Science.gov

Sample records for positron annihilation lifetime

  1. Positron Annihilation Lifetime in situ Study of Deformed Polyolefin Elastomers

    NASA Astrophysics Data System (ADS)

    Krzemie?, K.; Kansy, J.; Fr?ckowiak, J. E.

    2005-05-01

    The positron annihilation lifetime spectroscopy was used to investigate the free volume hole size of ethylene octane copolymers as a function of deformation in the range from 0 to 110% in steps of 10%. For each degree of deformation a series of 5-6 positron annihilation lifetime spectra was collected in situ. All spectra of a given series were analysed simultaneously. They were resolved into three exponential components, of lifetimes parameters?i and intensities Ii. The variations of?3 reflect three deformation regions, the elastic range, strain softening range, and plastic region.

  2. Positron annihilation lifetime spectroscopy study of Kapton thin foils

    NASA Astrophysics Data System (ADS)

    Kanda, G. S.; Ravelli, L.; Lwe, B.; Egger, W.; Keeble, D. J.

    2016-01-01

    Variable energy positron annihilation lifetime spectroscopy (VE-PALS) experiments on polyimide material Kapton are reported. Thin Kapton foils are widely used in a variety of mechanical, electronic applications. PALS provides a sensitive probe of vacancy-related defects in a wide range of materials, including open volume in polymers. Varying the positron implantation energy enables direct measurement of thin foils. Thin Kapton foils are also commonly used to enclose the positron source material in conventional PALS measurements performed with unmoderated radionuclide sources. The results of depth-profiled positron lifetime measurements on 7.6 ?m and 25 ?m Kapton foils are reported and determine a dominant 385(1) ps lifetime component. The absence of significant nanosecond lifetime component due to positronium formation is confirmed.

  3. Positron annihilation lifetime spectroscopy source correction determination: A simulation study

    NASA Astrophysics Data System (ADS)

    Kanda, Gurmeet S.; Keeble, David J.

    2016-02-01

    Positron annihilation lifetime spectroscopy (PALS) can provide sensitive detection and identification of vacancy-related point defects in materials. These measurements are normally performed using a positron source supported, and enclosed by, a thin foil. Annihilation events from this source arrangement must be quantified and are normally subtracted from the spectrum before analysis of the material lifetime components proceeds. Here simulated PALS spectra reproducing source correction evaluation experiments have been systematically fitted and analysed using the packages PALSfit and MELT. Simulations were performed assuming a single lifetime material, and for a material with two lifetime components. Source correction terms representing a directly deposited source and various foil supported sources were added. It is shown that in principle these source terms can be extracted from suitably designed experiments, but that fitting a number of independent, nominally identical, spectra is recommended.

  4. Study of Chemical Carcinogens by Positron Annihilation Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pivtsaev, A. A.; Razov, V. I.; Karasev, A. O.

    2013-11-01

    We have used positron annihilation lifetime spectroscopy to study the carcinogens C21H20BrN3, C4H7Cl2O4P, CCl4, CHCl3, AlF3, C8H12N4O, C6H4Cl2 and the non-carcinogens H2O, AlCl3, CH2Cl2, C2H6OS. We have established a correlation between the annihilation characteristics of the studied compounds and their degree of carcinogenicity.

  5. Positron annihilation lifetime study of radiation-damaged natural zircons

    NASA Astrophysics Data System (ADS)

    Roberts, J.; Gaugliardo, P.; Farnan, I.; Zhang, M.; Vance, E. R.; Davis, J.; Karatchevtseva, I.; Knott, R. B.; Mudie, S.; Buckman, S. J.; Sullivan, J. P.

    2016-04-01

    Zircons are a well-known candidate waste form for actinides and their radiation damage behaviour has been widely studied by a range of techniques. In this study, well-characterised natural single crystal zircons have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). In some, but not all, of the crystals that had incurred at least half of the alpha-event damage of ∼1019 α/g required to render them structurally amorphous, PALS spectra displayed long lifetimes corresponding to voids of ∼0.5 nm in diameter. The long lifetimes corresponded to expectations from published Small-Angle X-ray Scattering data on similar samples. However, the non-observation by PALS of such voids in some of the heavily damaged samples may reflect large size variations among the voids such that no singular size can be distinguished or. Characterisation of a range of samples was also performed using scanning electron microscopy, optical absorption spectroscopy, Raman scattering and X-ray scattering/diffraction, with the degree of alpha damage being inferred mainly from the Raman technique and X-ray diffraction. The observed void diameters and intensities of the long lifetime components were changed somewhat by annealing at 700 °C; annealing at 1200 °C removed the voids entirely. The voids themselves may derive from He gas bubbles or voids created by the inclusion of small quantities of organic and hydrous matter, notwithstanding the observation that no voidage was evidenced by PALS in two samples containing hydrous and organic matter.

  6. [Positron annihilation lifetime spectrometry (PALS) and its pharmaceutical applications].

    PubMed

    Sebe, István; Szabó, Barnabás; Zelkó, Romána

    2012-01-01

    PALS is one of the most widely used "nuclear probe" techniques for the tracking of the structural characteristics of materials. The method is based on the matter-energy equivalence principle recognized by Einstein: the electrons and positrons as particle-antiparticle pairs disappear in mutual destruction of particles, they annihilate with high-energy gamma-radiation, thus "particle-energy transition" occurs. The properties of the resulting radiation exactly correspond to the relevant properties of the electron and positron preceding the annihilation. Since electrons occur in all types of materials, the phenomenon of positron annihilation can play in any environment; consequently the method can be used for the analysis of each type of materials (crystalline and amorphous, organic and inorganic, biotic and abiotic). The present paper provides an overview of the theoretical physical background, the practical realization and evaluation of methods, their limitations, and summarizes the pharmaceutical applications published in recent years. PMID:22570984

  7. Positron annihilation lifetime study of polyvinylpyrrolidone for nanoparticle-stabilizing pharmaceuticals.

    PubMed

    Shpotyuk, O; Bujňáková, Z; Baláž, P; Ingram, A; Shpotyuk, Y

    2016-01-01

    Positron annihilation lifetime spectroscopy was applied to characterize free-volume structure of polyvinylpyrrolidone used as nonionic stabilizer in the production of many nanocomposite pharmaceuticals. The polymer samples with an average molecular weight of 40,000 g mol(-1) were pelletized in a single-punch tableting machine under an applied pressure of 0.7 GPa. Strong mixing in channels of positron and positronium trapping were revealed in the polyvinylpyrrolidone pellets. The positron lifetime spectra accumulated under normal measuring statistics were analysed in terms of unconstrained three- and four-term decomposition, the latter being also realized under fixed 0.125 ns lifetime proper to para-positronium self-annihilation in a vacuum. It was shown that average positron lifetime extracted from each decomposition was primary defined by long-lived ortho-positronium component. The positron lifetime spectra treated within unconstrained three-term fitting were in obvious preference, giving third positron lifetime dominated by ortho-positronium pick-off annihilation in a polymer matrix. This fitting procedure was most meaningful, when analysing expected positron trapping sites in polyvinylpyrrolidone-stabilized nanocomposite pharmaceuticals. PMID:26444751

  8. Digitized detection of gamma-ray signals concentrated in narrow time windows for transient positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Kinomura, A.; Suzuki, R.; Oshima, N.; O'Rourke, B. E.; Nishijima, T.; Ogawa, H.

    2014-12-01

    A pulsed slow-positron beam generated by an electron linear accelerator was directly used for positron annihilation lifetime spectroscopy without any positron storage devices. A waveform digitizer was introduced to simultaneously capture multiple gamma-ray signals originating from positron annihilation events during a single accelerator pulse. The positron pulse was chopped and bunched with the chopper signals also sent to the waveform digitizer. Time differences between the annihilation gamma-ray and chopper peaks were calculated and accumulated as lifetime spectra in a computer. The developed technique indicated that positron annihilation lifetime spectroscopy can be performed in a 20 ?s time window at a pulse repetition rate synchronous with the linear accelerator. Lifetime spectra of a Kapton sheet and a thermally grown SiO2 layer on Si were successfully measured. Synchronization of positron lifetime measurements with pulsed ion irradiation was demonstrated by this technique.

  9. Free volume structure of realgar ?-As4S4 by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Shpotyuk, O.; Ingram, A.; Demchenko, P.

    2015-04-01

    Atomic-deficient free volume structure of realgar ?-As4S4, the low-temperature modification, of tetraarsenic tetrasulfide polymorphs, is studied using positron annihilation lifetime spectroscopy. Eventual channels of positron annihilation in this molecular crystal are shown to be connected with low electron density entities around cage As4S4 molecules composing realgar-type structure of monoclinic P21/n space group. The overlapped spaces of bond-free solid angles around S atoms forming self-closed As4S4 molecules contribute preferentially to positron trapping modes, while a competitive influence of bound positron-electron states (positronium) stabilized in intermolecular spaces occurs also to be essential in the decomposed lifetime spectra too.

  10. Positron annihilation lifetime study of interfaces in ternary polymer blends

    NASA Astrophysics Data System (ADS)

    Meghala, D.; Ramya, P.; Pasang, T.; Raj, J. M.; Ranganathaiah, C.; Williams, J. F.

    2013-06-01

    A new method based on positron lifetime spectroscopy is developed to characterize individual interfaces in ternary polymer blends and hence determine the composition dependent miscibility level. The method owes its origin to the Kirkwood-Risemann-Zimm (KRZ) model for the evaluation of the hydrodynamic interaction parameters (αij) which was used successfully for a binary blend with a single interface. The model was revised for the present work for ternary polymer blends to account for three interfaces. The efficacy of this method is shown for two ternary blends namely poly(styrene-co-acrylonitrile)/poly (ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and polycaprolactone /poly(styrene-co-acrylonitrile)/poly(vinyl chloride) (PCL/SAN/PVC) at different compositions. An effective hydrodynamic interaction parameter, αeff, was introduced to predict the overall miscibility of ternary blends.

  11. The study of synthetic food dyes by positron annihilation lifetime spectroscopy.

    NASA Astrophysics Data System (ADS)

    Pivtsaev, A. A.; Razov, V. I.

    2015-06-01

    By method of positron annihilation lifetime spectroscopy (PALS), substances are food dyes were studied: E-102 (Tartrazine), E-124 (Ponso 4R), E 132 (Indigo carmine), E-133 (Brilliant Blue), E-151 (Black Shiny). They are examined for the presence of carcinogenic properties. The difference between dyes having explicit carcinogenic properties and mutagenic properties (non-explicit carcinogens) is established.

  12. Study of PRIMAVERA steel samples by positron annihilation spectroscopy technique II - Lifetime measurements

    NASA Astrophysics Data System (ADS)

    Krsjak, V.; Grafutin, V.; Ilyukhina, O.; Burcl, R.; Ballesteros, A.; Hhner, P.

    2012-02-01

    In the present article, a positron annihilation lifetime technique was used for the study of VVER-440/230 weld materials, manufactured in the frame of the international PRIMAVERA project on microstructural investigation of the irradiated WWER-440 reactor pressure vessel steel. The present results complement our previous report of positron angular correlation experiments and provide in-depth characterization of vacancy type defects behavior under irradiation and thermal treatment. The results give new insight into the previously published atom probe tomography and angular correlation of annihilation radiation studies. The measurements do not show any association of phosphorus or its segregation to the open volume defects investigated by positron annihilation spectroscopy. The embrittlement effects related to the phosphorus seem to be effectively annealed-out during 475 C thermal treatment and the post annealing microstructure and mechanical properties of the material are consequently affected mostly by agglomerations of vacancy clusters coarsened during thermal treatment.

  13. Information on individual interfaces in ternary polymer blends from positron annihilation lifetime studies

    NASA Astrophysics Data System (ADS)

    Meghala, D.; Ramya, P.; Pasang, T.; Ravikumar, H. B.; Ranganathaiah, C.

    2012-06-01

    Positron Annihilation Lifetime Spectroscopy has been used to determine the free volume content in the ternary blends of SAN/EVA/PVC. The method of deriving hydrodynamic interaction parameter (α) in binary polymer blends was modified for ternary polymer blend system characterized by three distinct interfaces. Each interface characterized, is associated with an α and its assertion for the ternary blend are compared with available literature data.

  14. Investigation of nanostructures in ordinary Portland cement through positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Consolati, G.; Dotelli, G.; Quasso, F.

    1999-10-01

    Early hydration (up to four weeks) of five ordinary Portland cement pastes with different water-to-cement ratios (0.3, 0.4, 0.5, 0.6, and 1.0 wt) was investigated through positron annihilation lifetime spectroscopy. Measurements were performed at four different hydration times (1 day and 1, 2, and 4 weeks) and compared with results obtained from thermogravimetric analyses. Deconvolution of positron spectra allowed us to separate orthopositronium annihilations in the evacuated gel pores from those in the pores containing water, and therefore, to monitor the pores' evolution with aging time. It is found that the concentration of gel pores increases with aging time, as well as by increasing the content of water in the paste; on the other hand, the typical sizes of the pores do not show significant variations, either with aging time or with the water-to-cement ratio.

  15. Vacancy profile in reverse osmosis membranes studied by positron annihilation lifetime measurements and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shimazu, A.; Goto, H.; Shintani, T.; Hirose, M.; Suzuki, R.; Kobayashi, Y.

    2013-06-01

    The positron annihilation technique using a slow positron beam can be used for the study of the vacancy profiles in typical reverse osmosis (RO) membranes. In this study, the vacancy profile in the polyamide membrane that exhibits a high permselectivity between ions and water was studied using the positron annihilation technique and molecular dynamics simulations. Ortho-positronium (o-Ps) lifetimes in the surface region of the membranes were evaluated by using a slow positron beam. The diffusion behavior of Na+ and water in the polyamides was simulated by molecular dynamics (MD) methods using the TSUBAME2 supercomputer at the Tokyo Institute of Technology and discussed with the vacancy profile probed by the o-Ps. The results suggested that the large hydration size of Na+ compared to the vacancy size in the polyamides contributes to the increased diffusivity selectivity of water/Na+ that is related to the NaCl desalination performance of the membrane. Both the hydration size of the ions and the vacancy size appeared to be significant parameters to discuss the diffusivity selectivity of water/ions in typical polyamide membranes.

  16. Free volumes studies in Thymoquinone and Carvone ?-cyclodextrin nanoparticles by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferreira Marques, M. F.; Gordo, P. M.; Moreira da Silva, A.

    2013-06-01

    Positron annihilation lifetime spectroscopy is used to study free volume in ?-cyclodextrin with the encapsulation of thymoquinone and S-carvone, in samples covering the guest to host fraction range from 1:0.1 to 1:1. The results clearly indicate the presence of long lifetime components related to Ps-formation. Although the behavior of the two guests is different, in both cases the results indicate the formation of 1:1 cyclodextrin inclusion compounds. Data show that the addition of carvone to ?-cyclodextrin results in a decrease of the o-Ps lifetime corresponding to a reduction of the average radius of cavities from 2.41 to 2.29 , whereas the addition of thymoquine decreases the radius from 2.57 to 2.35 . In turn, the intensity varied from 20.55 to 19.20% and from 20.83 to 0.41%, respectively.

  17. Characterization of ?-irradiated polymethyl methacrylate by means of mechanical properties and positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Rubiolo, G. H.; Somoza, A.; Goyanes, S. N.; Consolati, G.; Marzocca, A. J.

    1999-08-01

    An experimental investigation was undertaken to assess the effect of ? irradiation on the ``structural'' state and the corresponding inelastic deformation behavior of polymethyl methacrylate (PMMA). Uniaxial and constant strain rate compression tests were conducted over a range of strain rates at room temperature on glassy polymer specimens of PMMA subjected to different ?-irradiation doses. Measurements of positron annihilation lifetime spectroscopy were performed on samples before the compression test in an attempt to correlate free volume content with yield stress. A kinetic law of plastic flow considering a local shear transformation in a small volume ? is used to represent the observed mechanical behavior. The density and size of the clusters are found for the material subjected to different irradiation dose. Positron annihilation lifetime spectroscopy was also used to estimate the size and number density of free volume sites in the polymer specimens. The dependence of both magnitudes with the irradiation dose follows those of the plastic cluster of volume ?. Both results provide experimental evidence that the density and the size of high free volume sites can be used as an internal state variable for characterizing the mechanical state of glassy polymers.

  18. Positron annihilation lifetime spectroscopy of mechanically milled protein fibre powders and their free volume aspects

    NASA Astrophysics Data System (ADS)

    Patil, K.; Sellaiyan, S.; Rajkhowa, R.; Tsuzuki, T.; Lin, T.; Smith, S. V.; Wang, X.; Uedono, A.

    2013-06-01

    The present study reports the fabrication of ultra-fine powders from animal protein fibres such as cashmere guard hair, merino wool and eri silk along with their free volume aspects. The respectively mechanically cleaned, scoured and degummed cashmere guard hair, wool and silk fibres were converted into dry powders by a process sequence: Chopping, Attritor Milling, and Spray Drying. The fabricated protein fibre powders were characterised by scanning electron microscope, particle size distribution and positron annihilation lifetime spectroscopy (PALS). The PALS results indicated that the average free volume size in protein fibres increased on their wet mechanical milling with a decrease in the corresponding intensities leading to a resultant decrease in their fractional free volumes.

  19. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90 collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  20. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    SciTech Connect

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-15

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90 Degree-Sign collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF{sub 2} scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF{sub 2} scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  1. Voids in mixed-cation silicate glasses: Studies by positron annihilation lifetime and Fourier transform infrared spectroscopies.

    PubMed

    Reben, M; Golis, E; Filipecki, J; Sitarz, M; Kotynia, K; Jeleń, P; Grelowska, I

    2014-08-14

    PALS in comparison with FTIR studies have been applied to investigate the structure of different oxide glasses. Three components of the positron lifetime τ (τ1 para- and τ3 ortho-positronium and τ2 intermediate lifetime component) and their intensities were obtained. The results of the calculation of mean values of positron lifetimes for the investigated glasses showed the existence of a long-living component on the positron annihilation lifetime spectra. From the Tao-Eldrup formula we can estimate the size of free volume. On the basis of the measurements we can conclude that the size and fraction of free volume reaches the biggest value for the fused silica glass. The degree of network polymerisation increases void size. PMID:24815814

  2. Positron-annihilation-lifetime response and broadband dielectric relaxation spectroscopy: Diethyl phthalate

    NASA Astrophysics Data System (ADS)

    Barto, J.; Alegra, A.; aua, O.; Tyagi, M.; Gmez, D.; Kritiak, J.; Colmenero, J.

    2007-09-01

    We report the results of a combined phenomenological analysis of the data from positron-annihilation-lifetime spectroscopy (PALS) and the relaxation data from broadband dielectric spectroscopy (BDS) on diethyl phthalate (DEP). The ortho-positronium ( o -Ps) lifetime, ?3 , as a function of temperature over a temperature range from 67K up to 300K is compared with the spectral features and the relaxation parameters of the BDS spectra decomposed into the primary ? and the secondary ? processes in the temperature range from 140K up to 380K by using the Williams-Watts scheme. Phenomenological model-free analysis of the ?3-T plot provides the three characteristic PALS temperatures, where the two most pronounced ones at TgPALS=185K and Tb2=245K=1.32TgPALS are related to the glass-liquid transition and the onset of a quasiplateau region, respectively. In the case of a weaker bend effect at Tb1=210K=1.14TgPALS , a number of new coincidences with changes in the dielectric ? process have been found. They concern the changes in width parameter of the distribution function for the ? relaxation time and the activation energy of the ?eff process, a crossover from the Arrhenius to the non-Arrhenius type of temperature dependence as well as with the onset of a short-time tail of the ? relaxation time distribution and finally, with changes in the relaxation strength of the ? and ?eff processes. All these findings indicate a close connection of the o -Ps annihilation parameters and relaxation characteristics of BDS response for the DEP matrix.

  3. Positron annihilation lifetime spectroscopy (PALS): a probe for molecular organisation in self-assembled biomimetic systems.

    PubMed

    Fong, Celesta; Dong, Aurelia W; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-07-21

    Positron annihilation lifetime spectroscopy (PALS) has been shown to be highly sensitive to conformational, structural and microenvironmental transformations arising from subtle geometric changes in molecular geometry in self-assembling biomimetic systems. The ortho-positronium (oPs) may be considered an active probe that can provide information on intrinsic packing and mobility within low molecular weight solids, viscous liquids, and soft matter systems. In this perspective we provide a critical overview of the literature in this field, including the evolution of analysis software and experimental protocols with commentary upon the practical utility of PALS. In particular, we discuss how PALS can provide unique insight into the macroscopic transport properties of several porous biomembrane-like nanostructures and suggest how this insight may provide information on the release of drugs from these matrices to aid in developing therapeutic interventions. We discuss the potentially exciting and fruitful application of this technique to membrane dynamics, diffusion and permeability. We propose that PALS can provide novel molecular level information that is complementary to conventional characterisation techniques. PMID:25948334

  4. Clay particles - potential of positron annihilation lifetime spectroscopy (PALS) for studying interlayer spacing

    NASA Astrophysics Data System (ADS)

    Fong, N.; Guagliardo, P.; Williams, J.; Musumeci, A.; Martin, D.; Smith, S. V.

    2011-01-01

    Characterisation of clays is generally achieved by traditional methods, such as X-ray diffraction (XRD) and transmission electron microscopy (TEM). However, clays are often difficult to characterise due to lack of long-range order, thus these tools are not always reliable. Because interlayer spacing in clays can be adjusted to house molecules, there is growing interest to use these materials for drug delivery. Positron annihilation lifetime spectroscopy (PALS) was examined as an alternative tool to characterise a series of well-known clays. XRD of two layered double hydroxides; MgAl-LDH and MgGd-LDH, natural hectorite, fluoromica and laponite, and their PALS spectra were compared. XRD data was used to calculate the interlayer d- spacing in these materials and results show a decrease in interlayer spacing as the heavy metal ions are substituted for those of large ionic radii. Similar results were obtained for PALS data. This preliminary study suggests PALS has potential as a routine tool for characterising clay particles. Further work will examine the sensitivity and reliability of PALS to percent of metal doping and hydration in clay microstructure.

  5. Positron annihilation lifetime studies of changes in free volume on some biorelevant nitrogen heterocyclic compounds and their S-glycosylation.

    PubMed

    Mahmoud, K R; Khodair, A I; Shaban, S Y

    2015-11-01

    A series of N-heterocyclic compounds was investigated by positron annihilation lifetime spectroscopy as well as Doppler broadening of annihilation radiation (DBAR) at room temperature. The results showed that the formation probability and life time of ortho-positronium in this series are structure and electron-donation character dependent, and can give more information about the structure. The DBAR provides direct information about the change of core and valance electrons as well as the number of defect types present in these compounds. PMID:26272166

  6. Physical and chemical ageing/degradation of polymers and composites as detected by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Hill, A. J.

    1999-12-01

    Use of positrons (positively charged electrons) to probe the physical and chemical "state" of polymers and composites offers a molecular level method of detecting the onset of degradation before the associated physical or mechanical property changes become catastrophic. Such measurements can be used to provide an early warning of ageing/degradation and to monitor the level of degradation over the service lifetime of the part. The method discussed in the present work relies on the positron detection of the local electron density in the material via positron annihilation lifetime spectroscopy (PALS). The local electron density at the annihilation sites within the material can change due to physical ageing (no bond breaking) and/or chemical degradation (hydrolysis, oxidation, etc.). Measurements of the ageing-induced changes in the positron lifetime can be correlated with the molecular-level rearrangements responsible for deterioration of properties. By using PALS in combination with chemically site-specific techniques, such as nuclear magnetic resonance (NMR) and infrared (IR), an understanding of the degradation process can be achieved and procedures for mitigating the damage can be developed (e.g. stabilizers). Examples of PALS-detected ageing/degradation in structural plastics poly(carbonate), poly(ethylene terephthalate), and poly(propylene), and poly(imide)/carbon fibre composites are given.

  7. Analysis of positron annihilation lifetime data by numerical Laplace inversion: Corrections for source terms and zero-time shift errors

    NASA Astrophysics Data System (ADS)

    Gregory, Roger B.

    1991-05-01

    We have recently described modifications to the program CONTIN [S.W. Provencher, Comput. Phys. Commun. 27 (1982) 229] for the solution of Fredholm integral equations with convoluted kernels of the type that occur in the analysis of positron annihilation lifetime data [R.B. Gregory and Yongkang Zhu, Nucl. Instr. and Meth. A290 (1990) 172]. In this article, modifications to the program to correct for source terms in the sample and reference decay curves and for shifts in the position of the zero-time channel of the sample and reference data are described. Unwanted source components, expressed as a discrete sum of exponentials, may be removed from both the sample and reference data by modification of the sample data alone, without the need for direct knowledge of the instrument resolution function. Shifts in the position of the zero-time channel of up to half the channel width of the multichannel analyzer can be corrected. Analyses of computer-simulated test data indicate that the quality of the reconstructed annihilation rate probability density functions is improved by employing a reference material with a short lifetime and indicate that reference materials which generate free positrons by quenching positronium formation (i.e. strong oxidizing agents) have lifetimes that are too long (400-450 ps) to provide reliable estimates of the lifetime parameters for the shortlived components with the methods described here. Well-annealed single crystals of metals with lifetimes less than 200 ps, such as molybdenum (123 ps) and aluminum (166 ps) do not introduce significant errors in estimates of the lifetime parameters and are to be preferred as reference materials. The performance of our modified version of CONTIN is illustrated by application to positron annihilation in polytetrafluoroethylene.

  8. A positron annihilation lifetime spectroscopic study of the corrosion protective properties of epoxy coatings

    SciTech Connect

    MacQueen, R.C.

