Science.gov

Sample records for positive feedback mechanisms

  1. A positive radiative-dynamic feedback mechanism for the maintenance and growth of Martian dust storms

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.

    2009-01-01

    Atmospheric dust disturbances ranging in size from dust devils to planet-encircling dust storms are ubiquitous on Mars. After dust devils, the most common disturbances are local- or regional-scale disturbances. The origin of some of these mesoscale systems has been previously investigated and found to be linked to lifting along frontal systems or cap edge circulations. Very little attention has been given to whether the lifted dust in these systems result in radiative forcing that might modulate the local system dynamics with an amplitude large enough to affect local dust-lifting processes. Idealized numerical modeling results presented herein show that a positive feedback process between local dynamics and radiative forcing of lifted dust can occur under some conditions. The feedback process is distinctly different than an enhancement of the general circulation by increasing atmospheric dust loading because the dynamical effects of this feedback process occur locally, within the disturbance itself. Optimal conditions for growth of initial atmospheric dust perturbations include (1) subtropical latitudes associated with relatively large solar insolation and moderate coriolis force; (2) modest dust-lifting thresholds and dust-lifting efficiencies; (3) relatively large initial dust perturbations; (4) steep background lapse rates; and (5) a barotropic environment. The positive feedback process is explained by a combination of geostrophic adjustment theory and a Carnot engine-like mechanism related to the Wind-Induced Sensible Heat Exchange hypothesis for tropical cyclones on Earth.

  2. Studies Of Positive-Position-Feedback Control

    NASA Technical Reports Server (NTRS)

    Fanson, James L.; Caughey, Thomas K.

    1992-01-01

    Report discusses theoretical and experimental studies of positive-position-feedback control for suppressing vibrations in large flexible structures. Positive-position-feedback control involves placement of actuators and sensors on structure; control voltages applied to actuators in response to outputs of sensors processed via compensator algorithm. Experiments demonstrate feasibility of suppressing vibrations by positive position feedback, and spillover of vibrational energy into uncontrolled modes has stabilizing effect if control gain sufficiently small.

  3. Position feedback control system

    DOEpatents

    Bieg, Lothar F.; Jokiel, Jr., Bernhard; Ensz, Mark T.; Watson, Robert D.

    2003-01-01

    Disclosed is a system and method for independently evaluating the spatial positional performance of a machine having a movable member, comprising an articulated coordinate measuring machine comprising: a first revolute joint; a probe arm, having a proximal end rigidly attached to the first joint, and having a distal end with a probe tip attached thereto, wherein the probe tip is pivotally mounted to the movable machine member; a second revolute joint; a first support arm serially connecting the first joint to the second joint; and coordinate processing means, operatively connected to the first and second revolute joints, for calculating the spatial coordinates of the probe tip; means for kinematically constraining the articulated coordinate measuring machine to a working surface; and comparator means, in operative association with the coordinate processing means and with the movable machine, for comparing the true position of the movable machine member, as measured by the true position of the probe tip, with the desired position of the movable machine member.

  4. Depletion of Retinoic Acid Receptors Initiates a Novel Positive Feedback Mechanism that Promotes Teratogenic Increases in Retinoic Acid

    PubMed Central

    D'Aniello, Enrico; Rydeen, Ariel B.; Anderson, Jane L.; Mandal, Amrita; Waxman, Joshua S.

    2013-01-01

    Normal embryonic development and tissue homeostasis require precise levels of retinoic acid (RA) signaling. Despite the importance of appropriate embryonic RA signaling levels, the mechanisms underlying congenital defects due to perturbations of RA signaling are not completely understood. Here, we report that zebrafish embryos deficient for RA receptor ?b1 (RAR?b1), a conserved RAR splice variant, have enlarged hearts with increased cardiomyocyte (CM) specification, which are surprisingly the consequence of increased RA signaling. Importantly, depletion of RAR?b2 or concurrent depletion of RAR?b1 and RAR?b2 also results in increased RA signaling, suggesting this effect is a broader consequence of RAR depletion. Concurrent depletion of RAR?b1 and Cyp26a1, an enzyme that facilitates degradation of RA, and employment of a novel transgenic RA sensor line support the hypothesis that the increases in RA signaling in RAR deficient embryos are the result of increased embryonic RA coupled with compensatory RAR expression. Our results support an intriguing novel mechanism by which depletion of RARs elicits a previously unrecognized positive feedback loop that can result in developmental defects due to teratogenic increases in embryonic RA. PMID:23990796

  5. The effects of level of expression of a jellyfish Shaker potassium channel: a positive potassium feedback mechanism

    PubMed Central

    Grigoriev, N G; Spafford, J D; Spencer, A N

    1999-01-01

    When jellyfish Shaker potassium channels (jShak2) are heterologously expressed in Xenopus oocytes at different levels they demonstrate density-dependent changes in electrical and kinetic properties of macroscopic currents. The activation and inactivation properties of jShak2 channels depend on the extracellular potassium concentration. In this study we present experimental data which show that expression-dependent changes in kinetic and electrical properties of jShak2 macroscopic currents can be explained by the positive feedback effect of dynamic accumulation of K+ in the perimembranal space. PMID:10226146

  6. DAPK-HSF1 interaction as a positive-feedback mechanism stimulating TNF-induced apoptosis in colorectal cancer cells.

    PubMed

    Benderska, Natalya; Ivanovska, Jelena; Rau, Tilman T; Schulze-Luehrmann, Jan; Mohan, Suma; Chakilam, Saritha; Gandesiri, Muktheshwar; Ziesché, Elisabeth; Fischer, Thomas; Söder, Stephan; Agaimy, Abbas; Distel, Luitpold; Sticht, Heinrich; Mahadevan, Vijayalakshmi; Schneider-Stock, Regine

    2014-12-15

    Death-associated protein kinase (DAPK) is a serine-threonine kinase with tumor suppressor function. Previously, we demonstrated that tumor necrosis factor (TNF) induced DAPK-mediated apoptosis in colorectal cancer. However, the protein-protein interaction network associated with TNF-DAPK signaling still remains unclear. We identified HSF1 as a new DAPK phosphorylation target in response to low concentrations of TNF and verified a physical interaction between DAPK and HSF1 both in vitro and in vivo. We show that HSF1 binds to the DAPK promoter. Transient overexpression of HSF1 protein led to an increase in DAPK mRNA level and consequently to an increase in the amount of apoptosis. By contrast, treatment with a DAPK-specific inhibitor as well as DAPK knockdown abolished the phosphorylation of HSF1 at Ser230 (pHSF1(Ser230)). Furthermore, translational studies demonstrated a positive correlation between DAPK and pHSF1(Ser230) protein expression in human colorectal carcinoma tissues. Taken together, our data define a novel link between DAPK and HSF1 and highlight a positive-feedback loop in DAPK regulation under mild inflammatory stress conditions in colorectal tumors. For the first time, we show that under TNF the pro-survival HSF1 protein can be redirected to a pro-apoptotic program. PMID:25380824

  7. Histone demethylase KDM5A is regulated by its reader domain through a positive-feedback mechanism

    NASA Astrophysics Data System (ADS)

    Torres, Idelisse Ortiz; Kuchenbecker, Kristopher M.; Nnadi, Chimno I.; Fletterick, Robert J.; Kelly, Mark J. S.; Fujimori, Danica Galonić

    2015-02-01

    The retinoblastoma binding protein KDM5A removes methyl marks from lysine 4 of histone H3 (H3K4). Misregulation of KDM5A contributes to the pathogenesis of lung and gastric cancers. In addition to its catalytic jumonji C domain, KDM5A contains three PHD reader domains, commonly recognized as chromatin recruitment modules. It is unknown whether any of these domains in KDM5A have functions beyond recruitment and whether they regulate the catalytic activity of the demethylase. Here using biochemical and nuclear magnetic resonance (NMR)-based structural studies, we show that the PHD1 preferentially recognizes unmethylated H3K4 histone tail, product of KDM5A-mediated demethylation of tri-methylated H3K4 (H3K4me3). Binding of unmodified H3 peptide to the PHD1 stimulates catalytic domain-mediated removal of methyl marks from H3K4me3 peptide and nucleosome substrates. This positive-feedback mechanism—enabled by the functional coupling between a reader and a catalytic domain in KDM5A—suggests a model for the spread of demethylation on chromatin.

  8. Digital signal processing for beam position feedback

    SciTech Connect

    Chung, Y.; Emery, L.; Kirchman, J.

    1992-04-01

    Stabilization of the particle beam position with respect to the focusing optics in the third generation synchrotron light sources is crucial to achieving low emittance and high brightness. For this purpose, global and local beam orbit correction feedbacks will be implemented in the APS storage ring. In this article, the authors discuss application of digital signal processing to particle/photon beam position feedback using the PID (proportional, integral, and derivative) control algorithm.

  9. Positive feedback, memory, and the predictability of earthquakes.

    PubMed

    Sammis, C G; Sornette, D

    2002-02-19

    We review the "critical point" concept for large earthquakes and enlarge it in the framework of so-called "finite-time singularities." The singular behavior associated with accelerated seismic release is shown to result from a positive feedback of the seismic activity on its release rate. The most important mechanisms for such positive feedback are presented. We solve analytically a simple model of geometrical positive feedback in which the stress shadow cast by the last large earthquake is progressively fragmented by the increasing tectonic stress. PMID:11875202

  10. Regulation of alkane degradation pathway by a TetR family repressor via an autoregulation positive feedback mechanism in a Gram-positive Dietzia bacterium.

    PubMed

    Liang, Jie-Liang; Nie, Yong; Wang, Miaoxiao; Xiong, Guangming; Wang, Yi-Ping; Maser, Edmund; Wu, Xiao-Lei

    2016-01-01

    n-Alkanes are ubiquitous in nature and serve as important carbon sources for both Gram-positive and Gram-negative bacteria. Hydroxylation of n-alkanes by alkane monooxygenases is the first and most critical step in n-alkane metabolism. However, regulation of alkane degradation genes in Gram-positive bacteria remains poorly characterized. We therefore explored the transcriptional regulation of an alkB-type alkane hydroxylase-rubredoxin fusion gene, alkW1, from Dietzia sp. DQ12-45-1b. The alkW1 promoter was characterized and so was the putative TetR family regulator, AlkX, located downstream of alkW1 gene. We further identified an unusually long 48 bp inverted repeat upstream of alkW1 and demonstrated the binding of AlkX to this operator. Analytical ultracentrifugation and microcalorimetric results indicated that AlkX formed stable dimers in solution and two dimers bound to one operator in a positive cooperative fashion characterized by a Hill coefficient of 1.64 (± 0.03) [kD  = 1.06 (± 0.16) μM, kD ' = 0.05 (± 0.01) μM]. However, the DNA-binding affinity was disrupted in the presence of long-chain fatty acids (C10-C24), suggesting that AlkX can sense the concentrations of n-alkane degradation metabolites. A model was therefore proposed where AlkX controls alkW1 expression in a metabolite-dependent manner. Bioinformatic analysis revealed that the alkane hydroxylase gene regulation mechanism may be common among Actinobacteria. PMID:26418273

  11. Positive feedback sharpens the anaphase switch

    PubMed Central

    Holt, Liam J.; Krutchinsky, Andrew N.; Morgan, David O.

    2009-01-01

    At the onset of anaphase, sister-chromatid cohesion is dissolved abruptly and irreversibly, ensuring that all chromosome pairs disjoin almost simultaneously. The regulatory mechanisms that generate this switch-like behavior are unclear. Anaphase is initiated when a ubiquitin ligase, the Anaphase-Promoting Complex (APC), triggers the destruction of securin, thereby allowing the protease, separase, to disrupt sister-chromatid cohesion 1–4. Here we demonstrate that Cdk1-dependent phosphorylation of securin near its destruction-box motif inhibits securin ubiquitination by the APC. The phosphatase Cdc14 reverses securin phosphorylation, thereby increasing the rate of securin ubiquitination. Because separase is known to activate Cdc14 5,6, our results support the existence of a positive feedback loop that increases the abruptness of anaphase. Consistent with this model, we show that mutations that disrupt securin phosphoregulation decrease the synchrony of chromosome segregation. Our results also suggest that coupling securin degradation with changes in Cdk1 and Cdc14 activities helps coordinate the initiation of sister-chromatid separation with changes in spindle dynamics. PMID:18552837

  12. Positive position feedback control for large space structures

    NASA Technical Reports Server (NTRS)

    Fanson, J. L.; Caughey, T. K.

    1987-01-01

    A new technique for vibration suppression in large space structures is investigated in laboratory experiments on a thin cantilever beam. This technique, called Positive Position Feedback, makes use of generalized displacement measurements to accomplish vibration suppression. Several features of Positive Position Feedback make it attractive for the large space structure control environment: The realization of the controller is simple and straightforward. Global stability conditions can be derived which are independent of the dynamical characteristics of the structure being controlled, i.e., all spillover is stabilizing. The method cannot be destabilized by finite actuator dynamics, and the technique is amenable to a strain-based sensing approach. The experiments control the first six bending modes of a cantilever beam, and make use of piezoelectric materials for actuators and sensors, simulating a piezoelectric active-member. The modal damping ratios are increased by factors ranging from 2 to 130.

  13. The progesterone positive feedback effect in women after ovariectomy.

    PubMed

    Zavos, Apostolos; Dafopoulos, Konstantinos; Messini, Christina I; Georgoulias, Panagiotis; Verikouki, Christina; Anifandis, George; Garas, Antonios; Messinis, Ioannis E

    2013-03-01

    Various ovarian substances regulate the secretion of gonadotrophins during the menstrual cycle, but there are still several unclarified issues. The aim of this study was to investigate the positive feedback effect of progesterone during the immediate period following ovariectomy. Experiments were performed in 12 normally cycling women (aged 39-49 years). Following abdominal hysterectomy plus bilateral ovariectomy performed on cycle day 3 (day 0), the women received either estradiol via skin patches (days 0-7, n = 6, group 1) or estradiol as above plus vaginal progesterone (days 1-7, n = 6, group 2). Serum estradiol values increased similarly in the two groups. After the operation, serum progesterone levels decreased significantly in group 1, while in group 2 they remained stable becoming higher than in group 1 (p < 0.05). An LH and an FSH surge occurred in group 2 with the values after the peak returning to the pre-surge baseline. In contrast, in group 1 LH and FSH levels following an initial decrease, increased gradually until the end of the experiment. These results demonstrate that, despite a variable response to estrogens, the positive feedback effect of progesterone remained intact immediately after ovariectomy in women. It is suggested that it is the combining action of estradiol and progesterone that can ensure the expression of a positive feedback mechanism in women. PMID:23153029

  14. Distinguishing Feedback Mechanisms in Clock Models

    NASA Astrophysics Data System (ADS)

    Golden, Alexander; Lubensky, David

    Biological oscillators are very diverse but can be classified based on dynamical motifs such as type of feedback. The S. Elongatus circadian oscillator is a novel circadian oscillator that can operate at constant protein number by modifying covalent states. It can be reproduced in vitro with only 3 different purified proteins: KaiA, KaiB, and KaiC. We use computational and analytic techniques to compare models of the S. Elongatus post-translational oscillator that rely on positive feedback with models that rely on negative feedback. We show that introducing a protein that binds competitively with KaiA to the KaiB-KaiC complex can distinguish between positive and negative feedback as the primary driver of the rhythm, which has so far been difficult to address experimentally. NSF Grant DMR-1056456.

  15. Alignment positioning mechanism

    NASA Technical Reports Server (NTRS)

    Fantasia, Peter M. (inventor)

    1991-01-01

    An alignment positioning mechanism for correcting and compensating for misalignment of structures to be coupled is disclosed. The mechanism comprises a power screw with a base portion and a threaded shank portion. A mounting fixture is provided for rigidly coupling said base portion to the mounting interface of a supporting structure with the axis of the screw perpendicular thereto. A traveling ball nut threaded on the power screw is formed with an external annular arcuate surface configured in the form of a spherical segment and enclosed by a ball nut housing with a conforming arcuate surface for permitting gimballed motion thereon. The ball nut housing is provided with a mounting surface which is positionable in cooperable engagement with the mounting interface of a primary structure to be coupled to the supporting structure. Cooperative means are provided on the ball nut and ball nut housing, respectively, for positioning the ball nut and ball nut housing in relative gimballed position within a predetermined range of relative angular relationship whereby severe structural stresses due to unequal loadings and undesirable bending moments on the mechanism are avoided.

  16. Sex Differences, Positive Feedback and Intrinsic Motivation.

    ERIC Educational Resources Information Center

    Deci, Edward L.; And Others

    The paper presents two experiments which test the "change in feelings of competence and self-determination" proposition of cognitive evaluation theory. This proposition states that when a person receives feedback about his performance on an intrinsically motivated activity this information will affect his sense of competence and…

  17. Positively biased processing of self-relevant social feedback.

    PubMed

    Korn, Christoph W; Prehn, Kristin; Park, Soyoung Q; Walter, Henrik; Heekeren, Hauke R

    2012-11-21

    Receiving social feedback such as praise or blame for one's character traits is a key component of everyday human interactions. It has been proposed that humans are positively biased when integrating social feedback into their self-concept. However, a mechanistic description of how humans process self-relevant feedback is lacking. Here, participants received feedback from peers after a real-life interaction. Participants processed feedback in a positively biased way, i.e., they changed their self-evaluations more toward desirable than toward undesirable feedback. Using functional magnetic resonance imaging we investigated two feedback components. First, the reward-related component correlated with activity in ventral striatum and in anterior cingulate cortex/medial prefrontal cortex (ACC/MPFC). Second, the comparison-related component correlated with activity in the mentalizing network, including the MPFC, the temporoparietal junction, the superior temporal sulcus, the temporal pole, and the inferior frontal gyrus. This comparison-related activity within the mentalizing system has a parsimonious interpretation, i.e., activity correlated with the differences between participants' own evaluation and feedback. Importantly, activity within the MPFC that integrated reward-related and comparison-related components predicted the self-related positive updating bias across participants offering a mechanistic account of positively biased feedback processing. Thus, theories on both reward and mentalizing are important for a better understanding of how social information is integrated into the human self-concept. PMID:23175836

  18. Positive feedback between PU.1 and the cell cycle controls myeloid differentiation.

    PubMed

    Kueh, Hao Yuan; Champhekar, Ameya; Champhekhar, Ameya; Nutt, Stephen L; Elowitz, Michael B; Rothenberg, Ellen V

    2013-08-01

    Regulatory gene circuits with positive-feedback loops control stem cell differentiation, but several mechanisms can contribute to positive feedback. Here, we dissect feedback mechanisms through which the transcription factor PU.1 controls lymphoid and myeloid differentiation. Quantitative live-cell imaging revealed that developing B cells decrease PU.1 levels by reducing PU.1 transcription, whereas developing macrophages increase PU.1 levels by lengthening their cell cycles, which causes stable PU.1 accumulation. Exogenous PU.1 expression in progenitors increases endogenous PU.1 levels by inducing cell cycle lengthening, implying positive feedback between a regulatory factor and the cell cycle. Mathematical modeling showed that this cell cycle-coupled feedback architecture effectively stabilizes a slow-dividing differentiated state. These results show that cell cycle duration functions as an integral part of a positive autoregulatory circuit to control cell fate. PMID:23868921

  19. Sea ice-albedo climate feedback mechanism

    SciTech Connect

    Schramm, J.L.; Curry, J.A.; Ebert, E.E.

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  20. Positive Feedbacks Enhance Macroalgal Resilience on Degraded Coral Reefs

    PubMed Central

    Dell, Claire L. A.; Longo, Guilherme O.

    2016-01-01

    Many reefs have shifted from coral and fish dominated habitats to less productive macroalgal dominated habitats, and current research is investigating means of reversing this phase shift. In the tropical Pacific, overfished reefs with inadequate herbivory can become dominated by the brown alga Sargassum polycystum. This alga suppresses recruitment and survival of corals and fishes, thus limiting the potential for reef recovery. Here we investigate the mechanisms that reinforce S. polycystum dominance and show that in addition to negatively affecting other species, this species acts in a self-reinforcing manner, positively promoting survival and growth of conspecifics. We found that survival and growth of both recruit-sized and mature S. polycystum fronds were higher within Sargassum beds than outside the beds and these results were found in both protected and fished reefs. Much of this benefit resulted from reduced herbivory within the Sargassum beds, but adult fronds also grew ~50% more within the beds even when herbivory did not appear to be occurring, suggesting some physiological advantage despite the intraspecific crowding. Thus via positive feedbacks, S. polycystum enhances its own growth and resistance to herbivores, facilitating its dominance (perhaps also expansion) and thus its resilience on degraded reefs. This may be a key feedback mechanism suppressing the recovery of coral communities in reefs dominated by macroalgal beds. PMID:27186979

  1. Modeling the effects of positive and negative feedback in kidney blood flow control.

    PubMed

    Liu, Runjing; Layton, Anita T

    2016-06-01

    Blood flow in the mammalian kidney is tightly autoregulated. One of the important autoregulation mechanisms is the myogenic response, which is activated by perturbations in blood pressure along the afferent arteriole. Another is the tubuloglomerular feedback, which is a negative feedback that responds to variations in tubular fluid [Cl(-)] at the macula densa.(1) When initiated, both the myogenic response and the tubuloglomerular feedback adjust the afferent arteriole muscle tone. A third mechanism is the connecting tubule glomerular feedback, which is a positive feedback mechanism located at the connecting tubule, downstream of the macula densa. The connecting tubule glomerular feedback is much less well studied. The goal of this study is to investigate the interactions among these feedback mechanisms and to better understand the effects of their interactions. To that end, we have developed a mathematical model of solute transport and blood flow control in the rat kidney. The model represents the myogenic response, tubuloglomerular feedback, and connecting tubule glomerular feedback. By conducting a bifurcation analysis, we studied the stability of the system under a range of physiologically-relevant parameters. The bifurcation results were confirmed by means of a comparison with numerical simulations. Additionally, we conducted numerical simulations to test the hypothesis that the interactions between the tubuloglomerular feedback and the connecting tubule glomerular feedback may give rise to a yet-to-be-explained low-frequency oscillation that has been observed in experimental records. PMID:26972744

  2. Mechanical feedback stabilizes budding yeast morphogenesis

    NASA Astrophysics Data System (ADS)

    Banavar, Samhita; Trogdon, Michael; Petzold, Linda; Campas, Otger

    Walled cells have the ability to remodel their shape while sustaining an internal turgor pressure that can reach values up to 10 atmospheres. This requires a tight and simultaneous regulation of cell wall assembly and mechanochemistry, but the underlying mechanisms by which this is achieved remain unclear. Using the growth of mating projections in budding yeast (S. cerevisiae) as a motivating example, we have developed a theoretical description that couples the mechanics of cell wall expansion and assembly via a mechanical feedback. In the absence of a mechanical feedback, cell morphogenesis is inherently unstable. The presence of a mechanical feedback stabilizes changes in cell shape and growth, and provides a mechanism to prevent cell lysis in a wide range of conditions. We solve for the dynamics of the system and obtain the different dynamical regimes. In particular, we show that several parameters affect the stability of growth, including the strength of mechanical feedback in the system. Finally, we compare our results to existing experimental data.

  3. A unified approach to global and local beam position feedback

    SciTech Connect

    Chung, Y.

    1994-08-01

    The Advanced Photon Source (APS) will implement both global and local beam position feedback systems to stabilize the particle and X-ray beams for the storage ring. The global feedback system uses 40 BPMs and 40 correctors per plane. Singular value decomposition (SVD) of the response matrix is used for closed orbit correction. The local feedback system uses two X-ray BPMS, two rf BPMS, and the four-magnet local bump to control the angle and displacement of the X-ray beam from a bending magnet or an insertion device. Both the global and local feedback systems are based on digital signal processing (DSP) running at 4-kHz sampling rate with a proportional, integral, and derivative (PID) control algorithm. In this paper, we will discuss resolution of the conflict among multiple local feedback systems due to local bump closure error and decoupling of the global and local feedback systems to maximize correction efficiency. In this scheme, the global feedback system absorbs the local bump closure error and the local feedback systems compensate for the effect of global feedback on the local beamlines. The required data sharing between the global and local feedback systems is done through the fiber-optically networked reflective memory.

  4. The Positive Supervisor: Using Feedback as a Tool.

    ERIC Educational Resources Information Center

    Reyes, Donald J.

    1984-01-01

    Argues that systematic positive feedback techniques such as those currently used in industry can and should be adapted as a management technique in schools--between administrators and teachers and between teachers and students as well. (TE)

  5. Linking Nutrients to Growth through a Positive Feedback Loop

    PubMed Central

    Palu, Rebecca A.S.; Thummel, Carl S.

    2016-01-01

    In this issue of Developmental Cell, Okamoto and Nishimura (2015) identify a positive feedback loop between neuronal cells that maintains insulin signaling and growth under restricted nutritional conditions. PMID:26555046

  6. Unpacking social hypersensitivity: vulnerability to the absence of positive feedback.

    PubMed

    Cikara, Mina; Girgus, Joan S

    2010-10-01

    Navigating social life requires accurately calibrated sensitivity to external feedback, thus extreme sensitivity to external feedback may be maladaptive. Using a daily diary design, the authors investigated whether the relationship between social hypersensitivity and daily events predicted level, lability, and reactivity of both self-esteem and affect. Relative to their less sensitive peers, socially hypersensitive people exhibited lower levels of self-esteem and greater negative affect and experienced greater fluctuations in self-esteem and negative affect. Although most people were negatively reactive to the presence of negative feedback, socially hypersensitive people were negatively reactive to the absence of positive feedback as well. The authors argue that reactivity to the absence of positive feedback is a fundamental, heretofore untested aspect of what makes social hypersensitivity a pernicious orientation. PMID:20841434

  7. Facial Feedback Mechanisms in Autistic Spectrum Disorders

    ERIC Educational Resources Information Center

    Stel, Marielle; van den Heuvel, Claudia; Smeets, Raymond C.

    2008-01-01

    Facial feedback mechanisms of adolescents with Autistic Spectrum Disorders (ASD) were investigated utilizing three studies. Facial expressions, which became activated via automatic (Studies 1 and 2) or intentional (Study 2) mimicry, or via holding a pen between the teeth (Study 3), influenced corresponding emotions for controls, while individuals…

  8. A Multiple Relevance Feedback Strategy with Positive and Negative Models

    PubMed Central

    Ma, Yunlong; Lin, Hongfei

    2014-01-01

    A commonly used strategy to improve search accuracy is through feedback techniques. Most existing work on feedback relies on positive information, and has been extensively studied in information retrieval. However, when a query topic is difficult and the results from the first-pass retrieval are very poor, it is impossible to extract enough useful terms from a few positive documents. Therefore, the positive feedback strategy is incapable to improve retrieval in this situation. Contrarily, there is a relatively large number of negative documents in the top of the result list, and it has been confirmed that negative feedback strategy is an important and useful way for adapting this scenario by several recent studies. In this paper, we consider a scenario when the search results are so poor that there are at most three relevant documents in the top twenty documents. Then, we conduct a novel study of multiple strategies for relevance feedback using both positive and negative examples from the first-pass retrieval to improve retrieval accuracy for such difficult queries. Experimental results on these TREC collections show that the proposed language model based multiple model feedback method which is generally more effective than both the baseline method and the methods using only positive or negative model. PMID:25137234

  9. Position feedback system for volume holographic storage media

    DOEpatents

    Hays, Nathan J.; Henson, James A.; Carpenter, Christopher M.; Akin, Jr.. William R.; Ehrlich, Richard M.; Beazley, Lance D.

    1998-07-07

    A method of holographic recording in a photorefractive medium wherein stored holograms may be retrieved with maximum signal-to noise ratio (SNR) is disclosed. A plurality of servo blocks containing position feedback information is recorded in the crystal and made non-erasable by heating the crystal. The servo blocks are recorded at specific increments, either angular or frequency, depending whether wavelength or angular multiplexing is applied, and each servo block is defined by one of five patterns. Data pages are then recorded at positions or wavelengths enabling each data page to be subsequently reconstructed with servo patterns which provide position feedback information. The method of recording data pages and servo blocks is consistent with conventional practices. In addition, the recording system also includes components (e.g. voice coil motor) which respond to position feedback information and adjust the angular position of the reference angle of a reference beam to maximize SNR by reducing crosstalk, thereby improving storage capacity.

  10. Positive Feedbacks in Seagrass Ecosystems Evidence from Large-Scale Empirical Data

    PubMed Central

    van der Heide, Tjisse; van Nes, Egbert H.; van Katwijk, Marieke M.; Olff, Han; Smolders, Alfons J. P.

    2011-01-01

    Positive feedbacks cause a nonlinear response of ecosystems to environmental change and may even cause bistability. Even though the importance of feedback mechanisms has been demonstrated for many types of ecosystems, their identification and quantification is still difficult. Here, we investigated whether positive feedbacks between seagrasses and light conditions are likely in seagrass ecosystems dominated by the temperate seagrass Zostera marina. We applied a combination of multiple linear regression and structural equation modeling (SEM) on a dataset containing 83 sites scattered across Western Europe. Results confirmed that a positive feedback between sediment conditions, light conditions and seagrass density is likely to exist in seagrass ecosystems. This feedback indicated that seagrasses are able to trap and stabilize suspended sediments, which in turn improves water clarity and seagrass growth conditions. Furthermore, our analyses demonstrated that effects of eutrophication on light conditions, as indicated by surface water total nitrogen, were on average at least as important as sediment conditions. This suggests that in general, eutrophication might be the most important factor controlling seagrasses in sheltered estuaries, while the seagrass-sediment-light feedback is a dominant mechanism in more exposed areas. Our study demonstrates the potentials of SEM to identify and quantify positive feedbacks mechanisms for ecosystems and other complex systems. PMID:21283684

  11. Folding with thermal-mechanical feedback: Discussion

    NASA Astrophysics Data System (ADS)

    Treagus, Susan H.; Hudleston, Peter J.

    2009-07-01

    A recent paper in this Journal by Bruce Hobbs, Klaus Regenauer-Lieb and Alison Ord [Hobbs, B., Regenauer-Lieb, K., Ord, A., 2008. Folding with thermal-mechanical feedback. Journal of Structural Geology 30, 1572-1592] presents an alternative theory to the traditional Biot-Ramberg theory for folding of viscous rocks that involves non-equilibrium thermodynamics and thermal-mechanical feedback. The authors convey a strong message throughout their paper that the folds produced by this theoretical and numerical modelling are geologically realistic and provide a better explanation for many natural folds than the traditional theory. They promise the same approach for boudinage, and present this folding paper as part of a "unified framework for rock deformation processes". Readers of the Journal of Structural Geology might be led to conclude that this paper provides a good alternative model for folding of rocks. Our discussion will disagree, on four counts.

  12. Feedback in Action--The Mechanism of the Iris.

    ERIC Educational Resources Information Center

    Pingnet, B.; And Others

    1988-01-01

    Describes two demonstration experiments. Outlines a demonstration of the general principle of positive and negative feedback and the influence of time delays in feedback circuits. Elucidates the principle of negative feedback with a model of the iris of the eye. Emphasizes the importance of feedback in biological systems. (CW)

  13. Positive Feedback and Path Dependence Using the Law of Large Numbers.

    ERIC Educational Resources Information Center

    Matthews, Peter Hans

    2001-01-01

    Describes interest in the behavior of random processes with positive feedback. Explains that simulation of the law of large numbers with increasing amounts of feedback makes instruction of random processes with positive feedback possible for undergraduate students. (RLH)

  14. Cognitive Evaluation Theory, Locus of Control and Positive Verbal Feedback.

    ERIC Educational Resources Information Center

    Lonky, Edward; Reihman, Jacqueline

    This study tests the hypothesis that individual differences in locus of control orientation may mediate elementary school students' responses to positive verbal feedback. A total of 30 kindergarten through fourth grade subjects were assessed for locus of control orientation using the Bialer Children's Locus of Control Questionnaire. To establish a

  15. Beam position feedback system for the Advanced Photon Source

    SciTech Connect

    Chung, Y.

    1993-11-01

    The Advanced Photon Source (APS) will implement both global and local beam position feedback systems to stabilize the particle and X-ray beams for the storage ring. The systems consist of 20 VME crates distributed around the ring, each running multiple digital signal processors (DSP) running at 4kHz sampling rate with a proportional, integral, and derivative (PID) control algorithm. The particle and X-ray beam position data is shared by the distributed processors through networked reflective memory. A theory of closed orbit correction using the technique of singular value decomposition (SVD) of the response matrix and simulation of its application to the APS storage ring will be discussed. This technique combines the global and local feedback systems and resolves the conflict among multiple local feedback systems due to local bump closure error. Maximum correction efficiency is achieved by feeding back the global orbit data to the local feedback systems. The effect of the eddy current induced in the relatively thick (1/2 inch) vacuum chamber by the AC corrector magnet field for local feedback systems is compensated by digital filters. Results of experiments conducted on the X-ray ring of the National Synchrotron Light Source and the SPEAR at Stanford Synchrotron Radiation Laboratory will also be presented.

  16. Beam position feedback system for the Advanced Photon Source

    SciTech Connect

    Chung, Y.

    1993-12-31

    The Advanced Photon Source (APS) will implement both global and local beam position feedback systems to stabilize the particle and X-ray beams for the storage ring. The systems consist of 20 VME crates distributed around the ring, each running multiple digital signal processors (DSP) running at 4kHz sampling rate with a proportional, integral, and derivative (PID) control algorithm. The particle and X-ray beam position data is shared by the distributed processors through networked reflective memory. A theory of closed orbit correction using the technique of singular value decomposition (SVD) of the response matrix and simulation of its application to the APS storage ring will be discussed. This technique combines the global and local feedback systems and resolves the conflict among multiple local feedback systems due to local bump closure error. Maximum correction efficiency is achieved by feeding back the global orbit data to the local feedback systems. The effect of the vacuum chamber eddy current induced by the AC corrector magnet field for local feedback systems is compensated by digital filters. Results of experiments conducted on the X-ray ring of the National Synchrotron Light Source and the SPEAR at Stanford Synchrotron Radiation Laboratory will be presented.

  17. Rlm1 mediates positive autoregulatory transcriptional feedback that is essential for Slt2-dependent gene expression.

    PubMed

    García, Raúl; Sanz, Ana Belén; Rodríguez-Peña, José Manuel; Nombela, César; Arroyo, Javier

    2016-04-15

    Activation of the yeast cell wall integrity (CWI) pathway induces an adaptive transcriptional programme that is largely dependent on the transcription factor Rlm1 and the mitogen-activated protein kinase (MAPK) Slt2. Upon cell wall stress, the transcription factor Rlm1 is recruited to the promoters ofRLM1andSLT2, and exerts positive-feedback mechanisms on the expression of both genes. Activation of the MAPK Slt2 by cell wall stress is not impaired in strains with individual blockade of any of the two feedback pathways. Abrogation of the autoregulatory feedback mechanism onRLM1severely affects the transcriptional response elicited by activation of the CWI pathway. In contrast, a positive trans-acting feedback mechanism exerted by Rlm1 onSLT2also regulates CWI output responses but to a lesser extent. Therefore, a complete CWI transcriptional response requires not only phosphorylation of Rlm1 by Slt2 but also concurrentSLT2- andRLM1-mediated positive-feedback mechanisms; sustained patterns of gene expression are mainly achieved by positive autoregulatory circuits based on the transcriptional activation of Rlm1. PMID:26933180

  18. Differential effects of aging on estrogen negative and positive feedback

    PubMed Central

    Shaw, N. D.; Srouji, S. S.; Histed, S. N.

    2011-01-01

    Recent studies have demonstrated an age-related decline in gonadotropins and a decrease in pituitary responsiveness to GnRH, indicating that aging influences the neuroendocrine components of the female reproductive axis independently of changes in ovarian function. To determine whether aging might also affect the luteinizing hormone (LH) negative and positive feedback responses to gonadal steroids, we administered a controlled, graded sex steroid infusion to 11 younger (45–56 yr) and nine older (70–80 yr) postmenopausal women (PMW) in whom endogenous ovarian steroids and peptides are uniformly low. The doses of estradiol (E2) and progesterone (P) were chosen to mimic levels across the normal follicular phase and have been shown previously to induce negative followed by positive feedback on LH. Similar E2 and P levels were achieved in younger and older PMW (P = 0.4 and 0.3, respectively) and produced a biphasic LH response in all subjects. The early decline in LH to 53% of baseline was not different in older vs. younger PMW. However, the positive feedback effect was attenuated in older compared with younger PMW (peak LH 144.4 ± 19.5 vs. 226.8 ± 22.3 IU/l, respectively, P = 0.01). In conclusion, these studies in PMW demonstrate preservation of short-term steroid negative and positive feedback in response to exogenous E2 and P with aging. Attenuation of positive feedback in older compared with younger PMW is consistent with previous reports of declining GnRH responsiveness with aging. PMID:21558550

  19. Differential effects of aging on estrogen negative and positive feedback.

    PubMed

    Shaw, N D; Srouji, S S; Histed, S N; Hall, J E

    2011-08-01

    Recent studies have demonstrated an age-related decline in gonadotropins and a decrease in pituitary responsiveness to GnRH, indicating that aging influences the neuroendocrine components of the female reproductive axis independently of changes in ovarian function. To determine whether aging might also affect the luteinizing hormone (LH) negative and positive feedback responses to gonadal steroids, we administered a controlled, graded sex steroid infusion to 11 younger (45-56 yr) and nine older (70-80 yr) postmenopausal women (PMW) in whom endogenous ovarian steroids and peptides are uniformly low. The doses of estradiol (E(2)) and progesterone (P) were chosen to mimic levels across the normal follicular phase and have been shown previously to induce negative followed by positive feedback on LH. Similar E(2) and P levels were achieved in younger and older PMW (P = 0.4 and 0.3, respectively) and produced a biphasic LH response in all subjects. The early decline in LH to 53% of baseline was not different in older vs. younger PMW. However, the positive feedback effect was attenuated in older compared with younger PMW (peak LH 144.4 ± 19.5 vs. 226.8 ± 22.3 IU/l, respectively, P = 0.01). In conclusion, these studies in PMW demonstrate preservation of short-term steroid negative and positive feedback in response to exogenous E(2) and P with aging. Attenuation of positive feedback in older compared with younger PMW is consistent with previous reports of declining GnRH responsiveness with aging. PMID:21558550

  20. Autotuning positive feedback time delay controller for dead time processes.

    PubMed

    Tsang, K M; Rad, A Besharati; Chan, W L

    2002-01-01

    Biased relay feedback tests are applied to dead time processes to obtain their ultimate gains and ultimate frequencies. First-order process with dead time models are then fitted to the estimated gains and frequencies. A time delay controller that incorporates a simple compensator with a delay element in positive feedback can be derived from the fitted model. The time delay controller gives better performance comparing with classical Ziegler and Nichols tuned PID controller. Experimental study is included to demonstrate the effectiveness of the proposed tuning scheme and the time delay control algorithm. PMID:12014803

  1. People newly in love are more responsive to positive feedback.

    PubMed

    Brown, Cassandra L; Beninger, Richard J

    2012-06-01

    Passionate love is associated with increased activity in dopamine-rich regions of the brain. Increased dopamine in these regions is associated with a greater tendency to learn from reward in trial-and-error learning tasks. This study examined the prediction that individuals who were newly in love would be better at responding to reward (positive feedback). In test trials, people who were newly in love selected positive outcomes significantly more often than their single (not in love) counterparts but were no better at the task overall. This suggests that people who are newly in love show a bias toward responding to positive feedback, which may reflect a general bias towards reward-seeking. PMID:22897082

  2. Climate sensitivity: Analysis of feedback mechanisms

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Lacis, A.; Rind, D.; Russell, G.; Stone, P.; Fung, I.; Ruedy, R.; Lerner, J.

    We study climate sensitivity and feedback processes in three independent ways: (1) by using a three dimensional (3-D) global climate model for experiments in which solar irradiance S0 is increased 2 percent or CO2 is doubled, (2) by using the CLIMAP climate boundary conditions to analyze the contributions of different physical processes to the cooling of the last ice age (18K years ago), and (3) by using estimated changes in global temperature and the abundance of atmospheric greenhouse gases to deduce an empirical climate sensitivity for the period 1850-1980. Our 3-D global climate model yields a warming of 4C for either a 2 percent increase of S0 or doubled CO2. This indicates a net feedback factor of f = 3-4, because either of these forcings would cause the earth's surface temperature to warm 1.2-1.3C to restore radiative balance with space, if other factors remained unchanged. Principal positive feedback processes in the model are changes in atmospheric water vapor, clouds and snow/ice cover. Feedback factors calculated for these processes, with atmospheric dynamical feedbacks implicitly incorporated, are respectively fwater vapor 1.6, fclouds 1.3 and fsnow/ice 1.1 with the latter mainly caused by sea ice changes. A number of potential feedbacks, such as land ice cover, vegetation cover and ocean heat transport were held fixed in these experiments. We calculate land ice, sea ice and vegetation feedbacks for the 18K climate to be fland ice 1.2-1.3, fsea ice 1.2 and fvegetation 1.05-1.1 from their effect on the radiation budget at the top of the atmosphere. This sea ice feedback at 18K is consistent with the smaller fsnow/ice 1.1 in the S0 and CO2 experiments, which applied to a warmer earth with less sea ice. We also obtain an empirical estimate of f = 2-4 for the fast feedback processes (water vapor, clouds, sea ice) operating on 10-100 year time scales by comparing the cooling due to slow or specified changes (land ice, C02, vegetation) to the total cooling at 18K. The temperature increase believed to have occurred in the past 130 years (approximately 0.5C) is also found to imply a climate sensitivity of 2.5-5C for doubled C02 (f = 2-4), if (1) the temperature increase is due to the added greenhouse gases, (2) the 1850 CO2 abundance was 27010 ppm, and (3) the heat perturbation is mixed like a passive tracer in the ocean with vertical mixing coefficient k 1 cm2 s-1. These analyses indicate that f is substantially greater than unity on all time scales. Our best estimate for the current climate due to processes operating on the 10-100 year time scale is f = 2-4, corresponding to a climate sensitivity of 2.5-5C for doubled CO2. The physical process contributing the greatest uncertainty to f on this time scale appears to be the cloud feedback. We show that the ocean's thermal relaxation time depends strongly on f. The e-folding time constant for response of the isolated ocean mixed layer is about 15 years, for the estimated value of f. This time is sufficiently long to allow substantial heat exchange between the mixed layer and deeper layers. For f = 3-4 the response time of the surface temperature to a heating perturbation is of order 100 years, if the perturbation is sufficiently small that it does not alter the rate of heat exchange with the deeper ocean. The climate sensitivity we have inferred is larger than that stated in the Carbon Dioxide Assessment Committee report (CDAC, 1983). Their result is based on the empirical temperature increase in the past 130 years, but their analysis did not account for the dependence of the ocean response time on climate sensitivity. Their choice of a fixed 15 year response time biased their result to low sensitivities. We infer that, because of recent increases in atmospheric CO2 and trace gases, there is a large, rapidly growing gap between current climate and the equilibrium climate for current atmospheric composition. Based on the climate sensitivity we have estimated, the amount of greenhouse gases presently in the atmosphere will cause an eventual global mean warming of about 1C, making the global temperature at least comparable to that of the Altithermal, the warmest period in the past 100,000 years. Projection of future climate trends on the 10-100 year time scale depends crucially upon improved understanding of ocean dynamics, particularly upon how ocean mixing will respond to climate change at the ocean surface.

  3. AGN feedback and star formation in ETGs: negative and positive feedback

    NASA Astrophysics Data System (ADS)

    Ciotti, Luca; Ostriker, Jeremiah P.; Novak, Greg; Negri, Andrea; Pellegrini, Silvia; Posacki, Silvia

    2015-08-01

    AGN feedback from supermassive black holes at the center of Early Type Galaxies is commonly invoked as the explanation for the quenching of star formation in these systems, that after this phase are considered “red and dead”. The situation is by far more complicated, due to the significant amount of mass injected in the galaxy by the evolving stellar population over cosmological times. In absence of feedback, this mass would lead to unobserved galactic cooling flows, and to central black holes two orders of magnitude more massive than observed. I will present the results of state-of-the-art hydrodynamical simulations with radiative transport and star formation of the “passive” evolution of ETGs, focusing in particular on highly structured spatial and temporal nature of the intermittent AGN feedback, that is not only negative (shutting down the cooling episodes of the ISM), but also positive, inducing star formation in the inner regions of the host galaxy.

  4. Improved Position Sensor for Feedback Control of Levitation

    NASA Technical Reports Server (NTRS)

    Hyers, Robert; Savage, Larry; Rogers, Jan

    2004-01-01

    An improved optoelectronic apparatus has been developed to provide the position feedback needed for controlling the levitation subsystem of a containerless-processing system. As explained, the advantage of this apparatus over prior optoelectronic apparatuses that have served this purpose stems from the use of an incandescent lamp, instead of a laser, to illuminate the levitated object. In containerless processing, a small object to be processed is levitated (e.g., by use of a microwave, low-frequency electromagnetic, electrostatic, or acoustic field) so that it is not in contact with the wall of the processing chamber or with any other solid object during processing. In the case of electrostatic or low-frequency electromagnetic levitation, real-time measurement of the displacement of the levitated object from its nominal levitation position along the vertical axis (and, in some cases, along one or two horizontal axes) is needed for feedback control of the levitating field.

  5. [Feedback control mechanisms of plant cell expansion

    SciTech Connect

    Cosgrove, D.J.

    1992-01-01

    We have generated considerable evidence for the significance of wall stress relaxation in the control of plant growth and found that several agents (gibberellin, light, genetic loci for dwarf stature) influence growth rate via alteration of wall relaxation. We have refined our methods for measuring wall relaxation and, moreover, have found that wall relaxation properties bear only a distance relationship to wall mechanical properties. We have garnered novel insights into the nature of cell expansion mechanisms by analyzing spontaneous fluctuations of plant growth rate in seedlings. These experiments involved the application of mathematical techniques for analyzing growth rate fluctuations and the development of new instrumentation for measuring and forcing plant growth in a controlled fashion. These studies conclude that growth rate fluctuations generated by the plant as consequence of a feedback control system. This conclusion has important implications for the nature of wall loosening processes and demands a different framework for thinking about growth control. It also implies the existence of a growth rate sensor.

  6. Positive feedback regulation results in spatial clustering and fast spreading of active signaling molecules on a cell membrane

    PubMed Central

    Das, Jayajit; Kardar, Mehran; Chakraborty, Arup K.

    2009-01-01

    Positive feedback regulation is ubiquitous in cell signaling networks, often leading to binary outcomes in response to graded stimuli. However, the role of such feedbacks in clustering, and in spatial spreading of activated molecules, has come to be appreciated only recently. We focus on the latter, using a simple model developed in the context of Ras activation with competing negative and positive feedback mechanisms. We find that positive feedback, in the presence of slow diffusion, results in clustering of activated molecules on the plasma membrane, and rapid spatial spreading as the front of the cluster propagates with a constant velocity (dependent on the feedback strength). The advancing fronts of the clusters of the activated species are rough, with scaling consistent with the Kardar–Parisi–Zhang equation in one dimension. Our minimal model is general enough to describe signal transduction in a wide variety of biological networks where activity in the membrane-proximal region is subject to feedback regulation. PMID:19566183

  7. Feedback Mechanism for Microtubule Length Regulation by Stathmin Gradients

    PubMed Central

    Zeitz, Maria; Kierfeld, Jan

    2014-01-01

    We formulate and analyze a theoretical model for the regulation of microtubule (MT) polymerization dynamics by the signaling proteins Rac1 and stathmin. In cells, the MT growth rate is inhibited by cytosolic stathmin, which, in turn, is inactivated by Rac1. Growing MTs activate Rac1 at the cell edge, which closes a positive feedback loop. We investigate both tubulin sequestering and catastrophe promotion as mechanisms for MT growth inhibition by stathmin. For a homogeneous stathmin concentration in the absence of Rac1, we find a switchlike regulation of the MT mean length by stathmin. For constitutively active Rac1 at the cell edge, stathmin is deactivated locally, which establishes a spatial gradient of active stathmin. In this gradient, we find a stationary bimodal MT-length distribution for both mechanisms of MT growth inhibition by stathmin. One subpopulation of the bimodal length distribution can be identified with fast-growing and long pioneering MTs in the region near the cell edge, which have been observed experimentally. The feedback loop is closed through Rac1 activation by MTs. For tubulin sequestering by stathmin, this establishes a bistable switch with two stable states: one stable state corresponds to upregulated MT mean length and bimodal MT length distributions, i.e., pioneering MTs; the other stable state corresponds to an interrupted feedback with short MTs. Stochastic effects as well as external perturbations can trigger switching events. For catastrophe-promoting stathmin, we do not find bistability. PMID:25517152

  8. Local beam position feedback experiments on the ESRF storage ring

    SciTech Connect

    Chung, Y.; Kahana, E.; Kirchman, J.

    1995-06-01

    This paper describes the results of local beam position feedback experiments conducted on the ESRF storage ring using digital signal processing (DSP) under the trilateral agreement of collaboration among ESRF, APS, and SPring-8. Two rf beam position monitors (BPMS) in the, upstream and downstream of the insertion device (ID) and two x-ray BPMs in the sixth cell were used to monitor the electron beam and the x-ray beam emitted from the ID, respectively. The local bump coefficients were obtained using the technique of singular value decomposition (SVD) on the global response matrix for the bump magnets and all the available BPMs outside the local bump. The local response matrix was then obtained between the two three-magnet bumps and the position monitors. The data sampling frequency was 4 kHz and a proportional, integral, and derivative (PID) controller was used. The result indicates the closed-loop feedback bandwidth close to 100 Hz and clear attenuation ({approx} {minus}40 dB) of the 7-Hz beam motion due to girder vibration resonance. Comparison of the results using the rf BPMs and x-ray BPMs will be also discussed.

  9. The better, the bigger: The effect of graded positive performance feedback on the reward positivity.

    PubMed

    Frömer, Romy; Stürmer, Birgit; Sommer, Werner

    2016-02-01

    In this study on skill acquisition in a computerized throwing task, we examined the effect of graded correct-related performance feedback on the reward positivity of the event-related brain potential (ERP). Theories of reinforcement learning predict effects of reward magnitude and expectancy on the reward prediction error. The later is supposed to be reflected in reward positivity, a fronto-central ERP component. A sample of 68 participants learned to throw at a beamer-projected target disk while performance accuracy, displayed as the place of impact of the projectile on the target, served as graded feedback. Effects of performance accuracy in successful trials, hit frequency, and preceding trial performance on reward positivity were analyzed simultaneously on a trial-by-trial basis by means of linear mixed models. In accord with previous findings, reward positivity increased with feedback about more accurate performance. This relationship was not linear, but cubic, with larger impact of feedback towards the end of the accuracy distribution. In line with being a measure of expectancy, the reward positivity decreased with increasing hit frequency and was larger after unsuccessful trials. The effect of hit frequency was more pronounced following successful trials. These results indicate a fast trial-by-trial adaptation of expectation. The results confirm predictions of reinforcement learning theory and extend previous findings on reward magnitude to the area of complex, goal directed skill acquisition. PMID:26756995

  10. Regulative feedback in pattern formation: towards a general relativistic theory of positional information.

    PubMed

    Jaeger, Johannes; Irons, David; Monk, Nick

    2008-10-01

    Positional specification by morphogen gradients is traditionally viewed as a two-step process. A gradient is formed and then interpreted, providing a spatial metric independent of the target tissue, similar to the concept of space in classical mechanics. However, the formation and interpretation of gradients are coupled, dynamic processes. We introduce a conceptual framework for positional specification in which cellular activity feeds back on positional information encoded by gradients, analogous to the feedback between mass-energy distribution and the geometry of space-time in Einstein's general theory of relativity. We discuss how such general relativistic positional information (GRPI) can guide systems-level approaches to pattern formation. PMID:18776142

  11. Brain activity elicited by positive and negative feedback in preschool-aged children.

    PubMed

    Mai, Xiaoqin; Tardif, Twila; Doan, Stacey N; Liu, Chao; Gehring, William J; Luo, Yue-Jia

    2011-01-01

    To investigate the processing of positive vs. negative feedback in children aged 4-5 years, we devised a prize-guessing game that is analogous to gambling tasks used to measure feedback-related brain responses in adult studies. Unlike adult studies, the feedback-related negativity (FRN) elicited by positive feedback was as large as that elicited by negative feedback, suggesting that the neural system underlying the FRN may not process feedback valence in early childhood. In addition, positive feedback, compared with negative feedback, evoked a larger P1 over the occipital scalp area and a larger positive slow wave (PSW) over the right central-parietal scalp area. We believe that the PSW is related to emotional arousal and the intensive focus on positive feedback that is present in the preschool and early school years has adaptive significance for both cognitive and emotional development during this period. PMID:21526189

  12. Robust, tunable genetic memory from protein sequestration combined with positive feedback

    PubMed Central

    Shopera, Tatenda; Henson, William R.; Ng, Andrew; Lee, Young Je; Ng, Kenneth; Moon, Tae Seok

    2015-01-01

    Natural regulatory networks contain many interacting components that allow for fine-tuning of switching and memory properties. Building simple bistable switches, synthetic biologists have learned the design principles of complex natural regulatory networks. However, most switches constructed so far are so simple (e.g. comprising two regulators) that they are functional only within a limited parameter range. Here, we report the construction of robust, tunable bistable switches in Escherichia coli using three heterologous protein regulators (ExsADC) that are sequestered into an inactive complex through a partner swapping mechanism. On the basis of mathematical modeling, we accurately predict and experimentally verify that the hysteretic region can be fine-tuned by controlling the interactions of the ExsADC regulatory cascade using the third member ExsC as a tuning knob. Additionally, we confirm that a dual-positive feedback switch can markedly increase the hysteretic region, compared to its single-positive feedback counterpart. The dual-positive feedback switch displays bistability over a 106-fold range of inducer concentrations, to our knowledge, the largest range reported so far. This work demonstrates the successful interlocking of sequestration-based ultrasensitivity and positive feedback, a design principle that can be applied to the construction of robust, tunable, and predictable genetic programs to achieve increasingly sophisticated biological behaviors. PMID:26384562

  13. Output feedback control of a mechanical system using magnetic levitation.

    PubMed

    Beltran-Carbajal, F; Valderrabano-Gonzalez, A; Rosas-Caro, J C; Favela-Contreras, A

    2015-07-01

    This paper presents an application of a nonlinear magnetic levitation system to the problem of efficient active control of mass-spring-damper mechanical systems. An output feedback control scheme is proposed for reference position trajectory tracking tasks on the flexible mechanical system. The electromagnetically actuated system is shown to be a differentially flat nonlinear system. An extended state estimation approach is also proposed to obtain estimates of velocity, acceleration and disturbance signals. The differential flatness structural property of the system is then employed for the synthesis of the controller and the signal estimation approach presented in this work. Some experimental and simulation results are included to show the efficient performance of the control approach and the effective estimation of the unknown signals. PMID:25707718

  14. Periodic explosions by positive feedback in a rising foam column

    PubMed Central

    Zener, Clarence; Noriega, Jaime

    1982-01-01

    An aqueous foam rising adiabatically in a column suffers a drop in temperature. Under appropriate conditions, such a column periodically explodes. We here trace this explosion to the tight thermal coupling between the foam and its enclosing glass column. When the surface surfactant concentration is unbuffered by micelles, a positive feedback exists between the flow of heat from the walls into the foam and the thermal conductivity of the foam itself. In our highly expanded foam, heat is conducted through the foam cells' interior primarily by the heat-pipe effect. Such an effect is retarded by a dense layer of surfactant molecules. Heat absorption causes cell expansion, which, in a foam unbuffered by micelles, causes a reduction in surface concentration of surfactant molecules and, hence, in an increase in thermal conductivity. This interpretation of our observed periodic explosions is in agreement with all of our observations. PMID:16593192

  15. Blowin' in the Wind: Both "Negative" and "Positive" Feedback in an Obscured High-z Quasar

    NASA Astrophysics Data System (ADS)

    Cresci, G.; Mainieri, V.; Brusa, M.; Marconi, A.; Perna, M.; Mannucci, F.; Piconcelli, E.; Maiolino, R.; Feruglio, C.; Fiore, F.; Bongiorno, A.; Lanzuisi, G.; Merloni, A.; Schramm, M.; Silverman, J. D.; Civano, F.

    2015-01-01

    Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation in galaxies, preventing massive galaxies to overgrow and producing the red colors of ellipticals. On the other hand, some models are also requiring "positive" active galactic nucleus feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively driven winds are available. Here we present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z = 1.59 QSO detected in the XMM-COSMOS survey, in which we clearly resolve a fast (1500 km s-1) and extended (up to 13 kpc from the black hole) outflow in the [O III] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U-band flux from Hubble Space Telescope/Advanced Camera for Surveys imaging enable to map the current star formation in the host galaxy: both tracers independently show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy ("negative feedback"), but also triggering star formation by outflow induced pressure at the edges ("positive feedback"). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.

  16. BLOWIN' IN THE WIND: BOTH ''NEGATIVE'' AND ''POSITIVE'' FEEDBACK IN AN OBSCURED HIGH-z QUASAR

    SciTech Connect

    Cresci, G.; Mannucci, F.; Mainieri, V.; Brusa, M.; Perna, M.; Lanzuisi, G.; Piconcelli, E.; Feruglio, C.; Fiore, F.; Bongiorno, A.; Maiolino, R.; Merloni, A; Schramm, M.; Silverman, J. D.; Civano, F.

    2015-01-20

    Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation in galaxies, preventing massive galaxies to overgrow and producing the red colors of ellipticals. On the other hand, some models are also requiring ''positive'' active galactic nucleus feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively driven winds are available. Here we present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z = 1.59 QSO detected in the XMM-COSMOS survey, in which we clearly resolve a fast (1500 km s{sup –1}) and extended (up to 13 kpc from the black hole) outflow in the [O III] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U-band flux from Hubble Space Telescope/Advanced Camera for Surveys imaging enable to map the current star formation in the host galaxy: both tracers independently show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy (''negative feedback''), but also triggering star formation by outflow induced pressure at the edges (''positive feedback''). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.

  17. The Effect of Positive Feedback in a Constraint-Based Intelligent Tutoring System

    ERIC Educational Resources Information Center

    Mitrovic, Antonija; Ohlsson, Stellan; Barrow, Devon K.

    2013-01-01

    Tutoring technologies for supporting learning from errors via negative feedback are highly developed and have proven their worth in empirical evaluations. However, observations of empirical tutoring dialogs highlight the importance of positive feedback in the practice of expert tutoring. We hypothesize that positive feedback works by reducing…

  18. The Effect of Positive Feedback in a Constraint-Based Intelligent Tutoring System

    ERIC Educational Resources Information Center

    Mitrovic, Antonija; Ohlsson, Stellan; Barrow, Devon K.

    2013-01-01

    Tutoring technologies for supporting learning from errors via negative feedback are highly developed and have proven their worth in empirical evaluations. However, observations of empirical tutoring dialogs highlight the importance of positive feedback in the practice of expert tutoring. We hypothesize that positive feedback works by reducing

  19. From Positivity to Negativity Bias: Ambiguity Affects the Neurophysiological Signatures of Feedback Processing.

    PubMed

    Gibbons, Henning; Schnuerch, Robert; Stahl, Jutta

    2016-04-01

    Previous studies on the neurophysiological underpinnings of feedback processing almost exclusively used low-ambiguity feedback, which does not fully address the diversity of situations in everyday life. We therefore used a pseudo trial-and-error learning task to investigate ERPs of low- versus high-ambiguity feedback. Twenty-eight participants tried to deduce the rule governing visual feedback to their button presses in response to visual stimuli. In the blocked condition, the same two feedback words were presented across several consecutive trials, whereas in the random condition feedback was randomly drawn on each trial from sets of five positive and five negative words. The feedback-related negativity (FRN-D), a frontocentral ERP difference between negative and positive feedback, was significantly larger in the blocked condition, whereas the centroparietal late positive complex indicating controlled attention was enhanced for negative feedback irrespective of condition. Moreover, FRN-D in the blocked condition was due to increased reward positivity (Rew-P) for positive feedback, rather than increased (raw) FRN for negative feedback. Our findings strongly support recent lines of evidence that the FRN-D, one of the most widely studied signatures of reinforcement learning in the human brain, critically depends on feedback discriminability and is primarily driven by the Rew-P. A novel finding concerned larger frontocentral P2 for negative feedback in the random but not the blocked condition. Although Rew-P points to a positivity bias in feedback processing under conditions of low feedback ambiguity, P2 suggests a specific adaptation of information processing in case of highly ambiguous feedback, involving an early negativity bias. Generalizability of the P2 findings was demonstrated in a second experiment using explicit valence categorization of highly emotional positive and negative adjectives. PMID:26765948

  20. Active vibration suppression through positive acceleration feedback on a building-like structure: An experimental study

    NASA Astrophysics Data System (ADS)

    Enríquez-Zárate, J.; Silva-Navarro, G.; Abundis-Fong, H. F.

    2016-05-01

    This work deals with the structural and dynamic analysis of a building-like structure consisting of a three-story building with one active vibration absorber. The base of the structure is perturbed using an electromagnetic shaker, which provides forces with a wide range of excitation frequencies, including some resonance frequencies of the structure. One beam-column of the structure is coupled with a PZT stack actuator to reduce the vibrations. The overall mechanical structure is modeled using Euler-Lagrange methodology and validated using experimental modal analysis and Fine Element Method (FEM) techniques. The active control laws are synthesized to actively attenuate the vibration system response via the PZT stack actuator, caused by excitation forces acting on the base of the structure. The control scheme is obtained using Positive Acceleration Feedback (PAF) and Multiple Positive Acceleration Feedback (MPAF) to improve the closed-loop system response. Some experimental results are included to illustrate the overall system performance.

  1. A Positive Radiative-Dynamic Feedback in Local and Regional Dust Storms on Mars

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.

    2008-09-01

    Atmospheric dust disturbances ranging in size from dust devils to planet-encircling dust storms are ubiquitous on Mars. After dust devils, the most common disturbances are local or regional scale disturbances. The origin of some of these mesoscale systems has been previously investigated and found to be linked to lifting along frontal systems or cap edge circulations. Very little attention has been given to whether the lifted dust in these systems result in radiative forcing that might modulate the local system dynamics with an amplitude large enough to affect local dust lifting processes. Results will be presented from idealized numerical modeling experiments that show that a positive feedback process between local dynamics and radiative forcing of lifted dust can occur under some conditions. The feedback process is distinctly different than an enhancement of the general circulation by increasing atmospheric dust loading, because the dynamical effects of this feedback process occur locally, within the disturbance itself. Optimal conditions for growth of initial atmospheric dust perturbations include: (i) Subtropical latitudes associated with relatively large solar insolation and moderate coriolis force; (ii) modest dust lifting thresholds and lifting efficiencies; (iii) relatively large initial dust perturbations; (iv) steep background lapse rates, and (v) a barotropic environment. The positive feedback process is explained by a combination of geostrophic adjustment theory and a Carnot engine-like mechanism related to the Wind-Induced Sensible Heat Exchange (WISHE) hypothesis for tropical cyclones on Earth.

  2. Feedback mechanism for smart nozzles and nebulizers

    DOEpatents

    Montaser, Akbar [Potomac, MD; Jorabchi, Kaveh [Arlington, VA; Kahen, Kaveh [Kleinburg, CA

    2009-01-27

    Nozzles and nebulizers able to produce aerosol with optimum and reproducible quality based on feedback information obtained using laser imaging techniques. Two laser-based imaging techniques based on particle image velocimetry (PTV) and optical patternation map and contrast size and velocity distributions for indirect and direct pneumatic nebulizations in plasma spectrometry. Two pulses from thin laser sheet with known time difference illuminate droplets flow field. Charge coupled device (CCL)) captures scattering of laser light from droplets, providing two instantaneous particle images. Pointwise cross-correlation of corresponding images yields two-dimensional velocity map of aerosol velocity field. For droplet size distribution studies, solution is doped with fluorescent dye and both laser induced florescence (LIF) and Mie scattering images are captured simultaneously by two CCDs with the same field of view. Ratio of LIF/Mie images provides relative droplet size information, then scaled by point calibration method via phase Doppler particle analyzer.

  3. Interlinked Fast and Slow Positive Feedback Loops Drive Reliable Cell Decisions

    NASA Astrophysics Data System (ADS)

    Brandman, Onn; Ferrell, James E.; Li, Rong; Meyer, Tobias

    2005-10-01

    Positive feedback is a ubiquitous signal transduction motif that allows systems to convert graded inputs into decisive, all-or-none outputs. Here we investigate why the positive feedback switches that regulate polarization of budding yeast, calcium signaling, Xenopus oocyte maturation, and various other processes use multiple interlinked loops rather than single positive feedback loops. Mathematical simulations revealed that linking fast and slow positive feedback loops creates a ``dual-time'' switch that is both rapidly inducible and resistant to noise in the upstream signaling system.

  4. A positive feedback at the cellular level promotes robustness and modulation at the circuit level.

    PubMed

    Dethier, Julie; Drion, Guillaume; Franci, Alessio; Sepulchre, Rodolphe

    2015-10-01

    This article highlights the role of a positive feedback gating mechanism at the cellular level in the robustness and modulation properties of rhythmic activities at the circuit level. The results are presented in the context of half-center oscillators, which are simple rhythmic circuits composed of two reciprocally connected inhibitory neuronal populations. Specifically, we focus on rhythms that rely on a particular excitability property, the postinhibitory rebound, an intrinsic cellular property that elicits transient membrane depolarization when released from hyperpolarization. Two distinct ionic currents can evoke this transient depolarization: a hyperpolarization-activated cation current and a low-threshold T-type calcium current. The presence of a slow activation is specific to the T-type calcium current and provides a slow positive feedback at the cellular level that is absent in the cation current. We show that this slow positive feedback is required to endow the network rhythm with physiological modulation and robustness properties. This study thereby identifies an essential cellular property to be retained at the network level in modeling network robustness and modulation. PMID:26311181

  5. Triggering star formation by both radiative and mechanical AGN feedback

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Gan, Zhao-Ming; Xie, Fu-Guo

    2013-08-01

    We perform two dimensional hydrodynamic numerical simulations to study the positive active galactic nucleus (AGN) feedback which triggers, rather than suppresses, star formation. Recently, it was shown by Nayakshin et al. and Ishibashi et al. that star formation occurs when the cold interstellar medium (ISM) is squeezed by the impact of mass outflow or radiation pressure, respectively. Mass outflow is ubiquitous in this astrophysical context, and radiation pressure is also important if the AGN is luminous. For the first time in this subject, we incorporate both mass outflow feedback and radiative feedback into our model. Consequently, the ISM is shocked into shells by the AGN feedback, and these shells soon fragment into clumps and filaments because of Rayleigh-Taylor and thermal instabilities. We have two major findings: (1) the star formation rate can indeed be very large in the clumps and filaments. However, the resultant star formation rate density is too large compared with previous works, which is mainly because we ignore the fact that most of the stars that are formed would be disrupted when they move away from the galactic center. (2) Although radiation pressure feedback has a limited effect, when mass outflow feedback is also included, they reinforce each other. Specifically, in the gas-poor case, mass outflow is always the dominant contributor to feedback.

  6. Estrogen positive feedback on LH secretion in transsexuality.

    PubMed

    Gooren, L J; Rao, B R; van Kessel, H; Harmsen-Louman, W

    1984-01-01

    In order to test the hypothesis whether there is variation in hormonal levels or response to hormonal manipulation that could permit a distinction between heterosexuals and transsexuals, we designed the following protocol: Six male-to-female (m-to-f) transsexuals, six heterosexual control females and six female-to-male (f-to-m) transsexuals were given estradiol benzoate (E2B) (4.5 micrograms/kg/12 hr) for five days. In the female population, E2B treatment was initiated on day 5 of the menstrual cycle. In all the subjects blood luteinizing hormone (LH) and follicle stimulating hormone (FSH), estradiol-17 beta (E2) and testosterone (T) levels were measured twice daily. Additionally, LH and FSH responses to LHRH (100 micrograms iv) stimulation prior to and on day 5 of the E2B treatment were evaluated. In the m-to-f transsexuals, T levels decreased sharply and progressively during estrogen treatment, along with a fall in LH and FSH levels. The magnitude of the LH and FSH responses to LHRH stimulation also decreased following estrogen administration. In the heterosexual female controls and in the f-to-m transsexuals, estrogen administration increased LH levels to a minimum of 100% above initial values from day 3 onwards. Interestingly, the magnitude of the LH increase in the f-to-m transsexuals was greater than that of the heterosexual female controls. In both groups, LHRH stimulation resulted in a greater LH response compared to that prior to estrogen treatment. Our present observations, based on blood hormonal levels and responses to hormonal manipulations do not permit a distinction between heterosexual females and f-to-m transsexuals. There was no convincing evidence for the existence of a positive estrogen feedback on LH secretion in m-to-f transsexuals. These results contradict some of the reported hypotheses concerning hormonal alterations in these individuals. PMID:6436856

  7. Vibration absorption in a building like structure by means of piezoelectric patches and positive acceleration feedback

    NASA Astrophysics Data System (ADS)

    Rios-Gutierrez, Max A.; Silva-Navarro, Gerardo

    2010-04-01

    This paper is about mechanical vibration suppression in a three story building like structure. The experimental platform is a laboratory prototype made of aluminum alloy with bolted joints and an elctromagnetic shaker used as a disturbance source. This prototype can be used as a representation of a civil structure as well as an industrial machinery element. This structure is modeled and validated by the application of finite element methods and experimental modal analysis. The system response is controlled by a piezoelectric actuator, properly located on the structure, and with the synthesis of a feedback control law based on the well-known positive acceleration feedback control scheme. Some numerical simulations and experiments results are performed to illustrate the overall system performance in presence of several types of excitation.

  8. Neural regulation of the stress response: glucocorticoid feedback mechanisms

    PubMed Central

    Herman, J.P.; McKlveen, J.M.; Solomon, M.B.; Carvalho-Netto, E.; Myers, B.

    2012-01-01

    The mammalian stress response is an integrated physiological and psychological reaction to real or perceived adversity. Glucocorticoids are an important component of this response, acting to redistribute energy resources to both optimize survival in the face of challenge and to restore homeostasis after the immediate challenge has subsided. Release of glucocorticoids is mediated by the hypothalamo-pituitary-adrenal (HPA) axis, driven by a neural signal originating in the paraventricular nucleus (PVN). Stress levels of glucocorticoids bind to glucocorticoid receptors in multiple body compartments, including the brain, and consequently have wide-reaching actions. For this reason, glucocorticoids serve a vital function in negative feedback inhibition of their own secretion. Negative feedback inhibition is mediated by a diverse collection of mechanisms, including fast, non-genomic feedback at the level of the PVN, stress-shut-off at the level of the limbic system, and attenuation of ascending excitatory input through destabilization of mRNAs encoding neuropeptide drivers of the HPA axis. In addition, there is evidence that glucocorticoids participate in stress activation via feed-forward mechanisms at the level of the amygdala. Feedback deficits are associated with numerous disease states, underscoring the necessity for adequate control of glucocorticoid homeostasis. Thus, rather than having a single, defined feedback ‘switch’, control of the stress response requires a wide-reaching feedback ‘network’ that coordinates HPA activity to suit the overall needs of multiple body systems. PMID:22450375

  9. Active vibration control of smart grid structure by multiinput and multioutput positive position feedback controller

    NASA Astrophysics Data System (ADS)

    Kwak, Moon K.; Heo, Seok

    2007-07-01

    This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multiinput and multioutput positive position feedback (PPF) controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multiinput multioutput PPF controller based on the block-inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multiinput multioutput PPF controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments.

  10. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment

    USGS Publications Warehouse

    Iverson, R.M.; Reid, M.E.; Logan, M.; LaHusen, R.G.; Godt, J.W.; Griswold, J.P.

