.5 cm behind the nozzle orifice. Ions passing through the skimmer enter a radio frequency focusing quadrupole. This region is pumped by a cryopump. A mixture of four quaternary phosphonium salts is used to illustrate capillary electrophoresis separations with mass spectroscopy and their uses. 2 figs.

  8. The onset of electrospray: the universal scaling laws of the first ejection.

    PubMed

    Gañán-Calvo, A M; López-Herrera, J M; Rebollo-Muñoz, N; Montanero, J M

    2016-01-01

    The disintegration of liquid drops with low electrical conductivity and subject to an electric field is investigated both theoretically and experimentally. This disintegration takes place through the development of a conical cusp that eventually ejects an ultrathin liquid ligament. A first tiny drop is emitted from the end of this ligament. Due to its exceptionally small size and large electric charge per unit volume, that drop has been the object of relevant recent studies. In this paper, universal scaling laws for the diameter and electric charge of the first issued droplet are proposed and validated both numerically and experimentally. Our analysis shows how charge relaxation is the mechanism that differentiates the onset of electrospray, including the first droplet ejection, from the classical steady cone-jet mode. In this way, our study identifies when and where charge relaxation and electrokinetic phenomena come into play in electrospray, a subject of live controversy in the field. PMID:27581554

  9. Reactive Charged Droplets for Reduction of Matrix Effects in Electrospray Ionization Mass Spectrometry.

    PubMed

    Kulyk, Dmytro S; Miller, Colbert F; Badu-Tawiah, Abraham K

    2015-11-01

    A new quantitative contained-electrospray (ES) process is described here that employs a movable ES emitter to control the reactivity of charged microdroplets by varying their exposure time with acid vapor. The method allows elimination of ion suppression effects caused by the presence of various surface active compounds that coelute with the analyte. For mixtures, contained-ESI mass spectrometric analysis produces relative ion intensities that reflect the true concentrations of analytes in solution. The mechanism for this effect has been elucidated and ascribed to the generation of fine initial droplets in the presence of a high abundance of protons; together, these two factors eliminate competition for charge and space during ion formation. Examples of analytes tested include steroids, phospholipids, phosphopeptides, and sialylated glycans. At least 1 order of magnitude improvement in detection limits, sensitivity, and accuracy of detection was observed when compared to conventional electrospray. PMID:26437455

  10. Electrospray fabrication and osmotic response of fluid core-viscoelastic shell microcapsules

    NASA Astrophysics Data System (ADS)

    Meng, Zhiyong; Osuji, Chinedum

    2011-03-01

    Microcapsules with fluid-core in viscoelastic shell is interesting partially because of their unusual elasticity/rigidity. Electrospray technique, more flexible and scalable than traditional bulk and microfluidic emulsification, was used to generate spherical microcapsules. In particular, sodium alginate fine droplets generated by electrospray was surface cross-linked by either Ca(II) or chitosan to form polyelectrolyte microcapsules. By adjusting the needle inner diameter, concentration of sodium alginate, and applied voltage, we can control the droplet size to the designated range. Furthermore, we can tune the thickness and thereby rigidity/elasticity of the viscoelastic shell by adjusting the residence time of microcapsules in gelation solution to control the rigidity/elasticity of microcapsules. These polyelectrolyte microcapsules were subject to the osmotic pressure of synthetic water-soluble polymers, such as poly(ethylene glycol), with progressively lower concentration to observe their osmotic swelling behavior.

  11. Rapid differentiation of refined fuels using negative electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Hostettler, F.D.

    2005-01-01

    Negative electrospray ionization/MS enabled rapid, specific, and selective screening for unique polar components at parts per million concentrations in commercial hydrocarbon products without extensive sample preparation, separation, chromatography, or quantitation. Commercial fuel types were analyzed with this method, including kerosene, jet fuel, white gas, charcoal lighter fluid, on-road and off-road diesel fuels, and various grades and brands of gasolines. The different types of fuels produced unique and relatively simple spectra. These analyses were then applied to hydrocarbon samples from a large, long-term fuel spill. Although the alkane, isoprenoid, and alkylcyclohexane portions began to biodegrade or weather, the polar components in these samples remained relatively unchanged. The type of fuel involved was readily identified by negative electrospray ionization/MS. This is an abstract of a paper presented at the 230th ACS National Meeting (Washington, DC 8/28/2005-9/1/2005).