    1992-01-01

    Positron Annihilation Lifetime Spectroscopy (PALS) was used to measure the free volume cavity sizes and free volume fractions of crosslinked epoxy coatings on steel before and after saturation with liquid water at 23[degrees]C. A direct linear relationship between the equilibrium volume fraction of water absorbed and the dry relative free volume fraction of bisphenol A epoxy coatings was found. The free volume cavity sizes and the number of free volume cavities per unit volume of these epoxies were found to decrease after water saturation. These decreases are ascribed to the occupation of 13-17% of the free volume cavities by 2-4 water molecules per cavity. The free volume cavity size of polyglycol diepoxides was found to increase after water saturation. This increase is ascribed to the expansion of the free volume cavities by water, which is substantiated by the macroscopic swelling observed in these coatings. An inverse, linear relationship between the equilibrium water uptake and the relative free volume fraction of these coatings were observed. This result coupled with the fact that less than one molecule of nitrobenzene was determined to fit into an epoxy free volume cavity, and that nitrobenzene is quite soluble in most of the epoxides, indicates that other factors besides the magnitude of the free volume fraction affect the amount of solvent absorbed by epoxy coatings. The small percentage of free volume occupied by water and the small number of water molecules capable of filling each void of the bisphenol A epoxies after water saturation correlate to the high impedance values and the good corrosion protection of these coatings, suggesting that water passes through these coatings by slow diffusion through the connected free volume cavities in the coating. Increases in the free volume cavity sizes of the polyglycol diepoxides after water saturation correlate to the low impedance and the poor corrosion protection of these coatings.

  9. Positron annihilation lifetime spectroscopy of poly(ethylene terephthalate): Contributions from rigid and mobile amorphous fractions

    NASA Astrophysics Data System (ADS)

    Olson, Brian; Lin, Jun; Nazarenko, Sergei; Jamieson, Alexander

    2004-03-01

    Systematic divergences in the orthopositronium (o-Ps) annihilation lifetimes, ?_3, and intensities, I_3, are observed, when comparing melt-crystallized and cold-crystallized poly(ethylene terephthalate) (PET) as a function of crystallinity. Following a previous analysis of corresponding deviations in oxygen permeability, the divergences in I3 and ?3 are traced to distinct characteristic values for the probability of o-Ps formation and o-Ps lifetime in the rigid amorphous phase (RAF) associated with the crystalline lamellae and the mobile amorphous regions (MAF) which are unperturbed by the presence of the crystal phase. Utilizing independent information on the volume fractions of RAF and MAF, a quantitative analysis of the o-Ps annihilation parameters is possible.

  10. Positron annihilation lifetime measurement and X-ray analysis on 120 MeV Au+7 irradiated polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Dube, Charu Lata; Kulriya, Pawan Kumar; Dutta, Dhanadeep; Pujari, Pradeep K.; Patil, Yashashri; Mehta, Mayur; Patel, Priyanka; Khirwadkar, Samir S.

    2015-12-01

    In order to simulate radiation damages in tungsten, potential plasma facing materials in future fusion reactors, surrogate approach of heavy ion irradiation on polycrystalline tungsten is employed. Tungsten specimen is irradiated with gold heavy ions of energy 120 MeV at different fluences. Positron annihilation lifetime measurements are carried out on pristine and ion beam irradiated tungsten specimens. The variation in positron annihilation lifetime in ion irradiated specimens confirms evolution of vacancy clusters under heavy ion irradiation. The pristine and irradiated tungsten specimens have also been characterized for their microstructural, structural, electrical, thermal, and mechanical properties. X-ray diffractograms of irradiated tungsten specimens show structural integrity of polycrystalline tungsten even after irradiation. Nevertheless, the increase in microstrain, electrical resistivity and microhardness on irradiation indicates creation of lattice damages inside polycrystalline tungsten specimen. On the other hand, the thermal diffusivity has not change much on heavy ion irradiation. The induction of damages in metallic tungsten is mainly attributed to high electronic energy loss, which is 40 keV/nm in present case as obtained from SRIM program. Although, concomitant effect of nuclear losses on damage creation cannot be ignored. It is believed that the energy received by the electronic system is being transferred to the atomic system by electron-phonon coupling. Eventually, elastic nuclear collisions and the transfer of energy from electronic to atomic system via inelastic collision is leading to significant defect generation in tungsten lattice.

  11. Utility of positron annihilation lifetime technique for the assessment of spectroscopic data of some charge-transfer complexes derived from N-(1-Naphthyl)ethylenediamine dihydrochloride

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Adam, Abdel Majid A.; Sharshar, T.; Saad, Hosam A.; Eldaroti, Hala H.

    2014-03-01

    In this work, structural, thermal, morphological, pharmacological screening and positron annihilation lifetime measurements were performed on the interactions between a N-(1-Naphthyl)ethylenediamine dihydrochloride (NEDA·2HCl) donor and three types of acceptors to characterize these CT complexes. The three types of acceptors include π-acceptors (quinol and picric acid), σ-acceptors (iodine) and vacant orbital acceptors (tin(IV) tetrachloride and zinc chloride). The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, the power of acceptors and molecular weight of the CT complexes. The positron annihilation lifetime spectroscopy can be used as a probe for the formation of charge-transfer (CT) complexes.

  12. Positron annihilation in flight

    NASA Astrophysics Data System (ADS)

    Tudor Jones, Goronwy

    1999-09-01

    In this resource article, an exceptional bubble chamber picture - showing the annihilation of a positron (antielectron e+ ) in flight - is discussed in detail. Several other esoteric phenomena (some not easy to show on their own!) also manifest themselves in this picture - pair creation or the materialization of a high energy photon into an electron-positron pair; the `head-on' collision of a positron with an electron, from which the mass of the positron can be estimated; the Compton Effect ; an example of the emission of electromagnetic radiation (photons) by accelerating charges (bremsstrahlung ).

  13. The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects.

    PubMed

    Zubiaga, Asier; Warringham, Robbie; Boltz, Marilyne; Cooke, David; Crivelli, Paolo; Gidley, David; Pérez-Ramírez, Javier; Mitchell, Sharon

    2016-03-23

    Recent studies demonstrated the power of positron annihilation lifetime spectroscopy (PALS) to characterise the connectivity and corresponding effectiveness of hierarchical pore networks in zeolites. This was based on the fractional escape of ortho-positronium (Ps), formed within the micropore framework, to vacuum. To further develop this technique, here we assess the impact of the positron implantation energy and of the zeolite crystal size and the particle morphology. Conventional measurements using fast positrons and beam measurements applying moderated positrons both readily distinguish purely microporous ZSM-5 zeolites comprised of single crystals or crystal aggregates. Unlike beam measurements, however, conventional measurements fail to discriminate model hierarchical zeolites with open or constricted mesopore architectures. Several steps are taken to rationalise these observations. The dominant contribution of Ps diffusion to the PALS response is confirmed by capping the external surface of the zeolite crystals with tetraethylorthosilicate, which greatly enhances the sensitivity to the micropore network. A one-dimensional model is constructed to predict the out-diffusion of Ps from a zeolite crystal, which is validated experimentally by comparing coffin-shaped single crystals of varying size. Calculation of the trends expected on the application of fast or moderated positrons indicates that the distinctions in the initial distribution of Ps at the crystal level cannot explain the limited sensitivity of the former to the mesopore architecture. Instead, we propose that the greater penetration of fast positrons within the sample increases the probability of Ps re-entry from intercrystalline voids into mesopores connected with the external surface of zeolite crystals, thereby reducing their fractional escape. PMID:26975204

  14. The states of water within poly(vinyl alcohol) thin films part 1: Investigations by positron annihilation lifetime spectroscopy

    SciTech Connect

    Hodge, R.M.; Edward, G.H.; Simon, G.P.; Hill, A.J.

    1993-12-31

    In order to produce poly(vinyl alcohol) (PVA) material suitable for thermoplastic processing, it is necessary to plasticize the polymer with water. In the present study the accommodation of water within the PVA network is examined. Positron annihilation lifetime spectroscopy (PALS) is used to determine the effect of water on the free volume of the polymer. The PALS parameters give information on the average size of the free volume sites and the relative concentration of free volume sites. A model is proposed in which water initially enters the polymer in a molecular form, distributing itself along and becoming bound to the polymer chains at hydroxyl sites. Further water sorption increases the existing polymeric free volume up to a certain limiting value whilst at the same time water clustering occurs resulting in states similar to bulk water.

  15. Per-fluorinated sulfonic acid/PTFE copolymer studied by positron annihilation lifetime and gas permeation techniques

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Abdel-Hady, E. E.; Ohira, A.

    2015-06-01

    The mechanism of gas permeation in per-fluorinated sulfonic acid/PTFE copolymer Fumapem membranes for polymer electrolyte fuel cells has been investigated from the viewpoint of free volume. Three different samples, Fumapem F-950, F-1050 and F-14100 membranes with ion exchange capacity (IEC) = 1.05, 0.95 and 0.71 meq/g, respectively were used after drying. Free volume was quantified using the positron annihilation lifetime (PAL) technique and gas permeabilities were measured for O2 and H2 as function of temperature. Good linear correlation between the logarithm of the permeabilities at different temperatures and reciprocal free volume indicate that gas permeation in dry Fumapem is governed by the free volume. Nevertheless permeabilities are much smaller than the corresponding flexible chain polymer with a similar free volume size due to stiff chains of the perfluoroethylene backbone.

  16. Confined water in controlled pore glass CPG-10-120 studied by positron annihilation lifetime spectroscopy and differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Šauša, O.; Mat'ko, I.; Illeková, E.; Macová, E.; Berek, D.

    2015-06-01

    The solidification and melting of water confined in the controlled pore glass (CPG) with average pore size 12.6 nm has been studied by differential scanning calorimetry (DSC) and positron annihilation lifetime spectroscopy (PALS). The fully-filled sample of CPG by water as well as the samples of CPG with different content of water were used. The measurements show the presence of amorphous and crystalline phases of water in this type and size of pores, freezing point depression of a confined liquid and presence of certain transitions at lower temperatures, which could be detected only for cooling regime. The localization of confined water in the partially filled pores of CPG at room temperature was studied.

  17. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    NASA Astrophysics Data System (ADS)

    El-Gamal, S.; Abdalla, Ayman M.; Abdel-Hady, E. E.

    2015-09-01

    The alpha particle track diameter dependence of the free volume holes size (Vf) in DAM-ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 C). The obtained results revealed that the values of ortho-positronium lifetime ?3 and Vf increases while I3 slightly increases as T increases for the two detectors. The values of ?3, Vf and I3 are higher in CR-39 than DAM-ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently Vf increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and Vf in the polymer. A relationship between Vf and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  18. Effect of water on glass transition in starch/sucrose matrices investigated through positron annihilation lifetime spectroscopy: a new approach.

    PubMed

    Sharma, Sandeep Kumar; Zaydouri, Abdelhadi; Roudaut, Galle; Dupltre, Gilles

    2011-11-21

    Glass transition is studied through positron annihilation lifetime spectroscopy (PALS) in maize starch matrices containing 10 (batch STS10) and 20 (STS20) w/w% sucrose, as a function of temperature (T) and water content (c(w)). To circumvent important losses of water upon heating while recording the PALS spectra, a new method is developed: instead of a series of measurements of ?(3), the triplet positronium lifetime, at different T, the latter is kept constant and the series relates to c(w), which is left to decrease at a constant rate. Similarly to the changes in ?(3) with T, the ?(3)vs. c(w) plots obtained show a smooth linear increase until a break, denoting the occurrence of glass transition, followed by a sharper increase. The gradients appear to be independent of T. The variation of the glass transition temperature, T(g), with c(w) shows a broad sigmoid with a large linear central part; as expected from the plasticising effect of sucrose, the plot for STS20 lies some 10 K below that for STS10. Results from differential scanning calorimetry for STS20 yield T(g) values some 15 K higher than from PALS. On the basis of the general shape of the ?(3)vs. T variations, a general equation is set for ?(3)(T, c(w)), leading one to expect a similar shape for ?(3)vs. c(w), as experimentally observed. PMID:21956245

  19. Amorphous-amorphous transition in glassy polymers subjected to cold rolling studied by means of positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Cangialosi, D.; Wbbenhorst, M.; Schut, H.; van Veen, A.; Picken, S. J.

    2005-02-01

    In this study, polycarbonate (PC) and polystyrene (PS) are subjected to plastic deformation by means of cold rolling and the resulting variation of the free volume and its subsequent time evolution after rolling is investigated by means of positron annihilation lifetime spectroscopy (PALS). The value of the long lifetime component that is attributed to the decay of ortho-positronium (?o-Ps) and its intensity (Io-Ps) are used to characterize, respectively, the size and the concentration of the free-volume holes. In addition to the PALS experiments, the effect of plastic deformation on the dynamic tensile modulus is investigated. The PALS results show that both for well-aged PC and PS an increase of ?o-Ps and a decrease of Io-Ps occur upon plastic deformation. During the subsequent aging, ?o-Ps tends to return to the value assumed before plastic deformation, while Io-Ps remains constant with time. These results corroborate the idea of an amorphous-amorphous transition, rather than that of a ``mechanical rejuvenation'' as proposed in the past to explain the ability of plastic deformation to reinitiate physical aging. Finally, a linear relation between the size of the free-volume holes and the dynamic tensile modulus is found, which suggests that the stiffness of amorphous glassy polymers is fully determined by their nanoscopic structure.

  20. Positron annihilation in transparent ceramics

    NASA Astrophysics Data System (ADS)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  1. Comparative studies of positron annihilation lifetime and coincident Doppler broadening spectra for a binary Cd-based quasicrystal and 1/1-approximant crystal

    SciTech Connect

    Takagiwa, Y.; Kanazawa, I.; Sato, K.; Murakami, H.; Kobayashi, Y.; Tamura, R.; Takeuchi, S.

    2006-03-01

    We performed the positron annihilation lifetime and coincident Doppler broadening measurements for binary icosahedral quasicrystal Cd{sub 5.7}Ca and its 1/1-cubic Cd{sub 6}Ca and Cd{sub 6}Yb approximants. Since the obtained positron lifetimes are quite similar to one another, it is likely that the same type of structural vacancies exists in quasicrystal Cd{sub 5.7}Ca and 1/1-cubic Cd{sub 6}Ca and Cd{sub 6}Yb approximants. The vacancy-type defects are concluded to be surrounded mostly by Cd atoms in both quasicrystal Cd{sub 5.7}Ca and its 1/1-cubic approximant Cd{sub 6}Ca from the high-momentum Doppler broadening spectra. In addition, we studied the temperature dependence of the positron annihilation lifetime in the low temperature region from 10 to 300 K for 1/1-cubic approximant Cd{sub 6}Ca and Cd{sub 6}Yb crystals. As a whole, in both 1/1-cubic Cd{sub 6}Ca and Cd{sub 6}Yb approximants the positron lifetime {tau}{sub 1} gradually increases with increasing temperature due to isotropic thermal expansion. However, the positron lifetime {tau}{sub 1} does not change at the order-disorder transition temperature, namely, 100 and 110 K for 1/1-cubic Cd{sub 6}Ca and Cd{sub 6}Yb approximants, respectively. These results suggest that the size of the structural vacancies and local electron density do not change with the ordering.

  2. Detection of Atomic Scale Changes in the Free Volume Void Size of Three-Dimensional Colorectal Cancer Cell Culture Using Positron Annihilation Lifetime Spectroscopy

    PubMed Central

    Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon

    2014-01-01

    Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-?. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro. PMID:24392097

  3. Positron Annihilation in Insulating Materials

    SciTech Connect

    Asoka-Kumar, P; Sterne, PA

    2002-10-18

    We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO{sub 2}. Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, which predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO{sub 2} samples.

  4. Effect of interfacial interaction on free volumes in phenol-formaldehyde resin-carbon nanotube composites: positron annihilation lifetime and age momentum correlation studies.

    PubMed

    Sharma, S K; Prakash, J; Sudarshan, K; Maheshwari, P; Sathiyamoorthy, D; Pujari, P K

    2012-08-21

    The phenol-formaldehyde-carbon nanotube composites were characterized for their free volume properties and interfacial interactions between nanotubes and the polymer matrix. The base polymeric material was a novolac type phenol-formaldehyde (PF) condensation resin cross-linked with para-toluene sulfonic acid. Multi-wall carbon nanotubes (MWCNTs) were synthesized using a catalytical chemical vapor deposition method and characterized using high-resolution transmission electron microscopy. The PF resin-carbon nanotubes composites having 2, 5, 10 and 20% (w/w%) MWCNTs were prepared. The crystallinity and morphology of the samples were characterized using X-ray diffraction and scanning electron microscopy. The free volume size in the polymer nanocomposites was observed to increase with the increase in nanotube content. Positron age momentum correlation (AMOC) studies revealed the electronic environment around different positron annihilation sites. The studies showed that ortho-positronium principally annihilates from interfacial regions of polymer and nanotubes in the nanocomposite. The positron lifetime studies together with AMOC measurements indicate an increase in the free volumes at the interface of polymer and MWCNTs in the composite. The free positron intensities showed that the polymer and nanotubes are weakly interacting in this system. PMID:22688656

  5. Drug release profiles and microstructural characterization of cast and freeze dried vitamin B12 buccal films by positron annihilation lifetime spectroscopy.

    PubMed

    Szab, Barnabs; Kllai, Nikolett; Tth, Gerg?; Hetnyi, Gergely; Zelk, Romna

    2014-02-01

    Solvent cast and freeze dried films, containing the water-soluble vitamin B12 as model drug were prepared from two polymers, sodium alginate (SA), and Carbopol 71G (CP). The proportion of the CP was changed in the films. The microstructural characterization of various samples was carried out by positron annihilation lifetime spectroscopy (PALS). The drug release kinetics of untreated and stored samples was evaluated by the conventionally applied semi-empirical power law. Correlation was found between the changes of the characteristic parameters of the drug release and the ortho-positronium (o-Ps) lifetime values of polymer samples. The results indicated that the increase of CP concentration, the freeze-drying process and the storage at 75% R.H. decreased the rate of drug release. The PALS method enabled the distinction between the micro- and macrostructural factors influencing the drug release profile of polymer films. PMID:24269613

  6. Photon correlations in positron annihilation

    SciTech Connect

    Gauthier, Isabelle; Hawton, Margaret

    2010-06-15

    The two-photon positron annihilation density matrix is found to separate into a diagonal center-of-energy factor implying maximally entangled momenta, and a relative factor describing decay. For unknown positron injection time, the distribution of the difference in photon arrival times is a double exponential at the para-Ps decay rate, consistent with experiment [V. D. Irby, Meas. Sci. Technol. 15, 1799 (2004)].

  7. Positron annihilation studies of fatigue in 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Hartley, J. H.; Howell, R. H.; Asoka-Kumar, P.; Sterne, P. A.; Akers, D.; Denison, A.

    1999-08-01

    Positron annihilation lifetime measurements were made on well calibrated fatigue samples of SS-304. Measurements were made on a high and low carbon alloy. Two separate lifetimes, indicating two defect site types were resolved in each sample. Significant lifetime changes are observed to occur early in the fatigue cycles.

  8. Positron lifetime setup based on DRS4 evaluation board

    NASA Astrophysics Data System (ADS)

    Petriska, M.; Sojak, S.; Slugeň, V.

    2014-04-01

    A digital positron lifetime setup based on DRS4 evaluation board designed at the Paul Scherrer Institute has been constructed and tested in the Positron annihilation laboratory Slovak University of Technology Bratislava. The high bandwidth, low power consumption and short readout time make DRS4 chip attractive for positron annihilation lifetime (PALS) setup, replacing traditional ADCs and TDCs. A software for PALS setup online and offline pulse analysis was developed with Qt,Qwt and ALGLIB libraries.

  9. Application of positron annihilation lifetime spectroscopy (PALS) to study the nanostructure in amphiphile self-assembly materials: phytantriol cubosomes and hexosomes.

    PubMed

    Dong, Aurelia W; Fong, Celesta; Waddington, Lynne J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-01-21

    Self-assembled amphiphile nanostructures of colloidal dimensions such as cubosomes and hexosomes are of interest as delivery vectors in pharmaceutical and nanomedicine applications. Translation would be assisted through a better of understanding of the effects of drug loading on the internal nanostructure, and the relationship between this nanostructure and drug release profile. Positron annihilation lifetime spectroscopy (PALS) is sensitive to local microviscosity and is used as an in situ molecular probe to examine the Q2 (cubosome) ? H2 (hexosome) ? L2 phase transitions of the pharmaceutically relevant phytantriol-water system in the presence of a model hydrophobic drug, vitamin E acetate (VitEA). It is shown that the ortho-positronium lifetime (?) is sensitive to molecular packing and mobility and this has been correlated with the rheological properties of individual lyotropic liquid crystalline mesophases. Characteristic PALS lifetimes for L2 (?4? 4 ns) ? H2 (?4? 4 ns) > Q(2?Pn3m) (?4? 2.2 ns) are observed for the phytantriol-water system, with the addition of VitEA yielding a gradual increase in ? from ?? 2.2 ns for cubosomes to ?? 3.5 ns for hexosomes. The dynamic chain packing at higher temperatures and in the L2 and H2 phases is qualitatively less "viscous", consistent with rheological measurements. This information offers increased understanding of the relationship between internal nanostructure and species permeability. PMID:25459998

  10. Positron annihilation in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Guessoum, Nidhal; Ramaty, Reuven; Lingenfelter, Richard E.

    1991-01-01

    Positronium formation and annihilation are studied in a model for the interstellar medium consisting of cold cloud cores, warm partially ionized cloud envelopes, and hot intercloud gas. The gamma-ray spectra resulting from positron annihilation in these components of the interstellar medium are calculated. The spectra from the individual components are then combined, using two limiting assumptions for the propagation of the positrons, namely, that the positrons propagate freely throughout the interstellar medium, and that the positrons are excluded from the cold cloud cores. In the first case, the bulk of the positrons annihilate in the cloud cores and the annihilation line exhibits broad wings resulting from the annihilation of positronium formed by charge exchange in flight. In the second case, the positrons annihilate mainly in the warm envelopes, and the line wings are suppressed.

  11. Packing and mobility of hydrocarbon chains in phospholipid lyotropic liquid crystalline lamellar phases and liposomes: characterisation by positron annihilation lifetime spectroscopy (PALS).

    PubMed

    Dong, Aurelia W; Fong, Celesta; Waddington, Lynne J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2015-01-01

    Lipid lamellar mesophases and their colloidal dispersions (liposomes) are increasingly being deployed in vivo as drug delivery vehicles, and also as models of biological membranes in fundamental biophysics studies. The permeability and diffusion of small molecules such as drugs is accommodated by a change in local curvature and molecular packing (mesophase behaviour) of the bilayer membrane molecules. Positron annihilation lifetime spectroscopy (PALS) is capable of providing in situ molecular level information on changes in free volume and void space arising from such changes in a non-perturbative manner. In this work PALS was used to systematically characterise the temperature-induced melting transitions (Tm) of saturated and unsaturated phospholipid-water systems while systematically varying lipid chain length, as both bulk lamellar mesophase and as aqueous colloidal dispersions (liposomes). A four-component fit of the data was used that provides separate PALS lifetimes for the aqueous (?3) and organic domains (?4). The oPs lifetime (?4), for the lamellar phases of DSPC (C18:0), DPPC (C16:0), DMPC (C14:0) and DLPC (C12:0) was found to be independent of chain length, with characteristic lifetime value ?4 ? 3.4 ns. ?4 is consistently larger in the dispersed liposomes compared to the bulk mesophases, suggesting that the hydrocarbon chains are more mobile. The use of contemporary and consistent analytical approaches as described in this study is the key to future deployment of PALS to interrogate the in situ influence of drugs on membrane and cellular microenvironments. PMID:25412405

  12. Positron annihilation spectroscopy with magnetically analyzed beams

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Holt, W. H.; Mock, W., Jr.

    1982-01-01

    Lifetime measurements with magnetically analyzed positron beams were made in condensed media with uniform and non-uniform properties. As expected, the lifetime values with magnetically analyzed positron beams in uniform targets are similar to those obtained with conventional positron sources. The lifetime values with magnetically analyzed beams in targets which have non-uniform properties vary with positron energy and are different from the conventional positron source derived lifetime values in these targets.

  13. Measurements of defect structures by positron annihilation lifetime spectroscopy of the tellurite glass TeO2-P2O5-ZnO-LiNbO3 doped with ions of rare earth elements: Er3+, Nd3+ and Gd3+

    NASA Astrophysics Data System (ADS)

    Golis, E.; Yousef, El. S.; Reben, M.; Kotynia, K.; Filipecki, J.

    2015-12-01

    The objective of the study was the structural analysis of the TeO2-P2O5-ZnO-LiNbO3 tellurite glasses doped with ions of the rare-earth elements: Er3+, Nd3+ and Gd3+ based on the PALS (Positron Annihilation Lifetime Spectroscopy) method of measuring positron lifetimes. Values of positron lifetimes and the corresponding intensities may be connected with the sizes and number of structural defects, such as vacancies, mono-vacancies, dislocations or pores, the sizes of which range from a few angstroms to a few dozen nanometres. Experimental positron lifetime spectrum revealed existence of two positron lifetime components ?1 and ?2. Their interpretation was based on two-state positron trapping model where the physical parameters are the annihilation velocity and positron trapping rate.

  14. The temperature dependence of free volume in phenyl salicylate and its relation to structural dynamics: A positron annihilation lifetime and pressure-volume-temperature study

    NASA Astrophysics Data System (ADS)

    Dlubek, G.; Shaikh, M. Q.; Raetzke, K.; Faupel, F.; Pionteck, J.; Paluch, M.

    2009-04-01

    Positron annihilation lifetime spectroscopy (PALS) and pressure-volume-temperature (PVT) experiments were performed to characterize the temperature dependent microstructure of the hole free volume in the low molecular weight glass-former phenyl salicylate (salol). The PALS spectra were analyzed with the new routine LT9.0 and the volume distribution of subnanometer size holes characterized by its mean ?vh? and standard deviation ?h was calculated. Crystallization of the amorphous sample was observed in the temperature range above 250 K, which leads to a vanishing of the positronium formation. The positronium signal recovered after melting at 303 K. A combination of PALS with PVT data enabled us to calculate the specific density Nh', the specific volume Vf, and the fraction of holes fh in the amorphous state. From comparison with dielectric measurements in the temperature range above TB=265 K, it was found that the primary structural relaxation slows down with temperature, faster than the shrinkage of the hole free volume Vf would predict, on the basis of the Cohen-Turnbull (CT) free volume theory. CT plots can be linearized by replacing Vf of the CT theory by (Vf-?V), where ?V is a volume correction term. This was interpreted as indication that the lower wing of the hole size distribution contains holes too small to show a liquidlike behavior in their surroundings. Peculiarities of the relaxation behavior below TB=265 K and the possible validity of the Cohen-Grest free volume model are discussed.