    2011-01-01

    Debris flows typically occur when intense rainfall or snowmelt triggers landslides or extensive erosion on steep, debris-mantled slopes. The flows can then grow dramatically in size and speed as they entrain material from their beds and banks, but the mechanism of this growth is unclear. Indeed, momentum conservation implies that entrainment of static material should retard the motion of the flows if friction remains unchanged. Here we use data from large-scale experiments to assess the entrainment of bed material by debris flows. We find that entrainment is accompanied by increased flow momentum and speed only if large positive pore pressures develop in wet bed sediments as the sediments are overridden by debris flows. The increased pore pressure facilitates progressive scour of the bed, reduces basal friction and instigates positive feedback that causes flow speed, mass and momentum to increase. If dryer bed sediment is entrained, however, the feedback becomes negative and flow momentum declines. We infer that analogous feedbacks could operate in other types of gravity-driven mass flow that interact with erodible beds. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  11. Is Positive Feedback a Forgotten Classroom Practice? Findings and Implications for At-Risk Students

    ERIC Educational Resources Information Center

    Sprouls, Katie; Mathur, Sarup R.; Upreti, Gita

    2015-01-01

    Although using higher rates of positive to negative feedback is one best practice often recommended to teachers, particularly when it comes to students experiencing behavioral problems in classroom settings, research on the use of positive feedback in classroom teaching practice has revealed inconsistent results. Research has documented

  12. Is Positive Feedback a Forgotten Classroom Practice? Findings and Implications for At-Risk Students

    ERIC Educational Resources Information Center

    Sprouls, Katie; Mathur, Sarup R.; Upreti, Gita

    2015-01-01

    Although using higher rates of positive to negative feedback is one best practice often recommended to teachers, particularly when it comes to students experiencing behavioral problems in classroom settings, research on the use of positive feedback in classroom teaching practice has revealed inconsistent results. Research has documented…

  13. Mechanical Feedback and Arrest in Gene Expression

    NASA Astrophysics Data System (ADS)

    Sevier, Stuart; Levine, Herbert

    The ability to watch biochemical events at the single-molecule level has increasingly revealed that stochasticity plays a leading role in many biological phenomena. One important and well know example is the noisy, ``bursty'' manner of transcription. Recent experiments have revealed relationships between the level and noise in gene expression hinting at deeper stochastic connections. In this talk we will discuss how the mechanical nature of transcription can explain this relationship and examine the limits that the physical aspects of transcription place on gene expression.

  14. A Relevance Feedback Mechanism for Content-Based Image Retrieval.

    ERIC Educational Resources Information Center

    Ciocca, G.; Schettini, R.

    1999-01-01

    Describes a relevance-feedback mechanism for content-based image retrieval that evaluates the feature distributions of the images judged relevant by the user and updates both the similarity measure and the query to accurately represent the user's information needs. (Author/LRW)

  15. Linkages of plant–soil feedbacks and underlying invasion mechanisms

    PubMed Central

    Inderjit; Cahill, James F.

    2015-01-01

    Soil microbial communities and processes have repeatedly been shown to impact plant community assembly and population growth. Soil-driven effects may be particularly pronounced with the introduction of plants to non-native ranges, as introduced plants are not typically accompanied by transference of local soil communities. Here we describe how the mechanisms by which soil community processes influence plant growth overlap with several known and well-described mechanisms of plant invasion. Critically, a given soil community process may either facilitate or limit invasion, depending upon local conditions and the specific mechanisms of soil processes involved. Additionally, as soil communities typically consist of species with short generation times, the net consequences of plant–soil feedbacks for invasion trajectories are likely to change over time, as ecological and evolutionary adjustments occur. Here we provide an overview of the ecological linkages of plant–soil feedbacks and underlying mechanisms of invasion. PMID:25784668

  16. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    NASA Astrophysics Data System (ADS)

    Wehrens, Martijn; ten Wolde, Pieter Rein; Mugler, Andrew

    2014-11-01

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations of the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.

  17. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    SciTech Connect

    Wehrens, Martijn; Rein ten Wolde, Pieter; Mugler, Andrew

    2014-11-28

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations of the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.

  18. Regulation of ras signaling dynamics by Sos-mediated positive feedback.

    PubMed

    Boykevisch, Sean; Zhao, Chen; Sondermann, Holger; Philippidou, Polyxeni; Halegoua, Simon; Kuriyan, John; Bar-Sagi, Dafna

    2006-11-01

    The RTK-Ras-ERK cascade is a central signaling module implicated in the control of diverse biological processes including cell proliferation, differentiation, and survival. The coupling of RTK to Ras is mediated by the Ras-specific nucleotide-exchange factor Son of Sevenless (Sos), which activates Ras by inducing the exchange of GDP for GTP . Considerable evidence indicates that the duration and amplitude of Ras signals are important determinants in controlling the biological outcome . However, the mechanisms that regulate the quantitative output of Ras signaling remain poorly understood. We define a previously unrecognized regulatory component of the machinery that specifies the kinetic properties of signals propagated through the RTK-Ras-ERK cascade. We demonstrate that the establishment of a positive feedback loop involving Ras.GTP and Sos leads to an increase in the amplitude and duration of Ras activation in response to EGF stimulation. This effect is propagated to downstream elements of the pathway as reflected by sustained EGF-induced ERK phosphorylation and enhanced SRE-dependent transcription. As a consequence, the physiological endpoint of EGF action is switched from proliferation to differentiation. We propose that the engagement of Ras/Sos positive feedback loop may contribute to the mechanism by which ligand stimulation is coupled to discrete biological responses. PMID:17084704

  19. Coordination between digit forces and positions: interactions between anticipatory and feedback control.

    PubMed

    Fu, Qiushi; Santello, Marco

    2014-04-01

    Humans adjust digit forces to compensate for trial-to-trial variability in digit placement during object manipulation, but the underlying control mechanisms remain to be determined. We hypothesized that such digit position/force coordination was achieved by both visually guided feed-forward planning and haptic-based feedback control. The question arises about the time course of the interaction between these two mechanisms. This was tested with a task in which subjects generated torque (± 70 N·mm) on a virtual object to control a cursor moving to target positions to catch a falling ball, using a virtual reality environment and haptic devices. The width of the virtual object was varied between large (L) and small (S). These object widths result in significantly different horizontal digit relative positions and require different digit forces to exert the same task torque. After training, subjects were tested with random sequences of L and S widths with or without visual information about object width. We found that visual cues allowed subjects to plan manipulation forces before contact. In contrast, when visual cues were not available to predict digit positions, subjects implemented a "default" digit force plan that was corrected after digit contact to eventually accomplish the task. The time course of digit forces revealed that force development was delayed in the absence of visual cues. Specifically, the appropriate digit force adjustments were made 250-300 ms after initial object contact. This result supports our hypothesis and further reveals that haptic feedback alone is sufficient to implement digit force-position coordination. PMID:24401711

  20. Radiative and mechanical AGN feedback in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Choi, Ena

    Accreting black holes are thought to inject energy into surrounding gas reservoirs via jets, outflows and radiation, inhibiting the build-up of massive galaxies and suppressing star formation. Active Galactic Nuclei (AGN) feedback can potentially starve the black hole, giving rise to a relation between the black hole mass and the stellar mass of galaxies. Many previous AGN feedback models, however, do not include all known and observed feedback processes. Since the importance of AGN-driven mass and momentum outflows in limiting the infall onto the black hole has been emphasized, we develop a numerical algorithm of AGN mechanical feedback via broad absorption line winds in a three-dimensional smoothed particle hydrodynamics code, modified with a pressure-entropy formulation, that better allows for contact discontinuities and implements improved fluid mixing. We also include the detailed treatment of radiative heating, radiation pressure, and the Eddington force and propose a unified model of AGN feedback. We investigate feedback effects in simulations of a single disk galaxy, major and minor mergers of galaxies, and the formation of elliptical galaxies in a cosmological context. We show that massive, non-relativistic outflows and X-ray heating are indeed a viable mechanism to regulate the black hole growth. While the thermal feedback model, where all the feedback energy is distributed as thermal heating, produces a factor of ~102-10 3 higher X-ray luminosity than expected for given stellar mass of the galaxy, our model can successfully reproduce both the observed L X-sigma* and MBH-sigma* relations. In our model, the AGN-induced outbursts result in strong galactic outflows with vw~2,000 km/s consistent with observed quasar properties. They also effectively quench star formation making ellipticals red and dead consistent with the observations. Our model shows large fluctuations in both radiant and wind outputs, naturally reproducing the two modes of AGN feedback: `wind' mode, where black holes grow rapidly near the Eddington limit and expel gas via high velocity winds and powerful radiation pressure; and a `maintenance' mode when the electromagnetic luminosity is considerably below the Eddington limit.

  1. Age-related changes in processing positive and negative feedback: is there a positivity effect for older adults?

    PubMed

    Ferdinand, Nicola K; Kray, Jutta

    2013-10-01

    Older people sometimes show a bias toward the processing of positive information. In this study, we used an event-related potential approach to examine whether such a positivity bias is also present during feedback processing in older adults. Our results suggest that a fast initial monitoring process, as reflected in the feedback-related negativity (FRN), is sensitive to the expectancy of events irrespective of their valence for older (aged 70-77 years) as well as younger (aged 20-27 years) adults. In contrast, in a later evaluation process, associated with memory updating and indexed by the P300, both age groups preferably processed unexpected positive feedback. However, younger adults additionally differentiated between unexpected negative and expected feedback while older adults did not, probably due to a lower working memory capacity. PMID:23886960

  2. Active vibration control of a sandwich plate by non-collocated positive position feedback

    NASA Astrophysics Data System (ADS)

    Ferrari, Giovanni; Amabili, Marco

    2015-04-01

    The active vibration control of a free rectangular sandwich plate by using the Positive Position Feedback (PPF) algorithm was experimentally investigated in a previous study. Four normal modes were controlled by four nearly collocated couples of piezoelectric sensors and actuators. The experimental results of the control showed some limitation, especially in the Multi-Input Multi-Output (MIMO) configuration. This was attributed to the specific type of sensors and their conditioning, as well as to the phase shifts present in the vibration at different points of the structure. An alternative approach is here undertaken by abandoning the configuration of quasi-perfect collocation between sensor and actuator. The positioning of the piezoelectric patches is still led by the strain energy value distribution on the plate; each couple of sensor and actuator is now placed on the same face of the plate but in two distinct positions, opposed and symmetrical with respect to the geometric center of the plate. Single-Input Single-Output (SISO) PPF is tested and the transfer function parameters of the controller are tuned according to the measured values of modal damping. Then the participation matrices necessary for the MIMO control algorithm are determined by means of a completely experimental procedure. PPF is able to mitigate the vibration of the first four natural modes, in spite of the rigid body motions due to the free boundary conditions. The amplitude reduction achieved with the non-collocated configuration is much larger than the one obtained with the nearby collocated one. The phase lags were addressed in the MIMO algorithm by correction phase delays, further increasing the performance of the controller.

  3. Consensus positive position feedback control for vibration attenuation of smart structures

    NASA Astrophysics Data System (ADS)

    Omidi, Ehsan; Nima Mahmoodi, S.

    2015-04-01

    This paper presents a new network-based approach for active vibration control in smart structures. In this approach, a network with known topology connects collocated actuator/sensor elements of the smart structure to one another. Each of these actuators/sensors, i.e., agent or node, is enhanced by a separate multi-mode positive position feedback (PPF) controller. The decentralized PPF controlled agents collaborate with each other in the designed network, under a certain consensus dynamics. The consensus constraint forces neighboring agents to cooperate with each other such that the disagreement between the time-domain actuation of the agents is driven to zero. The controller output of each agent is calculated using state-space variables; hence, optimal state estimators are designed first for the proposed observer-based consensus PPF control. The consensus controller is numerically investigated for a flexible smart structure, i.e., a thin aluminum beam that is clamped at its both ends. Results demonstrate that the consensus law successfully imposes synchronization between the independently controlled agents, as the disagreements between the decentralized PPF controller variables converge to zero in a short time. The new consensus PPF controller brings extra robustness to vibration suppression in smart structures, where malfunctions of an agent can be compensated for by referencing the neighboring agents’ performance. This is demonstrated in the results by comparing the new controller with former centralized PPF approach.

  4. Positive Feedback in Pairwork and its Association with ESL Course Level Promotion

    ERIC Educational Resources Information Center

    Reigel, David

    2008-01-01

    What is the role of positive feedback in the adult English language classroom? This study applies ideas from complexity theory to explore the relation between frequency of oral feedback received and student language proficiency. The researcher collected data from digital recordings of adult students (N = 41) who attended classes for 30 weeks at…

  5. Understanding Informal Feedback Seeking in the Workplace: The Impact of the Position in the Organizational Hierarchy

    ERIC Educational Resources Information Center

    van der Rijt, Janine; Van den Bossche, Piet; Segers, Mien S. R.

    2013-01-01

    Purpose: The purpose of this study is to investigate whether the position of employees in the organizational hierarchy is important in explaining their feedback seeking behaviour. Design/methodology/approach: This study takes a social network perspective by using an ego-centric network survey to investigate employees' feedback seeking behaviour…

  6. Positive Feedback between Shrub Encroachment and Nocturnal Air Temperature over the Northern Chihuahuan Desert

    NASA Astrophysics Data System (ADS)

    He, Y.; D'Odorico, P.; de Wekker, S.; Fuentes, J. D.; Litvak, M. E.

    2009-12-01

    Many arid grasslands around the world are affected by the encroachment of woody plants. A number of drivers have been invoked to explain these changes in plant community composition, including climate change, increase in atmospheric CO2 concentrations, nitrogen deposition, or internal feedbacks involving soil erosion or fire dynamics. An overlooked aspect of this shift in vegetation cover is its possible feedback on microclimate conditions. In this study we investigate how in the northern Chihuahuan Desert these changes in vegetation composition and structure influence near surface climate conditions and what feedbacks these conditions have on vegetation dynamics. To this end, the impact of shrub encroachment on the thermal structure of the near surface boundary layer and on the surface energy budget was analyzed using concurrent micrometeorological observations at two adjacent sites dominated respectively by Larrea tridentata shrubs and native grass species at the Sevilleta Wildlife Refuge (northern Chihuahuan Desert, NM). The nighttime air temperature was found to be substantially higher (> 2 degrees Celsius) in the shrubland than in the grassland, especially during calm winter nights. Low temperatures are considered to be the limiting factor of the northward migration of Larrea tridentata. Thus, a positive feedback mechanism seems to exist, where shrub encroachment leads to warmer near-ground nighttime conditions, particularly during winter, which in turn favor woody species encroachment. Our analysis shows that these differences in surface air temperature are accompanied by differences in longwave radiation, and surface sensible and ground heat fluxes. These differences in surface fluxes are interpreted as an effect of the larger fraction of bare soil that typically exists in the shrubland sites. Therefore, the ground surface remains less insulated and more energy flows into the ground at the shrubland site than in the grassland during daytime. This energy is then released at night mainly as longwave radiation, which causes the differences in the nocturnal air temperatures between the two land covers.

  7. The effect of positive and negative verbal feedback on surgical skills performance and motivation.

    PubMed

    Kannappan, Aarthy; Yip, Dana T; Lodhia, Nayna A; Morton, John; Lau, James N

    2012-01-01

    There is considerable effort and time invested in providing feedback to medical students and residents during their time in training. However, little effort has been made to measure the effects of positive and negative verbal feedback on skills performance and motivation to learn and practice. To probe these questions, first-year medical students (n = 25) were recruited to perform a peg transfer task on Fundamentals of Laparoscopic Surgery box trainers. Time to completion and number of errors were recorded. The students were then randomized to receive either positive or negative verbal feedback from an expert in the field of laparoscopic surgery. After this delivery of feedback, the students repeated the peg transfer task. Differences in performance pre- and post-feedback and also between the groups who received positive feedback (PF) vs negative feedback (NF) were analyzed. A survey was then completed by all the participants. Baseline task times were similar between groups (PF 209.3 seconds; NF 203 seconds, p = 0.58). The PF group averaged 1.83 first-time errors while the NF group 1 (p = 0.84). Post-feedback task times were significantly decreased for both groups (PF 159.75 seconds, p = 0.05; NF 132.08 seconds, p = 0.002). While the NF group demonstrated a greater improvement in mean time than the PF group, this was not statistically significant. Both groups also made fewer errors (PF 0.33 errors, p = 0.04; NF 0.38 errors, p = 0.23). When surveyed about their responses to standardized feedback scenarios, the students stated that both positive and negative verbal feedback could be potent stimulants for improved performance and motivation. Further research is required to better understand the effects of feedback on learner motivation and the interpersonal dynamic between mentors and their trainees. PMID:23111049

  8. Positive and Negative Feedbacks and Free-Scale Pattern Distribution in Rural-Population Dynamics

    PubMed Central

    Alados, Concepción L.; Errea, Paz; Gartzia, Maite; Saiz, Hugo; Escós, Juan

    2014-01-01

    Depopulation of rural areas is a widespread phenomenon that has occurred in most industrialized countries, and has contributed significantly to a reduction in the productivity of agro-ecological resources. In this study, we identified the main trends in the dynamics of rural populations in the Central Pyrenees in the 20th C and early 21st C, and used density independent and density dependent models and identified the main factors that have influenced the dynamics. In addition, we investigated the change in the power law distribution of population size in those periods. Populations exhibited density-dependent positive feedback between 1960 and 2010, and a long-term positive correlation between agricultural activity and population size, which has resulted in a free-scale population distribution that has been disrupted by the collapse of the traditional agricultural society and by emigration to the industrialized cities. We concluded that complex socio-ecological systems that have strong feedback mechanisms can contribute to disruptive population collapses, which can be identified by changes in the pattern of population distribution. PMID:25474704

  9. A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis

    PubMed Central

    Shen, Shuying; Guo, Xiaocan; Yan, Huan; Lu, Yi; Ji, Xinyan; Li, Li; Liang, Tingbo; Zhou, Dawang; Feng, Xin-Hua; Zhao, Jonathan C; Yu, Jindan; Gong, Xing-Guo; Zhang, Lei; Zhao, Bin

    2015-01-01

    Organ size determination is one of the most intriguing unsolved mysteries in biology. Aberrant activation of the major effector and transcription co-activator YAP in the Hippo pathway causes drastic organ enlargement in development and underlies tumorigenesis in many human cancers. However, how robust YAP activation is achieved during organ size control remains elusive. Here we report that the YAP signaling is sustained through a novel microRNA-dependent positive feedback loop. miR-130a, which is directly induced by YAP, could effectively repress VGLL4, an inhibitor of YAP activity, thereby amplifying the YAP signals. Inhibition of miR-130a reversed liver size enlargement induced by Hippo pathway inactivation and blocked YAP-induced tumorigenesis. Furthermore, the Drosophila Hippo pathway target bantam functionally mimics miR-130a by repressing the VGLL4 homolog SdBP/Tgi. These findings reveal an evolutionarily conserved positive feedback mechanism underlying robustness of the Hippo pathway in size control and tumorigenesis. PMID:26272168

  10. PKCδ maintains phenotypes of tumor initiating cells through cytokine-mediated autocrine loop with positive feedback.

    PubMed

    Kim, R-K; Suh, Y; Hwang, E; Yoo, K-C; Choi, K-S; An, S; Hwang, S-G; Kim, I-G; Kim, M-J; Lee, H-J; Lee, S-J

    2015-11-12

    The existence of tumor initiating cells (TICs) has been emerged as a good therapeutic target for treatment of glioblastoma that is the most aggressive brain tumor with poor prognosis. However, the molecular mechanisms that regulate the phenotypes of TICs still remain obscure. In this study, we found that PKCδ, among PKC isoforms, is preferentially activated in TICs and acts as a critical regulator for the maintenance of TICs in glioblastoma. By modulating the expression levels or activity of PKCδ, we demonstrated that PKCδ promotes self-renewal and tumorigenic potentials of TICs. Importantly, we found that the activation of PKCδ persists in TICs through an autocrine loop with positive feedback that was driven by PKCδ/STAT3/IL-23/JAK signaling axis. Moreover, for phenotypes of TICs, we showed that PKCδ activates AKT signaling component by phosphorylation specifically on Ser473. Taken together, we proposed that TICs regulate their own population in glioblastoma through an autocrine loop with positive feedback that is driven by PKCδ-dependent secretion of cytokines. PMID:25746003

  11. The MAGNUM survey: positive feedback in the nuclear region of NGC 5643 suggested by MUSE

    NASA Astrophysics Data System (ADS)

    Cresci, G.; Marconi, A.; Zibetti, S.; Risaliti, G.; Carniani, S.; Mannucci, F.; Gallazzi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Capetti, A.; Cicone, C.; Feruglio, C.; Bland-Hawthorn, J.; Nagao, T.; Oliva, E.; Salvato, M.; Sani, E.; Tozzi, P.; Urrutia, T.; Venturi, G.

    2015-10-01

    We study the ionization and kinematics of the ionized gas in the nuclear region of the barred Seyfert 2 galaxy NGC 5643 using MUSE integral field observations in the framework of the Measuring Active Galactic Nuclei Under MUSE Microscope (MAGNUM) survey. The data were used to identify regions with different ionization conditions and to map the gas density and the dust extinction. We find evidence for a double-sided ionization cone, possibly collimated by a dusty structure surrounding the nucleus. At the center of the ionization cone, outflowing ionized gas is revealed as a blueshifted, asymmetric wing of the [OIII] emission line, up to projected velocity v10 ~ -450 km s-1. The outflow is also seen as a diffuse, low-luminosity radio and X-ray jet, with similar extension. The outflowing material points in the direction of two clumps characterized by prominent line emission with spectra typical of HII regions, located at the edge of the dust lane of the bar. We propose that the star formation in the clumps is due to positive feedback induced by gas compression by the nuclear outflow, providing the first candidate for outflow-induced star formation in a Seyfert-like, radio-quiet AGN. This suggests that positive feedback may be a relevant mechanism in shaping the black hole-host galaxy coevolution. This work is based on observations made at the European Southern Observatory, Paranal, Chile (ESO program 60.A-9339).

  12. Performance Feedback Processing Is Positively Biased As Predicted by Attribution Theory

    PubMed Central

    Rodriguez Buritica, Julia M.; Heekeren, Hauke R.

    2016-01-01

    A considerable literature on attribution theory has shown that healthy individuals exhibit a positivity bias when inferring the causes of evaluative feedback on their performance. They tend to attribute positive feedback internally (e.g., to their own abilities) but negative feedback externally (e.g., to environmental factors). However, all empirical demonstrations of this bias suffer from at least one of the three following drawbacks: First, participants directly judge explicit causes for their performance. Second, participants have to imagine events instead of experiencing them. Third, participants assess their performance only after receiving feedback and thus differences in baseline assessments cannot be excluded. It is therefore unclear whether the classically reported positivity bias generalizes to setups without these drawbacks. Here, we aimed at establishing the relevance of attributions for decision-making by showing an attribution-related positivity bias in a decision-making task. We developed a novel task, which allowed us to test how participants changed their evaluations in response to positive and negative feedback about performance. Specifically, we used videos of actors expressing different facial emotional expressions. Participants were first asked to evaluate the actors’ credibility in expressing a particular emotion. After this initial rating, participants performed an emotion recognition task and did—or did not—receive feedback on their veridical performance. Finally, participants re-rated the actors’ credibility, which provided a measure of how they changed their evaluations after feedback. Attribution theory predicts that participants change their evaluations of the actors’ credibility toward the positive after receiving positive performance feedback and toward the negative after negative performance feedback. Our results were in line with this prediction. A control condition without feedback showed that correct or incorrect performance alone could not explain the observed positivity bias. Furthermore, participants’ behavior in our task was linked to the most widely used measure of attribution style. In sum, our findings suggest that positive and negative performance feedback influences the evaluation of task-related stimuli, as predicted by attribution theory. Therefore, our study points to the relevance of attribution theory for feedback processing in decision-making and provides a novel outlook for decision-making biases. PMID:26849646

  13. Performance Feedback Processing Is Positively Biased As Predicted by Attribution Theory.

    PubMed

    Korn, Christoph W; Rosenblau, Gabriela; Rodriguez Buritica, Julia M; Heekeren, Hauke R

    2016-01-01

    A considerable literature on attribution theory has shown that healthy individuals exhibit a positivity bias when inferring the causes of evaluative feedback on their performance. They tend to attribute positive feedback internally (e.g., to their own abilities) but negative feedback externally (e.g., to environmental factors). However, all empirical demonstrations of this bias suffer from at least one of the three following drawbacks: First, participants directly judge explicit causes for their performance. Second, participants have to imagine events instead of experiencing them. Third, participants assess their performance only after receiving feedback and thus differences in baseline assessments cannot be excluded. It is therefore unclear whether the classically reported positivity bias generalizes to setups without these drawbacks. Here, we aimed at establishing the relevance of attributions for decision-making by showing an attribution-related positivity bias in a decision-making task. We developed a novel task, which allowed us to test how participants changed their evaluations in response to positive and negative feedback about performance. Specifically, we used videos of actors expressing different facial emotional expressions. Participants were first asked to evaluate the actors' credibility in expressing a particular emotion. After this initial rating, participants performed an emotion recognition task and did-or did not-receive feedback on their veridical performance. Finally, participants re-rated the actors' credibility, which provided a measure of how they changed their evaluations after feedback. Attribution theory predicts that participants change their evaluations of the actors' credibility toward the positive after receiving positive performance feedback and toward the negative after negative performance feedback. Our results were in line with this prediction. A control condition without feedback showed that correct or incorrect performance alone could not explain the observed positivity bias. Furthermore, participants' behavior in our task was linked to the most widely used measure of attribution style. In sum, our findings suggest that positive and negative performance feedback influences the evaluation of task-related stimuli, as predicted by attribution theory. Therefore, our study points to the relevance of attribution theory for feedback processing in decision-making and provides a novel outlook for decision-making biases. PMID:26849646

  14. Mechanical AGN feedback: controlling the thermodynamical evolution of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2012-07-01

    A fundamental gap in the current understanding of galaxies concerns the thermodynamical evolution of ordinary, baryonic matter. On the one hand, radiative emission drastically decreases the thermal energy content of the interstellar plasma (ISM), inducing a slow cooling flow towards the centre. On the other hand, the active galactic nucleus (AGN) struggles to prevent the runaway cooling catastrophe, injecting huge amount of energy into the ISM. The present study intends to investigate thoroughly the role of mechanical AGN feedback in (isolated or massive) elliptical galaxies, extending and completing the mass range of tested cosmic environments. Our previously successful feedback models in galaxy clusters and groups demonstrated that AGN outflows, self-regulated by cold gas accretion, are able to quench the cooling flow properly without destroying the cool core. Via three-dimensional hydrodynamic simulations (FLASH 3.3), also including stellar evolution, we show that massive mechanical AGN outflows can indeed solve the cooling-flow problem for the entire life of the galaxy, at the same time reproducing typical observational features and constraints such as buoyant underdense bubbles, elliptical shock cocoons, sonic ripples, dredge-up of metals, subsonic turbulence and extended filamentary or nuclear cold gas. In order to avoid overheating and totally emptying the isolated galaxy, the frequent mechanical AGN feedback should be less powerful and efficient (ɛ˜ 10-4) compared with the heating required for more massive and bound ellipticals surrounded by the intragroup medium (ɛ˜ 10-3).

  15. Age-related changes in deterministic learning from positive versus negative performance feedback.

    PubMed

    van de Vijver, Irene; Ridderinkhof, K Richard; de Wit, Sanne

    2015-01-01

    Feedback-based learning declines with age. Because older adults are generally biased toward positive information ("positivity effect"), learning from positive feedback may be less impaired than learning from negative outcomes. The literature documents mixed results, due possibly to variability between studies in task design. In the current series of studies, we investigated the influence of feedback valence on reinforcement learning in young and older adults. We used nonprobabilistic learning tasks, to more systematically study the effects of feedback magnitude, learning of stimulus-response (S-R) versus stimulus-outcome (S-O) associations, and working-memory capacity. In most experiments, older adults benefitted more from positive than negative feedback, but only with large feedback magnitudes. Positivity effects were pronounced for S-O learning, whereas S-R learning correlated with working-memory capacity in both age groups. These results underline the context dependence of positivity effects in learning and suggest that older adults focus on high gains when these are informative for behavior. PMID:25761598

  16. Using Performance Feedback and Positive Reinforcement: Books and Films That Tell You How.

    ERIC Educational Resources Information Center

    Zemke, Ron

    1978-01-01

    Reviews a number of books and films on behavior modification techniques in training and provides names and addresses of publishers. Presents information to give managers and trainers a choice of different reinforcement and feedback mechanisms. (MF)

  17. 78 FR 13057 - Agency Information Collection Activities; Information Collection; IT Dashboard Feedback Mechanism

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... ADMINISTRATION Agency Information Collection Activities; Information Collection; IT Dashboard Feedback Mechanism... to review and approve a previously approved information collection requirement regarding IT Dashboard... identified by Information Collection 3090- 0285, IT Dashboard Feedback Mechanism, by any of the...

  18. A Program That Acquires Language Using Positive and Negative Feedback.

    ERIC Educational Resources Information Center

    Brand, James

    1987-01-01

    Describes the language learning program "Acquire," which is a sample of grammar induction. It is a learning algorithm based on a pattern-matching scheme, using both a positive and negative network to reduce overgeneration. Language learning programs may be useful as tutorials for learning the syntax of a foreign language. (Author/LMO)

  19. Predation risk suppresses the positive feedback between size structure and cannibalism.

    PubMed

    Kishida, Osamu; Trussell, Geoffrey C; Ohno, Ayaka; Kuwano, Shinya; Ikawa, Takuya; Nishimura, Kinya

    2011-11-01

    1. Cannibalism can play a prominent role in the structuring and dynamics of ecological communities. Previous studies have emphasized the importance of size structure and density of cannibalistic species in shaping short- and long-term cannibalism dynamics, but our understanding of how predators influence cannibalism dynamics is limited. This is despite widespread evidence that many prey species exhibit behavioural and morphological adaptations in response to predation risk. 2. This study examined how the presence and absence of predation risk from larval dragonflies Aeshna nigroflava affected cannibalism dynamics in its prey larval salamanders Hynobius retardatus. 3. We found that feedback dynamics between size structure and cannibalism depended on whether dragonfly predation risk was present. In the absence of dragonfly risk cues, a positive feedback between salamander size structure and cannibalism through time occurred because most of the replicates in this treatment contained at least one salamander larvae having an enlarged gape (i.e. cannibal). In contrast, this feedback and the emergence of cannibalism were rarely observed in the presence of the dragonfly risk cues. Once salamander size divergence occurred, experimental reversals of the presence or absence of dragonfly risk cues did not alter existing cannibalism dynamics as the experiment progressed. Thus, the effects of risk on the mechanisms driving cannibalism dynamics likely operated during the early developmental period of the salamander larvae. 4. The effects of dragonfly predation risk on behavioural aspects of cannibalistic interactions among hatchlings may prohibit the initiation of dynamics between size structure and cannibalism. Our predation trials clearly showed that encounter rates among hatchlings and biting and ingestion rates of prospective prey by prospective cannibals were significantly lower in the presence vs. absence of dragonfly predation risk even though the size asymmetry between cannibals and victims was similar in both risk treatments. These results suggest that dragonfly risk cues first suppress cannibalism among hatchlings and then prevent size variation from increasing through time. 5. We suggest that the positive feedback dynamics between size structure and cannibalism and their modification by predation risk may also operate in other systems to shape the population dynamics of cannibalistic prey species as well as overall community dynamics. PMID:21668893

  20. Computational Modeling of Morphogenesis Regulated by Mechanical Feedback

    PubMed Central

    Ramasubramanian, Ashok; Taber, Larry A.

    2008-01-01

    Mechanical forces cause changes in form during embryogenesis and likely play a role in regulating these changes. This paper explores the idea that changes in homeostatic tissue stress (target stress), possibly modulated by genes, drive some morphogenetic processes. Computational models are presented to illustrate how regional variations in target stress can cause a range of complex behaviors involving the bending of epithelia. These models include growth and cytoskeletal contraction regulated by stress-based mechanical feedback. All simulations were carried out using the commercial finite element code ABAQUS, with growth and contraction included by modifying the zero-stress state in the material constitutive relations. Results presented for bending of bilayered beams and invagination of cylindrical and spherical shells provide insight into some of the mechanical aspects that must be considered in studying morphogenetic mechanisms. PMID:17318485

  1. Positive and negative feedback learning and associated dopamine and serotonin transporter binding after methamphetamine.

    PubMed

    Stolyarova, Alexandra; O'Dell, Steve J; Marshall, John F; Izquierdo, Alicia

    2014-09-01

    Learning from mistakes and prospectively adjusting behavior in response to reward feedback is an important facet of performance monitoring. Dopamine (DA) pathways play an important role in feedback learning and a growing literature has also emerged on the importance of serotonin (5HT) in reward learning, particularly during punishment or reward omission (negative feedback). Cognitive impairments resulting from psychostimulant exposure may arise from altered patterns in feedback learning, which in turn may be modulated by DA and 5HT transmission. We analyzed long-term, off-drug changes in learning from positive and negative feedback and associated striatal DA transporter (DAT) and frontocortical 5HT transporter (SERT) binding in rats pretreated with methamphetamine (mAMPH). Specifically, we assessed the reversal phase of pairwise visual discrimination learning in rats receiving single dose- (mAMPHsingle) vs. escalating-dose exposure (mAMPHescal). Using fine-grained trial-by-trial analyses, we found increased sensitivity to and reliance on positive feedback in mAMPH-pretreated animals, with the mAMPHsingle group showing more pronounced use of this type of feedback. In contrast, overall negative feedback sensitivity was not altered following any mAMPH treatment. In addition to validating the enduring effects of mAMPH on early reversal learning, we found more consecutive error commissions before the first correct response in mAMPH-pretreated rats. This behavioral rigidity was negatively correlated with subregional frontocortical SERT whereas positive feedback sensitivity negatively correlated with striatal DAT binding. These results provide new evidence for the overlapping, yet dissociable roles of DA and 5HT systems in overcoming perseveration and in learning new reward rules. PMID:24959862

  2. On the Feed-back Mechanism of Chinese Stock Markets

    NASA Astrophysics Data System (ADS)

    Lu, Shu Quan; Ito, Takao; Zhang, Jianbo

    Feed-back models in the stock markets research imply an adjustment process toward investors' expectation for current information and past experiences. Error-correction and cointegration are often used to evaluate the long-run relation. The Efficient Capital Market Hypothesis, which had ignored the effect of the accumulation of information, cannot explain some anomalies such as bubbles and partial predictability in the stock markets. In order to investigate the feed-back mechanism and to determine an effective model, we use daily data of the stock index of two Chinese stock markets with the expectational model, which is one kind of geometric lag models. Tests and estimations of error-correction show that long-run equilibrium seems to be seldom achieved in Chinese stock markets. Our result clearly shows the common coefficient of expectations and fourth-order autoregressive disturbance exist in the two Chinese stock markets. Furthermore, we find the same coefficient of expectations has an autoregressive effect on disturbances in the two Chinese stock markets. Therefore the presence of such feed-back is also supported in Chinese stock markets.

  3. Positive-feedback photometric drift in the PDS

    NASA Technical Reports Server (NTRS)

    Cornett, R. H.; Bohlin, R. C.; Hill, J. K.; Stecher, T. P.

    1984-01-01

    Digitizing flatfield images produces conditions in the Photometric Data System PDS which cause the measured density to drift by as much as .1 DN during a 10 minute interval. The drift occurs when the PDS, set up in equilibrium at fog level, subsequently scans a reasonably dense region for periods of longer than a few minutes. The drift is manifested primarily as a positive shift in density that is approximately the same for all densities. If the fog level is assumed to be in fact constant and is monitored during scans of flat fields, the PDS drift may be removed by subtracting the difference between the observed fog level and its assumed constant value for each pixel. This function is then smoothed and subtracted, as a function of scan line, from the measured density. The fog level is then adjusted to a standard value by adding a constant. The result is a flattened scan with PDS drift removed to the accuracy within which the fog level drift matches the drift at other levels.

  4. Hydrogeochemical zonation in intertidal salt marsh sediments: evidence of positive plant-soil feedback?

    NASA Astrophysics Data System (ADS)

    Moffett, K. B.; Dittmar, J.; Seyfferth, A.; Fendorf, S.; Gorelick, S.

    2012-12-01

    Surface and subsurface environments are linked by the biogeochemical activity in near-surface sediment and by the hydrological fluxes that mobilize its reagents and products. A particularly dynamic and interesting setting to study near-surface hydrogeochemistry is the intertidal zone. Here, the very strong tidal hydraulic forcing is often thought to dominate water and solute transport. However, we demonstrated the importance of two additional subsurface drivers: groundwater flow and plant root water uptake. A high-resolution, coupled surface water-groundwater model of an intertidal salt marsh in San Francisco Bay, CA showed that these three drivers vary over different spatial scales: tidal flooding varies over 10's of meters; groundwater flow varies over meters, particularly within channel banks; and plant root water uptake varies in 3D at the sub-meter scale. Expanding on this third driver, we investigated whether the spatial variations in soil-water-plant hydraulic interactions that occur due to vegetation zonation also cause distinct geochemical zonation in salt marsh sediment pore waters. The existence of such geochemical zonation was verified and mapped by detailed field observations of the chemical composition of sediments, pore waters, surface waters, and vegetation. The field data and the coupled hydrologic model were then further analyzed to evaluate potential causal mechanisms for the geochemical zonation, including testing the hypothesis that the vegetation affects pore water geochemistry via a positive feedback beneficial to itself. If further supported by future studies, this geochemical feedback may complement known physical ecosystem engineering mechanisms to help stabilize and organize intertidal wetlands.

  5. Design principles of stripe-forming motifs: the role of positive feedback

    PubMed Central

    Munteanu, Andreea; Cotterell, James; Solé, Ricard V.; Sharpe, James

    2014-01-01

    Interpreting a morphogen gradient into a single stripe of gene-expression is a fundamental unit of patterning in early embryogenesis. From both experimental data and computational studies the feed-forward motifs stand out as minimal networks capable of this patterning function. Positive feedback within gene networks has been hypothesised to enhance the sharpness and precision of gene-expression borders, however a systematic analysis has not yet been reported. Here we set out to assess this hypothesis, and find an unexpected result. The addition of positive-feedback can have different effects on two different designs of feed-forward motif– it increases the parametric robustness of one design, while being neutral or detrimental to the other. These results shed light on the abundance of the former motif and especially of mutual-inhibition positive feedback in developmental networks. PMID:24830352

  6. 78 FR 36190 - Agency Information Collection Activities; Submission for OMB Review; IT Dashboard Feedback Mechanism

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... Dashboard Feedback Mechanism. A notice was published in the Federal Register at 78 FR 13057, on February 26... ADMINISTRATION Agency Information Collection Activities; Submission for OMB Review; IT Dashboard Feedback... comments identified by Information Collection 3090- 0285, IT Dashboard Feedback Mechanism, by any of...

  7. Feedback enhances the positive effects and reduces the negative effects of multiple-choice testing.

    PubMed

    Butler, Andrew C; Roediger, Henry L

    2008-04-01

    Multiple-choice tests are used frequently in higher education without much consideration of the impact this form of assessment has on learning. Multiple-choice testing enhances retention of the material tested (the testing effect); however, unlike other tests, multiple-choice can also be detrimental because it exposes students to misinformation in the form of lures. The selection of lures can lead students to acquire false knowledge (Roediger & Marsh, 2005). The present research investigated whether feedback could be used to boost the positive effects and reduce the negative effects of multiple-choice testing. Subjects studied passages and then received a multiple-choice test with immediate feedback, delayed feedback, or no feedback. In comparison with the no-feedback condition, both immediate and delayed feedback increased the proportion of correct responses and reduced the proportion of intrusions (i.e., lure responses from the initial multiple-choice test) on a delayed cued recall test. Educators should provide feedback when using multiple-choice tests. PMID:18491500

  8. Control of cardiac alternans by mechanical and electrical feedback

    NASA Astrophysics Data System (ADS)

    Yapari, Felicia; Deshpande, Dipen; Belhamadia, Youssef; Dubljevic, Stevan

    2014-07-01

    A persistent alternation in the cardiac action potential duration has been linked to the onset of ventricular arrhythmia, which may lead to sudden cardiac death. A coupling between these cardiac alternans and the intracellular calcium dynamics has also been identified in previous studies. In this paper, the system of PDEs describing the small amplitude of alternans and the alternation of peak intracellular Ca2+ are stabilized by optimal boundary and spatially distributed actuation. A simulation study demonstrating the successful annihilation of both alternans on a one-dimensional cable of cardiac cells by utilizing the full-state feedback controller is presented. Complimentary to these studies, a three variable Nash-Panfilov model is used to investigate alternans annihilation via mechanical (or stretch) perturbations. The coupled model includes the active stress which defines the mechanical properties of the tissue and is utilized in the feedback algorithm as an independent input from the pacing based controller realization in alternans annihilation. Simulation studies of both control methods demonstrate that the proposed methods can successfully annihilate alternans in cables that are significantly longer than 1 cm, thus overcoming the limitations of earlier control efforts.

  9. Morphogenesis can be driven by properly parametrised mechanical feedback.

    PubMed

    Beloussov, L V

    2013-11-01

    A fundamental problem of morphogenesis is whether it presents itself as a succession of links that are each driven by its own specific cause-effect relationship, or whether all of the links can be embraced by a common law that is possible to formulate in physical terms. We suggest that a common biophysical background for most, if not all, morphogenetic processes is based upon feedback between mechanical stresses (MS) that are imposed to a given part of a developing embryo by its other parts and MS that are actively generated within that part. The latter are directed toward hyper-restoration (restoration with an overshoot) of the initial MS values. We show that under mechanical constraints imposed by other parts, these tendencies drive forth development. To provide specificity for morphogenetic reactions, this feedback should be modulated by long-term parameters and/or initial conditions that are set up by genetic factors. The experimental and model data related to this concept are reviewed. PMID:24264054

  10. Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors

    NASA Astrophysics Data System (ADS)

    Qu, Xin; Hall, Alex; Klein, Stephen A.; DeAngelis, Anthony M.

    2015-09-01

    Differences in simulations of tropical marine low-cloud cover (LCC) feedback are sources of significant spread in temperature responses of climate models to anthropogenic forcing. Here we show that in models the feedback is mainly driven by three large-scale changes—a strengthening tropical inversion, increasing surface latent heat flux, and an increasing vertical moisture gradient. Variations in the LCC response to these changes alone account for most of the spread in model-projected 21st century LCC changes. A methodology is devised to constrain the LCC response observationally using sea surface temperature (SST) as a surrogate for the latent heat flux and moisture gradient. In models where the current climate's LCC sensitivities to inversion strength and SST variations are consistent with observed, LCC decreases systematically, which would increase absorption of solar radiation. These results support a positive LCC feedback. Correcting biases in the sensitivities will be an important step toward more credible simulation of cloud feedbacks.

  11. Optically actuated two position mechanical mover

    NASA Technical Reports Server (NTRS)

    Yang, L. C.; Murphy, A. J. (Inventor)

    1974-01-01

    An optically actuated mechanical mover adapted to be moved from an ambient position to an active position, is disclosed. The mechanical mover essentially comprises a piston/cylinder arrangement including a piston that is contained within an internal cylindrical chamber of a housing. The cylindrical chamber is configured to permit the piston to be moved for the length of the chamber as a work stroke. A lock pin extending through the piston, and diametrically opposed walls of the chamber housing, retain the piston in the ambient position at one end of the chamber. An actuator for producing a pressure or shock wave that drives the piston is positioned at the end of the chamber corresponding to the piston ambient position.

  12. Wave-mean flow positive feedbacks associated with sudden stratospheric warmings

    NASA Astrophysics Data System (ADS)

    Sjoberg, Jeremiah P.

    Sudden stratospheric warmings -- most often characterized by zonal mean zonal wind easterlies at 60N, 10 hPa -- represent the largest dynamical perturbations to the wintertime polar stratosphere. Despite this, the predictability of sudden warmings remains low, in part because the forcing of these warming events involves a nonlinear positive feedback between planetary scale waves and the zonal wind of the stratosphere. In the wave-mean flow positive feedback, wave forcing decelerates the mean flow, allowing enhanced upward wave propagation, which then further decelerates the mean flow, etc., until the mean flow no longer supports wave propagation. This positive feedback process is crucial for the initiation of such events. Because the associated low predictability stems from poorly resolving initiation, this dissertation focuses on increasing mechanistic understanding of the wave-mean flow positive feedback associated with sudden stratospheric warmings. A simple model of wave-mean flow interaction is the first tool utilized here. In the original form of the model, constant bottom boundary wave forcing, set by geopotential height perturbations, results in a zonal wind state that oscillates between positive values (westerlies) and negative values (easterlies). We present a reformulation of the bottom boundary condition which allows for specification of the upward wave activity flux. Unlike with the original bottom boundary condition, we may precisely set the wave amplitudes propagating into the model domain. With this reformulated model, steady incoming wave fluxes lead to a steady zonal wind response. The oscillating state from the original model is found to rely on a representation of the positive feedback that is too strong. Transient forcing experiments in the reformulated simple model support previous results that there is a preferential wave forcing time scale on the order of 10 days for sudden stratospheric warmings. Forcing the model near this preferential time scale most efficiently drives the positive feedback. Lower stratospheric wave fields in reanalysis data show supporting evidence for these preferential wave forcing time scales prior to sudden stratospheric warmings. Pulses of wave activity flux are also analyzed in reanalysis data, and a set of pulses which are a novel proxy for strong wave-mean flow positive feedback are found. The zonal wind near these pulses display the expected characteristics of the positive feedback: strong precedent zonal winds and strong subsequent wind decelerations. This proxy is thus a useful diagnostic for the wave-mean flow positive feedback. A general circulation model forced by idealized planetary scale topography is employed to perform high order experiments. By stepwise increasing the height of the topography, we find that the frequency of sudden stratospheric warmings within the model increases nonlinearly to a maximum at moderate topographic heights and then strongly jumps down to a lower, steady value for still higher topography. Analyzing the proxy for positive feedback here reveals that the positive feedback is strongest in the range of topographic heights associated with the largest occurrence of sudden warmings, and also that preferential wave forcing time scales on the order of 10 days are upheld.

  13. Cellular mechanisms for integral feedback in visually guided behavior

    PubMed Central

    Schnell, Bettina; Weir, Peter T.; Roth, Eatai; Fairhall, Adrienne L.

    2014-01-01

    Sensory feedback is a ubiquitous feature of guidance systems in both animals and engineered vehicles. For example, a common strategy for moving along a straight path is to turn such that the measured rate of rotation is zero. This task can be accomplished by using a feedback signal that is proportional to the instantaneous value of the measured sensory signal. In such a system, the addition of an integral term depending on past values of the sensory input is needed to eliminate steady-state error [proportional-integral (PI) control]. However, the means by which nervous systems implement such a computation are poorly understood. Here, we show that the optomotor responses of flying Drosophila follow a time course consistent with temporal integration of horizontal motion input. To investigate the cellular basis of this effect, we performed whole-cell patch-clamp recordings from the set of identified visual interneurons [horizontal system (HS) cells] thought to control this reflex during tethered flight. At high stimulus speeds, HS cells exhibit steady-state responses during flight that are absent during quiescence, a state-dependent difference in physiology that is explained by changes in their presynaptic inputs. However, even during flight, the membrane potential of the large-field interneurons exhibits no evidence for integration that could explain the behavioral responses. However, using a genetically encoded indicator, we found that calcium accumulates in the terminals of the interneurons along a time course consistent with the behavior and propose that this accumulation provides a mechanism for temporal integration of sensory feedback consistent with PI control. PMID:24706794

  14. Positive feedback and alternative stable states in inbreeding, cooperation, sex roles and other evolutionary processes

    PubMed Central

    Lehtonen, Jussi; Kokko, Hanna

    2012-01-01

    A large proportion of studies in systems science focus on processes involving a mixture of positive and negative feedbacks, which are also common themes in evolutionary ecology. Examples of negative feedback are density dependence (population regulation) and frequency-dependent selection (polymorphisms). Positive feedback, in turn, plays a role in Fisherian ‘runaway’ sexual selection, the evolution of cooperation, selfing and inbreeding tolerance under purging of deleterious alleles, and the evolution of sex differences in parental care. All these examples feature self-reinforcing processes where the increase in the value of a trait selects for further increases, sometimes via a coevolutionary feedback loop with another trait. Positive feedback often leads to alternative stable states (evolutionary endpoints), making the interpretation of evolutionary predictions challenging. Here, we discuss conceptual issues such as the relationship between self-reinforcing selection and disruptive selection. We also present an extension of a previous model on parental care, focusing on the relationship between the operational sex ratio and sexual selection, and the influence of this relationship on the evolution of biparental or uniparental care. PMID:22144384

  15. Coupled Positive and Negative Feedbacks Produce Diverse Gene Expression Patterns in Colonies

    PubMed Central

    Mitarai, Namiko; Jensen, Mogens Høgh

    2015-01-01

    ABSTRACT Formation of patterns is a common feature in the development of multicellular organism as well as of microbial communities. To investigate the formation of gene expression patterns in colonies, we build a mathematical model of two-dimensional colony growth, where cells carry a coupled positive-and-negative-feedback circuit. We demonstrate that the model can produce sectored, target (concentric), uniform, and scattered expression patterns of regulators, depending on gene expression dynamics and nutrient diffusion. We reconstructed the same regulatory structure in Escherichia coli cells and found gene expression patterns on the surface of colonies similar to the ones produced by the computer simulations. By comparing computer simulations and experimental results, we observed that very simple rules of gene expression can yield a spectrum of well-defined patterns in a growing colony. Our results suggest that variations of the protein content among cells lead to a high level of heterogeneity in colonies. Importance Formation of patterns is a common feature in the development of microbial communities. In this work, we show that a simple genetic circuit composed of a positive-feedback loop and a negative-feedback loop can produce diverse expression patterns in colonies. We obtained similar sets of gene expression patterns in the simulations and in the experiments. Because the combination of positive feedback and negative feedback is common in intracellular molecular networks, our results suggest that the protein content of cells is highly diversified in colonies. PMID:25852158

  16. Leaf caching in Atta leafcutting ants: discrete cache formation through positive feedback.

    PubMed

    Hart; Ratnieks

    2000-03-01

    We examined the occurrence, mechanism and costs and benefits of leaf caching in laboratory colonies of two species of leafcutting ants, Atta cephalotes and A. colombica. If foragers returning to the nest are unable to enter because of a temporary bottleneck caused by leaves building up they may deposit their leaf pieces outside the nest entrance, forming a leaf cache. Similar leaf caches occur in the field at foraging trail junctions, obstacles on the trail and within nest entrance tunnels. Foraging ants carrying leaves were presented with different-sized leaf caches and the number dropping their leaves on the cache was recorded. The probability of a forager dropping her leaf was positively correlated with the size of the cache that she encountered. Therefore, positive feedback played a role in the formation of nest entrance caches. Cached pieces were more likely to be retrieved than noncached pieces but the time taken to retrieve leaf pieces from a cache was greater than from scattered groups of leaves. We suggest that the strategy of flexible nest entrance caching is an adaptive response to fluctuating food availability and collection. Copyright 2000 The Association for the Study of Animal Behaviour. PMID:10715181

  17. VirB-Mediated Positive Feedback Control of the Virulence Gene Regulatory Cascade of Shigella flexneri

    PubMed Central

    Kane, Kelly A.

    2012-01-01

    Shigella flexneri is a facultative intracellular pathogen that relies on a type III secretion system and its associated effector proteins to cause bacillary dysentery in humans. The genes that encode this virulence system are located on a 230-kbp plasmid and are transcribed in response to thermal, osmotic, and pH signals that are characteristic of the human lower gut. The virulence genes are organized within a regulatory cascade, and the nucleoid-associated protein H-NS represses each of the key promoters. Transcription derepression depends first on the VirF AraC-like transcription factor, a protein that antagonizes H-NS-mediated repression at the intermediate regulatory gene virB. The VirB protein in turn remodels the H-NS–DNA nucleoprotein complexes at the promoters of the genes encoding the type III secretion system and effector proteins, causing these genes to become derepressed. In this study, we show that the VirB protein also positively regulates the expression of its own gene (virB) via a cis-acting regulatory sequence. In addition, VirB positively regulates the gene coding for the VirF protein. This study reveals two hitherto uncharacterized feedback regulatory loops in the S. flexneri virulence cascade that provide a mechanism for the enhanced expression of the principal virulence regulatory genes. PMID:22821978

  18. Precise computer controlled positioning of robot end effectors using sensory feedback

    NASA Technical Reports Server (NTRS)

    Wang, J. C.; Tsai, J. S. H.; Mcinnis, B. C.; Shieh, L. S.

    1988-01-01

    A preliminary study of the combined position/force control using sensory feedback for a one-dimensional manipulator model, which may count for the spacecraft docking problem or to be extended to the multijoint robot manipulator problem, has been performed. The additional degrees of freedom introduced by the compliant force sensor is included in the system dynamics in the design of precise position control. State feedback based on pole placement method and with integral control is used to design the position controller. A simple constant gain force controller is used as an example to illustrate the dependence of the stability and steady-state accuracy of the overall position/force control on the design of the inner position controller. Supportive simulation results are also provided.

  19. GRK2 Up-Regulation Creates a Positive Feedback Loop for Catecholamine Production in Chromaffin Cells.

    PubMed

    Jafferjee, Malika; Reyes Valero, Thairy; Marrero, Christine; McCrink, Katie A; Brill, Ava; Lymperopoulos, Anastasios

    2016-03-01

    Elevated sympathetic nervous system (SNS) activity aggravates several diseases, including heart failure. The molecular cause(s) underlying this SNS hyperactivity are not known. We have previously uncovered a neurohormonal mechanism, operating in adrenomedullary chromaffin cells, by which circulating catecholamine (CA) levels increase in heart failure: severe dysfunction of the adrenal α2-adrenergic receptors (ARs) due to the up-regulation of G protein-coupled receptor-kinase (GRK)-2, the kinase that desensitizes them. Herein we looked at the potential signaling mechanisms that bring about this GRK2 elevation in chromaffin cells. We found that chronic CA treatment of either PC12 or rat primary chromaffin cells can in itself result in GRK2 transcriptional up-regulation through α2ARs-Gi/o proteins-Src-ERK1/2. The resultant GRK2 increase severely enhances the α2AR desensitization/down-regulation elevating not only CA release but also CA biosynthesis, as evidenced by tyrosine hydroxylase up-regulation. Finally, GRK2 knockdown leads to enhanced apoptosis of PC12 cells, indicating an essential role for GRK2 in chromaffin cell homeostasis/survival. In conclusion, chromaffin cell GRK2 mediates a positive feedback loop that feeds into CA secretion, thereby enabling the adrenomedullary component of the SNS to turn itself on. PMID:26849467

  20. The motivating role of positive feedback in sport and physical education: evidence for a motivational model.

    PubMed

    Mouratidis, Athanasios; Vansteenkiste, Maarten; Lens, Willy; Sideridis, Georgios

    2008-04-01

    Based on self-determination theory (Deci & Ryan, 2000), an experimental study with middle school students participating in a physical education task and a correlational study with highly talented sport students investigated the motivating role of positive competence feedback on participants' well-being, performance, and intention to participate. In Study 1, structural equation modeling favored the hypothesized motivational model, in which, after controlling for pretask perceived competence and competence valuation, feedback positively predicted competence satisfaction, which in turn predicted higher levels of vitality and greater intentions to participate, through the mediation of autonomous motivation. No effects on performance were found. Study 2 further showed that autonomous motivation mediated the relation between competence satisfaction and well-being, whereas a motivation mediated the negative relation between competence satisfaction and ill-being and rated performance. The discussion focuses on the motivational role of competence feedback in sports and physical education settings. PMID:18490793

  1. Switching between oscillations and homeostasis in competing negative and positive feedback motifs.

    PubMed

    Li, Weihan; Krishna, Sandeep; Pigolotti, Simone; Mitarai, Namiko; Jensen, Mogens H

    2012-08-21

    We analyze a class of network motifs in which a short, two-node positive feedback motif is inserted in a three-node negative feedback loop. We demonstrate that such networks can undergo a bifurcation to a state where a stable fixed point and a stable limit cycle coexist. At the bifurcation point the period of the oscillations diverges. Further, intrinsic noise can make the system switch between oscillatory state and the stationary state spontaneously. We find that this switching also occurs in previous models of circadian clocks that use this combination of positive and negative feedbacks. Our results suggest that real-life circadian systems may need specific regulation to prevent or minimize such switching events. PMID:22762992

  2. Positive And Negative Feedback Loops Coupled By Common Transcription Activator And Repressor

    NASA Astrophysics Data System (ADS)

    Sielewiesiuk, Jan; Łopaciuk, Agata

    2015-03-01

    Dynamical systems consisting of two interlocked loops with negative and positive feedback have been studied using the linear analysis of stability and numerical solutions. Conditions for saddle-node bifurcation were formulated in a general form. Conditions for Hopf bifurcations were found in a few symmetrical cases. Auto-oscillations, when they exist, are generated by the negative feedback repressive loop. This loop determines the frequency and amplitude of oscillations. The positive feedback loop of activation slightly modifies the oscillations. Oscillations are possible when the difference between Hilll's coefficients of the repression and activation is sufficiently high. The highly cooperative activation loop with a fast turnover slows down or even makes the oscillations impossible. The system under consideration can constitute a component of epigenetic or enzymatic regulation network.

  3. Confinement and diffusion modulate bistability and stochastic switching in a reaction network with positive feedback.

    PubMed

    Mlynarczyk, Paul J; Pullen, Robert H; Abel, Steven M

    2016-01-01

    Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations. Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules. PMID:26747820

  4. Confinement and diffusion modulate bistability and stochastic switching in a reaction network with positive feedback

    NASA Astrophysics Data System (ADS)

    Mlynarczyk, Paul J.; Pullen, Robert H.; Abel, Steven M.

    2016-01-01

    Positive feedback is a common feature in signal transduction networks and can lead to phenomena such as bistability and signal propagation by domain growth. Physical features of the cellular environment, such as spatial confinement and the mobility of proteins, play important but inadequately understood roles in shaping the behavior of signaling networks. Here, we use stochastic, spatially resolved kinetic Monte Carlo simulations to explore a positive feedback network as a function of system size, system shape, and mobility of molecules. We show that these physical properties can markedly alter characteristics of bistability and stochastic switching when compared with well-mixed simulations. Notably, systems of equal volume but different shapes can exhibit qualitatively different behaviors under otherwise identical conditions. We show that stochastic switching to a state maintained by positive feedback occurs by cluster formation and growth. Additionally, the frequency at which switching occurs depends nontrivially on the diffusion coefficient, which can promote or suppress switching relative to the well-mixed limit. Taken together, the results provide a framework for understanding how confinement and protein mobility influence emergent features of the positive feedback network by modulating molecular concentrations, diffusion-influenced rate parameters, and spatiotemporal correlations between molecules.

  5. Feedback-Enhanced Parametric Squeezing of Mechanical Motion

    NASA Astrophysics Data System (ADS)

    Vinante, A.; Falferi, P.

    2013-11-01

    We present a single-quadrature feedback scheme able to overcome the conventional 3 dB limit on parametric squeezing. The method is experimentally demonstrated in a micromechanical system based on a cantilever with a magnetic tip. The cantilever is detected at low temperature by a SQUID susceptometer, while parametric pumping is obtained by modulating the magnetic field gradient at twice the cantilever frequency. A maximum squeezing of 11.5 dB and 11.3 dB is observed, respectively, in the response to a sinusoidal test signal and in the thermomechanical noise. So far, the maximum squeezing factor is limited only by the maximum achievable parametric modulation. The proposed technique might be used to squeeze one quadrature of a mechanical resonator below the quantum noise level, even without the need for a quantum limited detector.

  6. UBTD1 induces cellular senescence through an UBTD1-Mdm2/p53 positive feedback loop.

    PubMed

    Zhang, Xiao-Wei; Wang, Xiao-Feng; Ni, Su-Jie; Qin, Wei; Zhao, Li-Qin; Hua, Rui-Xi; Lu, You-Wei; Li, Jin; Dimri, Goberdhan P; Guo, Wei-Jian

    2015-03-01

    The tumour suppressor p53 plays an important role in tumourigenesis. Besides inducing apoptosis, it regulates cellular senescence, which constitutes an important barrier to tumourigenesis. The mechanism of regulation of cellular senescence by p53 and its downstream pathway are poorly understood. Here, we report that the ubiquitin domain-containing 1 (UBTD1) gene, a new downstream target of p53, induces cellular senescence and acts as a novel tumour suppressor by a mechanism that depends on p53. Expression of UBTD1 increased upon cellular senescence induced by serial passageing of cultures, as well as by exposure to DNA-damageing drugs that induce premature senescence. Over-expression of UBTD1 induces senescence in human fibroblasts and cancer cells and attenuation of the transformed phenotype in cancer cells. UBTD1 is down-regulated in gastric and colorectal cancer tissues, and its lower expression correlates with a more aggressive phenotype and worse prognosis. Multivariate analysis revealed that UBTD1 expression was an independent prognostic factor for gastric cancer patients. Furthermore, UBTD1 increased the stability of p53 protein, by promoting the degradation of Mdm2 protein. Importantly, UBTD1 and p53 function mutually depend on each other in regulating cellular senescence and proliferation. Thus, our data suggest that, upon DNA damage, p53 induction by UBTD1 creates a positive feedback mechanism to further increase p53 expression. Our results establish UBTD1 as a regulator of cellular senescence that mediates p53 function, and provide insights into the mechanism of Mdm2 inhibition that impacts p53 dynamics during cellular senescence and tumourigenesis. PMID:25382750

  7. A positive feedback loop between Dumbfounded and Rolling pebbles leads to myotube enlargement in Drosophila

    PubMed Central

    Menon, Sree Devi; Osman, Zalina; Chenchill, Kho; Chia, William

    2005-01-01

    In Drosophila, myoblasts are subdivided into founders and fusion-competent myoblasts (fcm) with myotubes forming through fusion of one founder and several fcm. Duf and rolling pebbles 7 (Rols7; also known as antisocial) are expressed in founders, whereas sticks and stones (SNS) is present in fcm. Duf attracts fcm toward founders and also causes translocation of Rols7 from the cytoplasm to the fusion site. We show that Duf is a type 1 transmembrane protein that induces Rols7 translocation specifically when present intact and engaged in homophilic or Duf–SNS adhesion. Although its membrane-anchored extracellular domain functions as an attractant and is sufficient for the initial round of fusion, subsequent fusions require replenishment of Duf through cotranslocation with Rols7 tetratricopeptide repeat/coiled-coil domain-containing vesicles to the founder/myotube surface, causing both Duf and Rols7 to be at fusion sites between founders/myotubes and fcm. This implicates the Duf–Rols7 positive feedback loop to the occurrence of fusion at specific sites along the membrane and provides a mechanism by which the rate of fusion is controlled. PMID:15955848

  8. A Positive Feedback Loop between Akt and mTORC2 via SIN1 Phosphorylation.

    PubMed

    Yang, Guang; Murashige, Danielle S; Humphrey, Sean J; James, David E

    2015-08-11

    The mechanistic target of rapamycin complex 2 (mTORC2) regulates cell survival and cytoskeletal organization by phosphorylating its AGC kinase substrates; however, little is known about the regulation of mTORC2 itself. It was previously reported that Akt phosphorylates the mTORC2 subunit SIN1 at T86, activating mTORC2 through a positive feedback loop, though another study reported that S6K phosphorylates SIN1 at the same site, inhibiting mTORC2 activity. We performed extensive analysis of SIN1 phosphorylation upon inhibition of Akt, S6K, and mTOR under diverse cellular contexts, and we found that, in all cell lines and conditions studied, Akt is the major kinase responsible for SIN1 phosphorylation. These findings refine the activation mechanism of the Akt-mTORC2 signaling branch as follows: PDK1 phosphorylates Akt at T308, increasing Akt kinase activity. Akt phosphorylates SIN1 at T86, enhancing mTORC2 kinase activity, which leads to phosphorylation of Akt S473 by mTORC2, thereby catalyzing full activation of Akt. PMID:26235620

  9. Streptozotocin-induced diabetes blocks the positive feedback release of luteinizing hormone in the female rat.

    PubMed

    Kienast, S G; Fadden, C; Steger, R W

    1993-01-01

    The effects of streptozotocin-induced (STZ) diabetes on the release of gonadotropins was studied in female rats. In the first experiment, rats were ovariectomized and 2 days later were injected with STZ. Three weeks later rats were treated with estrogen and progesterone and blood samples were taken via intraatrial cannulae for luteinizing hormone (LH) assay. Afternoon surges of LH were seen in 4/5 control but 0/8 STZ rats. Pituitary responses to LH-releasing hormone in vitro did not differ. In the 2nd experiment, ovariectomized estrogen-primed rats were killed prior to and during a progesterone-induced LH surge. As in Experiment 1, STZ-treatment inhibited the LH surge but did not effect the afternoon rise in median eminence norepinephrine turnover which has previously been shown to be important in stimulating LH release. Turnover of norepinephrine in the anterior hypothalamus was depressed in the diabetic rats both prior to and during the expected time of the LH surge. Dopamine turnover was depressed in all three brain regions studied. It can be concluded that the positive feedback control of LH release is severely attenuated in diabetic rats but the mechanism explaining the loss is not clear. Diabetes-induced alterations in hypothalamic catecholamine metabolism may be involved but further work is needed to more carefully define these relationships. PMID:8221130

  10. ON THE EXTREME POSITIVE STAR FORMATION FEEDBACK CONDITION IN SCUBA SOURCES

    SciTech Connect

    Silich, Sergiy; Tenorio-Tagle, Guillermo; Hueyotl-Zahuantitla, Filiberto; Munoz-Tunon, Casiana; Wuensch, Richard; Palous, Jan

    2010-03-01

    We present a detailed study of the hydrodynamics of the matter reinserted by massive stars via stellar winds and supernovae explosions in young assembling galaxies. We show that the interplay between the thermalization of the kinetic energy provided by massive stars, radiative cooling of the thermalized plasma, and the gravitational pull of the host galaxy lead to three different hydrodynamic regimes. These are: (1) the quasi-adiabatic supergalactic winds; (2) the bimodal flows, with mass accumulation in the central zones and gas expulsion from the outer zones of the assembling galaxy; and (3) the gravitationally bound regime, for which all of the gas returned by massive stars remains bound to the host galaxy and is likely to be reprocessed into further generations of stars. Which of the three possible solutions takes place depends on the mass of the star-forming region, its mechanical luminosity (or star formation rate), and its size. The model predicts that massive assembling galaxies with large star formation rates similar to those detected in Submillimeter Common-User Bolometric Array sources ({approx}1000 M{sub sun} yr{sup -1}) are likely to evolve in a positive star formation feedback condition, either in the bimodal or in the gravitationally bound regime. This implies that star formation in these sources may have little impact on the intergalactic medium and result instead into a fast interstellar matter enrichment, as observed in high redshift quasars.

  11. Plant-soil feedbacks shift from negative to positive with decreasing light in forest understory species.

    PubMed

    Smith, Lauren M; Reynolds, Heather L

    2015-09-01

    Net pairwise plant-soil feedbacks (PSF) may be an important factor structuring plant communities, yet the influence of abiotic context on PSF is not yet understood. Abiotic factors such as light availability can alter plant-soil interactions, potentially resulting in strong context dependence of PSF. Here, we present an experiment in which we measured whole-soil net pairwise feedbacks amongst six common forest understory species across a gradient of light availability. Light treatments were imposed throughout both phases (the conditioning phase and the response phase) of the feedback experiment. Across the plant community, PSF shifted from negative at high light availability to weakly positive under low light (P = 0.0 13). Differences in the biomass of plants during the conditioning phase did not fully explain light-imposed differences in feedbacks, indicating that reduced light availability qualitatively changes the nature of PSF rather than simply weakening feedbacks by reducing plant growth. Results indicate that abiotic context can fundamentally alter the role of PSF in structuring plant communities. PMID:26594708

  12. On the feedback mechanism in supersonic cavity flows

    NASA Astrophysics Data System (ADS)

    Li, Weipeng; Nonomura, Taku; Fujii, Kozo

    2013-05-01

    Self-sustained oscillations in supersonic cavity flows are investigated by implicit large-eddy simulations of a supersonic flow (M∞ = 2.0, ReD = 105) past a three-dimensional rectangular cavity with length-to-depth ratio of 2. Both turbulent and laminar inflows are considered, and a variation of boundary-layer thickness in the turbulent inflow case is conducted. An additional simulation of turbulent free shear layer is also performed to illustrate the relationship between shedding vortices and acoustic excitations. Feedback mechanism is identified as the dominant mechanism driving the self-sustained oscillations in supersonic open cavity flows, regardless of the upstream turbulent state and the boundary-layer thickness. The generation of discrete vortices in the cavity shear layer is shown to be highly associated with acoustic excitations rather than natural instabilities of the cavity shear layer. Simulation results support that the primary noise source arises from the successive passage of large-scale vortices over the cavity trailing edge. The effects of upstream boundary layer on the shear-layer characteristics and acoustic fields will also be discussed.

  13. Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Yuan, Tianle; Oreopoulos, Lazaros; Zelinka, Mark; Yu, Hongbin; Norris, Joel R.; Chin, Mian; Platnick, Steven; Meyer, Kerry

    2016-02-01

    The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropical trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to the appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.

  14. Neural mechanisms underlying auditory feedback control of speech

    PubMed Central

    Reilly, Kevin J.; Guenther, Frank H.

    2013-01-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech, and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 135 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech. PMID:18035557

  15. Folding with thermal-mechanical feedback: A reply

    NASA Astrophysics Data System (ADS)

    Hobbs, Bruce E.; Regenauer-Lieb, Klaus; Ord, Alison

    2009-07-01

    A unified theory of deformation at all scales is outlined. Processes operating during deformation and metamorphism can be coupled in the form of reaction-diffusion equations. Solutions to these equations depend on the specific processes that dominate the dissipation of energy. Hobbs et al. (2008) is concerned with a scale where deformation and conduction of heat dominate and this corresponds to the regional scale. Other papers present results for other length and time scales. Boudinage develops through these processes in materials where the strict Biot theory predicts no boudinage. The strict Biot theory is applicable only at the instant of instability and provides no information on the subsequent growth of the folds. Analytical results for growth to large amplitudes show that only one wavelength develops and not a spectrum of wavelengths as proposed by Treagus and Hudleston (in press) and others. The wavelength to thickness ratio that finally develops is strongly dependent on boundary conditions and so such ratios tell us nothing about the conditions of folding unless these boundary conditions are known. The processes involved in folding with thermal-mechanical feedback are identical for single- and multi-layer systems so that it requires little space to expand the discussion to multi-layers.

  16. Eliminating the possibility at Chernobyl 4 of recriticality with positive feedback

    SciTech Connect

    Bowman, C.D.

    1996-04-29

    We have recently published an article in which we discuss means by which plutonium and other fissile material stored underground could reach criticality with positive feedback and therefore explosive potential. The Chernobyl rubble involving hundreds of tons of material is similar in some respects to the systems analyzed in the paper, and the practices there to control criticality may well increase the probability of a second event at Chernobyl 4. This paper explores the Chernobyl situation and remedial actions are recommended.

  17. CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in Single Column Models

    NASA Technical Reports Server (NTRS)

    Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter N.; Austin, Phillip H.; Bacmeister, Julio T.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; DelGenio, Anthony; DeRoode, Stephan R.; Endo, Satoshi; Franklin, Charmaine N.; Oolaz, Jean-Christophe; Hannay, Cecile; Heus, Thijs; Isotta, Francesco Alessandro; Dufresne, Jean-Louis; Kang, In-Sik; Kawai, Hideaki; Kiehler, Martin; Larson, Vincent E.; Liu, Yangang; Lock, Adrian P.; Lohmann, Ulrike; Molod, Andrea M.; Suarez, Max J.