  12. Electrospray ionization mass spectrometric characterization of photocrosslinked DNA-EcoRI DNA methyltransferase complexes.

    PubMed Central

    Wong, D L; Pavlovich, J G; Reich, N O

    1998-01-01

    We describe a novel strategy combining photocrosslinking and HPLC-based electrospray ionization mass spectrometry to identify UV crosslinked DNA-protein complexes. Eco RI DNA methyltransferase modifies the second adenine within the recognition sequence GAATTC. Substitution of 5-iodouracil for the thymine adjacent to the target base (GAATTC) does not detectably alter the DNA-protein complex. Irradiation of the 5-iodouracil-substituted DNA-protein complex at various wavelengths was optimized, with a crosslinking yield >60% at 313 nm after 1 min. No protein degradation was observed under these conditions. The crosslinked DNA-protein complex was further analyzed by electrospray ionization mass spectrometry. The total mass is consistent with irradiation-dependent covalent bond formation between one strand of DNA and the protein. These preliminary results support the possibility of identifying picomole quantities of crosslinked peptides by similar strategies. PMID:9421528

  13. The onset of electrospray: the universal scaling laws of the first ejection

    PubMed Central

    Gañán-Calvo, A. M.; López-Herrera, J. M.; Rebollo-Muñoz, N.; Montanero, J. M.

    2016-01-01

    The disintegration of liquid drops with low electrical conductivity and subject to an electric field is investigated both theoretically and experimentally. This disintegration takes place through the development of a conical cusp that eventually ejects an ultrathin liquid ligament. A first tiny drop is emitted from the end of this ligament. Due to its exceptionally small size and large electric charge per unit volume, that drop has been the object of relevant recent studies. In this paper, universal scaling laws for the diameter and electric charge of the first issued droplet are proposed and validated both numerically and experimentally. Our analysis shows how charge relaxation is the mechanism that differentiates the onset of electrospray, including the first droplet ejection, from the classical steady cone-jet mode. In this way, our study identifies when and where charge relaxation and electrokinetic phenomena come into play in electrospray, a subject of live controversy in the field. PMID:27581554

  14. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry.

    PubMed

    Zheng, Qiuling; Chen, Hao

    2016-06-12

    Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future. PMID:27145689

  15. Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications.

    PubMed

    Pérez-Masiá, Rocío; López-Nicolás, Rubén; Periago, Maria Jesús; Ros, Gaspar; Lagaron, Jose M; López-Rubio, Amparo

    2015-02-01

    In this work, two different technologies (electrospraying and nanospray drying) were evaluated for the encapsulation of folic acid using both a whey protein concentrate (WPC) matrix and a commercial resistant starch. The morphology of the capsules, molecular organization of the matrices upon encapsulation, encapsulation efficiency, and stability of the folic acid within the capsules under different storage conditions and upon thermal exposure were studied. Results showed that spherical nano-, submicro- and microcapsules were obtained through both techniques, although electrospraying led to smaller capsule sizes and to an enhanced control over their size distribution. Greater encapsulation efficiency was observed using WPC as encapsulating matrix, probably related to interactions between the protein and folic acid which favoured the incorporation of the bioactive. The best results in terms of bioactive stabilization in the different conditions assayed were also obtained for the WPC capsules, although both materials and encapsulation techniques led to improved folic acid stability, especially under dry conditions. PMID:25172691

  16. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zheng, Qiuling; Chen, Hao

    2016-06-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow–extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.