  15. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  16. Positron Annihilation Spectroscopy Study of Barnett Shale Core

    NASA Astrophysics Data System (ADS)

    Ameena, Fnu; Alsleben, Helge; Quarles, Carroll A.

    Measurements are reported of positron annihilation lifetime and Doppler broadening parameters on 14 samples of Barnett shale core selected from 196 samples ranging from depths of 6107 to 6402 feet. The Barnett shale core was taken from EOG well Two-O-Five 2H located in Johnson county TX. The selected samples are dark clay-rich mudstone consisting of fine-grained clay minerals. The samples are varied in shape, typically a few inches long and about 1/2 inch in width and thickness, and are representative of the predominant facies in the core. X-ray fluorescence (XRF), X-ray diffraction (XRD), petrographic analysis and geochemical analysis of total organic carbon (TOC) were already available for each of the selected samples. The lifetime data are analyzed in terms of three lifetime components with the shortest lifetime fixed at 125 ps. The second lifetime is attributed to positron annihilation in the bulk and positron trapping; and the third lifetime is due to positronium. Correlations of the lifetimes, intensities, the average lifetime and S and W parameters with TOC, XRF and XRD parameters are discussed. The observed correlations suggest that positron spectroscopy may be a useful tool in characterizing shale.

  17. Characterization of a sucrose/starch matrix through positron annihilation lifetime spectroscopy: unravelling the decomposition and glass transition processes.

    PubMed

    Sharma, Sandeep Kumar; Roudaut, Galle; Fabing, Isabelle; Dupltre, Gilles

    2010-11-14

    The triplet state of positronium, o-Ps, is used as a probe to characterize a starch-20% w/w sucrose matrix as a function of temperature (T). A two-step decomposition (of sucrose, and then starch) starts at 440 K as shown by a decrease in the o-Ps intensity (I(3)) and lifetime (?(3)), the latter also disclosing the occurrence of a glass transition. Upon sucrose decomposition, the matrix acquires properties (reduced size and density of nanoholes) that are different from those of pure starch. A model is successfully established, describing the variations of both I(3) and ?(3) with T and yields a glass transition temperature, T(g) = (446 2) K, in spite of the concomitant sucrose decomposition. Unexpectedly, the starch volume fraction (as probed through thermal gravimetry) decreases with T at a higher rate than the free volume fraction (as probed through PALS). PMID:20882224

  18. Positron Annihilation in Medical Substances of Insulin

    NASA Astrophysics Data System (ADS)

    Pietrzak, R.; Szatanik, R.

    2005-05-01

    Positrons lifetimes were measured in medical substances of insulin (human and animal), differing as far as the degree of purity and time of their activity in the organism are concerned. In all of the cases the spectrum of positron lifetime was distributed into three components, with the long-life component ranging from 1.8 to 2.08 ns and the intensity taking on values from 18 to 24%. Making use of Tao-Eldrup model, the average radius of the free volume, in which o-Ps annihilated, and the degree of filling in the volume were determined. It was found that the value of the long-life component for human insulin is higher than that of animal insulin. Moreover, the value of this component clearly depends on the manner of purification of the insulin. It was also noticed that there occurs a correlation between the value of this component and the time after which it begins to be active in the organism, as well as the total time of its activity.

  19. Positron annihilation in benzene and cyclohexane: a comparison between gas and liquid phase

    NASA Astrophysics Data System (ADS)

    Fedus, Kamil

    2015-06-01

    A comparative study about positron annihilation in gas and liquid phases of two non-polar ring molecules: benzene (C6H6) and cyclohexane (C6H12) is presented including the most recent experimental and theoretical achievements. In addition the preliminary results of positron annihilation lifetime measurements in a liquid phase at room temperature for these two molecules are reported.

  20. Positron Annihilation in the Bipositronium Ps2

    SciTech Connect

    Bailey, David H.; Frolov, Alexei M.

    2005-07-01

    The electron-positron-pair annihilation in the bipositronium PS2 is considered. In particular, the two-, three-, one- and zero-photon annihilation rates are determined to high accuracy. The corresponding analytical expressions are also presented. Also, a large number of bound state properties have been determined for this system.

  1. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W. (Idaho Falls, ID); Denison, Arthur B. (Idaho Falls, ID)

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  2. Positron lifetime calculation for possible defects in nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Zhang, Ting; Wang, Zhu

    2015-10-01

    Structural models for dislocation, vacancy clusters, twin boundary, stacking fault and nanocrystalline sample are constructed using copper as a model material. Positron lifetimes and momentum distributions of annihilating electron-positron pairs are calculated for these structural models. The calculated results indicate that the dislocation, twin boundary and stacking fault are shallow traps to positrons. The dislocation associated with monovacancies gives rise to a positron lifetime similar to that of monovacancies. The calculated positron lifetimes of the nanocrystalline copper show no dependence on the mean grain size. The as-constructed nanocrystalline samples contain vacancy clusters in grain boundaries, and positrons are localized by the vacancy clusters. However after relaxation the samples show only other two kinds of free volumes: one is the interatomic space in grain boundaries which is a shallow trap to positrons; the other is similar to a monovacancy. The latter contributes a positron lifetime of about 163 ps. This kind of free volume is not only observed in grain boundaries but also in the regions near grain boundaries. Positron lifetime calculation combined with the momentum distribution calculation is useful to identify the defect in the nanocrystalline Cu.

  3. Defects in metals. [Positron annihilation spectroscopy

    SciTech Connect

    Siegel, R.W.

    1982-06-01

    The application of positron annihilation spectroscopy (PAS) to the study of defects in metals has led to increased knowledge on lattice-defect properties during the past decade in two areas: the determination of atomic defect properties, particularly those of monovacancies, and the monitoring and characterization of vacancy-like microstructure development during post-irradiation and post-quench annealing. The study of defects in metals by PAS is reviewed within the context of the other available techniques for defect studies. The strengths and weaknesses of PAS as a method for the characterization of defect microstructures are considered. The additional possibilities for using the positron as a localized probe of the atomic and electronic structures of atomic defects are discussed, based upon theoretical calculations of the annihilation characteristics of defect-trapped positrons and experimental observations. Finally, the present status and future potential of PAS as a tool for the study of defects in metals is considered. 71 references, 9 figures.

  4. On the method of positron lifetime measurement

    NASA Technical Reports Server (NTRS)

    Nishiyama, F.; Shizuma, K.; Nasai, H.; Nishi, M.

    1983-01-01

    A fast-slow coincidence system was constructed for the measurement of positron lifetimes in material. The time resolution of this system was 270 ps for the (60)Co gamma rays. Positron lifetime spectra for 14 kinds of alkali halides were measured with this system. Two lifetime components and their intensities were derived from analyses of the lifetime spectra.

  5. Positron annihilation studies in solid 2-aminopyridine, 3-aminopyridine, 4-aminopyridine and 2-aminopyrimidine

    NASA Astrophysics Data System (ADS)

    Netto, A. Marques; Bicalho, S. M. C. M.; Filgueiras, Ca. L.; Machado, J. C.

    1985-09-01

    Positron annihilation lifetimes and Doppler-broadened annihilation lines have been measured in solid 2-aminopyridine (2-APY), 3-aminopyridine (3-APY), 4-aminopyridine (4-APY) and 2-aminopyrimidine (2-APYM). The results point to the formation of positronium in the solid pyridines and the yields are discussed in terms of the structures and the electron donation character of the compounds.

  6. Correlation of Gas Permeability in a Metal-Organic Framework MIL-101(Cr)–Polysulfone Mixed-Matrix Membrane with Free Volume Measurements by Positron Annihilation Lifetime Spectroscopy (PALS)

    PubMed Central

    Jeazet, Harold B. Tanh; Koschine, Tönjes; Staudt, Claudia; Raetzke, Klaus; Janiak, Christoph

    2013-01-01

    Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite membranes with excellent dispersion of MIL-101 particles and good adhesion within the polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant increase of gas permeabilities of the mixed-matrix membranes without any loss in selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased gas permeability is due to the free volume in the PSF polymer and the added large free volume inside the MIL-101 particles. The trend of the gas transport properties of the composite membranes could be reproduced by a Maxwell model. PMID:24957061

  7. Apparatus for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W. (Idaho Falls, ID)

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  8. Application of positron annihilation in materials science

    SciTech Connect

    Siegel, R.W.; Fluss, M.J.; Smedskjaer, L.C.

    1984-05-01

    Owing to the ability of the positron to annihilate from a variety of defect-trapped states, positron annihilation spectroscopy (PAS) has been applied increasingly to the characterization and study of defects in materials in recent years. In metals particularly, it has been demonstrated that PAS can yield defect-specific information which, by itself or in conjunction with more traditional experimental techniques, has already made a significant impact upon the determination of atomic-defect properties and the monitoring and characterization of vacancy-like microstructure development, as occurs during post-irradiation annealing. The applications of PAS are now actively expanding to the study of more complex defect-related phenomena in irradiated or deformed metals and alloys, phase transformations and structural disorder, surfaces and near-surface defect characterization. A number of these applications in materials science are reviewed and discussed with respect to profitable future directions.

  9. Positron scattering and annihilation from hydrogenlike ions

    SciTech Connect

    Novikov, S.A.; Bromley, M.W.J.; Mitroy, J.

    2004-05-01

    The Kohn variational method is used with a configuration-interaction-type wave function to determine the J=0 and J=1 phase shifts and annihilation parameter Z{sub eff} for positron-hydrogenic ion scattering. The phase shifts are within 1-2% of the best previous calculations. The values of Z{sub eff} are small and do not exceed unity for any of the momenta considered. At thermal energies Z{sub eff} is minute with a value of order 10{sup -50} occurring for He{sup +} at k=0.05a{sub 0}{sup -1}. In addition to the variational calculations, analytic expressions for the phase shift and annihilation parameters within the Coulomb wave Born approximation are derived and used to help elucidate the dynamics of positron collisions with positive ions.

  10. Slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (inventor); Eftekhari, Abe (inventor); St.clair, Terry L. (inventor)

    1991-01-01

    A slow positron beam generator uses a conductive source residing between two test films. Moderator pieces are placed next to the test film on the opposite side of the conductive source. A voltage potential is applied between the moderator pieces and the conductive source. Incident energetic positrons: (1) are emitted from the conductive source; (2) are passed through test film; and (3) isotropically strike moderator pieces before diffusing out of the moderator pieces as slow positrons, respectively. The slow positrons diffusing out of moderator pieces are attracted to the conductive source which is held at an appropriate potential below the moderator pieces. The slow positrons have to pass through the test films before reaching the conductive source. A voltage is adjusted so that the potential difference between the moderator pieces and the conductive source forces the positrons to stop in the test films. Measurable annihilation radiation is emitted from the test film when positrons annihilate (combine) with electrons in the test film.

  11. Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Vlach, Martin; Cizek, Jakub; Melikhova, Oksana; Stulikova, Ivana; Smola, Bohumil; Kekule, Tomas; Kudrnova, Hana; Gemma, Ryota; Neubert, Volkmar

    2015-04-01

    Thermal effects on the precipitation stages in as-cast Al-0.70 at. pct Mn-0.15 at. pct Sc-0.05 at. pct Zr alloy were studied. The role of lattice defects was elucidated by positron annihilation spectroscopy (lifetime and coincidence Doppler broadening) enabling investigation of solutes clustering at the atomic scale. This technique has never been used in the Al-Sc- and/or Al-Zr-based alloys so far. Studies by positron annihilation were combined with resistometry, hardness measurements, and microstructure observations. Positrons trapped at defects are preferentially annihilated by Sc electrons. Lifetime of trapped positrons indicates that Sc atoms segregate at dislocations. Maximum fraction of positrons annihilated by Sc electrons occurring at 453 K (180 °C) suggests that clustering of Sc bound with vacancies takes place. It is followed by peak of this fraction at 573 K (300 °C). A rise of the contribution of trapped positrons annihilated by Zr electrons starting at 513 K (240 °C) and attaining maximum also at 573 K (300 °C) confirms that Zr participates in precipitation of the Al3Sc particles already at these temperatures. The pronounced hardening at 573 K (300 °C) has its nature in the precipitation of the Al3Sc particles with a Zr-rich shell. The contribution of trapped positrons annihilated by Mn electrons was found to be negligible.

  12. Surfaces of colloidal PbSe nanocrystals probed by thin-film positron annihilation spectroscopy

    SciTech Connect

    Chai, L.; Schut, H.; Schaarenburg, L. C. van; Eijt, S. W. H.; Al-Sawai, W.; Barbiellini, B.; Bansil, A.; Gao, Y.; Houtepen, A. J.; Mijnarends, P. E.; Huis, M. A. van; Ravelli, L.; Egger, W.; Kaprzyk, S.

    2013-08-01

    Positron annihilation lifetime spectroscopy and positron-electron momentum density (PEMD) studies on multilayers of PbSe nanocrystals (NCs), supported by transmission electron microscopy, show that positrons are strongly trapped at NC surfaces, where they provide insight into the surface composition and electronic structure of PbSe NCs. Our analysis indicates abundant annihilation of positrons with Se electrons at the NC surfaces and with O electrons of the oleic ligands bound to Pb ad-atoms at the NC surfaces, which demonstrates that positrons can be used as a sensitive probe to investigate the surface physics and chemistry of nanocrystals inside multilayers. Ab initio electronic structure calculations provide detailed insight in the valence and semi-core electron contributions to the positron-electron momentum density of PbSe. Both lifetime and PEMD are found to correlate with changes in the particle morphology characteristic of partial ligand removal.

  13. Electron-positron annihilation and absorption models

    NASA Astrophysics Data System (ADS)

    Dorn, Randy T.

    2015-09-01

    An experimentally verified mathematical model that precisely describes the attraction and motion between an electron and positron does not yet exist. Although there have been no direct experimental measurements of the particle velocity when the distance between the two particles approaches zero, the basic inverse square model used for point charges is thought to be inadequate because it would predict speeds in excess of c, the speed of light. Modifications to this basic model have been made by theorizing a variable velocity dependent relativistic mass or a velocity dependent force. Using these models, that assume the electron and positron both attain a velocity of approximately c during their annihilation collision, results in a very compelling model of a photon as an electron and positron in a two body orbital union traveling through space. However, photon models based on this assumption show that the photon translational velocity must have some dependence on the photon wavelength. Further exploration of the basic inverse square model of electron - positron attraction shows it predicts the first order two body photon model without this wavelength dependent dispersion. Furthermore, study of the electron-positron interaction with a hydrogen like entity shows that the popular notion of a photon having an angular momentum on the order of ? and an energy of ?w can be derived from first principles.

  14. Positron Annihilation Spectroscopy of Barnett Shale Core Samples

    NASA Astrophysics Data System (ADS)

    Morgan, Hayden; Enderlin, Milton; Quarles, C. A.

    2012-10-01

    Positron annihilation spectroscopy (PAS) is an experimental technique that provides information about the internal structure of an object, specifically the porous spaces or defects that are present within the object. The lifetime of a positron within the sample is measured, which depends upon the volume of the space the positron becomes ``trapped'' in. While PAS has been applied to geological samples in the past, the present project focuses on Barnett Shale core, which has not been studied extensively with PAS. PAS presents a unique opportunity to learn about the micro-pores within the shale. These micro-pores are of critical importance because they contain natural gas, oil, and other organic compounds. Our project has 3 main goals: to determine the average positron lifetimes of a shale sample, to investigate the uniformity of shale core, and to observe the effect on the internal structure of shale after a handheld micro-conical indentation test, known as a ``dimple test,'' has been performed. This dimple test is an application of a small, concentrated force onto the shale, which subsequently fractures the shale (within a small radius around the impact point). Our preliminary results conclude that shale is relatively non-uniform, and that the volume of the micro-pores within the shale sample is significantly affected by the dimple test.

  15. Positron Annihilation Spectroscopy Of High Performance Polymer Films Under CO{sub 2} Pressure

    SciTech Connect

    Quarles, C. A.; Klaehn, John R.; Peterson, Eric S.; Urban-Klaehn, Jagoda M.

    2011-06-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide (CO{sub 2}) absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. The studied polymers are found to behave differently from each other. Some polymers form positronium and others, such as the polyimide structures, do not. For those polymers that form positronium an interpretation in terms of free volume is possible; for those that don't form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. A few of the studied polymers exhibit changes in positron lifetime and intensity under CO{sub 2} pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO{sub 2} pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO{sub 2} into various polymers at pressures up to about 3 atm (45psi).

  16. Positron Annihilation Spectroscopy Of High Performance Polymer Films Under CO2 Pressure

    NASA Astrophysics Data System (ADS)

    Quarles, C. A.; Klaehn, John R.; Peterson, Eric S.; Urban-Klaehn, Jagoda M.

    2011-06-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide (CO2) absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. The studied polymers are found to behave differently from each other. Some polymers form positronium and others, such as the polyimide structures, do not. For those polymers that form positronium an interpretation in terms of free volume is possible; for those that don't form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. A few of the studied polymers exhibit changes in positron lifetime and intensity under CO2 pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO2 pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO2 into various polymers at pressures up to about 3 atm (45psi).

  17. Positron Annihilation Spectroscopy of High Performance Polymer Films under CO2 Pressure

    SciTech Connect

    C.A. Quarles; John R. Klaehn; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2010-08-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. Different polymers are found to behave differently. Some polymers studied form positronium and some, such as the polyimide structures, do not. For those samples that form positronium an interpretation in terms of free volume is possible; for those that don’t form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. Some polymers exhibit changes in positron lifetime and intensity under CO2 pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO2 pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO2 into various polymers at pressures up to about 3 atm.

  18. Positron-annihilation study of radiation defects in sodium azide

    SciTech Connect

    Etin, G.I.; Ryabykh, S.M.

    1987-07-01

    Annihilation-photon angular correlation has been used to examine radiation defects in sodium azide capable of trapping positrons. The calculated and measured characteristics have been determined for various defects, including micropores filled by radiolytic nitrogen. The positron annihilation rates have been determined for the regions around radiation defects.

  19. Depth-dependent positron annihilation in different polymers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhang, P.; Cheng, G. D.; Li, D. X.; Wu, H. B.; Li, Z. X.; Cao, X. Z.; Jia, Q. J.; Yu, R. S.; Wang, B. Y.

    2013-09-01

    Depth-dependent positron annihilation Doppler broadening measurements were conducted for polymers with different chemical compositions. Variations of the S parameter with respect to incident positron energy were observed. For pure hydrocarbons PP, HDPE and oxygen-containing polymer PC, S parameter rises with increasing positron implantation depth. While for PI and fluoropolymers like PTFE, ETFE and PVF, S parameter decreases with higher positron energy. For chlorine-containing polymer PVDC, S parameter remains nearly constant at all incident positron energies. It is suggested that these three variation trends are resulted from a competitive effect between the depth-dependent positronium formation and the influence of highly electronegative atoms on positron annihilation characteristics.

  20. Characterization of the melting process of PTFE using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Honda, Y.; Nishijima, S.

    2015-06-01

    Poly(tetrafluoroethylene) (PTFE) is a semi-crystalline polymer and the lifetime of ortho-positronium(o-Ps) is known to be able to be separated into two components due to annihilation in the crystal region and in the amorphous region. The melting process of PTFE was investigated using positron annihilation spectroscopy and X-ray diffraction. The results indicated that volume expansion with an increase of temperature is dominantly due to the expansion of the amorphous region and a Ps bubble is formed at melting in both regions. The o-Ps relating to the crystal region definitely remains on the surface of crystal at the time of annihilation. The production of lower energy electrons at melting was deduced by the analysis of the Doppler broadened annihilation photopeak, and the increase in the number of such electrons was found to have great influence on the formation of the o-Ps and annihilation processes of positron and o-Ps.

  1. Development of positron annihilation spectroscopy to test accelerated weathering of protective polymer coatings

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Cao, H.; Chen, H. M.; Mallon, P.; Sandreczki, T. C.; Richardson, J. R.; Jean, Y. C.; Nielsen, B.; Suzuki, R.; Ohdaira, T.

    2000-06-01

    A variable mono-energetic positron beam with a computer-controlled system has recently been constructed at the University of Missouri-Kansas City for weathering studies of polymeric coatings. The beam is designed to measure the S-parameter from Doppler-broadening energy spectra and the sub-nanometer defect properties from positron annihilation lifetimes (PAL). Significant variations of S-parameter and ortho-positronium intensity in coatings, as obtained from the newly built beam and from the Electrotechnical Laboratory's beam, respectively, are observed as a function of depth and exposure time due to the Xe-light irradiation. A high sensitivity of positron annihilation signal response to the early stage of degradation is observed. Development of positron annihilation spectroscopy to test accelerated weathering of polymeric coatings is discussed.

  2. Positron annihilation study of the Mg-Zn -Y alloys with long period stacking ordered (LPSO) structures

    NASA Astrophysics Data System (ADS)

    Xu, H. X.; Inoue, K.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Kuramoto, A.; Egusa, D.; Abe, E.; Ye, B. J.

    2013-06-01

    The Mg-Zn-Y alloys with long period stacking ordered (LPSO) structures have been studied by positron annihilation lifetime (PAL), coincidence Doppler broadening (CDB) and atom probe tomography (APT). The positron lifetime for all the Mg-Zn-Y alloys is in a range of 221~225 ps, very close to the positron lifetime for pure Mg bulk, 222 ps. Low temperature measurements of the positron lifetime also give no evidence for shallow positron trapping sites in the LPSO phases. The CDB shows that most of the positrons are annihilated with electrons of Mg. These results suggest that sub-nano scale open volumes, which were expected to exist in the Zn/Y enriched layers synchronized with stacking faults of the LPSO phases by the first principles calculations, are not present.

  3. Positron annihilation studies of chromophore-doped polymers

    NASA Astrophysics Data System (ADS)

    Huang, C. M.; Yuan, J.-P.; Cao, H.; Zhang, R.; Jean, Y. C.; Suzuki, R.; Ohdaira, T.; Nielsen, B.

    2000-06-01

    Doppler-broadening energy spectra and positron annihilation lifetime have been measured as a function of positron implantation energy in pure and chromophore Disperse Red 1 (DR1)-doped poly(methyl methacrylate) (PMMA) polymers. In pure PMMA, the S parameter increases at very short range (<0.02 ?m) from the surface to the bulk, while the S parameter of doped PMMA varies with a decrease from a depth of >0.02 ?m to about 0.5 ?m after an increase, a short distance from the surface. The o-Ps lifetime of the polymers is found to increase from the bulk to the surface, which indicates that the hole size expands near the surface. The o-Ps lifetime distribution becomes broader near the surface. The change of the o-Ps intensity shows the same trend as the change of the S parameter. These results are interpreted as a gradient of DR1 concentration in PMMA, as a function of the depth from the surface to the bulk in the chromophore-doped polymers.

  4. Defect identification in semiconductors with positron annihilation: experiment and theory

    NASA Astrophysics Data System (ADS)

    Tuomisto, Filip

    2015-03-01

    Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.

  5. Positron lifetime spectrometer using a DC positron beam

    DOEpatents

    Xu, Jun; Moxom, Jeremy

    2003-10-21

    An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.

  6. Resonances and Bound States in Positron Annihilation on Molecules

    NASA Astrophysics Data System (ADS)

    Surko, C. M.

    2007-10-01

    Positron annihilation is important in such diverse areas as study of metabolic processes in the human brain and the characterization of materials. Annihilation on molecules has been a subject of keen interest for decades. In particular, annihilation rates can be orders of magnitude greater than those expected for simple collisions. Recent results put our understanding of many aspects of this long-standing problem on a firm footing. We now understand that the annihilation proceeds by vibrational Feshbach resonances (VFR). A prerequisite for the existence of these VFR is that the positron binds to the target. The annihilation energy spectra provide the best measures to date of positron binding energies. Predictions of a new theory of VFR-enhanced annihilation in small molecules (methyl halides) [1] show excellent, quantitative agreement with experiment. New data and analyses for larger molecules (e.g., hydrocarbons with more than two carbon atoms) show that annihilation rates depend strongly on the number of vibrational degrees of freedom but, surprisingly, only weakly on positron binding energy. This places important constraints on theories of annihilation in these molecules. Results for second bound (i.e., positronically excited) states and overtone and combination-mode VFR, as well as outstanding questions, will also be discussed. This work is done in collaboration with Jason Young. [1] G. F. Gribakin and C. M. R. Lee, Phys. Rev. Lett. 97, 193201 (2006).

  7. Irradiation damage from low-dose high-energy protons on mechanical properties and positron annihilation lifetimes of Fe-9Cr alloy

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Fukumoto, K.; Ishi, Y.; Kuriyama, Y.; Uesugi, T.; Sato, K.; Mori, Y.; Yoshiie, T.

    2016-01-01

    Nuclear reactions in accelerator-driven systems (ADS) result in the generation of helium within the ADS materials. The amount of helium produced in this way is approximately one order of magnitude higher than that generated by nuclear fusion. As helium is well-known to induce degradation in the mechanical properties of metals, its effect on ADS materials is an important factor to assess. The results obtained in this study show that low-dose proton irradiation (11MeV at 573K to 9.0נ10-4dpa and 150MeV at room temperature to 2.6נ10-6dpa) leads to a decrease in yield stress and ultimate tensile strength in a Fe-9Cr alloy. Moreover, interstitial helium and hydrogen atoms, as well as the annihilation of dislocation jogs, were identified as key factors that determine the observed softening of the alloy.

  8. Moisture dependence of positron annihilation spectra in nylon-6

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; St. Clair, T. L.; Holt, W. H.; Mock, W., Jr.

    1984-01-01

    Positron annihilation time spectra have been measured in nylon-6 samples as a function of their moisture content. The measured average long life component lifetime values are: 1722 + or - 47 ps (dry), 1676 + or - 40 ps (14.6 percent saturation value), 1719 + or - 26 ps (29.3 percent saturation value), 1720 + or - 35 ps (50 percent of saturation value), 1857 + or - 35 ps (78.1 percent saturation value), and 1936 + or - 57 ps (saturated). It appears that nylon-6 has a special affinity for water at low concentration levels where H2O molecules enter between the (C = O - H-N) chemical bonds between nylon molecular chains. As the water concentration increases beyond a critical level, nylon-6 specimens start trapping H2O molecules in other bond sites or potential wells. The trapped water increases the free volume in the test specimens and reduces Ps atom formation as well as its subsequent decay rate.