    2013-01-01

    1] CGILS-the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)-investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the "NESTS" negative cloud feedback and the "SCOPE" positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence-Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations

  18. The Use of Feedback Mechanisms in Interpreting the Robustness of a Neoliberal Educational Assemblage

    ERIC Educational Resources Information Center

    Demerath, Peter; Mattheis, Allison

    2015-01-01

    This article demonstrates how using feedback mechanisms or "loops" as heuristic devices can help ethnographers explain the interior logic, robustness and contradictions within complex educational assemblages. After reviewing the use of feedback mechanisms in the natural and social sciences, particularly practice theory, the article…

  19. Soil moisture-precipitation feedback: reconciling negative spatial coupling with a positive temporal feedback via moisture recycling

    NASA Astrophysics Data System (ADS)

    Guillod, Benoît; Orlowsky, Boris; Miralles, Diego G.; Teuling, Adriaan J.; Seneviratne, Sonia I.

    2015-04-01

    Soil moisture-precipitation coupling, i.e., the impact of soil moisture on precipitation, conveys some of the largest uncertainties in land-atmosphere interactions. In addition to a direct positive effect via moisture recycling, a number of indirect effects have been identified, where surface turbulent fluxes impact temperature and humidity in the boundary layer, its growth and thereby indirectly many variables that can support or inhibit convection triggering, such as atmospheric stability, entrainment, or mesoscale circulations. Due to the complexity of the involved interactions, the sign and strength of this feedback remains heavily debated in the literature, despite important advances in recent years. Traditional "temporal" perspectives often highlight positive relationships, i.e. rain falling more often over wet soils [e.g., 1], albeit with difficulties in attributing these relationships to a coupling due to atmospheric persistence [e.g., 2]. On the other hand, recent studies focusing on the impacts of spatial differences in soil moisture have highlighted that rain falls preferentially over soils that are drier than their surrounding [3]. This is likely due to negative indirect effects, such as mesoscale circulations that are induced by the underlying spatial soil moisture patterns [4]. These results from "temporal" and "spatial" perspectives may first appear contradictory and dependent on the underlying datasets. However, they could also refer to different processes that determine when and where it rains. In other words, the presence of negative spatial coupling may not necessarily be incompatible with the concept of positive temporal coupling. Using global satellite-based data, we compare spatial and temporal perspectives using metrics that relate precipitation events to prior spatial and temporal soil moisture patterns. We find that relationships between soil moisture and subsequent precipitation can be spatially negative while temporally positive, with implications on the interpretation of both perspectives. While the causality of temporal relationships remains difficult to assess, these findings suggest that a positive coupling could induce persistence in precipitation and soil moisture, while a negative spatial coupling could act to redistribute soil moisture spatially. Our results show that it rains preferentially over patches that are drier than the surrounding but at times in which they are wetter than their own climatology. [1] K. L. Findell et al., 2011, Nat. Geosci., 4, 434-439. [2] B. P. Guillod et al., 2014, Atmos. Chem. Phys., 14, 8343-8367. [3] C. M. Taylor et al., 2012, Nature, 489, 423-426. [4] C. M. Taylor et al., 2011, Nat. Geosci., 4, 1-4.

  20. Vacuum ultraviolet light source utilizing rare gas scintillation amplification sustained by photon positive feedback

    NASA Technical Reports Server (NTRS)

    Aprile, Elena (Inventor); Chen, Danli (Inventor)

    1995-01-01

    A source of light in the vacuum ultraviolet (VUV) spectral region includes a reflective UV-sensitive photocathode supported in spaced parallel relationship with a mesh electrode within a rare gas at low pressure. A high positive potential applied to the mesh electrode creates an electric field which causes drifting of free electrons occurring between the electrodes and producing continuous VUV light output by electric field-driven scintillation amplification sustained by positive photon feedback mediated by photoemission from the photocathode. In one embodiment the lamp emits a narrow-band continuum peaked at 175 nm.

  1. The inertial positioning problem in Hamiltonian mechanics

    NASA Astrophysics Data System (ADS)

    Bartha, G.

    1986-06-01

    The general inertial positioning system - to determine the actual coordinates of a vehicle, moving with respect to the inertial frame, from its measured inertial accelerations - is discussed in Hamiltonian mechanics. The use of the Hamiltonian formalism allows the avoidance of sophisticated geometrical considerations. Starting from the canonical equations of motion for the general problem, the navigation equations of some special problems (motion on a rotating sphere, motion on a rotating ellipsoid) are derived in linearized form. Using the simplicity of the linearized form, the solutions can be easily computed in analytical form. This is done for the above problems.

  2. A Novel TGFβ Modulator that Uncouples R-Smad/I-Smad-Mediated Negative Feedback from R-Smad/Ligand-Driven Positive Feedback

    PubMed Central

    Gu, Wenchao; Monteiro, Rui; Zuo, Jie; Simões, Filipa Costa; Martella, Andrea; Andrieu-Soler, Charlotte; Grosveld, Frank; Sauka-Spengler, Tatjana; Patient, Roger

    2015-01-01

    As some of the most widely utilised intercellular signalling molecules, transforming growth factor β (TGFβ) superfamily members play critical roles in normal development and become disrupted in human disease. Establishing appropriate levels of TGFβ signalling involves positive and negative feedback, which are coupled and driven by the same signal transduction components (R-Smad transcription factor complexes), but whether and how the regulation of the two can be distinguished are unknown. Genome-wide comparison of published ChIP-seq datasets suggests that LIM domain binding proteins (Ldbs) co-localise with R-Smads at a substantial subset of R-Smad target genes including the locus of inhibitory Smad7 (I-Smad7), which mediates negative feedback for TGFβ signalling. We present evidence suggesting that zebrafish Ldb2a binds and directly activates the I-Smad7 gene, whereas it binds and represses the ligand gene, Squint (Sqt), which drives positive feedback. Thus, the fine tuning of TGFβ signalling derives from positive and negative control by Ldb2a. Expression of ldb2a is itself activated by TGFβ signals, suggesting potential feed-forward loops that might delay the negative input of Ldb2a to the positive feedback, as well as the positive input of Ldb2a to the negative feedback. In this way, precise gene expression control by Ldb2a enables an initial build-up of signalling via a fully active positive feedback in the absence of buffering by the negative feedback. In Ldb2a-deficient zebrafish embryos, homeostasis of TGFβ signalling is perturbed and signalling is stably enhanced, giving rise to excess mesoderm and endoderm, an effect that can be rescued by reducing signalling by the TGFβ family members, Nodal and BMP. Thus, Ldb2a is critical to the homeostatic control of TGFβ signalling and thereby embryonic patterning. PMID:25665164

  3. Positive Feedback-Loop of Telomerase Reverse Transcriptase and 15-Lipoxygenase-2 Promotes Pulmonary Hypertension

    PubMed Central

    Shen, Tingting; Ma, Jun; Zhang, Lei; Yu, Xiufeng; Liu, Mengmeng; Hou, Yunlong; Wang, Yanyan; Ma, Cui; Li, Shuzhen; Zhu, Daling

    2013-01-01

    Objective Pulmonary hypertension (PH) is characterized with pulmonary vasoconstriction and vascular remodeling mediated by 15-lipoxygenase (15-LO)/15-hydroxyeicosatetraenoic acid (15-HETE) according to our previous studies. Meanwhile, telomerase reverse transcriptase (TERT) activity is highly correlated with vascular injury and remodeling, suggesting that TERT may be an essential determinant in the development of PH. The aim of this study was to determine the contribution and molecular mechanisms of TERT in the pathogenesis of PH. Approach and Results We measured the right ventricular systolic pressure (RVSP) and ventricular weight, analyzed morphometric change of the pulmonary vessels in the hypoxia or monocrotaline treated rats. Bromodeoxyuridine incorporation, transwell assay and flow cytometry in pulmonary smooth muscle cells were performed to investigate the roles and relationship of TERT and 15-LO/15-HETE in PH. We revealed that the expression of TERT was increased in pulmonary vasculature of patients with PH and in the monocrotaline or hypoxia rat model of PH. The up-regulation of TERT was associated with experimental elevated RVSP and pulmonary vascular remodeling. Coimmunoprecipitation experiments identified TERT as a novel interacting partner of 15-LO-2. TERT and 15-LO-2 augmented protein expression of each other. In addition, the proliferation, migration and cell-cycle transition from G0/G1 phase to S phase induced by hypoxia were inhibited by TERT knockdown, which were rescued by 15-HETE addition. Conclusions These results demonstrate that TERT regulates pulmonary vascular remodeling. TERT and 15-LO-2 form a positive feedback loop and together promote proliferation and migration of pulmonary artery smooth muscle cells, creating a self-amplifying circuit which propels pulmonary hypertension. PMID:24376652

  4. Effectiveness of chest compression feedback during cardiopulmonary resuscitation in lateral tilted and semirecumbent positions: a randomised controlled simulation study.

    PubMed

    Song, Y; Oh, J; Chee, Y; Cho, Y; Lee, S; Lim, T H

    2015-11-01

    Feedback devices have been shown to improve the quality of chest compression during cardiopulmonary resuscitation for patients in the supine position, but no studies have reported the effects of feedback devices on chest compression when the chest is tilted. Basic life support-trained providers were randomly assigned to administer chest compressions to a manikin in the supine, 30° left lateral tilt and 30° semirecumbent positions, with or without the aid of a feedback device incorporated into a smartphone. Thirty-six participants were studied. The feedback device did not affect the quality of chest compressions in the supine position, but improved aspects of performance in the tilted positions. In the lateral tilted position, the median (IQR [range]) chest compression rate was 99 (99-100 [96-117]) compressions.min(-1) with and 115 (95-128 [77-164]) compressions.min(-1) without feedback (p = 0.05), and the proportion of compressions of correct depth was 55 (0-96 [0-100])% with and 1 (0-30 [0-100])% without feedback (p = 0.03). In the semirecumbent position, the proportion of compressions of correct depth was 21 (0-87 [0-100])% with and 1 (0-26 [0-100])% without feedback (p = 0.05). Female participants applied chest compressions at a more accurate rate using the feedback device in the lateral tilted position but were unable to increase the chest compression depth, whereas male participants were able to increase the force of chest compression using the feedback device in the lateral tilted and semirecumbent positions. We conclude that a feedback device improves the application of chest compressions during simulated cardiopulmonary resuscitation when the chest is tilted. PMID:26349025

  5. Precipitation Dynamics and Feedback mechanisms of the Arabian Desert

    NASA Astrophysics Data System (ADS)

    Burger, Roelof; Kucera, Paul; Piketh, Stuart; Axisa, Duncan; Chapman, Michael; Krauss, Terry; Ghulam, Ayman

    2010-05-01

    The subtropical Arabian desert extends across the entire Peninsula. The Arabian desert finds itself in the downward branch of the Hadley cell with persistent subsidence. This stabilizes the atmosphere and lowers the relative humidity. The result is a strongly capped convective boundary layer and an extremely dry mid troposphere. Most of the area experience very little rainfall, generally below 100 mm per year, resulting in the largest uninterrupted sand desert in the world. However, local factors such as an unbroken 1000 km escarpment along the Red Sea, rocky mountains between 2000 and 3000 m, and gravel plains cut by wadis, causes micro climates with significant altered precipitation characteristics. Altitude oases with annual rainfall between 200 mm and 500 mm are found on the Asir mountains in the south west and over the Jebel Akdhar mountains on the Gulf coast of Oman. This region receives most of its rainfall in the Northern Hemisphere summer driven by a monsoon trough and the ITCZ. During summer, moist surface winds from the Red Sea converges with dry easterlies triggering convection along the Asir escarpment on a daily basis. Clear mornings grow into a layer of Altocumulus stratiformis cumulogenites by noon, which usually last until sunset. This cloud deck interacts with large severe convective cells which grow to the top of the troposphere by mid afternoon. The north experience a mediterranean climate with eastward propagating midlatitude cyclones causing wintertime rainfall. Characteristic cloud bands form over the northern interior. Vertically layered embedded convective cells that are not coupled with the surface propagate on north easterly tracks. This result in another oasis with annual rainfall exceeding 200 mm. Surface based convection causes isolated thunderstorms during spring and early summer, but cloud bases increase as the season progress until the evaporating downdraft causes dust storms. In-situ measurements, WRF model runs, radiosonde ascends, radar and satellite data are used to explore these dynamics and the associated feedback mechanisms of precipitation over the Arabian desert.

  6. Rapid in situ X-ray position stabilization via extremum seeking feedback.

    PubMed

    Zohar, S; Venugopalan, N; Kissick, D; Becker, M; Xu, S; Makarov, O; Stepanov, S; Ogata, C; Sanishvili, R; Fischetti, R F

    2016-03-01

    X-ray beam stability is crucial for acquiring high-quality data at synchrotron beamline facilities. When the X-ray beam and defining apertures are of similar dimensions, small misalignments driven by position instabilities give rise to large intensity fluctuations. This problem is solved using extremum seeking feedback control (ESFC) for in situ vertical beam position stabilization. In this setup, the intensity spatial gradient required for ESFC is determined by phase comparison of intensity oscillations downstream from the sample with pre-existing vertical beam oscillations. This approach compensates for vertical position drift from all sources with position recovery times <6 s and intensity stability through a 5 µm aperture measured at 1.5% FWHM over a period of 8 hours. PMID:26917131

  7. Enhanced Positive Water Vapor Feedback Associated with Tropical Deep Convection: New Evidence from Aura MLS

    NASA Technical Reports Server (NTRS)

    Su, Hui; Read, William G.; Jiang, Jonathan H.; Waters, Joe W.; Wu, Dong L.; Fetzer, Eric J.

    2006-01-01

    Recent simultaneous observations of upper tropospheric (UT) water vapor and cloud ice from the Microwave Limb Sounder (MLS) on the Aura satellite provide new evidence for tropical convective influence on UT water vapor and its associated greenhouse effect. The observations show that UT water vapor increases as cloud ice water content increases. They also show that, when sea surface temperature (SST) exceeds approx.300 K, UT cloud ice associated with tropical deep convection increases sharply with increasing SST. The moistening of the upper troposphere by deep convection leads to an enhanced positive water vapor feedback, about 3 times that implied solely by thermodynamics. Over tropical oceans when SST greater than approx.300 K, the 'convective UT water vapor feedback' inferred from the MLS observations contributes approximately 65% of the sensitivity of the clear-sky greenhouse parameter to SST.

  8. Response to "The Iris Hypothesis: A Negative or Positive Cloud Feedback?"

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Based on radiance measurements of Japan's Geostationary Meteorological Satellite, Lindzen et al. found that the high-level cloud cover averaged over the tropical western Pacific decreases with increasing sea surface temperature. They further found that the response of high-level clouds to the sea surface temperature had an effect of reducing the magnitude of climate change, which is referred as a negative climate feedback. Lin et al. reassessed the results found by Lindzen et al. by analyzing the radiation and clouds derived from the Tropical Rainfall Measuring Mission Clouds and the Earth's Radiant Energy System measurements. They found a weak positive feedback between high-level clouds and the surface temperature. We have found that the approach taken by Lin et al. to estimating the albedo and the outgoing longwave radiation is incorrect and that the inferred climate sensitivity is unreliable.

  9. External pressure-triggering of star formation in a disc galaxy: a template for positive feedback

    NASA Astrophysics Data System (ADS)

    Bieri, Rebekka; Dubois, Yohan; Silk, Joseph; Mamon, Gary A.; Gaibler, Volker

    2016-02-01

    Feedback from active galactic nuclei (AGN) has often been invoked both in simulations and in interpreting observations for regulating star formation and quenching cooling flows in massive galaxies. AGN activity can, however, also overpressurize the dense star-forming regions of galaxies and thus enhance star formation, leading to a positive feedback effect. To understand this pressurization better, we investigate the effect of an ambient external pressure on gas fragmentation and triggering of starburst activity by means of hydrodynamical simulations. We find that moderate levels of overpressurization of the galaxy boost the global star formation rate of the galaxy by an order of magnitude, turn stable discs unstable, and lead to significant fragmentation of the gas content of the galaxy, similar to what is observed in high-redshift galaxies.

  10. A MicroRNA-Mediated Positive Feedback Regulatory Loop of the NF-κB Pathway in Litopenaeus vannamei.

    PubMed

    Zuo, Hongliang; Yuan, Jia; Chen, Yonggui; Li, Sedong; Su, Ziqi; Wei, Erman; Li, Chaozheng; Weng, Shaoping; Xu, Xiaopeng; He, Jianguo

    2016-05-01

    In the evolutionarily conserved canonical NF-κB pathway, degradation of the NF-κB inhibitor IκB in the cytoplasmic NF-κB/IκB complex allows the liberated NF-κB to translocate into the nucleus to activate various target genes. The regulatory mechanism governing this process needs further investigation. In this study, a novel microRNA, temporarily named miR-1959, was first identified from an invertebrate Litopenaeus vannamei miR-1959 targets the 3'-untranslated region of the IκB homolog Cactus gene and reduces the protein level of Cactus in vivo, whereas the NF-κB homolog Dorsal directly binds the miR-1959 promoter to activate its transcription. Therefore, miR-1959 mediates a positive feedback regulatory loop, in that Dorsal activates miR-1959 expression, and in turn, miR-1959 inhibits the expression of Cactus, further leading to enhanced activation of Dorsal. Moreover, miR-1959 regulates the expression of many antimicrobial peptides in vivo and is involved in antibacterial immunity. To our knowledge, it is the first discovery of a microRNA-mediated feedback loop that directly regulates the NF-κB/IκB complex. This positive feedback loop could collaborate with the known NF-κB/IκB negative loop to generate a dynamic balance to regulate the activity of NF-κB, thus constituting an effective regulatory mechanism at the critical node of the NF-κB pathway. PMID:26994223

  11. MECHANISMS OF CARBON MONOXIDE ATTENUATION OF TUBULOGLOMERULAR FEEDBACK (TGF)

    PubMed Central

    Ren, YiLin; D’Ambrosio, Martin A.; Wang, Hong; Falck, John R.; Peterson, Edward L.; Garvin, Jeffrey L.; Carretero, Oscar A.

    2012-01-01

    Carbon monoxide (CO) is a physiological messenger with diverse functions in the kidney, including controlling afferent arteriole (Af-Art) tone both directly and via tubuloglomerular feedback (TGF). We have reported that CO attenuates TGF, but the mechanisms underlying this effect remain unknown. We hypothesized that CO, acting via cGMP, cGMP-dependent protein kinase (PKG), and cGMP-stimulated phosphodiesterase-2 (PDE2), reduces cAMP in the macula densa, leading to TGF attenuation. In vitro, microdissected rabbit Af-Arts and their attached macula densa were simultaneously perfused. TGF was measured as the decrease in Af-Art diameter elicited by switching macula densa NaCl from 10 to 80 mM. Adding a CO-releasing molecule (CORM-3, 5×10−5mol/L) to the macula densa blunted TGF from 3.3±0.3 to 2.0±0.3 µm (P<0.001). The guanylate cyclase inhibitor LY-83583 (10−6mol/L) enhanced TGF (5.8±0.6 µm; P<0.001 vs. control) and prevented the effect of CORM-3 on TGF (LY-83583 + CORM-3, 5.5±0.3 µm). Similarly, the PKG inhibitor KT-5823 (2×10−6mol/L) enhanced TGF and prevented the effect of CORM-3 on TGF (KT-5823, 6.0±0.7 µm; KT-5823 + CORM-3, 5.9±0.8 µm). However, the PDE2 inhibitor BAY-60-7550 (10−6mol/L) did not prevent the effect of CORM-3 on TGF (BAY-60-7550, 4.07±0.31 µm; BAY-60-7550 + CORM-3, 1.84±0.31 µm, P<0.001). Finally, the degradation-resistant cAMP analog dibutyryl-cAMP (db-cAMP, 10−3mol/L) prevented the attenuation of TGF by CORM-3 (db-cAMP, 4.6±0.5 µm; db-cAMP + CORM-3, 5.0±0.6 µm). We conclude that CO attenuates TGF by reducing cAMP via a cGMP-dependent pathway mediated by PKG, rather than PDE2. Our results will lead to a better understanding of the mechanisms that control the renal microcirculation. PMID:22508834

  12. A positive feedback regulation of ISL-1 in DLBCL but not in pancreatic β-cells

    SciTech Connect

    Zhang, Qiao; Yang, Zhe; Wang, Weiping; Guo, Ting; Jia, Zhuqing; Ma, Kangtao; Zhou, Chunyan

    2014-07-04

    Highlights: • ISL-1 is highly expressed in human pancreatic β-cells and DLBCL. • ISL-1 accelerates the tumorigenesis of DLBCL in vivo. • c-Myc positively regulates ISL-1 expression in DLBCL but not in pancreatic β-cells. • ISL-1 and c-Myc forms an ISL-1/c-Myc transcriptional complex only in DLBCL. • Positive feedback regulation of ISL-1 does not exist in normal pancreatic β-cell. - Abstract: Insulin enhancer binding protein-1 (ISL-1), a LIM-homeodomain transcription factor, has been reported to play essential roles in promoting adult pancreatic β-cells proliferation. Recent studies indicate that ISL-1 may also involve in the occurrence of a variety of tumors. However, whether ISL-1 has any functional effect on tumorigenesis, and what are the differences on ISL-1 function in distinct conditions, are completely unknown. In this study, we found that ISL-1 was highly expressed in human pancreatic β-cells, as well as in diffuse large B cell lymphoma (DLBCL), but to a much less extent in other normal tissues or tumor specimens. Further study revealed that ISL-1 promoted the proliferation of pancreatic β-cells and DLBCL cells, and also accelerated the tumorigenesis of DLBCL in vivo. We also found that ISL-1 could activate c-Myc transcription not only in pancreatic β-cells but also in DLBCL cells. However, a cell-specific feedback regulation was detectable only in DLBCL cells. This auto-regulatory loop was established by the interaction of ISL-1 and c-Myc to form an ISL-1/c-Myc transcriptional complex, and synergistically to promote ISL-1 transcription through binding on the ISL-1 promoter. Taken together, our results demonstrate a positive feedback regulation of ISL-1 in DLBCL but not in pancreatic β-cells, which might result in the functional diversities of ISL-1 in different physiological and pathological processes.

  13. Positive climate feedbacks of soil microbial communities in a semi-arid grassland.

    TOXLINE Toxicology Bibliographic Information

    Nie M; Pendall E; Bell C; Gasch CK; Raut S; Tamang S; Wallenstein MD

    2013-02-01

    Soil microbial communities may be able to rapidly respond to changing environments in ways that change community structure and functioning, which could affect climate-carbon feedbacks. However, detecting microbial feedbacks to elevated CO(2) (eCO(2) ) or warming is hampered by concurrent changes in substrate availability and plant responses. Whether microbial communities can persistently feed back to climate change is still unknown. We overcame this problem by collecting microbial inocula at subfreezing conditions under eCO(2) and warming treatments in a semi-arid grassland field experiment. The inoculant was incubated in a sterilised soil medium at constant conditions for 30days. Microbes from eCO(2) exhibited an increased ability to decompose soil organic matter (SOM) compared with those from ambient CO(2) plots, and microbes from warmed plots exhibited increased thermal sensitivity for respiration. Microbes from the combined eCO(2) and warming plots had consistently enhanced microbial decomposition activity and thermal sensitivity. These persistent positive feedbacks of soil microbial communities to eCO(2) and warming may therefore stimulate soil C loss.

  14. Positive climate feedbacks of soil microbial communities in a semi-arid grassland.

    PubMed

    Nie, Ming; Pendall, Elise; Bell, Colin; Gasch, Caley K; Raut, Swastika; Tamang, Shanker; Wallenstein, Matthew D

    2013-02-01

    Soil microbial communities may be able to rapidly respond to changing environments in ways that change community structure and functioning, which could affect climate-carbon feedbacks. However, detecting microbial feedbacks to elevated CO(2) (eCO(2) ) or warming is hampered by concurrent changes in substrate availability and plant responses. Whether microbial communities can persistently feed back to climate change is still unknown. We overcame this problem by collecting microbial inocula at subfreezing conditions under eCO(2) and warming treatments in a semi-arid grassland field experiment. The inoculant was incubated in a sterilised soil medium at constant conditions for 30days. Microbes from eCO(2) exhibited an increased ability to decompose soil organic matter (SOM) compared with those from ambient CO(2) plots, and microbes from warmed plots exhibited increased thermal sensitivity for respiration. Microbes from the combined eCO(2) and warming plots had consistently enhanced microbial decomposition activity and thermal sensitivity. These persistent positive feedbacks of soil microbial communities to eCO(2) and warming may therefore stimulate soil C loss. PMID:23157642

  15. Valence-separated representation of reward prediction error in feedback-related negativity and positivity.

    PubMed

    Bai, Yu; Katahira, Kentaro; Ohira, Hideki

    2015-02-11

    Feedback-related negativity (FRN) is an event-related brain potential (ERP) component elicited by errors and negative outcomes. Previous studies proposed that FRN reflects the activity of a general error-processing system that incorporates reward prediction error (RPE). However, other studies reported inconsistent results on this issue - namely, that FRN only reflects the valence of feedback and that the magnitude of RPE is reflected by the other ERP component called P300. The present study focused on the relationship between the FRN amplitude and RPE. ERPs were recorded during a reversal learning task performed by the participants, and a computational model was used to estimate trial-by-trial RPEs, which we correlated with the ERPs. The results indicated that FRN and P300 reflected the magnitude of RPE in negative outcomes and positive outcomes, respectively. In addition, the correlation between RPE and the P300 amplitude was stronger than the correlation between RPE and the FRN amplitude. These differences in the correlation between ERP and RPE components may explain the inconsistent results reported by previous studies; the asymmetry in the correlations might make it difficult to detect the effect of the RPE magnitude on the FRN and makes it appear that the FRN only reflects the valence of feedback. PMID:25634316

  16. Technology Enhanced Feedback Tools as a Knowledge Management Mechanism for Supporting Professional Growth and School Reform

    ERIC Educational Resources Information Center

    Bain, Alan; Swan, Gerry

    2011-01-01

    Attempts at school reform and improvement have experienced difficulty creating and implementing feedback systems that energize and sustain change efforts. If the call for reform at all levels of education is to be met, attention must be given to establishing effective feedback mechanisms in educational institutions as they embark on improvement

  17. Technology Enhanced Feedback Tools as a Knowledge Management Mechanism for Supporting Professional Growth and School Reform

    ERIC Educational Resources Information Center

    Bain, Alan; Swan, Gerry

    2011-01-01

    Attempts at school reform and improvement have experienced difficulty creating and implementing feedback systems that energize and sustain change efforts. If the call for reform at all levels of education is to be met, attention must be given to establishing effective feedback mechanisms in educational institutions as they embark on improvement…

  18. Experience Sampling-Based Personalized Feedback and Positive Affect: A Randomized Controlled Trial in Depressed Patients

    PubMed Central

    Hartmann, Jessica A.; Wichers, Marieke; Menne-Lothmann, Claudia; Kramer, Ingrid; Viechtbauer, Wolfgang; Peeters, Frenk; Schruers, Koen R. J.; van Bemmel, Alex L.; Myin-Germeys, Inez; Delespaul, Philippe; van Os, Jim; Simons, Claudia J. P.

    2015-01-01

    Objectives Positive affect (PA) plays a crucial role in the development, course, and recovery of depression. Recently, we showed that a therapeutic application of the experience sampling method (ESM), consisting of feedback focusing on PA in daily life, was associated with a decrease in depressive symptoms. The present study investigated whether the experience of PA increased during the course of this intervention. Design Multicentre parallel randomized controlled trial. An electronic random sequence generator was used to allocate treatments. Settings University, two local mental health care institutions, one local hospital. Participants 102 pharmacologically treated outpatients with a DSM-IV diagnosis of major depressive disorder, randomized over three treatment arms. Intervention Six weeks of ESM self-monitoring combined with weekly PA-focused feedback sessions (experimental group); six weeks of ESM self-monitoring combined with six weekly sessions without feedback (pseudo-experimental group); or treatment as usual (control group). Main outcome The interaction between treatment allocation and time in predicting positive and negative affect (NA) was investigated in multilevel regression models. Results 102 patients were randomized (mean age 48.0, SD 10.2) of which 81 finished the entire study protocol. All 102 patients were included in the analyses. The experimental group did not show a significant larger increase in momentary PA during or shortly after the intervention compared to the pseudo-experimental or control groups (χ2 (2) =0.33, p=.846). The pseudo-experimental group showed a larger decrease in NA compared to the control group (χ2 (1) =6.29, p=.012). Conclusion PA-focused feedback did not significantly impact daily life PA during or shortly after the intervention. As the previously reported reduction in depressive symptoms associated with the feedback unveiled itself only after weeks, it is conceivable that the effects on daily life PA also evolve slowly and therefore were not captured by the experience sampling procedure immediately after treatment. Trial Registration Trialregister.nl/trialreg/index.asp. NTR1974 PMID:26034983

  19. Movement goals and feedback and feedforward control mechanisms in speech production

    PubMed Central

    Perkell, Joseph S.

    2010-01-01

    Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences. PMID:22661828

  20. The Y-located gonadoblastoma gene TSPY amplifies its own expression through a positive feedback loop in prostate cancer cells

    SciTech Connect

    Kido, Tatsuo; Lau, Yun-Fai Chris

    2014-03-28

    Highlights: • Y-encoded proto-oncoprotein TSPY amplifies its expression level via a positive feedback loop. • TSPY binds to the chromatin/DNA at exon 1 of TSPY gene. • TSPY enhances the gene expression in a TSPY exon 1 sequence dependent manner. • The conserved SET/NAP-domain is essential for TSPY transactivation. • Insights on probable mechanisms on TSPY exacerbation on cancer development in men. - Abstract: The testis-specific protein Y-encoded (TSPY) is a repetitive gene located on the gonadoblastoma region of the Y chromosome, and has been considered to be the putative gene for this oncogenic locus on the male-only chromosome. It is expressed in spermatogonial cells and spermatocytes in normal human testis, but abundantly in gonadoblastoma, testicular germ cell tumors and a variety of somatic cancers, including melanoma, hepatocellular carcinoma and prostate cancer. Various studies suggest that TSPY accelerates cell proliferation and growth, and promotes tumorigenesis. In this report, we show that TSPY could bind directly to the chromatin/DNA at exon 1 of its own gene, and greatly enhance the transcriptional activities of the endogenous gene in the LNCaP prostate cancer cells. Domain mapping analyses of TSPY have localized the critical and sufficient domain to the SET/NAP-domain. These results suggest that TSPY could efficiently amplify its expression and oncogenic functions through a positive feedback loop, and contribute to the overall tumorigenic processes when it is expressed in various human cancers.

  1. Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain.

    PubMed

    Spagna, J C; Goldman, D I; Lin, P-C; Koditschek, D E; Full, R J

    2007-03-01

    Terrestrial arthropods negotiate demanding terrain more effectively than any search-and-rescue robot. Slow, precise stepping using distributed neural feedback is one strategy for dealing with challenging terrain. Alternatively, arthropods could simplify control on demanding surfaces by rapid running that uses kinetic energy to bridge gaps between footholds. We demonstrate that this is achieved using distributed mechanical feedback, resulting from passive contacts along legs positioned by pre-programmed trajectories favorable to their attachment mechanisms. We used wire-mesh experimental surfaces to determine how a decrease in foothold probability affects speed and stability. Spiders and insects attained high running speeds on simulated terrain with 90% of the surface contact area removed. Cockroaches maintained high speeds even with their tarsi ablated, by generating horizontally oriented leg trajectories. Spiders with more vertically directed leg placement used leg spines, which resulted in more effective distributed contact by interlocking with asperities during leg extension, but collapsing during flexion, preventing entanglement. Ghost crabs, which naturally lack leg spines, showed increased mobility on wire mesh after the addition of artificial, collapsible spines. A bioinspired robot, RHex, was redesigned to maximize effective distributed leg contact, by changing leg orientation and adding directional spines. These changes improved RHex's agility on challenging surfaces without adding sensors or changing the control system. PMID:17671322

  2. A computational model clarifies the roles of positive and negative feedback loops in the Drosophila circadian clock

    NASA Astrophysics Data System (ADS)

    Wang, Junwei; Zhou, Tianshou

    2010-06-01

    Previous studies showed that a single negative feedback structure should be sufficient for robust circadian oscillations. It is thus pertinent to ask why current cellular clock models almost universally have interlocked negative feedback loop (NFL) and positive feedback loop (PFL). Here, we propose a molecular model that reflects the essential features of the Drosophila circadian clock to clarify the different roles of negative and positive feedback loops. In agreement with experimental observations, the model can simulate circadian oscillations in constant darkness, entrainment by light-dark cycles, as well as phenotypes of per and clk mutants. Moreover, sustained oscillations persist when the PFL is removed, implying the crucial role of NFL for rhythm generation. Through parameter sensitivity analysis, it is revealed that incorporation of PFL increases the robustness of the system to regulatory processes in PFL itself. Such reduced models can aid understanding of the design principles of circadian clocks in Drosophila and other organisms with complex transcriptional feedback structures.

  3. Phasic dopamine release induced by positive feedback predicts individual differences in reversal learning.

    PubMed

    Klanker, Marianne; Sandberg, Tessa; Joosten, Ruud; Willuhn, Ingo; Feenstra, Matthijs; Denys, Damiaan

    2015-11-01

    Striatal dopamine (DA) is central to reward-based learning. Less is known about the contribution of DA to the ability to adapt previously learned behavior in response to changes in the environment, such as a reversal of response-reward contingencies. We hypothesized that DA is involved in the rapid updating of response-reward information essential for successful reversal learning. We trained rats to discriminate between two levers, where lever availability was signaled by a non-discriminative cue. Pressing one lever was always rewarded, whereas the other lever was never rewarded. After reaching stable discrimination performance, a reversal was presented, so that the previously non-rewarded lever was now rewarded and vice versa. We used fast-scan cyclic voltammetry to monitor DA release in the ventromedial striatum. During discrimination performance (pre-reversal), cue presentation induced phasic DA release, whereas reward delivery did not. The opposite pattern was observed post-reversal: Striatal DA release emerged after reward delivery, while cue-induced release diminished. Trial-by-trial analysis showed rapid reinstatement of cue-induced DA release on trials immediately following initial correct responses. This effect of positive feedback was observed in animals that learned the reversal, but not in 'non-learners'. In contrast, neither pre-reversal responding and DA signaling, nor post-reversal DA signaling in response to negative feedback differed between learners and non-learners. Together, we show that phasic DA dynamics in the ventromedial striatum encoding reward-predicting cues are associated with positive feedback during reversal learning. Furthermore, these signals predict individual differences in learning that are not present prior to reversal, suggesting a distinct role for dopamine in the adaptation of previously learned behavior. PMID:26343836

  4. Theory and calculations of synchrotron instabilities and feedback-mechanism

    SciTech Connect

    Meijssen, T.E.M.

    1981-08-12

    The properties of the phenomenon synchrotron radiation are given with general theory on the basic processes and betatron and synchrotron oscillations. A more extended theoretical view at transverse instabilities and the influence of a damping feedback system are discussed. The longitudinal case is covered. For the calculations on the longitudinal case with M equally spaced pointbunches, with N electrons each, in the storage ring, the parasitic modes of the radio-frequency cavity were measured. A description of this is given. The values of damping rates of the longitudinal feedback system found, are as expected, but too low to damp the longitudinal instabilities calculated. This might be caused by the input data. The calculated growth rates are very sensitive to changes in frequency and width of the parasitic modes, which were measured under conditions differing slightly from the operating conditions.

  5. Efficient plant growth using automatic position-feedback laser light irradiation

    NASA Astrophysics Data System (ADS)

    Kakinoki, Yoshiaki; Kato, Yuya; Ogawa, Kosuke; Nakao, Akira; Okai, Zenshiro; Katsuyama, Toshio

    2013-05-01

    The plant growth based on the scanning laser beam is newly developed. Three semiconductor lasers with three primary colors, i.e., blue, green and red are used. Here, the laser scanned position is restricted only to the plant leaves, where the light illumination is needed. The feedback system based on the perspective projection is developed. The system consists of the automatic position correction from the camera image. The automatic image extraction of the leaf parts is also introduced. The electric power needed for this system is as small as 6.25% compared with the traditional white fluorescent lamp. Furthermore, experimental results show that the red-color laser light is particularly efficient for the growth of the radish sprouts.

  6. The Effect of Positive and Negative Feedback on Risk-Taking across Different Contexts

    PubMed Central

    Losecaat Vermeer, Annabel B.; Sanfey, Alan G.

    2015-01-01

    Preferences for risky choices have often been shown to be unstable and context-dependent. Though people generally avoid gambles with mixed outcomes, a phenomenon often attributed to loss aversion, contextual factors can impact this dramatically. For example, people typically prefer risky options after a financial loss, while generally choosing safer options after a monetary gain. However, it is unclear what exactly contributes to these preference shifts as a function of prior outcomes, as these gain/loss outcomes are usually confounded with participant performance, and therefore it is unclear whether these effects are driven purely by the monetary gains or losses, or rather by success or failure at the actual task. Here, we experimentally separated the effects of monetary gains/losses from performance success/failure prior to a standard risky choice. Participants performed a task in which they experienced contextual effects: 1) monetary gain or loss based directly on performance, 2) monetary gain or loss that was randomly awarded and was, crucially, independent from performance, and 3) success or failure feedback based on performance, but without any monetary incentive. Immediately following these positive/negative contexts, participants were presented with a gain-loss gamble that they had to decide to either play or pass. We found that risk preferences for identical sets of gambles were biased by positive and negative contexts containing monetary gains and losses, but not by contexts containing performance feedback. This data suggests that the observed framing effects are driven by aversion for monetary losses and not simply by the positive or negative valence of the context, or by potential moods resulting from positive or negative contexts. These results highlight the specific context dependence of risk preferences. PMID:26407298

  7. Sahara Heat Low Perturbations and Water Vapor in the Sahel: A Positive Feedback System

    NASA Astrophysics Data System (ADS)

    Caughman, L.; Evan, A. T.

    2013-12-01

    It is necessary to understand the drivers and feedbacks of global desertification, motivated by the increasing need to improve global food production and to sustainably manage ecosystems in the context of climate change. Climate change and land dynamics are the perturbations that are major drivers of an ecosystem shift to a ';';desertified'' state. This shift is typically sustained by positive feedbacks, which stabilize the system in the new state. This research focuses on changes in precipitation resulting from land-atmosphere interactions and changes in vegetation cover. We concentrate on the Sahel region of Africa (a strip of land that is a transitional area between the Sahara desert to the North and the rain forest to the South). It is a dry land, semi arid environment and is a bistable ecosystem that can either be in the state of 'dry' or 'wet'. After an abnormally wet/high precipitation period in the 1950s the Sahel experienced terrible droughts and desertification which peaked in the 1980s. Since then, precipitation has gradually increased and a sinusoidal model has been shown run on a multi decadal cycle. Discrepancies in the data exist, however, and although the overall cycle has been modeled well, the large inter-annual fluctuations in precipitation have yet to be sufficiently modeled or explained. This research offers new evidence as to why such a phenomenon exists and attempts to attribute this behavior to a coupled land-atmosphere feedback system, linking together changes in vegetation cover and precipitation in the Sahel. Using the model output data from a high resolution Weather Research and Forecasting (WRF) model to look at Africa and compare the difference between perturbations and the mean, this research asserts that when the surface of the Saharan Heat Low (SHL) becomes extremely hot the pressure drops substantially. Subsequently, due to the West African Monsoon system, air rushes in from high-pressure areas, and pulls monsoon precipitation/humidity over the Sahel, causing abnormally wet seasons. The more rainfall the area receives, the more vegetation cover increases. Additionally, this increased water vapor coming from evapotranspiration from plants then blankets the SHL, further warming it and continuing the cycle of positive feedback. The reverse effect could also take place, causing an abnormally dry season. This is theorized to be the reason for the inter-annual variation in rainfall within the Sahel and preliminary results support this conclusion.

  8. Spatial pattern formation of coastal vegetation in response to external gradients and positive feedbacks affecting soil porewater salinity: A model study

    USGS Publications Warehouse

    Jiang, J.; DeAngelis, D.L.; Smith, T. J., III; Teh, S.Y.; Koh, H. L.

    2012-01-01

    Coastal vegetation of South Florida typically comprises salinity-tolerant mangroves bordering salinity-intolerant hardwood hammocks and fresh water marshes. Two primary ecological factors appear to influence the maintenance of mangrove/hammock ecotones against changes that might occur due to disturbances. One of these is a gradient in one or more environmental factors. The other is the action of positive feedback mechanisms, in which each vegetation community influences its local environment to favor itself, reinforcing the boundary between communities. The relative contributions of these two factors, however, can be hard to discern. A spatially explicit individual-based model of vegetation, coupled with a model of soil hydrology and salinity dynamics is presented here to simulate mangrove/hammock ecotones in the coastal margin habitats of South Florida. The model simulation results indicate that an environmental gradient of salinity, caused by tidal flux, is the key factor separating vegetation communities, while positive feedback involving the different interaction of each vegetation type with the vadose zone salinity increases the sharpness of boundaries, and maintains the ecological resilience of mangrove/hammock ecotones against small disturbances. Investigation of effects of precipitation on positive feedback indicates that the dry season, with its low precipitation, is the period of strongest positive feedback. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  9. Functional characteristics of a double positive feedback loop coupled with autorepression

    NASA Astrophysics Data System (ADS)

    Banerjee, Subhasis; Bose, Indrani

    2008-12-01

    We study the functional characteristics of a two-gene motif consisting of a double positive feedback loop and an autoregulatory negative feedback loop. The motif appears in the gene regulatory network controlling the functional activity of pancreatic β-cells. The model exhibits bistability and hysteresis in appropriate parameter regions. The two stable steady states correspond to low (OFF state) and high (ON state) protein levels, respectively. Using a deterministic approach, we show that the region of bistability increases in extent when the copy number of one of the genes is reduced from 2 to 1. The negative feedback loop has the effect of reducing the size of the bistable region. Loss of a gene copy, brought about by mutations, hampers the normal functioning of the β-cells giving rise to the genetic disorder, maturity-onset diabetes of the young (MODY). The diabetic phenotype makes its appearance when a sizable fraction of the β-cells is in the OFF state. Using stochastic simulation techniques we show that, on reduction of the gene copy number, there is a transition from the monostable ON to the ON state in the bistable region of the parameter space. Fluctuations in the protein levels, arising due to the stochastic nature of gene expression, can give rise to transitions between the ON and OFF states. We show that as the strength of autorepression increases, the ON → OFF state transitions become less probable whereas the reverse transitions are more probable. The implications of the results in the context of the occurrence of MODY are pointed out.

  10. Rhythmic PER abundance defines a critical nodal point for negative feedback within the circadian clock mechanism

    PubMed Central

    Chen, Rongmin; Schirmer, Aaron; Lee, Yongjin; Lee, Hyeongmin; Kumar, Vivek; Yoo, Seung-Hee; Takahashi, Joseph S.; Lee, Choogon

    2009-01-01

    Summary Circadian rhythms in mammals are generated by a transcriptional negative feedback loop that is driven primarily by oscillations of PER and CRY, which inhibit their own transcriptional activators, CLOCK and BMAL1. Current models posit that CRY is the dominant repressor while PER may play an accessory role. In this study, however, constitutive expression of PER, and not CRY1, severely disrupted the clock in fibroblasts and liver. Furthermore, constitutive expression of PER2 in the brain and SCN of transgenic mice caused a complete loss of behavioral circadian rhythms in a conditional and reversible manner. These results demonstrate that rhythmic levels of PER2, rather than CRY1, are critical for circadian oscillations in cells and in the intact organism. Biochemical evidence supports an elegant mechanism for the disparity: PER2 directly and rhythmically binds to CLOCK:BMAL1, while CRY only interacts indirectly; PER2 bridges CRY and CLOCK:BMAL1 to drive the circadian negative feedback loop. PMID:19917250

  11. Influence of visual feedback on successive control mechanisms in upright quiet stance in humans assessed by fractional Brownian motion modelling.

    PubMed

    Rougier, P

    1999-05-14

    An up-to-date way to model the centre of pressure (CP) trajectories may consist in using fractional Brownian motion (fBm). By doing so, one may note that standing still is in fact controlled by two separate and successive mechanisms. The point raised in this study concerns the nature of these control mechanisms and their level of interaction. Following this idea, visual feedback (VFB), which is known to affect postural control by significantly decreasing sway magnitudes, was used. Twelve healthy adults, instructed to stand as still as possible, were tested under this VFB protocol (via a PC screen). In order to model the CP trajectories as fBm, variograms (mean square distances, MSD, expressed as a function of increasing time intervals deltat) were bi-logarithmically plotted. The main visual effect of VFB on these variograms concerns longest latency scaling regimes which reveal less stochastic and consequently more accurate control (P < 0.05 and P < 0.01 for X and Y components, respectively). An increase in the MSD of the transition point, which corresponds to the switch between the two control mechanisms, is also noted (P < 0.05). Overall, evidence is provided from this data that long latency scaling regimes do operate through a feedback process. Interestingly, this improved determinism in feedback control in turn induces a similar effect on the control operating over the shortest deltat. Thus, by privileging a control strategy based on feedback mechanisms, VFB in turn would make the subjects quicker in their initial displacement in order to reach a position capable of initiating a feedback mechanism. PMID:10465697

  12. A Simple Negative Interaction in the Positive Transcriptional Feedback of a Single Gene Is Sufficient to Produce Reliable Oscillations

    PubMed Central

    Miró-Bueno, Jesús M.; Rodríguez-Patón, Alfonso

    2011-01-01

    Negative and positive transcriptional feedback loops are present in natural and synthetic genetic oscillators. A single gene with negative transcriptional feedback needs a time delay and sufficiently strong nonlinearity in the transmission of the feedback signal in order to produce biochemical rhythms. A single gene with only positive transcriptional feedback does not produce oscillations. Here, we demonstrate that this single-gene network in conjunction with a simple negative interaction can also easily produce rhythms. We examine a model comprised of two well-differentiated parts. The first is a positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A stochastic study shows that the system is robust to noise. A deterministic study identifies that the dynamics of the oscillator are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The main conclusion of this paper is that a simple and usual negative interaction, such as degradation, sequestration or inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second repressor gene. This means that at the genetic level an explicit negative feedback loop is not necessary. The model needs neither cooperative binding reactions nor the formation of protein multimers. Therefore, our findings could help to clarify the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators. PMID:22205920

  13. A simple negative interaction in the positive transcriptional feedback of a single gene is sufficient to produce reliable oscillations.

    PubMed

    Miró-Bueno, Jesús M; Rodríguez-Patón, Alfonso

    2011-01-01

    Negative and positive transcriptional feedback loops are present in natural and synthetic genetic oscillators. A single gene with negative transcriptional feedback needs a time delay and sufficiently strong nonlinearity in the transmission of the feedback signal in order to produce biochemical rhythms. A single gene with only positive transcriptional feedback does not produce oscillations. Here, we demonstrate that this single-gene network in conjunction with a simple negative interaction can also easily produce rhythms. We examine a model comprised of two well-differentiated parts. The first is a positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A stochastic study shows that the system is robust to noise. A deterministic study identifies that the dynamics of the oscillator are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The main conclusion of this paper is that a simple and usual negative interaction, such as degradation, sequestration or inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second repressor gene. This means that at the genetic level an explicit negative feedback loop is not necessary. The model needs neither cooperative binding reactions nor the formation of protein multimers. Therefore, our findings could help to clarify the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators. PMID:22205920

  14. Construction of an Oscillator Gene Circuit by Negative and Positive Feedbacks.

    PubMed

    Shen, Shihui; Ma, Yushu; Ren, Yuhong; Wei, Dongzhi

    2016-01-28

    Synthetic oscillators are gene circuits in which the protein expression will change over time. The delay of transcription, translation, and protein folding is used to form this kind of behavior. Here, we tried to design a synthetic oscillator by a negative feedback combined with a positive feedback. With the mutant promoter PLacC repressed by LacIq and PLux activated by AHL-bound LuxR, two gene circuits, Os-LAA and Os-ASV, were constructed and introduced into LacI-deleted E. coli DH5α cells. When glucose was used as the carbon source, a low level of fluorescence was detected in the culture, and the bacteria with Os-ASV showed no oscillation, whereas a small portion of those carrying Os-LAA demonstrated oscillation behavior with a period of about 68.3 ± 20 min. When glycerol was used as the carbon source, bacteria with Os-ASV demonstrated high fluorescence value and oscillation behavior with the period of about 121 ± 21 min. PMID:26387818

  15. Better Bet-Hedging with coupled positive and negative feedback loops

    NASA Astrophysics Data System (ADS)

    Narula, Jatin; Igoshin, Oleg

    2011-03-01

    Bacteria use the phenotypic heterogeneity associated with bistable switches to distribute the risk of activating stress response strategies like sporulation and persistence. However bistable switches offer little control over the timing of phenotype switching and first passage times (FPT) for individual cells are found to be exponentially distributed. We show that a genetic circuit consisting of interlinked positive and negative feedback loops allows cells to control the timing of phenotypic switching. Using a mathematical model we find that in this system a stable high expression state and stable low expression limit cycle coexist and the FPT distribution for stochastic transitions between them shows multiple peaks at regular intervals. A multimodal FPT distribution allows cells to detect the persistence of stress and control the rate of phenotype transition of the population. We further show that extracellular signals from cell-cell communication that change the strength of the feedback loops can modulate the FPT distribution and allow cells even greater control in a bet-hedging strategy.

  16. A Haptic Feedback Scheme to Accurately Position a Virtual Wrist Prosthesis Using a Three-Node Tactor Array

    PubMed Central

    Erwin, Andrew; Sup, Frank C.

    2015-01-01

    In this paper, a novel haptic feedback scheme, used for accurately positioning a 1DOF virtual wrist prosthesis through sensory substitution, is presented. The scheme employs a three-node tactor array and discretely and selectively modulates the stimulation frequency of each tactor to relay 11 discrete haptic stimuli to the user. Able-bodied participants were able to move the virtual wrist prosthesis via a surface electromyography based controller. The participants evaluated the feedback scheme without visual or audio feedback and relied solely on the haptic feedback alone to correctly position the hand. The scheme was evaluated through both normal (perpendicular) and shear (lateral) stimulations applied on the forearm. Normal stimulations were applied through a prototype device previously developed by the authors while shear stimulations were generated using an ubiquitous coin motor vibrotactor. Trials with no feedback served as a baseline to compare results within the study and to the literature. The results indicated that using normal and shear stimulations resulted in accurately positioning the virtual wrist, but were not significantly different. Using haptic feedback was substantially better than no feedback. The results found in this study are significant since the feedback scheme allows for using relatively few tactors to relay rich haptic information to the user and can be learned easily despite a relatively short amount of training. Additionally, the results are important for the haptic community since they contradict the common conception in the literature that normal stimulation is inferior to shear. From an ergonomic perspective normal stimulation has the potential to benefit upper limb amputees since it can operate at lower frequencies than shear-based vibrotactors while also generating less noise. Through further tuning of the novel haptic feedback scheme and normal stimulation device, a compact and comfortable sensory substitution device for upper limb amputees might be created. PMID:26263015

  17. A Haptic Feedback Scheme to Accurately Position a Virtual Wrist Prosthesis Using a Three-Node Tactor Array.

    PubMed

    Erwin, Andrew; Sup, Frank C

    2015-01-01

    In this paper, a novel haptic feedback scheme, used for accurately positioning a 1DOF virtual wrist prosthesis through sensory substitution, is presented. The scheme employs a three-node tactor array and discretely and selectively modulates the stimulation frequency of each tactor to relay 11 discrete haptic stimuli to the user. Able-bodied participants were able to move the virtual wrist prosthesis via a surface electromyography based controller. The participants evaluated the feedback scheme without visual or audio feedback and relied solely on the haptic feedback alone to correctly position the hand. The scheme was evaluated through both normal (perpendicular) and shear (lateral) stimulations applied on the forearm. Normal stimulations were applied through a prototype device previously developed by the authors while shear stimulations were generated using an ubiquitous coin motor vibrotactor. Trials with no feedback served as a baseline to compare results within the study and to the literature. The results indicated that using normal and shear stimulations resulted in accurately positioning the virtual wrist, but were not significantly different. Using haptic feedback was substantially better than no feedback. The results found in this study are significant since the feedback scheme allows for using relatively few tactors to relay rich haptic information to the user and can be learned easily despite a relatively short amount of training. Additionally, the results are important for the haptic community since they contradict the common conception in the literature that normal stimulation is inferior to shear. From an ergonomic perspective normal stimulation has the potential to benefit upper limb amputees since it can operate at lower frequencies than shear-based vibrotactors while also generating less noise. Through further tuning of the novel haptic feedback scheme and normal stimulation device, a compact and comfortable sensory substitution device for upper limb amputees might be created. PMID:26263015

  18. The impact of mechanical AGN feedback on the formation of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Moster, Benjamin P.

    2015-06-01

    We employ cosmological hydrodynamical simulations to investigate the effects of AGN feedback on the formation of massive galaxies with present-day stellar masses of M_stel= 8.8 × 10^{10}-6.0 × 10^{11} M_{⊙}. Using smoothed particle hydrodynamics simulations with a pressure-entropy formulation that allows an improved treatment of contact discontinuities and fluid mixing, we run three sets of simulations of 20 haloes with different AGN feedback models: (1) no feedback, (2) thermal feedback, and (3) mechanical and radiation feedback. We assume that seed black holes are present at early cosmic epochs at the centre of emerging dark matter haloes and trace their mass growth via gas accretion and mergers with other black holes. Both feedback models successfully recover the observed MBH-σ relation and black hole-to-stellar mass ratio for simulated central early-type galaxies. The baryonic conversion efficiencies are reduced by a factor of 2 compared to models without any AGN feedback at all halo masses. However, massive galaxies simulated with thermal AGN feedback show a factor of ˜10-100 higher X-ray luminosities than observed. The mechanical/radiation feedback model reproduces the observed correlation between X-ray luminosities and velocity dispersion, e.g. for galaxies with σ = 200 km s- 1, the X-ray luminosity is reduced from 1042 erg s- 1 to 1040 erg s- 1. It also efficiently suppresses late-time star formation, reducing the specific star formation rate from 10-10.5 yr- 1 to 10-14 yr- 1 on average and resulting in quiescent galaxies since z = 2, whereas the thermal feedback model shows higher late-time in situ star formation rates than observed.

  19. Calculating the spontaneous magnetization and defining the Curie temperature using a positive-feedback model

    SciTech Connect

    Harrison, R. G.

    2014-01-21

    A positive-feedback mean-field modification of the classical Brillouin magnetization theory provides an explanation of the apparent persistence of the spontaneous magnetization beyond the conventional Curie temperature—the little understood “tail” phenomenon that occurs in many ferromagnetic materials. The classical theory is unable to resolve this apparent anomaly. The modified theory incorporates the temperature-dependent quantum-scale hysteretic and mesoscopic domain-scale anhysteretic magnetization processes and includes the effects of demagnetizing and exchange fields. It is found that the thermal behavior of the reversible and irreversible segments of the hysteresis loops, as predicted by the theory, is a key to the presence or absence of the “tails.” The theory, which permits arbitrary values of the quantum spin number J, generally provides a quantitative agreement with the thermal variations of both the spontaneous magnetization and the shape of the hysteresis loop.

  20. Preliminary results with saturable microchannel array plates. [featuring positive ion feedback elimination

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1974-01-01

    Microchannel array plates with a performance comparable to that of a conventional channel electron multiplier have been obtained for the first time. These array plates employ an angled electrostatic field to inhibit the feedback of positive ions within the microchannels. Saturated output pulse height distributions with modal gain values in excess of 10 million have been obtained and stable operation demonstrated over a range of ambient pressures from 0.0000001 to 0.00008 torr. However, a time-dependent reduction in the gain has been observed with these experimental plates because of the accumulation of charge on the insulating strips which are inserted in the wall of the microchannel to establish the angled electrostatic field.

  1. Output feedback integral control for nano-positioning using piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Shan, Jinjun; Yang, Liu; Li, Zhan

    2015-04-01

    This paper proposes a robust output feedback controller for a piezoelectrically actuated system with only position sensor. This considered piezoelectric actuator (PEA) system is subjected to model imperfection, creep nonlinearity, hysteresis nonlinearity and other external effects. The designed controller employs a second-order auxiliary system and a discontinuous uncertainty and disturbance estimation term to generate filtered error signals and to compensate for the model uncertainties and system disturbance, respectively. The global stability of the proposed controller is proved through Lyapunov-based stability analysis. The feasibility and effectiveness of the proposed control approach are verified experimentally using a PEA stage. Results demonstrate that both set-point and tracking control without/with external loads are realized with good performance and the PEA system with high-accuracy can be achieved. Moreover, the robustness of the controller is verified and analyzed through the sinusoidal tracking with external disturbance.

  2. Optical boundary reconstruction of tokamak plasmas for feedback control of plasma position and shape

    SciTech Connect

    Hommen, G.; Baar, M. de; Nuij, P.; Steinbuch, M.; McArdle, G.; Akers, R.

    2010-11-15

    A new diagnostic is developed to reconstruct the plasma boundary using visible wavelength images. Exploiting the plasma's edge localized and toroidally symmetric emission profile, a new coordinate transform is presented to reconstruct the plasma boundary from a poloidal view image. The plasma boundary reconstruction is implemented in MATLAB and applied to camera images of Mega-Ampere Spherical Tokamak discharges. The optically reconstructed plasma boundaries are compared to magnetic reconstructions from the offline reconstruction code EFIT, showing very good qualitative and quantitative agreement. Average errors are within 2 cm and correlation is high. In the current software implementation, plasma boundary reconstruction from a single image takes 3 ms. The applicability and system requirements of the new optical boundary reconstruction, called OFIT, for use in both feedback control of plasma position and shape and in offline reconstruction tools are discussed.

  3. MiR-192-Mediated Positive Feedback Loop Controls the Robustness of Stress-Induced p53 Oscillations in Breast Cancer Cells

    PubMed Central

    Bleris, Leonidas; Ma, Lan

    2015-01-01

    The p53 tumor suppressor protein plays a critical role in cellular stress and cancer prevention. A number of post-transcriptional regulators, termed microRNAs, are closely connected with the p53-mediated cellular networks. While the molecular interactions among p53 and microRNAs have emerged, a systems-level understanding of the regulatory mechanism and the role of microRNAs-forming feedback loops with the p53 core remains elusive. Here we have identified from literature that there exist three classes of microRNA-mediated feedback loops revolving around p53, all with the nature of positive feedback coincidentally. To explore the relationship between the cellular performance of p53 with the microRNA feedback pathways, we developed a mathematical model of the core p53-MDM2 module coupled with three microRNA-mediated positive feedback loops involving miR-192, miR-34a, and miR-29a. Simulations and bifurcation analysis in relationship to extrinsic noise reproduce the oscillatory behavior of p53 under DNA damage in single cells, and notably show that specific microRNA abrogation can disrupt the wild-type cellular phenotype when the ubiquitous cell-to-cell variability is taken into account. To assess these in silico results we conducted microRNA-perturbation experiments in MCF7 breast cancer cells. Time-lapse microscopy of cell-population behavior in response to DNA double-strand breaks, together with image classification of single-cell phenotypes across a population, confirmed that the cellular p53 oscillations are compromised after miR-192 perturbations, matching well with the model predictions. Our study via modeling in combination with quantitative experiments provides new evidence on the role of microRNA-mediated positive feedback loops in conferring robustness to the system performance of stress-induced response of p53. PMID:26642352

  4. MiR-192-Mediated Positive Feedback Loop Controls the Robustness of Stress-Induced p53 Oscillations in Breast Cancer Cells.

    PubMed

    Moore, Richard; Ooi, Hsu Kiang; Kang, Taek; Bleris, Leonidas; Ma, Lan

    2015-12-01

    The p53 tumor suppressor protein plays a critical role in cellular stress and cancer prevention. A number of post-transcriptional regulators, termed microRNAs, are closely connected with the p53-mediated cellular networks. While the molecular interactions among p53 and microRNAs have emerged, a systems-level understanding of the regulatory mechanism and the role of microRNAs-forming feedback loops with the p53 core remains elusive. Here we have identified from literature that there exist three classes of microRNA-mediated feedback loops revolving around p53, all with the nature of positive feedback coincidentally. To explore the relationship between the cellular performance of p53 with the microRNA feedback pathways, we developed a mathematical model of the core p53-MDM2 module coupled with three microRNA-mediated positive feedback loops involving miR-192, miR-34a, and miR-29a. Simulations and bifurcation analysis in relationship to extrinsic noise reproduce the oscillatory behavior of p53 under DNA damage in single cells, and notably show that specific microRNA abrogation can disrupt the wild-type cellular phenotype when the ubiquitous cell-to-cell variability is taken into account. To assess these in silico results we conducted microRNA-perturbation experiments in MCF7 breast cancer cells. Time-lapse microscopy of cell-population behavior in response to DNA double-strand breaks, together with image classification of single-cell phenotypes across a population, confirmed that the cellular p53 oscillations are compromised after miR-192 perturbations, matching well with the model predictions. Our study via modeling in combination with quantitative experiments provides new evidence on the role of microRNA-mediated positive feedback loops in conferring robustness to the system performance of stress-induced response of p53. PMID:26642352

  5. Mechanism of Feedback Allosteric Inhibition of ATP Phosphoribosyltransferase

    PubMed Central

    2012-01-01

    MtATP-phosphoribosyltransferase catalyzes the first and committed step in l-histidine biosynthesis in Mycobacterium tuberculosis and is therefore subjected to allosteric feedback regulation. Because of its essentiality, this enzyme is being studied as a potential target for novel anti-infectives. To understand the basis for its regulation, we characterized the allosteric inhibition using gel filtration, steady-state and pre-steady-state kinetics, and the pH dependence of inhibition and binding. Gel filtration experiments indicate that MtATP-phosphoribosyltransferase is a hexamer in solution, in the presence or absence of l-histidine. Steady-state kinetic studies demonstrate that l-histidine inhibition is uncompetitive versus ATP and noncompetitive versus PRPP. At pH values close to neutrality, a Kii value of 4 μM was obtained for l-histidine. Pre-steady-state kinetic experiments indicate that chemistry is not rate-limiting for the overall reaction and that l-histidine inhibition is caused by trapping the enzyme in an inactive conformation. The pH dependence of binding, obtained by nuclear magnetic resonance, indicates that l-histidine binds better as the neutral α-amino group. The pH dependence of inhibition (Kii), on the contrary, indicates that l-histidine better inhibits MtATP-phosphoribosytransferase with a neutral imidazole and an ionized α-amino group. These results are combined into a model that accounts for the allosteric inhibition of MtATP-phosphoribosyltransferase. PMID:22989207

  6. Self-Management of Patient Body Position, Pose, and Motion Using Wide-Field, Real-Time Optical Measurement Feedback: Results of a Volunteer Study

    SciTech Connect

    Parkhurst, James M.; Price, Gareth J.; Sharrock, Phil J.; Jackson, Andrew S.N.; Stratford, Julie; Moore, Christopher J.

    2013-12-01

    Purpose: We present the results of a clinical feasibility study, performed in 10 healthy volunteers undergoing a simulated treatment over 3 sessions, to investigate the use of a wide-field visual feedback technique intended to help patients control their pose while reducing motion during radiation therapy treatment. Methods and Materials: An optical surface sensor is used to capture wide-area measurements of a subject's body surface with visualizations of these data displayed back to them in real time. In this study we hypothesize that this active feedback mechanism will enable patients to control their motion and help them maintain their setup pose and position. A capability hierarchy of 3 different level-of-detail abstractions of the measured surface data is systematically compared. Results: Use of the device enabled volunteers to increase their conformance to a reference surface, as measured by decreased variability across their body surfaces. The use of visual feedback also enabled volunteers to reduce their respiratory motion amplitude to 1.7 ± 0.6 mm compared with 2.7 ± 1.4 mm without visual feedback. Conclusions: The use of live feedback of their optically measured body surfaces enabled a set of volunteers to better manage their pose and motion when compared with free breathing. The method is suitable to be taken forward to patient studies.

  7. Mechanism of feedback allosteric inhibition of ATP phosphoribosyltransferase.

    PubMed

    Pedreño, Sònia; Pisco, João Pedro; Larrouy-Maumus, Gérald; Kelly, Geoff; de Carvalho, Luiz Pedro Sório

    2012-10-01

    MtATP-phosphoribosyltransferase catalyzes the first and committed step in l-histidine biosynthesis in Mycobacterium tuberculosis and is therefore subjected to allosteric feedback regulation. Because of its essentiality, this enzyme is being studied as a potential target for novel anti-infectives. To understand the basis for its regulation, we characterized the allosteric inhibition using gel filtration, steady-state and pre-steady-state kinetics, and the pH dependence of inhibition and binding. Gel filtration experiments indicate that MtATP-phosphoribosyltransferase is a hexamer in solution, in the presence or absence of l-histidine. Steady-state kinetic studies demonstrate that l-histidine inhibition is uncompetitive versus ATP and noncompetitive versus PRPP. At pH values close to neutrality, a K(ii) value of 4 μM was obtained for l-histidine. Pre-steady-state kinetic experiments indicate that chemistry is not rate-limiting for the overall reaction and that l-histidine inhibition is caused by trapping the enzyme in an inactive conformation. The pH dependence of binding, obtained by nuclear magnetic resonance, indicates that l-histidine binds better as the neutral α-amino group. The pH dependence of inhibition (K(ii)), on the contrary, indicates that l-histidine better inhibits MtATP-phosphoribosytransferase with a neutral imidazole and an ionized α-amino group. These results are combined into a model that accounts for the allosteric inhibition of MtATP-phosphoribosyltransferase. PMID:22989207

  8. Implementation status of the global and local beam position feedback systems for the Advanced Photon Source storage ring

    SciTech Connect

    Chung, Y.; Barr, D.; Decker, G.; Galayda, J.; Kirchman, J.; Lenkszus, F.; Lumpkin, A.; Votaw, A.J.

    1995-07-01

    The Advanced Photon Source (APS) is implementing an extensive beam position feedback system for both global and local stabilization of particle and photon beams based on digital signal processing. The description and operational experience of the system will be given in this paper. In particular, we will discuss the underlying fundamental principles, hardware layout, controls interface, and automatic software generation for multiple digital signal processors (DSPS) distributed in 20 VME crates around the ring. The feedback system runs at 4-kHz sampling frequency in order to achieve the correction bandwidth of approximately 100 Hz. For the maximum correction efficiency and resolution of conflicts among multiple local feedback systems due to the local bump closure error, the global and local feedback systems are combined into a single unified system. This novel approach is made possible through data sharing among the global and local systems via the fiber-optically networked reflective memories.

  9. 30 CFR 33.23 - Mechanical positioning of parts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mechanical positioning of parts. 33.23 Section... MINES Dust-Collector Requirements § 33.23 Mechanical positioning of parts. All parts of a unit that are essential to the dust-collection feature shall be provided with suitable mechanical means for...

  10. Transformed Eddy-PV Flux and Positive Synoptic Eddy Feedback onto Low-Frequency Flow

    NASA Astrophysics Data System (ADS)

    Ren, H.; Jin, F.; Kug, J.; Gao, L.

    2010-12-01

    Interaction between synoptic eddy and low-frequency flow (SELF) has been the subject of many studies. In this study, we further examine the interaction by introducing a transformed eddy-potential-vorticity (TEPV) flux that is obtained from eddy-potential-vorticity flux through a quasi-geostrophic potential-vorticity inversion. The main advantage of using the TEPV flux is that it combines the effects of the eddy-vorticity and heat fluxes into the net acceleration of the low-frequency flow in such a way that the TEPV flux tends to be analogous to the eddy-vorticity fluxes in the barotropic framework. We show that the anomalous TEPV fluxes are preferentially directed to the left-hand side of the low-frequency flow in all vertical levels throughout the troposphere for monthly flow anomalies and for climate modes such as the Arctic Oscillation (AO). Furthermore, this left-hand preference of the TEPV flux direction is a convenient three-dimensional indicator of the positive reinforcement of the low-frequency flow by net eddy-induced acceleration. By projecting the eddy-induced net accelerations onto the low-frequency flow anomalies, we estimate the eddy-induced growth rates for the low frequency flow anomalies. This positive eddy-induced growth rate is larger (smaller) in the lower (upper) troposphere. The stronger positive eddy feedback in the lower troposphere may play an important role in maintaining an equivalent barotropic structure of the low-frequency atmospheric flow by balancing some of the strong damping effect of surface friction.

  11. Transformed eddy-PV flux and positive synoptic eddy feedback onto low-frequency flow

    NASA Astrophysics Data System (ADS)

    Ren, Hong-Li; Jin, Fei-Fei; Kug, Jong-Seong; Gao, Li

    2011-06-01

    Interaction between synoptic eddy and low-frequency flow (SELF) has been the subject of many studies. In this study, we further examine the interaction by introducing a transformed eddy-potential-vorticity (TEPV) flux that is obtained from eddy-potential-vorticity flux through a quasi-geostrophic potential-vorticity inversion. The main advantage of using the TEPV flux is that it combines the effects of the eddy-vorticity and heat fluxes into the net acceleration of the low-frequency flow in such a way that the TEPV flux tends to be analogous to the eddy-vorticity fluxes in the barotropic framework. We show that the anomalous TEPV fluxes are preferentially directed to the left-hand side of the low-frequency flow in all vertical levels throughout the troposphere for monthly flow anomalies and for climate modes such as the Arctic Oscillation (AO). Furthermore, this left-hand preference of the TEPV flux direction is a convenient three-dimensional indicator of the positive reinforcement of the low-frequency flow by net eddy-induced acceleration. By projecting the eddy-induced net accelerations onto the low-frequency flow anomalies, we estimate the eddy-induced growth rates for the low frequency flow anomalies. This positive eddy-induced growth rate is larger (smaller) in the lower (upper) troposphere. The stronger positive eddy feedback in the lower troposphere may play an important role in maintaining an equivalent barotropic structure of the low-frequency atmospheric flow by balancing some of the strong damping effect of surface friction.

  12. Communication of the multi laser tracker system used as position feedback sensor

    NASA Astrophysics Data System (ADS)

    Nguyen, Tran Trung; Amthor, Arvid; Ament, Christoph

    2011-05-01

    This paper presents a communication as well as localization algorithm of a multi laser tracker system (MLTS). The proposed localization algorithm enables the possibility to find a retro-reflector, which is mounted on the Tool Center Point (TCP) of a positioning stage. The MLTS consists of four laser trackers and is used as a high precision feedback sensor in order to provide a contactless measurement of the position. A single laser tracker is build up out of a homodyne laser interferometer as well as a galvanometer scanner and tracks the retro-reflector by utilization of a model-based PID controller. Using the Archimedean spiral a mathematical localization algorithm of the retro-reflector is designed. This approach was chosen due to the fact, that it allows the laser beam to search the retro-reflector in the complete working range of the tracker. The algorithm is derived in polar coordinates and is afterwards transformed into angle coordinates of the galvanometer scanner. In the second part of the presented study, a communication channel between the laser trackers is designed. This enables the possibility to speed up the localization of the retro-reflector significantly, because the position of the TCP is determined using the triangulation. Hence only two laser trackers are required in the first localization step. In the case, that the TCP was found, the information is utilized to support the residual laser trackers of the MLTS to localize the retro-reflector. At the end it is shown by experimental results, that the communication between the laser trackers is effective in order to localize the retro-reflector as fast as possible.