  17. Multidimensional detection of explosives and explosive signatures via laser electrospray mass spectrometry

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Flanigan, Paul M., IV; Perez, Johnny J.; Judge, Elizabeth J.; Levis, Robert J.

    2012-06-01

    Nitro- and inorganic-based energetic material is vaporized at atmospheric pressure using nonresonant, 70 femtosecond laser pulses prior to electrospray post-ionization and transfer into a time-of-flight mass spectrometer for mass analysis. Measurements of a nitro-based energetic molecule, cyclotrimethylenetrinitramine (RDX), adsorbed on metal and dielectric surfaces indicate nonresonant vaporization of intact molecules, demonstrating the universality of laser electrospray mass spectrometry (LEMS) technique for explosives. In addition, RDX is analyzed at a distance of 2 meters to demonstrate the remote detection capability of LEMS. Finally, the analysis and multivariate statistical classification of inorganic-based explosives containing ammonium nitrate, chlorate, perchlorate, black powder, and an organic-based explosive is presented, further expanding the capabilities of the LEMS technique for detection of energetic materials.

  18. The characterization of snake venoms using capillary electrophoresis in conjunction with electrospray mass spectrometry: Black Mambas.

    PubMed

    Perkins, J R; Parker, C E; Tomer, K B

    1993-01-01

    Capillary electrophoresis has been used in conjunction with electrospray mass spectrometry using both full-scan and selected ion monitoring modes to supply as much information as possible about the venom of Dendroaspis polylepis polylepis (Black Mamba). As an example of the application of capillary electrophoresis/electrospray mass spectrometry (CE/ESI/MS) to the analysis of a complex mixture of small proteins, we have analyzed the venom of Dendroaspis polylepis polylepis using the combined techniques. Both full-scan and selected ion monitoring modes were employed. CE/ESI/MS provides a rapid and extremely sensitive method for molecular weight determination, particularly when selected ion monitoring is employed. It has been utilized to provide sequence confirmation for those toxins which have already been described in the literature. Our methodology indicates the presence of at least 70 peptides in the molecular weight range 6000-9000. PMID:8354229

  19. Multi-track single- and dual-channel plastic microchips for electrospray mass spectrometry.

    PubMed

    Leuthold, Luc Alexis; Reymond, Frédéric; Rossier, Joël S; Varesio, Emmanuel; Hopfgartner, Gérard

    2010-01-01

    Disposable plastic electrospray chips are particularly attractive for the automated analysis of organic compounds and organometallic compounds. Automated multi-track chip-based infusion electrospray mass spectrometry of low molecular weight compounds using an eight-channel plastic chip is presented. For that purpose, the commercial interface of a triple quadrupole linear ion trap was modified. A dual-channel plastic microchip, where two physically separated channels arrive very close to each other at the chip tip, was used to perform lock-mass accurate mass measurements on a quadrupole-time-of-flight instrument. The same chip was used to demonstrate the formation of an organometallic complex in solution on the chip tip. Furthermore, the potential to control the flow rate of each channel individually, which opens new possibilities in the study of supramolecular complexes, is discussed. PMID:20065514

  20. Identification of explosives and explosive formulations using laser electrospray mass spectrometry.

    PubMed

    Brady, John J; Judge, Elizabeth J; Levis, Robert J

    2010-06-15

    Mass analysis is demonstrated for the detection of sub-microgram quantities of explosive samples on a metallic surface at atmospheric pressure using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples for subsequent electrospray ionization and transfer into a time-of-flight mass spectrometer. LEMS was used to detect 2,3-dimethyl-2,3-dinitrobutane (DMNB), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), 3,4,8,9,12,13-hexaoxa-1,6-diazabicyclo[4.4.4]tetradecane (HMTD), and 3,3,6,6,9,9-hexamethyl-1,2,4,5,7,8-hexaoxacyclononane (TATP) deposited on a steel surface. LEMS was also used to directly analyze composite propellant materials containing an explosive to determine the molecular composition of the explosive pellets at atmospheric pressure. PMID:20486263