  9. Positron annihilation characteristics in mesostructural silica films with various porosities

    SciTech Connect

    Xiong, Bangyun; Mao, Wenfeng; Tang, Xiuqin; He, Chunqing

    2014-03-07

    Porous silica films with various porosities were prepared via a sol-gel method using a nonionic amphiphilic triblock copolymer F127 as the structure-directing agent. Doppler broadening of positron annihilation radiation (DBAR) spectra were collected for the prepared films using a variable energy slow positron beam. Different linear relationships between positron annihilation line shape parameters S and W are found for the as-deposited films and calcined ones, indicative of the decomposition of the copolymer porogen in the as-deposited films upon calcination. This also reveals the variation of positron annihilation sites as a function of F127 loading or porosity. Strong correlations between positronium 3γ annihilation fraction, S parameter and porosity of the mesoporous silica films with isolated pores are obtained, which may provide a complementary method to determine closed porosities of mesoporous silica films by DBAR.

  10. Positron annihilation studies of zirconia doped with metal cations of different valence

    NASA Astrophysics Data System (ADS)

    Prochazka, I.; Cizek, J.; Melikhova, O.; Konstantinova, T. E.; Danilenko, I. A.; Yashchishyn, I. A.; Anwand, W.; Brauer, G.

    2013-06-01

    New results obtained by applying positron annihilation spectroscopy to the investigation of zirconia-based nanomaterials doped with metal cations of different valence are reported. The slow-positron implantation spectroscopy combined with Doppler broadening measurements was employed to study the sintering of pressure-compacted nanopowders of tetragonal yttria-stabilised zirconia (t-YSZ) and t-YSZ with chromia additive. Positronium (Ps) formation in t-YSZ was proven by detecting 3?-annihilations of ortho-Ps and was found to gradually decrease with increasing sintering temperature. A subsurface layer with enhanced 3?-annihilations, compared to the deeper regions, could be identified. Addition of chromia was found to inhibit Ps formation. In addition, first results of positron lifetime measurements on nanopowders of zirconia phase-stabilised with MgO and CeO2 are presented.

  11. Positron Annihilation in Steel Samples Deformed by Uniaxial Tension

    NASA Astrophysics Data System (ADS)

    Rudzi?ska, W.; Szuszkiewicz, M.; Bujnarowski, G.; Kluza, A. A.

    2008-05-01

    Angular distributions of the positron annihilation quanta were measured for steel ST2 SAL samples deformed by uniaxial tension up to different deformation degrees. The dependences of the S parameter on the relative elongation of the samples are presented. The positron annihilation data for steel are compared with the results obtained previously for polycrystalline iron samples deformed by uniaxial tension up to different deformation degrees in the proportionality and limited proportionality regions.

  12. Positron annihilation and conductivity measurements on poly(pyrrole tosylate) and poly(pyrrole fluoride)

    NASA Astrophysics Data System (ADS)

    Sharma, S. C.; Krishnamoorthy, S.; Naidu, S. V.; Eom, C. I.; Krichene, S.; Reynolds, J. R.

    1990-03-01

    Positron lifetimes, Doppler broadening of the annihilation γ energy, and electrical conductivities have been measured for two conducting polymers, poly(pyrrole tosylate) and poly(pyrrole fluoride), as functions of temperature in the range 10-295 K. The positron-lifetime spectra have been resolved into two exponentials. Positrons are localized in shallow traps, and the lifetime data suggest thermally induced detrapping of positrons at low temperatures. The temperature dependence of the conductivity has been analyzed following the variable-range-hopping model which provides results for the density of states at the Fermi energy [N(EF)] and bipolaron localization length α-1. Whereas the temperature dependence of the conductivity qualitatively follows this model, it provides incorrect results for N(EF) and α-1. .AE

  13. Defects in nitrides, positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Tuomisto, Filip

    2013-02-01

    In-grown group III (cation) vacancies (VGa, VAl, VIn) in GaN, AlN and InN tend to be complexed with donor-type defects These donor defects may in principle be residual impurities such as O or H, n-type dopants such as Si, or intrinsic defects such as the N vacancy (VN). The cation vacancies and their complexes are generally deep acceptors, and hence they compensate for the n-type conductivity and add to the scattering centers limiting the carrier mobility in these materials. Mg doping reduces the group III vacancy concentrations, but other kinds of vacancy defects emerge. This work presents results obtained with positron annihilation spectroscopy in GaN, AlN, and InN. The vacancy-donor complexes are different in these three materials, and their importance in determining the opto-electronic properties of the material varies as well. The formation of these defects is discussed in the light of the differences in the growth methods.

  14. Direct positron annihilation and positronium formation in thermal plasmas

    NASA Technical Reports Server (NTRS)

    Gould, Robert J.

    1989-01-01

    In the present evaluation of the rate of direct positron annihilation with electrons in the nonrelativistic limit, general analytic expressions are given for the radiative recombination of positrons to form positronium. Formulae are derived for the radiative capture to bound states of atomic hydrogen, and the connection between the two problems is demonstrated. Annihilation from excited states of positronium is considered, and it is estimated that 90 percent of the annihilations occur from the ground 1s state for both ortho and para positronium following radiative capture and cascade. A convenient form is given for the photodissociation cross section of positronium.

  15. Primary cosmic ray positrons and galactic annihilation radiation

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The observation (Leventhal et al, 1978) of positron annihilation radiation at 0.511 MeV from the direction of the Galactic Center is reexamined, suggesting the possibility of a primary positron component of the cosmic rays. The observed 0.511 MeV emission requires a positron production rate nearly two orders of magnitude greater than the production rate of secondary cosmic ray positrons from pion decay produced in cosmic ray interactions. Possible sources of positrons are reviewed with both supernovae and pulsars appearing to be the more likely candidates. If only about 1% of these positrons were accelerated along with the cosmic ray nucleons and electrons to energies not less than 100 MeV, it is believed that these primary positrons would be comparable in intensity to those secondary positrons resulting from pion decay. Some observational evidence for the existence of primary positrons in the cosmic rays is also discussed.

  16. Positron Annihilation Studies In Polymer Nano-Composites

    SciTech Connect

    Chen, H. M.; Awad, Somia; Jean, Y. C.; Yang, J.; Lee, L. James

    2011-06-01

    Positron annihilation spectroscopy coupled with a variable mono-energy positron beam has been applied to study nanoscale polymeric nanocomposites. New information about multilayer depth profiles and structures, interfacial free-volume and open space properties have been obtained in polystyrene/carbon nano fiber composites. The S parameter in Doppler Broadening Energy Spectra combined slow positron beam is used to quantitatively represent the free volume, open spaces, and interactions in the interface between polystyrene matrix and carbon nanofibers.

  17. Identifying vacancy complexes in compound semiconductors with positron annihilation spectroscopy: A case study of InN

    NASA Astrophysics Data System (ADS)

    Rauch, Christian; Makkonen, Ilja; Tuomisto, Filip

    2011-09-01

    We present a comprehensive study of vacancy and vacancy-impurity complexes in InN combining positron annihilation spectroscopy and ab initio calculations. Positron densities and annihilation characteristics of common vacancy-type defects are calculated using density functional theory, and the feasibility of their experimental detection and distinction with positron annihilation methods is discussed. The computational results are compared to positron lifetime and conventional as well as coincidence Doppler broadening measurements of several representative InN samples. The particular dominant vacancy-type positron traps are identified and their characteristic positron lifetimes, Doppler ratio curves, and line-shape parameters determined. We find that indium vacancies (VIn) and their complexes with nitrogen vacancies (VN) or impurities act as efficient positron traps, inducing distinct changes in the annihilation parameters compared to the InN lattice. Neutral or positively charged VN and pure VN complexes, on the other hand, do not trap positrons. The predominantly introduced positron trap in irradiated InN is identified as the isolated VIn, while in as-grown InN layers VIn do not occur isolated but complexed with one or more VN. The number of VN per VIn in these complexes is found to increase from the near-surface region toward the layer-substrate interface.

  18. Proposed Parameter-Free Model for Interpreting the Measured Positron Annihilation Spectra of Materials Using a Generalized Gradient Approximation

    NASA Astrophysics Data System (ADS)

    Barbiellini, Bernardo; Kuriplach, Jan

    2015-04-01

    Positron annihilation spectroscopy is often used to analyze the local electronic structure of materials of technological interest. Reliable theoretical tools are crucial to interpret the measured spectra. Here, we propose a parameter-free gradient correction scheme for a local-density approximation obtained from high-quality quantum Monte Carlo data. The results of our calculations compare favorably with positron affinity and lifetime measurements, opening new avenues for highly precise and advanced positron characterization of materials.

  19. Detection of Mg17Al12 precipitates in deformed thermal-aged AZ91 alloy by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Ortega, Y.; Del Ro, J.

    2004-02-01

    Positron-annihilation lifetime measurements are used to study the influence of Mg17Al12 precipitates in mechanical properties of deformed magnesium alloys containing 9 wt% Al and 1wt% Zn. Deformations are performed at room temperature on untreated and thermal-aged samples, and the response of the positron lifetime to the deformation degree is studied. Measurements reveal that changes in the average positron lifetime are very small on both samples. The slight increase of positron lifetime in deformed samples, seems to be related with the unfavourable orientation of Mg17Al12 precipitates in the magnesium matrix to produce work hardening, as it has shown by other authors through TEM observations. Further isothermal annealing experiments, on samples that are previously deformed, illustrate almost a complete recovery of the positron lifetime on untreated samples at 375 K and on age-hardened samples at 433 K.

  20. Mechanical durability of polymeric coatings studied by positron annihilation spectroscopy: correlation between cyclic loading and free volumes

    NASA Astrophysics Data System (ADS)

    Chen, H.; Peng, Q.; Huang, Y. Y.; Zhang, R.; Mallon, P. E.; Zhang, J.; Li, Y.; Wu, Y.; Richardson, J. R.; Sandreczki, T. C.; Jean, Y. C.; Suzuki, R.; Ohdaira, T.

    2002-06-01

    The mechanical durability of seven commercially polymeric coatings is investigated using slow positron beam techniques to monitor changes in sub-nanometer defects during the process of cyclic loading. Doppler broadened energy spectra and positron annihilation lifetime (PAL) measurements were performed as a function of the slow positron energy at different periods of cycling loading. The positron annihilation dada show that both S-defect parameter and o-positronium (Ps) lifetime decrease as the loading cycle increases. The results indicate a loss of free volumes due to the loss of mechanical durability by cyclic loading. A direct correlation between the loss of S-defect parameter and the period of loading cycle is observed. This is interpreted as that durability of polymeric coatings is controlled by the atomic level free volumes. It is shown that the slow positron beam is a very successful probe in detecting the very early stages of coating degradation due to mechanical processes.

  1. Positron annihilation spectroscopic studies on Nd-doped ceria

    SciTech Connect

    Sachdeva, A.; Chavan, S.V.; Goswami, A.; Tyagi, A.K.; Pujari, P.K. . E-mail: pujari@magnum.barc.ernet.in

    2005-06-15

    We report a new result on the characterization of Nd-doped ceria, Ce{sub 1-x}Nd{sub x}O{sub 2-x/2} (x=0.075-0.675) using positron lifetime spectroscopy (LTS) and coincidence Doppler broadening (CDB) measurements. A systematic increase in lifetime that is attributed to formation of Nd-oxygen vacancy associates is seen from x=0.075-0.4 followed by a sharper increase up to x=0.5. The change in profile of lifetime around x=0.4 suggests drastic increase in the concentration of these associates. Discontinuity in lifetime around x=0.5 is ascribed to ordering of oxygen vacancies. Coincidence Doppler broadening measurements indicate reduction in the overlap of positron wavefunction with oxygen core electrons due to trapping of positrons. Low-temperature (50-300K) lifetime measurements indicate the presence of Rydberg-like positron states associated with Nd{sup 3+} sites.

  2. Point defect characterization in CoAl using positron annihilation

    SciTech Connect

    Puff, W.; Logar, B.; Balogh, A.G.

    1999-07-01

    Vacancy-like defects in CoAl in the composition range 48.5 at.% {lt} C{sub Co} {lt} 53 at.% are investigated by means of positron lifetime spectroscopy and Doppler-broadening measurements. The observed lifetimes in the annealed samples confirm that defects are quenched-in during the production of the samples. The values of the positron lifetime and the S-parameter decrease with increasing Co concentration. After quenching from 1,400 C or 1,600 C an increase in the positron parameters is observed. Long-time annealing of the Co-rich sample shows a dramatic decrease of the positron lifetime to the expected bulk lifetime.

  3. A study of defects in deformed FeSi alloys using positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Mostafa, Khaled M.; De Baerdemaeker, J.; Calvillo, Pablo R.; Houbaert, Y.; Segers, D.

    2008-10-01

    Steels with high amounts of silicon are used in electrical applications due to their low magnetostriction, high electrical resistivity and reduced energy losses, but they exhibit poor formability. The slow positron beam of Gent is used to investigate defects in different deformed FeSi alloys. It was found that the concentration of defects for the alloys deformed at high temperatures are different from the ones related to the alloys deformed at room temperature. These results are correlated to the results of positron annihilation lifetime spectroscopy (PALS).

  4. Study of radiation damage in ODS steels by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartošová, I.; Bouhaddane, A.; Dománková, M.; Slugeň, V.; Wall, D.; Selim, F. A.

    2016-01-01

    Microstructure of various oxide-dispersion-strengthened (ODS) steels with 15% chromium content was studied in term of vacancy defects presence and their accumulation after defined irradiation treatment, respectively. Studied materials originated from Kyoto University and studied via IAEA collaborative project. Samples were characterized “as received” by positron annihilation lifetime spectroscopy and their microstructure was examined by transmission electron microscopy as well. Samples were afterwards irradiated in Washington State University Nuclear Radiation Center via a strong gamma source (6TBq). Damage induced by gamma irradiation was evaluated by positron lifetime measurements in emphasis on defect accumulation in the materials. We have demonstrated strong defect production induced by gamma irradiation which results from positron measurement data.

  5. Analysis of positron lifetime spectra in polymers

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Mall, Gerald H.; Sprinkle, Danny R.

    1988-01-01

    A new procedure for analyzing multicomponent positron lifetime spectra in polymers was developed. It requires initial estimates of the lifetimes and the intensities of various components, which are readily obtainable by a standard spectrum stripping process. These initial estimates, after convolution with the timing system resolution function, are then used as the inputs for a nonlinear least squares analysis to compute the estimates that conform to a global error minimization criterion. The convolution integral uses the full experimental resolution function, in contrast to the previous studies where analytical approximations of it were utilized. These concepts were incorporated into a generalized Computer Program for Analyzing Positron Lifetime Spectra (PAPLS) in polymers. Its validity was tested using several artificially generated data sets. These data sets were also analyzed using the widely used POSITRONFIT program. In almost all cases, the PAPLS program gives closer fit to the input values. The new procedure was applied to the analysis of several lifetime spectra measured in metal ion containing Epon-828 samples. The results are described.

  6. Positron lifetimes in crystalline solids exposed to γ rays with energies above the electron-positron pair formation threshold and a weak magnetic field

    NASA Astrophysics Data System (ADS)

    Smith, Gerald. A.

    2016-02-01

    Theory predicts that positrons in crossed motional electric and magnetic fields form long-lived positronium in vacuum. It follows that binding of the electron to anions of dielectric solids may prevent fast annihilation by forming electric positron-electron dipole oscillators with lifetimes of hundreds of minutes. To test this hypothesis, lifetime distributions of time-coincident, 180° γ-rays from crystalline alkali halides and a polycyclic hydrocarbon were measured in 12 and 95 G magnetic fields. Gamma-ray sources with energies above the electron-positron pair formation threshold were used to make positrons.

  7. Application of conservation laws in electron-positron annihilation

    NASA Astrophysics Data System (ADS)

    Aryal, Bijaya

    2014-03-01

    Electron-positron annihilation and creation of gamma rays involve various conservation principles. The least possible number of gamma rays produced in an annihilation event for low energy case can be generally explained using energy and momentum conservation. For this purpose, we choose a convenient frame of reference in which the system has zero linear momentum just before the annihilation event occurs. A learning activity was designed to help introductory level physics students understand and apply some of these conservation principles in the context of electron-positron annihilation. This study presents the students' spontaneous application of prior learning resources while explaining the annihilation process and predicting the least possible number of gamma rays produced in an annihilation event. Qualitative and quantitative data were gathered from students' interviews and written responses from several semesters. Data analysis has revealed students' use of macroscopic analogies during these applications. Moreover, this study has shown that analogical mechanical models seemed to improve student performance. However, a majority of the students using such models provided incorrect reasoning in their explanations.

  8. Positron annihilation measurements in high-energy alpha-irradiated n-type Gallium Arsenide

    NASA Astrophysics Data System (ADS)

    Pan, Sandip; Mandal, Arunava; Roychowdhury, Anirban; SenGupta, Asmita

    2015-07-01

    Positron annihilation lifetime spectroscopy and Doppler broadening annihilation line-shape measurements have been carried out in 40-MeV alpha-irradiated n-type GaAs. After irradiation, the sample has been subjected to an isochronal annealing over temperature region of 25-800 C with an annealing time of 30 min at each set temperature. After each annealing, the positron measurements are taken at room temperature. Formation of radiation-induced defects and their recovery with annealing temperature are investigated. The lifetime spectra of the irradiated sample have been fitted with two lifetimes. The average positron lifetime ?avg = 244 ps at room temperature after irradiation indicates the presence of defects, and the value of ?2 (262 ps) at room temperature suggests that the probable defects are mono-vacancies. Two distinct annealing stages in ?avg at 400-600 C and at 650-800 C are observed. The variations in line-shape parameter ( S) and defect-specific parameter ( R) during annealing in the temperature region 25-800 C resemble the behaviour of ?avg indicating the migration of vacancies, formation of vacancy clusters and the disappearance of defects between 400 and 800 C.

  9. Positron Annihilation Studies in Search of Fine Precipitates in Fe-9Cr alloys

    SciTech Connect

    Babu, S. Hari; Rajaraman, R.; Govindaraj, R.; Amarendra, G.; Sundar, C. S.

    2011-07-15

    Positron annihilation lifetime studies were carried out on cold worked pure Fe and Fe-9Cr alloy subjected to isochronal annealing in the temperature range from 300 to 1323 K. The measured lifetimes of Fe-9Cr alloy showed three distinct annealing stages as compared to pure Fe viz., initial annealing of defects, a plateau between 623 K and 873 K and noticeable increase beyond 1123 K. The second annealing stage is likely due to the formation of chromium rich nanoclusters. Third annealing stage beyond 1123 K is attributed to highly defected martensitic phase formation during cooling from y-phase.

  10. Positron annihilation response and broadband dielectric spectroscopy: salol.

    PubMed

    Barto, J; Iskrov, M; Khler, M; Wehn, R; Saua, O; Lunkenheimer, P; Kritiak, J; Loidl, A

    2011-09-01

    A phenomenological analysis of the ortho-positronium (o-Ps) annihilation from positron annihilation lifetime spectroscopy (PALS) and the dynamics from broadband dielectric spectroscopy (BDS) are reported on a small molecular glass former of intermediate H-bonding and fragility: salol. The dielectric spectra extend over a very broad frequency range of about 2 10(-2)-3.5 10(11) Hz, providing information on the ?-relaxation, the secondary relaxation giving rise to the excess wing, and the shallow high-frequency minimum in the micro- to milli-meter wave range. A number of empirical correlations between the o-Ps lifetime, ?(3)(T), and the various spectral and relaxation features have been observed. Thus, the phenomenological evaluation of the ?(3)(T) dependence of the PALS response of the amorphous sample reveals three characteristic PALS temperatures: T(g)(PALS), T(b1)(L) = 1.15T(g)(PALS) and T(b2)(L) = 1.25T(g)(PALS), which are discussed in relation to similar findings for some typical small molecular vdW- and H-bonded glass formers. A slighter change of the slope at T(b1)(L) appears to be related to the transition from excess wing to the primary ?-process-dominated behavior, with the secondary process dominating in the deeply supercooled liquid state below T(b1)(L). The high-temperature plateau effect in the ? (3)(T) plot occurs at T(b2)(L) and agrees with the characteristic Stickel temperature, T(B)(ST), marking a qualitative change of the primary ? process, but it does not follow the relation T(b2)(L) < T(?) [?(3)(T(b2)) < ?(?)]. Both effects at T(b1)(L) and T(b2)(L) correlate with two crossovers in the spectral shape and related non-exponentiality parameter of the structural relaxation, ? (KWW). Finally, the application of the two-order parameter (TOP) model to the structural relaxation as represented by the primary ? relaxation times from BDS leads to the characteristic TOP temperature, T(m)(c), close to T(b1) from PALS. Within this model the phenomenological interpretation is offered based on changes in the probability of occurrence of solid-like and liquid-like domains to explain the dynamic as well as PALS responses. In summary, all the empirical correlations support further very close connections between the PALS response and the dielectric relaxation behavior in small molecule glass formers. PMID:21947898

  11. When some elementary free volumes in polymers are not seen by positron annihilation experiments

    NASA Astrophysics Data System (ADS)

    Shantarovich, V. P.; Bekeshev, V. G.; Pastukhov, A. V.; Davankov, V. A.; Krasil'nikova, O. K.; Belousova, E. V.; Kevdina, I. B.; Filimonov, M. K.; Gustov, V. W.

    2015-06-01

    Size distributions of elementary free volumes have been studied in mesoporous micro-heterogeneous polymer sorbents. Positron annihilation lifetime spectroscopy (PALS), low temperature gas adsorption (BET) and thermo-stimulated luminescence (TSL) measurements are employed as complementary instruments for the study. It is shown that small admixtures of rubbers are very effective for variations of the pore size distribution. While BET technique was very informative for measurements of mesopores(2-50 nm), positron annihilation was sensitive to micropores(<2 nm), but not for mesopores. The last specificity is explained by the limited positronium diffusion length in a polymer and also by inhomogeneous distribution of mesoporesin heterogeneous systems. TSL measurements gave information on sizes of rubber inclusions in compositions.

  12. Positron annihilation study of vacancy-type defects in Al single crystal foils with the tweed structures across the surface

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel; Cizek, Jacub; Hruska, Petr; Anwad, Wolfgang; Bordulev, Yuri; Lider, Andrei; Laptev, Roman; Mironov, Yuri

    2015-10-01

    The vacancy-type defects in the aluminum single crystal foils after a series of the cyclic tensions were studied using positron annihilation. Two components were identified in the positron lifetime spectra associated with the annihilation of free positrons and positrons trapped by dislocations. With increasing number of cycles the dislocation density firstly increases and reaches a maximum value at N = 10 000 cycles but then it gradually decreases and at N = 70 000 cycles falls down to the level typical for the virgin samples. The direct evidence on the formation of a two-phase system "defective near-surface layer/base Al crystal" in aluminum foils at cyclic tension was obtained using a positron beam with the variable energy.

  13. Gamma-induced positron annihilation spectroscopy and application to radiation-damaged alloys

    NASA Astrophysics Data System (ADS)

    Wells, D. P.; Hunt, A. W.; Tchelidze, L.; Kumar, J.; Smith, K.; Thompson, S.; Selim, F.; Williams, J.; Harmon, J. F.; Maloy, S.; Roy, A.

    2006-06-01

    Radiation damage and other defect studies of materials are limited to thin samples because of inherent limitations of well-established techniques such as diffraction methods and traditional positron annihilation spectroscopy (PAS) [P. Hautojarvi, et al., Positrons in Solids, Springer, Berlin, 1979, K.G. Lynn, et al., Appl. Phys. Lett. 47 (1985) 239]. This limitation has greatly hampered industrial and in-situ applications. ISU has developed new methods that use pair-production to produce positrons throughout the volume of thick samples [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427, F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D.P. Wells, et al., Nucl. Instr. and Meth. B. 241 (2005) 262]. Unlike prior work at other laboratories that use bremsstrahlung beams to create positron beams (via pair-production) that are then directed at a sample of interest, we produce electron-positron pairs directly in samples of interest, and eliminate the intermediate step of a positron beam and its attendant penetrability limitations. Our methods include accelerator-based bremsstrahlung-induced pair-production in the sample for positron annihilation energy spectroscopy measurements (PAES), coincident proton-capture gamma-rays (where one of the gammas is used for pair-production in the sample) for positron annihilation lifetime spectroscopy (PALS), or photo-nuclear activation of samples for either type of measurement. The positrons subsequently annihilate with sample electrons, emitting coincident 511 keV gamma-rays [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427, F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D.P. Wells, et al., Nucl. Instr. and Meth. B. 241 (2005) 262]. These gamma-ray photons are then either measured with a high-resolution germanium detector (PAES) or fast scintillators (PALS) and subsequently analyzed using standard positron data analysis methods. The high penetrability of few MeV photons allows one to study defects and characterize materials in thick samples up to hundreds of g/cm2 (approximately a meter in steel), a thickness that is completely inaccessible by any other non-destructive technique. We have demonstrated the proof-of-principle of these techniques to probe tensile strain in thick steel alloys and other metals, to measure positron lifetimes in bulk samples of lead, copper and aluminium with positron lifetime spectra that are free of the surface and source background lifetimes that complicate conventional positron lifetime measurements, and demonstrated the activation technique for damage studies of copper and single-crystal iron [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427]. We have also demonstrated the potential application of these techniques to 3-D imaging of defect density in thick structural materials [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D.P. Wells, et al., Nucl. Instr. and Meth. B. 241 (2005) 262].

  14. A study of vacancy defects related to gray tracks in KTiOPO{sub 4} (KTP) using positron annihilation

    SciTech Connect

    Zhang, Yang; Li, Jing; Wang, Jiyang Jiang, Huaidong; Cao, Xingzhong; Yang, Jing

    2014-12-15

    For the first time to our knowledge, positron annihilation spectroscopy (PAS) was used to study vacancy defects in KTiOPO{sub 4} (KTP) single crystals. Positron annihilation lifetime spectroscopy combined with dielectric measurements identified the existence of oxygen vacancies and reflected the concentration of vacancy defects in three samples. The vacancy defects in KTP do not consist of monovacancies, but rather vacancy complexes. Doppler broadening indicates that the vacancy defects are distributed uniformly. A relationship is established where a crystal with a low oxygen vacancy concentration and a highly balanced stoichiometry has a higher resistance to gray track formation.