  13. Accuracy of Evaluating Videotape Feedback and Defense Mechanisms.

    ERIC Educational Resources Information Center

    Kipper, David A.; Ginot, Efrat

    1979-01-01

    Predicted that the accuracy of evaluating videotape replay of one's own behavior is related to the defense mechanism clusters of the evaluator. Results confirmed the prediction. Furthermore, subjects characterized by projection clusters tended to produce the greatest distortions, and those characterized by turning-against-self clusters evaluated…

  14. Positive feedback between RNA-binding protein HuD and transcription factor SATB1 promotes neurogenesis

    PubMed Central

    Wang, Feifei; Tidei, Joseph J.; Polich, Eric D.; Gao, Yu; Zhao, Huashan; Perrone-Bizzozero, Nora I.; Guo, Weixiang; Zhao, Xinyu

    2015-01-01

    The mammalian embryonic lethal abnormal vision (ELAV)-like protein HuD is a neuronal RNA-binding protein implicated in neuronal development, plasticity, and diseases. Although HuD has long been associated with neuronal development, the functions of HuD in neural stem cell differentiation and the underlying mechanisms have gone largely unexplored. Here we show that HuD promotes neuronal differentiation of neural stem/progenitor cells (NSCs) in the adult subventricular zone by stabilizing the mRNA of special adenine–thymine (AT)-rich DNA-binding protein 1 (SATB1), a critical transcriptional regulator in neurodevelopment. We find that SATB1 deficiency impairs the neuronal differentiation of NSCs, whereas SATB1 overexpression rescues the neuronal differentiation phenotypes resulting from HuD deficiency. Interestingly, we also discover that SATB1 is a transcriptional activator of HuD during NSC neuronal differentiation. In addition, we demonstrate that NeuroD1, a neuronal master regulator, is a direct downstream target of SATB1. Therefore, HuD and SATB1 form a positive regulatory loop that enhances NeuroD1 transcription and subsequent neuronal differentiation. Our results here reveal a novel positive feedback network between an RNA-binding protein and a transcription factor that plays critical regulatory roles in neurogenesis. PMID:26305964

  15. Feedback inhibition of ammonium uptake by a phospho-dependent allosteric mechanism in Arabidopsis.

    PubMed

    Lanquar, Viviane; Loqué, Dominique; Hörmann, Friederike; Yuan, Lixing; Bohner, Anne; Engelsberger, Wolfgang R; Lalonde, Sylvie; Schulze, Waltraud X; von Wirén, Nicolaus; Frommer, Wolf B

    2009-11-01

    The acquisition of nutrients requires tight regulation to ensure optimal supply while preventing accumulation to toxic levels. Ammonium transporter/methylamine permease/rhesus (AMT/Mep/Rh) transporters are responsible for ammonium acquisition in bacteria, fungi, and plants. The ammonium transporter AMT1;1 from Arabidopsis thaliana uses a novel regulatory mechanism requiring the productive interaction between a trimer of subunits for function. Allosteric regulation is mediated by a cytosolic C-terminal trans-activation domain, which carries a conserved Thr (T460) in a critical position in the hinge region of the C terminus. When expressed in yeast, mutation of T460 leads to inactivation of the trimeric complex. This study shows that phosphorylation of T460 is triggered by ammonium in a time- and concentration-dependent manner. Neither Gln nor l-methionine sulfoximine-induced ammonium accumulation were effective in inducing phosphorylation, suggesting that roots use either the ammonium transporter itself or another extracellular sensor to measure ammonium concentrations in the rhizosphere. Phosphorylation of T460 in response to an increase in external ammonium correlates with inhibition of ammonium uptake into Arabidopsis roots. Thus, phosphorylation appears to function in a feedback loop restricting ammonium uptake. This novel autoregulatory mechanism is capable of tuning uptake capacity over a wide range of supply levels using an extracellular sensory system, potentially mediated by a transceptor (i.e., transporter and receptor). PMID:19948793

  16. An epidemic spreading model on adaptive scale-free networks with feedback mechanism

    NASA Astrophysics Data System (ADS)

    Li, Tao; Liu, Xiongding; Wu, Jie; Wan, Chen; Guan, Zhi-Hong; Wang, Yuanmei

    2016-05-01

    A SIRS epidemic model with feedback mechanism on adaptive scale-free networks is presented. Using the mean field theory the spreading dynamics of the epidemic is studied in detail. The basic reproductive number and equilibriums are derived. Theoretical results indicate that the basic reproductive number is significantly dependent on the topology of the underlying networks. The existence of equilibriums is determined by the basic reproductive number. The global stability of disease-free equilibrium and the epidemic permanence are proved in detail. The feedback mechanism cannot change the basic reproductive number, but it can reduce the endemic level and weaken the epidemic spreading. Numerical simulations confirmed the analytical results.

  17. A Soil Moisture-Rainfall Feedback Mechanism: 1. Theory and observations

    NASA Astrophysics Data System (ADS)

    Eltahir, Elfatih A. B.

    1998-04-01

    This paper presents a hypothesis regarding the fundamental role of soil moisture conditions in land-atmosphere interactions. We propose that wet soil moisture conditions over any large region should be associated with relatively large boundary layer moist static energy, which favors the occurrence of more rainfall. Since soil moisture conditions themselves reflect past occurrence of rainfall, the proposed hypothesis implies a positive feedback mechanism between soil moisture and rainfall. This mechanism is based on considerations of the energy balance at the land-atmosphere boundary, in contrast to similar mechanisms that were proposed in the past and that were based on the concepts of water balance and precipitation recycling. The control of soil moisture on surface albedo and Bowen ratio is the fundamental basis of the proposed soil moisture-rainfall feedback mechanism. The water content in the upper soil layer affects these two important properties of the land surface such that both variables decrease with any increase in the water content of the top soil layer. The direct effect of soil moisture on surface albedo implies that wet soil moisture conditions enhance net solar radiation. The direct effect of soil moisture on Bowen ratio dictates that wet soil moisture conditions would tend to enhance net terrestrial radiation at the surface through cooling of surface temperature, reduction of upwards emissions of terrestrial radiation, and simultaneous increase in atmospheric water vapor content and downwards flux of terrestrial radiation. Thus, under wet soil moisture conditions, both components of net radiation are enhanced, resulting in a larger total flux of heat from the surface into the boundary layer. This total flux represents the sum of the corresponding sensible and latent heat fluxes. Simultaneously, cooling of surface temperature should be associated with a smaller sensible heat flux and a smaller depth of the boundary layer. Whenever these processes occur over a large enough area, the enhanced flux of heat from the surface into the smaller reservoir of boundary layer air should favor a relatively large magnitude of moist static energy per unit mass of the boundary layer air. The dynamics of localized convective storms as well as the dynamics of large-scale atmospheric circulations have been shown to be sensitive to the distribution of boundary layer moist static energy by several previous studies. These theoretical concepts are tested using field observations from Kansas and explored further in a companion paper [Zheng and Eltahir, this issue] using a simple numerical model.

  18. Acetyl salicylic acid inhibits Th17 airway inflammation via blockade of IL-6 and IL-17 positive feedback.

    PubMed

    Moon, Hyung-Geun; Kang, Chil Sung; Choi, Jun-Pyo; Choi, Dong Sic; Choi, Hyun Il; Choi, Yong Wook; Jeon, Seong Gyu; Yoo, Joo-Yeon; Jang, Myoung Ho; Gho, Yong Song; Kim, Yoon-Keun

    2013-01-01

    T-helper (Th)17 cell responses are important for the development of neutrophilic inflammatory disease. Recently, we found that acetyl salicylic acid (ASA) inhibited Th17 airway inflammation in an asthma mouse model induced by sensitization with lipopolysaccharide (LPS)-containing allergens. To investigate the mechanism(s) of the inhibitory effect of ASA on the development of Th17 airway inflammation, a neutrophilic asthma mouse model was generated by intranasal sensitization with LPS plus ovalbumin (OVA) and then challenged with OVA alone. Immunologic parameters and airway inflammation were evaluated 6 and 48 h after the last OVA challenge. ASA inhibited the production of interleukin (IL)-17 from lung T cells as well as in vitro Th17 polarization induced by IL-6. Additionally, ASA, but not salicylic acid, suppressed Th17 airway inflammation, which was associated with decreased expression of acetyl-STAT3 (downstream signaling of IL-6) in the lung. Moreover, the production of IL-6 from inflammatory cells, induced by IL-17, was abolished by treatment with ASA, whereas that induced by LPS was not. Altogether, ASA, likely via its acetyl moiety, inhibits Th17 airway inflammation by blockade of IL-6 and IL-17 positive feedback. PMID:23306703

  19. Nur1 dephosphorylation confers positive feedback to mitotic exit phosphatase activation in budding yeast.

    PubMed

    Godfrey, Molly; Kuilman, Thomas; Uhlmann, Frank

    2015-01-01

    Substrate dephosphorylation by the cyclin-dependent kinase (Cdk)-opposing phosphatase, Cdc14, is vital for many events during budding yeast mitotic exit. Cdc14 is sequestered in the nucleolus through inhibitory binding to Net1, from which it is released in anaphase following Net1 phosphorylation. Initial Net1 phosphorylation depends on Cdk itself, in conjunction with proteins of the Cdc14 Early Anaphase Release (FEAR) network. Later on, the Mitotic Exit Network (MEN) signaling cascade maintains Cdc14 release. An important unresolved question is how Cdc14 activity can increase in early anaphase, while Cdk activity, that is required for Net1 phosphorylation, decreases and the MEN is not yet active. Here we show that the nuclear rim protein Nur1 interacts with Net1 and, in its Cdk phosphorylated form, inhibits Cdc14 release. Nur1 is dephosphorylated by Cdc14 in early anaphase, relieving the inhibition and promoting further Cdc14 release. Nur1 dephosphorylation thus describes a positive feedback loop in Cdc14 phosphatase activation during mitotic exit, required for faithful chromosome segregation and completion of the cell division cycle. PMID:25569132

  20. Benefit of educational feedback for the use of positive expiratory pressure device

    PubMed Central

    Reychler, Gregory; Jacquemart, Manon; Poncin, William; Aubriot, Anne-Sophie; Liistro, Giuseppe

    2015-01-01

    BACKGROUND: Positive expiratory pressure (PEP) is regularly used as a self-administered airway clearance technique. OBJECTIVE: The aim of this study was to evaluate the need to teach the correct use of the PEP device and to measure the progress of the success rate of the maneuver after training. METHOD: A PEP system (PariPEP-S Sytem) was used to generate PEP in 30 healthy volunteers. They were instructed by a qualified physical therapist to breathe correctly through the PEP device. Then they were evaluated during a set of ten expirations. Two other evaluations were performed at day 2 and day 8 (before and after feedback). The mean PEP and the success rate were calculated for each set of expirations. The number of maneuvers needed to obtain a correct use was calculated on the first session. RESULTS: An optimal PEP was reached after 7.5 SD 2.7 attempts by all subjects. Success rates and mean pressures were similar between the different sets of expirations (p=0.720 and p=0.326, respectively). Pressure variability was around 10%. After one week, 30% of subjects generated more than two non-optimal pressures in the set of ten expirations. No difference in success rate was observed depending on the evaluations. CONCLUSION: This study demonstrates that good initial training on the use of the PEP device and regular follow-up are required for the subject to reach optimal expiratory pressure. PMID:26647746

  1. A computerized tablet with visual feedback of hand position for functional magnetic resonance imaging.

    PubMed

    Karimpoor, Mahta; Tam, Fred; Strother, Stephen C; Fischer, Corinne E; Schweizer, Tom A; Graham, Simon J

    2015-01-01

    Neuropsychological tests behavioral tasks that very commonly involve handwriting and drawing are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI) may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP), a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important. PMID:25859201

  2. Comparing position and force control for interactive molecular simulators with haptic feedback.

    PubMed

    Bolopion, Aude; Cagneau, Barthélemy; Redon, Stephane; Régnier, Stéphane

    2010-09-01

    This paper presents a novel tool for the analysis of new molecular structures which enables a wide variety of manipulations. It is composed of a molecular simulator and a haptic device. The simulation software deals with systems of hundreds or thousands of degrees of freedom and computes the reconfiguration of the molecules in a few tenths of a second. For the ease of manipulation and to help the operator understand nanoscale phenomena, a haptic device is connected to the simulator. To handle a wide variety of applications, both position and force control are implemented. To our knowledge, this is the first time the applications of force control are detailed for molecular simulation. These two control modes are compared in terms of adequacy with molecular dynamics, transparency and stability sensitivity with respect to environmental conditions. Based on their specificity the operations they can realize are detailed. Experiments highlight the usability of our tool for the different steps of the analysis of molecular structures. It includes the global reconfiguration of a molecular system, the measurement of molecular properties and the comprehension of nanoscale interactions. Compared to most existing systems, the one developed in this paper offers a wide range of possible experiments. The detailed analysis of the properties of the control modes can be easily used to implement haptic feedback on other molecular simulators. PMID:20727801

  3. A computerized tablet with visual feedback of hand position for functional magnetic resonance imaging

    PubMed Central

    Karimpoor, Mahta; Tam, Fred; Strother, Stephen C.; Fischer, Corinne E.; Schweizer, Tom A.; Graham, Simon J.

    2015-01-01

    Neuropsychological tests behavioral tasks that very commonly involve handwriting and drawing are widely used in the clinic to detect abnormal brain function. Functional magnetic resonance imaging (fMRI) may be useful in increasing the specificity of such tests. However, performing complex pen-and-paper tests during fMRI involves engineering challenges. Previously, we developed an fMRI-compatible, computerized tablet system to address this issue. However, the tablet did not include visual feedback of hand position (VFHP), a human factors component that may be important for fMRI of certain patient populations. A real-time system was thus developed to provide VFHP and integrated with the tablet in an augmented reality display. The effectiveness of the system was initially tested in young healthy adults who performed various handwriting tasks in front of a computer display with and without VFHP. Pilot fMRI of writing tasks were performed by two representative individuals with and without VFHP. Quantitative analysis of the behavioral results indicated improved writing performance with VFHP. The pilot fMRI results suggest that writing with VFHP requires less neural resources compared to the without VFHP condition, to maintain similar behavior. Thus, the tablet system with VFHP is recommended for future fMRI studies involving patients with impaired brain function and where ecologically valid behavior is important. PMID:25859201

  4. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming.

    PubMed

    Walter, K M; Zimov, S A; Chanton, J P; Verbyla, D; Chapin, F S

    2006-09-01

    Large uncertainties in the budget of atmospheric methane, an important greenhouse gas, limit the accuracy of climate change projections. Thaw lakes in North Siberia are known to emit methane, but the magnitude of these emissions remains uncertain because most methane is released through ebullition (bubbling), which is spatially and temporally variable. Here we report a new method of measuring ebullition and use it to quantify methane emissions from two thaw lakes in North Siberia. We show that ebullition accounts for 95 per cent of methane emissions from these lakes, and that methane flux from thaw lakes in our study region may be five times higher than previously estimated. Extrapolation of these fluxes indicates that thaw lakes in North Siberia emit 3.8 teragrams of methane per year, which increases present estimates of methane emissions from northern wetlands (< 6-40 teragrams per year; refs 1, 2, 4-6) by between 10 and 63 per cent. We find that thawing permafrost along lake margins accounts for most of the methane released from the lakes, and estimate that an expansion of thaw lakes between 1974 and 2000, which was concurrent with regional warming, increased methane emissions in our study region by 58 per cent. Furthermore, the Pleistocene age (35,260-42,900 years) of methane emitted from hotspots along thawing lake margins indicates that this positive feedback to climate warming has led to the release of old carbon stocks previously stored in permafrost. PMID:16957728

  5. Does Gender Influence Emotions Resulting from Positive Applause Feedback in Self-Assessment Testing? Evidence from Neuroscience

    ERIC Educational Resources Information Center

    Liu, Chia-Ju; Huang, Chin-Fei; Liu, Ming-Chi; Chien, Yu-Cheng; Lai, Chia-Hung; Huang, Yueh-Min

    2015-01-01

    Computerized self-assessment testing can help learners reflect on learning content and can also promote their motivation toward learning. However, a positive affective state is the key to achieving these learning goals. This study aims to examine learning gains and emotional reactions resulting from receiving emotional feedback in the form of

  6. Method to quantify accuracy of position feedback signals of a three-dimensional two-photon laser-scanning microscope.

    PubMed

    Kummer, Michael; Kirmse, Knut; Witte, Otto W; Haueisen, Jens; Holthoff, Knut

    2015-10-01

    Two-photon laser-scanning microscopy enables to record neuronal network activity in three-dimensional space while maintaining single-cellular resolution. One of the proposed approaches combines galvanometric x-y scanning with piezo-driven objective movements and employs hardware feedback signals for position monitoring. However, readily applicable methods to quantify the accuracy of those feedback signals are currently lacking. Here we provide techniques based on contact-free laser reflection and laser triangulation for the quantification of positioning accuracy of each spatial axis. We found that the lateral feedback signals are sufficiently accurate (defined as <2.5 µm) for a wide range of scan trajectories and frequencies. We further show that axial positioning accuracy does not only depend on objective acceleration and mass but also its geometry. We conclude that the introduced methods allow a reliable quantification of position feedback signals in a cost-efficient, easy-to-install manner and should be applicable for a wide range of two-photon laser scanning microscopes. PMID:26504620

  7. Video-Feedback Intervention to Promote Positive Parenting Adapted to Autism (VIPP-AUTI): A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Poslawsky, Irina E; Naber, Fabiënne BA; Bakermans-Kranenburg, Marian J; van Daalen, Emma; van Engeland, Herman; van IJzendoorn, Marinus H

    2015-01-01

    In a randomized controlled trial, we evaluated the early intervention program Video-feedback Intervention to promote Positive Parenting adapted to Autism (VIPP-AUTI) with 78 primary caregivers and their child (16-61 months) with Autism Spectrum Disorder. VIPP-AUTI is a brief attachment-based intervention program, focusing on improving parent-child…

  8. Perceptions of Teachers' Positive Feedback and Perceived Threat to Sense of Self in Physical Education: A Longitudinal Study

    ERIC Educational Resources Information Center

    Koka, Andre; Hein, Vello

    2006-01-01

    This study examined the direction of causal flow between perceived positive general teacher feedback and perceived threat to sense of self in physical education (PE). The stability effect and stationarity of the relationship between these variables over the two-year period was tested. Students (N = 302) were administered questionnaire during class…

  9. Does Gender Influence Emotions Resulting from Positive Applause Feedback in Self-Assessment Testing? Evidence from Neuroscience

    ERIC Educational Resources Information Center

    Liu, Chia-Ju; Huang, Chin-Fei; Liu, Ming-Chi; Chien, Yu-Cheng; Lai, Chia-Hung; Huang, Yueh-Min

    2015-01-01

    Computerized self-assessment testing can help learners reflect on learning content and can also promote their motivation toward learning. However, a positive affective state is the key to achieving these learning goals. This study aims to examine learning gains and emotional reactions resulting from receiving emotional feedback in the form of…

  10. Method to quantify accuracy of position feedback signals of a three-dimensional two-photon laser-scanning microscope

    PubMed Central

    Kummer, Michael; Kirmse, Knut; Witte, Otto W.; Haueisen, Jens; Holthoff, Knut

    2015-01-01

    Two-photon laser-scanning microscopy enables to record neuronal network activity in three-dimensional space while maintaining single-cellular resolution. One of the proposed approaches combines galvanometric x-y scanning with piezo-driven objective movements and employs hardware feedback signals for position monitoring. However, readily applicable methods to quantify the accuracy of those feedback signals are currently lacking. Here we provide techniques based on contact-free laser reflection and laser triangulation for the quantification of positioning accuracy of each spatial axis. We found that the lateral feedback signals are sufficiently accurate (defined as <2.5 µm) for a wide range of scan trajectories and frequencies. We further show that axial positioning accuracy does not only depend on objective acceleration and mass but also its geometry. We conclude that the introduced methods allow a reliable quantification of position feedback signals in a cost-efficient, easy-to-install manner and should be applicable for a wide range of two-photon laser scanning microscopes. PMID:26504620

  11. Video-Feedback Intervention to Promote Positive Parenting Adapted to Autism (VIPP-AUTI): A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Poslawsky, Irina E; Naber, Fabinne BA; Bakermans-Kranenburg, Marian J; van Daalen, Emma; van Engeland, Herman; van IJzendoorn, Marinus H

    2015-01-01

    In a randomized controlled trial, we evaluated the early intervention program Video-feedback Intervention to promote Positive Parenting adapted to Autism (VIPP-AUTI) with 78 primary caregivers and their child (16-61 months) with Autism Spectrum Disorder. VIPP-AUTI is a brief attachment-based intervention program, focusing on improving parent-child

  12. A phase plane graph based model of the ovulatory cycle lacking the "positive feedback" phenomenon

    PubMed Central

    2012-01-01

    When hormones during the ovulatory cycle are shown in phase plane graphs, reported FSH and estrogen values form a specific pattern that resembles the leaning “&" symbol, while LH and progesterone (Pg) values form a "boomerang" shape. Graphs in this paper were made using data reported by Stricker et al. [Clin Chem Lab Med 2006;44:883–887]. These patterns were used to construct a simplistic model of the ovulatory cycle without the conventional "positive feedback" phenomenon. The model is based on few well-established relations: hypothalamic GnRH secretion is increased under estrogen exposure during two weeks that start before the ovulatory surge and lasts till lutheolysis. the pituitary GnRH receptors are so prone to downregulation through ligand binding that this must be important for their function. in several estrogen target tissue progesterone receptor (PgR) expression depends on previous estrogen binding to functional estrogen receptors (ER), while Pg binding to the expressed PgRs reduces both ER and PgR expression. Some key features of the presented model are here listed: High GnRH secretion induced by the recovered estrogen exposure starts in the late follicular phase and lasts till lutheolysis. The LH and FSH surges start due to combination of accumulated pituitary GnRH receptors and increased GnRH secretion. The surges quickly end due to partial downregulation of the pituitary GnRH receptors (64% reduction of the follicular phase pituitary GnRH receptors is needed to explain the reported LH drop after the surge). A strong increase in the lutheal Pg blood level, despite modest decline in LH levels, is explained as delayed expression of pituitary PgRs. Postponed pituitary PgRs expression enforces a negative feedback loop between Pg levels and LH secretions not before the mid lutheal phase. Lutheolysis is explained as a consequence of Pg binding to hypothalamic and pituitary PgRs that reduces local ER expression. When hypothalamic sensitivity to estrogen is diminished due to lack of local ERs, hypothalamus switches back to the low GnRH secretion rate, leading to low secretion of gonadotropins and to lutheolysis. During low GnRH secretion rates, previously downregulated pituitary GnRH receptors recover to normal levels and thus allow the next cycle. Possible implications of the presented model on several topics related to reproductive physiology are shortly discussed with some evolutionary aspects including the emergence of menopause. PMID:22870942

  13. Moisture transport across Central America as a positive feedback on abrupt climatic changes.

    PubMed

    Leduc, Guillaume; Vidal, Laurence; Tachikawa, Kazuyo; Rostek, Frauke; Sonzogni, Corinne; Beaufort, Luc; Bard, Edouard

    2007-02-22

    Moisture transport from the Atlantic to the Pacific ocean across Central America leads to relatively high salinities in the North Atlantic Ocean and contributes to the formation of North Atlantic Deep Water. This deep water formation varied strongly between Dansgaard/Oeschger interstadials and Heinrich events-millennial-scale abrupt warm and cold events, respectively, during the last glacial period. Increases in the moisture transport across Central America have been proposed to coincide with northerly shifts of the Intertropical Convergence Zone and with Dansgaard/Oeschger interstadials, with opposite changes for Heinrich events. Here we reconstruct sea surface salinities in the eastern equatorial Pacific Ocean over the past 90,000 years by comparing palaeotemperature estimates from alkenones and Mg/Ca ratios with foraminiferal oxygen isotope ratios that vary with both temperature and salinity. We detect millennial-scale fluctuations of sea surface salinities in the eastern equatorial Pacific Ocean of up to two to four practical salinity units. High salinities are associated with the southward migration of the tropical Atlantic Intertropical Convergence Zone, coinciding with Heinrich events and with Greenland stadials. The amplitudes of these salinity variations are significantly larger on the Pacific side of the Panama isthmus, as inferred from a comparison of our data with a palaeoclimate record from the Caribbean basin. We conclude that millennial-scale fluctuations of moisture transport constitute an important feedback mechanism for abrupt climate changes, modulating the North Atlantic freshwater budget and hence North Atlantic Deep Water formation. PMID:17314978

  14. Visual Feedback of the Non-Moving Limb Improves Active Joint-Position Sense of the Impaired Limb in Spastic Hemiparetic Cerebral Palsy

    ERIC Educational Resources Information Center

    Smorenburg, Ana R. P.; Ledebt, Annick; Deconinck, Frederik J. A.; Savelsbergh, Geert J. P.

    2011-01-01

    This study examined the active joint-position sense in children with Spastic Hemiparetic Cerebral Palsy (SHCP) and the effect of static visual feedback and static mirror visual feedback, of the non-moving limb, on the joint-position sense. Participants were asked to match the position of one upper limb with that of the contralateral limb. The task…

  15. Version pressure feedback mechanisms for speculative versioning caches

    DOEpatents

    Eichenberger, Alexandre E.; Gara, Alan; O'Brien, Kathryn M.; Ohmacht, Martin; Zhuang, Xiaotong

    2013-03-12

    Mechanisms are provided for controlling version pressure on a speculative versioning cache. Raw version pressure data is collected based on one or more threads accessing cache lines of the speculative versioning cache. One or more statistical measures of version pressure are generated based on the collected raw version pressure data. A determination is made as to whether one or more modifications to an operation of a data processing system are to be performed based on the one or more statistical measures of version pressure, the one or more modifications affecting version pressure exerted on the speculative versioning cache. An operation of the data processing system is modified based on the one or more determined modifications, in response to a determination that one or more modifications to the operation of the data processing system are to be performed, to affect the version pressure exerted on the speculative versioning cache.

  16. Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging

    NASA Astrophysics Data System (ADS)

    Moireau, Philippe; Chapelle, Dominique; LeTallec, Patrick

    2009-03-01

    We propose an effective filtering methodology designed to perform estimation in a distributed mechanical system using position measurements. As in a previously introduced method, the filter is inspired by robust control feedback, but here we take full advantage of the estimation specificity to choose a feedback law that can act on displacements instead of velocities and still retain the same kind of dissipativity property which guarantees robustness. This is very valuable in many applications for which positions are more readily available than velocities, as in medical imaging. We provide an in-depth analysis of the proposed procedure, as well as detailed numerical assessments using a test problem inspired by cardiac biomechanics, as medical diagnosis assistance is an important perspective for this approach. The method is formulated first for measurements based on Lagrangian displacements, but we then derive a nonlinear extension allowing us to instead consider segmented images, which of course is even more relevant in medical applications.

  17. TLR4 signaling promotes a COX-2/PGE2/STAT3 positive feedback loop in hepatocellular carcinoma (HCC) cells

    PubMed Central

    Lin, Ang; Wang, Guan; Zhao, Huajun; Zhang, Yuyi; Han, Qiuju; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2016-01-01

    ABSTRACT Toll-like receptors (TLRs) can be expressed by tumor cells, and each TLR exhibits different biological functions. Evidences showed the activation of some certain TLRs could promote tumor progression. One of which TLR4 has been found to promote hepatocellular carcinoma (HCC) cells proliferation, but the detailed mechanism is still unknown. In the present study, we verified that TLR4 was functionally expressed on HCC cells, and TLR4 agonist lipopolysaccharide (LPS) could stimulate the proliferation and clone formation of HCC cells. Most importantly, we found a COX-2/PGE2/STAT3 positive feedback loop exists in HCC cells, which could be provoked by TLR4 activation. Consistently, the expression of TLR4, COX-2 and p-STAT3Y705 was positively correlated with each other in liver tumor tissues from patients with primary HCC. Further investigation demonstrated this loop played a dominant role in TLR4-induced HCC cell proliferation and multidrug resistance (MDR) to chemotherapy. Inhibition of TLR4 or COX-2/PGE2/STAT3 loop would attenuate LPS-induced inflammation and proliferation of HCC cells, and enhance the sensitivity of HCC cells to chemotherapeutics in vitro. By using a primary HCC model, we observed COX-2/PGE2/STAT3 loop was significantly blocked in TLR4−/− mice compared to wild type mice, and there was no obvious tumorgenesis sign in TLR4−/− mice. Therefore, these findings provided the precise molecular mechanism of TLR4 signaling pathway involved in HCC progress, and suggested that TLR4 may be a promising target for HCC treatment. PMID:27057441

  18. Positive effects of augmented verbal feedback on power production in NCAA Division I collegiate athletes.

    PubMed

    Staub, Joseph N; Kraemer, William J; Pandit, Ashley L; Haug, William B; Comstock, Brett A; Dunn-Lewis, Courtenay; Hooper, David R; Maresh, Carl M; Volek, Jeff S; Häkkinen, Keijo

    2013-08-01

    The purpose of this study was to determine how augmented verbal feedback, specifically knowledge of performance during a countermovement vertical jump (CMVJ) protocol, would affect acute power output. Each subject (N = 14 [9 men and 5 women], 21.4 ± 0.8 years, 179.6 ± 6.1 cm, 87.5 ± 14.8 kg) completed the CMVJ protocol twice in a balanced randomized order, one trial with feedback and one without feedback. At least 48 hours were allowed between sessions for resting. Student-athletes were used because of their trained state and their familiarity with plyometrics and receiving and processing feedback during training. Each testing session began with a 10-minute warm-up consisting of a combination of dynamic stretching and submaximal jumps (no proprioceptive neuromuscular facilitation or static stretching). After completion of the warm-up, the subjects then began the CMVJ protocol. The CMVJ protocol consisted of 3 sets of 5 jumps on a calibrated force plate set to read at 200 Hz (Accupower). Subjects were instructed at the start of the protocol to give maximal effort on each jump. The standard set and repetition scheme for this protocol was 3 sets of 5 maximal repetitions with 3 minutes rest between sets. This was used to mimic the practice of training for maximal power. Before each jump, the subject was told the jump number and given a verbal start cue before the jump's initiation. The verbal performance feedback given consisted of the full kinetic numerical value of the peak power output in watts of the last completed jump. Significance in this study was set at p ≤ 0.05. There was a significant difference between mean power outputs (4,335 ± 366 W to 4,108 ± 345 W, p = 0.003) and the peak power outputs (4,567 ± 381 W to 4,319 ± 371 W, p = 0.018) when comparing feedback to no feedback, respectively. There was a significant difference in peak power output between the feedback and no feedback trials during set 2 (mean difference 361 ± 161 W, p = 0.043) and set 3 (mean difference 283 ± 109 W, p = 0.022). Also, there was a significant difference in mean power output between feedback and no feedback trials during set 2 (mean difference 240 ± 66 W, p = 0.003) and set 3 (mean difference 299 ± 93 W, p = 0.007). When training for maximal power in a plyometric training protocol, verbal feedback can be used as both a simple and effective aid in producing optimal power outputs. PMID:23207887

  19. The effects of feedback and positive reinforcement on the on-task behavior of dancers.

    PubMed

    Liberatore, Jennica S; Luyben, Paul D

    2009-01-01

    The purpose of this study was to investigate the effects of feedback on the on-task behavior of adolescent members of a dance company in central New York. The intervention consisted of immediate group and delayed individual feedback. We used a single-subject reversal design. We hypothesized that implementation of the feedback conditions would increase overall on-task rates and decrease variability relative to baseline rates. The data supported this hypothesis with increased on-task rates and decreased variability when the intervention was in effect. PMID:19629831

  20. A study on positive-feedback configuration of a bipolar SiC high temperature operational amplifier

    NASA Astrophysics Data System (ADS)

    Kargarrazi, Saleh; Lanni, Luigia; Zetterling, Carl-Mikael

    2016-02-01

    This paper reports on the design and implementation of an integrated operational amplifier in bipolar SiC, and elaborates on its operation in positive-feedback configuration.The opamp is studied in different feedback setups: closed-loop compensated amplifier, comparator with hysteresis (Schmitt trigger), and as a relaxation oscillator. Measurement results suggest a stable closed-loop opamp with ∼40 dB gain, a Schmitt trigger with constant threshold levels over a wide temperature range, and a relaxation oscillator tested up to 540 kHz. All the setups were tested from 25 °C up to 500 °C.

  1. Feedback inhibition of ENaC: Acute and chronic mechanisms

    PubMed Central

    Patel, Ankit B; Yang, Lei; Deng, Su; Palmer, Lawrence G

    2014-01-01

    Intracellular [Na+] ([Na+]i) modulates the activity of the epithelial Na channel (ENaC) to help prevent cell swelling and regulate epithelial Na+ transport, but the underlying mechanisms remain unclear. We show here that short-term (60–80 min) incubation of ENaC-expressing oocytes in high Na+ results in a 75% decrease in channel activity. When the β subunit was truncated, corresponding to a gain-of-function mutation found in Liddle's syndrome, the same maneuver reduced activity by 45% despite a larger increase in [Na+]i. In both cases the inhibition occurred with little to no change in cell-surface expression of γENaC. Long-term incubation (18 hours) in high Na+ reduced activity by 92% and 75% in wild-type channels and Liddle's mutant, respectively, with concomitant 70% and 52% decreases in cell-surface γENaC. In the presence of Brefeldin A to inhibit forward protein trafficking, high-Na+ incubation decreased wt ENaC activity by 52% and 88% after 4 and 8 hour incubations, respectively. Cleaved γENaC at the cell surface had lifetimes at the surface of 6 hrs in low Na+ and 4 hrs in high Na+, suggesting that [Na+]i increased the rate of retrieval of cleaved γ ENaC by 50%. This implies that enhanced retrieval of ENaC channels at the cell surface accounts for part, but not all, of the downregulation of ENaC activity shown with chronic increases in [Na+]i. PMID:25483587

  2. 30 CFR 33.23 - Mechanical positioning of parts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mechanical positioning of parts. 33.23 Section..., EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Dust-Collector Requirements § 33.23 Mechanical positioning of parts. All parts of a unit that...

  3. 30 CFR 33.23 - Mechanical positioning of parts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mechanical positioning of parts. 33.23 Section..., EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Dust-Collector Requirements § 33.23 Mechanical positioning of parts. All parts of a unit that...

  4. 30 CFR 33.23 - Mechanical positioning of parts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mechanical positioning of parts. 33.23 Section..., EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Dust-Collector Requirements § 33.23 Mechanical positioning of parts. All parts of a unit that...

  5. Physical mechanisms of tropical climate feedbacks revealed by regional temperature and moisture trends

    NASA Astrophysics Data System (ADS)

    Ferraro, Angus; Lambert, Hugo; Collins, Mat

    2015-04-01

    Climate models generally maintain close-to-constant tropospheric relative humidity in a warming climate. As a result, models with more negative lapse rate feedbacks tend to have more positive water vapour feedbacks. Despite this intermodel relationship, the regional structures of the tropical lapse rate and water vapour feedbacks are very different. What determines the regional structure of these feedbacks? Here we compare the modelled behaviour of tropical climate feedback processes with satellite observations over the period 1979-2010. We combine surface temperature data with upper-tropospheric temperature data from the Microwave Sounding Unit / Advanced Microwave Sounding Unit (MSU/AMSU) instruments as a metric of lapse rate feedback. We use data from the High-Resolution Infrared Sounder (HIRS) Channel 12 (~6.3 microns) to measure changes in upper-tropospheric relative humidity, a strong driver of the water vapour feedback. There is considerable uncertainty in the tropical-mean trend in upper-tropospheric relative humidity as derived from HIRS, since trends are small and variability is large. This makes it difficult to discern tropical-mean relative humidity trends. However, by investigating the regional structure of these trends we discover consistent signatures of processes driving lapse rate and water vapour feedbacks across climate models and observational datasets. Upper-tropospheric warming trends are relatively constant over the Tropics because the tropical atmosphere is unable to maintain strong temperature gradients. The regional structures of upper-tropospheric warming are similar between models and observations. Therefore, the majority of the regional variation in tropical lapse rate feedback actually comes from regional variation in surface temperature changes, not tropospheric temperature changes. The magnitude of upper-tropospheric moistening generally increases with surface warming as expected from simple moisture availability arguments, except in parts of the world with the very greatest surface warming over the period 1979-2010. We interpret this as a signature of strong warming over arid desert regions where moisture supply is limited. Upper-tropospheric moistening is also sensitive to precipitation trends. There is some disagreement among models and with observations over the sensitivity of upper-tropospheric humidity to regional changes in precipitation. These relationships could provide process-based metrics of climate models' ability to simulate the physical processes driving tropical water vapour and lapse rate feedbacks.

  6. Landscape Urbanization and Economic Growth in China: Positive Feedbacks and Sustainability Dilemmas

    PubMed Central

    2011-01-01

    Accelerating urbanization has been viewed as an important instrument for economic development and reducing regional income disparity in some developing countries, including China. Recent studies (Bloom et al. 2008) indicate that demographic urbanization level has no causal effect on economic growth. However, due to the varying and changing definition of urban population, the use of demographic indicators as a sole representing indicator for urbanization might be misleading. Here, we re-examine the causal relationship between urbanization and economic growth in Chinese cities and provinces in recent decades, using built-up areas as a landscape urbanization indicator. Our analysis shows that (1) larger cities, both in terms of population size and built-up area, and richer cities tend to gain more income, have larger built-up area expansion, and attract more population, than poorer cities or smaller cities; and (2) that there is a long-term bidirectional causality between urban built-up area expansion and GDP per capita at both city and provincial level, and a short-term bidirectional causality at provincial level, revealing a positive feedback between landscape urbanization and urban and regional economic growth in China. Our results suggest that urbanization, if measured by a landscape indicator, does have causal effect on economic growth in China, both within the city and with spillover effect to the region, and that urban land expansion is not only the consequences of economic growth in cities, but also drivers of such growth. The results also suggest that under its current economic growth model, it might be difficult for China to control urban expansion without sacrificing economic growth, and China’s policy to stop the loss of agricultural land, for food security, might be challenged by its policy to promote economic growth through urbanization. PMID:22103244

  7. Landscape urbanization and economic growth in China: positive feedbacks and sustainability dilemmas.

    PubMed

    Bai, Xuemei; Chen, Jing; Shi, Peijun

    2012-01-01

    Accelerating urbanization has been viewed as an important instrument for economic development and reducing regional income disparity in some developing countries, including China. Recent studies (Bloom et al. 2008) indicate that demographic urbanization level has no causal effect on economic growth. However, due to the varying and changing definition of urban population, the use of demographic indicators as a sole representing indicator for urbanization might be misleading. Here, we re-examine the causal relationship between urbanization and economic growth in Chinese cities and provinces in recent decades, using built-up areas as a landscape urbanization indicator. Our analysis shows that (1) larger cities, both in terms of population size and built-up area, and richer cities tend to gain more income, have larger built-up area expansion, and attract more population, than poorer cities or smaller cities; and (2) that there is a long-term bidirectional causality between urban built-up area expansion and GDP per capita at both city and provincial level, and a short-term bidirectional causality at provincial level, revealing a positive feedback between landscape urbanization and urban and regional economic growth in China. Our results suggest that urbanization, if measured by a landscape indicator, does have causal effect on economic growth in China, both within the city and with spillover effect to the region, and that urban land expansion is not only the consequences of economic growth in cities, but also drivers of such growth. The results also suggest that under its current economic growth model, it might be difficult for China to control urban expansion without sacrificing economic growth, and China's policy to stop the loss of agricultural land, for food security, might be challenged by its policy to promote economic growth through urbanization. PMID:22103244

  8. On the dynamic forcing of short-term climate fluctuations by feedback mechanisms

    NASA Technical Reports Server (NTRS)

    Reiter, E. R.

    1979-01-01

    Various internal feedback mechanisms in the ocean atmosphere system were studied. A variability pattern of sea surface temperature with a quasibiennial oscillation (QBO) was detected off the coast of Senegal, in the Gulf of Guinea and even in the Gulf Stream as it leaves the North American continental shelf. Possible physical connections between some of these QBO's were pointed out by a hypothetical feedback model. Interaction of a QBO with the annual cycle may lead to beating frequencies resembling climatic trends of a duration of several years.

  9. An Artificial Immune System with Feedback Mechanisms for Effective Handling of Population Size

    NASA Astrophysics Data System (ADS)

    Gao, Shangce; Wang, Rong-Long; Ishii, Masahiro; Tang, Zheng

    This paper represents a feedback artificial immune system (FAIS). Inspired by the feedback mechanisms in the biological immune system, the proposed algorithm effectively manipulates the population size by increasing and decreasing B cells according to the diversity of the current population. Two kinds of assessments are used to evaluate the diversity aiming to capture the characteristics of the problem on hand. Furthermore, the processing of adding and declining the number of population is designed. The validity of the proposed algorithm is tested for several traveling salesman benchmark problems. Simulation results demonstrate the efficiency of the proposed algorithm when compared with the traditional genetic algorithm and an improved clonal selection algorithm.

  10. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling.

    PubMed

    Shen, Lei; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Cheng, Wei; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; Liu, Zhiqin; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity. PMID:26928570

  11. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling

    PubMed Central

    Shen, Lei; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Cheng, Wei; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; Liu, Zhiqin; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity. PMID:26928570

  12. Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke

    NASA Astrophysics Data System (ADS)

    Dahlem, Markus A.; Schneider, Felix M.; Schöll, Eckehard

    2008-06-01

    The stability of cortical function depends critically on proper regulation. Under conditions of migraine and stroke a breakdown of transmembrane chemical gradients can spread through cortical tissue. A concomitant component of this emergent spatio-temporal pattern is a depolarization of cells detected as slow voltage variations. The propagation velocity of ˜3mm/min indicates a contribution of diffusion. We propose a mechanism for spreading depolarizations (SD) that rests upon a nonlocal or noninstantaneous feedback in a reaction-diffusion system. Depending upon the characteristic space and time scales of the feedback, the propagation of cortical SD can be suppressed by shifting the bifurcation line, which separates the parameter regime of pulse propagation from the regime where a local disturbance dies out. The optimization of this feedback is elaborated for different control schemes and ranges of control parameters.

  13. Positive and negative feedbacks to climate change associated with methane emissions from arctic permafrost systems (Invited)

    NASA Astrophysics Data System (ADS)

    Walter Anthony, K. M.; Grosse, G.; Jones, B. M.

    2009-12-01

    Arctic permafrost contains 950 billion tons of organic carbon (C) in the surface tens of meters, an amount comparable to the current atmospheric CO2 burden of 750 billion tons. This C pool, which accumulated in permafrost over tens of thousands of years, is a threat to global climate because of its vulnerability to rapid microbial decomposition upon thaw, resulting in the release of greenhouse gases CO2 and CH4 to the atmosphere. Greenhouse gas release from thawing permafrost constitutes one of the most important positive feedbacks of terrestrial ecosystems to climate warming in a warmer world. Based on patterns of permafrost degradation during the present interglacial period, estimates of the amount of C remaining in permafrost today, long term field measurements of CH4 and CO2 flux, laboratory incubation experiments, and mass balance calculations of the efficiency of CH4 production from thawed permafrost, we predict that at least 50 billion tons of CH4 (equivalent to 10 times the current atmospheric methane burden) will escape from thermokarst (thaw) lakes in Siberias Yedoma Ice Complex as it warms and thaws. Additional CH4 will be released from the remainder of arctic lakes. Under current projections of arctic warming of 7-8 deg C by 2100, widespread permafrost thaw will release 0.1-0.2 billion tons of CH4 yr-1 by 2100, an order of magnitude more than its current source strength, adding another 20-40% of all human and natural sources of CH4 to the atmosphere. Permafrost thaw may lead to an additional source of methane if expanding thaw bulbs beneath lakes and rivers intersect faults and unconsolidated sediments leading to the escape of CH4 from geological sources, such as those recently observed on the North Slope of Alaska with a flux of 60-100 kg CH4 m-2 d-1. Thermokarst lake dynamics play a pivotal role in permafrost degradation and aggradation in the Arctic such that the landscape resembles a palimpsest of lakes and drained lake basins. Analysis of remote sensing time series of thermokarst lakes on the Northern Seward Peninsula in Alaska revealed that while lakes are rapidly expanding, an unprecedented number of lakes drained during the past 55 years, suggesting that degradation of permafrost may be accelerating in some regions. Drained basins fill in with new terrestrial vegetation, often becoming wetlands. Although these are a source of methane to the atmosphere when their surface is unfrozen in summer, their total annual emissions are often lower than lakes because of refreezing of the lake thaw bulb. Plant productivity in basins, together with the buildup of peat, serve as a sink of atmospheric carbon and a negative feedback to permafrost thaw. Results presented here aim to improve understanding of microbial and geologic methane emission dynamics related to permafrost degradation in various regions of the Arctic in order to better constrain current and future atmospheric methane budgets and global climate models.

  14. Combined prokaryotic-eukaryotic delivery and expression of therapeutic factors through a primed autocatalytic positive-feedback loop.

    PubMed

    Shi, Lei; Yu, Bin; Cai, Chun-Hui; Huang, Wei; Zheng, Bo-Jian; Smith, David Keith; Huang, Jian-Dong

    2016-01-28

    Progress in bacterial therapy for cancer and infectious diseases is hampered by the absence of safe and efficient vectors. Sustained delivery and high gene expression levels are critical for the therapeutic efficacy. Here we developed a Salmonella typhimrium strain to maintain and safely deliver a plasmid vector to target tissues. This vector is designed to allow dual transcription of therapeutic factors, such as cytotoxic proteins, short hairpin RNAs or combinations, in the nucleus or cytoplasm of eukaryotic cells, with this expression sustained by an autocatalytic positive-feedback loop. Mechanisms to prime the system and maintain the plasmid in the bacterium are also provided. Synergistic effects of attenuated Salmonella and our inter-kingdom system allow the precise expression of Diphtheria toxin A chain (DTA) gene in tumor microenvironment and eradicate large established tumors in immunocompetent animals. In the experiments reported here, 26% of mice (n=5/19) with aggressive tumors were cured and the others all survived until the end of the experiment. We also demonstrated that ST4 packaged with shRNA-encoding plasmids has sustained knockdown effects in nude mice bearing human MDA-MB-231 xenografts. Three weeks after injection of 5×10(6) ST4/pIKT-shPlk, PLK1 transcript levels in tumors were 62.5±18.6% lower than the vector control group (P=0.015). The presence of PLK1 5' RACE-PCR cleavage products confirmed a sustained RNAi-mediated mechanism of action. This innovative technology provides an effective and versatile vehicle for efficient inter-kingdom gene delivery that can be applied to cancer therapy and other purposes. PMID:26682504

  15. Modelling feedback mechanisms in the carbon cycle: balancing the carbon budget

    NASA Astrophysics Data System (ADS)

    Rotmans, J.; den Elzen, M. G. J.

    1993-09-01

    Within the carbon cycle feedback, mechanisms that amplify or dampen the exchange of carbon dioxide between the different reservoirs to enhance concentrations of carbon dioxide and increase temperature from anthropogenic perturbations, play a crucial rle. Quite a lot of these feedbacks are known, but most of them only potentially. This article evaluates the role of a number of these feedback processes within the carbon cycle. In order to assess their impact, some terrestrial feedbacks have been built into a coupled carbon cycle and climate model, as part of the integrated climate assessment model IMAGE. A number of simulation experiments have been performed with this coupled carbon cycle/climate model to compare historical atmospheric concentration values of carbon dioxide with simulated values. Also global biospheric and oceanic carbon fluxes were validated against other modelling estimates. Based on the assumptions of the IPCC's 1990 Business-as-Usual (BaU-1990) scenario, future projections of the carbon dioxide concentration have been made. A key principle in this is that we have used the modelled feedbacks in order to balance the past and present carbon budget. For atmospheric carbon dioxide, this results in substantially lower projections than the IPCC-estimates: the difference in 2100 is approximately 16% from the 1990 level. Furthermore, the IPCC's 'best guess' or 'central estimate' value of the CO2 concentration in 2100 falls outside the uncertainty range estimated with our balanced modelling approach. Sensitivity experiments with the model have been performed to quantify to what extent the terrestrial feedback processes and oceanic fluxes influence the global carbon balance in the model. It is shown that a historical and present carbon balance can be obtained in many different ways, resulting in different biospheric fluxes and thus in considerably different atmospheric CO2 projections.

  16. Low-power feedback-enhanced electro-mechanical impedance (FEMI) sensors

    NASA Astrophysics Data System (ADS)

    Jang, Ji Eun; Yue, C. Patrick

    2008-03-01

    Electro-mechanical impedance (EMI) method utilizing smart piezoelectric sensors has emerged as a promising technology for structural health monitoring in civil, mechanical and aerospace engineering. However, two major limiting factors have prevented field deployment of this method in real life. First, smart piezoelectric sensors, such as Lead Zirconate Titanate (PZT) patches, are highly sensitive to environmental changes such as temperature, humidity, and vibration. Secondly, bulky and expensive equipment is needed for performing impedance measurement. This paper proposes a feedback-enhanced electro-mechanical impedance (FEMI) technique for improving robustness against environmental variations and a design of a low-power EMI sensor with built-in measurement circuitries based on this new technique. The proposed FEMI technique employs a feedback scheme to amplify the peaking characteristics of the natural resonance frequencies in the EMI frequency response. The feedback loop includes a phase-locked loop (PLL) and a transimpedance amplifier (TIA). An analog EMI measurement circuit is developed to replace bulky EMI measurement instruments. To keep the power consumption low, the proposed system does not require any analog-to-digital conversion or DSP circuit blocks, but uses a simple analog mixer to multiply input and output waveforms of the PZT sensor, and then extract the EMI amplitude by passing the mixer output through a low-pass filter (LPF). The performance of the proposed FEMI sensor is verified by simulations using MATLAB. Simulated natural frequency peaks in the EMI spectrum are noticeably sharper with the feedback scheme than the one without feedback. As a result, the natural frequency shift due to any structural change can be more easily detected. To quantify the shift of these natural frequency peaks, the root mean square deviation (RMSD) of the difference between cases with and without damage is calculated. The simulation results show that the RMSD with feedback is greater than the RMSD without feedback by a factor of 3.2, when the damage is emulated by a 30% decrease in stiffness. This result confirms that the FEMI technique with the proposed EMI measurement circuits can detect structural damage with higher sensitivity compared to existing methods. Our future goal is to build a prototype for the FEMI sensors and integrate all the circuitries in a single CMOS chip.

  17. Performance Analysis of Positive-feedback-based Active Anti-islanding Schemes for Inverter-Based Distributed Generators

    SciTech Connect

    Du, Pengwei; Aponte, Erick E.; Nelson, J. Keith

    2010-06-14

    Recently proposed positive-feedback-based anti-islanding schemes (AI) are highly effective in preventing islanding without causing any degradation in power quality. This paper aims to analyze the performance of these schemes quantitatively in the context of the dynamic models of inverter-based distributed generators (DG). In this study, the characteristics of these active anti-islanding methods are discussed and design guidelines are derived.

  18. Climate feedback efficiency and synergy

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten; Graversen, Rune G.; Klocke, Daniel; Langen, Peter L.; Stevens, Bjorn; Tomassini, Lorenzo

    2013-11-01

    Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere.

  19. Early Detection of Online Auction Opportunistic Sellers through the Use of Negative-Positive Feedback

    ERIC Educational Resources Information Center

    Reinert, Gregory J.

    2010-01-01

    Apparently fraud is a growth industry. The monetary losses from Internet fraud have increased every year since first officially reported by the Internet Crime Complaint Center (IC3) in 2000. Prior research studies and third-party reports of fraud show rates substantially higher than eBay's reported negative feedback rate of less than 1%. The…

  20. The positive feedback action of vasopressin on its own release from rat septal tissue in vitro is receptor-mediated.

    PubMed

    Landgraf, R; Ramirez, A D; Ramirez, V D

    1991-04-01

    The effect of arginine vasopressin (AVP) on its own septal release was evaluated using an in vitro superfusion procedure. As compared to basal release from septal fragments, pulses of synthetic AVP (15 pg/5 min) resulted in a 25-fold augmented release of endogenous AVP, indicating a positive feedback action. Both the basal and stimulated AVP release were significantly increased by 60 mM potassium and markedly reduced by omission of calcium. Preincubation of the septal fragments with the V2/V1 AVP receptor antagonist d(CH2)5 [D-Tyr (Et)2,Val4]AVP resulted in a dose-dependent inhibition of the positive feedback action of AVP which was nearly completely blocked at doses between 1.25 and 5 ng per 100 microliters incubation medium. As compared to this effect, the V1 antagonist d(CH2)5 Tyr (Me)2 AVP as well as oxytocin were significantly less potent. The results suggest that the positive feedback action of AVP on its own release from septal fragments is potassium-stimulated, calcium-dependent and mainly V2 receptor-mediated. The physiological significance of this phenomenon remains to be shown. PMID:1830507

  1. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria

    PubMed Central

    McBride, Shonna M.

    2014-01-01

    Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis. PMID:25419466

  2. Feedback as a mechanism for the resurrection of oscillations from death states.

    PubMed

    Chandrasekar, V K; Karthiga, S; Lakshmanan, M

    2015-07-01

    The quenching of oscillations in interacting systems leads to several unwanted situations, which necessitate a suitable remedy to overcome the quenching. In this connection, this work addresses a mechanism that can resurrect oscillations in a typical situation. Through both numerical and analytical studies, we show that the candidate which is capable of resurrecting oscillations is nothing but the feedback, the one which is profoundly used in dynamical control and in biotherapies. Even in the case of a rather general system, we demonstrate analytically the applicability of the technique over one of the oscillation quenched states called amplitude death states. We also discuss some of the features of this mechanism such as adaptability of the technique with the feedback of only a few of the oscillators. PMID:26274243

  3. Feedback as a mechanism for the resurrection of oscillations from death states

    NASA Astrophysics Data System (ADS)

    Chandrasekar, V. K.; Karthiga, S.; Lakshmanan, M.

    2015-07-01

    The quenching of oscillations in interacting systems leads to several unwanted situations, which necessitate a suitable remedy to overcome the quenching. In this connection, this work addresses a mechanism that can resurrect oscillations in a typical situation. Through both numerical and analytical studies, we show that the candidate which is capable of resurrecting oscillations is nothing but the feedback, the one which is profoundly used in dynamical control and in biotherapies. Even in the case of a rather general system, we demonstrate analytically the applicability of the technique over one of the oscillation quenched states called amplitude death states. We also discuss some of the features of this mechanism such as adaptability of the technique with the feedback of only a few of the oscillators.

  4. 2D tilting MEMS micro mirror integrating a piezoresistive sensor position feedback

    NASA Astrophysics Data System (ADS)

    Lani, S.; Bayat, D.; Despont, M.

    2015-02-01

    An integrated position sensor for a dual-axis electromagnetic tilting mirror is presented. This tilting mirror is composed of a silicon based mirror directly assembled on a silicon membrane supported by flexible beams. The position sensors are constituted by 4 Wheatstone bridges of piezoresistors which are fabricated by doping locally the flexible beams. A permanent magnet is attached to the membrane and the scanner is mounted above planar coils deposited on a ceramic substrate to achieve electromagnetic actuation. The performances of the piezoresistive sensors are evaluated by measuring the output signal of the piezoresistors as a function of the tilt of the mirror and the temperature. White light interferometry was performed for all measurement to measure the exact tilt angle. The minimum detectable angle with such sensors was 30µrad (around 13bits) in the range of the minimum resolution of the interferometer. The tilt reproducibility was 0.0186%, obtained by measuring the tilt after repeated actuations with a coil current of 50mA during 30 min and the stability over time was 0.05% in 1h without actuation. The maximum measured tilt angle was 6° (mechanical) limited by nonlinearity of the MEMS system.

  5. Feedback reciprocity mechanism promotes the cooperation of highly clustered scale-free networks

    NASA Astrophysics Data System (ADS)

    Rong, Zhihai; Yang, Han-Xin; Wang, Wen-Xu

    2010-10-01

    We study how the clustering coefficient influences the evolution of cooperation in scale-free public goods games. In games played by groups of individuals, triangle loops provide stronger support for mutual cooperation to resist invasion of selfish behavior than that in the absence of such loops, so that diffusion of cooperative behavior is relatively promoted. The feedback reciprocity mechanism of triangle plays a key role in facilitating cooperation in high clustered networks.

  6. Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic–pituitary–adrenal axis

    PubMed Central

    TASKER, JEFFREY G.; HERMAN, JAMES P.

    2015-01-01

    Stress activation of the hypothalamic–pituitary–adrenal (HPA) axis culminates in increased circulating corticosteroid concentrations. Stress-induced corticosteroids exert diverse actions in multiple target tissues over a broad range of timescales, ranging from rapid actions, which are induced within seconds to minutes and gene transcription independent, to slow actions, which are delayed, long lasting, and transcription dependent. Rapid corticosteroid actions in the brain include, among others, a fast negative feedback mechanism responsible for shutting down the activated HPA axis centrally. We provide a brief review of the cellular mechanisms responsible for rapid corticosteroid actions in different brain structures of the rat, including the hypothalamus, hippocampus, amygdala, and in the anterior pituitary. We propose a model for the direct feedback inhibition of the HPA axis by glucocorticoids in the hypothalamus. According to this model, glucocorticoids activate membrane glucocorticoid receptors to induce endocannabinoid synthesis in the hypothalamic paraventricular nucleus (PVN) and retrograde cannabinoid type I receptor-mediated suppression of the excitatory synaptic drive to PVN neuroendocrine cells. Rapid corticosteroid actions in the hippocampus, amygdala, and pituitary are mediated by diverse cellular mechanisms and may also contribute to the rapid negative feedback regulation of the HPA neuroendocrine axis as well as to the stress regulation of emotional and spatial memory formation. PMID:21663538

  7. Understanding feedback mechanisms of the Indo-Pacific Ocean climate system

    NASA Astrophysics Data System (ADS)

    Meyers, Gary; Cai, Wenju

    2011-08-01

    Indo-Pacific Climate Variability and Change Workshop; Cairns, Queensland, Australia, 7-8 April 2011 ; The latest in the Australian GREENHOUSE conference series, GREENHOUSE 2011, provided scientists and representatives from industry and all levels of government the opportunity to hear about the latest in climate change science from leading researchers from Australia and around the world. This year's conference included a workshop on Indo-Pacific climate variability and change that focused on interactions between the two ocean basins, their teleconnections, and how these might change in the future. There were 16 presentations by participants, which are now available at http://www.greenhouse2011.com/page.aspx?docid=11. Several talks at the workshop identified feedback mechanisms that control the development and structure of climate modes, using both observations and Coupled Model Intercomparison Project Phase 3 (CMIP3) results for the twentieth and 21st centuries. For example, skewness in the Indian Ocean Dipole (IOD) was associated with nonlinear temperature advection, sea surface temperature (SST)-cloud-radiation feedback, and feedbacks among the thermocline, SST, and wind. Observations indicated that the frequency of the IOD has increased since 1950. However, there were varying interpretations on the relative strengths of the feedbacks, how they will change in the future, and whether the increased frequency of the IOD is induced by natural variation or human activity.

  8. Modeling Discontinuous Phase Transitions in Gel Membranes: Focus on Hysteresis and Feedback Mechanisms

    NASA Astrophysics Data System (ADS)

    Kuksenok, Olga

    Feedback mechanisms are vital in a number of processes in biological systems. For example, feedback loops play an essential role during a limb development in mammals and are responsible for the asymmetric cell division to constrain the growth in plants to the specific regions. An integration of well-controlled feedback loops into the fully synthetic materials is an important step in designing a range of biomimetic functionalities. Herein, we focus on hydrogels functionalized with light-sensitive trisodium salt of copper chlorophyllin and study discontinuous phase transitions in these systems. Prior experimental studies had shown that illumination of these functionalized gels results in their heating and in discontinuous, first order phase transition upon the variation in temperature. Herein, we develop the first computational model for these gels; the framework of the model is based on the gel Lattice Spring Model, in this work we account for the gel heating under the illumination. The results of our simulations are in a good agreement with prior experimental studies. We focus on pattern development during the volume phase transitions in membranes of various thicknesses and show that one can effectively utilize light intensity to remotely control feedback loops in these systems.

  9. Adaptive Robust Output Feedback Control for a Marine Dynamic Positioning System Based on a High-Gain Observer.

    PubMed

    Du, Jialu; Hu, Xin; Liu, Hongbo; Chen, C L Philip

    2015-11-01

    This paper develops an adaptive robust output feedback control scheme for dynamically positioned ships with unavailable velocities and unknown dynamic parameters in an unknown time-variant disturbance environment. The controller is designed by incorporating the high-gain observer and radial basis function (RBF) neural networks in vectorial backstepping method. The high-gain observer provides the estimations of the ship position and heading as well as velocities. The RBF neural networks are employed to compensate for the uncertainties of ship dynamics. The adaptive laws incorporating a leakage term are designed to estimate the weights of RBF neural networks and the bounds of unknown time-variant environmental disturbances. In contrast to the existing results of dynamic positioning (DP) controllers, the proposed control scheme relies only on the ship position and heading measurements and does not require a priori knowledge of the ship dynamics and external disturbances. By means of Lyapunov functions, it is theoretically proved that our output feedback controller can control a ship's position and heading to the arbitrarily small neighborhood of the desired target values while guaranteeing that all signals in the closed-loop DP control system are uniformly ultimately bounded. Finally, simulations involving two ships are carried out, and simulation results demonstrate the effectiveness of the proposed control scheme. PMID:25769172

  10. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback.

    PubMed

    Masters, Thomas A; Sheetz, Michael P; Gauthier, Nils C

    2016-04-01

    Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks. © 2016 Wiley Periodicals, Inc. PMID:26915738

  11. A positive feedback loop involving Erk5 and Akt turns on mesangial cell proliferation in response to PDGF.

    PubMed

    Bera, Amit; Das, Falguni; Ghosh-Choudhury, Nandini; Li, Xiaonan; Pal, Sanjay; Gorin, Yves; Kasinath, Balakuntalam S; Abboud, Hanna E; Ghosh Choudhury, Goutam

    2014-06-01

    Platelet-derived growth factor BB and its receptor (PDGFRβ) play a pivotal role in the development of renal glomerular mesangial cells. Their roles in increased mesangial cell proliferation during mesangioproliferative glomerulonephritis have long been noted, but the operating logic of signaling mechanisms regulating these changes remains poorly understood. We examined the role of a recently identified MAPK, Erk5, in this process. PDGF increased the activating phosphorylation of Erk5 and tyrosine phosphorylation of proteins in a time-dependent manner. A pharmacologic inhibitor of Erk5, XMD8-92, abrogated PDGF-induced DNA synthesis and mesangial cell proliferation. Similarly, expression of dominant negative Erk5 or siRNAs against Erk5 blocked PDGF-stimulated DNA synthesis and proliferation. Inhibition of Erk5 attenuated expression of cyclin D1 mRNA and protein, resulting in suppression of CDK4-mediated phosphorylation of the tumor suppressor protein pRb. Expression of cyclin D1 or CDK4 prevented the dominant negative Erk5- or siErk5-mediated inhibition of DNA synthesis and mesangial cell proliferation induced by PDGF. We have previously shown that phosphatidylinositol 3-kinase (PI3-kinase) contributes to PDGF-induced proliferation of mesangial cells. Inhibition of PI3-kinase blocked PDGF-induced phosphorylation of Erk5. Since PI3-kinase acts through Akt, we determined the role of Erk5 on Akt phosphorylation. XMD8-92, dominant negative Erk5, and siErk5 inhibited phosphorylation of Akt by PDGF. Interestingly, we found inhibition of PDGF-induced Erk5 phosphorylation by a pharmacological inhibitor of Akt kinase and kinase dead Akt in mesangial cells. Thus our data unfold the presence of a positive feedback microcircuit between Erk5 and Akt downstream of PI3-kinase nodal point for PDGF-induced mesangial cell proliferation. PMID:24740537

  12. Assessing Radiation Pressure as a Feedback Mechanism in Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Andrews, Brett H.; Thompson, Todd A.

    2011-02-01

    Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt law, the L IR-L'CO correlation, and the L IR-L'HCN correlation. In particular, the linear L IR-L'HCN correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of "intermittency" in normal spirals—the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties, namely, the dust-to-gas ratio and the CO-to-H2 and HCN-to-H2 conversion factors, that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.

  13. ASSESSING RADIATION PRESSURE AS A FEEDBACK MECHANISM IN STAR-FORMING GALAXIES

    SciTech Connect

    Andrews, Brett H.; Thompson, Todd A.

    2011-02-01

    Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt law, the L{sub IR}-L'{sub CO} correlation, and the L{sub IR}-L'{sub HCN} correlation. In particular, the linear L{sub IR}-L'{sub HCN} correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of 'intermittency' in normal spirals-the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties, namely, the dust-to-gas ratio and the CO-to-H{sub 2} and HCN-to-H{sub 2} conversion factors, that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.

  14. A negative feedback mechanism for the long-term stabilization of the earth's surface temperature

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Hays, P. B.; Kasting, J. F.

    1981-01-01

    It is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect. Although the quantitative details of this mechanism are speculative, it appears able to partially stabilize the earth's surface temperature against the steady increase of solar luminosity, believed to have occurred since the origin of the solar system.

  15. Balanced bridge feedback control system

    NASA Technical Reports Server (NTRS)

    Lurie, Boris J. (Inventor)

    1990-01-01

    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  16. Balanced bridge feedback control system

    NASA Astrophysics Data System (ADS)

    Lurie, Boris J.

    1990-03-01

    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  17. Analysis of Links Positions in Landing Gear Mechanism

    NASA Astrophysics Data System (ADS)

    Brewczyński, D.; Tora, G.

    2014-08-01

    This article contains a kinematic analysis of an aircraft chassis mechanism in a range of positions. The mechanism of the chassis is made up of several smaller subsystems with different functions. The first mechanism is used to eject the chassis before landing (touchdown) and fold it to hatchway after the lift off. The second mechanism is designed to perform rotation of the crossover with the wheel, in order to adjust the position of the wheel to fit it in the limited space in the hold. The third mechanism allows movement of the chassis resulting from the change in length of the damper. To determine the position of the following links of the mechanism calculus of vectors was applied in which unit vectors were used to represent the angular position of the links. The aim of the analysis is to determine the angle of convergence and the angle of heel wheels as a function of the variable length of hydraulic cylinder, length of the shock absorber, length of the regulations rods

  18. Climate-Vegetation-Feedbacks as a Mechanism for Accelerated Climate Change: The Greening Sahara Case

    NASA Astrophysics Data System (ADS)

    Timm, O.; Koehler, P.; Timmermann, A.

    2007-12-01

    In a set of experiments with global atmosphere-ocean-vegetation models, we analyze the terrestrial vegetation history from the Last Glacial Maximum to the pre-industrial time. In this presentation we explore the mechanisms in the coupled atmosphere-ocean-vegetation system that initiate the migration of the African Monsoon rainfall into the Sahara and the subsequent greening of the Sahara. It is found that the vegetation-albedo-feedback is of crucial importance for the northward extension of the vegetation zone into the Sahara desert. This feedback leads to an amplified response of the African Monsoon to the orbital forcing in the early Holocene. We further discuss the changes in the terrestrial carbon storage and its implications for atmospheric CO2 concentrations. A preliminary comparison between model results and paleoproxy records is presented.

  19. Construction and Modelling of an Inducible Positive Feedback Loop Stably Integrated in a Mammalian Cell-Line

    PubMed Central

    Siciliano, Velia; Fracassi, Chiara; Garzilli, Immacolata; Moretti, Maria Nicoletta; di Bernardo, Diego

    2011-01-01

    Understanding the relationship between topology and dynamics of transcriptional regulatory networks in mammalian cells is essential to elucidate the biology of complex regulatory and signaling pathways. Here, we characterised, via a synthetic biology approach, a transcriptional positive feedback loop (PFL) by generating a clonal population of mammalian cells (CHO) carrying a stable integration of the construct. The PFL network consists of the Tetracycline-controlled transactivator (tTA), whose expression is regulated by a tTA responsive promoter (CMV-TET), thus giving rise to a positive feedback. The same CMV-TET promoter drives also the expression of a destabilised yellow fluorescent protein (d2EYFP), thus the dynamic behaviour can be followed by time-lapse microscopy. The PFL network was compared to an engineered version of the network lacking the positive feedback loop (NOPFL), by expressing the tTA mRNA from a constitutive promoter. Doxycycline was used to repress tTA activation (switch off), and the resulting changes in fluorescence intensity for both the PFL and NOPFL networks were followed for up to 43 h. We observed a striking difference in the dynamics of the PFL and NOPFL networks. Using non-linear dynamical models, able to recapitulate experimental observations, we demonstrated a link between network topology and network dynamics. Namely, transcriptional positive autoregulation can significantly slow down the “switch off” times, as comparared to the nonautoregulatated system. Doxycycline concentration can modulate the response times of the PFL, whereas the NOPFL always switches off with the same dynamics. Moreover, the PFL can exhibit bistability for a range of Doxycycline concentrations. Since the PFL motif is often found in naturally occurring transcriptional and signaling pathways, we believe our work can be instrumental to characterise their behaviour. PMID:21765813

  20. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  1. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability, and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  2. The effects of false positive and false negative physiological feedback on sexual arousal: a comparison of women with or without sexual arousal disorder.

    PubMed

    McCall, Katie M; Meston, Cindy M

    2007-08-01

    The effects of false positive and false negative physiological feedback (vaginal photoplethymograph response print-out) on women's sexual arousal were examined. Participants included women without sexual dysfunction (n=16) and women with Sexual Arousal Disorder (SAD; n=15). Measures of subjective sexual arousal, physiological sexual arousal (vaginal pulse amplitude), expectancies, affect, and anxiety were obtained in response to viewing an erotic film. Results indicated that false positive feedback significantly increased subjective levels of sexual arousal, whereas false negative feedback significantly decreased subjective levels of sexual arousal in both groups. Sexually functional women had overall higher expectancies for sexual arousal than women with SAD. Unexpectedly, false positive feedback did not significantly impact physiological sexual arousal in sexually functional women; however, it resulted in significantly decreased responses in physiological sexual arousal in women with SAD. False negative feedback had no significant effect on physiological sexual response in sexually functional women or women with SAD. PMID:17333325

  3. Positive future climate feedback due to changes in oceanic DMS emissions

    NASA Astrophysics Data System (ADS)

    Tjiputra, Jerry; Six, Katharina; Seland, Øyvind; Heinze, Christoph

    2015-04-01

    The global ocean is the largest natural source of dimethylsulphide (DMS) gas to the atmosphere. DMS is produced by phytoplankton and is released to the surface ocean if cells are degraded. Once it enters the atmosphere, it might contribute to the nucleation particles important for cloud formation, which then effect the Earth's radiation budget and climate. Future global warming and ocean acidification is projected to alter marine DMS production and emission. However the none of the models assessed in the last IPCC report includes the DMS-climate feedback. Recent study indicated that under high CO2 emissions future, the oceanic DMS emission is projected to decrease by 12 to 24% by the end of this century, potentially leading to an equilibrium temperature response of 0.1K to 0.76K. Here, for the first time using a fully interactive Earth system model including a microphysical aerosol module with sulfur chemistry, we perform simulations on future climate projection with coupled DMS feedback. Under the highest pH sensitivity, our simulation shows that projected DMS production and emission decrease relative to the preindustrial state by 50% and 36%, respectively toward the end of the 21st century under the RCP8.5 emissions scenario. The largest emission reduction is simulated in the Southern Ocean. On contrast, emissions at polar latitudes increase owing to the sea ice retreat. This large change in marine sulfur emisson leads to an additional global warming of 0.3K relative to the reference simulation without DMS-climate feedback at the end of the 21st century. Both simulations also produce similar trajectories in atmospheric CO2 concentration, consistent with little change in the cumulative oceanic and terrestrial carbon sinks.

  4. A brain mechanism for facilitation of insight by positive affect.

    PubMed

    Subramaniam, Karuna; Kounios, John; Parrish, Todd B; Jung-Beeman, Mark

    2009-03-01

    Previous research has shown that people solve insight or creative problems better when in a positive mood (assessed or induced), although the precise mechanisms and neural substrates of this facilitation remain unclear. We assessed mood and personality variables in 79 participants before they attempted to solve problems that can be solved by either an insight or an analytic strategy. Participants higher in positive mood solved more problems, and specifically more with insight, compared with participants lower in positive mood. fMRI was performed on 27 of the participants while they solved problems. Positive mood (and to a lesser extent and in the opposite direction, anxiety) was associated with changes in brain activity during a preparatory interval preceding each solved problem; modulation of preparatory activity in several areas biased people to solve either with insight or analytically. Analyses examined whether (a) positive mood modulated activity in brain areas showing responsivity during preparation; (b) positive mood modulated activity in areas showing stronger activity for insight than noninsight trials either during preparation or solution; and (c) insight effects occurred in areas that showed mood-related effects during preparation. Across three analyses, the ACC showed sensitivity to both mood and insight, demonstrating that positive mood alters preparatory activity in ACC, biasing participants to engage in processing conducive to insight solving. This result suggests that positive mood enhances insight, at least in part, by modulating attention and cognitive control mechanisms via ACC, perhaps enhancing sensitivity to detect non-prepotent solution candidates. PMID:18578603

  5. Nearly time-optimal feedback control of a magnetically levitated photolithography positioning system

    SciTech Connect

    Redmond, J.

    1993-12-31

    This paper focuses on the development of an approximate time-optimal feedback strategy for conducting rest-to-rest maneuvers of a magnetically levitated table. Classical switching curves are modified to account for the complexities of magnetic actuation as well as the coupling of the rigid body modes through the control. A smooth blend of time-optimal and proportional-derivative controls is realized near the destination point to correct for inaccuracies produced by the approximate time-optimal strategy. Detailed computer simulations of the system indicate that this hybrid control strategy provides a significant reduction in settling time as compared to proportional-derivative control alone.

  6. A Collaborative Approach to Implement Positive Behavior Support Plans for Children with Problem Behaviors: A Comparison of Consultation versus Consultation and Feedback Approach

    ERIC Educational Resources Information Center

    Erbas, Dilek

    2010-01-01

    The purpose of this study is to compare the effectiveness of consultation alone and consultation plus feedback on the proper use of positive behavior support strategies (PBS) on behaviors of three mothers with children with developmental disabilities. Results indicated that consultation plus feedback was more effective than consultation alone…

  7. A Collaborative Approach to Implement Positive Behavior Support Plans for Children with Problem Behaviors: A Comparison of Consultation versus Consultation and Feedback Approach

    ERIC Educational Resources Information Center

    Erbas, Dilek

    2010-01-01

    The purpose of this study is to compare the effectiveness of consultation alone and consultation plus feedback on the proper use of positive behavior support strategies (PBS) on behaviors of three mothers with children with developmental disabilities. Results indicated that consultation plus feedback was more effective than consultation alone

  8. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  9. Positive and negative feedbacks among Amazon land uses, drought, and fire: the drought of 2005

    NASA Astrophysics Data System (ADS)

    Nepstad, D.; Brando, P.; Soares-Filho, B.; Balch, J.; Moutinho, P.

    2006-12-01

    Climate, rural economies, and ecosystems are connected in the Amazon basin through complex interactions with important implications for greenhouse gas fluxes, biodiversity, and the well-being of rural people. In the historically severe drought of 2005, drought-induced tree mortality and fire-dependent land uses (cattle ranching, swidden agriculture) favored forest fire as it increased the likelihood of further drought. Regions with fire-sensitive investments in the landscape, including improved cattle forage, agroforestry systems, and forest management, were also regions of high investments in the prevention of accidental fire, and experienced low levels of forest fire, in a negative feedback cycle. Some areas of agroindustrial production(cultivated soy) also experienced low forest fire occurrence because of the low flammability of crop fields. The combination of drought- and fire-induced carbon emissions can approach one billion tons in years of severe drought. The negative feedbacks between some types of land use and forest fire could substantially reduce these emissions in the short term.

  10. Technology transfer through performance management: the effects of graphical feedback and positive reinforcement on drug treatment counselors' behavior.

    PubMed

    Andrzejewski, M E; Kirby, K C; Morral, A R; Iguchi, M Y

    2001-07-01

    After drug treatment counselors at a community-based methadone treatment clinic were trained in implementing a contingency management (CM) intervention, baseline measures of performance revealed that, on average, counselors were meeting the performance criteria specified by the treatment protocol about 42% of the time. Counselors were exposed to graphical feedback and a drawing for cash prizes in an additive within-subjects design to assess the effectiveness of these interventions in improving protocol adherence. Counselor performance measures increased to 71% during the graphical feedback condition, and to 81% during the drawing. Each counselor's performance improved during the intervention conditions. Additional analyses suggested that counselors did not have skill deficits that hindered implementation. Rather, protocol implementation occurred more frequently when consequences were added, thereby increasing the overall proportion of criteria met. Generalizations, however, may be limited due to a small sample size and possible confounding of time and intervention effects. Nonetheless, present results show promise that feedback and positive reinforcement could be used to improve technology transfer of behavioral interventions into community clinic settings. PMID:11376922

  11. A satellite digital controller or 'play that PID tune again, Sam'. [Position, Integral, Derivative feedback control algorithm for design strategy

    NASA Technical Reports Server (NTRS)

    Seltzer, S. M.

    1976-01-01

    The problem discussed is to design a digital controller for a typical satellite. The controlled plant is considered to be a rigid body acting in a plane. The controller is assumed to be a digital computer which, when combined with the proposed control algorithm, can be represented as a sampled-data system. The objective is to present a design strategy and technique for selecting numerical values for the control gains (assuming position, integral, and derivative feedback) and the sample rate. The technique is based on the parameter plane method and requires that the system be amenable to z-transform analysis.

  12. Feedback mechanisms control coexistence in a stem cell model of acute myeloid leukaemia.

    PubMed

    Crowell, Helena L; MacLean, Adam L; Stumpf, Michael P H

    2016-07-21

    Haematopoietic stem cell dynamics regulate healthy blood cell production and are disrupted during leukaemia. Competition models of cellular species help to elucidate stem cell dynamics in the bone marrow microenvironment (or niche), and to determine how these dynamics impact leukaemia progression. Here we develop two models that target acute myeloid leukaemia with particular focus on the mechanisms that control proliferation via feedback signalling. It is within regions of parameter space permissive of coexistence that the effects of competition are most subtle and the clinical outcome least certain. Steady state and linear stability analyses identify parameter regions that allow for coexistence to occur, and allow us to characterise behaviour near critical points. Where analytical expressions are no longer informative, we proceed statistically and sample parameter space over a coexistence region. We find that the rates of proliferation and differentiation of healthy progenitors exert key control over coexistence. We also show that inclusion of a regulatory feedback onto progenitor cells promotes healthy haematopoiesis at the expense of leukaemia, and that - somewhat paradoxically - within the coexistence region feedback increases the sensitivity of the system to dominance by one lineage over another. PMID:27130539

  13. Visual feedback of the non-moving limb improves active joint-position sense of the impaired limb in Spastic Hemiparetic Cerebral Palsy.

    PubMed

    Smorenburg, Ana R P; Ledebt, Annick; Deconinck, Frederik J A; Savelsbergh, Geert J P

    2011-01-01

    This study examined the active joint-position sense in children with Spastic Hemiparetic Cerebral Palsy (SHCP) and the effect of static visual feedback and static mirror visual feedback, of the non-moving limb, on the joint-position sense. Participants were asked to match the position of one upper limb with that of the contralateral limb. The task was performed in three visual conditions: without visual feedback (no vision); with visual feedback of the non-moving limb (screen); and with visual feedback of the non-moving limb and its mirror reflection (mirror). In addition to the proprioceptive measure, a functional test [Quality of Upper Extremity Skills Test (QUEST)] was performed and the amount of spasticity was determined in order to examine their relation with proprioceptive ability. The accuracy of matching was significantly influenced by the distance that had to be covered by the matching limb; a larger distance resulted in a lower matching accuracy. Moreover it was demonstrated that static (mirror) visual feedback improved the matching accuracy. A clear relation between functionality, as measured by the QUEST, and active joint-position sense was not found. This might be explained by the availability of visual information during the performance of the QUEST. It is concluded that static visual feedback improves matching accuracy in children with SHCP and that the initial distance between the limbs is an influential factor which has to be taken into account when measuring joint-position sense. PMID:21306868

  14. Characterizing Feedback Control Mechanisms in Nonlinear Microbial Models of Soil Organic Matter Decomposition by Stability Analysis

    NASA Astrophysics Data System (ADS)

    Georgiou, K.; Tang, J.; Riley, W. J.; Torn, M. S.

    2014-12-01

    Soil organic matter (SOM) decomposition is regulated by biotic and abiotic processes. Feedback interactions between such processes may act to dampen oscillatory responses to perturbations from equilibrium. Indeed, although biological oscillations have been observed in small-scale laboratory incubations, the overlying behavior at the plot-scale exhibits a relatively stable response to disturbances in input rates and temperature. Recent studies have demonstrated the ability of microbial models to capture nonlinear feedbacks in SOM decomposition that linear Century-type models are unable to reproduce, such as soil priming in response to increased carbon input. However, these microbial models often exhibit strong oscillatory behavior that is deemed unrealistic. The inherently nonlinear dynamics of SOM decomposition have important implications for global climate-carbon and carbon-concentration feedbacks. It is therefore imperative to represent these dynamics in Earth System Models (ESMs) by introducing sub-models that accurately represent microbial and abiotic processes. In the present study we explore, both analytically and numerically, four microbe-enabled model structures of varying levels of complexity. The most complex model combines microbial physiology, a non-linear mineral sorption isotherm, and enzyme dynamics. Based on detailed stability analysis of the nonlinear dynamics, we calculate the system modes as functions of model parameters. This dependence provides insight into the source of state oscillations. We find that feedback mechanisms that emerge from careful representation of enzyme and mineral interactions, with parameter values in a prescribed range, are critical for both maintaining system stability and capturing realistic responses to disturbances. Corroborating and expanding upon the results of recent studies, we explain the emergence of oscillatory responses and discuss the appropriate microbe-enabled model structure for inclusion in ESMs.

  15. Modeling the relativistic runaway electron avalanche and the feedback mechanism with GEANT4

    PubMed Central

    Skeltved, Alexander Broberg; Østgaard, Nikolai; Carlson, Brant; Gjesteland, Thomas; Celestin, Sebastien

    2014-01-01

    This paper presents the first study that uses the GEometry ANd Tracking 4 (GEANT4) toolkit to do quantitative comparisons with other modeling results related to the production of terrestrial gamma ray flashes and high-energy particle emission from thunderstorms. We will study the relativistic runaway electron avalanche (RREA) and the relativistic feedback process, as well as the production of bremsstrahlung photons from runaway electrons. The Monte Carlo simulations take into account the effects of electron ionization, electron by electron (Møller), and electron by positron (Bhabha) scattering as well as the bremsstrahlung process and pair production, in the 250 eV to 100 GeV energy range. Our results indicate that the multiplication of electrons during the development of RREAs and under the influence of feedback are consistent with previous estimates. This is important to validate GEANT4 as a tool to model RREAs and feedback in homogeneous electric fields. We also determine the ratio of bremsstrahlung photons to energetic electrons Nγ/Ne. We then show that the ratio has a dependence on the electric field, which can be expressed by the avalanche time τ(E) and the bremsstrahlung coefficient α(ε). In addition, we present comparisons of GEANT4 simulations performed with a “standard” and a “low-energy” physics list both validated in the 1 keV to 100 GeV energy range. This comparison shows that the choice of physics list used in GEANT4 simulations has a significant effect on the results. Key Points Testing the feedback mechanism with GEANT4 Validating the GEANT4 programming toolkit Study the ratio of bremsstrahlung photons to electrons at TGF source altitude PMID:26167437

  16. 30 CFR 33.23 - Mechanical positioning of parts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mechanical positioning of parts. 33.23 Section 33.23 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES Dust-Collector Requirements §...

  17. Positive water vapour feedback in climate models confirmed by satellite data

    NASA Technical Reports Server (NTRS)

    Rind, D.; Lerner, J.; Chiou, E.-W.; Chu, W.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.

    1991-01-01

    It has recently been suggested that GCMs used to evaluate climate change overestimate the greenhouse effect due to increased concentrations of trace gases in the atmosphere. Here, new satellite-generated water vapor data are used to compare summer and winter moisture values in regions of the middle and upper troposphere that have previously been difficult to observe with confidence. It is found that, as the hemispheres warm, increased convection leads to increased water vapor above 500 mbar in approximate quantitative agreement with results from current climate models. The same conclusion is reached by comparing the tropical western and eastern Pacific regions. Thus, water vapor feedback is not overestimated in models and should amplify the climate response to increased trace-gas concentrations.

  18. The evolution of different forms of sociality: behavioral mechanisms and eco-evolutionary feedback.

    PubMed

    van der Post, Daniel J; Verbrugge, Rineke; Hemelrijk, Charlotte K

    2015-01-01

    Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from "leader-follower" societies to "fission-fusion" societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality. PMID:25629313

  19. The Evolution of Different Forms of Sociality: Behavioral Mechanisms and Eco-Evolutionary Feedback

    PubMed Central

    van der Post, Daniel J.; Verbrugge, Rineke; Hemelrijk, Charlotte K.

    2015-01-01

    Different forms of sociality have evolved via unique evolutionary trajectories. However, it remains unknown to what extent trajectories of social evolution depend on the specific characteristics of different species. Our approach to studying such trajectories is to use evolutionary case-studies, so that we can investigate how grouping co-evolves with a multitude of individual characteristics. Here we focus on anti-predator vigilance and foraging. We use an individual-based model, where behavioral mechanisms are specified, and costs and benefits are not predefined. We show that evolutionary changes in grouping alter selection pressures on vigilance, and vice versa. This eco-evolutionary feedback generates an evolutionary progression from “leader-follower” societies to “fission-fusion” societies, where cooperative vigilance in groups is maintained via a balance between within- and between-group selection. Group-level selection is generated from an assortment that arises spontaneously when vigilant and non-vigilant foragers have different grouping tendencies. The evolutionary maintenance of small groups, and cooperative vigilance in those groups, is therefore achieved simultaneously. The evolutionary phases, and the transitions between them, depend strongly on behavioral mechanisms. Thus, integrating behavioral mechanisms and eco-evolutionary feedback is critical for understanding what kinds of intermediate stages are involved during the evolution of particular forms of sociality. PMID:25629313

  20. Role of the Qinghai-Xizang plateau in feedback mechanisms affecting the planetary circulation

    SciTech Connect

    Reiter, E.R.; Yi-Hui, D.

    1980-01-01

    It has been recognized for some time that the Qinghai-Xizang plateau is of great importance in generating planetary long-waves which, in resonance with similar waves induced by the Rocky Mountains, lead to the familiar pattern of quasi-stationary Rossby waves observed on monthly-mean upper level pressure charts. Seasonal forcing of flow patterns also appears to be particularly strong in the Qinghai-Xizang plateau region. Recent investigations suggest that the Qinghai-Xizang plateau may also be involved in feedback mechanisms which control in an important way the interannual variability of the general circulation of the atmosphere. It appears that the effects of the Qinghai-Xizang plateau on the interannual variability of the atmospheric circulation over Asia are but one important manifestation of a network of feedback mechanisms, ranging from the El Nino problems along the Peruvian coast to droughts in the Sahel region. A better understanding of each of the mechanisms involved will lead us closer to successful long-range forecasting of some of the weather phenomena which have a considerable effect on local and regional economics.

  1. Negative Feedback of Glycolysis and Oxidative Phosphorylation: Mechanisms of and Reasons for It.

    PubMed

    Sokolov, S S; Balakireva, A V; Markova, O V; Severin, F F

    2015-05-01

    There are two main pathways of ATP biosynthesis: glycolysis and oxidative phosphorylation. As a rule, the two pathways are not fully active in a single cell. In this review, we discuss mechanisms of glycolytic inhibition of respiration (Warburg and Crabtree effects). What are the reasons for the existence of this negative feedback? It is known that maximal activation of both processes can cause generation of reactive oxygen species. Oxidative phosphorylation is more efficient from the energy point of view, while glycolysis is safer and favors biomass synthesis. This might be the reason why quiescent cells are mainly using oxidative phosphorylation, while the quickly proliferating ones - glycolysis. PMID:26071773

  2. Creating a Positive Classroom Atmosphere: Teachers' Use of Effective Praise and Feedback

    ERIC Educational Resources Information Center

    Conroy, Maureen A.; Sutherland, Kevin S.; Snyder, Angela; Al-Hendawi, Maha; Vo, Abigail

    2009-01-01

    Creating a positive and engaging classroom atmosphere is one of the most powerful tools teachers can use to encourage children's learning and prevent problem behaviors from occurring. Teachers' responses to children's appropriate and problem behavior can help set the tone of the classroom environment. Creating positive interactions between a…

  3. Hyperosmotic Shock Engages Two Positive Feedback Loops through Caspase-3-dependent Proteolysis of JNK1-2 and Bid.

    PubMed

    Yue, Jicheng; Ben Messaoud, Nabil; López, José M

    2015-12-18

    Hyperosmotic shock induces early calpain activation, Smac/DIABLO release from the mitochondria, and p38/JNK activation in Xenopus oocytes. These pathways regulate late cytochrome c release and caspase-3 activation. Here, we show that JNK1-1 and JNK1-2 are activated early by osmostress, and sustained activation of both isoforms accelerates the apoptotic program. When caspase-3 is activated, JNK1-2 is proteolyzed at Asp-385 increasing the release of cytochrome c and caspase-3 activity, thereby creating a positive feedback loop. Expression of Bcl-xL markedly reduces hyperosmotic shock-induced apoptosis. In contrast, expression of Bid induces rapid caspase-3 activation, even in the absence of osmostress, which is blocked by Bcl-xL co-expression. In these conditions a significant amount of Bid in the cytosol is mono- and bi-ubiquitinated. Caspase-3 activation by hyperosmotic shock induces proteolysis of Bid and mono-ubiquitinated Bid at Asp-52 increasing the release of cytochrome c and caspase-3 activation, and thus creating a second positive feedback loop. Revealing the JNK isoforms and the loops activated by osmostress could help to design better treatments for human diseases caused by perturbations in fluid osmolarity. PMID:26511318

  4. Perception of electrical and mechanical stimulation of the skin: implications for electrotactile feedback

    NASA Astrophysics Data System (ADS)

    Marcus, Patrick L.; Fuglevand, Andrew J.

    2009-12-01

    Spinal cord injury is often accompanied by impaired tactile and proprioceptive sensations. Normally, somatosensensory information derived from such sensations is important in the formation of voluntary motor commands. Therefore, as a preliminary step toward the development of an electrotactile feedback system to restore somatosensation, psychophysical methods were used to characterize perceptual attributes associated with electrical stimulation of the skin on the back of the neck in human subjects. These data were compared to mechanical stimulation of the skin on the back of neck and on the distal pad of the index finger. Spatial acuity of the neck, evaluated using two-point thresholds, was not significantly different for electrical (37 ± 14 mm) or mechanical stimulation (39 ± 10 mm). The exponent (β) of the best fitting power function relating perceived intensity to applied stimulus strength was used to characterize perceptual sensitivity to mechanical and electrical stimuli. For electrical stimuli, both current amplitude-modulated and frequency-modulated trains of pulses were tested. Perceptual sensitivity was significantly greater for current amplitude modulation (β = 1.14 ± 0.37) compared to frequency modulation (β = 0.57 ± 0.24) and mechanical stimulation (0.51 ± 0.12). Finally, based on the data gathered here, we derive a transfer function that could be used in the future to convert mechanical stimuli detected with artificial sensors placed on the fingers into electrotactile signals that evoke perceptions similar to those arising from normal mechanical stimulation of the skin.

  5. A protonation-coupled feedback mechanism controls the signalling process in bathy phytochromes

    NASA Astrophysics Data System (ADS)

    Velazquez Escobar, Francisco; Piwowarski, Patrick; Salewski, Johannes; Michael, Norbert; Fernandez Lopez, Maria; Rupp, Anna; Muhammad Qureshi, Bilal; Scheerer, Patrick; Bartl, Franz; Frankenberg-Dinkel, Nicole; Siebert, Friedrich; Andrea Mroginski, Maria; Hildebrandt, Peter

    2015-05-01

    Phytochromes are bimodal photoswitches composed of a photosensor and an output module. Photoactivation of the sensor is initiated by a double bond isomerization of the tetrapyrrole chromophore and eventually leads to protein conformational changes. Recently determined structural models of phytochromes identify differences between the inactive and the signalling state but do not reveal the mechanism of photosensor activation or deactivation. Here, we report a vibrational spectroscopic study on bathy phytochromes that demonstrates that the formation of the photoactivated state and thus (de)activation of the output module is based on proton translocations in the chromophore pocket coupling chromophore and protein structural changes. These proton transfer steps, involving the tetrapyrrole and a nearby histidine, also enable thermal back-isomerization of the chromophore via keto-enol tautomerization to afford the initial dark state. Thus, the same proton re-arrangements inducing the (de)activation of the output module simultaneously initiate the reversal of this process, corresponding to a negative feedback mechanism.

  6. Positional Reproducibility of Pancreatic Tumors Under End-Exhalation Breath-Hold Conditions Using a Visual Feedback Technique

    SciTech Connect

    Nakamura, Mitsuhiro; Shibuya, Keiko; Shiinoki, Takehiro; Matsuo, Yukinori; Nakamura, Akira; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Hiraoka, Masahiro

    2011-04-01

    Purpose: To assess positional reproducibility of pancreatic tumors under end-exhalation (EE) breath-hold (BH) conditions with a visual feedback technique based on computed tomography (CT) images. Methods and Materials: Ten patients with pancreatic cancer were enrolled in an institutional review board-approved trial. All patients were placed in a supine position on an individualized vacuum pillow with both arms raised. At the time of CT scan, they held their breath at EE with the aid of video goggles displaying their abdominal displacement. Each three-consecutive helical CT data set was acquired four times (sessions 1-4; session 1 corresponded to the time of CT simulation). The point of interest within or in proximity to a gross tumor volume was defined based on certain structural features. The positional variations in point of interest and margin size required to cover positional variations were assessed. Results: The means {+-} standard deviations (SDs) of intrafraction positional variations were 0.0 {+-} 1.1, 0.1 {+-} 1.2, and 0.1 {+-} 1.0 mm in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions, respectively (p = 0.726). The means {+-} SDs of interfraction positional variations were 0.3 {+-} 2.0, 0.8 {+-} 1.8, and 0.3 {+-} 1.8 mm in the LR, AP, and SI directions, respectively (p = 0.533). Population-based margin sizes required to cover 95th percentiles of the overall positional variations were 4.7, 5.3, and 4.9 mm in the LR, AP, and SI directions, respectively. Conclusions: A margin size of 5 mm was needed to cover the 95th percentiles of the overall positional variations under EE-BH conditions, using this noninvasive approach to motion management for pancreatic tumors.

  7. RADIATIVE AND MOMENTUM-BASED MECHANICAL ACTIVE GALACTIC NUCLEUS FEEDBACK IN A THREE-DIMENSIONAL GALAXY EVOLUTION CODE

    SciTech Connect

    Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten; Johansson, Peter H.

    2012-08-01

    We study the growth of black holes (BHs) in galaxies using three-dimensional smoothed particle hydrodynamic simulations with new implementations of the momentum mechanical feedback, and restriction of accreted elements to those that are gravitationally bound to the BH. We also include the feedback from the X-ray radiation emitted by the BH, which heats the surrounding gas in the host galaxies, and adds radial momentum to the fluid. We perform simulations of isolated galaxies and merging galaxies and test various feedback models with the new treatment of the Bondi radius criterion. We find that overall the BH growth is similar to what has been obtained by earlier works using the Springel, Di Matteo, and Hernquist algorithms. However, the outflowing wind velocities and mechanical energy emitted by winds are considerably higher (v{sub w} {approx} 1000-3000 km s{sup -1}) compared to the standard thermal feedback model (v{sub w} {approx} 50-100 km s{sup -1}). While the thermal feedback model emits only 0.1% of BH released energy in winds, the momentum feedback model emits more than 30% of the total energy released by the BH in winds. In the momentum feedback model, the degree of fluctuation in both radiant and wind output is considerably larger than in standard treatments. We check that the new model of BH mass accretion agrees with analytic results for the standard Bondi problem.

  8. Positive feedback of elevated CO2 on soil respiration in late autumn and winter

    NASA Astrophysics Data System (ADS)

    Keidel, L.; Kammann, C.; Grünhage, L.; Moser, G.; Müller, C.

    2015-02-01

    Soil respiration of terrestrial ecosystems, a major component in the global carbon cycle is affected by elevated atmospheric CO2 concentrations. However, seasonal differences of feedback effects of elevated CO2 have rarely been studied. At the Gießen Free-Air CO2 Enrichment (GiFACE) site, the effects of +20% above ambient CO2 concentration have been investigated since 1998 in a temperate grassland ecosystem. We defined five distinct annual seasons, with respect to management practices and phenological cycles. For a period of 3 years (2008-2010), weekly measurements of soil respiration were carried out with a survey chamber on vegetation-free subplots. The results revealed a pronounced and repeated increase of soil respiration under elevated CO2 during late autumn and winter dormancy. Increased CO2 losses during the autumn season (September-October) were 15.7% higher and during the winter season (November-March) were 17.4% higher compared to respiration from ambient CO2 plots. However, during spring time and summer, which are characterized by strong above- and below-ground plant growth, no significant change in soil respiration was observed at the GiFACE site under elevated CO2. This suggests (1) that soil respiration measurements, carried out only during the growing season under elevated CO2 may underestimate the true soil-respiratory CO2 loss (i.e. overestimate the C sequestered), and (2) that additional C assimilated by plants during the growing season and transferred below-ground will quickly be lost via enhanced heterotrophic respiration outside the main growing season.

  9. Binocular capture: the role of non-linear position mechanisms.

    PubMed

    Raghunandan, Avesh; Andrus, Jason

    2014-09-01

    When monocular Vernier targets are presented with binocular disparate elements, an increase in vertical separation elevates alignment thresholds and also shifts its perceived visual direction towards the visual direction of the binocular disparate surround. This observation has been termed binocular capture. There is increasing evidence that this shift in the visual direction of the monocular target may be related to the type of position encoding mechanism involved in processing the relative position signal. This study investigated the interaction between capture magnitude and vertical separation for stimulus conditions that favored the recruitment of linear or non-linear position encoding mechanisms. Relative alignment thresholds and bias were measured for a pair of vertically separated (8', 30', 60', 120') monocular Gabor gratings (1, 2, 4 and 8 cpd). Grating stimuli were constructed to constrain relative alignment judgments to the carrier grating (CO) or to the envelope (EO). Relative alignment thresholds and bias were also measured for a pair of vertically separated monocular Gabor gratings comprising a 1 cpd vertical square wave grating (SQ) or a 1 cpd missing fundamental grating (MF). Capture magnitudes were significantly larger across vertical separation and varied proportionally with relative alignment threshold for the EO and MF conditions. This was not evident with the CO and SQ conditions. The stark difference in capture magnitudes between the stimuli conditions suggest that the increase in capture magnitude observed with increasing vertical separation is intimately related to the transition from a "capture-immune" first-order spatial filter mechanism to a "capture-vulnerable" non-linear/feature-based position encoding mechanism. PMID:25038473

  10. Reciprocal Markov Modeling of Feedback Mechanisms Between Emotion and Dietary Choice Using Experience-Sampling Data.

    PubMed

    Lu, Ji; Pan, Junhao; Zhang, Qiang; Dubé, Laurette; Ip, Edward H

    2015-01-01

    With intensively collected longitudinal data, recent advances in the experience-sampling method (ESM) benefit social science empirical research, but also pose important methodological challenges. As traditional statistical models are not generally well equipped to analyze a system of variables that contain feedback loops, this paper proposes the utility of an extended hidden Markov model to model reciprocal the relationship between momentary emotion and eating behavior. This paper revisited an ESM data set (Lu, Huet, & Dube, 2011 ) that observed 160 participants' food consumption and momentary emotions 6 times per day in 10 days. Focusing on the analyses on feedback loop between mood and meal-healthiness decision, the proposed reciprocal Markov model (RMM) can accommodate both hidden ("general" emotional states: positive vs. negative state) and observed states (meal: healthier, same or less healthy than usual) without presuming independence between observations and smooth trajectories of mood or behavior changes. The results of RMM analyses illustrated the reciprocal chains of meal consumption and mood as well as the effect of contextual factors that moderate the interrelationship between eating and emotion. A simulation experiment that generated data consistent with the empirical study further demonstrated that the procedure is promising in terms of recovering the parameters. PMID:26717120

  11. Reciprocal Markov modeling of feedback mechanisms between emotion and dietary choice using experience sampling data

    PubMed Central

    Lu, Ji; Pan, Junhao; Zhang, Qiang; Dubé, Laurette; Ip, Edward H.

    2015-01-01

    With intensively collected longitudinal data, recent advances in Experience Sampling Method (ESM) benefit social science empirical research, but also pose important methodological challenges. As traditional statistical models are not generally well-equipped to analyze a system of variables that contain feedback loops, this paper proposes the utility of an extended hidden Markov model to model reciprocal relationship between momentary emotion and eating behavior. This paper revisited an ESM data set (Lu, Huet & Dube, 2011) that observed 160 participants’ food consumption and momentary emotions six times per day in 10 days. Focusing on the analyses on feedback loop between mood and meal healthiness decision, the proposed Reciprocal Markov Model (RMM) can accommodate both hidden (“general” emotional states: positive vs. negative state) and observed states (meal: healthier, same or less healthy than usual) without presuming independence between observations and smooth trajectories of mood or behavior changes. The results of RMM analyses illustrated the reciprocal chains of meal consumption and mood as well as the effect of contextual factors that moderate the interrelationship between eating and emotion. A simulation experiment that generated data consistent to the empirical study further demonstrated that the procedure is promising in terms of recovering the parameters. PMID:26717120

  12. Force Feedback Controls Motor Activity and Mechanical Properties of Self-Assembling Branched Actin Networks.

    PubMed

    Bieling, Peter; Li, Tai-De; Weichsel, Julian; McGorty, Ryan; Jreij, Pamela; Huang, Bo; Fletcher, Daniel A; Mullins, R Dyche

    2016-01-14

    Branched actin networks-created by the Arp2/3 complex, capping protein, and a nucleation promoting factor-generate and transmit forces required for many cellular processes, but their response to force is poorly understood. To address this, we assembled branched actin networks in vitro from purified components and used simultaneous fluorescence and atomic force microscopy to quantify their molecular composition and material properties under various forces. Remarkably, mechanical loading of these self-assembling materials increases their density, power, and efficiency. Microscopically, increased density reflects increased filament number and altered geometry but no change in average length. Macroscopically, increased density enhances network stiffness and resistance to mechanical failure beyond those of isotropic actin networks. These effects endow branched actin networks with memory of their mechanical history that shapes their material properties and motor activity. This work reveals intrinsic force feedback mechanisms by which mechanical resistance makes self-assembling actin networks stiffer, stronger, and more powerful. PMID:26771487

  13. Chk1 Activation Protects Rad9A from Degradation as Part of a Positive Feedback Loop during Checkpoint Signalling

    PubMed Central

    Osorio-Zambrano, William F.; Davey, Scott

    2015-01-01

    Phosphorylation of Rad9A at S387 is critical for establishing a physical interaction with TopBP1, and to downstream activation of Chk1 for checkpoint activation. We have previously demonstrated a phosphorylation of Rad9A that occurs at late time points in cells exposed to genotoxic agents, which is eliminated by either Rad9A overexpression, or conversion of S387 to a non-phosphorylatable analogue. Based on this, we hypothesized that this late Rad9A phosphorylation is part of a feedback loop regulating the checkpoint. Here, we show that Rad9A is hyperphosphorylated and accumulates in cells exposed to bleomycin. Following the removal of bleomycin, Rad9A is polyubiquitinated, and Rad9A protein levels drop, indicating an active degradation process for Rad9A. Chk1 inhibition by UCN-01 or siRNA reduces Rad9A levels in cells synchronized in S-phase or exposed to DNA damage, indicating that Chk1 activation is required for Rad9A stabilization in S-phase and during checkpoint activation. Together, these results demonstrate a positive feedback loop involving Rad9A-dependend activation of Chk1, coupled with Chk1-dependent stabilization of Rad9A that is critical for checkpoint regulation. PMID:26658951

  14. Short-loop negative and positive feedback on ecdysone secretion by prothoracic gland in the tobacco hornworm, Manduca sexta.

    PubMed

    Sakurai, S; Williams, C M

    1989-08-01

    Ecdysteroid production by the prothoracic glands of the tobacco hornworm, Manduca sexta was found to be under feedback control by the ecdysteroids in hemolymph using both culture in vivo in diapausing pupae lacking the brain-corpora cardiaca-corpora allata complex and the prothoracic glands and culture in vitro. Prothoracic glands having relatively high activity in larvae, prepupae, or developing pupae were inhibited by ecdysone or 20-hydroxyecdysone. By contrast, prothoracic glands with low activity from feeding larvae, day 1 non-diapausing pupae and diapausing pupae were activated by both ecdysone and 20-hydroxyecdysone in vivo and in vitro. Dose-response studies on diapausing pupal glands showed that ecdysone was the most effective activator. These findings suggest that prothoracic glands are either stimulated or inhibited by ecdysone or 20-hydroxyecdysone, depending on both the secretory activity of the gland and the effective level of ecdysteroids in hemolymph. Thus, when the glands are first activated, the ecdysteroids that are secreted show a positive feedback on the glands to increase ecdysteroid output. Then the activated glands are turned off by the increasing 20-hydroxyecdysone titer in the hemolymph leading to the rapid decrease in ecdysteroid titer at the end of the molt period. PMID:2806870

  15. Interlocked positive and negative feedback network motifs regulate β-catenin activity in the adherens junction pathway

    PubMed Central

    Klinke, David J.; Horvath, Nicholas; Cuppett, Vanessa; Wu, Yueting; Deng, Wentao; Kanj, Rania

    2015-01-01

    The integrity of epithelial tissue architecture is maintained through adherens junctions that are created through extracellular homotypic protein–protein interactions between cadherin molecules. Cadherins also provide an intracellular scaffold for the formation of a multiprotein complex that contains signaling proteins, including β-catenin. Environmental factors and controlled tissue reorganization disrupt adherens junctions by cleaving the extracellular binding domain and initiating a series of transcriptional events that aim to restore tissue homeostasis. However, it remains unclear how alterations in cell adhesion coordinate transcriptional events, including those mediated by β-catenin in this pathway. Here were used quantitative single-cell and population-level in vitro assays to quantify the endogenous pathway dynamics after the proteolytic disruption of the adherens junctions. Using prior knowledge of isolated elements of the overall network, we interpreted these data using in silico model-based inference to identify the topology of the regulatory network. Collectively the data suggest that the regulatory network contains interlocked network motifs consisting of a positive feedback loop, which is used to restore the integrity of adherens junctions, and a negative feedback loop, which is used to limit β-catenin–induced gene expression. PMID:26224311

  16. A circuit mechanism for differentiating positive and negative associations.

    PubMed

    Namburi, Praneeth; Beyeler, Anna; Yorozu, Suzuko; Calhoon, Gwendolyn G; Halbert, Sarah A; Wichmann, Romy; Holden, Stephanie S; Mertens, Kim L; Anahtar, Melodi; Felix-Ortiz, Ada C; Wickersham, Ian R; Gray, Jesse M; Tye, Kay M

    2015-04-30

    The ability to differentiate stimuli predicting positive or negative outcomes is critical for survival, and perturbations of emotional processing underlie many psychiatric disease states. Synaptic plasticity in the basolateral amygdala complex (BLA) mediates the acquisition of associative memories, both positive and negative. Different populations of BLA neurons may encode fearful or rewarding associations, but the identifying features of these populations and the synaptic mechanisms of differentiating positive and negative emotional valence have remained unknown. Here we show that BLA neurons projecting to the nucleus accumbens (NAc projectors) or the centromedial amygdala (CeM projectors) undergo opposing synaptic changes following fear or reward conditioning. We find that photostimulation of NAc projectors supports positive reinforcement while photostimulation of CeM projectors mediates negative reinforcement. Photoinhibition of CeM projectors impairs fear conditioning and enhances reward conditioning. We characterize these functionally distinct neuronal populations by comparing their electrophysiological, morphological and genetic features. Overall, we provide a mechanistic explanation for the representation of positive and negative associations within the amygdala. PMID:25925480

  17. A Circuit Mechanism for Differentiating Positive and Negative Associations

    PubMed Central

    Namburi, Praneeth; Beyeler, Anna; Yorozu, Suzuko; Calhoon, Gwendolyn G.; Halbert, Sarah A.; Wichmann, Romy; Holden, Stephanie S.; Mertens, Kim L.; Anahtar, Melodi; Felix-Ortiz, Ada C.; Wickersham, Ian R.; Gray, Jesse M.; Tye, Kay M.

    2015-01-01

    The ability to differentiate stimuli predicting positive or negative outcomes is critical for survival, and perturbations of emotional processing underlie many psychiatric disease states. Synaptic plasticity in the basolateral amygdala complex (BLA) mediates the acquisition of associative memories, both positive1,2 and negative37. Different populations of BLA neurons may encode fearful or rewarding associations810, but the identifying features of these populations and the synaptic mechanisms of differentiating positive and negative emotional valence have remained an enigma. Here, we show that BLA neurons projecting to the nucleus accumbens (NAc projectors) or the centromedial amygdala (CeM projectors) underwent opposing synaptic changes following fear or reward conditioning. We found that photostimulation of NAc projectors supports positive reinforcement while photostimulation of CeM projectors mediates negative reinforcement. Photoinhibition of CeM projectors impaired fear conditioning and enhanced reward conditioning. We then characterized these functionally-distinct neuronal populations by comparing their electrophysiological, morphological and genetic features. We provide a mechanistic explanation for the representation of positive and negative associations within the amygdala. PMID:25925480

  18. Inhibition of Receptor Dimerization as a Novel Negative Feedback Mechanism of EGFR Signaling

    PubMed Central

    Kluba, Malgorzata; Engelborghs, Yves; Hofkens, Johan; Mizuno, Hideaki

    2015-01-01

    Dimerization of the epidermal growth factor receptor (EGFR) is crucial for initiating signal transduction. We employed raster image correlation spectroscopy to continuously monitor the EGFR monomer-dimer equilibrium in living cells. EGFR dimer formation upon addition of EGF showed oscillatory behavior with a periodicity of about 2.5 min, suggesting the presence of a negative feedback loop to monomerize the receptor. We demonstrated that monomerization of EGFR relies on phospholipase Cγ, protein kinase C, and protein kinase D (PKD), while being independent of Ca2+ signaling and endocytosis. Phosphorylation of the juxtamembrane threonine residues of EGFR (T654/T669) by PKD was identified as the factor that shifts the monomer-dimer equilibrium of ligand bound EGFR towards the monomeric state. The dimerization state of the receptor correlated with the activity of an extracellular signal-regulated kinase, downstream of the EGFR. Based on these observations, we propose a novel, negative feedback mechanism that regulates EGFR signaling via receptor monomerization. PMID:26465157

  19. Cortical feedback depolarization waves: A mechanism of top-down influence on early visual areas

    PubMed Central

    Roland, Per E.; Hanazawa, Akitoshi; Undeman, Calle; Eriksson, David; Tompa, Tamas; Nakamura, Hiroyuki; Valentiniene, Sonata; Ahmed, Bashir

    2006-01-01

    Despite the lack of direct evidence, it is generally believed that top-down signals are mediated by the abundant feedback connections from higher- to lower-order sensory areas. Here we provide direct evidence for a top-down mechanism. We stained the visual cortex of the ferret with a voltage-sensitive dye and presented a short-duration contrast square. This elicited an initial feedforward and lateral spreading depolarization at the square representation in areas 17 and 18. After a delay, a broad feedback wave (FBW) of neuron peak depolarization traveled from areas 21 and 19 toward areas 18 and 17. In areas 18 and 17, the FBW contributed the peak depolarization of dendrites of the neurons representing the square, after which the neurons decreased their depolarization and firing. Thereafter, the peak depolarization surrounded the figure representation over most of areas 17 and 18 representing the background. Thus, the FBW is an example of a well behaved long-range communication from higher-order visual areas to areas 18 and 17, collectively addressing very large populations of neurons representing the visual scene. Through local interaction with feedforward and lateral spreading depolarization, the FBW differentially activates neurons representing the object and neurons representing the background. PMID:16891418

  20. Indirect adaptive output feedback control of a biorobotic AUV using pectoral-like mechanical fins.

    PubMed

    Naik, Mugdha S; Singh, Sahjendra N; Mittal, Rajat

    2009-06-01

    This paper treats the question of servoregulation of autonomous underwater vehicles (AUVs) in the yaw plane using pectoral-like mechanical fins. The fins attached to the vehicle have oscillatory swaying and yawing motion. The bias angle of the angular motion of the fin is used for the purpose of control. Of course, the design approach considered here is applicable to AUVs for other choices of oscillation patterns of the fins, which produce periodic forces and moments. It is assumed that the vehicle parameters, hydrodynamic coefficients, as well the fin forces and moments are unknown. For the trajectory control of the yaw angle, a sampled-data indirect adaptive control system using output (yaw angle) feedback is derived. The control system has a modular structure, which includes a parameter identifier and a stabilizer. For the control law derivation, an internal model of the exosignals (reference signal (constant or ramp) and constant disturbance) is included. Unlike the direct adaptive control scheme, the derived control law is applicable to minimum as well as nonminimum phase biorobotic AUVs (BAUVs). This is important, because for most of the fin locations on the vehicle, the model is a nonminimum phase. In the closed-loop system, the yaw angle trajectory tracking error converges to zero and the remaining state variables remain bounded. Simulation results are presented which show that the derived modular control system accomplishes precise set point yaw angle control and turning maneuvers in spite of the uncertainties in the system parameters using only yaw angle feedback. PMID:19276512

  1. Phospholipase D1 drives a positive feedback loop to reinforce the Wnt/beta-catenin/TCF signaling axis.

    PubMed

    Kang, Dong Woo; Lee, Soung-Hoon; Yoon, Jeong Whan; Park, Won-Sang; Choi, Kang-Yell; Min, Do Sik

    2010-05-15

    Activation of the Wnt signaling pathway occurs frequently in human cancers, but an understanding of the targets and regulation of this important pathway remains incomplete. In this study, we report that phospholipase D (PLD), a cell survival mediator that is upregulated in cancer, is an important target of the Wnt signaling pathway that functions in a positive feedback loop to reinforce pathway output. PLD1 expression and activity was enhanced by treatment with Wnt3a and glycogen synthase kinase-3 inhibitors, and the Wnt pathway-regulated transcription factors beta-catenin and TCF-4 were required for this effect. Three functional TCF-4-binding sites were identified within the PLD1 promoter. Interestingly, suppressing PLD1 blocked the ability of beta-catenin to transcriptionally activate PLD1 and other Wnt target genes by preventing beta-catenin/TCF-4 complex formation. Conversely, tactics to elevate intracellular levels of phosphatidic acid, the product of PLD1 enzyme activity, enhanced beta-catenin/TCF-4 complex formation as well as beta-catenin-dependent TCF transcriptional activity. In cell-based assays, PLD1 was necessary for the anchorage-independent growth driven by Wnt/beta-catenin signaling, whereas beta-catenin/TCF-4 was necessary for the anchorage-independent growth driven by PLD1 activation. Taken together, our findings define a function for PLD1 in a positive feedback loop of Wnt/beta-catenin/TCF-4 signaling that provides new mechanistic insights into cancer, with implications of novel strategies to disrupt Wnt signaling in cancer. PMID:20442281

  2. Modelling ecogeomorphic feedbacks: investigating mechanisms of land degradation in semi-arid grassland and shrubland

    NASA Astrophysics Data System (ADS)

    Turnbull, Laura; Mueller, Eva; Tietjen, Britta; Wainwright, John

    2014-05-01

    Across vast areas of the world's drylands, land degradation is exacerbated by ecohydrological processes, which alter the structure, function and connectivity of dryland hillslopes. These processes are often interlinked through feedback mechanisms in such a way that a trigger may result in a re-organization of the affected landscape. Here, we present a spatially explicit process-based ecogeomorphic model, MAHLERAN-EcoHyD to enhance our understanding of complex linkages between abiotic and biotic drivers and processes of degradation in drylands. This ecogeomorphic modelling approach is innovative in two main ways: it couples biotic and abiotic processes, and simulates intra and inter-event dynamics, thus overcoming a key limitation of previous modelling approaches in terms of their temporal scaling, by simulating key ecogeomorphic processes at process-relevant time steps. Redistribution of water, sediment and nutrients during high-intensity rainstorms is simulated at 1-sec time steps, soil moisture and transpiration dynamics at daily time steps, and vegetation dynamics (establishment, growth, mortality) at 14-day time steps, over a high-resolution 1x1 m grid. We use this innovative modelling approach to investigate soil-vegetation feedback mechanisms within a grassland-shrubland transition zone at the Sevilleta Long Term Ecological Research site in the south-western United States. Results from three modelling experiments are presented: the first modelling experiment investigates the impact of annual variations in individual high-intensity storms to assess long-term variations in runoff, soil-moisture conditions and sediment and nutrient fluxes over two decades; the second modelling experiment assesses the impact of vegetation composition on spatial changes in surface soil texture due to soil erosion by water; and the third modelling experiment investigates how long-term changes in vegetation alter feedbacks between biotic and abiotic processes using scenarios for static vegetation, dynamic vegetation and two stress scenarios (drought and overgrazing). Results of the first modelling experiment show that total runoff and sediment fluxes are reproduced reasonably well for larger storm events, yet fluxes are generally underestimated for smaller storm events due to the greater sensitivity of simulated runoff to discrepancies in simulated surface soil-moisture content. Results from the second modelling experiment reveal that although the spatial average of fine sediment fractions does not change, the spatial distribution of fine sediment fractions does change, especially over the shrub-dominated plot. This difference is particularly significant since the fine sediment fraction has the highest concentration of plant-essential nutrients. Results from the third modelling experiment show that if grass cover is low (~20%), then sensitivity to stress scenarios is high, whereas if grass cover is high (~40%), then grass and shrubs may co-exist under stress conditions. Results also show that in dry years when soil-moisture content remains high in the lower soil layer, the system is more resilient to meteorological drought. This ecogeomorphic model thus closes the gap of current modelling approaches that either investigate only individual extreme events or model the long-term dynamics of a landscape without including feedbacks between abiotic and biotic processes. This ecogeomorphic model therefore allows novel insight into the interactions and feedbacks between biotic and abiotic processes that govern ecosystem state in drylands.

  3. Feedback Activation of STAT3 as a Cancer Drug-Resistance Mechanism.

    PubMed

    Zhao, Chengguang; Li, Huameng; Lin, Huey-Jen; Yang, Shulin; Lin, Jiayuh; Liang, Guang

    2016-01-01

    Signal transducer and activator of transcription 3 (STAT3) plays crucial roles in several cellular processes such as cell proliferation and survival, and has been found to be aberrantly activated in many cancers. Much research has explored the leading mechanisms for regulating the STAT3 pathway and its role in promoting tumorigenesis. We focus here on recent evidence suggesting that feedback activation of STAT3 plays a prominent role in mediating drug resistance to a broad spectrum of targeted cancer therapies and chemotherapies. We highlight the potential of co-targeting STAT3 and its primary target to overcome drug resistance, and provide perspective on repurposing clinically approved drugs as STAT3 pathway inhibitors, in combination with the FDA-approved receptor tyrosine kinase (RTK) inhibitors, to improve clinical outcome of cancer treatment. PMID:26576830

  4. Dynamics of mechanical feedback-type hydraulic servomotors under inertia loads

    NASA Technical Reports Server (NTRS)

    Gold, Harold; Otto, Edward W; Ransom, Victor L

    1953-01-01

    An analysis of the dynamics of mechanical feedback-type hydraulic servomotors under inertia loads is developed and experimental verification is presented. The analysis, which is developed in terms of two physical parameters, yields direct expressions for the following dynamic responses: (1) the transient response to a step input and the maximum cylinder pressure during the transient and (2) the variation of amplitude attenuation and phase shift with the frequency of a sinusoidally varying input. The validity of the analysis is demonstrated by means of recorded transient and frequency responses obtained on two servomotors. The calculated responses are in close agreement with the measured responses. The relations presented are readily applicable to the design as well as to the analysis of hydraulic servomotors.

  5. A feedback mechanism converts individual cell features into a supracellular ECM structure in Drosophila trachea.

    PubMed

    ztrk-olak, Arzu; Moussian, Bernard; Arajo, Sofia J; Casanova, Jordi

    2016-01-01

    The extracellular matrix (ECM), a structure contributed to and commonly shared by many cells in an organism, plays an active role during morphogenesis. Here, we used the Drosophila tracheal system to study the complex relationship between the ECM and epithelial cells during development. We show that there is an active feedback mechanism between the apical ECM (aECM) and the apical F-actin in tracheal cells. Furthermore, we reveal that cell-cell junctions are key players in this aECM patterning and organisation and that individual cells contribute autonomously to their aECM. Strikingly, changes in the aECM influence the levels of phosphorylated Src42A (pSrc) at cell junctions. Therefore, we propose that Src42A phosphorylation levels provide a link for the ECM environment to ensure proper cytoskeletal organisation. PMID:26836303

  6. Hybrid PD and effective multi-mode positive position feedback control for slewing and vibration suppression of a smart flexible manipulator

    NASA Astrophysics Data System (ADS)

    Lou, Jun-qiang; Wei, Yan-ding; Yang, Yi-ling; Xie, Feng-ran

    2015-03-01

    A hybrid control strategy for slewing and vibration suppression of a smart flexible manipulator is presented in this paper. It consists of a proportional derivative controller to realize motion control, and an effective multi-mode positive position feedback (EMPPF) controller to suppress the multi-mode vibration. Rather than treat each mode equally as the standard multi-mode PPF, the essence of the EMPPF is that control forces of different modes are applied according to the mode parameters of the respective modes, so the vibration modes with less vibration energy receive fewer control forces. Stability conditions for the close loop system are established through stability analysis. Optimal parameters of the EMPPF controller are obtained using the method of root locus analysis. The performance of the proposed strategy is demonstrated by simulation and experiments. Experimental results show that the first two vibration modes of the manipulator are effectively suppressed. The setting time of the setup descends approximately 55%, reaching 3.12 s from 5.67 s.

  7. Positive regulation of the Egr-1/osteopontin positive feedback loop in rat vascular smooth muscle cells by TGF-{beta}, ERK, JNK, and p38 MAPK signaling

    SciTech Connect

    Yu, Hong-Wei; Liu, Qi-Feng; Liu, Gui-Nan

    2010-05-28

    Previous studies identified a positive feedback loop in rat vascular smooth muscle cells (VSMCs) in which early growth response factor-1 (Egr-1) binds to the osteopontin (OPN) promoter and upregulates OPN expression, and OPN upregulates Egr-1 expression via the extracellular signal-regulated protein kinase (ERK) signaling pathway. The current study examined whether transforming growth factor-{beta} (TGF-{beta}) activity contributes to Egr-1 binding to the OPN promoter, and whether other signaling pathways act downstream of OPN to regulate Egr-1 expression. ChIP assays using an anti-Egr-1 antibody showed that amplification of the OPN promoter sequence decreased in TGF-{beta} DNA enzyme-transfected VSMCs relative to control VSMCs. Treatment of VSMCs with PD98059 (ERK inhibitor), SP600125 (JNK inhibitor), or SB203580 (p38 MAPK inhibitor) significantly inhibited OPN-induced Egr-1 expression, and PD98059 treatment was associated with the most significant decrease in Egr-1 expression. OPN-stimulated VSMC cell migration was inhibited by SP600125 or SB203580, but not by PD98059. Furthermore, MTT assays showed that OPN-mediated cell proliferation was inhibited by PD98059, but not by SP600125 or SB203580. Taken together, the results of the current study show that Egr-1 binding to the OPN promoter is positively regulated by TGF-{beta}, and that the p38 MAPK, JNK, and ERK pathways are involved in OPN-mediated Egr-1 upregulation.

  8. Computational and Experimental Insights into the Mechanism of Substrate Recognition and Feedback Inhibition of Protoporphyrinogen Oxidase

    PubMed Central

    Yang, Sheng-Gang; Wang, Zhi-Fang; Zhan, Chang-Guo; Xi, Zhen; Yang, Guang-Fu

    2013-01-01

    Protoporphyrinogen IX oxidase (PPO; EC 1.3.3.4) is an essential enzyme catalyzing the last common step in the pathway leading to heme and chlorophyll biosynthesis. Great interest in PPO inhibitors arises from both its significance to agriculture and medicine. However, the discovery of PPO inhibitors with ultrahigh potency and selectivity is hampered due to lack of structural and mechanistic understanding about the substrate recognition, which remains a longstanding question central in porphyrin biology. To understand the mechanism, a novel binding model of protogen (protoporphyrinogen IX, the substrate) was developed through extensive computational simulations. Subsequently, amino acid residues that are critical for protogen binding identified by computational simulations were substituted by mutagenesis. Kinetic analyses of these mutants indicated that these residues were critical for protogen binding. In addition, the calculated free energies of protogen binding with these mutants correlated well with the experimental data, indicating the reasonability of the binding model. On the basis of this novel model, the fundamental mechanism of substrate recognition was investigated by performing potential of mean force (PMF) calculations, which provided an atomic level description of conformational changes and pathway intermediates. The free energy profile revealed a feedback inhibition mechanism of proto (protoporphyrin IX, the product), which was also in agreement with experimental evidence. The novel mechanistic insights obtained from this study present a new starting point for future rational design of more efficient PPO inhibitors based on the product-bound PPO structure. PMID:23935953

  9. Coarse-grained analysis of stochastically simulated cell populations with a positive feedback genetic network architecture.

    PubMed

    Aviziotis, I G; Kavousanakis, M E; Bitsanis, I A; Boudouvis, A G

    2015-06-01

    Among the different computational approaches modelling the dynamics of isogenic cell populations, discrete stochastic models can describe with sufficient accuracy the evolution of small size populations. However, for a systematic and efficient study of their long-time behaviour over a wide range of parameter values, the performance of solely direct temporal simulations requires significantly high computational time. In addition, when the dynamics of the cell populations exhibit non-trivial bistable behaviour, such an analysis becomes a prohibitive task, since a large ensemble of initial states need to be tested for the quest of possibly co-existing steady state solutions. In this work, we study cell populations which carry the lac operon network exhibiting solution multiplicity over a wide range of extracellular conditions (inducer concentration). By adopting ideas from the so-called "equation-free" methodology, we perform systems-level analysis, which includes numerical tasks such as the computation of coarse steady state solutions, coarse bifurcation analysis, as well as coarse stability analysis. Dynamically stable and unstable macroscopic (population level) steady state solutions are computed by means of bifurcation analysis utilising short bursts of fine-scale simulations, and the range of bistability is determined for different sizes of cell populations. The results are compared with the deterministic cell population balance model, which is valid for large populations, and we demonstrate the increased effect of stochasticity in small size populations with asymmetric partitioning mechanisms. PMID:24929336

  10. Bisphenol A Induces Fatty Liver by an Endocannabinoid-Mediated Positive Feedback Loop.

    PubMed

    Martella, Andrea; Silvestri, Cristoforo; Maradonna, Francesca; Gioacchini, Giorgia; Allarà, Marco; Radaelli, Giuseppe; Overby, Darryl R; Di Marzo, Vincenzo; Carnevali, Oliana

    2016-05-01

    The xenoestrogen bisphenol A (BPA) is a widespread plasticizer detectable within several ecosystems. BPA is considered a metabolic disruptor, affecting different organs; however, little is known about its mechanism of action in the liver, in which it triggers triglyceride accumulation. Adult zebrafish (Danio rerio) exposed to BPA developed hepatosteatosis, which was associated with an increase in the liver levels of the obesogenic endocannabinoids 2-arachidonoylglycerol and anandamide and a concomitant decrease in palmitoylethanolamide. These changes were associated with variations in the expression of key endocannabinoid catabolic and metabolic enzymes and an increase in the expression of the endocannabinoid receptor cnr1. Acute and chronic in vitro treatments with nano- and micromolar BPA doses showed increased anandamide levels in line with decreased activity of fatty acid amide hydrolase, the main anandamide hydrolytic enzyme, and induced triglyceride accumulation in HHL-5 cells in a CB1-dependent manner. We conclude that BPA is able to produce hepatosteatosis in zebrafish and human hepatocytes by up-regulating the endocannabinoid system. PMID:27014939

  11. Pedunculopontine tegmental nucleus lesions impair probabilistic reversal learning by reducing sensitivity to positive reward feedback.

    PubMed

    Syed, Anam; Baker, Phillip M; Ragozzino, Michael E

    2016-05-01

    Recent findings indicate that pedunculopontine tegmental nucleus (PPTg) neurons encode reward-related information that is context-dependent. This information is critical for behavioral flexibility when reward outcomes change signaling a shift in response patterns should occur. The present experiment investigated whether NMDA lesions of the PPTg affects the acquisition and/or reversal learning of a spatial discrimination using probabilistic reinforcement. Male Long-Evans rats received a bilateral infusion of NMDA (30nmoles/side) or saline into the PPTg. Subsequently, rats were tested in a spatial discrimination test using a probabilistic learning procedure. One spatial location was rewarded with an 80% probability and the other spatial location rewarded with a 20% probability. After reaching acquisition criterion of 10 consecutive correct trials, the spatial location - reward contingencies were reversed in the following test session. Bilateral and unilateral PPTg-lesioned rats acquired the spatial discrimination test comparable to that as sham controls. In contrast, bilateral PPTg lesions, but not unilateral PPTg lesions, impaired reversal learning. The reversal learning deficit occurred because of increased regressions to the previously 'correct' spatial location after initially selecting the new, 'correct' choice. PPTg lesions also reduced the frequency of win-stay behavior early in the reversal learning session, but did not modify the frequency of lose-shift behavior during reversal learning. The present results suggest that the PPTg contributes to behavioral flexibility under conditions in which outcomes are uncertain, e.g. probabilistic reinforcement, by facilitating sensitivity to positive reward outcomes that allows the reliable execution of a new choice pattern. PMID:26976089

  12. Formononetin promotes proliferation that involves a feedback loop of microRNA-375 and estrogen receptor alpha in estrogen receptor-positive cells.

    PubMed

    Chen, Jian; Zhang, Xing; Wang, Yong; Ye, Yu; Huang, Zhaoquan

    2016-03-01

    Formononetin is an O-methylated isoflavone that is isolated from the root of Astragalus membranaceus, and it has antitumorigenic effects. Our previous studies found that formononetin triggered growth-inhibitory and apoptotic activities in MCF-7 breast cancer cells. To further investigate the potential effect of formononetin in promoting cell proliferation in estrogen receptor (ER)-positive cells, we used in vivo and in vitro studies to elucidate the possible mechanism. ERα-positive cells (HUVEC, MCF-7) were treated with formononetin. The CCK8 assay, Hoechst 33258, and flow cytometry were used to assess cell proliferation and apoptosis. mRNA levels of ERα, Bcl-2, and miR-375 were quantified using real-time polymerase chain reaction. ERα, p-Akt, and Bcl-2 expression was determined using Western blot. Compared with the control, low formononetin concentrations (2-6 μM) stimulated ERα-positive cell proliferation (HUVEC, MCF-7). The more sensitive HUVEC cells were used to study the relevant signaling pathway. After treatment with formononetin, ERα, miR-375, p-Akt, and Bcl-2 expression was significantly upregulated. The proliferative effect of formononetin was also blocked by a miR-375 inhibitor or raloxifene pretreatment. Additionally, in the in vivo studies, uterine weight in ovariectomized mice treated with formononetin increased significantly, but the weight dramatically decreased with raloxifene or miR-375 inhibitor pretreatment before formononetin. This study demonstrated that formononetin promoted ERα-positive cell proliferation through miR-375 activation and this mechanism is possibly involving in a miR-375 and ERα feedback loop. © 2015 Wiley Periodicals, Inc. PMID:25663261

  13. HMGB1 modulates Lewis cell autophagy and promotes cell survival via RAGE-HMGB1-Erk1/2 positive feedback during nutrient depletion.

    PubMed

    Su, Zhaoliang; Wang, Ting; Zhu, Haitao; Zhang, Pan; Han, Rongxia; Liu, Yueqin; Ni, Ping; Shen, Huiling; Xu, Wenlin; Xu, Huaxi

    2015-05-01

    Autophagy is a self-digesting mechanism responsible for the removal of long-lived proteins and damaged organelles by lysosomes. It also allows cells to survive during nutrient depletion and/or in the absence of growth factors. High-mobility group protein 1 (HMGB1) is a highly-conserved nuclear protein that has been associated with cell autophagy; however, the mechanisms responsible for this role remain unclear. Many reports have demonstrated that autophagy represents a survival strategy for tumor cells during nutrient depletion, oxidative stress and DNA damage. In the present study, we explored the mechanisms whereby HMGB1 regulates tumor cell autophagy during nutrient depletion (the cells were cultured in Hank's balanced salt solution, HBSS). HMGB1 expression in Lewis cells increased and the protein was shuttled from the nucleus to the cytoplasm and was secreted, coincident with up-regulation of autophagy. Prevention of HMGB1 binding to the receptor for advanced glycation end products (RAGE) or knock-down of HMGB1 expression led to inhibition of autophagy and increased apoptosis. These results demonstrated a positive feedback pathway whereby starvation of Lewis cells promoted HMGB1 secretion, allowing cells to survive by regulating autophagy via a RAGE-HMGB1-extracellular signal-regulated kinase1/2-dependent pathway. These results also implicate HMGB1 as a potential risk factor for cancer growth and metastasis. PMID:25578401

  14. Water Vapor Feedback and Links to Mechanisms of Recent Tropical Climate Variations

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Miller, Tim L.

    2008-01-01

    Recent variations of tropical climate on interannual to near-decadal scales have provided a useful target for studying feedback processes. A strong warm/cold ENSO couplet (e.g. 1997-2000) along with several subsequent weaker events are prominent interannual signals that are part of an apparent longer term strengthening of the Walker circulation during the mid to late1990 s with some weakening thereafter. Decadal scale changes in tropical SST structure during the 1990s are accompanied by focusing of precipitation over the Indo-Pacific warm pool and an increase in tropical ocean evaporation of order 1.0 %/decade. Here we use a number of diverse satellite measurements to explore connections between upper-tropospheric humidity (UTH) variations on these time scales and changes in other water and energy fluxes. Precipitation (GPCP, TRMM), turbulent fluxes (OAFlux), and radiative fluxes (ERBE / CERES, SRB) are use to analyze vertically-integrated divergence of moist static energy, divMSE, and its dry and moist components. Strong signatures of MSE flux transport linking ascending and descending regions of tropical circulations are found. Relative strengths of these transports compared to radiative flux changes are interpreted as a measure of efficiency in the overall process of heat rejection during episodes of warm or cold SST forcing. In conjunction with the diagnosed energy transports we explore frequency distributions of upper-tropospheric humidity as inferred from SSM/T-2 and AMSU-B passive microwave measurements. Relating these variations to SST changes suggests positive water vapor feedback, but at a level reduced from constant relative humidity.

  15. Investigating feedback mechanisms between stress and grain-size: preliminary findings from finite-element modelling

    NASA Astrophysics Data System (ADS)

    Cross, A. J.; Prior, D. J.; Ellis, S. M.

    2012-12-01

    It is widely accepted that changes in stress and grain size can induce a switch between grain-size insensitive (GSI) and sensitive (GSS) creep mechanisms. Under steady-state conditions, grains evolve to an equilibrium size in the boundary region between GSS and GSI, described by the paleopiezometer for a given material. Under these conditions, significant rheological weakening is not expected, as grain size reduction processes are balanced by grain growth processes. However, it has been shown that the stress field surrounding faults varies through the seismic cycle, with both rapid loading and unloading of stress possible in the co- and post-seismic stages. We propose that these changes in stress in the region of the brittle-ductile transition zone may be sufficient to force a deviation from the GSI-GSS boundary and thereby cause a change in grain size and creep mechanism prior to system re-equilibration. Here we present preliminary findings from numerical modelling of stress and grain size changes in response to loading of mechanical inhomogeneities. Our results are attained using a grain-size evolution (GSE) subroutine incorporated into the SULEC finite-element code developed by Susan Ellis and Susanne Buiter, which utilises an iterative approach of solving for spatial and temporal changes in differential stress, grain size and active creep mechanism. Preliminary models demonstrate that stress changes in response to the opening of a fracture in a flowing medium can be significant enough to cause a switch from GSI to GSS creep. These results are significant in the context of understanding spatial variations and feedback between stress, grain size and deformation mechanisms through the seismic cycle.

  16. Evolutionary feedback: a new mechanism for stasis and punctuated evolutionary change based on integration of the organism.

    PubMed

    Seaborg, D M

    1999-05-01

    This paper argues that organisms are integrated, holistic systems whose phenotypic traits and genes interact with each other and natural selection. More than this, organisms are feedback systems. I introduce the term integration of the organism to refer to this idea that organisms are such interacting systems. Integration of the organisms is a major reason why most mutations are deleterious, and why the larger a mutation's effect, the greater the probability that a mutation will be deleterious. Yet, it is also why macromutations can occasionally be adaptive. Such adaptive mutations of large effect, an example of which is neoteny, must be coordinated with the generic system and ontogeny of the organism. Integration of the organism and the ability of both the phenotype and genotype to influence and interact with natural selection means a species can undergo sequential evolution, a term I coin in this paper to refer to a change in a trait causing a change in selection on a second trait, which leads to a change in the second trait, which in turn causes a change in selection on a third trait, changing it, and so on. Sequential evolution can sometimes result in closed feedback loops, in which a trait farther down the sequence affects a trait earlier in the sequence of traits. I call this process evolutionary feedback. Both sequential evolution and evolutionary feedback can sometimes cause punctuated evolutionary change. Evolutionary feedback can also act as a mechanism for stasis. Hence, evolutionary feedback is a mechanism for punctuated equilibrium. I propose that species to a large extent influence, even drive, their own evolution. This, of course, is not to suggest they do so willfully or consciously. It is proposed that there are three mechanisms for punctuated evolutionary change; these are described. Examples of and evidence for sequential evolution and punctuated evolution by evolutionary feedback are presented. PMID:10329112

  17. Mechanisms for Generating False Positives for Extrasolar Life

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, Shawn; Meadows, Victoria; Schwieterman, Edward; Luger, Rodrigo; Wordsworth, Robin; Barnes, Rory; Segura, Antigona; Claire, Mark; Virtual Planetary Laboratory

    2015-01-01

    Future mission concepts designed to look for life generally plan to search for oxygen (O2), ozone (O3), and/or methane (CH4). However, mechanisms exist for generating each of these species abiotically. In this presentation, we will review these processes, and discuss the atmospheres that result from them. In general, false positives can form in atmospheres with severe redox imbalance. This redox imbalance can also be thought of as extreme elemental composition, skewed towards very high or very low O/H ratios. Specific examples of this include: 1) loss of H through the top of a planetary atmosphere that leads to high O/H and an atmosphere rich in O2 and O3 2) atmospheres whose volcanism is O-rich and H-poor (i.e., highly oxidized), which leads to an atmosphere that with high O/H that can accumulate O3 and potentially O2 3) atmospheres in which H escape is slow, leading to low O/H and accumulation of CH4 and 4) atmospheres in which volcanic outgassing is H-rich (highly reduced), leading to low O/H and potential accumulation of CH4. Each of these cases would constitute a 'false positive' for life if O2, O3, or CH4 were detected without obtaining the chemical atmospheric context that could indicate a severe redox imbalance exists.Methods exist for discriminating between these 'false positives' where the gases arise from abiotic sources, and 'true positives' where the gases arise by biological sources. The best means of doing this is to obtain measurements of both O-rich (O2/O3) and H-rich (CH4) species, allowing identification of non-extreme O/H ratios in the atmosphere, and eliminating this abiotic source of O2, O3, and CH4. Because this is the most likely cause of abiotic production of these species, the elimination of this explanation would indicate that these gases were instead likely produced by biology.More specific methods to identify each of these false positives mechanisms also exist, but will not be discussed in detail in this presentation.

  18. PYK2 integrates growth factor and cytokine receptors signaling and potentiates breast cancer invasion via a positive feedback loop

    PubMed Central

    Selitrennik, Michael; Lev, Sima

    2015-01-01

    The involvement of ErbB family members in breast cancer progression and metastasis has been demonstrated by many studies. However, the downstream effectors that mediate their migratory and invasive responses have not been fully explored. In this study, we show that the non-receptor tyrosine kinase PYK2 is a key effector of EGFR and HER2 signaling in human breast carcinoma. We found that PYK2 is activated by both EGF and heregulin (HRG) in breast cancer cells, and positively regulates EGF/HRG-induced cell spreading, migration and invasion. PYK2 depletion markedly affects ERK1/2 and STAT3 phosphorylation in response to EGF/HRG as well as to IL8 treatment. Importantly, PYK2 depletion also reduced EGF/HRG-induced MMP9 and IL8 transcription, while IL8 inhibition abrogated EGF-induced MMP9 transcription and attenuated cell invasion. IL8, which is transcriptionally regulated by STAT3 and induces PYK2 activation, prolonged EGF-induced PYK2, STAT3 and ERK1/2 phosphorylation suggesting that IL8 acts through an autocrine loop to reinforce EGF-induced signals. Collectively our studies suggest that PYK2 is a common downstream effector of ErbB and IL8 receptors, and that PYK2 integrates their signaling pathways through a positive feedback loop to potentiate breast cancer invasion. Hence, PYK2 could be a potential therapeutic target for a subset of breast cancer patients. PMID:26084289

  19. The positive effect of mirror visual feedback on arm control in children with spastic hemiparetic cerebral palsy is dependent on which arm is viewed.