  15. THE GALACTIC POSITRON ANNIHILATION RADIATION AND THE PROPAGATION OF POSITRONS IN THE INTERSTELLAR MEDIUM

    SciTech Connect

    Higdon, J. C.; Lingenfelter, R. E.; Rothschild, R. E. E-mail: rlingenfelter@ucsd.edu

    2009-06-10

    The ratio of the luminosity of diffuse 511 keV positron annihilation radiation, measured by INTEGRAL in its four years, from a Galactic 'positron bulge' (<1.5 kpc) compared to that of the disk is {approx}1.4. This ratio is roughly 4 times larger than that expected simply from the stellar bulge-to-disk ratio of {approx}0.33 of the Galactic supernovae (SNe), which are thought to be the principal source of the annihilating positrons through the decay of radionuclei made by explosive nucleosynthesis in the SNe. This large discrepancy has prompted a search for new sources. Here, however, we show that the measured 511 keV luminosity ratio can be fully understood in the context of a Galactic SN origin when the differential propagation of these {approx} MeV positrons in the various phases of the interstellar medium is taken into consideration, since these relativistic positrons must first slow down to energies {<=}10 eV before they can annihilate. Moreover, without propagation, none of the proposed positron sources, new or old, can explain the two basic properties on the Galactic annihilation radiation: the fraction of the annihilation that occurs through positronium formation and the ratio of the broad/narrow components of the 511 keV line. In particular, we show that in the neutral phases of the interstellar medium, which fill most of the disk (>3.5 kpc), the cascade of the magnetic turbulence, which scatters the positrons, is damped by ion-neutral friction, allowing positrons to stream along magnetic flux tubes. We find that nearly 1/2 of the positrons produced in the disk escape from it into the halo. On the other hand, we show that within the extended, or interstellar, bulge (<3.5 kpc), essentially all of the positrons are born in the hot plasmas which fill that volume. We find that the diffusion mean free path is long enough that only a negligible fraction annihilate there and {approx}80% of them escape down into the H II and H I envelopes of molecular clouds that lie within 1.5 kpc before they slow down and annihilate, while the remaining {approx}20% escape out into the halo and the disk beyond. This propagation accounts for the low observed annihilation radiation luminosity of the disk compared to the bulge. In addition, we show that the primary annihilation sites of the propagating positrons in both the bulge and the disk are in the warm ionized phases of the interstellar medium. Such annihilation can also account for those two basic properties of the emission, the fraction ({approx}93% {+-} 7%) of annihilation via positronium and the ratio ({approx}0.5) of broad ({approx}5.4 keV) to narrow ({approx}1.3 keV) components of the bulge 511 keV line emission. Moreover, we expect that the bulk of this broad line emission comes from the tilted disk region (0.5 < R < 1.5 kpc) with a very large broad/narrow flux ratio of {approx}6, while much of the narrow line emission comes from the inner bulge (R < 0.5 kpc) with a negligible broad/narrow flux ratio. Separate spectral analyses of the 511 keV line emission from these two regions should be able to test this prediction, and further probe the structure of the interstellar medium. Lastly, we show that the asymmetry in the inner disk annihilation line flux, which has been suggested as added evidence for new sources, can also be fully understood from positron propagation and the asymmetry in the inner spiral arms as viewed from our solar perspective without any additional sources.

  16. Variable positron annihilation radiation from the galactic center region

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.; Ling, J. C.; Mahoney, W. A.; Wheaton, W. A.; Willett, J. B.; Jacobson, A. S.; Prince, T. A.

    1981-01-01

    HEAO 3 Cosmic Gamma-Ray Spectrometer evidence is presented for the existence of a time-varying, unshifted, narrow 511 keV line emission from the vicinity of the galactic center. Although uncertainties exist regarding the spatial extent of the features as well as its centroid, all data are consistent with emission from a single point source located at the galactic center. This interpretation would require a source luminosity of 2 x 10 to the 37th ergs/sec, and a positron annihilation rate of about 10 to the 43rd/sec. It is concluded that a variable source of positrons which could generate such an annihilation figure might be a massive black hole at the galactic center, as has been suggested by IR observations.

  17. Resonant positron annihilation in the small molecule limit

    NASA Astrophysics Data System (ADS)

    Surko, C. M.; Young, J. A.

    2007-06-01

    Energy-resolved measurements of positron-on-molecule annihilation have established the existence of vibrational Feshbach resonances (VFR) in alkanes and other large molecules [1,2]. Large annihilation rates occur whenever the incident positron energy is close to a vibrational mode energy minus the binding energy. Recently, Gribakin and Lee developed a quantitative model which successfully describes this process in halogen substituted methanes [3]. In this paper, we further examine VFR for small molecules. Using a cold positron beam from a Penning-Malmberg trap, we measured the energy resolved annihilation spectra of CD3Cl, methanol, H2O, and CO2 and compared them to the predictions of the model. The presence or absence of resonances in these molecules is also discussed. CD3Cl is compared to previous measurements of CH3Cl. Since both should have identical binding, this provides a stringent test of the model. [1] L. D. Barnes, et al., Phys. Rev. A 67, 032706 (2003). [2] L. D. Barnes, et al., Phys. Rev. A 74, 012706 (2006). [3] G. F. Gribakin and C. M. R. Lee, Phys. Rev. Lett. 97, 193201 (2006).

  18. Using the method of positron annihilation for detecting defects in structural alloys caused by fatigue

    SciTech Connect

    Arefev, K.P.; Boev, O.V.; Chernitsyn, A.I.; Polukhin, Y.E.; Vordb'ev, S.A.

    1986-12-01

    This paper examines the possibilities of using the method ofpositron annihilation for detecting fatigue defects in structural alloys with various types of crystal structure. The parameter of the positron annihilation process most suitable for the inspection was determined.

  19. Defect structures of F82H irradiated at SINQ using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Sato, K.; Ikemura, K.; Krsjak, V.; Vieh, C.; Brun, R.; Xu, Q.; Yoshiie, T.; Dai, Y.

    2016-01-01

    The growth process of He-filled vacancy clusters during annealing was investigated with positron annihilation lifetime spectroscopy and coincidence Doppler broadening (CDB) measurements. The reduced activation ferritic/martensitic steel F82H was irradiated with high-energy protons and spallation neutrons. The He-filled vacancy clusters absorbed more He atoms when annealed below 673 K, and the long and mean positron lifetimes decreased. When annealed above 873 K, the vacancies (V)-Hem or Vn-Hem complexes dissociated (n and m are the number of vacancies and He atoms, respectively). The He-filled vacancy clusters then absorb these dissociated vacancies and He atoms. Therefore, the size of the He-filled vacancy clusters increased, and the He-to-vacancy ratio decreased. These annealing-induced phenomena increased the long positron lifetime in addition to the higher positron trapping rates of the He-filled vacancy clusters. By comparing electron-irradiated samples that did not contain He atoms to the proton- and neutron-irradiated samples containing He atoms, the effects of He atoms on the CDB ratio curves were studied. The results agreed with the previous study of He-ion-implanted Fe-Cr alloys.

  20. Moisture determination in composite materials using positron lifetime techniques

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Holt, W. R.; Mock, W., Jr.

    1980-01-01

    A technique was developed which has the potential of providing information on the moisture content as well as its depth in the specimen. This technique was based on the dependence of positron lifetime on the moisture content of the composite specimen. The positron lifetime technique of moisture determination and the results of the initial studies are described.

  1. High resolution positron-annihilation spectroscopy with a new positron microprobe

    SciTech Connect

    Greif, H.; Haaks, M.; Holzwarth, U.; Maennig, U.; Tongbhoyai, M.; Wider, T.; Maier, K.; Bihr, J.; Huber, B.

    1997-10-01

    In cooperation with Zeiss/LEO GmbH, a monoenergetic positron source has been integrated in the electron optical system of a scanning electron microscope by help of a magnetic prism. The electron optics serves both to image the specimen with electrons and to form a positron microbeam that allows local positron-annihilation measurements with a resolution in the micron range. The fatigue damage profile along the cross section of a copper plate after a three-point bending test has been investigated. The obtained S-parameter profile coincides well with the expected fatigue damage distribution. {copyright} {ital 1997 American Institute of Physics.}

  2. Study on the microstructure and miscibility of dynamically vulcanized EPDM/PP blend by positron annihilation

    NASA Astrophysics Data System (ADS)

    Dai, Y. Q.; Wang, B.; Wang, S. J.; Jiang, T.; Cheng, S. Y.

    2003-10-01

    Positron annihilation lifetime spectroscopy (PALS) was employed to investigate the relationship between the free volume hole properties and miscibility of dynamically vulcanized ethylene propylene diene monomer (EPDM)/polypropylene (PP) blend. The free volume hole concentration and the relative fractional free volume show negative deviation from linear additivity only when the weight percent of EPDM is over 50%. Combined with the results of dynamical mechanical thermal analysis measurements and mechanical properties tests, we found that the noncrystalline region of PP and EPDM are partially miscible and the miscibility of the blend became better when the weight percent of EPDM is over 50%.

  3. Investigation of free volume changes in the structure of the polymer bifocal contact lenses using positron lifetime spectroscopy PALS.

    PubMed

    Filipecki, Jacek; Kocela, Agnieszka; Korzekwa, Piotr; Filipecka, Katarzyna; Golis, Edmund; Korzekwa, Witold

    2011-01-01

    Positron annihilation lifetime spectroscopy PALS has been applied of free volume properties in bifocal contact lenses. The measurements have been made on new lenses and then after one, two, three and four weeks wear. The longest lifetime, obtained via three-component analyses of the spectra, was associated with the pick-off annihilation of ortho-positronium trapped in the free volume. After wear of the lenses changes in the ortho-positronium lifetimes and the relative intensity of the longest component were observed. These results are discussed on the basis of a free volume model. PMID:21866793

  4. Morphology of Thermoset Polyimides by Positron Annihilation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Ranganathaiah, C.; Pater, R. H.; Sprinkle, D. R.; Baugher, A. H.; Eftekhari, A.; Singh, J. J.

    1994-01-01

    Thermoset polyimides have great potential for successfully meeting tough stress and temperature challenges in the advanced aircraft development program. However, studies of structure/property relationships in these materials have not been very successful so far. Positron annihilation spectroscopy has been used to investigate free volumes and associated parameters. It has been noted that the free volume correlates well with the molecular weight, cross-link density and thermal coefficient of expansion of these materials. Currently no other techniques are available for direct measurement of these parameters. Experimental results and their interpretations will be discussed.

  5. Behaviour of vacancies in dilute Fe-Re alloys: a positron annihilation study

    NASA Astrophysics Data System (ADS)

    Idczak, R.; Konieczny, R.

    2014-12-01

    Positron annihilation lifetime spectroscopy was used in a room temperature study of the influence of heat treatment on behaviour of vacancies in Fe0.97Re0.03 and Fe0.94Re0.06 alloys. In this experiment, the vacancies were created during the formation and further mechanical processing of the iron systems under consideration so the lifetime spectra of positrons were collected at least twice. The first samples were taken just after the melting process in an arc furnace, and the second ones were taken for the specimens annealed at 1,270 K and then cold-rolled at room temperature. After that, the spectra were measured for all studied samples after annealing at some temperatures gradually increasing from 300 to 1,270 K. It was found that vacancy-Re pairs are the dominant type of structural defects in alloys just after the melting process. In the case of alloys after a cold rolling process, the dominant type of structural defects is vacancies associated with edge dislocations. Moreover, for cold-rolled samples annealed at 473-573 K, the growth of the vacancy clusters associated with edge dislocations is observed by an increase in the mean positron lifetime. Finally, at temperatures above 573 K, vacancy clusters associated with edge dislocations as well as vacancy-Re pairs become unstable, and freely migrating vacancies sink at grain boundaries.

  6. Development of positron annihilation spectroscopy for characterizing neutron irradiated tungsten

    SciTech Connect

    C.N. Taylor; M. Shimada; D.W. Akers; M.W. Drigert; B.J. Merrill; Y. Hatano

    2013-05-01

    Tungsten samples (6 mm diameter, 0.2 mm thick) were irradiated to 0.025 and 0.3 dpa with neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory. Samples were then exposed to deuterium plasma in the tritium plasma experiment (TPE) at 100, 200 and 500C to a total fluence of 1 x 1026 m-2. Nuclear reaction analysis (NRA) and Doppler broadening positron annihilation spectroscopy (DB-PAS) were performed at various stages to characterize damage and retention. We present the first known results of neutron damaged tungsten characterized by DB-PAS in order to study defect concentration. Two positron sources, 22Na and 68Ge, probe ~58 m and through the entire 200 m thick samples, respectively. DB-PAS results reveal clear differences between the various irradiated samples. These results, and the calibration of DB-PAS to NRA data are presented.

  7. Positron-annihilation spectroscopy of defects in metals: an assessment

    SciTech Connect

    Siegel, R.W.

    1982-06-01

    Positron annihilation spectroscopy (PAS) has made significant contributions to our knowledge regarding lattice defects in metals in two areas: (i) the determination of atomic defect properties, particularly those of monovacancies, and (ii) the monitoring and characterization of vacancy-like microstructure development during post-irradiation of post-quench annealing. The application of PAS to the study of defects in metals is selectively reviewed and critically assessed within the context of other available techniques for such investigations. Possibilities for using the positron as a localized probe of the structure of atomic defects are discussed. Finally, the present status and future potential of PAS as a tool for the study of defects in metals are considered relative to other available techniques. 92 references, 20 figures.

  8. Positron annihilation study of Fe-ion irradiated reactor pressure vessel model alloys

    NASA Astrophysics Data System (ADS)

    Chen, L.; Li, Z. C.; Schut, H.; Sekimura, N.

    2016-01-01

    The degradation of reactor pressure vessel steels under irradiation, which results from the hardening and embrittlement caused by a high number density of nanometer scale damage, is of increasingly crucial concern for safe nuclear power plant operation and possible reactor lifetime prolongation. In this paper, the radiation damage in model alloys with increasing chemical complexity (Fe, Fe-Cu, Fe-Cu-Si, Fe-Cu-Ni and Fe-Cu-Ni-Mn) has been studied by Positron Annihilation Doppler Broadening spectroscopy after 1.5 MeV Fe-ion implantation at room temperature or high temperature (290 oC). It is found that the room temperature irradiation generally leads to the formation of vacancy-type defects in the Fe matrix. The high temperature irradiation exhibits an additional annealing effect for the radiation damage. Besides the Cu-rich clusters observed by the positron probe, the results show formation of vacancy-Mn complexes for implantation at low temperatures.

  9. Investigation Of Helium Implanted Fe-Cr Alloys By Means Of X-Ray Diffraction And Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Novák, Patrik; Gokhman, Aleksandr; Dobročka, Edmund; Bokor, Jozef; Pecko, Stanislav

    2015-11-01

    X-ray diffraction (XRD) and positron annihilation spectroscopy (PAS) have been used for the characterization of the two binary alloys Fe-Cr with Cr content 2.36 and 8.39 wt%. The influence of ion implantation on these alloys was studied. Different implantation doses of helium, up to 0.5 C/cm2, were used to simulate neutron-induced damage in a sub-surface region. To characterize the damage, a lattice parameter, coherent domain size, residual stress and a crystallographic texture have been studied by grazing incidence X-ray diffraction (GIXRD). It was found out that these parameters showed a similar dependence on the implantation dose as the positron lifetime determined by positron annihilation spectroscopy.

  10. Temperature dependence of positron-annihilation lifetime, free volume, conductivity, ionic mobility, and number of charge carriers in a polymer electrolyte polyethylene oxide complexed with NH{sub 4}ClO{sub 4}

    SciTech Connect

    Haldar, B.; Singru, R.M.; Maurya, K.K.; Chandra, S.

    1996-09-01

    Various physical properties of the solution-cast films of the proton conducting polymer polyethylene oxide (PEO) complexed with ammonium perchlorate (NH{sub 4}ClO{sub 4}) have been studied in the temperature range 300{endash}370 K. These properties studied by us include free volume by positron lifetime spectroscopy, ionic conductivity by impedance spectroscopy, ionic mobility by transient ionic current technique, number of charge carriers, dielectric constant, etc. The hole volume and conductivity show a steep rise at {ital T}{approx_equal}{ital T}{sub {ital m}} ({approximately}333 K). It appears that the increase in free volume arises out of the increase in the size of the holes rather than an increase in their number. Although the free volume shows an increase around {ital T}{sub {ital m}}, the measured ionic mobility does not show similar behavior. The increase in the conductivity at {ital T}{sub {ital m}} is, therefore, ascribed to an increase in the number of charge carriers at {approximately}{ital T}{sub {ital m}}. A suitable dissociation model involving the dielectric constant is proposed to explain this increase. The value of the dissociation energy for PEO:NH{sub 4}ClO{sub 4} has been determined to be 2.4 eV. {copyright} {ital 1996 The American Physical Society.}

  11. Synthesis and characterization of highly conductive charge-transfer complexes using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.; Refat, Moamen S.; Sharshar, T.; Heiba, Z. K.

    Molecular charge-transfer complexes of the tetramethylethylenediamine (TMEDA) with picric acid (Pi-OH), benzene-1,4-diol (QL), tin(IV) tetrachloride (SnCl4), iodine, bromine, and zinc chloride (ZnCl2) have been synthesized and investigated by elemental and thermal analysis, electronic, infrared, Raman and proton-NMR, energy-dispersive X-ray spectroscopy, X-ray powder diffraction and positron annihilation lifetime spectroscopy, and scanning electron microscopy. In this work, three types of acceptors ?-acceptors (Pi-OH and QL), ?-acceptors (iodine and bromine), and vacant orbital acceptors (SnCl4 and ZnCl2) were covered. The results of elemental analysis indicated that the CT complexes were formed with ratios 1:1 and 1:2 for QL, SnCl4, and ZnCl2 acceptors and iodine, Pi-OH, and Br2 acceptors, respectively. The type of chelating between the TMEDA donor and the mentioned acceptors depends upon the behavior of both items. The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, and the power of acceptors. The correlation between these parameters and the molecular weight and biological activities of studied complexes was also observed. Regarding the electrical properties, the AC conductivity and the dielectric coefficients were measured as a function of frequency at room temperature. The TMEDA charge-transfer complexes were screened against antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa) and antifungal (Aspergillus flavus and Candida albicans) activities.

  12. Positron annihilation spectroscopic studies of multiferroic Bi1-xPrxFeO3 nanocrystalline compounds

    NASA Astrophysics Data System (ADS)

    Cyriac, Jincemon; Rahul, M. T.; Kalarikkal, Nandakumar; Nambissan, P. M. G.

    2015-06-01

    Positron lifetime (PL) and coincidence Doppler broadening spectroscopic (CDBS) experiments were carried out on BiFeO3 samples doped with Pr(in place of Bi) in concentrations (x) = 0, 0.05, ..., 0.35. In the initial stages of doping, the existing Bi3+ vacancies are occupied by Pr3+ ions and positron trapping is reduced. From x = 0.15 to 0.35, more number of positrons diffused to the surfaces of the nanocrystallites. The CDBS ratio curves showed enhancement of the peak at pL = 10.210-3 m0c due to positron annihilation with the 2p electrons of oxygen. It suggested increased trapping of positrons in newly created cationic vacancy-type defects due to the mismatch of ionic radii of Pr3+ substituting Bi3+ ions. The lattice parameters decreased (3.9661-3.9248) while the nanocrystallitesizes reduced and increased (28.6-34.2nm) during the doping.

  13. Defects in nitride-based semiconductors probed by positron annihilation

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Sumiya, M.; Ishibashi, S.; Oshima, N.; Suzuki, R.

    2014-04-01

    Point defects in InxGa1-xN grown by metal organic chemical vapor deposition were studied by a monoenergetic positron beam. Measurements of Doppler broadening spectra of the annihilation radiation as a function of incident positron energy for InxGa1-xN (x = 0.08 and 0.14) showed that vacancy-type defects were introduced with increasing InN composition. From comparisons between coincidence Doppler broadening spectra and the results calculated using the projector augmented-wave method, the major defect species was identified as the complexes between a cation vacancy and nitride vacancies. The concentration of the defects was found to be suppressed by Mg doping. An effect of Mg-doping on the positron diffusion properties in GaN and InN was also discussed. The momentum distribution of electrons at the InxGa1-xN/GaN interface was close to that in defect-free GaN or InxGa1-xN, which was attributed to the localization of positrons at the interface due to the electric field caused by polarizations.

  14. HEAO 3 measurements of the atmospheric positron annihilation line

    SciTech Connect

    Mahoney, W.A.; Ling, J.C.; Jacobson, A.S.

    1981-12-01

    All spectra measured with the High Energy resolution Gamma-Ray Spectroscopy Experiment (HEAO C-1) on the third High Energy Astronomy Observatory (HEAO 3) contain a strong line at 511 keV resulting from positron annihilation. This line originates in the instrument itself, the earth's atmosphere, and cosmic sources, possibly including the diffuse cosmic background. In order to understand the emission from cosmic sources, the atmospheric positron annihilation line emission has been determined as a function of geomagnetic latitude and zenith angle. Although the intensity of the line increases with increasing latitude, it was found that variations with zenith angle can be satisfactorily explained only if the atmospheric emission exhibits significant limb darkening. The atmospheric line has an energy of 511.07 +- 0.10 keV and a net width of 2.29 +- 0.30 keV FWHM. Characteristics of the instrument background have allowed an upper limit of 9.4 x 10/sup -3/ photons/cm/sup 2/-sec-sr to be placed on any narrow (< or approx. =3 keV) diffuse cosmic emission at 511 keV.

  15. One-photon annihilation of thermal positrons with bound atomic electrons

    NASA Technical Reports Server (NTRS)

    Jung, Young-Dae

    1994-01-01

    Direct one-photon annihilation rate of positrons with a bound atomic electron is evaluated in the nonrelativistic limit. The K- and L-shell contributions are estimated including the screening and effective Coulomb repulsion effects. The annihilation rate of thermal positrons is calculated for various temperatures. The total number of one-photon annihilation events in the interstellar medium is discussed. These results provide the directional and structural information for cosmic gamma-ray sources.

  16. Positron and gamma-ray signatures of dark matter annihilation and big-bang nucleosynthesis

    SciTech Connect

    Hisano, Junji; Kawasaki, Masahiro; Kohri, Kazunori; Nakayama, Kazunori

    2009-03-15

    The positron excess observed by the PAMELA experiment may come from dark matter annihilation, if the annihilation cross section is large enough. We show that the dark matter annihilation scenarios to explain the positron excess may also be compatible with the discrepancy of the cosmic lithium abundances between theory and observations. The winolike neutralino in the supersymmetric standard model is a good example for it. This scenario may be confirmed by Fermi satellite experiments.

  17. Determination and applications of enhancement factors for positron and ortho-positronium annihilations

    SciTech Connect

    Mitroy, J.

    2005-12-15

    Electron-positron annihilation rates calculated directly from the electron and positron densities are known to underestimate the true annihilation rate. A correction factor, known as the enhancement factor, allows for the local increase of the electron density around the positron caused by the attractive electron-positron interaction. Enhancement factors are given for positrons annihilating with the 1s electron in H, He{sup +}, He, Li{sup 2+}, and Li{sup +}. The enhancement factor for a free positron annihilating with He{sup +} and He is found to be close to that of ortho-positronium (i.e., Ps in its triplet state) annihilating with these atoms. The enhancement factor for Ps-He scattering is used in conjunction with the known annihilation rate for pickoff annihilation to derive a scattering length of 1.47a{sub 0} for Ps-He scattering. Further, enhancement factors for e{sup +}-Ne and e{sup +}-Ar annihilation are used in conjunction with the pickoff annihilation rate to estimate scattering lengths of 1.46a{sub 0} for Ps-Ne scattering and 1.75a{sub 0} for Ps-Ar scattering.

  18. Calculation of the Doppler broadening of the electron-positron annihilation radiation in defect-free bulk materials

    SciTech Connect

    Ghosh, V. J.; Alatalo, M.; Asoka-Kumar, P.; Nielsen, B.; Lynn, K. G.; Kruseman, A. C.; Mijnarends, P. E.

    2000-04-15

    Results of a calculation of the Doppler broadening of the positron-electron annihilation radiation and positron lifetimes in a large number of elemental defect-free materials are presented. A simple scheme based on the method of superimposed atoms is used for these calculations. Calculated values of the Doppler broadening are compared with experimental data for a number of elemental materials, and qualitative agreement is obtained. These results provide a database which can be used for characterizing materials and identifying impurity-vacancy complexes. (c) 2000 The American Physical Society.