    PubMed

    Smorenburg, Ana R P; Ledebt, Annick; Feltham, Max G; Deconinck, Frederik J A; Savelsbergh, Geert J P

    2011-09-01

    Mirror visual feedback has previously been found to reduce disproportionate interlimb variability and neuromuscular activity in the arm muscles in children with Spastic Hemiparetic Cerebral Palsy (SHCP). The aim of the current study was to determine whether these positive effects are generated by the mirror per se (i.e. the illusory perception of two symmetrically moving limbs, irrespective of which arm generates the mirror visual feedback) or by the visual illusion that the impaired arm has been substituted and appears to move with less jerk and in synchrony with the less-impaired arm (i.e. by mirror visual feedback of the less-impaired arm only). Therefore, we compared the effect of mirror visual feedback from the impaired and the less-impaired upper limb on the bimanual coupling and neuromuscular activity during a bimanual coordination task. Children with SHCP were asked to perform a bimanual symmetrical circular movement in three different visual feedback conditions (i.e. viewing the two arms, viewing only one arm, and viewing one arm and its mirror image), combined with two head orientation conditions (i.e. looking from the impaired and looking from the less-impaired body side). It was found that mirror visual feedback resulted in a reduction in the eccentric activity of the Biceps Brachii Brevis in the impaired limb compared to the condition with actual visual feedback from the two arms. More specifically, this effect was exclusive to mirror visual feedback from the less-impaired arm and absent when mirror visual feedback from the impaired arm was provided. Across conditions, the less-impaired arm was the leading limb, and the nature of this coupling was independent from visual condition or head orientation. Also, mirror visual feedback did not affect the intensity of the mean neuromuscular activity or the muscle activity of the Triceps Brachii Longus. It was concluded that the positive effects of mirror visual feedback in children with SHCP are not just the result of the perception of two symmetrically moving limbs. Instead, in order to induce a decrease in eccentric neuromuscular activity in the impaired limb, mirror visual feedback from the 'unaffected' less-impaired limb is required. PMID:21766223

  20. A protonation-coupled feedback mechanism controls the signalling process in bathy phytochromes.

    PubMed

    Velazquez Escobar, Francisco; Piwowarski, Patrick; Salewski, Johannes; Michael, Norbert; Fernandez Lopez, Maria; Rupp, Anna; Qureshi, Bilal Muhammad; Scheerer, Patrick; Bartl, Franz; Frankenberg-Dinkel, Nicole; Siebert, Friedrich; Andrea Mroginski, Maria; Hildebrandt, Peter

    2015-05-01

    Phytochromes are bimodal photoswitches composed of a photosensor and an output module. Photoactivation of the sensor is initiated by a double bond isomerization of the tetrapyrrole chromophore and eventually leads to protein conformational changes. Recently determined structural models of phytochromes identify differences between the inactive and the signalling state but do not reveal the mechanism of photosensor activation or deactivation. Here, we report a vibrational spectroscopic study on bathy phytochromes that demonstrates that the formation of the photoactivated state and thus (de)activation of the output module is based on proton translocations in the chromophore pocket coupling chromophore and protein structural changes. These proton transfer steps, involving the tetrapyrrole and a nearby histidine, also enable thermal back-isomerization of the chromophore via keto-enol tautomerization to afford the initial dark state. Thus, the same proton re-arrangements inducing the (de)activation of the output module simultaneously initiate the reversal of this process, corresponding to a negative feedback mechanism. PMID:25901821

  1. [Feedback control mechanisms of plant cell expansion]. Progress report, [June 1989--June 1992

    SciTech Connect

    Cosgrove, D.J.

    1992-12-31

    We have generated considerable evidence for the significance of wall stress relaxation in the control of plant growth and found that several agents (gibberellin, light, genetic loci for dwarf stature) influence growth rate via alteration of wall relaxation. We have refined our methods for measuring wall relaxation and, moreover, have found that wall relaxation properties bear only a distance relationship to wall mechanical properties. We have garnered novel insights into the nature of cell expansion mechanisms by analyzing spontaneous fluctuations of plant growth rate in seedlings. These experiments involved the application of mathematical techniques for analyzing growth rate fluctuations and the development of new instrumentation for measuring and forcing plant growth in a controlled fashion. These studies conclude that growth rate fluctuations generated by the plant as consequence of a feedback control system. This conclusion has important implications for the nature of wall loosening processes and demands a different framework for thinking about growth control. It also implies the existence of a growth rate sensor.

  2. Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability.

    PubMed

    Zhang, Genyi; Hasek, Like Y; Lee, Byung-Hoo; Hamaker, Bruce R

    2015-04-01

    Glycemic carbohydrates in foods are an important macronutrient providing the biological fuel of glucose for a variety of physiological processes. A classification of glycemic carbohydrates into rapidly digestible carbohydrate (RDC) and slowly digestible carbohydrate (SDC) has been used to specify their nutritional quality related to glucose homeostasis that is essential to normal functioning of the brain and critical to life. Although there have been many studies and reviews on slowly digestible starch (SDS) and SDC, the mechanisms of their slow digestion and absorption were mostly investigated from the material side without considering the physiological processes of their in vivo digestion, absorption, and most importantly interactions with other food components and the gastrointestinal tract. In this article, the physiological processes modulating the bioavailability of carbohydrates, specifically the rate and extent of their digestion and absorption as well as the related locations, in a whole food context, will be discussed by focusing on the activities of the gastrointestinal tract including glycolytic enzymes and glucose release, sugar sensing, gut hormones, and neurohormonal negative feedback mechanisms. It is hoped that a deep understanding of these physiological processes will facilitate the development of innovative dietary approaches to achieve desired carbohydrate or glucose bioavailability for improved health. PMID:25686469

  3. Mechanisms and Feedbacks Causing Changes in Upper Stratospheric Ozone in the 21st Century

    NASA Technical Reports Server (NTRS)

    Oman, Luke; Waugh, D. W.; Kawa, S. R.; Stolarski, R. S.; Douglass, A. R.; Newman, P. A.

    2009-01-01

    Stratospheric ozone is expected to increase during the 21st century as the abundance of halogenated ozone-depleting substances decrease to 1960 values. However, climate change will likely alter this "recovery" of stratospheric ozone by changing stratospheric temperatures, circulation, and abundance of reactive chemical species. Here we quantity the contribution of different mechanisms to changes in upper stratospheric ozone from 1960 to 2100 in the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM), using multiple linear regression analysis applied to simulations using either Alb or A2 greenhouse gas (GHG) scenarios. In both these scenarios upper stratospheric ozone has a secular increase over the 21st century. For the simulation using the Alb GHG scenario, this increase is determined by the decrease in halogen amounts and the greenhouse gas induced cooling, with roughly equal contributions from each mechanism. There is a larger cooling in the simulation using the A2 GHG scenario, but also enhanced loss from higher NOy and HOx concentrations, which nearly offsets the increase due to cooler temperatures. The resulting ozone evolutions are similar in the A2 and Alb simulations. The response of ozone due to feedbacks from temperature and HOx changes, related to changing halogen concentrations, are also quantified using simulations with fixed halogen concentrations.

  4. Theoretical models for the mechanisms of benign paroxysmal positional vertigo.

    PubMed

    House, Mattew G; Honrubia, Vicente

    2003-01-01

    Benign paroxysmal positional vertigo (BPPV) is a common vestibular disorder resulting from a malfunction of the semicircular canal. Prior studies attempting to elucidate the mechanics of BPPV have focused on clinical and laboratory findings, and have discussed theoretical aspects only in qualitative terms. The goal of this study is to create a mathematical description of BPPV mechanics based on biophysical principles, in order to improve the physiopathological understanding of the most common varieties of the disorder, canalithiasis and cupulolithiasis. First, the abnormal stimulus being applied to the vestibular system during BPPV episodes is estimated by an analysis of the vestibulo-ocular reflex (VOR) response of clinical BPPV patients. The magnitude and time course of the head motion stimulus that would, in a normal test subject, produce a VOR response similar to that observed during BPPV nystagmus are inferred from eye motion data using an inverse transfer function approach. Next, physicomathematical models to describe the mechanics of the abnormal stimulations of the crista are created: the cupulolithiasis model is based on the principle that dense particulate matter becomes attached to the cupula of affected patients and effectively changes the specific gravity of the cupula; the canalithiasis model is based on the hydrodynamic effects from a cluster of particles falling within the canal endolymph. The stimuli predicted by these two models are compared to the stimuli estimated from physiological and clinical studies. The model predictions are found to be consistent with the empirical evidence for a reasonable set of model parameters. The cupulolithiasis model predicts a value of 0.69 micro g as the mass of particles contributing to the disorder. The canalithiasis model predicts a value of 0.087 micro g. These results support and expand our understanding of the mechanisms underlying the production of the cupulolithiasis and canalithiasis varieties of vertigo in humans. On the basis of these models, several predictions that can help the clinician improve the evaluation of BPPV patients are discussed. PMID:12634457

  5. Treatment with recombinant lubricin attenuates osteoarthritis by positive feedback loop between articular cartilage and subchondral bone in ovariectomized rats.

    PubMed

    Cui, Zhuang; Xu, Changpeng; Li, Xue; Song, Jinqi; Yu, Bin

    2015-05-01

    Osteoarthritis (OA) is a most commonly multifactorial degenerative joint disease along with the aging population, particularly in postmenopausal women. During the onset of OA, articular cartilage and subchondral bone act in concert as a functional unit. This present study is to investigate the effects of early or late treatment with recombinant lubricin on the onset of osteoarthritis (OA) in ovariectomized (OVX) rats. We found that both early and late recombinant lubricin treatments attenuated the onset of OA by positive feedback loop between articular cartilage and subchondral bone, although late treatment contributed to a lesser effect compared with early treatment. Specifically, treatment with recombinant lubricin protected articular cartilage from degeneration, demonstrated by lower proteoglycan loss, lower OARSI scores, less calcification cartilage zone and reduced immunostaining for collagen X (Col X) and matrix metalloproteinase (MMP-13) but increased the expression of lubricin, in comparison with vehicle-treated OVX rat group. Further, chondroprotective effects of lubricin normalized bone remodeling in subchondral bone underneath. It's suggested that treatment with recombinant lubricin inhibited the elevation of TRAP and Osterix positive cells in OVX rats and led to the normalization of subchondral bone microarchitectures with the suppression of subsidence of bone volume ratio (BV/TV) and trabecular thickness (Tb.Th) and the increase of trabecular separation (Tb.Sp) in vehicle-treated OVX rats. What's more, the normalization of subchondral bone in turn attenuated the articular cartilage erosion by inhibiting vascular invasion from subchondral bone to calcified cartilage zone, exemplified by inhibiting the elevation of CD31 positive cells in calcified cartilage and angiography in subchondral bone. Together, these results shed light that both early and late recombinant lubricin treatments attenuate the onset of OA by balancing the interplay between articular cartilage and subchondral bone in OVX rats, while also providing a further rationale for its therapeutic targeting to postmenopausal OA and suggesting that treatment timing is a pivotal factor for better effect acquisition. PMID:25576671

  6. Cushing Syndrome Due to ACTH-Secreting Pheochromocytoma, Aggravated by Glucocorticoid-Driven Positive-Feedback Loop

    PubMed Central

    Sakuma, Ikki; Higuchi, Seiichiro; Fujimoto, Masanori; Takiguchi, Tomoko; Nakayama, Akitoshi; Tamura, Ai; Kohno, Takashi; Komai, Eri; Shiga, Akina; Nagano, Hidekazu; Hashimoto, Naoko; Suzuki, Sawako; Mayama, Takafumi; Koide, Hisashi; Ono, Katsuhiko; Sasano, Hironobu; Tatsuno, Ichiro; Yokote, Koutaro

    2016-01-01

    Context: Pheochromocytoma is a catecholamine-producing tumor that originates from adrenal chromaffin cells and is capable of secreting various hormones, including ACTH. Case Description: A 56-year-old female presented with Cushingoid appearance and diabetic ketoacidosis. Endocrinological examinations demonstrated ectopic ACTH production with hypercortisolemia and excess urinary cortisol accompanied by elevated plasma and urine catecholamines. Computed tomography revealed a large left adrenal tumor with bilateral adrenal enlargement. Metaiodobenzylguanidine scintigraphy revealed abnormal accumulation in the tumor, which was eventually diagnosed as pheochromocytoma with ectopic ACTH secretion with subsequent manifestation of Cushing's syndrome. Ectopic ACTH secretion and catecholamine production were blocked by metyrapone treatment, whereas dexamethasone paradoxically increased ACTH secretion. Left adrenalectomy resulted in complete remission of Cushing's syndrome and pheochromocytoma. In Vitro Studies: Immunohistological analysis revealed that the tumor contained two functionally distinct chromaffin-like cell types. The majority of tumor cells stained positive for tyrosine hydroxylase (TH), whereas a minor population of ACTH-positive tumor cells was negative for TH. Furthermore, gene expression and in vitro functional analyses using primary tumor tissue cultures demonstrated that dexamethasone facilitated ACTH as well as catecholamine secretion with parallel induction of proopiomelanocortin (POMC), TH, and phenylethanolamine N-methyltransferase mRNA, supporting a glucocorticoid-dependent positive-feedback loop of ACTH secretion in vivo. DNA methylation analysis revealed that the POMC promoter of this tumor, particularly the E2F binding site, was hypomethylated. Conclusion: We present a case of ectopic ACTH syndrome associated with pheochromocytoma. ACTH up-regulation with paradoxical response to glucocorticoid, possibly through the hypomethylation of the POMC promoter, exacerbated the patient's condition. PMID:26700559

  7. Evolution of Double Positive Autoregulatory Feedback Loops in CYCLOIDEA2 Clade Genes Is Associated with the Origin of Floral Zygomorphy[W

    PubMed Central

    Yang, Xia; Pang, Hong-Bo; Liu, Bo-Ling; Qiu, Zhi-Jing; Gao, Qiu; Wei, Lai; Dong, Yang; Wang, Yin-Zheng

    2012-01-01

    Members of the CYCLOIDEA2 (CYC2) clade of the TEOSINTE BRANCHED1, CYCLOIDEA, and PCF transcription factor genes are widely involved in controlling floral zygomorphy, a key innovation in angiosperm evolution, depending on their persistently asymmetric expression in the corresponding floral domains. However, it is unclear how this asymmetric expression is maintained throughout floral development. Selecting Primulina heterotricha as a model, we examined the expression and function of two CYC2 genes, CYC1C and CYC1D. We analyzed the role of their promoters in protein–DNA interactions and transcription activation using electrophoresis mobility shift assays, chromatin immunoprecipitation, and transient gene expression assays. We find that CYC1C and CYC1D positively autoregulate themselves and cross-regulate each other. Our results reveal a double positive autoregulatory feedback loop, evolved for a pair of CYC2 genes to maintain their expression in developing flowers. Further comparative genome analyses, together with the available expression and function data of CYC2 genes in the core eudicots, suggest that this mechanism might have led to the independent origins of floral zygomorphy, which are associated with plant–insect coevolution and the adaptive radiation of angiosperms. PMID:22649271

  8. Reward and Visual Feedback Relative to the Performance and Mechanical Efficiency of High School Girls in the Standing Broad Jump.

    ERIC Educational Resources Information Center

    Zebas, Carole J.

    This study focuses on changes occurring in selected mechanical components of high school girls performing the standing broad jump, and collects data pertaining to the effects of monetary reward and videotape feedback upon the following components: (a) distance jumped, (b) maximum angle of knee flexion, (c) maximum angle of hip flexion, (d) hip

  9. A novel Ca2+-feedback mechanism extends the operating range of mammalian rods to brighter light.

    PubMed

    Vinberg, Frans; Turunen, Teemu T; Heikkinen, Hanna; Pitkänen, Marja; Koskelainen, Ari

    2015-10-01

    Sensory cells adjust their sensitivity to incoming signals, such as odor or light, in response to changes in background stimulation, thereby extending the range over which they operate. For instance, rod photoreceptors are extremely sensitive in darkness, so that they are able to detect individual photons, but remain responsive to visual stimuli under conditions of bright ambient light, which would be expected to saturate their response given the high gain of the rod transduction cascade in darkness. These photoreceptors regulate their sensitivity to light rapidly and reversibly in response to changes in ambient illumination, thereby avoiding saturation. Calcium ions (Ca2+) play a major role in mediating the rapid, subsecond adaptation to light, and the Ca2+-binding proteins GCAP1 and GCAP2 (or guanylyl cyclase-activating proteins [GCAPs]) have been identified as important mediators of the photoreceptor response to changes in intracellular Ca2+. However, mouse rods lacking both GCAP1 and GCAP2 (GCAP-/-) still show substantial light adaptation. Here, we determined the Ca2+ dependency of this residual light adaptation and, by combining pharmacological, genetic, and electrophysiological tools, showed that an unknown Ca2+-dependent mechanism contributes to light adaptation in GCAP-/- mouse rods. We found that mimicking the light-induced decrease in intracellular [Ca2+] accelerated recovery of the response to visual stimuli and caused a fourfold decrease of sensitivity in GCAP-/- rods. About half of this Ca2+-dependent regulation of sensitivity could be attributed to the recoverin-mediated pathway, whereas half of it was caused by the unknown mechanism. Furthermore, our data demonstrate that the feedback mechanisms regulating the sensitivity of mammalian rods on the second and subsecond time scales are all Ca2+ dependent and that, unlike salamander rods, Ca2+-independent background-induced acceleration of flash response kinetics is rather weak in mouse rods. PMID:26415569

  10. A novel Ca2+-feedback mechanism extends the operating range of mammalian rods to brighter light

    PubMed Central

    Turunen, Teemu T.; Heikkinen, Hanna; Pitkänen, Marja

    2015-01-01

    Sensory cells adjust their sensitivity to incoming signals, such as odor or light, in response to changes in background stimulation, thereby extending the range over which they operate. For instance, rod photoreceptors are extremely sensitive in darkness, so that they are able to detect individual photons, but remain responsive to visual stimuli under conditions of bright ambient light, which would be expected to saturate their response given the high gain of the rod transduction cascade in darkness. These photoreceptors regulate their sensitivity to light rapidly and reversibly in response to changes in ambient illumination, thereby avoiding saturation. Calcium ions (Ca2+) play a major role in mediating the rapid, subsecond adaptation to light, and the Ca2+-binding proteins GCAP1 and GCAP2 (or guanylyl cyclase–activating proteins [GCAPs]) have been identified as important mediators of the photoreceptor response to changes in intracellular Ca2+. However, mouse rods lacking both GCAP1 and GCAP2 (GCAP−/−) still show substantial light adaptation. Here, we determined the Ca2+ dependency of this residual light adaptation and, by combining pharmacological, genetic, and electrophysiological tools, showed that an unknown Ca2+-dependent mechanism contributes to light adaptation in GCAP−/− mouse rods. We found that mimicking the light-induced decrease in intracellular [Ca2+] accelerated recovery of the response to visual stimuli and caused a fourfold decrease of sensitivity in GCAP−/− rods. About half of this Ca2+-dependent regulation of sensitivity could be attributed to the recoverin-mediated pathway, whereas half of it was caused by the unknown mechanism. Furthermore, our data demonstrate that the feedback mechanisms regulating the sensitivity of mammalian rods on the second and subsecond time scales are all Ca2+ dependent and that, unlike salamander rods, Ca2+-independent background-induced acceleration of flash response kinetics is rather weak in mouse rods. PMID:26415569

  11. REDBACK: an Open-Source Highly Scalable Simulation Tool for Rock Mechanics with Dissipative Feedbacks

    NASA Astrophysics Data System (ADS)

    Poulet, T.; Veveakis, M.; Paesold, M.; Regenauer-Lieb, K.

    2014-12-01

    Multiphysics modelling has become an indispensable tool for geoscientists to simulate the complex behaviours observed in their various fields of study where multiple processes are involved, including thermal, hydraulic, mechanical and chemical (THMC) laws. This modelling activity involves simulations that are computationally expensive and its soaring uptake is tightly linked to the increasing availability of supercomputing power and easy access to powerful nonlinear solvers such as PETSc (http://www.mcs.anl.gov/petsc/). The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a finite-element, multiphysics framework (http://mooseframework.org) that can harness such computational power and allow scientists to develop easily some tightly-coupled fully implicit multiphysics simulations that run automatically in parallel on large clusters. This open-source framework provides a powerful tool to collaborate on numerical modelling activities and we are contributing to its development with REDBACK (https://github.com/pou036/redback), a module for Rock mEchanics with Dissipative feedBACKs. REDBACK builds on the tensor mechanics finite strain implementation available in MOOSE to provide a THMC simulator where the energetic formulation highlights the importance of all dissipative terms in the coupled system of equations. We show first applications of fully coupled dehydration reactions triggering episodic fluid transfer through shear zones (Alevizos et al, 2014). The dimensionless approach used allows focusing on the critical underlying variables which are driving the resulting behaviours observed and this tool is specifically designed to study material instabilities underpinning geological features like faulting, folding, boudinage, shearing, fracturing, etc. REDBACK provides a collaborative and educational tool which captures the physical and mathematical understanding of such material instabilities and provides an easy way to apply this knowledge to realistic scenarios, where the size and complexity of the geometries considered, along with the material parameters distributions, add as many sources of different instabilities. References: Alevizos, S., T. Poulet, and E. Veveakis (2014), J. Geophys. Res., 119, 4558-4582, doi:10.1002/2013JB010070.

  12. LIM Homeobox 8 (Lhx8) Is a Key Regulator of the Cholinergic Neuronal Function via a Tropomyosin Receptor Kinase A (TrkA)-mediated Positive Feedback Loop*

    PubMed Central

    Tomioka, Takeyasu; Shimazaki, Takuya; Yamauchi, Toshihiko; Oki, Toru; Ohgoh, Makoto; Okano, Hideyuki

    2014-01-01

    Basal forebrain cholinergic neurons play an important role in cognitive functions such as learning and memory, and they are affected in several neurodegenerative diseases, including Alzheimer disease and Down syndrome. Despite their functional importance, the molecular mechanisms of functional maturation and maintenance of these cholinergic neurons after the differentiation stage have not been fully elucidated. This study demonstrates that the LIM homeobox 8 (Lhx8) transcription factor regulates cholinergic function in rat septal cholinergic neurons in primary cultures from E18.5 embryos and in the adult brain. Lhx8 expression modulated tropomyosin receptor kinase A (TrkA) expression in septal cholinergic neurons in vitro and in vivo, resulting in regulated acetylcholine release as an index of cholinergic function. In addition, Lhx8 expression and function were regulated by nerve growth factor (NGF), and the effect of NGF was potentiated by Lhx8-induced TrkA expression. Together, our findings suggest that positive feedback regulation between Lhx8, TrkA, and NGF is an important regulatory mechanism for cholinergic functions of the septum. PMID:24265310

  13. A positive feedback loop of p53/miR-19/TP53INP1 modulates pancreatic cancer cell proliferation and apoptosis.

    PubMed

    Wang, Xiaofang; Wang, Lei; Mo, Qingjiang; Jia, Ankui; Dong, Yuqian; Wang, Guoqiang

    2016-01-01

    Pancreatic cancer is a common malignancy whose prognosis and treatment of pancreatic cancer is extremely poor, with only 20% of patients reaching two years of survival. Previous findings have shown that the tumor suppressor p53 is involved in the development of various types of cancer, including pancreatic cancer. Additionally, p53 is able to activate TP53INP1 transcription by regulating several phenotypes of cancer cells. Using gain and loss-of-function assays, the aim of the present study was to examine the relationships between miR-19a/b and cancer development as well as potential underlying mechanisms. The results showed that miR-19a/b identified a positive feedback regulation of p53/TP53INP1 axis. Additionally, p53 upregulated the TP53INP1 level in pancreatic cancer cells. However, overexpressed miR-19a/b partially restored the TP53 function in the pancreatic cancer cells while miR-19a/b downregulated TP53INP1 protein by directly targeting 3'UTR of its mRNA at the post-transcriptional level. In addition, the patient tissues identified that the miR-19a/b level in pancreatic cancer tissues was conversely correlated with TP53 and TP53INP1 expression. The results provide evidence for revealing the molecular mechanism involved in the development of pancreatic cancer and may be useful in the identification of new therapeutic targets for pancreatic cancer. PMID:26531836

  14. The synaptonemal complex is assembled by a polySUMOylation-driven feedback mechanism in yeast.

    PubMed

    Leung, Wing-Kit; Humphryes, Neil; Afshar, Negar; Argunhan, Bilge; Terentyev, Yaroslav; Tsubouchi, Tomomi; Tsubouchi, Hideo

    2015-11-23

    During meiotic prophase I, proteinaceous structures called synaptonemal complexes (SCs) connect homologous chromosomes along their lengths via polymeric arrays of transverse filaments (TFs). Thus, control of TF polymerization is central to SC formation. Using budding yeast, we show that efficiency of TF polymerization closely correlates with the extent of SUMO conjugation to Ecm11, a component of SCs. HyperSUMOylation of Ecm11 leads to highly aggregative TFs, causing frequent assembly of extrachromosomal structures. In contrast, hypoSUMOylation leads to discontinuous, fragmented SCs, indicative of defective TF polymerization. We further show that the N terminus of the yeast TF, Zip1, serves as an activator for Ecm11 SUMOylation. Coexpression of the Zip1 N terminus and Gmc2, a binding partner of Ecm11, is sufficient to induce robust polySUMOylation of Ecm11 in nonmeiotic cells. Because TF assembly is mediated through N-terminal head-to-head associations, our results suggest that mutual activation between TF assembly and Ecm11 polySUMOylation acts as a positive feedback loop that underpins SC assembly. PMID:26598615

  15. Separable Neural Mechanisms Contribute to Feedback Processing in a Rule-Learning Task

    ERIC Educational Resources Information Center

    Zanolie, K.; Van Leijenhorst, L.; Rombouts, S. A. R. B.; Crone, E. A.

    2008-01-01

    To adjust performance appropriately to environmental demands, it is important to monitor ongoing action and process performance feedback for possible errors. In this study, we used fMRI to test whether medial prefrontal cortex (PFC)/anterior cingulate cortex (ACC) and dorsolateral (DL) PFC have different roles in feedback processing. Twenty adults…

  16. Video-feedback Intervention to promote Positive Parenting adapted to Autism (VIPP-AUTI): A randomized controlled trial.

    PubMed

    Poslawsky, Irina E; Naber, Fabiënne Ba; Bakermans-Kranenburg, Marian J; van Daalen, Emma; van Engeland, Herman; van IJzendoorn, Marinus H

    2015-07-01

    In a randomized controlled trial, we evaluated the early intervention program Video-feedback Intervention to promote Positive Parenting adapted to Autism (VIPP-AUTI) with 78 primary caregivers and their child (16-61 months) with Autism Spectrum Disorder. VIPP-AUTI is a brief attachment-based intervention program, focusing on improving parent-child interaction and reducing the child's individual Autism Spectrum Disorder-related symptomatology in five home visits. VIPP-AUTI, as compared with usual care, demonstrated efficacy in reducing parental intrusiveness. Moreover, parents who received VIPP-AUTI showed increased feelings of self-efficacy in child rearing. No significant group differences were found on other aspects of parent-child interaction or on child play behavior. At 3-months follow-up, intervention effects were found on child-initiated joint attention skills, not mediated by intervention effects on parenting. Implementation of VIPP-AUTI in clinical practice is facilitated by the use of a detailed manual and a relatively brief training of interveners. PMID:24919961

  17. A Positive Feedback Loop Involving Gcm1 and Fzd5 Directs Chorionic Branching Morphogenesis in the Placenta

    PubMed Central

    Lu, Jinhua; Zhang, Shuang; Nakano, Haruo; Simmons, David G.; Wang, Shumin; Kong, Shuangbo; Wang, Qiang; Shen, Lianju; Tu, Zhaowei; Wang, Weixiang; Wang, Bingyan; Wang, Hongmei; Wang, Yanling; van Es, Johan H.; Clevers, Hans; Leone, Gustavo; Cross, James C.; Wang, Haibin

    2013-01-01

    Chorioallantoic branching morphogenesis is a key milestone during placental development, creating the large surface area for nutrient and gas exchange, and is therefore critical for the success of term pregnancy. Several Wnt pathway molecules have been shown to regulate placental development. However, it remains largely unknown how Wnt-Frizzled (Fzd) signaling spatiotemporally interacts with other essential regulators, ensuring chorionic branching morphogenesis and angiogenesis during placental development. Employing global and trophoblast-specific Fzd5-null and Gcm1-deficient mouse models, combining trophoblast stem cell lines and tetraploid aggregation assay, we demonstrate here that an amplifying signaling loop between Gcm1 and Fzd5 is essential for normal initiation of branching in the chorionic plate. While Gcm1 upregulates Fzd5 specifically at sites where branching initiates in the basal chorion, this elevated Fzd5 expression via nuclear β-catenin signaling in turn maintains expression of Gcm1. Moreover, we show that Fzd5-mediated signaling induces the disassociation of cell junctions for branching initiation via downregulating ZO-1, claudin 4, and claudin 7 expressions in trophoblast cells at the base of the chorion. In addition, Fzd5-mediated signaling is also important for upregulation of Vegf expression in chorion trophoblast cells. Finally, we demonstrate that Fzd5-Gcm1 signaling cascade is operative during human trophoblast differentiation. These data indicate that Gcm1 and Fzd5 function in an evolutionary conserved positive feedback loop that regulates trophoblast differentiation and sites of chorionic branching morphogenesis. PMID:23610556

  18. Positive feedback loop between introductions of non-native marine species and cultivation of oysters in Europe.

    PubMed

    Mineur, Frederic; Le Roux, Auguste; Maggs, Christine A; Verlaque, Marc

    2014-12-01

    With globalization, agriculture and aquaculture activities are increasingly affected by diseases that are spread through movement of crops and stock. Such movements are also associated with the introduction of non-native species via hitchhiking individual organisms. The oyster industry, one of the most important forms of marine aquaculture, embodies these issues. In Europe disease outbreaks affecting cultivated populations of the naturalized oyster Crassostrea gigas caused a major disruption of production in the late 1960s and early 1970s. Mitigation procedures involved massive imports of stock from the species' native range in the northwestern Pacific from 1971 to 1977. We assessed the role stock imports played in the introduction of non-native marine species (including pathogens) from the northwestern Pacific to Europe through a methodological and critical appraisal of record data. The discovery rate of non-native species (a proxy for the introduction rate) from 1966 to 2012 suggests a continuous vector activity over the entire period. Disease outbreaks that have been affecting oyster production since 2008 may be a result of imports from the northwestern Pacific, and such imports are again being considered as an answer to the crisis. Although successful as a remedy in the short and medium terms, such translocations may bring new diseases that may trigger yet more imports (self-reinforcing or positive feedback loop) and lead to the introduction of more hitchhikers. Although there is a legal framework to prevent or reduce these introductions, existing procedures should be improved. PMID:25047099

  19. INSM1 increases N-myc stability and oncogenesis via a positive-feedback loop in neuroblastoma

    PubMed Central

    Chen, Chiachen; Breslin, Mary B.; Lan, Michael S.

    2015-01-01

    Insulinoma associated-1 (IA-1/INSM1) gene is exclusively expressed during early embryonic development, but has been found to be re-expressed at high levels in neuroendocrine tumors including neuroblastoma. Using over-expression and knockdown experiments in neuroblastoma cells, we showed that INSM1 is critical for cell proliferation, BME-coated invasion, and soft agar colony formation. Here, we identified INSM1 as a novel target gene activated by N-myc in N-myc amplified neuroblastoma cells. The Sonic hedgehog signaling pathway induced INSM1 by increasing N-myc expression. INSM1 activated PI3K/AKT/GSK3β pathways to suppress N-myc phosphorylation (Thr-58) and inhibited degradation of N-myc. Inversely, N-myc protein bound to the E2-box region of the INSM1 promoter and activated INSM1 expression. The invasion assay and the xenograft nude mouse tumor model revealed that the INSM1 factor facilitated growth and oncogenesis of neuroblastoma. The current data supports our hypothesis that a positive-feedback loop of sonic hedgehog signaling induced INSM1 through N-myc and INSM1 enhanced N-myc stability contributing to the transformation of human neuroblastoma. PMID:26456864

  20. Understanding the mechanisms underlying voluntary responses to pitch-shifted auditory feedback

    PubMed Central

    Patel, Sona; Nishimura, Cristina; Lodhavia, Anjli; Korzyukov, Oleg; Parkinson, Amy; Robin, Donald A.; Larson, Charles R.

    2014-01-01

    Previous research has shown that vocal errors can be simulated using a pitch perturbation technique. Two types of responses are observed when subjects are asked to ignore changes in pitch during a steady vowel production, a compensatory response countering the direction of the perceived change in pitch and a following response in the same direction as the pitch perturbation. The present study investigated the nature of these responses by asking subjects to volitionally change their voice fundamental frequency either in the opposite direction (“opposing” group) or the same direction (“following” group) as the pitch shifts (±100 cents, 1000 ms) presented during the speaker's production of an /a/ vowel. Results showed that voluntary responses that followed the stimulus directions had significantly shorter latencies (150 ms) than opposing responses (360 ms). In addition, prior to the slower voluntary opposing responses, there were short latency involuntary responses that followed the stimulus direction. These following responses may involve mechanisms of imitation or vocal shadowing of acoustical stimuli when subjects are predisposed to respond to a change in frequency of a sound. The slower opposing responses may represent a control strategy that requires monitoring and correcting for errors between the feedback signal and the intended vocal goal. PMID:24815283

  1. The viscosity effect on marine particle flux: A climate relevant feedback mechanism

    NASA Astrophysics Data System (ADS)

    Taucher, J.; Bach, L. T.; Riebesell, U.; Oschlies, A.

    2014-04-01

    Oceanic uptake and long-term storage of atmospheric carbon dioxide (CO2) are strongly driven by the marine "biological pump," i.e., sinking of biotically fixed inorganic carbon and nutrients from the surface into the deep ocean (Sarmiento and Bender; Volk and Hoffert). Sinking velocity of marine particles depends on seawater viscosity, which is strongly controlled by temperature (Sharqawy et al.). Consequently, marine particle flux is accelerated as ocean temperatures increase under global warming (Bach et al.). Here we show that this previously overlooked "viscosity effect" could have profound impacts on marine biogeochemical cycling and carbon uptake over the next centuries to millennia. In our global warming simulation, the viscosity effect accelerates particle sinking by up to 25%, thereby effectively reducing the portion of organic matter that is respired in the surface ocean. Accordingly, the biological carbon pump's efficiency increases, enhancing the sequestration of atmospheric CO2 into the ocean. This effect becomes particularly important on longer time scales when warming reaches the ocean interior. At the end of our simulation (4000 A.D.), oceanic carbon uptake is 17% higher, atmospheric CO2 concentration is 180 ppm lower, and the increase in global average surface temperature is 8% weaker when considering the viscosity effect. Consequently, the viscosity effect could act as a long-term negative feedback mechanism in the global climate system.

  2. Model of myosin recruitment to the cell equator for cytokinesis: feedback mechanisms and dynamical regimes

    NASA Astrophysics Data System (ADS)

    Veksler, Alexander; Vavylonis, Dimitrios

    2011-03-01

    The formation and constriction of the contractile ring during cytokinesis, the final step of cell division, depends on the recruitment of motor protein myosin to the cell's equatorial region. During animal cell cytokinesis, cortical myosin filaments (MF) disassemble at the flanking regions and concentrate in the equator. This recruitment depends on myosin motor activity and the Rho proteins that regulate MF assembly and disassembly. Central spindle and astral microtubules help establish a spatial pattern of differential Rho activity. We propose a reaction-diffusion model for the dynamics of MF recruitment to the equatorial region. In the model, the central spindle and mechanical stress promote self-reinforcing MF assembly. Negative feedback is introduced by MF-induced recruitment of inhibitor myosin phosphatase. Our model yields various dynamical regimes and explains both the recruitment of MF to the cleavage furrow and the observed damped MF oscillations in the flanking regions, as well as steady MF assembly. Space and time parameters of MF oscillations are calculated. We predict oscillatory relaxation of cortical MF upon removal of locally-applied external stress.

  3. Utilization of Positive Feedback in a Classroom Environment of Acceptance to Promote Enhanced Learner Self-Concept and Improved Written Performance.

    ERIC Educational Resources Information Center

    Goodman, Alberta Darlene Judith

    In this study, four teachers each taught a composition course at a community college in which they pointed out only those aspects of the students' work which were praiseworthy. On student essays, in their logs, during in-class activities, and during conferences, students were given only positive feedback. The objective of this approach was not to…

  4. Utilization of Positive Feedback in a Classroom Environment of Acceptance to Promote Enhanced Learner Self-Concept and Improved Written Performance.

    ERIC Educational Resources Information Center

    Goodman, Alberta Darlene Judith

    In this study, four teachers each taught a composition course at a community college in which they pointed out only those aspects of the students' work which were praiseworthy. On student essays, in their logs, during in-class activities, and during conferences, students were given only positive feedback. The objective of this approach was not to

  5. Feedback of mechanical effectiveness induces adaptations in motor modules during cycling

    PubMed Central

    De Marchis, Cristiano; Schmid, Maurizio; Bibbo, Daniele; Castronovo, Anna Margherita; D'Alessio, Tommaso; Conforto, Silvia

    2013-01-01

    Recent studies have reported evidence that the motor system may rely on a modular organization, even if this behavior has yet to be confirmed during motor adaptation. The aim of the present study is to investigate the modular motor control mechanisms underlying the execution of pedaling by untrained subjects in different biomechanical conditions. We use the muscle synergies framework to characterize the muscle coordination of 11 subjects pedaling under two different conditions. The first one consists of a pedaling exercise with a strategy freely chosen by the subjects (Preferred Pedaling Technique, PPT), while the second condition constrains the gesture by means of a real time visual feedback of mechanical effectiveness (Effective Pedaling Technique, EPT). Pedal forces, recorded using a pair of instrumented pedals, were used to calculate the Index of Effectiveness (IE). EMG signals were recorded from eight muscles of the dominant leg and Non-negative Matrix Factorization (NMF) was applied for the extraction of muscle synergies. All the synergy vectors, extracted cycle by cycle for each subject, were pooled across subjects and conditions and underwent a 2-dimensional Sammon's non-linear mapping. Seven representative clusters were identified on the Sammon's projection, and the corresponding eight-dimensional synergy vectors were used to reconstruct the repertoire of muscle activation for all subjects and all pedaling conditions (VAF > 0.8 for each individual muscle pattern). Only 5 out of the 7 identified modules were used by the subjects during the PPT pedaling condition, while 2 additional modules were found specific for the pedaling condition EPT. The temporal recruitment of three identified modules was highly correlated with IE. The structure of the identified modules was found similar to that extracted in other studies of human walking, partly confirming the existence of shared and task specific muscle synergies, and providing further evidence on the modularity of the motor system. PMID:23616763

  6. Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale

    NASA Astrophysics Data System (ADS)

    Hausmann, Ute; Czaja, Arnaud; Marshall, John

    2016-05-01

    The turbulent air-sea heat flux feedback (α in W m^{-2} K^{-1} ) is a major contributor to setting the damping timescale of sea surface temperature (SST) anomalies. In this study we compare the spatial distribution and magnitude of α in the North Atlantic and the Southern Ocean, as estimated from the ERA-Interim reanalysis dataset. The comparison is rationalized in terms of an upper bound on the heat flux feedback, associated with "fast" atmospheric export of temperature and moisture anomalies away from the marine boundary layer, and a lower bound associated with "slow" export. It is found that regions of cold surface waters (≤ 10° C) are best described as approaching the slow export limit. This conclusion is not only valid at the synoptic scale resolved by the reanalysis data, but also on basin scales. In particular, it applies to the heat flux feedback acting as circumpolar SST anomaly scales are approached in the Southern Ocean, with feedbacks of ≤ 10 W m^{-2} K^{-1} . In contrast, the magnitude of the heat flux feedback is close to that expected from the fast export limit over the Gulf Stream and its recirculation with values on the order of ≈40 W m^{-2} K^{-1} . Further analysis suggests that this high value reflects a compensation between a moderate thermodynamic adjustment of the boundary layer, which tends to weaken the heat flux feedback, and an enhancement of the surface winds over warm SST anomalies, which tend to enhance the feedback.

  7. Studying citizen science through adaptive management and learning feedbacks as mechanisms for improving conservation.

    PubMed

    Jordan, Rebecca; Gray, Steven; Sorensen, Amanda; Newman, Greg; Mellor, David; Newman, Greg; Hmelo-Silver, Cindy; LaDeau, Shannon; Biehler, Dawn; Crall, Alycia

    2016-06-01

    Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual-based learning, stresses collaborative and generative insight making and is well-suited for adaptive management. Adaptive-management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real-time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case-study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy-in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning. PMID:26585836

  8. Real-time feedback on knee abduction moment does not improve frontal-plane knee mechanics during jump landings.

    PubMed

    Beaulieu, M L; Palmieri-Smith, R M

    2014-08-01

    Excessive knee abduction loading is a contributing factor to anterior cruciate ligament (ACL) injury risk. The purpose of this study was to determine whether a double-leg landing training program with real-time visual feedback improves frontal-plane mechanics during double- and single-leg landings. Knee abduction angles and moments and vertical ground reaction forces (GRF) of 21 recreationally active women were quantified for double- and single-leg landings before and after the training program. This program consisted of two sessions of double-leg jump landings with real-time visual feedback on knee abduction moments for the experimental group and without real-time feedback for the control group. No significant differences were found between training groups. In comparison with pre-training data, peak knee abduction moments decreased 12% post-training for both double- and single-leg landings; whereas peak vertical GRF decreased 8% post-training for double-leg landings only, irrespective of training group. Real-time feedback on knee abduction moments, therefore, did not significantly improve frontal-plane knee mechanics during landings. The effect of the training program on knee abduction moments, however, transferred from the double-leg landings (simple task) to single-leg landings (more complex task). Consequently, ACL injury prevention efforts may not need to focus on complex tasks during which injury occurs. PMID:23347094

  9. Mechanism of inhibition of tubuloglomerular feedback by CO and cGMP.

    PubMed

    Ren, Yilin; D'Ambrosio, Martin A; Garvin, Jeffrey L; Wang, Hong; Carretero, Oscar A

    2013-07-01

    Tubuloglomerular feedback (TGF) is a mechanism that senses NaCl in the macula densa (MD) and causes constriction of the afferent arteriole. CO, either endogenous or exogenous, inhibits TGF at least in part via cGMP. We hypothesize that CO in the MD, acting via both cGMP-dependent and -independent mechanisms, attenuates TGF by acting downstream from depolarization and calcium entry into the MD cells. In vitro, microdissected rabbit afferent arterioles and their MD were simultaneously perfused and TGF was measured as the decrease in afferent arteriole diameter. MD depolarization was induced with ionophores, while adding the CO-releasing molecule-3 to the MD perfusate at nontoxic concentrations. CO-releasing molecule-3 blunted depolarization-induced TGF at 50 μmol/L, from 3.6±0.4 to 2.5±0.4 µm (P<0.01), and abolished it at 100 μmol/L, to 0.1±0.1 μm (P<0.001; n=6). When cGMP generation was blocked by guanylyl cyclase inhibitor LY83583 added to the MD, CO-releasing molecule-3 no longer affected depolarization-induced TGF at 50 μmol/L (2.9±0.4 versus 3.0±0.4 µm) but partially inhibited TGF at 100 μmol/L (to 1.3±0.2 μm; P<0.05; n=9). Experiments using eicosatetraynoic acid and indomethacin suggest arachidonic acid metabolites do not mediate the cGMP-independent effect of CO. We then added the calcium ionophore A23187 to the MD, which caused TGF (4.1±0.6 μmol/L); A23187-induced TGF was inhibited by CO-releasing molecule-3 at 50 μmol/L (1.9±0.6 μmol/L; P<0.01) and 100 μmol/L (0.2±0.5 μmol/L; P<0.001; n=6). We conclude that CO inhibits TGF acting downstream from depolarization and calcium entry, acting via cGMP at low concentrations, but additional mechanisms of action may be involved at higher concentrations. PMID:23648700

  10. Structures of the Bacillus subtilis Glutamine Synthetase Dodecamer Reveal Large Intersubunit Catalytic Conformational Changes Linked to a Unique Feedback Inhibition Mechanism*

    PubMed Central

    Murray, David S.; Chinnam, Nagababu; Tonthat, Nam Ky; Whitfill, Travis; Wray, Lewis V.; Fisher, Susan H.; Schumacher, Maria A.

    2013-01-01

    Glutamine synthetase (GS), which catalyzes the production of glutamine, plays essential roles in nitrogen metabolism. There are two main bacterial GS isoenzymes, GSI-α and GSI-β. GSI-α enzymes, which have not been structurally characterized, are uniquely feedback-inhibited by Gln. To gain insight into GSI-α function, we performed biochemical and cellular studies and obtained structures for all GSI-α catalytic and regulatory states. GSI-α forms a massive 600-kDa dodecameric machine. Unlike other characterized GS, the Bacillus subtilis enzyme undergoes dramatic intersubunit conformational alterations during formation of the transition state. Remarkably, these changes are required for active site construction. Feedback inhibition arises from a hydrogen bond network between Gln, the catalytic glutamate, and the GSI-α-specific residue, Arg62, from an adjacent subunit. Notably, Arg62 must be ejected for proper active site reorganization. Consistent with these findings, an R62A mutation abrogates Gln feedback inhibition but does not affect catalysis. Thus, these data reveal a heretofore unseen restructuring of an enzyme active site that is coupled with an isoenzyme-specific regulatory mechanism. This GSI-α-specific regulatory network could be exploited for inhibitor design against Gram-positive pathogens. PMID:24158439

  11. Distal regulatory element of the STAT1 gene potentially mediates positive feedback control of STAT1 expression.

    PubMed

    Yuasa, Katsutoshi; Hijikata, Takao

    2016-01-01

    We previously identified a distal regulatory element located approximately 5.5-kb upstream of the signal transducer and activator of transcription 1 (STAT1) gene, thereafter designating it as 5.5-kb upstream regulatory region (5.5URR). In this study, we investigated the functional roles of 5.5URR in the transcriptional regulation of STAT1 gene. A chromosome conformation capture assay indicated physical interaction of 5.5URR with the STAT1 core promoter. In luciferase reporter assays, 5.5URR-combined STAT1 core promoter exhibited significant increase in reporter activity enhanced by forced STAT1 expression or interferon (IFN) treatment, but STAT1 core promoter alone did not. The 5.5URR contained IFN-stimulated response element and GAS sites, which bound STAT1 complexes in electrophoretic mobility shift assays. Consistently, chromatin immunoprecipitation (ChIP) assays of HEK293 cells with Halo-tagged STAT1 expression indicated the association of Halo-tagged STAT1 with 5.5URR. ChIP assays with IFN treatment demonstrated that IFNs promoted the recruitment of Halo-tagged STAT1 to 5.5URR. Forced STAT1 expression or IFN treatment increased the expression of endogenous STAT1 and other IFN signaling pathway components, such as STAT2, IRF9 and IRF1, besides IFN-responsive genes. Collectively, the results suggest that 5.5URR may provide a regulatory platform for positive feedback control of STAT1 expression possibly to amplify or sustain the intracellular IFN signals. PMID:26592235

  12. The role of feedback mechanisms in the initial development of the constructed catchment Chicken Creek

    NASA Astrophysics Data System (ADS)

    Schaaf, Wolfgang; Hinz, Christoph; Gerwin, Werner; Zaplata, Markus; Hüttl, Reinhard F.

    2015-04-01

    Over a period of ten years, we investigated the initial development of the constructed catchment 'Chicken Creek', south of Cottbus, Germany (Gerwin et al., 2009). Since the boundary conditions and inner structures of the hillslope are well known and documented (Gerwin et al., 2011), the site offers unique possibilities to study the relevant processes of ecosystem development interacting with various structures and patterns. We observed considerable changes within the catchment (Elmer et al., 2013). Both internal and external factors could be identified as driving forces for the formation of structures and patterns in the artificial catchment. Initial structures formed by the construction process and initial substrate characteristics were decisive for the distribution and flow of water. External factors like episodic events triggered erosion and dissection during this initial phase, promoted by the low vegetation cover and the unconsolidated sandy substrate (Schaaf et al., 2013). With time, secondary structures and patterns evolved and became more and more important. Invading biota and vegetation succession initialized abiotic/biotic feedback mechanisms resulting in pattern and habitat formation, and generally in increased differentiation, heterogeneity and complexity that are typical characteristics of ecosystems (Schaaf et al., 2011). The processes and feedback mechanisms in the initial development of a new landscape may deviate in rates, intensity, and dominance from those known from mature ecosystems. It is therefore crucial to understand these early phases of ecosystem development and to disentangle the increasingly complex interactions between the evolving terrestrial and aquatic, biotic, and abiotic compartments of the system. Elmer M, Gerwin W, Schaaf W, Zaplata MK, Hohberg K, Nenov R, Bens O, Hüttl RF (2013): Dynamics of initial ecosystem development at the artificial catchment Chicken Creek, Lusatia, Germany. Environ Earth Sci 69, 491-505. Gerwin W, Schaaf W, Biemelt D, Fischer A, Winter S, Hüttl RF (2009): The artificial catchment "Chicken Creek" (Lusatia, Germany) - A landscape laboratory for interdisciplinary studies of initial ecosystem development, Ecol Eng 35, 1786-1796. Gerwin W, Schaaf W, Biemelt D, Winter S, Fischer A, Veste M, Hüttl RF (2011): Overview and first results of ecological monitoring at the artificial watershed Chicken Creek (Germany). Phys Chem Earth 36, 61-73. Schaaf W, Bens O, Fischer A, Gerke HH, Gerwin W, Grünewald U, Holländer HM, Kögel-Knabner I, Mutz M, Schloter M, Schulin R, Veste M, Winter S, Hüttl, RF (2011): Patterns and processes of initial terrestrial ecosystem development. J Plant Nutr Soil Sci 174, 229-239. Schaaf W, Elmer M, Fischer A, Gerwin W, Nenov R, Pretsch H, Seifert S, Winter S, Zaplata MK (2013): Monitoring the formation of structures and patterns during initial development of an artificial catchment. Environ Monit Assess 185, 5965-5986.

  13. Diabetes-Induced Oxidative Stress in Endothelial Progenitor Cells May Be Sustained by a Positive Feedback Loop Involving High Mobility Group Box-1

    PubMed Central

    Wu, Han; Li, Ran; Wei, Zhong-Hai; Zhang, Xin-Lin; Chen, Jian-Zhou; Dai, Qing; Xie, Jun; Xu, Biao

    2016-01-01

    Oxidative stress is considered to be a critical factor in diabetes-induced endothelial progenitor cell (EPC) dysfunction, although the underlying mechanisms are not fully understood. In this study, we investigated the role of high mobility group box-1 (HMGB-1) in diabetes-induced oxidative stress. HMGB-1 was upregulated in both serum and bone marrow-derived monocytes from diabetic mice compared with control mice. In vitro, advanced glycation end productions (AGEs) induced, expression of HMGB-1 in EPCs and in cell culture supernatants in a dose-dependent manner. However, inhibition of oxidative stress with N-acetylcysteine (NAC) partially inhibited the induction of HMGB-1 induced by AGEs. Furthermore, p66shc expression in EPCs induced by AGEs was abrogated by incubation with glycyrrhizin (Gly), while increased superoxide dismutase (SOD) activity in cell culture supernatants was observed in the Gly treated group. Thus, HMGB-1 may play an important role in diabetes-induced oxidative stress in EPCs via a positive feedback loop involving the AGE/reactive oxygen species/HMGB-1 pathway. PMID:26798412

  14. Cyclooxygenase-2 in tumor-associated macrophages promotes breast cancer cell survival by triggering a positive-feedback loop between macrophages and cancer cells

    PubMed Central

    Li, Hongzhong; Yang, Bing; Huang, Jing; Lin, Yong; Xiang, Tingxiu; Wan, Jingyuan; Li, Hongyuan; Chouaib, Salem; Ren, Guosheng

    2015-01-01

    Tumor-associated macrophages (TAMs) play an important role in cancer cell survival, however, the mechanism of which remains elusive. In this study, we found that COX-2 was abundantly expressed in breast TAMs, which was correlated to poor prognosis in breast cancer patients. Ectopic over-expression of COX-2 in TAMs enhanced breast cancer cell survival both in vitro and in vivo. COX-2 in TAMs was determined to be essential for the induction and maintenance of M2-phenotype macrophage polarity. COX-2+ TAMs promoted breast cancer cell proliferation and survival by increasing Bcl-2 and P-gp and decreasing Bax in cancer cells. Furthermore, COX-2 in TAMs induced the expression of COX-2 in breast cancer cells, which in turn promoted M2 macrophage polarization. Inhibiting PI3K/Akt pathway in cancer cells suppressed COX-2+ TAMs-induced cancer cell survival. These findings suggest that COX-2, functions as a key cancer promoting factor by triggering a positive-feedback loop between macrophages and cancer cells, which could be exploited for breast cancer prevention and therapy. PMID:26359357

  15. Cyclooxygenase-2 in tumor-associated macrophages promotes breast cancer cell survival by triggering a positive-feedback loop between macrophages and cancer cells.

    PubMed

    Li, Hongzhong; Yang, Bing; Huang, Jing; Lin, Yong; Xiang, Tingxiu; Wan, Jingyuan; Li, Hongyuan; Chouaib, Salem; Ren, Guosheng

    2015-10-01

    Tumor-associated macrophages (TAMs) play an important role in cancer cell survival, however, the mechanism of which remains elusive. In this study, we found that COX-2 was abundantly expressed in breast TAMs, which was correlated to poor prognosis in breast cancer patients. Ectopic over-expression of COX-2 in TAMs enhanced breast cancer cell survival both in vitro and in vivo. COX-2 in TAMs was determined to be essential for the induction and maintenance of M2-phenotype macrophage polarity. COX-2(+) TAMs promoted breast cancer cell proliferation and survival by increasing Bcl-2 and P-gp and decreasing Bax in cancer cells. Furthermore, COX-2 in TAMs induced the expression of COX-2 in breast cancer cells, which in turn promoted M2 macrophage polarization. Inhibiting PI3K/Akt pathway in cancer cells suppressed COX-2(+) TAMs-induced cancer cell survival. These findings suggest that COX-2, functions as a key cancer promoting factor by triggering a positive-feedback loop between macrophages and cancer cells, which could be exploited for breast cancer prevention and therapy. PMID:26359357

  16. FoxM1 promotes breast tumorigenesis by activating PDGF-A and forming a positive feedback loop with the PDGF/AKT signaling pathway.

    PubMed

    Yu, Guanzhen; Zhou, Aidong; Xue, Jianfei; Huang, Chen; Zhang, Xia; Kang, Shin-Hyuk; Chiu, Wen-Tai; Tan, Christina; Xie, Keping; Wang, Jiejun; Huang, Suyun

    2015-05-10

    The autocrine platelet-derived growth factor (PDGF)/PDGF receptor (PDGFR) signaling pathway promotes breast cancer tumorigenesis, but the mechanisms for its dysregulation in breast cancer are largely unknown. In the study, we identified PDGF-A as a novel transcriptional target of FoxM1. FoxM1 directly binds to two sites in the promoter of PDGF-A and activates its transcription. Mutation of these FoxM1-binding sites diminished PDGF-A promoter activity. Increased FoxM1 resulted in the upregulation of PDGF-A, which led to activation of the AKT pathway and increased breast cancer cell proliferation and tumorigenesis, whereas knockdown of FoxM1 does the opposite. Blocking AKT activation with a phosphoinositide 3-kinase/AKT inhibitor decreased FoxM1-induced cell proliferation. Moreover, PDGF/AKT pathway upregulates the expression of FoxM1 in breast cancer cells. Knockdown of PDGF-A or blockade of AKT activation inhibited the expression of FoxM1 in breast cancer cells. Furthermore, expression of FoxM1 significantly correlated with the expression of PDGF-A and the activated AKT signaling pathway in human breast cancer specimens. Our study demonstrates a novel positive regulatory feedback loop between FoxM1 and the PDGF/AKT signaling pathway; this loop contributes to breast cancer cell growth and tumorigenesis. PMID:25869208

  17. The role of feedback mechanisms in historic channel changes of the lower Rio Grande in the Big Bend region

    NASA Astrophysics Data System (ADS)

    Dean, David J.; Schmidt, John C.

    2011-03-01

    Over the last century, large-scale water development of the upper Rio Grande in the U.S. and Mexico, and of the Rio Conchos in Mexico, has resulted in progressive channel narrowing of the lower Rio Grande in the Big Bend region. We used methods operating at multiple spatial and temporal scales to analyze the rate, magnitude, and processes responsible for channel narrowing. These methods included: hydrologic analysis of historic stream gage data, analysis of notes of measured discharges, historic oblique and aerial photograph analysis, and stratigraphic and dendrogeomorphic analysis of inset floodplain deposits. Our analyses indicate that frequent large floods between 1900 and the mid-1940s acted as a negative feedback mechanism and maintained a wide, sandy, multi-threaded river. Declines in mean and peak flow in the mid-1940s resulted in progressive channel narrowing. Channel narrowing has been temporarily interrupted by occasional large floods that widened the channel, however, channel narrowing has always resumed. After large floods in 1990 and 1991, the active channel width of the lower Rio Grande has narrowed by 36-52%. Narrowing has occurred by the vertical accretion of fine-grained deposits on top of sand and gravel bars, inset within natural levees. Channel narrowing by vertical accretion occurred simultaneously with a rapid invasion of non-native riparian vegetation ( Tamarix spp., Arundo donax) which created a positive feedback and exacerbated the processes of channel narrowing and vertical accretion. In two floodplain trenches, we measured 2.75 and 3.5 m of vertical accretion between 1993 and 2008. In some localities, nearly 90% of bare, active channel bars were converted to vegetated floodplain during the same period. Upward shifts of stage-discharge relations occurred resulting in over-bank flooding at lower discharges, and continued vertical accretion despite a progressive reduction in stream flow. Thus, although the magnitude of the average annual flood was reduced between 40 and 50%, over-bank flooding continued. These changes reflect a shift in the geomorphic nature of the Rio Grande from a wide, laterally unstable, multi-thread river, to a laterally stable, single-thread channel with cohesive, vertical banks, and few active in-channel bars.

  18. Music as a feedback mechanism for teaching head control to severely handicapped children: a pilot study.

    PubMed

    Walmsley, R P; Crichton, L; Droog, D

    1981-12-01

    Five profoundly mentally retarded cerebral-palsied children were studied in order to determine the effectiveness of music as a biofeedback mechanism in the training of head control. The method used a Head Position Trainer and Time Event Counter, developed at the Ontario Crippled Children's Centre in Toronto. Improvement was obtained in three of the five children in their ability to control their head movements when music was used as the biofeedback stimulus. However, these results should be treated cautiously because the sample was small and the training period was brief. PMID:7319141

  19. Neural mechanism of oculomotor horizontal velocity-to- position temporal integration

    NASA Astrophysics Data System (ADS)

    Aksay, Emre R. F.

    Storage of briefly presented information in ``working'' memory correlates with persistent firing in the brain. Persistent activity in response to transient stimulation is a form of neural temporal integration. Here, the mechanism of temporal integration was explored in the oculomotor velocity-to-position neural integrator (VPNI), where persistent activity is used to maintain eye position and fixation. Extracellular and intracellular electrophysiology, single-cell dye- labeling, and pharmacological inactivation were performed in awake behaving goldfish while monitoring eye motion with the scleral search-coil method. Neurons identified within a compact subnucleus in the medulla designated as Area I are part of the VPNI for horizontal eye movements. Neurons fired tonically during fixations, with tonic rate higher for lateral eye positions and no discharge below a threshold position value. Dye-labeled somata were localized in a 350 micron extent of the inferior reticular formation. Axons either projected ipsilaterally to abducens motoneurons, or crossed the midline and projected toward the contralateral Area I and abducens. Bilateral inactivation of Area I induced inability to maintain eccentric gaze. During intracellular recording, step changes in eye position and firing rate were accompanied by steps in underlying membrane potential. Steps remained when neurons were hyperpolarized below action potential threshold. Perturbation with brief intracellular current pulses only induced transient changes in firing rate and potential. Membrane potential fluctuations were greater during more depolarized steps. These results suggest that steps are generated by synaptic input changes rather than intrinsic properties like membrane multistability. Spiking of unilateral pairs was positively correlated with 0-10 ms lag. Bilateral pairs were negatively correlated with 0-10 ms lag. These results are consistent with excitatory connections between unilateral pairs and inhibitory connections between bilateral pairs. The precise role of synaptic interaction was tested by pharmacological inactivation of part of the VPNI. Inactivation of ipsilateral Area I neurons disrupted persistent firing of non-inactivated cells, with effects most pronounced at high rates. Inactivation of contralateral Area I neurons also disrupted persistent firing, with effects most pronounced at low rates. These results suggest that both recurrent ipsilateral excitatory and contralateral inhibitory connections contribute to integration, apparently by mediating positive feedback.

  20. Caging Mechanism for a drag-free satellite position sensor

    NASA Technical Reports Server (NTRS)

    Hacker, R.; Mathiesen, J.; Debra, D. B.

    1976-01-01

    A disturbance compensation system for satellites based on the drag-free concept was mechanized and flown, using a spherical proof mass and a cam-guided caging mechanism. The caging mechanism controls the location of the proof mass for testing and constrains it during launch. Design requirements, design details, and hardware are described.

  1. Towards simulating star formation in turbulent high-z galaxies with mechanical supernova feedback

    NASA Astrophysics Data System (ADS)

    Kimm, Taysun; Cen, Renyue; Devriendt, Julien; Dubois, Yohan; Slyz, Adrianne

    2015-08-01

    To better understand the impact of supernova (SN) explosions on the evolution of galaxies, we perform a suite of high-resolution (12 pc), zoom-in cosmological simulations of a Milky Way-like galaxy at z = 3 with adaptive mesh refinement. We find that SN explosions can efficiently regulate star formation, leading to the stellar mass and metallicity consistent with the observed mass-metallicity relation and stellar mass-halo mass relation at z ˜ 3. This is achieved by making three important changes to the classical feedback scheme: (i) the different phases of SN blast waves are modelled directly by injecting radial momentum expected at each stage, (ii) the realistic time delay of SNe is required to disperse very dense gas before a runaway collapse sets in, and (iii) a non-uniform density distribution of the interstellar medium (ISM) is taken into account below the computational grid scale for the cell in which an SN explodes. The simulated galaxy with the SN feedback model shows strong outflows, which carry approximately 10 times larger mass than star formation rate, as well as smoothly rising circular velocity. Although the metallicity of the outflow depends sensitively on the feedback model used, we find that the accretion rate and metallicity of the cold flow around the virial radius is impervious to SN feedback. Our results suggest that understanding the structure of the turbulent ISM may be crucial to assess the role of SN and other feedback processes in galaxy formation theory.

  2. The cotton MYB108 forms a positive feedback regulation loop with CML11 and participates in the defense response against Verticillium dahliae infection.

    PubMed

    Cheng, Huan-Qing; Han, Li-Bo; Yang, Chun-Lin; Wu, Xiao-Min; Zhong, Nai-Qin; Wu, Jia-He; Wang, Fu-Xin; Wang, Hai-Yun; Xia, Gui-Xian

    2016-04-01

    Accumulating evidence indicates that plant MYB transcription factors participate in defense against pathogen attack, but their regulatory targets and related signaling processes remain largely unknown. Here, we identified a defense-related MYB gene (GhMYB108) from upland cotton (Gossypium hirsutum) and characterized its functional mechanism. Expression of GhMYB108 in cotton plants was induced by Verticillium dahliae infection and responded to the application of defense signaling molecules, including salicylic acid, jasmonic acid, and ethylene. Knockdown of GhMYB108 expression led to increased susceptibility of cotton plants to V. dahliae, while ecotopic overexpression of GhMYB108 in Arabidopsis thaliana conferred enhanced tolerance to the pathogen. Further analysis demonstrated that GhMYB108 interacted with the calmodulin-like protein GhCML11, and the two proteins form a positive feedback loop to enhance the transcription of GhCML11 in a calcium-dependent manner. Verticillium dahliae infection stimulated Ca(2+) influx into the cytosol in cotton root cells, but this response was disrupted in both GhCML11-silenced plants and GhMYB108-silenced plants in which expression of several calcium signaling-related genes was down-regulated. Taken together, these results indicate that GhMYB108 acts as a positive regulator in defense against V. dahliae infection by interacting with GhCML11. Furthermore, the data also revealed the important roles and synergetic regulation of MYB transcription factor, Ca(2+), and calmodulin in plant immune responses. PMID:26873979

  3. The cotton MYB108 forms a positive feedback regulation loop with CML11 and participates in the defense response against Verticillium dahliae infection

    PubMed Central

    Cheng, Huan-Qing; Han, Li-Bo; Yang, Chun-Lin; Wu, Xiao-Min; Zhong, Nai-Qin; Wu, Jia-He; Wang, Fu-Xin; Xia, Gui-Xian

    2016-01-01

    Accumulating evidence indicates that plant MYB transcription factors participate in defense against pathogen attack, but their regulatory targets and related signaling processes remain largely unknown. Here, we identified a defense-related MYB gene (GhMYB108) from upland cotton (Gossypium hirsutum) and characterized its functional mechanism. Expression of GhMYB108 in cotton plants was induced by Verticillium dahliae infection and responded to the application of defense signaling molecules, including salicylic acid, jasmonic acid, and ethylene. Knockdown of GhMYB108 expression led to increased susceptibility of cotton plants to V. dahliae, while ecotopic overexpression of GhMYB108 in Arabidopsis thaliana conferred enhanced tolerance to the pathogen. Further analysis demonstrated that GhMYB108 interacted with the calmodulin-like protein GhCML11, and the two proteins form a positive feedback loop to enhance the transcription of GhCML11 in a calcium-dependent manner. Verticillium dahliae infection stimulated Ca2+ influx into the cytosol in cotton root cells, but this response was disrupted in both GhCML11-silenced plants and GhMYB108-silenced plants in which expression of several calcium signaling-related genes was down-regulated. Taken together, these results indicate that GhMYB108 acts as a positive regulator in defense against V. dahliae infection by interacting with GhCML11. Furthermore, the data also revealed the important roles and synergetic regulation of MYB transcription factor, Ca2+, and calmodulin in plant immune responses. PMID:26873979

  4. Vacuum compatible, variable cross-section magnetic coil diagnostic used in digital feedback control of plasma position in TEXT-Upgrade

    NASA Astrophysics Data System (ADS)

    Foster, M. S.; Craig, J. L.; Wootton, A. J.; Phillips, P. E.; Uglum, J.; Solano, E. R.; Brower, D. L.; Jiang, Y.; McCool, S. C.; Lierzer, J.; Castle, George G.

    1995-01-01

    A magnetic pickup coil diagnostic set is used to measure the position of the plasma column in the Texas Experimental Tokamak Upgrade (TEXT-U) project. The output from this coil set is used in a digital feedback system to control the plasma position. To provide a fast time response for the feedback system, one complete coil set is located on the interior of the vacuum vessel. Another set with a slower time response is located on the outside of the vessel. To simplify and speed up data processing, the coils are constructed so that the X and Y coordinates of the plasma current centroid are each determined using the signals from only two separate coils. For each coordinate one coil is used to measure a tangential (relative to the coil surface) magnetic field component, while the second coil measures a normal field component. Due to physical constraints, the coils are not continuous around the vacuum vessel. The presence of gaps in the coils causes pickup of the external current flowing in the divertor coil windings during TEXT-U diverted discharges. This pickup has been successfully nulled out by adding a divertor current Rogowski coil to the X position coil circuit. The data indicate that these coils, along with the digital feedback system, are useful tools for flexible position control over a wide range of TEXT-U plasma parameters.

  5. Plasminogen Kringle 5 Induces Endothelial Cell Apoptosis by Triggering a Voltage-dependent Anion Channel 1 (VDAC1) Positive Feedback Loop*

    PubMed Central

    Li, Lei; Yao, Ya-Chao; Gu, Xiao-Qiong; Che, Di; Ma, Cai-Qi; Dai, Zhi-Yu; Li, Cen; Zhou, Ti; Cai, Wei-Bin; Yang, Zhong-Han; Yang, Xia; Gao, Guo-Quan

    2014-01-01

    Human plasminogen kringle 5 (K5) is known to display its potent anti-angiogenesis effect through inducing endothelial cell (EC) apoptosis, and the voltage-dependent anion channel 1 (VDAC1) has been identified as a receptor of K5. However, the exact role and underlying mechanisms of VDAC1 in K5-induced EC apoptosis remain elusive. In the current study, we showed that K5 increased the protein level of VDAC1, which initiated the mitochondrial apoptosis pathway of ECs. Our findings also showed that K5 inhibited the ubiquitin-dependent degradation of VDAC1 by promoting the phosphorylation of VDAC1, possibly at Ser-12 and Thr-107. The phosphorylated VDAC1 was attenuated by the AKT agonist, glycogen synthase kinase (GSK) 3β inhibitor, and siRNA, suggesting that K5 increased VDAC1 phosphorylation via the AKT-GSK3β pathway. Furthermore, K5 promoted cell surface translocation of VDAC1, and binding between K5 and VDAC1 was observed on the plasma membrane. HKI protein blocked the impact of K5 on the AKT-GSK3β pathway by competitively inhibiting the interaction of K5 and cell surface VDAC1. Moreover, K5-induced EC apoptosis was suppressed by VDAC1 antibody. These data show for the first time that K5-induced EC apoptosis is mediated by the positive feedback loop of “VDAC1-AKT-GSK3β-VDAC1,” which may provide new perspectives on the mechanisms of K5-induced apoptosis. PMID:25296756

  6. Vocal responses to unanticipated perturbations in voice loudness feedback: An automatic mechanism for stabilizing voice amplitude

    PubMed Central

    Bauer, Jay J.; Mittal, Jay; Larson, Charles R.; Hain, Timothy C.

    2006-01-01

    The present study tested whether subjects respond to unanticipated short perturbations in voice loudness feedback with compensatory responses in voice amplitude. The role of stimulus magnitude (±1,3 vs 6 dB SPL), stimulus direction (up vs down), and the ongoing voice amplitude level (normal vs soft) were compared across compensations. Subjects responded to perturbations in voice loudness feedback with a compensatory change in voice amplitude 76% of the time. Mean latency of amplitude compensation was 157 ms. Mean response magnitudes were smallest for 1-dB stimulus perturbations (0.75 dB) and greatest for 6-dB conditions (0.98 dB). However, expressed as gain, responses for 1-dB perturbations were largest and almost approached 1.0. Response magnitudes were larger for the soft voice amplitude condition compared to the normal voice amplitude condition. A mathematical model of the audio-vocal system captured the main features of the compensations. Previous research has demonstrated that subjects can respond to an unanticipated perturbation in voice pitch feedback with an automatic compensatory response in voice fundamental frequency. Data from the present study suggest that voice loudness feedback can be used in a similar manner to monitor and stabilize voice amplitude around a desired loudness level. PMID:16642849

  7. Lock-disconnect mechanism gives positive release to joined bodies

    NASA Technical Reports Server (NTRS)

    Beaver, C. E.

    1967-01-01

    Umbilical system mechanism locks and unlocks through an internal collet device that is controlled by a single reciprocating shaft. The reduction in the number of operational parts results in higher reliability.

  8. Enhancement of calcium current during digitalis inotrophy in mammalian heart: positive feed-back regulation by intracellular calcium?

    PubMed Central

    Marban, Eduardo; Tsien, Richard W.

    1982-01-01

    1. Effects of digitalis compounds on slow inward Ca current Isi) and contractile force were examined in ferret ventricular muscle (single sucrose-gap voltage clamp) and calf Purkinje fibres (two micro-electrode voltage clamp). 2. In ventricular muscle, ouabain increased Isi and inward current tails associated with Isi conductance. The enhancement of Isi followed a time course similar to the development of the positive inotropic effect, and it could be observed in the absence of aftercontractions or other signs of toxicit. 3. The response of myocardial Isi and twitch force to ouabain depended strongly on a previous history of driven action potentials. 4. Veratridine, a toxin that promotes Na entry through tetrodotoxin-sensitive channels, also increased Isi and twitch force in driven ventricular muscle preparations. 5. The effects of ouabain, action potential stimulation and veratridine are consistent with reported effects of K-poor solutions in indicating that elevation of intracellular Na can lead to enhancement of Isi. Additional experiments suggest that the link between Nai and Isi involves intracellular Ca. 6. When Cs-loaded Purkinje fibres were bathed in solutions containing Sr instead of Ca, enhancement of Isi by strophanthidin was abolished even though a positive inotropic response persisted. 7. After intracellular injection of Purkinje fibres with EGTA, Isi no longer increased with strophanthidin, although it remained responsive to adrenaline. 8. Clear-cut increases in Isi were seen in Cs-loaded Purkinje fibres even at very low concentrations of strophanthidin (20-50 nM), where the occurence of Na pump inhibition has been questioned. 9. Positive regulation of Ca entry by intracellular Ca may act as a facilitory mechanism that amplifies myocardial responsiveness to digitalis and other inotropic interventions. Through changes in Isi, small rises in diastolic free Ca might lead to large increases in the activator Ca transient during contraction. PMID:6292410

  9. Stochasticity and bifurcations in a reduced model with interlinked positive and negative feedback loops of CREB1 and CREB2 stimulated by 5-HT.