  19. Positron annihilation studies of 4-n-butyl-4'-isothiocyanato-1,1'-biphenyl.

    PubMed

    Dryzek, E; Juszy?ska, E; Zaleski, R; Jasi?ska, B; Gorgol, M; Massalska-Arod?, M

    2013-08-01

    Positron annihilation lifetime spectroscopy (PALS) measurements were performed between 93 and 293 K in order to study the supercooled smectic-E (Sm-E) phase of 4-n-butyl-4'-isothiocyanato-1,1'-biphenyl (4TCB), the ordered molecular crystal of 4TCB, and the phase transition between the Sm-E phase and the ordered molecular crystal of 4TCB. The phase transition was well reflected in the abrupt increase of the ortho-positronium (o-Ps) lifetime and intensity. The value of the o-Ps lifetime in the Sm-E liquid crystalline phase of 4TCB, i.e., 2.21 ns at room temperature, was explained by the formation of bubbles induced by Ps atoms, which are created due to a liquidlike state of the butyl chains of 4TCB molecules in the Sm-E phase. The temperature dependence of the o-Ps intensity for the supercooled Sm-E phase can be explained by thermal generation of sites where bubbles are formed; an activation energy equal to 0.300.02 eV was estimated. This value was compared with the activation energies of molecular motions. The o-Ps lifetime in the ordered molecular crystal was interpreted as originating from the annihilation of o-Ps confined in molecular vacancy-type imperfections in the crystal lattice. The value of the o-Ps pickoff annihilation between 1.8 and 1.9 ns is in accordance with the size of the molecular vacancy for the 4TCB crystal lattice. Its intensity is lower than 5%. The isothermal crystallization of the 4TCB Sm-E phase was observed by PALS. The low-dimensional crystal growth was concluded from the Avrami equation fitted to the time dependence of the o-Ps intensity, which resulted in an Avrami exponent equal to 1.73. PMID:24032853

  20. Structural transition in rare earth doped zirconium oxide: A positron annihilation study

    SciTech Connect

    Chakraborty, Keka; Bisoi, Abhijit

    2012-11-15

    Graphical abstract: New microstructural analysis and phase transition of rare earth doped mixed oxide compounds such as: Sm{sub 2?x}Dy{sub x}Zr{sub 2}O{sub 7} (where x = 0.0 ? x ? 2.0) that are potentially useful as solid oxide fuels, ionic conductors, optoelectronic materials and most importantly as radiation resistant host for high level rad-waste disposal, structural transition in the system is reported through positron annihilation spectroscopy as there is an indication in the X-ray diffraction analysis. Highlights: ? Zirconium oxide material doped with rare earth ions. ? The method of positron annihilation spectroscopy suggests a phase transition in the system. ? The crystal structure transformation from pure pyrochlore to defect fluorite type of structure is shown by X-ray diffraction results. -- Abstract: A series of compounds with the general composition Sm{sub 2?x}Dy{sub x}Zr{sub 2}O{sub 7} (where 0 ? x ? 2.0) were synthesized by chemical route and characterized by powder X-ray diffraction (XRD) analysis. The rare earth ion namely Sm{sup +3} in the compound was gradually replaced with another smaller and heavier ion, Dy{sup +3} of the 4f series, there by resulting in orderdisorder structural transition, which has been studied by positron annihilation lifetime and Doppler broadening spectroscopy. This study reveals the subtle electronic micro environmental changes in the pyrochlore lattice (prevalent due to the oxygen vacancy in anti-site defect structure of the compound) toward its transformation to defect fluorite structure as found in Dy{sub 2}Zr{sub 2}O{sub 7}. A comparison of the changes perceived with PAS as compared to XRD analysis is critically assayed.

  1. Positron annihilation induced Auger electron emission from silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Nadesalingam, M.; Brauer, G.; Nozawa, T.; Kohyama, A.; Weiss, A. H.

    2006-03-01

    Silicon carbide (SiC) in monocrystalline, hexagonal polytype form is a very interesting material for a wide class of novel applications in electronics. SiC fiber-reinforced SiC matrix composite materials (SiC/SiC) are considered to be the attractive candidates as materials for advanced energy systems, such as high performance combustion systems, fuel-flexible gasification systems, fuel cell / turbine hybrid systems, nuclear fusion reactors, and high temperature gas-cooled fission reactors. Positron Annihilation induced Auger Electron Spectroscopy (PAES) is an established tool to characterize the top most atomic surface layer of solids. Here, PAES has been used to study the surface of 6H-SiC after annealing under different thermal and ambient conditions. In addition, results of investigating the surface of a composite consisting of sintered SiC Nanopowder and fibres of pyrolytic carbon are presented and discussed. This research supported by the Welch Foundation under Y-1100.

  2. Photon-induced positron annihilation for standoff bomb detection

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Hashim, S.; Cabello, J.; Wells, K.; Dunn, W. L.

    2010-07-01

    We describe an approach to detect improvised explosive devices (IEDs) by using photon-induced positron annihilation radiation (PIPAR). This system relies on back-scattered ? photons from the target and surrounding objects following exposure to high energy X-rays from a betatron. In this work we simulate the use of Bremsstrahlung source operating at 3.5 MeV, with a scintillation detector, working in PIPAR mode, in order to reduce noise produced by undesired back-scattering from the surrounding objects. In this paper, we describe the basic imaging method and preliminary results on simulating a suitable betatron source. Two types of X-ray filters copper (Cu) and aluminium (Al), have been used in the simulation to observe their differences in the deposited energy spectrum in the iron target. It was found that the use of iron target in conjunction with 2 mm Al filter is capable of detecting annihilation ? photons. An initiated experiment with an interlaced source also shows promise.

  3. Moisture dependence of positron lifetime in Kevlar-49

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Holt, William H.; Mock, Willis, Jr.

    1984-01-01

    Because of filamentary character of Kevlar-49 aramid fibers, there is some concern about the moisture uptake and its effect on plastic composites reinforced with Kevlar-49 fibers. As part of continuing studies of positron lifetime in polymers, we have measured positron lifetime spectra in Kevlar-49 fibers as a function of their moisture content. The long lifetime component intensities are rather low, being only of the order of 2-3 percent. The measured values of long component lifetimes at various moisture levels in the specimens are as follows: 2072 +/- 173 ps (dry); 2013 +/- 193 ps (20.7 percent saturation); 1665 +/- 85 ps (25.7 percent saturation); 1745 +/- 257 ps (32.1 percent saturation); and 1772 +/- 217 ps (100 percent saturation). It is apparent that the long component lifetime at first decreases and then increases as the specimen moisture content increases. These results have been compared with those inferred from Epon-815 and Epon-815/K-49 composite data.

  4. Positron annihilation studies in binary solid solutions and mechanical mixtures of lanthanide dipivaloylmethanate complexes

    NASA Astrophysics Data System (ADS)

    Fulgncio, F.; Oliveira, F. C.; Windmller, D.; Araujo, M. H.; Marques-Netto, A.; Machado, J. C.; Magalhes, W. F.

    2015-11-01

    Measurements using positron annihilation lifetime (PALS) and Doppler broadening annihilation radiation lineshape (DBARLS) spectroscopies were performed in several lanthanide dipivaloylmethanate complexes, Ln(dpm)3 where Ln = Sm3+, Gd3+, Tb3+, Ho3+, Er3+, Yb3+ and dpm = 2,2,6,6-tetramethyl-3,5-pentanedionate, and also on their binary solid solutions and mechanical mixtures, biphasic systems, of the general formula Ln1-xEux(dpm)3. Expressive positronium formation was observed in all Ln(dpm)3 complexes, except in Eu(dpm)3 complex. The results indicate formation of solid solutions in the Sm3+, Gd3+and Tb3+ systems, where total inhibition of positronium formation was observed. A Stern-Volmer type equation, I30/I3 = 1 + kx, was used to fit the data, enabling the calculation of the inhibition constants, k. A mechanical mixture behavior, with linear variation of I3 between the I3 values of the pure complexes, was observed in systems containing Ho3+, Er3+ and Yb3+ complexes, where no effective solid solution formation occurred due to differences between the crystalline structures of these complexes and Eu(dpm)3. No positronium quenching reactions were observed in the solid solutions. DBARLS results confirmed those of PALS, evidencing that the positron annihilation spectroscopies are useful techniques to characterize the formation of solid solutions. PALS measurements at 80 K were performed in the Sm1-xEux(dpm)3 and Gd1-xEux(dpm)3 solid solutions. The results indicate that, despite a contraction in the crystalline structures, the solid solution structure remains intact at low temperatures. The temperature dependence of the inhibition constant do not seem to be understood from the positronium formation spur model and might be related to intra and intermolecular energy and charge transfer processes in the solid solutions, which is currently being studied.

  5. Relative Defect Density Measurements of Laser Shock Peened 316L Stainless Steel Using Positron Annihilation Spectroscopy

    SciTech Connect

    Marcus A. Gagliardi; Bulent H. Sencer; A. W. Hunt; Stuart A. Maloy; George T. Gray III

    2011-12-01

    The surface of an annealed 316L stainless steel coupon was laser shock peened and Vickers hardness measurements were subsequently taken of its surface. This Vickers hardness data was compared with measurements taken using the technique of positron annihilation Doppler broadening spectroscopy. When compared, a correlation was found between the Vickers hardness data measurements and those made using Doppler broadening spectroscopy. Although materials with a high defect density can cause the S-parameter measurements to saturate, variations in the Sparameter measurements suggest that through further research the Doppler broadening technique could be used as a viable alternative to measuring a material's hardness. In turn, this technique, could be useful in industrial settings where surface hardness and surface defects are used to predict lifetime of components.

  6. Positron line radiation from halo WIMP annihilations as a dark matter signature

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1989-01-01

    We suggest a new signature for dark matter annihilation in the halo: high energy positron line radiation. Because the cosmic ray positron spectrum falls rapidly with energy, e+'s from halo WIMP annihilations can be a significant, clean signal for very massive WIMP's (approx. greater than 30 GeV). In the case that the e+e- annihilation channel has an appreciable branch, the e+ signal should be above background in a future detector, such as have been proposed for ASTROMAG, and of potential importance as a dark matter signature. A significant e+e- branching ratio can occur for neutralinos or Dirac neutrinos. High-energy, continuum positron radiation may also be an important signature for massive neutralino annihilations, especially near or above the threshold of the W+W- and ZoZo annihilation channels.

  7. Positron Annihilation 3-D Momentum Spectrometry by Synchronous 2D-ACAR and DBAR

    NASA Astrophysics Data System (ADS)

    Burggraf, Larry W.; Bonavita, Angelo M.; Williams, Christopher S.; Fagan-Kelly, Stefan B.; Jimenez, Stephen M.

    2015-05-01

    A positron annihilation spectroscopy system capable of determining 3D electron-positron (e--e+) momentum densities has been constructed and tested. In this technique two opposed HPGe strip detectors measure angular coincidence of annihilation radiation (ACAR) and Doppler broadening of annihilation radiation (DBAR) in coincidence to produce 3D momentum datasets in which the parallel momentum component obtained from the DBAR measurement can be selected for annihilation events that possess a particular perpendicular momentum component observed in the 2D ACAR spectrum. A true 3D momentum distribution can also be produced. Measurement of 3-D momentum spectra in oxide materials has been demonstrated including O-atom defects in 6H SiC and silver atom substitution in lithium tetraborate crystals. Integration of the 3-D momentum spectrometer with a slow positron beam for future surface resonant annihilation spectrometry measurements will be described. Sponsorship from Air Force Office of Scientific Research

  8. Hydrogen implantation effect in copper alloys selected for ITER investigated by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Slugen, V.; Kuriplach, J.; Ballo, P.; Domonko, P.

    2004-01-01

    Defects in the form of vacancies (loops, voids, etc) created by hydrogen implantation into selected Cu alloys foreseen for the International Thermonuclear Experimental Reactor (ITER) first wall cladding were studied using positron annihilation spectroscopy. The pulsed low-energy positron system, which enables depth profiling of the positron lifetime spectra in the near-surface region (20-460 nm) of hydrogen-implanted copper alloys, was applied, and its results were compared with TRIM calculations and transmission electron microscopy studies. The selected specimens were implanted in the Ion Beam Laboratory of FEI STU Bratislava. The energy of implantation was EH = 2 95 keV for the molecular H_{2}^{+} ion beam. The temperature during this process was lower than 90C. Two implantation doses were chosen for both the alloys: 1.3 1019 ions cm-2 (1.1 C cm-2) and 5 1018 ions cm-2 (0.4 C cm-2). Although the influences of neutrons with energy 14 MeV and protons with energy 95 keV are not the same (differences in energy and existence of proton charge), experimental simulation of radiation damage of ITER construction materials was successfully performed. The results are discussed in terms of microstructural changes of the studied materials upon irradiation. The CuAl25 alloy seems to be more resistant to proton bombardment than CuCrZr.

  9. Positron lifetime measurements in chiral nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Parmar, Devendra S.

    1991-01-01

    Positron lifetimes in the isotropic phases of chiral nematic liquid crystal formulations and their mixtures up to the racemic level were measured. The lifetime spectra for all liquid crystal systems were analyzed into three components. Although the individual spectra in the left- and right-handed components are identical, their racemic mixtures exhibit much larger orthopositronium lifetimes; these larger lifetimes indicate the presence of larger microvoids. This result is consistent with the reportedly higher thermodynamic stability and color play range in the racemic mixtures of chiral nematic liquid crystals.

  10. Neutrino emissivity from electron-positron annihilation in hot matter in a strong magnetic field

    SciTech Connect

    Amsterdamski, P.; Haensel, P. )

    1990-10-15

    The neutrino emissivity due to electron-positron annihilation in a strong magnetic field is computed. A strong magnetic field can significantly increase the neutrino emissivity at {ital T}{similar to}10{sup 9} K.

  11. Investigation and calculation of positron lifetimes of monovacancies in crystals

    NASA Astrophysics Data System (ADS)

    Huang, Shijuan; Liu, Jiandang; Ye, Bangjiao

    2016-01-01

    The first-principles calculations of positron lifetimes of mono-vacancies in crystals were investigated. We use the two-component density functional theory to respectively compute positron lifetimes of neutral charge state of VAl defect in aluminium, VSi defect in silicon, VC, VSi and VC+CSi defects in 3C silicon carbide, VGa and VAs defects in gallium arsenide, taking into account atomic relaxation due to vacancy and electronic structural relaxation due to the presence of the positron. Three different calculation schemes are used. We find that the electron density inside the vacancy more or less increases due to the presence of the positron if the ionic positions are kept fixed, and the positron becomes more localized after the electronic structural relaxation for the case of VAl defect in aluminium and VSi defect in 3C silicon carbide, but it is opposite for the case of VGa defect in gallium arsenide and VC defect in 3C silicon carbide. The results with no consideration of the relaxation are even much closer to the experimental ones, therefore the atomic relaxation due to the position play an important role in calculating the positron lifetime of mono-vacancies in crystals.

  12. Low energy positron flux generator for lifetime studies in thin films

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; St. Clair, Terry L.; Eftekhari, Abe

    1991-01-01

    A slow positron flux generator for positron annihilation spectroscopic measurements in thin polymer films is described. The advantages of this generator include operability at room temperature and atmospheric pressure without special test film preparaton requirements.

  13. Microstructural Characterization of Polymers by Positron Lifetime Spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1996-01-01

    Positrons provide a versatile probe for monitoring microstructural features of molecular solids. In this paper, we report on positron lifetime measurements in two different types of polymers. The first group comprises polyacrylates processed on earth and in space. The second group includes fully-compatible and totally-incompatible Semi-Interpenetrating polymer networks of thermosetting and thermoplastic polyimides. On the basis of lifetime measurements, it is concluded that free volumes are a direct reflection of physical/electromagnetic properties of the host polymers.

  14. Annihilation of relativistic positrons in single crystal with production of one photon

    NASA Astrophysics Data System (ADS)

    Kalashnikov, N. P.; Mazur, E. A.; Olczak, A. S.

    2015-07-01

    The energy and momentum conservation laws prohibit positron-electron single-photon annihilation in vacuum. It is shown that the situation is different in a single crystal with one of the leptons (e.g. positron) moving in the channeling (or in the quasi-channeling) mode. The transverse motion of an oriented or channeled particle may sharply increase the probability of the single-photon annihilation process.

  15. Study of local structure in hyper-eutectic Zr-Cu-Al bulk glassy alloys by positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Ishiyama, T.; Ishii, K.; Yokoyama, Y.; Konno, T. J.; Iwase, A.; Hori, F.

    2016-01-01

    The Zr-Cu-Al bulk glassy (BG) alloy, which has amorphous structure, possesses various properties such as high strength and toughness with compositional dependence. In the present study, density, positron annihilation lifetime and coincidence Doppler Broadening measurement have been performed for various compositional hyper-eutectic Zr-Cu-Al BG alloys. The density of hyper-eutectic Zr-Cu-Al BG alloys increases with decreasing of Zr fraction. In contrast, positron lifetime for all compositional alloys is almost constant about 165 psec. In addition, the CDB ratio profile is almost the same for hyper-eutectic alloys. This unchanging trend of CDB ratio profile is quite different from that of hypo-eutectic BG alloys. These results reveal that different internal structure exists in hyper and hypo-eutectic BG alloys.

  16. Low-temperature positron annihilation study of B+-ion implanted PMMA

    NASA Astrophysics Data System (ADS)

    Kavetskyy, T. S.; Tsmots, V. M.; Voloshanska, S. Ya.; aua, O.; Nuzhdin, V. I.; Valeev, V. F.; Osin, Y. N.; Stepanov, A. L.

    2014-08-01

    Temperature dependent positron annihilation lifetime spectroscopy (PALS) measurements in the range of 50-300 K are carried out to study positronium formation in 40 KeV B+-ion implanted polymethylmethacrylate (B:PMMA) with two ion doses of 3.13 1015 and 3.75 1016 ions/cm2. The investigated samples show the various temperature trends of ortho-positronium (o-Ps) lifetime ?3 and intensity I3 in PMMA before and after ion implantation. Two transitions in the vicinity of 150 and 250 K, ascribed to ? and ? transitions, respectively, are observed in the PMMA and B:PMMA samples in consistent with reference data for pristine sample. The obtained results are compared with room temperature PALS study of PMMA with different molecular weight (Mw) which known from literature. It is found that B+-ion implantation leads to decreasing Mw in PMMA at lower ion dose. At higher ion dose the local destruction of polymeric structure follows to broadening of lifetime distribution (hole size distribution).

  17. Timelike Virtual Compton Scattering from Electron-Positron Radiative Annihilation

    SciTech Connect

    Afanasev, Andrei; Brodsky, Stanley J.; Carlson, Carl E.; Mukherjee, Asmita; /Indian Inst. Tech., Mumbai

    2009-03-31

    We propose measurements of the deeply virtual Compton amplitude (DVCS) {gamma}* {yields} H{bar H}{gamma} in the timelike t = (p{sub H} + p{sub {bar H}}){sup 2} > 0 kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process e{sup +}e{sup -} {yields} H{bar H}{gamma}. These processes allow the measurement of timelike deeply virtual Compton scattering for a variety of H{bar H} hadron pairs such as {pi}{sup +}{pi}{sup -}, K{sup +}K{sup -}, and D{bar D} as well as p{bar p}. As in the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike processes involving C = - form factors. The interference between the amplitudes measures the phase of the C = + timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated by considering the forward-backward e{sup +} {leftrightarrow} e{sup -} asymmetry. The J = 0 fixed pole contribution which arises from the local coupling of the two photons to the quark current plays a special role. As an example we present a simple model.

  18. Timelike virtual compton scattering from electron-positron radiative annihilation

    SciTech Connect

    Afanasev, Andrei; Brodsky, Stanley J.; Carlson, Carl E.; Mukherjee, Asmita

    2010-02-01

    We propose measurements of the deeply virtual Compton amplitude (DVCS) {gamma}*{yields}hh{gamma} in the timelike t=(p{sub h}+p{sub h}){sup 2}>0 kinematic domain which is accessible at electron-positron colliders via the radiative annihilation process e{sup +}e{sup -{yields}}hh{gamma}. These processes allow the measurement of timelike deeply virtual Compton scattering for a variety of hh hadron pairs such as {pi}{sup +{pi}-}, K{sup +}K{sup -}, and DD as well as pp. As in the conventional spacelike DVCS, there are interfering coherent amplitudes contributing to the timelike processes involving C=- form factors. The interference between the amplitudes measures the phase of the C=+ timelike DVCS amplitude relative to the phase of the timelike form factors and can be isolated by considering the forward-backward e{sup +{r_reversible}}e{sup -} asymmetry. The J=0 fixed pole contribution which arises from the local coupling of the two photons to the quark current plays a special role. As an example we present a simple model.

  19. Investigations of Positron Annihilation with Atoms and Molecules using PsARS

    NASA Astrophysics Data System (ADS)

    Kauppila, W. E.; Edwards, J. J.; Miller, E. G.; Stein, T. S.; Surdutovich, E.

    2006-03-01

    Positrons, being the antiparticles of electrons, ultimately annihilate either directly with electrons (that are free or attached to atoms or molecules), or via the formation of positronium (Ps, a short-lived atom composed of a positron and an electron) with subsequent annihilation. In this work we have developed positronium annihilation ratio spectroscopy (PsARS), and are using PsARS to investigate the formation and destruction of Ps [1], as well as positron attachment to molecules. For this experiment a 3 to 100 eV positron beam obtained from a sodium-22 radioactive source is passed through a gas scattering cell and resulting annihilation gamma rays of different energies are detected in coincidence. Annihilation measurements, such as these, have astrophysical relevance since characteristic positron annihilation gamma rays have been observed from various extraterrestrial sources (e.g., solar flares and the direction towards the center of our galaxy). [1] W.E. Kauppila, E.G. Miller, H.F.M. Mohamed, K. Pipinos, T.S. Stein and E. Surdutovich, Phys. Rev. Lett. 93, 113401 (2004).

  20. Free volumes evolution during desorption of n-heptane from silica with regular pore geometry. Positron annihilation study

    NASA Astrophysics Data System (ADS)

    Goworek, J.; Zaleski, R.; Buda, W.; Kierys, A.

    2010-06-01

    The mechanism of n-heptane evaporation from mesoporous MCM-41 silica was investigated by positron annihilation lifetime spectroscopy (PALS). Experiments were performed in situ during desorption of hydrocarbon under stepwise lowered pressure. Desorption is a quasicontinuous process that corresponds to emptying various types of free volumes in the silica/ n-heptane system, including mesopores. Insight into the kinetics of desorption was derived from the changes of PALS spectra associated with succeeding stages of pore emptying. For the investigated system emptying of pores and formation of bubbles in the n-heptane condensate present in regular pores were found to take place at various bulk saturating vapour pressure of the fluid.

  1. Monte Carlo modelling of the propagation and annihilation of nucleosynthesis positrons in the Galaxy

    NASA Astrophysics Data System (ADS)

    Alexis, A.; Jean, P.; Martin, P.; Ferrière, K.

    2014-04-01

    Aims: We want to estimate whether the positrons produced by the β+-decay of 26Al, 44Ti, and 56Ni synthesised in massive stars and supernovae are sufficient to explain the 511 keV annihilation emission observed in our Galaxy. Such a possibility has often been put forward in the past. In a previous study, we showed that nucleosynthesis positrons cannot explain the full annihilation emission. Here, we extend this work using an improved propagation model. Methods: We developed a Monte Carlo Galactic propagation code for ~MeV positrons in which the Galactic interstellar medium, the Galactic magnetic field, and the propagation are finely described. This code allows us to simulate the spatial distribution of the 511 keV annihilation emission. We tested several Galactic magnetic fields models and several positron escape fractions from type-Ia supernova for 56Ni positrons to account for the large uncertainties in these two parameters. We considered the collisional/ballistic transport mode and then compared the simulated 511 keV intensity spatial distributions to the INTEGRAL/SPI data. Results: Regardless of the Galactic magnetic field configuration and the escape fraction chosen for 56Ni positrons, the 511 keV intensity distributions are very similar. The main reason is that ~MeV positrons do not propagate very far away from their birth sites in our model. The direct comparison to the data does not allow us to constrain the Galactic magnetic field configuration and the escape fraction for 56Ni positrons. In any case, nucleosynthesis positrons produced in steady state cannot explain the full annihilation emission. The comparison to the data shows that (a) the annihilation emission from the Galactic disk can be accounted for; (b) the strongly peaked annihilation emission from the inner Galactic bulge can be explained by positrons annihilating in the central molecular zone, but this seems to require more positron sources than the population of massive stars and type Ia supernovae usually assumed for this region; (c) the more extended emission from the Galactic bulge cannot be explained. We show that a delayed 511 keV emission from a transient source, such as a starburst episode or a recent activity of Sgr A*, occurring between 0.3 and 10 Myr ago and producing between 1057 and 1060 sub-MeV positrons could explain this extended component, and potentially contribute to the inner bulge signal.

  2. Solid Eu(III) complexes studied by positron annihilation, optical and Mssbauer spectroscopies: insights on the positronium formation mechanism.

    PubMed

    Fulgncio, F; de Oliveira, F C; Ivashita, F F; Paesano, A; Windmller, D; Marques-Netto, A; Magalhes, W F; Machado, J C

    2012-06-15

    In this work, positron annihilation lifetime (PALS), Doppler broadening annihilation radiation lineshape (DBARL), Mssbauer and optical spectroscopies measurements were performed in Eu(III) dipivaloylmetanate complex, Eu(dpm)(3), at 295 and 80 K. The Eu(dpm)(3) complex is not luminescent at 298 K and does not form positronium. On the other hand, it is highly luminescent at 80K, but still does not form positronium. The absence of positronium formation at 80K cannot be explained by a ligand/metal charge transfer process. We found strong evidences that the electronic delocalization does not occur at both temperatures. Despite the Mssbauer results being inconclusive regarding the Eu(III)/Eu(II) reduction hypothesis, previous results showing positronium formation in other Eu(III) complexes suggest that this process is not occurring. Thus, more studies are needed to explain the absence of positronium in Eu(III) complexes. PMID:22466013

  3. Positron Annihilation Spectroscopy of Common Mineral Constituents of Shale

    NASA Astrophysics Data System (ADS)

    Chun, Joah; Bufkin*, James; Alsleben, Helge; Ameena, Fnu; Quarles, C. A.

    2015-03-01

    Recent investigation of positron lifetime and Doppler broadening in Barnett Shale samples have shown a small intensity of positronium (Ps) formation. The samples studied have XRF information on 35 elements, XRD information on mineral constituents, and chemical information on total organic carbon (TOC). It is not known where Ps is formed in the shale. Previous research has shown that Ps is not formed in quartz-rich sandstone, calcite-rich limestone or dolomite-rich rocks, which contain minerals that also constitute a significant part of most shale samples. No information about Ps formation in clay minerals, which are often dominant in shale, has been available. The purpose of the present study is to determine which clay minerals form Ps. Twenty-five different common rock-forming minerals have been studied. Hydration of some of the minerals has also been varied. As a result of this work, a better idea of where Ps is formed in the shale samples has been obtained, but there still remains some uncertainty regarding the hydration in the shale and the possibility of direct Ps formation in the organic carbon itself.. Participant in the summer 2014 TCU REU program in Physics and Astronomy funded by the National Science Foundation under Grant PHY-1358770.

  4. The annihilation of positrons in the cold phase of the interstellar medium revisited

    NASA Technical Reports Server (NTRS)

    Wallyn, P.; Durouchoux, PH.; Chapuis, C.; Leventhal, M.

    1994-01-01

    The positron cross sections in H and H2 media are reevaluated, taking into account new experimental results. Using a Monte Carlo simulation, we find a positronium fraction before thermalization of 0.90 for H2, in good agreement with the previous experimental result given by Brown et al. (1986). For H we obtain an upper limit of 0.98. We study the behavior of the charge exchange annihilation in a cold phase (molecular cloud). We calculate a formula for the slowing-down time t, before annihilation lasting Delta t, via charge exchange, of a positron beam with a given energy for different medium densities and initial energies. An upper limit of 0.7 MeV for the initial energy of the positrons, annihilating in the molecular cloud G0.86 - 0.08 near the gamma ray source positronium and gives new time constraints on their possible observation.

  5. Is There a Dark Matter Signal in the Galactic Positron Annihilation Radiation?

    SciTech Connect

    Lingenfelter, R. E.; Rothschild, R. E.; Higdon, J. C.

    2009-07-17

    Assuming Galactic positrons do not go far before annihilating, a difference between the observed 511 keV annihilation flux distribution and that of positron production, expected from beta{sup +} decay in Galactic iron nucleosynthesis, was evoked as evidence of a new source and signal of dark matter. We show, however, that the dark matter sources cannot account for the observed positronium fraction without extensive propagation. Yet with such propagation, standard nucleosynthetic sources can fully account for the spatial differences and positronium fraction, leaving no new signal for dark matter to explain.

  6. Asymmetric 511 keV Positron Annihilation Line Emission from the Inner Galactic Disk

    NASA Technical Reports Server (NTRS)

    Skinner, Gerry; Weidenspointner, Georg; Jean, Pierre; Knodlseder, Jurgen; Ballmoos, Perer von; Bignami, Giovanni; Diehl, Roland; Strong, Andrew; Cordier, Bertrand; Schanne, Stephane; Winkler, Christoph

    2008-01-01

    A recently reported asymmetry in the 511 keV gamma-ray line emission from the inner galactic disk is unexpected and mimics an equally unexpected one in the distribution of LMXBs seen at hard X-ray energies. A possible conclusion is that LMXBs are an important source of the positrons whose annihilation gives rise to the line. We will discuss these results, their statistical significance and that of any link between the two. The implication of any association between LMXBs and positrons for the strong annihilation radiation from the galactic bulge will be reviewed.

  7. ?-Ray spectra and enhancement factors for positron annihilation with core electrons.

    PubMed

    Green, D G; Gribakin, G F

    2015-03-01

    Many-body theory is developed to calculate the ? spectra for positron annihilation in noble-gas atoms. Inclusion of electron-positron correlation effects and core annihilation gives spectra in excellent agreement with experiment [K. Iwata etal., Phys. Rev. Lett. 79, 39 (1997)]. The calculated correlation enhancement factors ?_{nl} for individual electron orbitals nl are found to scale with the ionization energy I_{nl} (in eV), as ?_{nl}=1+sqrt[A/I_{nl}]+(B/I_{nl})^{?}, where A?40??eV, B?24??eV, and ??2.3. PMID:25793811

  8. Is there a dark matter signal in the galactic positron annihilation radiation?

    PubMed

    Lingenfelter, R E; Higdon, J C; Rothschild, R E

    2009-07-17

    Assuming Galactic positrons do not go far before annihilating, a difference between the observed 511 keV annihilation flux distribution and that of positron production, expected from beta+ decay in Galactic iron nucleosynthesis, was evoked as evidence of a new source and signal of dark matter. We show, however, that the dark matter sources cannot account for the observed positronium fraction without extensive propagation. Yet with such propagation, standard nucleosynthetic sources can fully account for the spatial differences and positronium fraction, leaving no new signal for dark matter to explain. PMID:19659265

  9. Study of bicontinuous phase in (TTAB+pentanol)/water/n-octane reverse micellar system using positron lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandramani Singh, K.; Yadav, R.; Khani, P. H.

    2013-06-01

    A phase diagram of (TTAB+pentanol)/water/n-octane has been mapped by using optical method. It exhibits a reverse micellar (L2) phase extending over a wide range of concentrations of the constituents. To investigate the fine structure of the L2 phase, a series of (TTAB+pentanol)/n-octane ternary mixtures having initial concentrations of (TTAB+pentanol) (1:1) in n-octane as 35%, 50% and 65% by weight were prepared. In each of these mixtures, positron lifetime measurements were performed as a function of the concentration of water, using a standard lifetime spectrometer. At water concentrations of 11.8%, 8.5% and 8.4% by weight respectively for the above systems, the o-Ps pick-off lifetime ?3 shows an oscillatory behaviour while I3 representing the Ps formation exhibits an abrupt change. These changes in the positron annihilation parameters have been explained on the basis of onset of bicontinuity in the microemulsion phase. The positron annihilation technique thus suggests the existence of droplet-like and bicontinuous structures in the L2 phase which is otherwise considered optically to be a single phase as the system remains clear and isotropic throughout this phase. Supporting evidence has been provided by the electrical conductivity measurements performed in these systems. These results are presented in this paper.

  10. Energy-resolved positron-molecule annihilation: Vibrational Feshbach resonances and bound states

    NASA Astrophysics Data System (ADS)

    Barnes, Levi Daniel

    2005-07-01

    This thesis describes a new technique for the measurement of positron annihilation rates for positrons incident on atoms and molecules. Positrons from a radioactive source are collected and cooled in a Penning-Malmberg trap and formed into a magnetically guided beam. The beam is then guided through a cell filled with the molecule to be studied while the gamma ray signal from annihilation events is recorded. As distinguished from previous work, these experiments allow tuning of the positron energy over the range between 50 meV and the threshold for positronium formation. The energy resolution of the beam is 25 meV. A key result in these measurements is the discovery of resonances in the annihilation rates for selected molecules, associated with the vibrations of the target. We attribute these resonances (in accordance with a model proposed by Gribakin [28]) to the presence of a Feshbach resonant state consisting of a positron bound to a vibrationally excited target molecule. The annihilation spectra for a number of molecules are presented including alkane molecules, fluoroalkanes, deuterated alkanes, ring hydrocarbons, noble gases, alkenes and alkynes. The goals of these measurements are to investigate the dependence of these resonant processes on the size, composition and shape of the target molecules, and to provide benchmarks for theoretical descriptions of this process.

  11. Design and building of new spin polarized Positron Annihilation Induced Auger Electron Spectrometer

    NASA Astrophysics Data System (ADS)

    Lim, Zheng Hui; Mishler, Michael; Joglekar, Prasad; Shastry, Karthik; Koymen, Ali; Sharma, Suresh; Weiss, Alexander

    2014-03-01

    We propose to develop a next generation high flux variable energy spin-polarized position beam facility for materials studies. This new system will have a higher efficiency than our current system, and it will also be the first in the world to combine spin polarization with a time of flight Positron Annihilation induced Auger Electron Spectroscopy (PAES). The spin polarized positrons are electromagnetically guided towards the sample with an axial magnetic field and perpendicular electric fields. These incident positrons get annihilated at the surface of the sample creating two gamma rays and auger electrons via Auger transitions. These signals are useful in characterizing material surface, surface magnetization, and energy sharing in valence band. This new spectrometer, which is currently under construction, will be a next generation positron system. NSF.

  12. Miscibility and crystallization behavior of poly (3-hydroxybutyrate) and poly (ethylene glycol) blends studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Abdel-Hady, E. E.; Abdel-Hamed, M. O.; Hammam, A. M.

    2011-01-01

    Positron annihilation Lifetime (PAL) spectroscopy has been used to study the effect of PEG concentrations on the free volume properties of PHB. The data revealed that the ortho-positronium (o-Ps) lifetime ?Ps increases with 20% increase in concentration, decrease as the concentration increases to 40%, then rapid increase at 50% concentration of PEG. The o-Ps intensity, I3, shows a linear dependence as the concentration increases with a discontinuity at 20% concentration of PEG. Furthermore, the results presented and discussed in this work show that the PHB and PEG are miscible up to 40% of PEG but greater than 40%, the blend is immiscible. In addition, the mechanical properties of PHB are well improved by the addition of PEG with a low concentration up to 20%, while at higher concentration the blend becomes waxy.

  13. Advanced fitting algorithms for analysing positron annihilation lifetime spectra

    NASA Astrophysics Data System (ADS)

    Pascual-Izarra, Carlos; Dong, Aurelia W.; Pas, Steven J.; Hill, Anita J.; Boyd, Ben J.; Drummond, Calum J.

    2009-05-01

    The most common way to analyse PALS spectra involves fitting a parameter-dependent model to the experimental data. Traditionally, this fit involves local non-linear optimisation routines that depend on a reasonable initial guess for the searched parameters. This, together with the fact that very different sets of parameters may yield indistinguishably good fits for a given experimental spectrum, gives rise to ambiguities in the data analysis in most but the simplest cases. In order to alleviate these difficulties, a computer program named PAScual was developed that incorporates 2 advanced algorithms to provide a robust fitting tool: on the one hand, it incorporates a global non-linear optimisation routine based on the Simulated Annealing algorithm and, on the other hand, it yields information on the reliability of the results by means of a Markov Chain Monte-Carlo Bayesian Inference method. In this work the methods used in PAScual are described and tested against both simulated and experimental spectra, comparing the results with those from the well-established program LTv9. The examples focus on the type of complex data that results from the study of self-assembled amphiphile materials containing co-existing aqueous and hydrocarbon regions.

  14. Whole-Pattern Fitting and Positron Annihilation Studies of Magnetic PVA/α-Fe2O3 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Prashanth, K. S.; Mahesh, S. S.; Prakash, M. B. Nanda; Ningaraju, S.; Ravikumar, H. B.; Somashekar, R.; Nagabhushana, B. M.

    2016-03-01

    A low-temperature solution combustion method was used to synthesize α-Fe2O3 nanoparticles. Magnetic polyvinyl alcohol (PVA)/α-Fe2O3/NaCl nanocomposites were prepared by solvent cast method. The Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) results are in confirmation with X-ray diffraction (XRD) results indicating the formation of nanocomposites. The microcrystalline parameters, crystallite size (), lattice strain (g in %), stacking faults (α d ), and twin faults (β) of prepared polymer nanocomposites were evaluated by whole-pattern fitting technique. The refinement was carried out using the computed microstructural parameters in which the twin faults and stacking faults did not vary much and statistical deviation was less than 5 %. Positron annihilation lifetime spectroscopy (PALS) was used for microstructural characterization. PALS results show that the ortho-positronium (o-Ps) lifetime (τ3) increases gradually as a function of nanoparticle concentration and about 219 ps increase observed from1.50 to1.71 ns at 3 wt%. This indicates the increase of free volume hole size (V f ) from 54.47 to 72.18 Å3. The o-Ps intensities (I 3) decrease indicating the inhibition of o-Ps formation upon incorporation of nanoparticles into PVA. The increase in I 2 values suggests the increased annihilation at the interface region. Positron lifetime parameters, viz., o-Ps lifetime, and its intensities indicate the effect of quenching and inhibition upon incorporation of metal oxide nanoparticles and inorganic salt into PVA.

  15. A study of defects in electron- and ion-irradiated ZrCuAl bulk glassy alloy using positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Hori, F.; Onodera, N.; Fukumoto, Y.; Ishii, A.; Iwase, A.; Kawasuso, A.; Yabuuchi, A.; Maekawa, M.; Yokoyama, Y.

    2011-01-01

    Free volume changes in Zr50Cu40Al10 bulk glassy alloys irradiated by 200 and 2.5 MeV Xe ions, 180 keV He ions, and 2 MeV electrons were investigated at room temperature using positron annihilation lifetime and Doppler broadening techniques. In addition, a slow positron beam was used to probe the change in free volume in the 180 keV He ion-irradiated sample. X-ray diffraction revealed that no crystallization took place in any of the irradiated samples. The Doppler broadening spectra from the annihilated gamma rays remained essentially constant in all ion-irradiation cases; however, an extremely minor change of positron mean lifetime was detected in each case. For electron- and He ion-irradiated samples the positron lifetime increased, and the opposite was seen in heavy-ion irradiated samples. The Doppler broadening S parameter increased with He-ion radiation dose, and the depth profile correlated well to the damage profile.

  16. Radiation defects induced by helium implantation in gold-based alloys investigated by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Thome, T.; Grynszpan, R. I.

    2006-06-01

    The formation of gas bubbles in metallic materials may result in drastic degradation of in-service properties. In order to investigate this effect in high density and medium-low melting temperature ( T-M ) alloys, positron annihilation spectroscopy measurements were performed on helium-implanted gold-silver solid solutions after isochronal annealing treatments. Three recovery stages are observed, attributed to the migration and elimination of defects not stabilized by helium atoms, helium bubble nucleation and bubble growth. Similarities with other metals are found for the recovery stages involving bubble nucleation and growth processes. Lifetime measurements indicate that He implantation leads to the formation of small and over-pressurized bubbles that generate internal stresses in the material. A comprehensive picture is drawn for possible mechanisms of helium bubble evolution. Two values of activation energy (0.26 and 0.53 eV) are determined below and above 0.7 T-M , respectively, from the variation of the helium bubble radius during the bubble growth stage. The migration and coalescence mechanism, which accounts for these very low activation energies, controls the helium bubble growth.

  17. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    SciTech Connect

    Fazleev, N. G.; Weiss, A. H.

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  18. A positron annihilation spectroscopic investigation of europium-doped cerium oxide nanoparticles.

    PubMed

    Thorat, Atul V; Ghoshal, Tandra; Holmes, Justin D; Nambissan, P M G; Morris, Michael A

    2014-01-01

    Doping in ceria (CeO2) nanoparticles with europium (Eu) of varying concentrations (0, 0.1, 0.5, , 50 atom%) is studied using complementary experimental techniques and novel observations were made during the investigation. The immediate observable effect was a distinct reduction in particle sizes with increasing Eu concentration attributed to the relaxation of strain introduced due to the replacement of Ce(4+) ions by Eu(3+) ions of larger radius. However, this general trend was reversed in the doping concentration range of 0.1-1 atom% due to the reduction of Ce(4+) to Ce(3+) and the formation of anion vacancies. Quantum confinement effects became evident with the increase of band gap energy when the particle sizes reduced below 7-8 nm. Positron annihilation studies indicated the presence of vacancy type defects in the form of vacancy clusters within the nanoparticles. Some positron annihilation was also seen on the surface of crystallites as a result of diffusion of thermalized positrons before annihilation. Coincidence Doppler broadening measurements indicated the annihilation of positrons with electrons of different species of atoms and the characteristic S-W plot showed a kink-like feature at the particle sizes where quantum confinement effects began. PMID:24247546

  19. Positron annihilation process in Ni/sub c/Cu/sub 1-c/ alloys

    SciTech Connect

    Szotek, Z.; Gyorffy, B.L.; Stocks, G.M.; Temmerman, W.M.

    1982-01-01

    New, accurate, calculations of the electron momentum distribution function for the Cu/sub 60/Ni/sub 40/ random solid solution are presented and the role played by the positron wavefunction in determining the Angular Correlation of the Annihilation Radiation (ACAR) is discussed in quantitative terms.

  20. Positron annihilation spectroscopy of vacancy-type defects hierarchy in submicrocrystalline nickel during annealing

    SciTech Connect

    Kuznetsov, Pavel V.; Mironov, Yuri P. E-mail: tolmach@ispms.tsc.ru Tolmachev, Aleksey I. E-mail: tolmach@ispms.tsc.ru Rakhmatulina, Tanzilya V. E-mail: tolmach@ispms.tsc.ru; Bordulev, Yuri S. E-mail: laptev.roman@gmail.com Laptev, Roman S. E-mail: laptev.roman@gmail.com Lider, Andrey M. E-mail: laptev.roman@gmail.com Mikhailov, Andrey A. E-mail: laptev.roman@gmail.com; Korznikov, Alexander V.

    2014-11-14

    Positron annihilation and X-ray diffraction analysis have been used to study submicrocrystalline nickel samples prepared by equal channel angular pressing. In the as-prepared samples the positrons are trapped at dislocation-type defects and in vacancy clusters that can include up to 5 vacancies. The study has revealed that the main positron trap centers at the annealing temperature of ΔT= 20°C-180°C are low-angle boundaries enriched by impurities. At ΔT = 180°C-360°C, the trap centers are low-angle boundaries providing the grain growth due to recrystallization in-situ.

  1. Measuring electron-positron annihilation radiation from laser plasma interactions

    SciTech Connect

    Chen, Hui; Tommasini, R.; Seely, J.; Szabo, C. I.; Feldman, U.; Pereira, N.; Gregori, G.; Falk, K.; Mithen, J.; Murphy, C. D.

    2012-10-15

    We investigated various diagnostic techniques to measure the 511 keV annihilation radiations. These include step-wedge filters, transmission crystal spectroscopy, single-hit CCD detectors, and streaked scintillating detection. While none of the diagnostics recorded conclusive results, the step-wedge filter that is sensitive to the energy range between 100 keV and 700 keV shows a signal around 500 keV that is clearly departing from a pure Bremsstrahlung spectrum and that we ascribe to annihilation radiation.

  2. Positron beam lifetime spectroscopy of atomic scale defect distributions in bulk and microscopic volumes

    SciTech Connect

    Howell, R.H.; Cowan, T.E.; Hartley, J.; Sterne, P.; Brown, B.

    1996-05-01

    We are developing a defect analysis capability based on two positron beam lifetime spectrometers: the first is based on a 3 MeV electrostatic accelerator and the second on our high current linac beam. The high energy beam lifetime spectrometer is operational and positron lifetime analysis is performed with a 3 MeV positron beam on thick samples. It is being used for bulk sample analysis and analysis of samples encapsulated in controlled environments for {ital in}{ital situ} measurements. A second, low energy, microscopically focused, pulsed positron beam for defect analysis by positron lifetime spectroscopies is under development at the LLNL high current positron source. This beam will enable defect specific, 3-D maps of defect concentration with sub-micron location resolution and when coupled with first principles calculations of defect specific positron lifetimes it will enable new levels of defect concentration mapping and defect identification.

  3. Investigation of nanoscopic free volume and interfacial interaction in an epoxy resin/modified clay nanocomposite using positron annihilation spectroscopy.

    PubMed

    Patil, Pushkar N; Sudarshan, Kathi; Sharma, Sandeep K; Maheshwari, Priya; Rath, Sangram K; Patri, Manoranjan; Pujari, Pradeep K

    2012-12-01

    Epoxy/clay nanocomposites are synthesized using clay modified with the organic modifier N,N-dimethyl benzyl hydrogenated tallow quaternary ammonium salt (Cloisite 10A). The purpose is to investigate the influence of the clay concentration on the nanostructure, mainly on the free-volume properties and the interfacial interactions, of the epoxy/clay nanocomposite. Nanocomposites having 1, 3, 5 and 7.5 wt. % clay concentrations are prepared using the solvent-casting method. The dispersion of clay silicate layers and the morphologies of the fractured surfaces in the nanocomposites are studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The observed XRD patterns reveal an exfoliated clay structure in the nanocomposite with the lowest clay concentration (?1 wt. %). The ortho-positronium lifetime (?(3)), a measure of the free-volume size, as well as the fractional free volume (f(v)) are seen to decrease in the nanocomposites as compared to pristine epoxy. The intensity of free positron annihilation (I(2)), an index of the epoxy-clay interaction, decreases with the addition of clay (1 wt. %) but increases linearly at higher clay concentrations. Positron age-momentum correlation measurements are also carried out to elucidate the positron/positronium states in pristine epoxy and in the nanocomposites. The results suggest that in the case of the nanocomposite with the studied lowest clay concentration (1 wt. %), free positrons are primarily localized in the epoxy-clay interfaces, whereas at higher clay concentrations, annihilation takes place from the intercalated clay layers. PMID:23129045

  4. Positron lifetime spectroscopy for investigation of thin polymer coatings

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Sprinkle, Danny R.; Eftekhari, Abe

    1993-01-01

    In the aerospace industry, applications for polymer coatings are increasing. They are now used for thermal control on aerospace structures and for protective insulating layers on optical and microelectronic components. However, the effectiveness of polymer coatings depends strongly on their microstructure and adhesion to the substrates. Currently, no technique exists to adequately monitor the quality of these coatings. We have adapted positron lifetime spectroscopy to investigate the quality of thin coatings. Results of measurements on thin (25-micron) polyurethane coatings on aluminum and steel substrates have been compared with measurements on thicker (0.2-cm) self-standing polyurethane discs. In all cases, we find positron lifetime groups centered around 560 psec, which corresponds to the presence of 0.9-A(exp 3) free-volume cells. However, the number of these free-volume cells in thin coatings is larger than in thick discs. This suggests that some of these cells may be located in the interfacial regions between the coatings and the substrates. These results and their structural implications are discussed in this report.

  5. Characterization of interfaces in Binary and Ternary Polymer Blends by Positron Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ranganathaiah, C.

    2015-06-01

    A miscible blend is a single-phase system with compact packing of the polymeric chains/segments due configuration/conformational changes upon blending. Differential Scanning Calorimetry (DSC) is the most employed method to ascertain whether the blend is miscible or immiscible. Positron Lifetime Spectroscopy (PLS) has been employed in recent times to study miscibility properties of polymer blends by monitoring the ortho-Positronium annihilation lifetimes as function of composition. However, just free volume monitoring and the DSC methods fail to provide the composition dependent miscibility of blends. To overcome this limitation, an alternative approach based on hydrodynamic interactions has been developed to derive this information using the same o-Ps lifetime measurements. This has led to the development of a new method of measuring composition dependent miscibility level in binary and ternary polymer blends. Further, the new method also provides interface characteristics for immiscible blends. The interactions between the blend components has a direct bearing on the strength of adhesion at the interface and hence the hydrodynamic interaction. Understanding the characteristic of interfaces which decides the miscibility level of the blend and their end applications is made easy by the present method. The efficacy of the present method is demonstrated for few binary and ternary blends.

  6. Electron momentum distribution and singlet-singlet annihilation in the organic anthracene molecular crystals using positron 2D-ACAR and fluorescence spectroscopy.

    PubMed

    Selvakumar, Sellaiyan; Sivaji, Krishnan; Arulchakkaravarthi, Arjunan; Sankar, Sambasivam

    2014-08-14

    We present the mapping of electron momentum distribution (EMD) in a single crystal of anthracene by two-dimensional angular correlation of positron annihilation radiation (2D-ACAR). The projected EMD is explained on the basis of the crystallographic features of the material. The EMD spectra provide information about the positron states and their behavior and also about the hindrance of the positronium (Ps) formation in this material. The EMD has exhibited evidence for the absence of free volume defects. The characteristic EMD features regarding the delocalized electronic states are explained. Further, scintillation characteristics such as fluorescence and time-correlated single photon counting have also been studied. The emission peaks are attributed to vibrational bands of fluorescence emission from the singlet excitons and lifetime components are observed to be due to singlet fission and the singlet-singlet excitons annihilation. PMID:24963608

  7. Annihilation gamma ray background characterization and rejection for a positron camera

    SciTech Connect

    Levin, C.S.; Tornai, M.P.; MacDonald, L.R.

    1996-12-31

    We have developed a miniature (1.2 cm{sup 2}) beta-ray camera prototype to assist a surgeon in locating and removing the margins of a resected tumor. When imaging positron emitting radiopharmaceuticals, annihilation gamma ray interactions in the detector can mimic those of the betas. The extent of the background contamination depends on the detector, geometry and tumor specificity of the radiopharmaceutical. We have characterized the effects that annihilation gamma rays have on positron imaging with the camera. We studied beta and gamma ray detection rates and imaging using small positron or electron sources directly exposed to the detector to simulate hot tumor remnants and a cylinder filled with {sup 18}F to simulate annihilation background from the brain. For various ratios of phantom brain/tumor activity, a annihilation gamma rate of 1.8 cts/sec/gCi was measured in the CaF{sub 2}(Eu) detector. We present two gamma-ray background rejection schemes that use a {beta}-{gamma} coincidence. Results show that the coincidence methods works with {approximately}99% gamma ray rejection efficiency.

  8. Development and Testing of the Positron Identification by Coincident Annihilation Photons (PICAP) System

    NASA Astrophysics Data System (ADS)

    Lopate, C.; Tran, D. L.; Connell, J. J.; Bickford, B. B.

    2012-12-01

    Moderate energy positrons (~few to ~20 MeV) have seldom been observed in the Heliosphere. Their detection would have implications in the study of Galactic cosmic rays, Solar particle events, Solar wind transport and the modulation of energetic particles in the Heliosphere. Their lack of observation is due primarily to there not having been dedicated instruments for such measurements; positron measurements have, to date, been aimed at significantly higher energies (~few GeV). The Positron Identification by Coincident Annihilation Photons (PICAP) system is designed specifically to measure these moderate energy positrons by simultaneously detecting the two 511-keV gamma rays that result from the a positron stopping in the instrument and the subsequent electron-positron annihilation. It is also expected by this method to effectively discriminate positrons from other charged particle species, particularly protons and negatrons. The instrument is comprised of (Si) solid-state detectors, plastic scintillation detectors, as well as high-Z BGO scintillator suitable for detecting the 511-keV gamma rays. PICAP offers a low mass, low power option for measuring positrons, electrons and ions in space. Following extensive computer modeling, we have designed and built a PICAP laboratory prototype that is easily adaptable to a space-flight design. This prototype will be taken to particle accelerator facilities and exposed to energetic positrons, electrons, and protons with the goal of determining performance and validating modeling. We plan to present the model calculations and preliminary results. This work was 95% supported by NASA Grant NNX10AC10G.; One-quarter cutaway showing the interior of the PICAP prototype instrument.

  9. Annihilation momentum density of positrons trapped at vacancy-type defects in metals and alloys

    SciTech Connect

    Bansil, A.; Prasad, R.; Benedek, R.

    1988-01-01

    Positron annihilation, especially the angular correlation of annihilation radiation, is a powerful tool for investigating the electronic spectra of ordered as well as defected materials. The tendency of positrons to trap at vacancy-type defects should enable this technique to study the local environment of such defects. However, we need to develop a theoretical basis for calculating the two-photon annihilation momentum density rho/sub 2gamma/(p-vector). We have recently formulated and implemented a theory of rho/sub 2gamma/(p-vector) from vacancy-type defects in metals and alloys. This article gives an outline of our approach together with a few of our results. Section 2 summarizes the basic equations for evaluating rho/sub 2gamma/(p-vector). Our Green's function-based approach is nonperturbative and employs a realistic (one-particle) muffin-tin Hamiltonian for treating electrons and positrons. Section 3 presents and discusses rho/sub 2gamma/(p-vector) results for a mono-vacancy in Cu. We have neglected the effects of electron-positron correlations and of lattice distortion around the vacancy. Section 4 comments briefly on the question of treating defects such as divacancies and metal-impurity complexes in metals and alloys. Finally, in Section 5, we remark on the form of rho/sub 2gamma/(p-vector) for a mono-vacancy in jellium. 2 figs.