    PubMed

    Hao, Lijie; Yang, Zhuoqin; Bi, Yuanhong

    2016-04-01

    The cyclic AMP (cAMP)-response element-binding protein (CREB) family of transcription factors is crucial in regulating gene expression required for long-term memory (LTM) formation. Upon exposure of sensory neurons to the neurotransmitter serotonin (5-HT), CREB1 is activated via activation of the protein kinase A (PKA) intracellular signaling pathways, and CREB2 as a transcriptional repressor is relieved possibly via phosphorylation of CREB2 by mitogen-activated protein kinase (MAPK). Song et al. [18] proposed a minimal model with only interlinked positive and negative feedback loops of transcriptional regulation by the activator CREB1 and the repressor CREB2. Without considering feedbacks between the CREB proteins, Pettigrew et al. [8] developed a computational model characterizing complex dynamics of biochemical pathways downstream of 5-HT receptors. In this work, to describe more simply the biochemical pathways and gene regulation underlying 5-HT-induced LTM, we add the important extracellular sensitizing stimulus 5-HT as well as the product Ap-uch into the Song's minimal model. We also strive to examine dynamical properties of the gene regulatory network under the changing concentration of the stimulus, [5-HT], cooperating with the varying positive feedback strength in inducing a high state of CREB1 for the establishment of long-term memory. Different dynamics including monostability, bistability and multistability due to coexistence of stable steady states and oscillations is investigated by means of codimension-2 bifurcation analysis. At the different positive feedback strengths, comparative analysis of deterministic and stochastic dynamics reveals that codimension-1 bifurcation with respect to [5-HT] as the parameter can predict diverse stochastic behaviors resulted from the finite number of molecules, and the number of CREB1 molecules more and more preferentially resides near the high steady state with increasing [5-HT], which contributes to long-term memory formation. PMID:26877074

  10. Downregulation of COMMD1 by miR-205 promotes a positive feedback loop for amplifying inflammatory- and stemness-associated properties of cancer cells.

    PubMed

    Yeh, D-W; Chen, Y-S; Lai, C-Y; Liu, Y-L; Lu, C-H; Lo, J-F; Chen, L; Hsu, L-C; Luo, Y; Xiang, R; Chuang, T-H

    2016-05-01

    Sustained activation of nuclear factor-κB (NF-κB) in cancer cells has been shown to promote inflammation, expansion of cancer stem cell (CSC) population, and tumor development. In contrast, recent studies reveal that CSCs exhibit increased inflammation due to constitutive NF-κB activation; however, the underlying molecular mechanism remains unclear. In the present study, the analysis of microarray data revealed upregulation of NF-κB-regulated pro-inflammatory genes and downregulation of copper metabolism MURR1 domain-containing 1 (COMMD1) during the enrichment for stemness in SAS head and neck squamous-cell carcinoma (HNSCC) cells. The 3'-UTR of COMMD1 mRNA contains microRNA (miR)-205 target site. Parallel studies with HNSCC and NSCLC cells indicated that miR-205 is upregulated upon NF-κB activation and suppresses COMMD1 expression in stemness-enriched cancer cells. COMMD1 negatively regulates the inflammatory responses induced by TLR agonists, IL-1β, and TNF-α by targeting RelA for degradation. The shRNA-mediated downregulation of COMMD1 in cancer cells enhanced inflammatory response, generating favorable conditions for macrophage recruitment. In addition, genes associated with stemness were also upregulated in these cells, which exhibited increased potential for anchorage-independent growth. Furthermore, COMMD1 downregulation promoted in vivo tumorigenesis and tumor growth, and tumors derived from COMMD1-knockdown cells displayed elevated level of NF-κB activation, increased expression of inflammatory- and stemness-associated genes, and contain expanded population of tumor-associated leukocytes and stemness-enriched cancer cells. These results suggest that COMMD1 downregulation by miR-205 promotes tumor development by modulating a positive feedback loop that amplifies inflammatory- and stemness-associated properties of cancer cells. PMID:26586569

  11. Downregulation of COMMD1 by miR-205 promotes a positive feedback loop for amplifying inflammatory- and stemness-associated properties of cancer cells

    PubMed Central

    Yeh, D-W; Chen, Y-S; Lai, C-Y; Liu, Y-L; Lu, C-H; Lo, J-F; Chen, L; Hsu, L-C; Luo, Y; Xiang, R; Chuang, T-H

    2016-01-01

    Sustained activation of nuclear factor-κB (NF-κB) in cancer cells has been shown to promote inflammation, expansion of cancer stem cell (CSC) population, and tumor development. In contrast, recent studies reveal that CSCs exhibit increased inflammation due to constitutive NF-κB activation; however, the underlying molecular mechanism remains unclear. In the present study, the analysis of microarray data revealed upregulation of NF-κB-regulated pro-inflammatory genes and downregulation of copper metabolism MURR1 domain-containing 1 (COMMD1) during the enrichment for stemness in SAS head and neck squamous-cell carcinoma (HNSCC) cells. The 3′-UTR of COMMD1 mRNA contains microRNA (miR)-205 target site. Parallel studies with HNSCC and NSCLC cells indicated that miR-205 is upregulated upon NF-κB activation and suppresses COMMD1 expression in stemness-enriched cancer cells. COMMD1 negatively regulates the inflammatory responses induced by TLR agonists, IL-1β, and TNF-α by targeting RelA for degradation. The shRNA-mediated downregulation of COMMD1 in cancer cells enhanced inflammatory response, generating favorable conditions for macrophage recruitment. In addition, genes associated with stemness were also upregulated in these cells, which exhibited increased potential for anchorage-independent growth. Furthermore, COMMD1 downregulation promoted in vivo tumorigenesis and tumor growth, and tumors derived from COMMD1-knockdown cells displayed elevated level of NF-κB activation, increased expression of inflammatory- and stemness-associated genes, and contain expanded population of tumor-associated leukocytes and stemness-enriched cancer cells. These results suggest that COMMD1 downregulation by miR-205 promotes tumor development by modulating a positive feedback loop that amplifies inflammatory- and stemness-associated properties of cancer cells. PMID:26586569

  12. Repressor structure and the mechanism of positive control.

    PubMed

    Hochschild, A; Irwin, N; Ptashne, M

    1983-02-01

    It has been suggested that the lambda repressor stimulates transcription of its own gene by binding to the lambda operator and contacting RNA polymerase bound to the adjacent promoter. We describe three different mutants (called pc) of the lambda phage repressor that are specifically deficient in the positive control function. We show that the amino acid residues altered in the pc mutants lie on the surface of the DNA-bound repressor that we predict, based on structural and other evidence, would most closely approach DNA-bound polymerase. Furthermore, we describe a pc mutant of the P22 repressor. We argue that in both the lambda and P22 repressors a structure comprised of two alpha helices has two functions: to bind DNA and to contact RNA polymerase. In the two cases, however, different regions of this structure contact polymerase to mediate positive control. PMID:6218886

  13. Does a short loop feedback mechanism for the control of luteinizing hormone secretion exist in the ewe?

    PubMed

    Skinner, D C; Evans, N P; Malpaux, B

    1997-10-01

    It is not known whether a short loop feedback mechanism for the regulation of LH exists in sheep. This study on ovariectomized ewes investigated whether a bolus injection (10, 1, and 0.1 microg LH or 1 microg BSA; n 4) or a 3-h continuous infusion of exogenous LH (100 or 1 ng/min; n = 7) into the third ventricle through a permanent indwelling cannula could influence the activity of the GnRH pulse generator, as determined by measurement of endogenous LH secretion. To assess the potential for involvement in a LH short loop feedback system and to estimate the level of LH in the hypothalamic milieu, the concentrations of LH in the peripheral circulation, portal circulation, and third ventricle were measured during an estradiol-induced preovulatory LH surge (n = 4). Neither the bolus nor continuous administration of LH into the third ventricle had any effect on the mean interpulse interval, nadir, pulse amplitude, or circulating level of systemic LH. Furthermore, despite portal LH concentrations being more than 20-fold higher than jugular LH concentrations, LH levels in third ventricular cerebrospinal fluid remained barely detectable and did not reflect dynamic secretory events in the peripheral or hypothalamo-hypophyseal portal blood. These data demonstrate that in ewes, little pituitary LH reaches the third ventricle, and the small amount that does is unable to affect peripheral gonadotropin release. Our study suggests, therefore, that a short loop feedback system for LH does not exist in the ewe. PMID:9322933

  14. Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability

    PubMed Central

    Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.

    2015-01-01

    Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173

  15. Pulsed feedback defers cellular differentiation.

    PubMed

    Levine, Joe H; Fontes, Michelle E; Dworkin, Jonathan; Elowitz, Michael B

    2012-01-01

    Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle. PMID:22303282

  16. Characterization of the dominant structural vibration of hearing aid receivers: Towards the moderation of mechanical feedback in hearing aids

    NASA Astrophysics Data System (ADS)

    Varanda, Brenno R.

    Presented are the results from the experimental, analytical, and computational analyses accomplished to characterize the mechanical vibration of hearing aid receivers, a key electro-acoustic component of hearing aids. The function of a receiver in a hearing aid is to provide an amplified sound signal into the ear canal. Unfortunately, as the receiver produces sound, it also undergoes vibration which can be transmitted through the hearing aid package to the microphones, resulting in undesirable feedback oscillations. To gain more knowledge and control on the source of these feedback oscillations, a dynamic rigid body model of the receiver is proposed. The rigid body model captures the essential dynamic features of the receiver. The model is represented by two hinged rigid bodies, under an equal and opposite dynamic moment load, and connected to each other by a torsional spring and damper. The mechanical coupling ratio between the two rigid bodies is proved to be acoustically independent. A method is introduced to estimate the parameters for the proposed model using experimental data. An equivalent finite element analysis model is established and tested against a known and characterized mechanical attachment. The simulated model successfully predicts the structural dynamic response showing excellent agreement between the finite element analysis and measured results.

  17. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency

    PubMed Central

    Tian, Xiaoli

    2012-01-01

    To elucidate the phytohormonal basis of the feedback regulation of leaf senescence induced by potassium (K) deficiency in cotton (Gossypium hirsutum L.), two cultivars contrasting in sensitivity to K deficiency were self- and reciprocally grafted hypocotyl-to-hypocotyl, using standard grafting (one scion grafted onto one rootstock), Y grafting (two scions grafted onto one rootstock), and inverted Y grafting (one scion grafted onto two rootstocks) at the seedling stage. K deficiency (0.03mM for standard and Y grafting, and 0.01mM for inverted Y grafting) increased the root abscisic acid (ABA) concentration by 1.6- to 3.1-fold and xylem ABA delivery rates by 1.8- to 4.6-fold. The K deficiency also decreased the delivery rates of xylem cytokinins [CKs; including the zeatin riboside (ZR) and isopentenyl adenosine (iPA) type] by 29–65% and leaf CK concentration by 16–57%. The leaf ABA concentration and xylem ABA deliveries were consistently greater in CCRI41 (more sensitive to K deficiency) than in SCRC22 (less sensitive to K deficiency) scions under K deficiency, and ZR- and iPA-type levels were consistently lower in the former than in the latter, irrespective of rootstock cultivar or grafting type, indicating that cotton shoot influences the levels of ABA and CKs in leaves and xylem sap. Because the scions had little influence on phytohormone levels in the roots (rootstocks) of all three types of grafts and rootstock xylem sap (collected below the graft union) of Y and inverted Y grafts, it appears that the site for basipetal feedback signal(s) involved in the regulation of xylem phytohormones is the hypocotyl of cotton seedlings. Also, the target of this feedback signal(s) is more likely to be the changes in xylem phytohormones within tissues of the hypocotyl rather than the export of phytohormones from the roots. PMID:22962680

  18. The zebrafish as a novel animal model to study the molecular mechanisms of mechano-electrical feedback in the heart

    PubMed Central

    Werdich, Andreas A; Brzezinski, Anna; Jeyaraj, Darwin; Ficker, Eckhard; Wan, Xiaoping; McDermott, Brian M; Sabeh, M Khaled; MacRae, Calum A; Rosenbaum, David S

    2013-01-01

    Altered mechanical loading of the heart leads to hypertrophy, decompensated heart failure and fatal arrhythmias. However, the molecular mechanisms that link mechanical and electrical dysfunction remain poorly understood. Growing evidence suggest that ventricular electrical remodeling (VER) is a process that can be induced by altered mechanical stress, creating persistent electrophysiological changes that predispose the heart to life-threatening arrhythmias. While VER is clearly a physiological property of the human heart, as evidenced by “T wave memory”, it is also thought to occur in a variety of pathological states associated with altered ventricular activation such as bundle branch block, myocardial infarction, and cardiac pacing. Animal models that are currently being used for investigating stretch-induced VER have significant limitations. The zebrafish has recently emerged as an attractive animal model for studying cardiovascular disease and could overcome some of these limitations. Owing to its extensively sequenced genome, high conservation of gene function, and the comprehensive genetic resources that are available in this model, the zebrafish may provide new insights into the molecular mechanisms that drive detrimental electrical remodeling in response to stretch. Here, we have established a zebrafish model to study mechano-electrical feedback in the heart, which combines efficient genetic manipulation with high-precision stretch and high-resolution electrophysiology. In this model, only ninety minutes of ventricular stretch caused VER and recapitulated key features of VER found previously in the mammalian heart. Our data suggest that the zebrafish model is a powerful platform for investigating the molecular mechanisms underlying mechano-electrical feedback and VER in the heart. PMID:22835662

  19. Getting into position: the catalytic mechanisms of protein ubiquitylation.

    PubMed Central

    Passmore, Lori A; Barford, David

    2004-01-01

    The role of protein ubiquitylation in the control of diverse cellular pathways has recently gained widespread attention. Ubiquitylation not only directs the targeted destruction of tagged proteins by the 26 S proteasome, but it also modulates protein activities, protein-protein interactions and subcellular localization. An understanding of the components involved in protein ubiquitylation (E1s, E2s and E3s) is essential to understand how specificity and regulation are conferred upon these pathways. Much of what we know about the catalytic mechanisms of protein ubiquitylation comes from structural studies of the proteins involved in this process. Indeed, structures of ubiquitin-activating enzymes (E1s) and ubiquitin-conjugating enzymes (E2s) have provided insight into their mechanistic details. E3s (ubiquitin ligases) contain most of the substrate specificity and regulatory elements required for protein ubiquitylation. Although several E3 structures are available, the specific mechanistic role of E3s is still unclear. This review will discuss the different types of ubiquitin signals and how they are generated. Recent advances in the field of protein ubiquitylation will be examined, including the mechanisms of E1, E2 and E3. In particular, we discuss the complexity of molecular recognition required to impose selectivity on substrate selection and topology of poly-ubiquitin chains. PMID:14998368

  20. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40.

    PubMed

    Shen, Lei; Liu, Zhiqin; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Lin, Wei; Wang, Rongzhang; Yu, Huanxin; Mou, Shaoliang; Hussain, Ansar; Cheng, Wei; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-04-01

    CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) toRalstonia solanacearuminoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression ofCaWRKY40 CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of bothCabZIP63(pCabZIP63) andCaWRKY40(pCaWRKY40), and activatepCabZIP63- andpCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing ofCabZIP63by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associatedCaPR1,CaNPR1,CaDEF1, andCaHSP24 Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) ofCabZIP63, but decreased by that ofCabZIP63-SRDX Additionally, binding of CabZIP63 topCaWRKY40was up-regulated by RSI or HTHH, and the transcript level ofCaWRKY40and binding of CaWRKY40 to the promoters ofCaPR1,CaNPR1,CaDEF1andCaHSP24were up-regulated by TOE ofCabZIP63.On the other hand,CabZIP63was also up-regulated transcriptionally by TOE ofCaWRKY40 The data suggest collectively that CabZIP63 directly or indirectly regulates the expression ofCaWRKY40at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH. PMID:26936828

  1. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature–high humidity challenge in a positive feedback loop with CaWRKY40

    PubMed Central

    Shen, Lei; Liu, Zhiqin; Yang, Sheng; Yang, Tong; Liang, Jiaqi; Wen, Jiayu; Liu, Yanyan; Li, Jiazhi; Shi, Lanping; Tang, Qian; Shi, Wei; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Lin, Wei; Wang, Rongzhang; Yu, Huanxin; Mou, Shaoliang; Hussain, Ansar; Cheng, Wei; Cai, Hanyang; He, Li; Guan, Deyi; Wu, Yang; He, Shuilin

    2016-01-01

    CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature–high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63 (pCabZIP63) and CaWRKY40 (pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper’s response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper’s response to RSI and HTHH. PMID:26936828

  2. Dhrs3a Regulates Retinoic Acid Biosynthesis through a Feedback Inhibition Mechanism

    PubMed Central

    Feng, L.; Hernandez, R.E.; Waxman, J.S.; Yelon, D.; Moens, C.B.

    2010-01-01

    Retinoic acid (RA) is an important developmental signaling molecule responsible for the patterning of multiple vertebrate tissues. RA is also a potent teratogen, causing multi-organ birth defects in humans. Endogenous RA levels must therefore be tightly controlled in the developing embryo. We used a microarray approach to identify genes that function as negative feedback regulators of retinoic acid signaling. We screened for genes expressed in early somite-stage embryos that respond oppositely to treatment with RA versus RA antagonists, and validated them by RNA in situ hybridization. Focusing on genes known to be involved in RA metabolism, we determined that dhrs3a, which encodes a member of the short-chain dehydrogenase/reductase protein family, is both RA dependent and strongly RA inducible. Dhrs3a is known to catalyze the reduction of the RA precursor all-trans retinaldehyde to vitamin A, however a developmental function has not been demonstrated. Using morpholino knock down and mRNA over-expression, we demonstrate that Dhrs3a is required to limit RA levels in the embryo, primarily within the central nervous system. Dhrs3a is thus an RA-induced feedback inhibitor of RA biosynthesis. We conclude that retinaldehyde availability is an important level at which RA biosynthesis is regulated in vertebrate embryos. PMID:19874812

  3. Mechanism of Positive Allosteric Modulators Acting on AMPA Receptors

    SciTech Connect

    Jin,R.; Clark, S.; Weeks, A.; Dudman, J.; Gouaux, E.; Partin, K.

    2005-01-01

    Ligand-gated ion channels involved in the modulation of synaptic strength are the AMPA, kainate, and NMDA glutamate receptors. Small molecules that potentiate AMPA receptor currents relieve cognitive deficits caused by neurodegenerative diseases such as Alzheimer's disease and show promise in the treatment of depression. Previously, there has been limited understanding of the molecular mechanism of action for AMPA receptor potentiators. Here we present cocrystal structures of the glutamate receptor GluR2 S1S2 ligand-binding domain in complex with aniracetam [1-(4-methoxybenzoyl)-2-pyrrolidinone] or CX614 (pyrrolidino-1, 3-oxazino benzo-1, 4-dioxan-10-one), two AMPA receptor potentiators that preferentially slow AMPA receptor deactivation. Both potentiators bind within the dimer interface of the nondesensitized receptor at a common site located on the twofold axis of molecular symmetry. Importantly, the potentiator binding site is adjacent to the 'hinge' in the ligand-binding core 'clamshell' that undergoes conformational rearrangement after glutamate binding. Using rapid solution exchange, patch-clamp electrophysiology experiments, we show that point mutations of residues that interact with potentiators in the cocrystal disrupt potentiator function. We suggest that the potentiators slow deactivation by stabilizing the clamshell in its closed-cleft, glutamate-bound conformation.

  4. Runx2/miR-3960/miR-2861 Positive Feedback Loop Is Responsible for Osteogenic Transdifferentiation of Vascular Smooth Muscle Cells

    PubMed Central

    Xia, Zhu-Ying; Hu, Yin; Xie, Ping-Li; Tang, Si-Yuan; Luo, Xiang-Hang; Liao, Er-Yuan; Chen, Fei; Xie, Hui

    2015-01-01

    We previously reported that Runx2/miR-3960/miR-2861 regulatory feedback loop stimulates osteoblast differentiation. However, the effect of this feedback loop on the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) remains unclear. Our recent study showed that miR-2861 and miR-3960 expression increases significantly during β-glycerophosphate-induced osteogenic transdifferentiation of VSMCs. Overexpression of miR-2861 or miR-3960 in VSMCs enhances β-glycerophosphate-induced osteoblastogenesis, whereas inhibition of miR-2861 or miR-3960 expression attenuates it. MiR-2861 or miR-3960 promotes osteogenic transdifferentiation of VSMCs by targeting histone deacetylase 5 or Homeobox A2, respectively, resulting in increased runt-related transcription factor 2 (Runx2) protein production. Furthermore, overexpression of Runx2 induces miR-2861 and miR-3960 transcription, and knockdown of Runx2 attenuates β-glycerophosphate-induced miR-2861 and miR-3960 transcription in VSMCs. Thus, our data show that Runx2/miR-3960/miR-2861 positive feedback loop plays an important role in osteogenic transdifferentiation of VSMCs and contributes to vascular calcification. PMID:26221600

  5. The role of mRNA and protein stability in the function of coupled positive and negative feedback systems in eukaryotic cells.

    PubMed

    Moss Bendtsen, Kristian; Jensen, Mogens H; Krishna, Sandeep; Semsey, Szabolcs

    2015-01-01

    Oscillators and switches are important elements of regulation in biological systems. These are composed of coupling negative feedback loops, which cause oscillations when delayed, and positive feedback loops, which lead to memory formation. Here, we examine the behavior of a coupled feedback system, the Negative Autoregulated Frustrated bistability motif (NAF). This motif is a combination of two previously explored motifs, the frustrated bistability motif (FBM) and the negative auto regulation motif (NAR), which both can produce oscillations. The NAF motif was previously suggested to govern long term memory formation in animals, and was used as a synthetic oscillator in bacteria. We build a mathematical model to analyze the dynamics of the NAF motif. We show analytically that the NAF motif requires an asymmetry in the strengths of activation and repression links in order to produce oscillations. We show that the effect of time delays in eukaryotic cells, originating from mRNA export and protein import, are negligible in this system. Based on the reported protein and mRNA half-lives in eukaryotic cells, we find that even though the NAF motif possesses the ability for oscillations, it mostly promotes constant protein expression at the biologically relevant parameter regimes. PMID:26365394

  6. Experimental investigations of a trailing edge noise feedback mechanism on a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Plogmann, B.; Herrig, A.; Würz, W.

    2013-05-01

    Discrete frequency tones in the trailing edge noise spectra of NACA 0012 airfoils are investigated with the Coherent Particle Velocity method. The Reynolds number and angle of attack range, in which these discrete frequency tones are present, are consistent with published results. The discrete tones are composed of a main tone and a set of regularly spaced side peaks resulting in a ladder-type structure for the dependency on the free stream velocity. The occurrence of this discrete frequency noise could be attributed to the presence of a laminar boundary layer on the pressure side opening up into a separation bubble near the trailing edge, which was visualized using oil flow. Wall pressure measurements close to the trailing edge revealed a strong spanwise and streamwise coherence of the flow structures inside this laminar separation bubble. The laminar vortex shedding frequencies inferred from the streamwise velocity fluctuations, which were evaluated from hot-wire measurements at the trailing edge, were seen to coincide with the discrete tone frequencies observed in the trailing edge noise spectra. Previous findings on discrete frequency tones for airfoils with laminar boundary layers up to the trailing edge hint at the existence of a global feedback loop. Hence, sound waves generated at the trailing edge feed back into the laminar boundary layer upstream by receptivity and are, then, convectively amplified downstream. The most dominant amplification of these disturbance modes is observed inside the laminar separation bubble. Therefore, the frequencies of the most pronounced tones in the trailing edge noise spectra are in the frequency range of the convectively most amplified disturbance modes. Modifying the receptivity behavior of the laminar boundary layer on the pressure side by means of very thin, two-dimensional roughness elements considerably changes the discrete tone frequencies. For roughness elements placed closer to the trailing edge, the main tone frequency was seen to decrease, while the frequency spacing in-between two successive tones increased. Based on the stability characteristics of the laminar boundary layer and the characteristics of the upstream traveling sound wave, a method for predicting the discrete tone frequencies was developed showing good agreement with the measured results. Hence, with a controlled modification of the laminar boundary layer receptivity behavior, the existence of the proposed feedback loop could be confirmed. At the same time, no significant influence of a second feedback loop previously proposed for the suction side of the NACA 0012 airfoil was observed neither by influencing the boundary layer with a receptivity-roughness element nor by tripping the boundary layer at the leading edge.

  7. On The Molecular Mechanism Of Positive Novolac Resists

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Ping; Kwei, T. K.; Reiser, Arnost

    1989-08-01

    A molecular mechanism for the dissolution of novolac is proposed, based on the idea of a critical degree of deprotonation as being the condition for the transfer of polymer into solution. The rate at which the critical deprotonation condition is achieved is controlled by the supply of developer into a thin penetration zone, and depends in particular on the rate of diffusion of the base cations which are the developer component with the lowest mobility. The penetration zone contains phenolate ions and ion-bound water, but it retains the structure of a rigid polymer membrane, as evidenced by the diffusion coefficient of cations in the pene;tration zone which is several orders of magnitude slower than in an open gel of the same material. When the critical degree of deprotonation is reached, the membrane structure unravels and all subsequent events, chain rearrangement and transfer into solution, occur rapidly. The supralinear dependence of dissolution rate on base concentration and the effect of the size of the base cation are plausibly interpreted by the model. The diffusion of developer components is assumed to occur preferentially via hydrophilic sites in the polymer matrix. These sites define a diffusion path which acts like a hydrophilic diffusion channel. Suitably designed hydrophobic molecules can block some of the channels and in this way alter the dissolution rate. They reduce in effect the diffusion crossect ion of the material. Hydrophilic additives, on the other hand, introduce additional channels into the system and promote dissolution. The concept of diffusion channels appears to provide a unified interpretation for a number of common observations.

  8. Phytotoxicity of salt and plant salt uptake: Modeling ecohydrological feedback mechanisms

    NASA Astrophysics Data System (ADS)

    Bauer-Gottwein, Peter; Rasmussen, Nikolaj F.; Feificova, Dagmar; Trapp, Stefan

    2008-04-01

    A new model of phytotoxicity of salt and plant salt uptake is presented and is coupled to an existing three-dimensional groundwater simulation model. The implementation of phytotoxicity and salt uptake relationships is based on experimental findings from willow trees grown in hydroponic solution. The data confirm an s-shaped phytotoxicity relationship as found in previous studies. Uptake data were explained assuming steady state salt concentration in plant roots, passive salt transport into the roots, and active enzymatic removal of salt from plant roots. On the one hand, transpiration strongly depends on groundwater salinity (phytotoxicity); on the other hand, transpiration significantly changes the groundwater salinity (uptake). This feedback loop generates interesting dynamic phenomena in hydrological systems that are dominated by transpiration and are influenced by significant salinity gradients. Generic simulations are performed for the Okavango island system and are shown to reproduce essential phenomena observed in nature.

  9. Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt

    NASA Astrophysics Data System (ADS)

    Dunse, T.; Schellenberger, T.; Hagen, J. O.; Kääb, A.; Schuler, T. V.; Reijmer, C. H.

    2015-02-01

    Mass loss from glaciers and ice sheets currently accounts for two-thirds of the observed global sea-level rise and has accelerated since the 1990s, coincident with strong atmospheric warming in the polar regions. Here we present continuous GPS measurements and satellite synthetic-aperture-radar-based velocity maps from Basin-3, the largest drainage basin of the Austfonna ice cap, Svalbard. Our observations demonstrate strong links between surface-melt and multiannual ice-flow acceleration. We identify a hydro-thermodynamic feedback that successively mobilizes stagnant ice regions, initially frozen to their bed, thereby facilitating fast basal motion over an expanding area. By autumn 2012, successive destabilization of the marine terminus escalated in a surge of Basin-3. The resulting iceberg discharge of 4.2±1.6 Gt a-1 over the period April 2012 to May 2013 triples the calving loss from the entire ice cap. With the seawater displacement by the terminus advance accounted for, the related sea-level rise contribution amounts to 7.2±2.6 Gt a-1. This rate matches the annual ice-mass loss from the entire Svalbard archipelago over the period 2003-2008, highlighting the importance of dynamic mass loss for glacier mass balance and sea-level rise. The active role of surface melt, i.e. external forcing, contrasts with previous views of glacier surges as purely internal dynamic instabilities. Given sustained climatic warming and rising significance of surface melt, we propose a potential impact of the hydro-thermodynamic feedback on the future stability of ice-sheet regions, namely at the presence of a cold-based marginal ice plug that restricts fast drainage of inland ice. The possibility of large-scale dynamic instabilities such as the partial disintegration of ice sheets is acknowledged but not quantified in global projections of sea-level rise.

  10. Audio Feedback -- Better Feedback?

    ERIC Educational Resources Information Center

    Voelkel, Susanne; Mello, Luciane V.

    2014-01-01

    National Student Survey (NSS) results show that many students are dissatisfied with the amount and quality of feedback they get for their work. This study reports on two case studies in which we tried to address these issues by introducing audio feedback to one undergraduate (UG) and one postgraduate (PG) class, respectively. In case study one…

  11. Cloud CCN feedback

    SciTech Connect

    Hudson, J.G.

    1992-12-31

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result.

  12. The Effectiveness of Feedback for Changing Student Teachers' Humanistic Behavior.

    ERIC Educational Resources Information Center

    Walencik, Vincent J.; Tuckman, Bruce W.

    This study investigated effects of dissonance and positive reinforcement as feedback mechanisms for altering the humanistic behavior of student teachers. The subjects were undergraduate education majors who were enrolled in a student teaching program. The student teachers were observed twice by their pupils using the Tuckman Teacher Feedback Form.…

  13. Positive feedback of NR2B-containing NMDA receptor activity is the initial step toward visual imprinting: a model for juvenile learning.

    PubMed

    Nakamori, Tomoharu; Sato, Katsushige; Kinoshita, Masae; Kanamatsu, Tomoyuki; Sakagami, Hiroyuki; Tanaka, Kohichi; Ohki-Hamazaki, Hiroko

    2015-01-01

    Imprinting in chicks is a good model for elucidating the processes underlying neural plasticity changes during juvenile learning. We recently reported that neural activation of a telencephalic region, the core region of the hyperpallium densocellulare (HDCo), was critical for success of visual imprinting, and that N-Methyl-D-aspartic (NMDA) receptors containing the NR2B subunit (NR2B/NR1) in this region were essential for imprinting. Using electrophysiological and multiple-site optical imaging techniques with acute brain slices, we found that long-term potentiation (LTP) and enhancement of NR2B/NR1 currents in HDCo neurons were induced in imprinted chicks. Enhancement of NR2B/NR1 currents as well as an increase in surface NR2B expression occurred even following a brief training that was too weak to induce LTP or imprinting behavior. This means that NR2B/NR1 activation is the initial step of learning, well before the activation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors which induces LTP. We also showed that knockdown of NR2B/NR1 inhibited imprinting, and inversely, increasing the surface NR2B expression by treatment with a casein kinase 2 inhibitor successfully reduced training time required for imprinting. These results suggest that imprinting stimuli activate post-synaptic NR2B/NR1 in HDCo cells, increase NR2B/NR1 signaling through up-regulation of its expression, and induce LTP and memory acquisition. The study investigated the neural mechanism underlying juvenile learning. In the initial stage of chick imprinting, NMDA receptors containing the NMDA receptor subunit 2B (NR2B) are activated, surface expression of NR2B/NR1 (NMDA receptor subunit 1) is up-regulated, and consequently long-term potentiation is induced in the telencephalic neurons. We suggest that the positive feedback in the NR2B/NR1 activation is a unique process of juvenile learning, exhibiting rapid memory acquisition. PMID:25270582

  14. Gonadotropin and testosterone measurements after estrogen administration to adult men, prepubertal and pubertal boys, and men with hypogonadotropism: evidence for maturation of positive feedback in the male.

    PubMed

    Kulin, H E; Reiter, E O

    1976-01-01

    Nineteen male subjects were fiven five daily injections of 17beta-estradiol and circulating levels of estradiol (E2), testerone (T), and gonadotropins were determined by radioimmunoassay before, during, and after the steroid course. Peak levels of E2 attained during the 5 days of treatment ranged from 173-577 pg/ml. Four of seven normal adult men and one castrate man demonstrated suppression of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) with a subsequent rise in LH (positive feedback) while E2 levels remained elevated. A rise in T was associated with the LH increment in the four normal men. Nine pre-, early, or midpubertal boys and two men with hypogonadotropic hypogonadism displayed only gonadotropin suppression after E2 administration. The difference in LH response to estrogen (i.e., positive feedback) between the adult men with normal or elevated gonadotropin levels as compared with the endocrinologically normal boys is significant (P less than 0.01). PMID:1107952

  15. Opposing and following vocal responses to pitch-shifted auditory feedback: Evidence for different mechanisms of voice pitch control

    PubMed Central

    Behroozmand, Roozbeh; Korzyukov, Oleg; Sattler, Lindsey; Larson, Charles R.

    2012-01-01

    The present study describes a technique for analysis of vocal responses to auditory feedback pitch perturbations in which individual trials are first sorted according to response direction and then separately averaged in groups of upward or downward responses. In experiment 1, the stimulus direction was predictable (all upward) but magnitude was randomized between +100, +200, or +500 cents (unpredictable). Results showed that pitch-shift stimuli (PSS) of +100 and +200 cents elicited significantly larger opposing (compensatory) responses than +500 cent stimuli, but no such effect was observed for “following” responses. In experiment 2, subjects were tested in three blocks of trials where for the first two, PSS magnitude and direction were predictable (block 1+100 and block 2–100 cents), and in block 3, the magnitude was predictable (±100 cents) but direction was randomized (upward or downward). Results showed there were slightly more opposing than following responses for predictable PSS direction, but randomized directions led to significantly more opposing than following responses. Results suggest that predictability of stimulus direction and magnitude can modulate vocal responses to feedback pitch perturbations. The function and causes of the opposing and following responses are unknown, but there may be two different neural mechanisms involved in their production. PMID:23039441

  16. Feedbacks of phytoplankton surface mats on ocean physics

    NASA Astrophysics Data System (ADS)

    Hense, Inga; Sonntag, Sebastian

    2014-05-01

    The effects of phytoplankton on ocean physics through the feedback by light absorption have been investigated repeatedly. In contrast, additional feedback mechanisms involving positively buoyant phytoplankton have been largely ignored. However, extensive surface mats of buoyant cyanobacteria, as they occur regularly in the Baltic Sea in summer, may have significant effects on wind drag and albedo. Using an ecosystem model that is embedded in a water column or an ocean circulation model, we study the relative importance of all three feedback mechanisms. We show that surface floating cyanobacteria substantially alter their environment. The light absorption and wind drag feedbacks, however, are stronger than the albedo feedback. Overall, we find that the increase of sea surface temperatures and cooling subsurface mediated by cyanobacteria also modify ocean circulation patterns. Since the abundance of surface floating cyanobacteria is expected to increase in future, we recommend to include these biological-physical feedback mechanisms in the next generation of ocean climate models.

  17. Convection and the Soil-Moisture Precipitation Feedback

    NASA Astrophysics Data System (ADS)

    Schar, C.; Froidevaux, P.; Keller, M.; Schlemmer, L.; Langhans, W.; Schmidli, J.

    2014-12-01

    The soil moisture - precipitation (SMP) feedback is of key importance for climate and climate change. A positive SMP feedback tends to amplify the hydrological response to external forcings (and thereby fosters precipitation and drought extremes), while a negative SMP feedback tends to moderate the influence of external forcings (and thereby stabilizes the hydrological cycle). The sign of the SMP feedback is poorly constrained by the current literature. Theoretical, modeling and observational studies partly disagree, and have suggested both negative and positive feedback loops. Can wet soil anomalies indeed result in either an increase or a decrease of precipitation (positive or negative SMP feedback, respectively)? Here we investigate the local SMP feedback using real-case and idealized convection-resolving simulations. An idealized simulation strategy is developed, which is able to replicate both signs of the feedback loop, depending on the environmental parameters. The mechanism relies on horizontal soil moisture variations, which may develop and intensify spontaneously. The positive expression of the feedback is associated with the initiation of convection over dry soil patches, but the convective cells then propagate over wet patches, where they strengthen and preferentially precipitate. The negative feedback may occur when the wind profile is too weak to support the propagation of convective features from dry to wet areas. Precipitation is then generally weaker and falls preferentially over dry patches. The results highlight the role of the mid-tropospheric flow in determining the sign of the feedback. A key element of the positive feedback is the exploitation of both low convective inhibition (CIN) over dry patches (for the initiation of convection), and high CAPE over wet patches (for the generation of precipitation). The results of this study will also be discussed in relation to climate change scenarios that exhibit large biases in surface temperature and interannual variability over mid-latitude summer climates, both over Europe and North America. It is argued that parameterized convection may contribute towards such biases by overemphasizing a positive SMP feedback.

  18. CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in Single Column Models

    SciTech Connect

    Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter; Austin, Phillip A.; Bacmeister, J.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; Del Genio, Anthony D.; De Roode, Stephan R.; Endo , Satoshi; Franklin, Charmaine N.; Golaz, Jean-Christophe; Hannay, Cecile; Heus, Thijs; Isotta, Francesco A.; Jean-Louis, Dufresne; Kang, In-Sik; Kawai, Hideaki; Koehler, M.; Larson, Vincent E.; Liu, Yangang; Lock, Adrian; Lohmann, U.; Khairoutdinov, Marat; Molod, Andrea M.; Neggers, Roel; Rasch, Philip J.; Sandu, Irina; Senkbeil, Ryan; Siebesma, A. P.; Siegenthaler-Le Drian, Colombe; Stevens, Bjorn; Suarez, Max; Xu, Kuan-Man; Von Salzen, Knut; Webb, Mark; Wolf, Audrey; Zhao, M.

    2013-12-26

    Large Eddy Models (LES) and Single Column Models (SCM) are used in a surrogate climate change 101 to investigate the physical mechanism of low cloud feedbacks in climate models. Enhanced surface-102 driven boundary layer turbulence and shallow convection in a warmer climate are found to be 103 dominant mechanisms in SCMs.

  19. The Role of Possible Feedback Mechanisms in the Effects of Altered Gravity on Formation and Function of Gravireceptors of Mollusks and Fish

    NASA Technical Reports Server (NTRS)

    Kondrachuk, Alexander V.; Boyle, Richard D.

    2005-01-01

    The variety of the effects of altered gravity (AG) on development and function of gravireceptors cannot be explained by simple feedback mechanism that correlates gravity level and weight of test mass. The reaction of organisms to the change of gravity depends on the phase of their development. To predict this reaction we need to know the details of the mechanisms of gravireceptor formation

  20. An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition

    PubMed Central

    Brainard, Michael S.; Jin, Dezhe Z.

    2015-01-01

    Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054

  1. An Adapting Auditory-motor Feedback Loop Can Contribute to Generating Vocal Repetition.

    PubMed

    Wittenbach, Jason D; Bouchard, Kristofer E; Brainard, Michael S; Jin, Dezhe Z

    2015-10-01

    Consecutive repetition of actions is common in behavioral sequences. Although integration of sensory feedback with internal motor programs is important for sequence generation, if and how feedback contributes to repetitive actions is poorly understood. Here we study how auditory feedback contributes to generating repetitive syllable sequences in songbirds. We propose that auditory signals provide positive feedback to ongoing motor commands, but this influence decays as feedback weakens from response adaptation during syllable repetitions. Computational models show that this mechanism explains repeat distributions observed in Bengalese finch song. We experimentally confirmed two predictions of this mechanism in Bengalese finches: removal of auditory feedback by deafening reduces syllable repetitions; and neural responses to auditory playback of repeated syllable sequences gradually adapt in sensory-motor nucleus HVC. Together, our results implicate a positive auditory-feedback loop with adaptation in generating repetitive vocalizations, and suggest sensory adaptation is important for feedback control of motor sequences. PMID:26448054

  2. Investigating the nature and dominance of feedback mechanisms within vegetated channel flows: a high-resolution numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Marjoribanks, T. I.; Hardy, R. J.; Lane, S. N.; Parsons, D. R.

    2012-12-01

    The flow and plant dynamics of vegetated channel flows are governed by a variety of processes and feedback mechanisms that interact, across a range of scales, to form a complex inter-connected system. It is well documented that vegetation exerts a significant drag force on the flow, creating a drag discontinuity between the canopy layer and the flow above. This has been shown to control the mean flow and turbulent structure through the development of a canopy shear layer, which leads to the generation of coherent roller vortices at the canopy top. In turn, the canopy reacts to the flow forcing through reconfiguration to minimize drag, and responds to the passage of vortices through exhibiting coherent monami. It has been hypothesized that the vegetation consequently acts to modulate the turbulence structure through the vibrational response of the natural frequency of the vegetation. Hence the interaction of processes is complex and nonlinear. Here we report on a series of high resolution numerical experiments designed to investigate the exact nature and role of these feedback mechanisms within the flow-vegetation system. Two biomechanical models are developed and applied within a computational fluid dynamics framework to investigate the nature of the time-dependent flow dynamics. The first model, for semi-flexible vegetation uses the Euler Beam equation to drive plant motion, whilst the second model uses an n-pendula approach to represent cases of highly flexible vegetation. Both models were validated through a series of laboratory experiments using particle image velocimetry that employed both real and prototype vegetation. The high-resolution numerical models enable detailed analysis of both the plant motion and corresponding flow field. The results clearly show the presence of a strong drag discontinuity, coherent canopy motion and large scale turbulent structures formed at the canopy top. Time series and spectral analysis reveals a clear, time-dependent, process linkage between the flow and plant motion, illustrating that both flow and plant characteristics interact to drive the overall system.

  3. Mechanical Cell-Matrix Feedback Explains Pairwise and Collective Endothelial Cell Behavior In Vitro

    PubMed Central

    LaValley, Danielle J.; Reinhart-King, Cynthia A.; Merks, Roeland M. H.

    2014-01-01

    In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a) the contractile forces that endothelial cells exert on the ECM, (b) the resulting strains in the extracellular matrix, and (c) the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis. PMID:25121971

  4. RHIC 10 Hz global orbit feedback system

    SciTech Connect

    Michnoff, R.; Arnold, L.; Carboni, L.; Cerniglia, P; Curcio, A.; DeSanto, L.; Folz, C.; Ho, C.; Hoff, L.; Hulsart, R.; Karl, R.; Luo, Y.; Liu, C.; MacKay, W.; Mahler, G.; Meng, W.; Mernick, K.; Minty, M.; Montag, C.; Olsen, R.; Piacentino, J.; Popken, P.; Przybylinski, R.; Ptitsyn, V.; Ritter, J.; Schoenfeld, R.; Thieberger, P.; Tuozzolo, J.; Weston, A.; White, J.; Ziminski, P.; Zimmerman, P.

    2011-03-28

    Vibrations of the cryogenic triplet magnets at the Relativistic Heavy Ion Collider (RHIC) are suspected to be causing the horizontal beam perturbations observed at frequencies around 10 Hz. Several solutions to counteract the effect have been considered in the past, including a local beam feedback system at each of the two experimental areas, reinforcing the magnet base support assembly, and a mechanical servo feedback system. However, the local feedback system was insufficient because perturbation amplitudes outside the experimental areas were still problematic, and the mechanical solutions are very expensive. A global 10 Hz orbit feedback system consisting of 36 beam position monitors (BPMs) and 12 small dedicated dipole corrector magnets in each of the two 3.8 km circumference counter-rotating rings has been developed and commissioned in February 2011. A description of the system architecture and results with beam will be discussed.

  5. REG3A accelerates pancreatic cancer cell growth under IL-6-associated inflammatory condition: Involvement of a REG3A-JAK2/STAT3 positive feedback loop.

    PubMed

    Liu, Xiulan; Wang, Jun; Wang, Hongjie; Yin, Guoxiao; Liu, Yang; Lei, Xiang; Xiang, Ming

    2015-06-28

    Regenerating gene protein (REG) 3A is a 19 kD secretory pancreas protein with pro-growth function. Previously we demonstrated that overexpression of REG3A, acting as a key molecule for up-regulation of the JAK2/STAT3 pathway, contributed to inflammation-related pancreatic cancer (PaC) development. However the exact network associated with REG3A signaling still remains unclear. Here we determined that exposure of human PaC cells to cytokine IL-6 activated the oncogenic JAK2/STAT3 pathway, which directly upregulated REG3A expression, accelerated cell cycle progression by promoting CyclinD1 expression, and enhancing the expression of the anti-apoptosis Bcl family. Importantly, the activation of REG3A would instead enhance the JAK2/STAT3 pathway to constitute a REG3A-JAK2/STAT3 positive feedback loop, which leads to the amplification of the oncogenic effects of IL-6/JAK2/STAT3, a classic pathway linking to inflammation-related tumorigenesis, ultimately resulting in PaC cell over-proliferation and tumor formation both in vitro and in vivo. Moreover, EGFR was found to mediate the REG3A signal for PaC cell growth and JAK2/STAT3 activation, thus functioning as a REG3A receptor. Collectively, our results provide the first evidence for the presence of the synergistic effect of REG3A and IL-6 on PaC development via a REG3A-JAK2/STAT3 positive feedback loop. PMID:25779676

  6. Overall non-linear correction of phase shifting mechanism in white light interferometry system based on displacement feedback control combined with fuzzy PID control

    NASA Astrophysics Data System (ADS)

    Song, Ningfang; Luo, Xinkai; Li, Huipeng; Li, Jiao

    2015-10-01

    The non-linearity of the phase shifting mechanism in white light interferometry system can seriously affect the measuring accuracy of the system. In this paper, the correcting method is to combine the displacement feedback control technology with the fuzzy PID control technology. Displacement feedback control mechanism and fuzzy PID controller are designed and then try to figure it out through Matlab simulation and experiment.. The result shows that combining the displacement feedback control technology with the fuzzy PID control technology can fulfill decent overall non-linear correction in the white light interferometry measuring system. Meanwhile, the accuracy of the correction is high and the non-linearity drop from 2% to 0.1%.

  7. Herbivory and Stoichiometric Feedbacks to Primary Production

    PubMed Central

    Krumins, Jennifer Adams; Krumins, Valdis; Forgoston, Eric; Billings, Lora; van der Putten, Wim H.

    2015-01-01

    Established theory addresses the idea that herbivory can have positive feedbacks on nutrient flow to plants. Positive feedbacks likely emerge from a greater availability of organic carbon that primes the soil by supporting nutrient turnover through consumer and especially microbially-mediated metabolism in the detrital pool. We developed an entirely novel stoichiometric model that demonstrates the mechanism of a positive feedback. In particular, we show that sloppy or partial feeding by herbivores increases detrital carbon and nitrogen allowing for greater nitrogen mineralization and nutritive feedback to plants. The model consists of differential equations coupling flows among pools of: plants, herbivores, detrital carbon and nitrogen, and inorganic nitrogen. We test the effects of different levels of herbivore grazing completion and of the stoichiometric quality (carbon to nitrogen ratio, C:N) of the host plant. Our model analyses show that partial feeding and plant C:N interact because when herbivores are sloppy and plant biomass is diverted to the detrital pool, more mineral nitrogen is available to plants because of the stoichiometric difference between the organisms in the detrital pool and the herbivore. This model helps to identify how herbivory may feedback positively on primary production, and it mechanistically connects direct and indirect feedbacks from soil to plant production. PMID:26098841

  8. APEX-CHAMP+ high-J CO observations of low-mass young stellar objects. IV. Mechanical and radiative feedback

    NASA Astrophysics Data System (ADS)

    Yıldız, U. A.; Kristensen, L. E.; van Dishoeck, E. F.; Hogerheijde, M. R.; Karska, A.; Belloche, A.; Endo, A.; Frieswijk, W.; Güsten, R.; van Kempen, T. A.; Leurini, S.; Nagy, Z.; Pérez-Beaupuits, J. P.; Risacher, C.; van der Marel, N.; van Weeren, R. J.; Wyrowski, F.

    2015-04-01

    Context. During the embedded stage of star formation, bipolar molecular outflows and UV radiation from the protostar are important feedback processes. Both processes reflect the accretion onto the forming star and affect subsequent collapse or fragmentation of the cloud. Aims: Our aim is to quantify the feedback, mechanical and radiative, for a large sample of low-mass sources in a consistent manner. The outflow activity is compared to radiative feedback in the form of UV heating by the accreting protostar to search for correlations and evolutionary trends. Methods: Large-scale maps of 26 young stellar objects, which are part of the Herschel WISH key program are obtained using the CHAMP+ instrument on the Atacama Pathfinder EXperiment (12CO and 13CO 6-5; Eup ~ 100 K), and the HARP-B instrument on the James Clerk Maxwell Telescope (12CO and 13CO 3-2; Eup ~ 30 K). The maps have high spatial resolution, particularly the CO 6-5 maps taken with a 9″ beam, resolving the morphology of the outflows. The maps are used to determine outflow parameters and the results are compared with higher-J CO lines obtained with Herschel. Envelope models are used to quantify the amount of UV-heated gas and its temperature from 13CO 6-5 observations. Results: All sources in our sample show outflow activity, with the spatial extent decreasing from the Class 0 to the Class I stage. Consistent with previous studies, the outflow force, FCO, is larger for Class 0 sources than for Class I sources, even if their luminosities are comparable. The outflowing gas typically extends to much greater distances than the power-law envelope and therefore influences the surrounding cloud material directly. Comparison of the CO 6-5 results with HIFI H2O and PACS high-J CO lines, both tracing currently shocked gas, shows that the two components are linked, even though the transitions do not probe the same gas. The link does not extend down to CO 3-2. The conclusion is that CO 6-5 depends on the shock characteristics (density and velocity), whereas CO 3-2 is more sensitive to conditions in the surrounding environment (density). The radiative feedback is responsible for increasing the gas temperature by a factor of two, up to 30-50 K, on scales of a few thousand AU, particularly along the direction of the outflow. The mass of the UV heated gas exceeds the mass contained in the entrained outflow in the inner ~3000 AU and is therefore at least as important on small scales. Appendix A is available in electronic form at http://www.aanda.orgThe CHAMP+ maps (data cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/576/A109

  9. Shear localization due to thermo-mechanical feed-back and anisotropy

    NASA Astrophysics Data System (ADS)

    Markus Schmalholz, Stefan; Duretz, Thibault

    2014-05-01

    Shear zones resulting from shear localization in deforming rock are important structures controlling the deformation of the lithosphere on nearly all scales. Field observations on pressure, temperature and strain in and around shear zones are important quantities to constrain the geodynamic evolution of mountain ranges or sedimentary basins. In order to link field observations to numerical models it is essential that the numerically modelled shear zones and the corresponding magnitudes of pressure, temperature and strain are independent on the numerical resolution. However, in many numerical models simulating shear localization so-called strain softening is applied for which a certain material parameter (often the friction angle or the cohesion) decreases with increasing strain. Such strain softening usually causes a mesh-dependency of the shear zone thickness, and consequently the shear zone thickness and the related magnitudes of pressure, temperature and strain are also mesh dependent. Such mesh dependency prohibits are correct link between numerically modelled and natural shear zones. In this contribution we present numerical simulations of shear localization for two scenarios without strain softening: (1) Compression of a viscous fluid with a weak circular inclusion where shear localization is caused by shear heating and the temperature dependent weakening of the viscosity. We show that the thickness of these shear zones is independent on the numerical resolution and applied numerical method (Finite Difference and Finite Element Method). We further show that the numerical algorithms are conservative, which means that the numerically calculated mechanical energy corresponds to the thermal energy. The control of the model parameters on the shear zone thickness is investigated. (2) Layer-parallel extension of a power-law viscous multilayer with alternating strong and weak layers where shear localization is caused by the linkage of individual necks within the strong layers across the multilayer. Thermo-mechanical coupling is not considered for this scenario. The shear localization into shear bands does not occur in a single extended layer but only in a multilayer suggesting that the anisotropy of the multilayer is the quantity controlling shear band formation. The impact of the numerical resolution on the shear band thickness is investigated. Applications of the two models to natural observations of shear localization are discussed.

  10. A positive FGFR3/FOXN1 feedback loop underlies benign skin keratosis versus squamous cell carcinoma formation in humans

    PubMed Central

    Mandinova, Anna; Kolev, Vihren; Neel, Victor; Hu, Bing; Stonely, Wesley; Lieb, Jocelyn; Wu, Xunwei; Colli, Claudia; Han, Rong; Pazin, Mike; Ostano, Paola; Dummer, Reinhard; Brissette, Janice L.; Dotto, G. Paolo

    2009-01-01

    Seborrheic keratoses (SKs) are common, benign epithelial tumors of the skin that do not, or very rarely, progress into malignancy, for reasons that are not understood. We investigated this by gene expression profiling of human SKs and cutaneous squamous cell carcinomas (SCCs) and found that several genes previously connected with keratinocyte tumor development were similarly modulated in SKs and SCCs, whereas the expression of others differed by only a few fold. In contrast, the tyrosine kinase receptor FGF receptor–3 (FGFR3) and the transcription factor forkhead box N1 (FOXN1) were highly expressed in SKs, and close to undetectable in SCCs. We also showed that increased FGFR3 activity was sufficient to induce FOXN1 expression, counteract the inhibitory effect of EGFR signaling on FOXN1 expression and differentiation, and induce differentiation in a FOXN1-dependent manner. Knockdown of FOXN1 expression in primary human keratinocytes cooperated with oncogenic RAS in the induction of SCC-like tumors, whereas increased FOXN1 expression triggered the SCC cells to shift to a benign SK-like tumor phenotype, which included increased FGFR3 expression. Thus, we have uncovered a positive regulatory loop between FGFR3 and FOXN1 that underlies a benign versus malignant skin tumor phenotype. PMID:19729838

  11. A Tradeoff Between Accuracy and Flexibility in a Working Memory Circuit Endowed with Slow Feedback Mechanisms.

    PubMed

    Pereira, Jacinto; Wang, Xiao-Jing

    2015-10-01

    Recent studies have shown that reverberation underlying mnemonic persistent activity must be slow, to ensure the stability of a working memory system and to give rise to long neural transients capable of accumulation of information over time. Is the slower the underlying process, the better? To address this question, we investigated 3 slow biophysical mechanisms that are activity-dependent and prominently present in the prefrontal cortex: Depolarization-induced suppression of inhibition (DSI), calcium-dependent nonspecific cationic current (ICAN), and short-term facilitation. Using a spiking network model for spatial working memory, we found that these processes enhance the memory accuracy by counteracting noise-induced drifts, heterogeneity-induced biases, and distractors. Furthermore, the incorporation of DSI and ICAN enlarges the range of network's parameter values required for working memory function. However, when a progressively slower process dominates the network, it becomes increasingly more difficult to erase a memory trace. We demonstrate this accuracy-flexibility tradeoff quantitatively and interpret it using a state-space analysis. Our results supports the scenario where N-methyl-d-aspartate receptor-dependent recurrent excitation is the workhorse for the maintenance of persistent activity, whereas slow synaptic or cellular processes contribute to the robustness of mnemonic function in a tradeoff that potentially can be adjusted according to behavioral demands. PMID:25253801

  12. SIRTF/IRS cryogenic grating drive mechanism (ARC second positioning at 4 K)

    NASA Technical Reports Server (NTRS)

    Kubitschek, Michael J.

    1991-01-01

    The requirements, design, and test results of a grating drive mechanism for the Infrared Spectrograph (IRS) science instrument on the proposed superfluid helium-cooled Space Infrared Telescope Facility (SIRTF) are described. The IRS grating drive mechanism, tested in the fall of 1989, satisfied all performance requirements in vacuum at 4 K. Measured mechanism performance included: 1.4 arc sec root-mean-square (rms) error positioning resolution; 2.2 arc sec rms position repeatability error, less than 10 millijoules/deg dissipated power; and 170 deg angular range of travel. Mechanisms that precisely position optical elements at very low cryogenic temperatures (at/below 4 K) are vital to the operating success of a number of proposed infrared scientific instruments like those in SIRTF.

  13. The Role of Atmosphere Feedbacks During ENSO

    NASA Astrophysics Data System (ADS)

    Lloyd, J.; Guilyardi, E.; Weller, H.

    2009-12-01

    Although most current coupled general circulation models (GCMs) exhibit some sort of ENSO signal, there are still many areas for improvement. For example, the models generally simulate El Niño events with frequencies which are too high, structures which extend too far to the west, and a large diversity of amplitudes. Moreover, simulating the correct ENSO properties with the right balance of mechanisms and feedbacks is still a challenge. Several recent studies using ocean-atmosphere GCMs suggest that the atmospheric component, and in particular the deep convection scheme, plays a dominant role in the modeled ENSO. To help elucidate these findings, the two main atmosphere feedbacks relevant to ENSO, the Bjerknes positive feedback (μ) and the heat flux feedback (α), are here analysed in 12 coupled GCMs from the CMIP3 database. We find that the models generally underestimate both feedbacks, leading to an error compensation. The strength of α is inversely related to the ENSO amplitude in the models and the latent heat and shortwave flux components of this feedback dominate. While the latent heat feedback is primarily responsible for this inverse relationship, errors in the shortwave flux feedback are the main cause of the model diversity in the overall α. In the tropical Pacific, the shortwave flux feedback is intrinsically linked to the large-scale vertical motion, with SST anomalies in the East Pacific coupled to changes in the amount of deep convection/subsidence and cloud cover. We thus propose that an improved atmosphere-ocean heat flux feedback in the models can only be achieved by correcting the errors in the convection/cloud physics responsible for the biases in the shortwave flux feedback.

  14. GIV/Girdin (Gα-interacting, Vesicle-associated Protein/Girdin) Creates a Positive Feedback Loop That Potentiates Outside-in Integrin Signaling in Cancer Cells.

    PubMed

    Leyme, Anthony; Marivin, Arthur; Garcia-Marcos, Mikel

    2016-04-01

    Activation of the tyrosine kinase focal adhesion kinase (FAK) upon cell stimulation by the extracellular matrix initiates integrin outside-in signaling. FAK is directly recruited to active integrins, which enhances its kinase activity and triggers downstream signaling like activation of PI3K. We recently described that Gα-interacting, vesicle-associated protein (GIV), a protein up-regulated in metastatic cancers, is also required for outside-in integrin signaling. More specifically, we found that GIV is a non-receptor guanine nucleotide exchange factor that activates trimeric G proteins in response to integrin stimulation to enhance PI3K signaling and tumor cell migration. In contrast, previous reports have established that GIV is involved in phosphotyrosine (Tyr(P))-based signaling in response to growth factor stimulation;i.e.GIV phosphorylation at Tyr-1764 and Tyr-1798 recruits and activates PI3K. Here we show that phosphorylation of GIV at Tyr-1764/Tyr-1798 is also required to enhance PI3K-Akt signaling and tumor cell migration in response to integrin stimulation, indicating that GIV functions in Tyr(P)-dependent integrin signaling. Unexpectedly, we found that activation of FAK, an upstream component of the integrin Tyr(P) signaling cascade, was diminished in GIV-depleted cells, suggesting that GIV is required to establish a positive feedback loop that enhances integrin-FAK signaling. Mechanistically, we demonstrate that this feedback activation of FAK depends on both guanine nucleotide exchange factor and Tyr(P) GIV signaling as well as on their convergence point, PI3K. Taken together, our results provide novel mechanistic insights into how GIV promotes proinvasive cancer cell behavior by working as a signal-amplifying platform at the crossroads of trimeric G protein and Tyr(P) signaling. PMID:26887938

  15. Accurate mean-field modeling of the Barkhausen noise power in ferromagnetic materials, using a positive-feedback theory of ferromagnetism

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.

    2015-07-01

    A mean-field positive-feedback (PFB) theory of ferromagnetism is used to explain the origin of Barkhausen noise (BN) and to show why it is most pronounced in the irreversible regions of the hysteresis loop. By incorporating the ABBM-Sablik model of BN into the PFB theory, we obtain analytical solutions that simultaneously describe both the major hysteresis loop and, by calculating separate expressions for the differential susceptibility in the irreversible and reversible regions, the BN power response at all points of the loop. The PFB theory depends on summing components of the applied field, in particular, the non-monotonic field-magnetization relationship characterizing hysteresis, associated with physical processes occurring in the material. The resulting physical model is then validated by detailed comparisons with measured single-peak BN data in three different steels. It also agrees with the well-known influence of a demagnetizing field on the position and shape of these peaks. The results could form the basis of a physics-based method for modeling and understanding the significance of the observed single-peak (and in multi-constituent materials, multi-peak) BN envelope responses seen in contemporary applications of BN, such as quality control in manufacturing, non-destructive testing, and monitoring the microstructural state of ferromagnetic materials.

  16. Incentive-Rewarding Mechanism for User-position Control in Mobile Services

    NASA Astrophysics Data System (ADS)

    Yoshino, Makoto; Sato, Kenichiro; Shinkuma, Ryoichi; Takahashi, Tatsuro

    When the number of users in a service area increases in mobile multimedia services, no individual user can obtain satisfactory radio resources such as bandwidth and signal power because the resources are limited and shared. A solution for such a problem is user-position control. In the user-position control, the operator informs users of better communication areas (or spots) and navigates them to these positions. However, because of subjective costs caused by subjects moving from their original to a new position, they do not always attempt to move. To motivate users to contribute their resources in network services that require resource contributions for users, incentive-rewarding mechanisms have been proposed. However, there are no mechanisms that distribute rewards appropriately according to various subjective factors involving users. Furthermore, since the conventional mechanisms limit how rewards are paid, they are applicable only for the network service they targeted. In this paper, we propose a novel incentive-rewarding mechanism to solve these problems, using an external evaluator and interactive learning agents. We also investigated ways of appropriately controlling rewards based on user contributions and system service quality. We applied the proposed mechanism and reward control to the user-position control, and demonstrated its validity.

  17. Neural cryptography with feedback.

    PubMed

    Ruttor, Andreas; Kinzel, Wolfgang; Shacham, Lanir; Kanter, Ido

    2004-04-01

    Neural cryptography is based on a competition between attractive and repulsive stochastic forces. A feedback mechanism is added to neural cryptography which increases the repulsive forces. Using numerical simulations and an analytic approach, the probability of a successful attack is calculated for different model parameters. Scaling laws are derived which show that feedback improves the security of the system. In addition, a network with feedback generates a pseudorandom bit sequence which can be used to encrypt and decrypt a secret message. PMID:15169072

  18. Feedback that Fits

    ERIC Educational Resources Information Center

    Brookhart, Susan M.

    2008-01-01

    Brookhart maintains that clear, positive teacher feedback, which provides precise information on the next steps a student can take to reach their learning targets, is at the heart of formative assessment. Because feedback is closely tied to students' feelings of self-efficacy, it can be destructive as well as motivating. Drawing on research and…

  19. The Power of Feedback

    ERIC Educational Resources Information Center

    Hattie, John; Timperley, Helen

    2007-01-01

    Feedback is one of the most powerful influences on learning and achievement, but this impact can be either positive or negative. Its power is frequently mentioned in articles about learning and teaching, but surprisingly few recent studies have systematically investigated its meaning. This article provides a conceptual analysis of feedback and

  20. Assessing the Importance of the Evaporation-Wind Feedback Mechanism in the Modulation of Simulated Madden-Julian Oscillations

    NASA Technical Reports Server (NTRS)

    Colon, Edward; Lindesay, James; Suarez, Max J.

    1998-01-01

    An examination of simulated Madden-Julian Oscillation (MJO) response to active and suppressed air-sea interactions is made using an aquaplanet model employing a realistic representation of the hydrologic cyle. In general, the evaporation-wind feedback (EWF) results from a coupling between tropical zonal surface wind stresses and evaporation anomalies. Recent observational and theoretical studies have questioned the significance of EWF in sustaining the predominantly wavenumber 1 eastward propagating mode commonly attributed to the interaction between large scale convergence and cumulus-scale convection (conditional instability of the second kind, CISK). To ascertain the nature of the EWF dependence on lower boundary conditions and thus quantify its effect on MJO development, a series of numerical experiments were conducted employing various zonally symmetric sea surface temperature (SST) distributions with active and suppressed EWF mechanisms. Results suggest that a correlation exists between tropical SSTs and the efficacy of the EWF in vertically redistributing heat acquired through surface wind stresses. It has been determined that the removal of the EWF is not a crucial factor in the dampening of the simulated MJO at high equatorial SSTs. The additional energy fed into the developing convective mode by the EWF selectively amplifies higher order wave modes in all numerical experiments thus boosting overall variances in oscillatory responses.

  1. Numerical study of evaporation-induced salt accumulation and precipitation in bare saline soils: Mechanism and feedback

    NASA Astrophysics Data System (ADS)

    Zhang, Chenming; Li, Ling; Lockington, David

    2014-10-01

    Evaporation from bare saline soils in coastal wetlands causes salt precipitation in the form of efflorescence and subflorescence. However, it is not clear how much the precipitated salt in turn affects the water transport in the soil and hence the evaporation rate. We hypothesized that efflorescence exerts a mulching resistance to evaporation, while subflorescence reduces the pore space for water vapor to move through the soil. A numerical model is developed to simulate the transport of water, solute, and heat in the soil, and resulting evaporation and salt precipitation with the hypothesized feedback mechanism incorporated. The model was applied to simulate four evaporation experiments in soil columns with and without a fixed shallow water table, and was found to replicate well the experimental observations. The simulated results indicated that as long as the hydraulic connection between the near surface soil layer and the water source in the interior soil layer exists, vaporization occurs near the surface, and salt precipitates exclusively as efflorescence. When such hydraulic connection is absent, the vaporization plane develops downward and salt precipitates as subflorescence. Being more substantial in quantity, efflorescent affects more significantly evaporation than subflorescence during the soil-drying process. Different evaporation stages based on the location of the vaporization plane and the state of salt accumulation can be identified for characterizing the process of evaporation from bare saline soils with or without a fixed shallow water table.

  2. A Negative Feedback Mechanism Revealed by Functional Analysis of the Alternative Isoforms of the Drosophila Splicing Regulator Transformer-2

    PubMed Central

    Mattox, W.; McGuffin, M. E.; Baker, B. S.

    1996-01-01

    The Drosophila sex determination gene transformer-2 (tra-2) is a splicing regulator that affects the sex-specific processing of several distinct pre-mRNAs. While the tra-2 gene itself is known to produce alternative mRNAs that together encode three different TRA-2 protein isoforms, the respective roles of these isoforms in affecting individual pre-mRNA targets has remained unclear. We have generated transgenic fly strains with mutations affecting specific TRA-2 isoforms to investigate their individual roles in regulating the alternative processing of doublesex, exuperantia and tra-2 pre-mRNA. Our results indicate that in somatic tissues two different isoforms function redundantly to direct female differentiation and female-specific doublesex pre-mRNA splicing. In the male germline, where tra-2 has an essential role in spermatogenesis, a single isoform was found to uniquely perform all necessary functions. This isoform appears to regulate its own synthesis during spermatogenesis through a negative feedback mechanism involving intron retention. PMID:8722783

  3. [Research on modeling and simulation of the system of position transformation mechanical ventilation].

    PubMed

    Xu, Ji-ping; Liu, Zai-wen; Wang, Xiao-yi

    2009-11-01

    The principle of Position Transformation Mechanical Ventilation (PTMV) was introduced briefly, and the mechanical structure and the intelligent control algorithm were studied. According to the principle and function requirement of PTMV, the mechanical structure of slip pole driven rocking chair(SPDRC) was proposed, the dynamics model of SPDRC was established, and the auto disturbance rejection controller was designed. The integrated model of control system was structured by using ADAMS and MATLAB, and the model validation and simulation were implemented. The simulation results indicate that the mechanical structure is feasible and the control process of ADRC is precise and steady. PMID:20352909

  4. Coevolution of topography, soils, and vegetation in upland landscapes: Using cinder cones to elucidate ecohydrogeomorphic feedback mechanisms

    NASA Astrophysics Data System (ADS)

    McGuire, L.; Pelletier, J. D.; Rasmussen, C.

    2013-12-01

    The study of landscape evolution in upland environments requires analysis of complex interactions among topography, soil development, and vegetation cover under changing climatic conditions. Earth surface scientists lack a comprehensive understanding of these interactions in part due to their interdisciplinary nature, our limited ability to reconstruct the progression of landscape states through time, and the limited spatially-distributed data available for paleoclimate conditions. In this study, we investigate the interactions and feedbacks among topography, soil development, and vegetation cover in upland environments using remote sensing, geochemistry, and numerical modeling. We focus on quantifying the evolution of late Quaternary cinder cones within several volcanic fields, spanning a range of climates, as a function of age and microclimate, which varies with elevation and slope aspect. Cinder cones are excellent natural laboratories for studying the evolution of upland landscapes because they begin their evolution at a known time in the past (i.e. many cinder cones have been radiometrically dated) and because they often have unusually uniform initial conditions (i.e. they form close to the angle of repose and are comprised of well-sorted volcaniclastic parent materials). As such, cinder cones of different ages with similar size and climatic history can provide an approximate time progression illustrating how a dated hillslope has evolved over geologic time scales. Data suggest that rates of soil development and fluvial erosion are low on younger cones, which have surfaces consisting mostly of permeable cinders, but increase significantly after eolian deposits reduce the permeability of the cone surface. Further, data demonstrate that microclimatic differences between north and south facing slopes lead to systematic variations in biomass. Additionally, north-facing slopes on cinder cones are found to be steeper than corresponding south-facing slopes. The observed asymmetries in hillslope morphology are not present initially, but appear to develop over time as a result of differences in post-emplacement processes that may be attributed to aspect-induced microclimatic effects on long-term sediment transport rates. Results provide additional constraints on the timing and magnitude of feedback mechanisms among topography, biomass, and soil development as well as improve our understanding of cinder cone evolution within different climates.

  5. Positive feedback regulation of agonist-stimulated endothelial Ca2+ dynamics by KCa3.1 channels in mouse mesenteric arteries

    PubMed Central

    Qian, Xun; Francis, Michael; Köhler, Ralf; Solodushko, Viktoriya; Lin, Mike; Taylor, Mark S.

    2014-01-01

    Objective Intermediate and small conductance KCa channels IK1 (KCa3.1) and SK3 (KCa2.3) are primary targets of endothelial Ca2+ signals in the arterial vasculature and their ablation results in increased arterial tone and hypertension. Activation of IK1 channels by local Ca2+ transients from internal stores or plasma membrane channels promotes arterial hyperpolarization and vasodilation. Here, we assess arteries from genetically altered IK1 knockout mice (IK1−/−) to determine whether IK1 channels exert a positive feedback influence on endothelial Ca2+ dynamics. Approach and Results Using confocal imaging and custom data analysis software we found that while the occurrence of basal endothelial Ca2+ dynamics was not different between IK1−/− and wild-type (WT) mice (p > 0.05), the frequency of acetylcholine (ACh 2 µM)-stimulated Ca2+ dynamics was greatly depressed in IK1−/− endothelium (515 ± 153 vs. 1860 ± 319 events; p < 0.01). In IK1−/−/SK3T/T mice, ancillary suppression (+Dox) or overexpression (−Dox) of SK3 channels had little additional impact on the occurrence of events under basal or ACh-stimulated conditions. SK3 overexpression did, however, restore the depressed event amplitudes. Removal of extracellular Ca2+ reduced ACh-induced Ca2+ dynamics to the same level in WT and IK1−/− arteries. Blockade of IK1 and SK3 with the combination of charybdotoxin (0.1 µM) and apamin (0.5 µM) or TRPV4 channels with HC-067047 (1 µM) reduced ACh Ca2+ dynamics in WT arteries to the level of IK1−/−/SK3T/T+Dox arteries. These drug effects were not additive. Conclusions IK1, and to some extent SK3 channels, exert a substantial positive feedback influence on endothelial Ca2+ dynamics. PMID:24177326

  6. MEK/Erk-based negative feedback mechanism involved in control of Steel Factor-triggered production of Krüppel-like factor 2 in mast cells.

    PubMed

    Marschall, J S; Wilhelm, T; Schuh, W; Huber, M

    2012-04-01

    The receptor tyrosine kinase, c-kit (Steel Factor (SF) receptor) controls survival, proliferation, chemotaxis, and secretion of proinflammatory cytokines in mast cells (MCs). Activation of c-kit results, amongst others, in induction of the PI3K and MEK/Erk pathways. Comparison of two MEK inhibitors, the specific, widely used U0126 and the more selective PD0325901, in different MC models revealed severe differences on SF-induced expression of proinflammatory cytokines IL-6 and TNF-α as well as the transcription factor Krüppel-like factor 2 (KLF2). Expression of the latter in MCs was not investigated so far. Whereas SF-induced expression of IL-6, TNF-α, and KLF2 was unaltered by U0126, it was significantly augmented by PD0325901. The effect of PD0325901 was corroborated by a second selective MEK inhibitor, PD184352 (Cl-1040), indicating the presence of MEK/Erk-based negative feedback mechanism(s) downstream of c-kit activation. Further analysis of KLF2 production revealed a positive function of PI3K. Depending on additional stimuli (e.g. antigen, IGF-1, LPS, thapsigargin), SF-triggered KLF2 expression was differentially modified, most likely controlled by the respective ratio between MEK/Erk and PI3K pathway activation. Moreover, the statin, simvastatin, was demonstrated to upregulate expression of KLF2 in MCs. In conclusion, data obtained by solely using the MEK inhibitor U0126 have to be carefully corroborated by using more selective inhibitors, such as PD0325901 or PD184352. SF-induced expression of the transcription factor KLF2 and its regulation by the MEK/Erk and PI3K pathways could impact on physiological as well as pathophysiological MC functions. PMID:22182511

  7. Nonlinear feedback control of multiple robot arms

    NASA Technical Reports Server (NTRS)

    Tarn, T. J.; Yun, X.; Bejczy, A. K.

    1987-01-01

    Multiple coordinated robot arms are modeled by considering the arms: (1) as closed kinematic chains, and (2) as a force constrained mechanical system working on the same object simultaneously. In both formulations a new dynamic control method is discussed. It is based on a feedback linearization and simultaneous output decoupling technique. Applying a nonlinear feedback and a nonlinear coordinate transformation, the complicated model of the multiple robot arms in either formulation is converted into a linear and output decoupled system. The linear system control theory and optimal control theory are used to design robust controllers in the task space. The first formulation has the advantage of automatically handling the coordination and load distribution among the robot arms. In the second formulation, by choosing a general output equation, researchers can superimpose the position and velocity error feedback with the force-torque error feedback in the task space simultaneously.

  8. MiR218 Modulates Wnt Signaling in Mouse Cardiac Stem Cells by Promoting Proliferation and Inhibiting Differentiation through a Positive Feedback Loop

    PubMed Central

    Wang, Yongshun; Liu, Jingjin; Cui, Jinjin; Sun, Meng; Du, Wenjuan; Chen, Tao; Ming, Xing; Zhang, Lulu; Tian, Jiangtian; Li, Ji; Yin, Li; Liu, Fang; Pu, Zhongyue; Lv, Bo; Hou, Jingbo; Yu, Bo

    2016-01-01

    MiRNA expression was determined in both proliferating and differentiated cardiac stem cells (CSCs) through a comprehensive miRNA microarray analysis. We selected miR218 for functional follow-up studies to examine its significance in CSCs. First, we observed that the expression of miR218 was altered in CSCs during differentiation into cardiomyocytes, and transfection of an miR218 mimic or miR218 inhibitor affected the myocardial differentiation of CSCs. Furthermore, we observed that a negative regulator of Wnt signaling, sFRP2, was a direct target of miR218, and the protein levels of sFRP2 were increased in cells transfected with the synthetic miR218 inhibitor. In contrast, transfection with the miR218 mimic decreased the expression of sFRP2 and potentiated Wnt signaling. The subsequent down-regulation of sFRP2 by shRNA potentiated Wnt signaling, contributing to a gene expression program that is important for CSC proliferation and cardiac differentiation. Specifically, canonical Wnt signaling induced miR218 transcription. Thus, miR218 and Wnt signaling were coupled through a feed-forward positive feedback loop, forming a biological regulatory circuit. Together, these results provide the first evidence that miR218 plays an important role in CSC proliferation and differentiation through the canonical Wnt signaling pathway. PMID:26860887

  9. Wide range force feedback for catheter insertion mechanism for use in minimally invasive mitral valve repair surgery

    NASA Astrophysics Data System (ADS)

    Ahmadi, Roozbeh; Sokhanvar, Saeed; Packirisamy, Muthukumaran; Dargahi, Javad

    2009-02-01

    Mitral valve regurgitation (MR) is a condition in which heart's mitral valve does not close tightly, which allows blood to leak back into the left atrium. Restoring the dimension of the mitral-valve annulus by percutaneous intervention surgery is a common choice to treat MR. Currently, this kind of open heart annuloplasty surgery is being performed through sternotomy with cardiomyopathy bypass. In order to reduce trauma to the patient and also to eliminate bypass surgery, robotic assisted minimally invasive surgery (MIS) procedure, which requires small keyhole incisions, has a great potential. To perform this surgery through MIS procedure, an accurate computer controlled catheter with wide-range force feedback capabilities is required. There are three types of tissues at the site of operation: mitral leaflet, mitral annulus and left atrium. The maximum allowable applied force to these three types of tissue is totally different. For instance, leaflet tissue is the most sensitive one with the lowest allowable force capacity. For this application, therefore, a wide-range force sensing is highly required. Most of the sensors that have been developed for use in MIS applications have a limited range of sensing. Therefore, they need to be calibrated for different types of tissue. The present work, reports on the design, modeling and simulation of a novel wide-range optical force sensor for measurement of contact pressure between catheter tip and heart tissue. The proposed sensor offers a wide input range with a high resolution and sensitivity over this range. Using Micro-Electro-Mechanical-Systems (MEMS) technology, this sensor can be microfabricated and integrated with commercially available catheters.

  10. Obg-like ATPase 1 regulates global protein serine/threonine phosphorylation in cancer cells by suppressing the GSK3β-inhibitor 2-PP1 positive feedback loop

    PubMed Central

    Xu, Dong; Song, Renduo; Wang, Guohui; Jeyabal, Prince V.S.; Weiskoff, Amanda M.; Ding, Kefeng; Shi, Zheng-Zheng

    2016-01-01

    OLA1 is an Obg family P-loop NTPase that possesses both GTP- and ATP-hydrolyzing activities. Here we report that OLA1 is a GSK3β interacting protein, and through its ATPase activity, inhibits the GSK3β-mediated activation of protein serine/threonine phosphatase 1 (PP1). It is hypothesized that GSK3β phosphorylates inhibitor 2 (I-2) of PP1 at Thr-72 and activates the PP1 · I-2 complex, which in turn dephosphorylates and stimulates GSK3β, thus forming a positive feedback loop. We revealed that the positive feedback loop is normally suppressed by OLA1, and becomes over-activated under OLA1 deficiency, resulting in increased cellular PP1 activity and dephosphorylation of multiple Ser/Thr phosphoproteins, and more strikingly, decreased global protein threonine phosphorylation. Furthermore, using xenograft models of colon cancer (H116) and ovarian cancer (SKOV3), we established a correlation among downregulation of OLA1, over-activation of the positive feedback loop as indicated by under-phosphorylation of I-2, and more aggressive tumor growth. This study provides the first evidence for the existence of a GSK3β-I-2-PP1 positive feedback loop in human cancer cells, and identifies OLA1 as an endogenous suppressor of this signaling motif. PMID:26655089

  11. Obg-like ATPase 1 regulates global protein serine/threonine phosphorylation in cancer cells by suppressing the GSK3β-inhibitor 2-PP1 positive feedback loop.

    PubMed

    Xu, Dong; Song, Renduo; Wang, Guohui; Jeyabal, Prince V S; Weiskoff, Amanda M; Ding, Kefeng; Shi, Zheng-Zheng

    2016-01-19

    OLA1 is an Obg family P-loop NTPase that possesses both GTP- and ATP-hydrolyzing activities. Here we report that OLA1 is a GSK3β interacting protein, and through its ATPase activity, inhibits the GSK3β-mediated activation of protein serine/threonine phosphatase 1 (PP1). It is hypothesized that GSK3β phosphorylates inhibitor 2 (I-2) of PP1 at Thr-72 and activates the PP1 · I-2 complex, which in turn dephosphorylates and stimulates GSK3β, thus forming a positive feedback loop. We revealed that the positive feedback loop is normally suppressed by OLA1, and becomes over-activated under OLA1 deficiency, resulting in increased cellular PP1 activity and dephosphorylation of multiple Ser/Thr phosphoproteins, and more strikingly, decreased global protein threonine phosphorylation. Furthermore, using xenograft models of colon cancer (H116) and ovarian cancer (SKOV3), we established a correlation among downregulation of OLA1, over-activation of the positive feedback loop as indicated by under-phosphorylation of I-2, and more aggressive tumor growth. This study provides the first evidence for the existence of a GSK3β-I-2-PP1 positive feedback loop in human cancer cells, and identifies OLA1 as an endogenous suppressor of this signaling motif. PMID:26655089

  12. Increasing Induction-Level Teachers' Positive-to-Negative Communication Ratio and Use of Behavior-Specific Praise through E-Mailed Performance Feedback and Its Effect on Students' Task Engagement

    ERIC Educational Resources Information Center

    Rathel, Jeanna M.; Drasgow, Erik; Brown, William H.; Marshall, Kathleen J.

    2014-01-01

    The purpose of this study was to examine the effects of e-mailed specific performance feedback that included progress monitoring graphs on induction-level teachers' ratios of positive-to-negative communication behaviors and their use of behavior-specific praise in classrooms for students with emotional and behavioral disorders, mild

  13. Increasing Induction-Level Teachers' Positive-to-Negative Communication Ratio and Use of Behavior-Specific Praise through E-Mailed Performance Feedback and Its Effect on Students' Task Engagement

    ERIC Educational Resources Information Center

    Rathel, Jeanna M.; Drasgow, Erik; Brown, William H.; Marshall, Kathleen J.

    2014-01-01

    The purpose of this study was to examine the effects of e-mailed specific performance feedback that included progress monitoring graphs on induction-level teachers' ratios of positive-to-negative communication behaviors and their use of behavior-specific praise in classrooms for students with emotional and behavioral disorders, mild…

  14. Feedback has a positive effect on cognitive function during total sleep deprivation if there is sufficient time for it to be effectively processed.

    PubMed

    Roach, Gregory D; Lamond, Nicole; Dawson, Drew

    2016-01-01

    This study examined whether the provision of feedback and the interval between successive stimuli interact to affect performance on a serial simple reaction time test during sleep deprivation. Sixteen participants (9 female, 7 male, aged 18-27 yr) completed four versions of the 5-min psychomotor vigilance task for a handheld personal digital assistant (PalmPVT) every 2 h during 28 h of sustained wakefulness. The four versions differed in terms of whether or not they provided feedback immediately after each response, and whether the inter-stimulus intervals (ISIs) were long (2-10 s) or short (1-5 s). Cognitive function was assessed using reciprocal response time and percentage of responses that were lapses (i.e., had a response time ≥ 500 ms). Data were analysed using repeated measures ANOVA with three within-subjects factors: test session, feedback, and ISI. For both measures, the only significant interaction was between feedback and ISI. Cognitive function was enhanced by feedback when the ISIs were long because it provided motivation. Cognitive function was not affected by feedback when the ISIs were short because there was insufficient time to both attend to the feedback and prepare for the subsequent stimulus. PMID:26360220

  15. Cytoplasmic flows as signatures for the mechanics of mitotic spindle positioning

    NASA Astrophysics Data System (ADS)

    Nazockdast, Ehssan; Rahimian, Abtin; Needleman, Daniel; Shelley, Michael

    2015-11-01

    The proper positioning of the mitotic spindle is crucial for asymmetric cell division and generating cell diversity during development. We use dynamic simulations to study the cytoplasmic flows generated by three possible active forcing mechanisms involved in positioning of the mitotic spindle in the first cell division of C.elegans embryo namely cortical pulling, cortical pushing, and cytoplasmic pulling mechanisms. The numerical platform we have developed for simulating cytoskeletal assemblies is the first to incorporate the interactions between the fibers and other intracellular bodies with the cytoplasmic fluid, while also accounting for their polymerization, and interactions with motor proteins. The hydrodynamic interactions are computed using boundary integral methods in Stokes flow coupled with highly efficient fast summation techniques that reduce the computational cost to scale linearly with the number of fibers and other bodies. We show that although all three force transduction mechanisms predict proper positioning and orientation of the mitotic spindle, each model produces a different signature in its induced cytoplasmic flow and MT conformation. We suggest that cytoplasmic flows and MT conformation can be used to differentiate between these mechanisms.

  16. Maintenance of condylar position using an occlusal splint after mechanical vibrating-traction of the TMJ.

    PubMed

    Minagi, S; Natsuaki, N; Sato, T; Akamatsu, Y; Shimamura, M

    2001-12-01

    Although adequate relief of excess mechanical loading to the joint has been accepted as one of the important treatment concepts in the orthopaedic field, a treatment method for the temporomandibular joint (TMJ) to relieve excess mechanical loading has not yet been established. This study aimed to clarify the effect of an occlusal splint on the maintenance of the distracted condylar position achieved by vibrating-traction method. Vibrating dynamic traction force was applied for 5 min to the right TMJ using vibrating-traction apparatus. A flat stabilization splint was adjusted to keep the mandibular position and the condylar displacement was evaluated for 6 h after the dynamic traction procedure. Mean vertical displacement of the mandibular right first molar immediately after the vibrating-traction for the six subjects was 156 microm (ranging from 141 to 179 microm). The calculated mean condylar displacement immediately after the traction was 480 mum and could be kept to be 381 mum even after 6 h by wearing the flat stabilization splint. From the results of this study, it was revealed that the mechanically tracted condylar position could be maintained by a flat occlusal splint. It was suggested that the vibrating-traction method followed by the provision of occlusal support might have a possibility to work as a mechanical relieving procedure for the TMJ. PMID:11874512

  17. Bone Morphogenic Protein (BMP) Signaling Up-regulates Neutral Sphingomyelinase 2 to Suppress Chondrocyte Maturation via the Akt Protein Signaling Pathway as a Negative Feedback Mechanism*

    PubMed Central

    Kakoi, Hironori; Maeda, Shingo; Shinohara, Naohiro; Matsuyama, Kanehiro; Imamura, Katsuyuki; Kawamura, Ichiro; Nagano, Satoshi; Setoguchi, Takao; Yokouchi, Masahiro; Ishidou, Yasuhiro; Komiya, Setsuro

    2014-01-01

    Although bone morphogenic protein (BMP) signaling promotes chondrogenesis, it is not clear whether BMP-induced chondrocyte maturation is cell-autonomously terminated. Loss of function of Smpd3 in mice results in an increase in mature hypertrophic chondrocytes. Here, we report that in chondrocytes the Runx2-dependent expression of Smpd3 was increased by BMP-2 stimulation. Neutral sphingomyelinase 2 (nSMase2), encoded by the Smpd3 gene, was detected both in prehypertrophic and hypertrophic chondrocytes of mouse embryo bone cartilage. An siRNA for Smpd3, as well as the nSMase inhibitor GW4869, significantly enhanced BMP-2-induced differentiation and maturation of chondrocytes. Conversely, overexpression of Smpd3 or C2-ceramide, which mimics the function of nSMase2, inhibited chondrogenesis. Upon induction of Smpd3 siRNA or GW4869, phosphorylation of both Akt and S6 proteins was increased. The accelerated chondrogenesis induced by Smpd3 silencing was negated by application of the Akt inhibitor MK2206 or the mammalian target of rapamycin inhibitor rapamycin. Importantly, in mouse bone culture, GW4869 treatment significantly promoted BMP-2-induced hypertrophic maturation and calcification of chondrocytes, which subsequently was eliminated by C2-ceramide. Smpd3 knockdown decreased the apoptosis of terminally matured ATDC5 chondrocytes, probably as a result of decreased ceramide production. In addition, we found that expression of hyaluronan synthase 2 (Has2) was elevated by a loss of Smpd3, which was restored by MK2206. Indeed, expression of Has2 protein decreased in nSMase2-positive hypertrophic chondrocytes in the bones of mouse embryos. Our data suggest that the Smpd3/nSMase2-ceramide-Akt signaling axis negatively regulates BMP-induced chondrocyte maturation and Has2 expression to control the rate of endochondral ossification as a negative feedback mechanism. PMID:24505141

  18. Progesterone priming is essential for the full expression of the positive feedback effect of estradiol in inducing the preovulatory gonadotropin-releasing hormone surge in the ewe.

    PubMed

    Caraty, A; Skinner, D C

    1999-01-01

    The luteal phase elevation in circulating progesterone (P) powerfully inhibits GnRH and, consequently, LH release, thereby preventing premature preovulatory LH surges in the ewe. Whether luteal phase P modulates the response of the GnRH system to the positive feedback effect of estradiol is unknown. To investigate this possibility, two experiments were conducted during the anestrous season using an artificial model of the follicular phase in ovariectomized ewes bearing 10-mm s.c. 17beta-estradiol SILASTIC brand implants (Dow Coming Corp.). In Exp 1, ewes (n = 10) were run through four successive artificial cycles during which a luteal phase level of P was either replaced (cycles 1 and 3) or not replaced (cycles 2 and 4). GnRH and LH secretions were monitored by sampling cerebrospinal fluid (CSF) and jugular blood from 10-35 h after four 30-mm 17beta-estradiol SILASTIC implants were inserted sc. CSF could be collected from only four ewes over the four cycles. There was no P-dependent difference in the onset of the GnRH and LH surges, which may have been due to a progressive delay in the surge onsets over the four cycles (by ANOVA, P < 0.05). Due to this delay, it was not possible to obtain an accurate estimate of the duration of the GnRH and LH surges in all ewes, but the size of the GnRH surge was always greater when animals had been treated with P, resulting in a significant increase in the maximum (P < 0.01) and mean (P < 0.05) levels during the surge. In contrast, there was no effect on any parameter of LH secretion. In Exp 2, ewes (n = 10) were run through two artificial estrous cycles during which luteal phase P was either replaced or not replaced, using a cross-over experimental design. CSF was collected from seven ewes over the two cycles. GnRH and LH secretions were monitored from 10-53 h after estradiol administration. As in Exp 1, a clear significant increase in the maximal and mean GnRH levels (P < 0.05 for both) was observed during the surge when ewes had been pretreated with P. Again, no changes were observed in LH release during the surge. P priming did, however, delay the onsets of the GnRH (P < 0.01) and LH surges (P < 0.01). Our data show that the increase in P during the luteal phase of the estrous cycle is essential for the full expression of the positive feedback effect of estradiol in inducing the preovulatory GnRH surge in the ewe. PMID:9886822

  19. Activation of ERK/IER3/PP2A-B56γ-positive feedback loop in lung adenocarcinoma by allelic deletion of B56γ gene.

    PubMed

    Ito, Tomoko; Ozaki, Satoru; Chanasong, Rachanee; Mizutani, Yuki; Oyama, Takeru; Sakurai, Hiroshi; Matsumoto, Isao; Takemura, Hirofumi; Kawahara, Ei

    2016-05-01

    In order to investigate the involvement of the IER3/PP2A-B56γ/ERK-positive feedback loop, which leads to sustained phosphorylation/activation of ERK in carcinogenesis, we immunohistochemically examined the expression of IER3 and phosphorylated ERK in lung tumor tissues. IER3 was overexpressed in all cases of adenocarcinomas examined, but was not overexpressed in squamous cell carcinomas. Phosphorylated ERK (pERK) was also overexpressed in almost all adenocarcinomas. EGFR and RAS, whose gene product is located upstream of ERK, were sequenced. Activating mutation of EGFR, which is a possible cause of overexpression of IER3 and pERK, was found only in 5 adenocarcinomas (42%). No mutation of RAS was found. We further examined the sequences of all exons of B56γ gene (PPP2R5C) and IER3, but no mutation was found. Using a single nucleotide insertion in intron 1 of PPP2R5C, which was found in the process of sequencing, allelic deletion of PPP2R5C was examined. Eight cases were informative (67%), and the deletion was found in 4 of them (50%). Three cases having deletion of PPP2R5C did not have EGFR mutation. Finally, PPP2R5C deletion or EGFR mutation that could be responsible for IER3/pERK overexpression was found in at least 8 cases (67% or more). This is the first report of a high incidence of deletion of PPP2R5C in human carcinomas. PMID:26986830

  20. API2-MALT1 fusion protein induces transcriptional activation of the API2 gene through NF-{kappa}B binding elements: Evidence for a positive feed-back loop pathway resulting in unremitting NF-{kappa}B activation

    SciTech Connect

    Hosokawa, Yoshitaka . E-mail: yhosokaw@aichi-cc.jp; Suzuki, Hiroko; Nakagawa, Masao; Lee, Tae H.; Seto, Masao

    2005-08-19

    t(11;18)(q21;q21) is a characteristic as well as the most frequent chromosomal translocation in mucosa-associated lymphoid tissue (MALT) type lymphoma, and this translocation results in a fusion transcript, API2-MALT1. Although API2-MALT1 has been shown to enforce activation of NF-{kappa}B signaling, the transcriptional target genes of this fusion protein remains to be identified. Our analyses of the API2-MALT transfectants suggested that one of the target genes may be the apoptotic inhibitor API2 gene. Luciferase reporter assays with deletion and mutational constructs of the API2 promoter and electrophoretic mobility shift assays established that API2-MALT1 induces transcriptional activation of the API2 gene through two NF-{kappa}B binding elements. Moreover, supershift experiments indicated that these elements are recognized by the NF-{kappa}B p50/p65 heterodimer. Taken together, our results strongly indicated that API2-MALT1 possesses a novel mechanism of self-activation by up-regulating its own expression in t(11;18)(q21;q21)-carrying MALT lymphomas, highlighting a positive feedback-loop pathway resulting in unremitting NF-{kappa}B activation.

  1. Feedbacks in human-landscape systems

    NASA Astrophysics Data System (ADS)

    Chin, Anne

    2015-04-01

    As human interactions with Earth systems intensify in the "Anthropocene", understanding the complex relationships among human activity, landscape change, and societal responses to those changes is increasingly important. Interdisciplinary research centered on the theme of "feedbacks" in human-landscape systems serves as a promising focus for unraveling these interactions. Deciphering interacting human-landscape feedbacks extends our traditional approach of considering humans as unidirectional drivers of change. Enormous challenges exist, however, in quantifying impact-feedback loops in landscapes with significant human alterations. This paper illustrates an example of human-landscape interactions following a wildfire in Colorado (USA) that elicited feedback responses. After the 2012 Waldo Canyon Fire, concerns for heightened flood potential and debris flows associated with post-fire hydrologic changes prompted local landowners to construct tall fences at the base of a burned watershed. These actions changed the sediment transport regime and promoted further landscape change and human responses in a positive feedback cycle. The interactions ultimately increase flood and sediment hazards, rather than dampening the effects of fire. A simple agent-based model, capable of integrating social and hydro-geomorphological data, demonstrates how such interacting impacts and feedbacks could be simulated. Challenges for fully capturing human-landscape feedback interactions include the identification of diffuse and subtle feedbacks at a range of scales, the availability of data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, and the varied metrics and data needed to represent both the physical and human systems. By collaborating with social scientists with expertise in the human causes of landscape change, as well as the human responses to those changes, geoscientists could more fully recognize and anticipate the coupled human-landscape interactions that will drive the evolution of Earth systems into the future.

  2. Toward Understanding the Catalytic Mechanism of Human Paraoxonase 1: Site-Specific Mutagenesis at Position 192

    PubMed Central

    Aggarwal, Geetika; Prajapati, Rameshwar; Tripathy, Rajan K.; Bajaj, Priyanka; Iyengar, A. R. Satvik; Sangamwar, Abhay T.; Pande, Abhay H.

    2016-01-01

    Human paraoxonase 1 (h-PON1) is a serum enzyme that can hydrolyze a variety of substrates. The enzyme exhibits anti-inflammatory, anti-oxidative, anti-atherogenic, anti-diabetic, anti-microbial and organophosphate-hydrolyzing activities. Thus, h-PON1 is a strong candidate for the development of therapeutic intervention against a variety conditions in human. However, the crystal structure of h-PON1 is not solved and the molecular details of how the enzyme hydrolyzes different substrates are not clear yet. Understanding the catalytic mechanism(s) of h-PON1 is important in developing the enzyme for therapeutic use. Literature suggests that R/Q polymorphism at position 192 in h-PON1 dramatically modulates the substrate specificity of the enzyme. In order to understand the role of the amino acid residue at position 192 of h-PON1 in its various hydrolytic activities, site-specific mutagenesis at position 192 was done in this study. The mutant enzymes were produced using Escherichia coli expression system and their hydrolytic activities were compared against a panel of substrates. Molecular dynamics simulation studies were employed on selected recombinant h-PON1 (rh-PON1) mutants to understand the effect of amino acid substitutions at position 192 on the structural features of the active site of the enzyme. Our results suggest that, depending on the type of substrate, presence of a particular amino acid residue at position 192 differentially alters the micro-environment of the active site of the enzyme resulting in the engagement of different subsets of amino acid residues in the binding and the processing of substrates. The result advances our understanding of the catalytic mechanism of h-PON1. PMID:26829396

  3. Mechanisms behind positive diversity effects on ecosystem functioning: testing the facilitation and interference hypotheses.

    PubMed

    Jonsson, Micael; Malmqvist, Björn

    2003-03-01

    Little is known about the mechanisms behind positive effects of species richness on ecosystem functioning. In a previous study that showed a positive effect of aquatic detritivore species richness on leaf litter breakdown (process) rates, we proposed that facilitation and release from intra-specific interference were the two most likely mechanisms. To test the interference hypothesis, we performed an experiment using three densities of each of three detritivore species and found varying effects on leaf breakdown rates across species: one species showed no effect, one a positive, marginally insignificant, effect, and a third species showed a significant, positive effect of decreasing density. The density (interference) effect thus partly explained the results from our previous study. The facilitation hypothesis was tested by sequentially introducing and removing two species. We predicted that, if this hypothesis were true, facilitation would be expressed in higher process rates than when replacing with individuals of the same species. We found that process rate per unit biomass did increase when one species was introduced after the other species, while the opposite sequence did not show any increase. Hence, this result was also confirmative of our previous results. Therefore, we conclude that both intra-specific interference and inter-specific facilitation may explain the positive effect of species richness observed in our system. Since many species exhibit intra-specific interference that inhibits foraging efficiency, this may be a general mechanism generating effects of species richness per se. If facilitation is unidirectional, or if it involves few species, it is more likely to be species specific with species identities being more important than species richness per se. We conclude that species loss may be expected to have negative consequences on ecosystem functioning if anyspecies is lost, with additional effects in the event of losing "facilitator" species. PMID:12647128

  4. Neuronal Mechanisms of Voice Control Are Affected by Implicit Expectancy of Externally Triggered Perturbations in Auditory Feedback

    PubMed Central

    Korzyukov, Oleg; Sattler, Lindsey; Behroozmand, Roozbeh; Larson, Charles R.

    2012-01-01

    Accurate vocal production relies on several factors including sensory feedback and the ability to predict future challenges to the control processes. Repetitive patterns of perturbations in sensory feedback by themselves elicit implicit expectations in the vocal control system regarding the timing, quality and direction of perturbations. In the present study, the predictability of voice pitch-shifted auditory feedback was experimentally manipulated. A block of trials where all pitch-shift stimuli were upward, and therefore predictable was contrasted against an unpredictable block of trials in which the stimulus direction was randomized between upward and downward pitch-shifts. It was found that predictable perturbations in voice auditory feedback led to a reduction in the proportion of compensatory vocal responses, which might be indicative of a reduction in vocal control. The predictable perturbations also led to a reduction in the magnitude of the N1 component of cortical Event Related Potentials (ERP) that was associated with the reflexive compensations to the perturbations. We hypothesize that formation of expectancy in our study is accompanied by involuntary allocation of attentional resources occurring as a result of habituation or learning, that in turn trigger limited and controlled exploration-related motor variability in the vocal control system. PMID:22815974

  5. Crystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling

    PubMed Central

    Rudolph, Markus G.; del Toro Duany, Yoandris; Jungblut, Stefan P.; Ganguly, Agneyo; Klostermeier, Dagmar

    2013-01-01

    Reverse gyrase is an ATP-dependent topoisomerase that is unique to hyperthermophilic archaea and eubacteria. The only reverse gyrase structure determined to date has revealed the arrangement of the N-terminal helicase domain and the C-terminal topoisomerase domain that intimately cooperate to generate the unique function of positive DNA supercoiling. Although the structure has elicited hypotheses as to how supercoiling may be achieved, it lacks structural elements important for supercoiling and the molecular mechanism of positive supercoiling is still not clear. We present five structures of authentic Thermotoga maritima reverse gyrase that reveal a first view of two interacting zinc fingers that are crucial for positive DNA supercoiling. The so-called latch domain, which connects the helicase and the topoisomerase domains is required for their functional cooperation and presents a novel fold. Structural comparison defines mobile regions in parts of the helicase domain, including a helical insert and the latch that are likely important for DNA binding during catalysis. We show that the latch, the helical insert and the zinc fingers contribute to the binding of DNA to reverse gyrase and are uniquely placed within the reverse gyrase structure to bind and guide DNA during strand passage. A possible mechanism for positive supercoiling by reverse gyrases is presented. PMID:23209025

  6. Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury.

    PubMed

    Pelosi, P; Tubiolo, D; Mascheroni, D; Vicardi, P; Crotti, S; Valenza, F; Gattinoni, L

    1998-02-01

    We studied 16 patients with acute lung injury receiving volume-controlled ventilation to assess the relationships between gas exchange and respiratory mechanics before, during, and after 2 h in the prone position. We measured the end-expiratory lung volume (EELV, helium dilution), the total respiratory system (Cst,rs), the lung (Cst,L) and the thoracoabdominal cage (Cst,w) compliances (end-inspiratory occlusion technique and esophageal balloon), the hemodynamics, and gas exchange. In the prone position, PaO2 increased from 103.2 +/- 23.8 to 129.3 +/- 32.9 mm Hg (p < 0.05) without significant changes of Cst,rs and EELV. However, Cst,w decreased from 204.8 +/- 97.4 to 135.9 +/- 52.5 ml/cm H2O (p < 0.01) and the decrease was correlated with the oxygenation increase (r = 0.62, p < 0.05). Furthermore, the greater the baseline supine Cst,w, the greater its decrease in the prone position (r = 0.82, p < 0.01). Consequently, the oxygenation changes in the prone position were predictable from baseline supine Cst,w (r = 0.80, p < 0.01). Returning to the supine position, Cst,rs increased compared with baseline (42.3 +/- 14.4 versus 38.4 +/- 13.7 ml/cm H2O; p < 0.01), mainly because of the lung component (57.5 +/- 25.1 versus 52.4 +/- 23.3 ml/cm H2O; p < 0.01). Thus, (1) baseline Cst,w and its changes may play a role in determining the oxygenation response in the prone position; (2) the prone position improves Cst,rs and Cst,L when the supine position is resumed. PMID:9476848

  7. The Effects of Assessment Feedback on Rapport- Building and Self-Enhancement Processes.

    ERIC Educational Resources Information Center

    Allen, Andrea; Montgomery, Marilyn; Tubman, Jonathan; Frazier, Leslie; Escovar, Luis

    2003-01-01

    An experiment was conducted to test the effects of assessment feedback on rapport and self-enhancement. Results suggest that both processes are mechanisms by which the provision of assessment feedback produces positive change. Implications for mental health counselors are drawn. (Contains 33 references and 2 tables.) (GCP)

  8. Designing Genetic Feedback Controllers.

    PubMed

    Harris, Andreas W K; Dolan, James A; Kelly, Ciarán L; Anderson, James; Papachristodoulou, Antonis

    2015-08-01

    By incorporating feedback around systems we wish to manipulate, it is possible to improve their performance and robustness properties to meet pre-specified design objectives. For decades control engineers have been successfully implementing feedback controllers for complex mechanical and electrical systems such as aircraft and sports cars. Natural biological systems use feedback extensively for regulation and adaptation but apart from the most basic designs, there is no systematic framework for designing feedback controllers in Synthetic Biology. In this paper we describe how classical approaches from linear control theory can be used to close the loop. This includes the design of genetic circuits using feedback control and the presentation of a biological phase lag controller. PMID:26390502

  9. Expressive disclosure and benefit finding among breast cancer patients: mechanisms for positive health effects.

    PubMed

    Low, Carissa A; Stanton, Annette L; Danoff-Burg, Sharon

    2006-03-01

    A randomized trial (n = 60; A. L. Stanton, S. Danoff-Burg, L. A. Sworowski, et al., 2002) revealed that 4 sessions of written expressive disclosure or benefit finding produced lower physical symptom reports and medical appointments for cancer-related morbidities at 3-month follow-up among breast cancer patients relative to a fact-control condition. The goal of this article is to investigate mechanisms underlying these effects. Within-session heart rate habituation mediated effects of expressive disclosure on physical symptoms, and greater use of negative emotion words in essays predicted a decline in physical symptoms. Postwriting mood and use of positive emotion and cognitive mechanism words in essays were not significant mediators, although greater cognitive mechanism word use was related to greater heart rate habituation and negative emotion word use. PMID:16569109

  10. Positive coping styles and perigenual ACC volume: two related mechanisms for conferring resilience?

    PubMed

    Holz, Nathalie E; Boecker, Regina; Jennen-Steinmetz, Christine; Buchmann, Arlette F; Blomeyer, Dorothea; Baumeister, Sarah; Plichta, Michael M; Esser, Günter; Schmidt, Martin; Meyer-Lindenberg, Andreas; Banaschewski, Tobias; Brandeis, Daniel; Laucht, Manfred

    2016-05-01

    Stress exposure has been linked to increased rates of depression and anxiety in adults, particularly in females, and has been associated with maladaptive changes in the anterior cingulate cortex (ACC), which is an important brain structure involved in internalizing disorders. Coping styles are important mediators of the stress reaction by establishing homeostasis, and may thus confer resilience to stress-related psychopathology. Anatomical scans were acquired in 181 healthy participants at age 25 years. Positive coping styles were determined using a self-report questionnaire (German Stress Coping Questionnaire, SVF78) at age 22 years. Adult anxiety and depression symptoms were assessed at ages 22, 23 and 25 years with the Young Adult Self-Report. Information on previous internalizing diagnoses was obtained by diagnostic interview (2-19 years). Positive coping styles were associated with increased ACC volume. ACC volume and positive coping styles predicted anxiety and depression in a sex-dependent manner with increased positive coping and ACC volume being related to lower levels of psychopathology in females, but not in males. These results remained significant when controlled for previous internalizing diagnoses. These findings indicate that positive coping styles and ACC volume are two linked mechanisms, which may serve as protective factors against internalizing disorders. PMID:26743466

  11. Contrast enhancement by feedback fields in magnetic resonance imaging.

    PubMed

    Datta, Sandip; Huang, Susie Y; Lin, Yung-Ya

    2006-11-01

    A conceptually new approach giving rise to contrast enhancement by feedback fields in magnetic resonance imaging is proposed, and the detailed mechanism is described. Nonlinear spin dynamics under the feedback fields of the distant dipolar field and/or radiation damping are examined and shown to amplify contrast due to small variations in spin density and precession frequency. Feedback-based contrast enhancement depends on the instability of the initial magnetization configuration and is propagated by positive feedback, as shown through numerical simulations and experimental results on simple phantom samples. On the basis of a theoretical understanding of contrast enhancement, insight into pulse sequence design and optimal contrast attainable under the individual and joint feedback fields is provided. PMID:17078642

  12. Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks

    NASA Technical Reports Server (NTRS)

    Somerville, Richard C. J.; Iacobellis, Sam

    1987-01-01

    The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.

  13. Keratinocyte-derived IL-24 plays a role in the positive feedback regulation of epidermal inflammation in response to environmental and endogenous toxic stressors

    SciTech Connect

    Jin, Sun Hee; Choi, Dalwoong; Chun, Young-Jin; Noh, Minsoo

    2014-10-15

    Keratinocytes are the major cellular components of human epidermis and play a key role in the modulating cutaneous inflammation and toxic responses. In human chronic skin diseases, the common skin inflammatory phenotypes like skin barrier disruption and epidermal hyperplasia are manifested in epidermal keratinocytes by interactions with T helper (Th) cells. To find a common gene expression signature of human keratinocytes in chronic skin diseases, we performed a whole genome microarray analysis on normal human epidermal keratinocytes (NHKs) treated with IFNγ, IL-4, IL-17A or IL-22, major cytokines from Th1, Th2, Th17 or Th22 cells, respectively. The microarray results showed that the four genes, IL-24, PDZK1IP1, H19 and filaggrin, had common expression profiles in NHKs exposed to Th cell cytokines. In addition, the acute phase pro-inflammatory cytokines, IL-1β, IL-6 and TNFα, also change the gene transcriptional profile of IL-24, PDZK1IP1, H19, and filaggrin in NHKs as those of Th cytokines. Therefore, the signature gene set, consisting of IL-24, PDZK1IP1, H19, and filaggrin, provides essential insights for understanding the process of cutaneous inflammation and toxic responses. We demonstrate that environmental toxic stressors, such as chemical irritants and ultraviolet irradiation stimulate the production of IL-24 in NHKs. IL-24 stimulates the JAK1-STAT3 and MAPK pathways in NHKs, and promotes the secretion of pro-inflammatory mediators IL-8, PGE2, and MMP-1. These results suggest that keratinocyte-derived IL-24 participates in the positive feedback regulation of epidermal inflammation in response to both endogenous and environmental toxic stressors. - Highlights: • Cutaneous inflammatory gene signature consists of PDZK1IP1, IL-24, H19 and filaggrin. • Pro-inflammatory cytokines increase IL-24 production in human keratinocytes. • Environmental toxic stressors increase IL-24 production in human keratinocytes. • IL-24 stimulates human keratinocytes to produce pro-inflammatory mediators. • IL-24 activates STAT3 and MAPK signaling pathways in human keratinocytes.

  14. Global desertification: Drivers and feedbacks

    NASA Astrophysics Data System (ADS)

    D'Odorico, Paolo; Bhattachan, Abinash; Davis, Kyle F.; Ravi, Sujith; Runyan, Christiane W.

    2013-01-01

    Desertification is a change in soil properties, vegetation or climate, which results in a persistent loss of ecosystem services that are fundamental to sustaining life. Desertification affects large dryland areas around the world and is a major cause of stress in human societies. Here we review recent research on the drivers, feedbacks, and impacts of desertification. A multidisciplinary approach to understanding the drivers and feedbacks of global desertification is motivated by our increasing need to improve global food production and to sustainably manage ecosystems in the context of climate change. Classic desertification theories look at this process as a transition between stable states in bistable ecosystem dynamics. Climate change (i.e., aridification) and land use dynamics are the major drivers of an ecosystem shift to a “desertified” (or “degraded”) state. This shift is typically sustained by positive feedbacks, which stabilize the system in the new state. Desertification feedbacks may involve land degradation processes (e.g., nutrient loss or salinization), changes in rainfall regime resulting from land-atmosphere interactions (e.g., precipitation recycling, dust emissions), or changes in plant community composition (e.g., shrub encroachment, decrease in vegetation cover). We analyze each of these feedback mechanisms and discuss their possible enhancement by interactions with socio-economic drivers. Large scale effects of desertification include the emigration of “environmental refugees” displaced from degraded areas, climatic changes, and the alteration of global biogeochemical cycles resulting from the emission and long-range transport of fine mineral dust. Recent research has identified some possible early warning signs of desertification, which can be used as indicators of resilience loss and imminent shift to desert-like conditions. We conclude with a brief discussion on some desertification control strategies implemented in different regions around the world.

  15. Thermal-chemical-mechanical feedback during fluid-rock interactions: Implications for chemical transport and scales of equilibria in the crust

    SciTech Connect

    Dutrow, Barbara

    2008-08-13

    Our research evaluates the hypothesis that feedback amongst thermal-chemical-mechanical processes operative in fluid-rock systems alters the fluid flow dynamics of the system which, in turn, affects chemical transport and temporal and spatial scales of equilibria, thus impacting the resultant mineral textural development of rocks. Our methods include computational experimentation and detailed analyses of fluid-infiltrated rocks from well-characterized terranes. This work focuses on metamorphic rocks and hydrothermal systems where minerals and their textures are utilized to evaluate pressure (P), temperature (T), and time (t) paths in the evolution of mountain belts and ore deposits, and to interpret tectonic events and the timing of these events. Our work on coupled processes also extends to other areas where subsurface flow and transport in porous media have consequences such as oil and gas movement, geothermal system development, transport of contaminants, nuclear waste disposal, and other systems rich in fluid-rock reactions. Fluid-rock systems are widespread in the geologic record. Correctly deciphering the products resulting from such systems is important to interpreting a number of geologic phenomena. These systems are characterized by complex interactions involving time-dependent, non-linear processes in heterogeneous materials. While many of these interactions have been studied in isolation, they are more appropriately analyzed in the context of a system with feedback. When one process impacts another process, time and space scales as well as the overall outcome of the interaction can be dramatically altered. Our goals to test this hypothesis are: to develop and incorporate algorithms into our 3D heat and mass transport code to allow the effects of feedback to be investigated numerically, to analyze fluid infiltrated rocks from a variety of terranes at differing P-T conditions, to identify subtle features of the infiltration of fluids and/or feedback, and to quantify the importance of feedback in complex fluid-rock systems and its affects on time and space scales and rates of reaction. We have made significant contributions toward understanding feedback and its impacts by numerical experimentation using 3D computational modeling of fluid-rock systems and by chemical and textural analyses of fluid-infiltrated rocks.

  16. β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis.

    PubMed

    Fisher, Jed F; Mobashery, Shahriar

    2016-01-01

    The value of the β-lactam antibiotics for the control of bacterial infection has eroded with time. Three Gram-positive human pathogens that were once routinely susceptible to β-lactam chemotherapy-Streptococcus pneumoniae, Enterococcus faecium, and Staphylococcus aureus-now are not. Although a fourth bacterium, the acid-fast (but not Gram-positive-staining) Mycobacterium tuberculosis, has intrinsic resistance to earlier β-lactams, the emergence of strains of this bacterium resistant to virtually all other antibiotics has compelled the evaluation of newer β-lactam combinations as possible contributors to the multidrug chemotherapy required to control tubercular infection. The emerging molecular-level understanding of these resistance mechanisms used by these four bacteria provides the conceptual framework for bringing forward new β-lactams, and new β-lactam strategies, for the future control of their infections. PMID:27091943

  17. Poisson mechanics for perturbed MIC-Kepler problems at both positive and negative energies

    NASA Astrophysics Data System (ADS)

    Iwai, Toshihiro; Matsumoto, Shogo

    2012-09-01

    The MIC-Kepler problem, an extension of the Kepler problem, is known to admit the symmetry group SU(2) SU(2) or SL(2, {C}), according to whether the energy is negative or positive. In general, each of the co-adjoint orbits of a Lie group carries the canonical symplectic form called the KKS form, and a Hamiltonian dynamical system is defined on it if a suitable Hamiltonian is given. Perturbed MIC-Kepler problems can be treated in this setting if a perturbed Hamiltonian in normal form is determined according to whether the energy is negative or positive. Since the co-adjoint orbit in question can be viewed as a symplectic leaf of the associated Lie algebra \\mathfrak {su}(2)\\oplus \\mathfrak {su}(2) or \\mathfrak {sl}(2, {C}) according to whether the energy is negative or positive, the perturbed MIC-Kepler problems in normal form can be described in the Poisson mechanics defined on respective symmetry Lie algebras. Thus, the equations of motion for perturbed systems can be described in the form of Poisson brackets for both cases of \\mathfrak {su}(2)\\oplus \\mathfrak {su}(2) and \\mathfrak {sl}(2, {C}) on an equal footing. It will be shown further how two parameters assigning a co-adjoint orbit of SU(2) SU(2) or SL(2, {C}) are related to the parameters contained in the MIC-Kepler problem. The perturbation of the MIC-Kepler problem to be treated in this article is rather restricted to that caused by the presence of weak constant electric and magnetic fields orthogonal to each other. When regularized, the perturbed Hamiltonians at both positive and negative energies are put in the Birkhoff-Gustavson normal form and thereby the flows generated by the perturbed Hamiltonians are studied in Poisson mechanics in terms of variables associated with constants of motion for the MIC-Kepler problem.

  18. FPGA-based adaptive backstepping fuzzy control for a micro-positioning Scott-Russell mechanism

    NASA Astrophysics Data System (ADS)

    Fung, Rong-Fong; Weng, Ming-Hong; Kung, Ying-Shieh

    2009-11-01

    This paper utilizes the field programmable gate array (FPGA) and Nios II embedded processor technologies to design a controller IC for a micro-positioning Scott-Russell (SR) mechanism, which is driven by a piezoelectric actuator (PA) and its hysteresis phenomenon is described by Bouc-Wen hysteresis model. For the controller design, the adaptive backstepping fuzzy control (ABFC) method is developed to compensate the PA's hysteresis and achieve the motion tracking control. The fuzzy logic method (FLM) is utilized to find the best adaptation gain of the adaptation law and control gain of the stabilization controls. This ABFC controller method can improve the transient and asymptotic tracking performances, and make the SR mechanism keep good working performance when external disturbances is added in the control system. Finally, we successfully apply the system-on-a-programmable-chip (SoPC) technologies to develop the motion controller IC, and achieve the advantages of reduced space, high performance and low cost.

  19. Cryogenic Optical Position Encoders for Mechanisms in the JWST Optical Telescope Element Simulator (OSIM)

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Anderjaska, Thomas; Badger, James (Inventor); Capon, Tom; Davis, CLinton; Dicks, Brent (Inventor); Eichhorn, William; Garza, Mario; Guishard, Corina; Haghani, Shadan; Hakun, Claef; Haney, Paul; Happs, David (Inventor); Hovmand, Lars; Kadari, Madhu; Kirk, Jeffrey; Nyquist, Richard (Inventor); Robinson, F. David; Sullivan, Joseph (Inventor); Wilson, Erin

    2013-01-01

    The JWST Optical Telescope Element Simulator (OSIM) is a configurable, cryogenic, optical stimulus for high fidelity ground characterization and calibration of JWST's flight instruments. OSIM and its associated Beam Image Analyzer (BIA) contain several ultra-precise, cryogenic mechanisms that enable OSIM to project point sources into the instruments according to the same optical prescription as the flight telescope images stars - correct in focal surface position and chief ray angle. OSIM's and BIA's fifteen axes of mechanisms navigate according to redundant, cryogenic, absolute, optical encoders - 32 in all operating at or below 100 K. OSIM's encoder subsystem, the engineering challenges met in its development, and the encoders' sub-micron and sub-arcsecond performance are discussed.

  20. Activation of Parallel Fiber Feedback by Spatially Diffuse Stimuli Reduces Signal and Noise Correlations via Independent Mechanisms in a Cerebellum-Like Structure

    PubMed Central

    Simmonds, Benjamin; Chacron, Maurice J.

    2015-01-01

    Correlations between the activities of neighboring neurons are observed ubiquitously across systems and species and are dynamically regulated by several factors such as the stimulus' spatiotemporal extent as well as by the brain's internal state. Using the electrosensory system of gymnotiform weakly electric fish, we recorded the activities of pyramidal cell pairs within the electrosensory lateral line lobe (ELL) under spatially localized and diffuse stimulation. We found that both signal and noise correlations were markedly reduced (>40%) under the latter stimulation. Through a network model incorporating key anatomical features of the ELL, we reveal how activation of diffuse parallel fiber feedback from granule cells by spatially diffuse stimulation can explain both the reduction in signal as well as the reduction in noise correlations seen experimentally through independent mechanisms. First, we show that burst-timing dependent plasticity, which leads to a negative image of the stimulus and thereby reduces single neuron responses, decreases signal but not noise correlations. Second, we show trial-to-trial variability in the responses of single granule cells to sensory input reduces noise but not signal correlations. Thus, our model predicts that the same feedback pathway can simultaneously reduce both signal and noise correlations through independent mechanisms. To test this prediction experimentally, we pharmacologically inactivated parallel fiber feedback onto ELL pyramidal cells. In agreement with modeling predictions, we found that inactivation increased both signal and noise correlations but that there was no significant relationship between magnitude of the increase in signal correlations and the magnitude of the increase in noise correlations. The mechanisms reported in this study are expected to be generally applicable to the cerebellum as well as other cerebellum-like structures. We further discuss the implications of such decorrelation on the neural coding strategies used by the electrosensory and by other systems to process natural stimuli. PMID:25569283

  1. Failure of prolactin short loop feedback mechanism to operate in old as compared to young female rats.

    PubMed

    Sarkar, D K; Miki, N; Meites, J

    1983-10-01

    The short loop feedback effect of PRL was studied in young (4-5 months of age) and old (24-26 months of age) ovariectomized rats after a single iv injection of bovine PRL (bPRL, 500 micrograms/100 g BW) or BSA (500 micrograms/100 g BW). Blood samples were collected via intraatrial cannula every 20 min for assay of PRL. Plasma PRL levels in both young and old ovariectomized rats were pulsatile in nature, and showed approximately one PRL pulse per hour. The magnitude of the PRL peaks and concentrations of plasma PRL, but not the number of PRL peaks, were significantly greater in the old than in the young rats. The effect of bPRL on in situ PRL release was studied after verifying that bPRL does not cross-react with rat PRL RIA, but does significantly increase the release of [3H] dopamine from the median eminence in vitro. This latter effect was dose dependent. In young rats, a single injection of bPRL minimally reduced the concentration of plasma PRL between 100 min and 5 h, but by 22-25 h it decreased plasma PRL to approximately one third of preinjection levels. The magnitude of the PRL pulses, but not the pulse frequency was significantly reduced after administration of bPRL treatment to young rats. Treatment with BSA did not alter the concentration of plasma PRL or the magnitude and frequency of the PRL pulses in young rats. In old rats, plasma PRL concentrations and the frequency and magnitude of the PRL pulses were not significantly decreased after injection of either bPRL or BSA. Thus, the feedback inhibition of PRL on PRL release may not be operative in old rats. The loss of the short loop feedback inhibition of PRL is believed to be due to the reduction in hypothalamic dopaminergic activity previously reported by our and other laboratories in old rats. PMID:6617580

  2. A sharp-switching device with free surface and buried gates based on band modulation and feedback mechanisms

    NASA Astrophysics Data System (ADS)

    Solaro, Y.; Fonteneau, P.; Legrand, C. A.; Fenouillet-Beranger, C.; Ferrari, P.; Cristoloveanu, S.

    2016-02-01

    We propose and demonstrate experimentally a band-modulation device with extremely sharp switching capability. The Z3-FET (Zero gate, Zero swing and Zero impact ionization) has no top gate, is processed with FDSOI CMOS technology, and makes use of two adjacent buried ground planes acting as back gates. The buried gates emulate respectively N+ and P+ regions in the undoped body, forming a virtual thyristor-like NPNP structure with feedback operation. Vertical output IA-VA and transfer IA-VG characteristics over more than 8 decades of current are measured with relatively low gate and drain bias (<3 V).

  3. The Mechanisms of Virulence Regulation by Small Noncoding RNAs in Low GC Gram-Positive Pathogens

    PubMed Central

    Pitman, Stephanie; Cho, Kyu Hong

    2015-01-01

    The discovery of small noncoding regulatory RNAs (sRNAs) in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen’s survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described. PMID:26694351

  4. A Mechanism for Nuclear Positioning in Fission Yeast Based on Microtubule Pushing

    PubMed Central

    Tran, P.T.; Marsh, L.; Doye, V.; Inou, S.; Chang, F.

    2001-01-01

    The correct positioning of the nucleus is often important in defining the spatial organization of the cell, for example, in determining the cell division plane. In interphase Schizosaccharomyces pombe cells, the nucleus is positioned in the middle of the cylindrical cell in an active microtubule (MT)-dependent process. Here, we used green fluorescent protein markers to examine the dynamics of MTs, spindle pole body, and the nuclear envelope in living cells. We find that interphase MTs are organized in three to four antiparallel MT bundles arranged along the long axis of the cell, with MT plus ends facing both the cell tips and minus ends near the middle of the cell. The MT bundles are organized from medial MT-organizing centers that may function as nuclear attachment sites. When MTs grow to the cell tips, they exert transient forces produced by plus end MT polymerization that push the nucleus. After an average of 1.5 min of growth at the cell tip, MT plus ends exhibit catastrophe and shrink back to the nuclear region before growing back to the cell tip. Computer modeling suggests that a balance of these pushing MT forces can provide a mechanism to position the nucleus at the middle of the cell. PMID:11309419

  5. Feedback Sandwiches Affect Perceptions but Not Performance

    ERIC Educational Resources Information Center

    Parkes, Jay; Abercrombie, Sara; McCarty, Teresita

    2013-01-01

    The feedback sandwich technique-make positive comments; provide critique; end with positive comments-is commonly recommended to feedback givers despite scant evidence of its efficacy. These two studies (N = 20; N = 350) of written peer feedback with third-year medical students on clinical patient note-writing assignments indicate that students…

  6. A positive feedback loop of IL-21 signaling provoked by homeostatic CD4+CD25- T cell expansion is essential for the development of arthritis in autoimmune K/BxN mice.

    PubMed

    Jang, Eunkyeong; Cho, Sin-Hye; Park, Hyunjoo; Paik, Doo-Jin; Kim, Jung Mogg; Youn, Jeehee

    2009-04-15

    Rheumatoid arthritis is a joint-specific autoimmune inflammatory disease of unknown etiology. The K/BxN mouse is a model of rheumatoid arthritis that is thought to be mainly due to autoantibody-mediated inflammatory responses. We showed previously that homeostatic proliferation of autoreactive CD4(+) T cells is required for disease initiation in the K/BxN mice. In this study, we show that the homeostatically proliferating CD4(+)CD25(-) T cells produce IL-21. We generated IL-21R-deficient (IL-21R(-/-)) K/BxN mice and found that these mice were completely refractory to the development of spontaneous arthritis. They contained fewer CD4(+) T cells with a reduced proportion of homeostatically proliferating cells, fewer follicular Th cells, and, surprisingly, more Th17 cells than their control counterparts. They also failed to develop IgG1(+) memory B cells and autoantigen-specific IgG1 Ab-secreting cells. IL-21 induced expression of receptor activator of NF-kappaB ligand (RANKL) a regulator of osteoclastogenesis, and few RANKL-expressing infiltrates were found in the synovia of IL-21R(-/-) K/BxN mice. Thus, our results demonstrate that IL-21 forms a positive feedback autocrine loop involving homeostatically activated CD4(+) cells and that it plays an essential role in the development of autoimmune arthritis by mechanisms dependent on follicular Th cell development, autoreactive B cell maturation, and RANKL induction but independent of Th17 cell function. Consistent with this, in vivo administration of soluble the IL-21R-Fc fusion protein delayed the onset and progression of arthritis. Our findings suggest that effective targeting of IL-21-mediated processes may be useful in treating autoimmune arthritis. PMID:19342640

  7. A Positive Feedback Loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN Modulates Long-Term Acquired Thermotolerance Illustrating Diverse Heat Stress Responses in Rice Varieties1[W][OPEN

    PubMed Central

    Lin, Meng-yi; Chai, Kuo-hsing; Ko, Swee-suak; Kuang, Lin-yun; Lur, Huu-Sheng; Charng, Yee-yung

    2014-01-01

    Heat stress is an important factor that has a negative impact on rice (Oryza sativa) production. To alleviate this problem, it is necessary to extensively understand the genetic basis of heat tolerance and adaptability to heat stress in rice. Here, we report the molecular mechanism underlying heat acclimation memory that confers long-term acquired thermotolerance (LAT) in this monocot plant. Our results showed that a positive feedback loop formed by two heat-inducible genes, HEAT SHOCK PROTEIN101 (HSP101) and HEAT STRESS-ASSOCIATED 32-KD PROTEIN (HSA32), at the posttranscriptional level prolongs the effect of heat acclimation in rice seedlings. The interplay between HSP101 and HSA32 also affects basal thermotolerance of rice seeds. These findings are similar to those reported for the dicot plant Arabidopsis (Arabidopsis thaliana), suggesting a conserved function in plant heat stress response. Comparison between two rice cultivars, japonica Nipponbare and indica N22 showed opposite performance in basal thermotolerance and LAT assays. ‘N22’ seedlings have a higher basal thermotolerance level than cv Nipponbare and vice versa at the LAT level, indicating that these two types of thermotolerance can be decoupled. The HSP101 and HSA32 protein levels were substantially higher in cv Nipponbare than in cv N22 after a long recovery following heat acclimation treatment, at least partly explaining the difference in the LAT phenotype. Our results point out the complexity of thermotolerance diversity in rice cultivars, which may need to be taken into consideration when breeding for heat tolerance for different climate scenarios. PMID:24520156

  8. Dynamic Ruptures on a Frictional Interface with Off-Fault Brittle Damage: Feedback Mechanisms and Effects on Slip and Near-Fault Motion

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Ben-Zion, Yehuda; Ampuero, Jean-Paul; Lyakhovsky, Vladimir

    2015-05-01

    The spontaneous generation of brittle rock damage near and behind the tip of a propagating rupture can produce dynamic feedback mechanisms that modify significantly the rupture properties, seismic radiation, and generated fault zone structure. In this work, we study such feedback mechanisms for single rupture events and their consequences for earthquake physics and various possible observations. This is done through numerical simulations of in-plane dynamic ruptures on a frictional fault with bulk behavior governed by a brittle damage rheology that incorporates reduction of elastic moduli in off-fault yielding regions. The model simulations produce several features that modify key properties of the ruptures, local wave propagation, and fault zone damage. These include (1) dynamic generation of near-fault regions with lower elastic properties, (2) dynamic changes of normal stress on the fault, (3) rupture transition from crack-like to a detached pulse, (4) emergence of a rupture mode consisting of a train of pulses, (5) quasi-periodic modulation of slip rate on the fault, and (6) asymmetric near-fault ground motion with higher amplitude and longer duration on the side with reduced elastic moduli. The results can have significant implications to multiple topics ranging from rupture directivity and local amplification of seismic motion to near-fault tremor-like signals.

  9. Feedback regulation in cell signalling: Lessons for cancer therapeutics.

    PubMed

    Nguyen, Lan K; Kholodenko, Boris N

    2016-02-01

    The notion of feedback is fundamental for understanding signal transduction networks. Feedback loops attenuate or amplify signals, change the network dynamics and modify the input-output relationships between the signal and the target. Negative feedback provides robustness to noise and adaptation to perturbations, but as a double-edged sword can prevent effective pathway inhibition by a drug. Positive feedback brings about switch-like network responses and can convert analog input signals into digital outputs, triggering cell fate decisions and phenotypic changes. We show how a multitude of protein-protein interactions creates hidden feedback loops in signal transduction cascades. Drug treatments that interfere with feedback regulation can cause unexpected adverse effects. Combinatorial molecular interactions generated by pathway crosstalk and feedback loops often bypass the block caused by targeted therapies against oncogenic mutated kinases. We discuss mechanisms of drug resistance caused by network adaptations and suggest that development of effective drug combinations requires understanding of how feedback loops modulate drug responses. PMID:26481970

  10. An epidermis-driven mechanism positions and scales stem cell niches in plants

    PubMed Central

    Gruel, Jérémy; Landrein, Benoit; Tarr, Paul; Schuster, Christoph; Refahi, Yassin; Sampathkumar, Arun; Hamant, Olivier; Meyerowitz, Elliot M.; Jönsson, Henrik

    2016-01-01

    How molecular patterning scales to organ size is highly debated in developmental biology. We explore this question for the characteristic gene expression domains of the plant stem cell niche residing in the shoot apical meristem. We show that a combination of signals originating from the epidermal cell layer can correctly pattern the key gene expression domains and notably leads to adaptive scaling of these domains to the size of the tissue. Using live imaging, we experimentally confirm this prediction. The identified mechanism is also sufficient to explain de novo stem cell niches in emerging flowers. Our findings suggest that the deformation of the tissue transposes meristem geometry into an instructive scaling and positional input for the apical plant stem cell niche. PMID:27152324

  11. Right heart catheterisation may be cautiously performed through a mechanical valve prosthesis in the tricuspid position.

    PubMed

    Pettit, Stephen; Tsui, Steven; Parameshwar, Jayan

    2016-01-01

    Right heart catheterisation (RHC) may be performed through a mechanical valve prosthesis in the tricuspid position using a partially inflated pulmonary artery flotation catheter. Preprocedural preparation should include an ex vivo trial with an identical valve prosthesis and the type of catheter to be used for the procedure. The operator should expect immediate unloading of the right ventricle due to catheter-associated tricuspid regurgitation, but it is possible to estimate pulmonary vascular resistance using the Fick principle. The risk of catheter entrapment or damage to the prosthetic leaflets during the procedure is likely to be low. This risk may be acceptable to the clinician and the patient if pulmonary vascular resistance must be measured in order to determine eligibility for heart transplantation. PMID:27074812

  12. Solutions to position-dependent mass quantum mechanics for a new class of hyperbolic potentials

    SciTech Connect

    Christiansen, H. R.; Grupo de Física Teórica, State University of Ceara , Av. Paranjana 1700, 60740-903 Fortaleza-CE ; Cunha, M. S.

    2013-12-15

    We analytically solve the position-dependent mass (PDM) 1D Schrödinger equation for a new class of hyperbolic potentials V{sub q}{sup p}(x)=−V{sub 0}(sinh{sup p}x/cosh{sup q}x), p=−2,0,⋯q [see C. A. Downing, J. Math. Phys. 54, 072101 (2013)] among several hyperbolic single- and double-wells. For a solitonic mass distribution, m(x)=m{sub 0} sech{sup 2}(x), we obtain exact analytic solutions to the resulting differential equations. For several members of the class, the quantum mechanical problems map into confluent Heun differential equations. The PDM Poschl-Teller potential is considered and exactly solved as a particular case.

  13. Spatiotemporal analysis of propagation mechanism of positive primary streamer in water

    NASA Astrophysics Data System (ADS)

    Fujita, Hidemasa; Kanazawa, Seiji; Ohtani, Kiyonobu; Komiya, Atsuki; Sato, Takehiko

    2013-03-01

    Currently, further clarification of pre-breakdown phenomena in water such as propagation mechanisms of primary and secondary streamers are needed because applications of aqueous plasma to environmental and medical treatments are increasing. In this study, a series of primary streamer propagations in ultrapure water was visualized at 100-Mega frames per second (100 Mfps) in the range of 400 μm square using an ultra high-speed camera with a microscope lens when a single-shot pulsed positive voltage was applied to a needle electrode placed in a quartz cell. Every observation was synchronized with the waveforms of the applied voltage and the discharge current. The primary streamer, having many filamentary channels, started to propagate semi-spherically with a velocity of about 2 km/s when the pulsed currents occurred. Although most filamentary channels disappeared 400 ns after the beginning of the primary streamer, a few of them continued propagating with almost the same velocity (about 2 km/s) as long as the repetitive pulsed currents flowed. Shock waves were iteratively generated and streamer channels were formed while the repetitive pulsed currents were flowing. Thus, we concluded that the positive primary streamer in water propagates progressively with each repetitive pulsed current.

  14. Using RFID Positioning Technology to Construct an Automatic Rehabilitation Scheduling Mechanism.

    PubMed

    Wang, Ching-Sheng; Hung, Lun-Ping; Yen, Neil Y

    2016-01-01

    Accurately and efficiently identifying the location of patients during the course of rehabilitation is an important issue. Wireless transmission technology can reach this goal. Tracking technologies such as RFID (Radio frequency identification) can support process improvement and improve efficiencies of rehabilitation. There are few published models or methods to solve the problem of positioning and apply this technology in the rehabilitation center. We propose a mechanism to enhance the accuracy of positioning technology and provide information about turns and obstacles on the path; and user-centered services based on location-aware to enhanced quality care in rehabilitation environment. This paper outlines the requirements and the role of RFID in assisting rehabilitation environment. A prototype RFID hospital support tool is established. It is designed to provide assistance for monitoring rehabilitation patients. It can simultaneously calculate the rehabilitant's location and the duration of treatment, and automatically record the rehabilitation course of the rehabilitant, so as to improve the management efficiency of the rehabilitation program. PMID:26573641

  15. A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA

    NASA Astrophysics Data System (ADS)

    Tesoro, S.; Ali, I.; Morozov, A. N.; Sulaiman, N.; Marenduzzo, D.

    2016-02-01

    The first level of folding of DNA in eukaryotes is provided by the so-called ‘10 nm chromatin fibre’, where DNA wraps around histone proteins (∼10 nm in size) to form nucleosomes, which go on to create a zig-zagging bead-on-a-string structure. In this work we present a one-dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We focus on the case of genomic sheep DNA, and we start from effective potentials valid at infinite dilution and determined from high-resolution in vitro salt dialysis experiments. We study positioning within a polynucleosome chain, and compare the results for genomic DNA to that obtained in the simplest case of homogeneous DNA, where the problem can be mapped to a Tonks gas [1]. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point-like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on experimentally observable quantities in experiments on polynucleosome chromatin fibres reconstituted in vitro.

  16. A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA.

    PubMed

    Tesoro, S; Ali, I; Morozov, A N; Sulaiman, N; Marenduzzo, D

    2016-02-01

    The first level of folding of DNA in eukaryotes is provided by the so-called '10 nm chromatin fibre', where DNA wraps around histone proteins (∼10 nm in size) to form nucleosomes, which go on to create a zig-zagging bead-on-a-string structure. In this work we present a one-dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We focus on the case of genomic sheep DNA, and we start from effective potentials valid at infinite dilution and determined from high-resolution in vitro salt dialysis experiments. We study positioning within a polynucleosome chain, and compare the results for genomic DNA to that obtained in the simplest case of homogeneous DNA, where the problem can be mapped to a Tonks gas. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point-like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on experimentally observable quantities in experiments on polynucleosome chromatin fibres reconstituted in vitro. PMID:26871546

  17. Control your anger! The neural basis of aggression regulation in response to negative social feedback.

    PubMed

    Achterberg, Michelle; van Duijvenvoorde, Anna C K; Bakermans-Kranenburg, Marian J; Crone, Eveline A

    2016-05-01

    Negative social feedback often generates aggressive feelings and behavior. Prior studies have investigated the neural basis of negative social feedback, but the underlying neural mechanisms of aggression regulation following negative social feedback remain largely undiscovered. In the current study, participants viewed pictures of peers with feedback (positive, neutral or negative) to the participant's personal profile. Next, participants responded to the peer feedback by pressing a button, thereby producing a loud noise toward the peer, as an index of aggression. Behavioral analyses showed that negative feedback led to more aggression (longer noise blasts). Conjunction neuroimaging analyses revealed that both positive and negative feedback were associated with increased activity in the medial prefrontal cortex (PFC) and bilateral insula. In addition, more activation in the right dorsal lateral PFC (dlPFC) during negative feedback vs neutral feedback was associated with shorter noise blasts in response to negative social feedback, suggesting a potential role of dlPFC in aggression regulation, or top-down control over affective impulsive actions. This study demonstrates a role of the dlPFC in the regulation of aggressive social behavior. PMID:26755768

  18. Prediction of clathrate structure type and guest position by molecular mechanics.

    PubMed

    Fleischer, Everly B; Janda, Kenneth C

    2013-05-16

    The clathrate hydrates occur in various types in which the number, size, and shape of the various cages differ. Usually the clathrate type of a specific guest is predicted by the size and shape of the molecular guest. We have developed a methodology to determine the clathrate type employing molecular mechanics with the MMFF force field employing a strategy to calculate the energy of formation of the clathrate from the sum of the guest/cage energies. The clathrate type with the most negative (most stable) energy of formation would be the type predicted (we mainly focused on type I, type II, or bromine type). This strategy allows for a calculation to predict the clathrate type for any cage guest in a few minutes on a laptop computer. It proved successful in predicting the clathrate structure for 46 out of 47 guest molecules. The molecular mechanics calculations also provide a prediction of the guest position within the cage and clathrate structure. These predictions are generally consistent with the X-ray and neutron diffraction studies. By supplementing the diffraction study with molecular mechanics, we gain a more detailed insight regarding the details of the structure. We have also compared MM calculations to studies of the multiple occupancy of the cages. Finally, we present a density functional calculation that demonstrates that the inside of the clathrates cages have a relatively uniform and low electrostatic potential in comparison with the outside oxygen and hydrogen atoms. This implies that van der Waals forces will usually be dominant in the guest-cage interactions. PMID:23600658

  19. The pilot experience upon surgical ablation of large liver tumor by microwave system with tissue permittivity feedback control mechanism

    PubMed Central

    2014-01-01

    Background Microwave ablation (MWA) is used to treat patients with unresectable liver cancer. Our institution applied a novel microwave generator capable of automatically adjusting energy levels based on feedback related to tissue permittivity. This approach is meant to facilitate ablations over larger areas and provide results of greater predictablility. This paper reports on the safety, efficacy, and feasibility of this new system in the treatment of patients with large liver tumors. Methods Between July 2012 and December 2012, a total of 23 patients with malignant liver tumors exceeding 4 cm in diameter underwent surgical MWA using a 902–928 MHz generator. The proposed system used a 14-gauge antenna without internal-cooling. Follow up on tumor recurrence was performed using contrast-enhanced computed tomography or magnetic resonance imaging at 1 month and then at 3 month intervals for a period of at least 12 months following ablation. Results Among the cancers treated, 10 were primary hepatocellular carcinomas (HCCs) and 13 were metastatic lesions from primary colorectal cancer (CRLM). The mean tumor size was 5.40 cm (range of 4.0-7.0 cm). A total of 18 patients underwent MWA via open surgery, and 5 received laparoscopic MWA. The mean ablation time was 1982 seconds, with a range of 900-3600 seconds, and the median number of ablation sessions was 2.0 (range of 1–4 sessions). The rate of complete ablation, as defined by a total loss of contrast-enhancement one month post-treatment, was 82.6% (19 of 23 patients), and the rate of local recurrence was 26.3% (5 of 19 patients). For tumors with a diameter of 4.0-7.0 cm, the technical success rate of MWA was higher for HCC patients (70%) than for metastatic liver cancer (53.8%) patients; however, the difference was not statistically significant. All patients survived throughout the observation period, and the morbidity rate was 8.6%. Conclusions MWA treatment using the proposed system with tissue permittivity feedback control resulted in a high rate of complete ablation and reduced morbidity. This approach proved to be a fast, easy, and effective option for the ablation of large liver cancers, particularly HCCs. PMID:25336074

  20. Iodothyronine deiodinase gene analysis of the Pacific oyster Crassostrea gigas reveals possible conservation of thyroid hormone feedback regulation mechanism in mollusks

    NASA Astrophysics Data System (ADS)

    Huang, Wen; Xu, Fei; Qu, Tao; Li, Li; Que, Huayong; Zhang, Guofan

    2015-07-01

    Iodothyronine deiodinase catalyzes the initiation and termination of thyroid hormones (THs) effects, and plays a central role in the regulation of thyroid hormone level in vertebrates. In non-chordate invertebrates, only one deiodinase has been identified in the scallop Chlamys farreri. Here, two deiodinases were cloned in the Pacific oyster Crassostrea gigas ( CgDx and CgDy). The characteristic in-frame TGA codons and selenocysteine insertion sequence elements in the oyster deiodinase cDNAs supported the activity of them. Furthermore, seven orthologs of deiodinases were found by a tblastn search in the mollusk Lott