  10. On positron annihilation in concentrated random alloys and superconducting cuprates

    SciTech Connect

    Szotek, Z.; Temmerman, W.M.; Gyorffy, B.L.; Stocks, G.M.

    1988-01-01

    We discuss an application of a generalisation of the Lock-Crisp-West theorem to concentrated random alloys. Using a theory developed for binary random alloys we explore a possibility of positron localisation in the new high temperature superconductors. 7 refs., 1 fig.

  11. Free volume study on the miscibility of PEEK/PEI blend using positron annihilation and dynamic mechanical thermal analysis

    NASA Astrophysics Data System (ADS)

    Ramani, R.; Alam, S.

    2015-06-01

    High performance polymer blend of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) was examined for their free volume behaviour using positron annihilation lifetime spectroscopy and dynamic mechanical thermal analysis methods. The fractional free volume obtained from PALS shows a negative deviation from linear additivity rule implying good miscibility between PEEK and PEI. The dynamic modulus and loss tangent were obtained for the blends at three different frequencies 1, 10 and 100 Hz at temperatures close to and above their glass transition temperature. Applying Time-Temperature-Superposition (TTS) principle to the DMTA results, master curves were obtained at a reference temperature To and the WLF coefficients c01 and c02 were evaluated. Both the methods give similar results for the dependence of fractional free volume on PEI content in this blend. The results reveal that free volume plays an important role in determining the visco-elastic properties in miscible polymer blends.

  12. Enhancement models of momentum densities of annihilating electron-positron pairs: The many-body picture of natural geminals

    NASA Astrophysics Data System (ADS)

    Makkonen, Ilja; Ervasti, Mikko M.; Siro, Topi; Harju, Ari

    2014-01-01

    The correlated motion of a positron surrounded by electrons is a fundamental many-body problem. We approach this by modeling the momentum density of annihilating electron-positron pairs using the framework of reduced density matrices, natural orbitals, and natural geminals (electron-positron pair wave functions) of the quantum theory of many-particle systems. We find that an expression based on the natural geminals provides an exact, unique, and compact expression for the momentum density. The natural geminals can be used to define and to determine enhancement factors for enhancement models going beyond the independent-particle model for a better understanding of the results of positron annihilation experiments.

  13. Satellite Observations of Annihilation of Positrons Produced at the Sun, the Earth, and Center of our Galaxy

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Murphy, R. J.; Lin, R. P.

    2007-05-01

    Positrons are created in nuclear interactions that produce ? +-unstable nuclei and pi+ mesons. Satellites remotely observe positron production when they annihilate with electrons yielding the characteristic line at 511 keV. Radiation detectors such as the germanium diodes on the Ramaty High-Energy Solar Spectrocopic Imager (RHESSI) observe this line from positrons by nuclei activated in the spacecraft by proton interactions during transit through the Earth's radiation belts and from cosmic radiation. This forms an intense background for solar and astrophysical observations. RHESSI and other satellites have observed positron annihilation in over 50 solar flares. These measurements provide information on the temperature, density, and ionization state of solar atmosphere where the positrons annihilate. The measurements suggest that up to a few kg of positrons are produced in these flares. Detectable annihilation-line radiation is also emitted from the Earth's atmosphere in interactions of cosmic rays and solar energetic particles. An extended annihilation-line source has also been detected within about 10 degrees of the center of the Milky Way that is attributed to positrons released in radioactive decays of nuclei with long half-lives produced in supernovae, novae, and other stellar explosions. From 1980 to 1988 NASA's Solar Maximum Mission satellite also detected belts of positrons emitted by nuclear reactors onboard KOSMOS satellites and trapped temporarily in the Earth's magnetic field. This work was supported by NASA Supporting Research & Technology grants.

  14. Development and Testing of the Positron Identification by Coincident Annihilation Photons (PICAP) System

    NASA Astrophysics Data System (ADS)

    Tran, D.; Connell, J. J.; Lopate, C.; Bickford, B.

    2013-12-01

    Moderate energy positrons (~few to 10 MeV) have seldom been observed in the Heliosphere, due primarily to there not having been dedicated instruments for such measurements. Their detection would have implications in the study of Solar energetic particle events and the transport and modulation of the Solar wind and Galactic cosmic rays. The Positron Identification by Coincident Annihilation Photons (PICAP) system is designed specifically to measure these moderate energy positrons by simultaneously detecting the two 511-keV gamma-ray photons that result from the positron stopping in the instrument and the subsequent electron-positron annihilation. This method is also expected to effectively discriminate positrons from protons by measuring the amount of energy deposited in the detectors (dE/dx versus residual energy). PICAP offers a low-mass, low-power option for measuring positrons, electrons and ions in space. Following Monte Carlo modeling, a PICAP laboratory prototype has been designed and built which can be easily adaptable to a space-flight design. This instrument is comprised of (Si) solid-state detectors, plastic scintillation detectors, and high-Z BGO crystal scintillator suitable for detecting the 511-keV gamma rays. The prototype underwent preliminary laboratory testing and calibration using radioactive sources for the purpose of establishing functionality. It has also been exposed to energetic protons (up to ~200 MeV) at an accelerator facility, with future plans for exposure to energetic positrons and electrons. The goal is to validate modeling and determine the performance of the instrument concept. We plan to present a summary of modeling calculations and preliminary results from proton testing. This work is 95% supported by NASA Grant NNX10AC10G. A 3D model of the PICAP prototype with a one-quarter cutaway revealing the interior of the instrument

  15. Development and Testing of the Positron Identification By Coincident Annihilation Photons (PICAP) System

    NASA Astrophysics Data System (ADS)

    Tran, D.; Connell, J. J.; Lopate, C.; Bickford, B.

    2014-12-01

    Moderate energy positrons (~few to 10 MeV) have seldom been observed in the Heliosphere, due primarily to there not having been dedicated instruments for such measurements. Their detection would have implications in the study of Solar energetic particle events and the transport and modulation of the Solar wind and Galactic cosmic rays. The Positron Identification by Coincident Annihilation Photons (PICAP) system is designed specifically to measure these moderate energy positrons by simultaneously detecting the two 511-keV γ-ray photons that result from a positron stopping in the instrument and the subsequent electron-positron annihilation. This method is also expected to effectively discriminate positrons from protons by measuring the amount of energy deposited in the detectors (dE/dx versus residual energy). PICAP offers a low-mass, low-power option for measuring positrons, electrons, and ions in space. Following Monte Carlo modeling, a PICAP laboratory prototype, adaptable to a space-flight design, was designed, built, and tested. This instrument is comprised of (Si) solid-state detectors, plastic scintillation detectors, and high-Z BGO crystal scintillator suitable for detecting the 511-keV γ rays. The prototype underwent preliminary laboratory testing and calibration using radioactive sources for the purpose of establishing functionality. It has since been exposed to beams of energetic protons (up to ~200 MeV) at Massachusetts General Hospital's Francis H. Burr Proton Beam Therapy Center and positrons and electrons (up to ~10 MeV) at Idaho State University's Idaho Accelerator Center. The goal is to validate modeling and determine the performance of the instrument concept. We will present a summary of modeling calculations and analysis of data taken at the accelerator tests. This work is 95% supported by NASA Grant NNX10AC10G.

  16. Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni

    NASA Astrophysics Data System (ADS)

    Siegert, Thomas; Diehl, Roland; Greiner, Jochen; Krause, Martin G. H.; Beloborodov, Andrei M.; Bel, Marion Cadolle; Guglielmetti, Fabrizia; Rodriguez, Jerome; Strong, Andrew W.; Zhang, Xiaoling

    2016-03-01

    Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 106 to 1010 solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron–positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron–positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy.

  17. Positron annihilation signatures associated with the outburst of the microquasar V404 Cygni.

    PubMed

    Siegert, Thomas; Diehl, Roland; Greiner, Jochen; Krause, Martin G H; Beloborodov, Andrei M; Bel, Marion Cadolle; Guglielmetti, Fabrizia; Rodriguez, Jerome; Strong, Andrew W; Zhang, Xiaoling

    2016-03-17

    Microquasars are stellar-mass black holes accreting matter from a companion star and ejecting plasma jets at almost the speed of light. They are analogues of quasars that contain supermassive black holes of 10(6) to 10(10) solar masses. Accretion in microquasars varies on much shorter timescales than in quasars and occasionally produces exceptionally bright X-ray flares. How the flares are produced is unclear, as is the mechanism for launching the relativistic jets and their composition. An emission line near 511 kiloelectronvolts has long been sought in the emission spectrum of microquasars as evidence for the expected electron-positron plasma. Transient high-energy spectral features have been reported in two objects, but their positron interpretation remains contentious. Here we report observations of γ-ray emission from the microquasar V404 Cygni during a recent period of strong flaring activity. The emission spectrum around 511 kiloelectronvolts shows clear signatures of variable positron annihilation, which implies a high rate of positron production. This supports the earlier conjecture that microquasars may be the main sources of the electron-positron plasma responsible for the bright diffuse emission of annihilation γ-rays in the bulge region of our Galaxy. Additionally, microquasars could be the origin of the observed megaelectronvolt continuum excess in the inner Galaxy. PMID:26934231

  18. Positron annihilation studies of the electronic structure and fermiology of the high-{Tc} superconductors

    SciTech Connect

    Smedskjaer, L.C.; Bansil, A.

    1992-09-01

    We discuss the application of the positron annihilation angular correlation (ACAR) spectroscopy for investigating the electronic structure and Fermiology of the high-T{sub c} superconductors, with focus on the YBa{sub 2}Cu{sub 3}O{sub 7} system where most of the experimental and theoretical work has to date been concentrated. Comparisons between measured 2D-ACAR positron spectra and band theory predictions show a remarkable agreement (for the normal state), indicating that the electronic structure and Fermi surface of this material is described reasonably by the conventional picture.

  19. Positron annihilation studies of the electronic structure and fermiology of the high-[Tc] superconductors

    SciTech Connect

    Smedskjaer, L.C. ); Bansil, A. . Dept. of Physics)

    1992-09-01

    We discuss the application of the positron annihilation angular correlation (ACAR) spectroscopy for investigating the electronic structure and Fermiology of the high-T[sub c] superconductors, with focus on the YBa[sub 2]Cu[sub 3]O[sub 7] system where most of the experimental and theoretical work has to date been concentrated. Comparisons between measured 2D-ACAR positron spectra and band theory predictions show a remarkable agreement (for the normal state), indicating that the electronic structure and Fermi surface of this material is described reasonably by the conventional picture.

  20. Macromolecular conformation in solution. Study of carbonic anhydrase by the positron annihilation technique.

    PubMed Central

    Handel, E D; Graf, G; Glass, J C

    1980-01-01

    The structural features of carbonic anhydrase (carbonate hydro-lyase; EC 4.2.1.1) in aqueous solution were probed by the positron annihilation technique. The data obtained under varying conditions of temperature, pH, and enzyme concentration were interpreted in terms of the free volume model. The change of enzymic activity with temperature is accompanied by a change in free volume of the protein. Upon thermal denaturation an irreversible change in free volume of the molecule occurred. At low temperatures the protein-water interactions were investigated. These results are discussed in terms of current concepts of structure-function relationships in proteins. This study shows the sensitivity of the positron annihilation method toward the structure of proteins related to their overall conformation and to the nature of bound water. PMID:6789901

  1. Order-disorder transition in clathrate Ba6Ge25 studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Li, X. F.; Zhao, B.; Zhang, T.; He, H. F.; Zhang, Q.; Yang, D. W.; Chen, Z. Q.; Tang, X. F.

    2015-07-01

    Clathrate Ba6Ge25 is prepared by melt method and spark plasma sintering. Structural transition below room temperature is studied by positron annihilation and X-ray diffraction measurements. There is a pronounced transition in the temperature range of 200-250 K which might be involved with the movement of Ba atoms in Ge cages and result in disordered structure. This transition is further confirmed by the theoretical calculation of positron annihilation states. Thus our results confirm the structural models proposed by Carrillo-Cabrera et al. (2005). The measured specific heat capacity, electric resistivity and magnetic susceptibility all show anomalous transition in the same temperature range, indicating that the movement of Ba atoms in the cage has influence on the thermal, electric as well as magnetic properties of Ba6Ge25.

  2. Monte Carlo Simulation of Pileup Effects in the Electron-Positron Annihilation Peak

    NASA Astrophysics Data System (ADS)

    do Nascimento, Eduardo; Fernández-Varea, José M.; Vanin, Vito R.; Maidana, Nora L.

    2011-08-01

    The Monte Carlo code PENELOPE is employed to simulate a typical experimental Doppler broadening coincidence spectrum (DBCS) where the energy spectrum of the photons emitted by the positrons interacting in the sample is recorded with two HPGe detectors in coincidence. The simulated spectrum reproduces well some of the structures observed in the measured DBCS, but not the prominent tails on the low- and high-energy sides of the electron-positron annihilation peak seen in the latter. Ad hoc variations of the cross sections implemented in PENELOPE did not improve the situation. A simple parameterization of the background noise in the DBCS is proposed, and the simulated spectrum is modified to account for pileup effects using this model of the background. The resulting spectrum is in good agreement with the experiment on the high-energy side of the annihilation peak.

  3. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointer, G.; Skinner, G.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Schoenfelder, V.

    2005-01-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 kev). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation.

  4. INTEGRAL/SPI Limits on Electron-Positron Annihilation Radiation from the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Jean, P.; Knoedlseder, J.; Lonjou, V.; Roques, J. P.; Skinner, G. K.; vonBallmoos, P.; Weidenspointner, G.; Bazzano, A.

    2005-01-01

    The center of our Galaxy is a known strong source of electron-positron 511- keV annihilation radiation. Thus far, however, there have been no reliable detections of annihilation radiation outside of the central radian of our Galaxy. One of the primary objectives of the INTEGRAL (INTErnational Gamma-RAy Astrophysics Laboratory) mission, launched in Oct. 2002, is the detailed study of this radiation. The Spectrometer on INTEGRAL (SPI) is a high resolution coded-aperture gamma-ray telescope with an unprecedented combination of sensitivity, angular resolution and energy resolution. We report results from the first 10 months of observation. During this period a significant fraction of the observing time was spent in or near the Galactic Plane. No positive annihilation flux was detected outside of the central region (|l| greater than 40 degrees) of our Galaxy. In this paper we describe the observations and data analysis methods and give limits on the 511-keV flux.

  5. Search for positron annihilation line and continuum radiation from the Galactic Center

    NASA Technical Reports Server (NTRS)

    Maccallum, C. J.; Leventhal, M.

    1985-01-01

    Our balloon-borne germain gamma-ray telescope was flown over Alice Springs, Australia, on 1984 November 20 to search for the 511 keV positron annihilation line from the Galactic Center. The measured line flux at Earth was (0.6 + or - 4.4) x 0.001 ph/sq cm/s indicating that the source was still in a low or off state.

  6. Single crystal growth of Ga[subscript 2](Se[subscript x]Te[subscript 1;#8722;x])[subscript 3] semiconductors and defect studies via positron annihilation spectroscopy

    SciTech Connect

    Abdul-Jabbar, N.M.; Bourret-Courchesne, E.D.; Wirth, B.D.

    2012-12-10

    Small single crystals of Ga{sub 2}(Se{sub x}Te{sub 1-x}){sub 3} semiconductors, for x = 0.1, 0.2, 0.3, were obtained via modified Bridgman growth techniques. High resolution powder x-ray diffractometry confirms a zincblende cubic structure, with additional satellite peaks observed near the (111) Bragg line. This suggests the presence of ordered vacancy planes along the [111] direction that have been previously observed in Ga{sub 2}Te{sub 3}. Defect studies via positron annihilation spectroscopy show an average positron lifetime of {approx} 400 ps in bulk as-grown specimens. Such a large lifetime suggests that the positron annihilation sites in these materials are dominated by defects. Moreover, analyzing the electron momenta via coincidence Doppler broadening measurements suggests a strong presence of large open-volume defects, likely to be vacancy clusters or voids.

  7. Extragalactic Inverse Compton Light from Dark Matter annihilation and the Pamela positron excess

    SciTech Connect

    Profumo, Stefano; Jeltema, Tesla E. E-mail: tesla@ucolick.org

    2009-07-01

    We calculate the extragalactic diffuse emission originating from the up-scattering of cosmic microwave photons by energetic electrons and positrons produced in particle dark matter annihilation events at all redshifts and in all halos. We outline the observational constraints on this emission and we study its dependence on both the particle dark matter model (including the particle mass and its dominant annihilation final state) and on assumptions on structure formation and on the density profile of halos. We find that for low-mass dark matter models, data in the X-ray band provide the most stringent constraints, while the gamma-ray energy range probes models featuring large masses and pair-annihilation rates, and a hard spectrum for the injected electrons and positrons. Specifically, we point out that the all-redshift, all-halo inverse Compton emission from many dark matter models that might provide an explanation to the anomalous positron fraction measured by the Pamela payload severely overproduces the observed extragalactic gamma-ray background.

  8. Quantification of Stress History in Type 304L Stainless Steel Using Positron Annihilation Spectroscopy

    SciTech Connect

    Thomas W. Walters

    2011-04-01

    Five type 304L stainless steel specimens were subjected to incrementally increasing values of plastic strain. At each value of strain, the associated static stress was recorded and the specimen was subjected to Positron Annihilation Spectroscopy (PAS) using the Doppler Broadening method. A calibration curve for the S parameter as a function of stress was developed based on the five specimens. Seven different specimens (blind specimens labeled B1-B7) of 304L stainless steel were subjected to values of stress inducing plastic deformation. The values of stress ranged from 310-517 MPa. The seven specimens were subjected to Positron Annihilation Spectroscopy post loading using the Doppler Broadening method, and the results were compared against the developed curve from the previous five specimens to determine feasibility of applying the curve to materials in order to non-destructively quantify stress history in materials based only on the S parameter extracted from the Positron Annihilation Spectroscopy. Results for the calibration set of specimens indicated that calibration development is possible.

  9. Recent progress in annihilation related studies by slow positrons

    SciTech Connect

    Lynn, K.G.

    1989-01-01

    The field of slow-positron physics has expanded significantly in the last few years to include particles and atomic physics but has been most extensive in those associated with condensed matter or material science. This can primarily be attributed to the development of more efficient moderators. These moderators have been associated with both laboratory- and facility-based beams. In this paper I will focus only on the material-science aspects however. Positron can and are being used to examine all of the various fields. I feel the contribution in all these areas will be significant. I will primarily discuss those developments that have been developed in the area of interface science; a field that has both scientific and technological importance and has a limited number of nondestructive probes used in studying a buried interface. Interfaces are technologically important for applications such as electrical properties and mechanical properties. Such applications help to motivate the fundamental research of interface properties and dynamics, which is necessary to develop the basic understanding of new types of interfaces. The role of the interface is also important since it limited length of this paper. Results will be presented in interface studies that have occurred in the last year, including some unpublished results obtained at Brookhaven over the past few months. This field is in the early stages and I expect that the full utilization of this relatively new probe can be anticipated in the next few years. 17 refs., 7 figs.

  10. Molecular motion and relaxation below glass transition temperature in poly (methyl methacrylate) studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Qi, N.; Chen, Z. Q.; Uedono, A.

    2015-03-01

    In this paper, we present the study of local molecular motions in poly (methyl methacrylate) (PMMA) below glass transition temperature by measuring the ortho-positronium (o-Ps) intensity. Two series of experiments were performed: (1) the PMMA sample was irradiated by 22Na positron source with elongated time at room temperature, 225 K and 16 K, respectively, and positron lifetime spectra were measured as a function of irradiation time and (2) Positron lifetime and Doppler broadening spectra were measured as a function of temperature from 16 to 350 K after positron irradiation at 16 K for more than 350 h. While the o-Ps lifetime always shows no change with elapsed time, decrease and increase of o-Ps intensity I3 are observed at 225 K and 16 K, which are interpreted as the result of positron irradiation-induced free radicals and trapped electrons, respectively. With temperature increasing from 16 K, there is a continuous drop of I3 beginning at around 100 K. This is due to some local group movements such as the ester and main chain methyl group rotations, which lead to the detrapping of accumulated electrons. These local motions do not need additional free volume, so we observed no change of the o-Ps lifetime. Some other structural relaxations such as ?-relaxation are also observed and discussed.

  11. Studies Of Oxidation And Thermal Reduction Of The Cu(100) Surface Using Positron Annihilation Induced Auger Electron Spectroscopy

    SciTech Connect

    Fazleev, N. G.; Nadesalingam, M. P.; Maddox, W.; Weiss, A. H.

    2011-06-01

    Positron annihilation induced Auger electron spectroscopy (PAES) measurements from the surface of an oxidized Cu(100) single crystal show a large increase in the intensity of the annihilation induced Cu M2,3VV Auger peak as the sample is subjected to a series of isochronal anneals in vacuum up to annealing temperature 300 deg. C. The PAES intensity then decreases monotonically as the annealing temperature is increased to {approx}550 deg. C. Experimental positron annihilation probabilities with Cu 3p and O 1s core electrons are estimated from the measured intensities of the positron annihilation induced Cu M{sub 2,3}VV and O KLL Auger transitions. PAES results are analyzed by performing calculations of positron surface states and annihilation probabilities of the surface-trapped positrons with relevant core electrons taking into account the charge redistribution at the surface and various surface structures associated with low and high oxygen coverages. The variations in atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface are found to affect localization and spatial extent of the positron surface state wave function. The computed positron binding energy and annihilation characteristics reveal their sensitivity to charge transfer effects, atomic structure and chemical composition of the topmost layers of the oxidized Cu(100) surface. Theoretical positron annihilation probabilities with Cu 3p and O 1s core electrons computed for the oxidized Cu(100) surface are compared with experimental ones. The obtained results provide a demonstration of thermal reduction of the copper oxide surface after annealing at 300 deg. C followed by re-oxidation of the Cu(100) surface at higher annealing temperatures presumably due to diffusion of subsurface oxygen to the surface.

  12. Effect of ?-rays irradiation on Mn-Ni ferrites: Structure, magnetic properties and positron annihilation studies

    NASA Astrophysics Data System (ADS)

    Hassan, H. E.; Sharshar, T.; Hessien, M. M.; Hemeda, O. M.

    2013-06-01

    Manganese-nickel ferrites powder with general formula MnxNi1-xFe2O4 (x = 0.0, 0.2, 0.4) were synthesized through oxalate precursor route and sintered at 1000 C. The X-ray diffraction (XRD) patterns were measured for the prepared samples to confirm the existence of single-phase structure. The crystallite size was estimated and found to be within the range 125-170 nm. To study the radiation effect on the structure and magnetic properties, a representative group of the investigated samples were irradiated by ?-rays of 60Co source with a dose of 310 kGy. The XRD spectra were performed for the irradiated samples and compared with that of the pristine samples to estimate changes in the structure. The obtained results showed that the crystallite size increased by a factor of 10-16% after gamma irradiation. The lattice parameter also was increased due to the conversion of Fe3+ (0.64 ) to Fe2+ (0.76 ). The formula of the cation distribution of the ferrites samples was suggested at x = 0, 0.2, 0.4 before and after irradiation. The theoretical lattice parameter, sample density and porosity were calculated and compared with that obtained from the experimental data. Good agreement was found between theoretical and experimental structural data which confirms the proposed formula of cations distribution. The hysteresis curves were measured using vibrating sample magnetometer (VSM) for the unirradiated and irradiated samples and the saturation magnetization was estimated. The obtained results showed increase in saturation magnetizations (Ms) for all the samples by irradiation due to redistribution of the cations between A and B sites and changing the net magnetic moments. Theoretical calculation of magnetic moments and saturation magnetization using the proposed cations distribution of A and B sites confirmed the experimental results. The positron annihilation lifetime spectroscopy (PALS) was used to investigate the defects and changes in electron density after irradiation. The PAL parameters (?1, I1, ?2, I2 and mean lifetime) show that the irradiation affects the size and concentration of the vacant type defects. The results reveal that there are some large voids (with radius ranged from 0.28 to 0.38 nm and mean value of 0.34 0.04 nm in the studied samples). The obtained results indicate the high sensitivity of PALS technique to the enhanced structure changes due to gamma rays irradiation.

  13. Hunting for glueballs in electron-positron annihilation

    SciTech Connect

    Stanley Brodsky; Alfred Scharff Goldhaber; Jungil Lee

    2003-05-01

    We calculate the cross section for the exclusive production of J{sup PC} = 0{sup ++} glueballs G{sub 0} in association with the J/{psi} in e{sup +}e{sup -} annihilation using the pQCD factorization formalism. The required long-distance matrix element for the glueball is bounded by CUSB data from a search for resonances in radiative {Upsilon} decay. The cross section for e{sup +}e{sup -} {yields} J/{psi} + G{sub 0} at {radical}s = 10.6 GeV is similar to exclusive charmonium-pair production e{sup +}e{sup -} {yields} J/{psi} + h for h = {eta}{sub c} and {chi}{sub c0}, and is larger by a factor 2 than that for h = {eta}{sub c}(2S). As the subprocesses {gamma}* {yields} (c {bar c}) (c {bar c}) and {gamma}* {yields} (c {bar c}) (g g) are of the same nominal order in perturbative QCD, it is possible that some portion of the anomalously large signal observed by Belle in e{sup +}e{sup -} {yields} J/{psi} X may actually be due to the production of charmonium-glueball J/{psi} G{sub J} pairs.

  14. Hunting for Glueballs in Electron-Positron Annihilation

    SciTech Connect

    Brodsky, Stanley J.

    2003-05-28

    We calculate the cross section for the exclusive production of J{sup PC} = 0{sup ++} glueballs G{sub 0} in association with the J = {psi} in e{sup +}e{sup -} annihilation using the pQCD factorization formalism. The required long-distance matrix element for the glueball is bounded by CUSB data from a search for resonances in radiative {Upsilon} decay. The cross section for e{sup +}e{sup -} {yields} J/{psi} + G{sub 0} at {radical}s = 10.6 GeV is similar to exclusive charmonium-pair production e{sup +}e{sup -} J/{psi} + h for h = {eta}{sub c} and {chi}{sub c0}, and is larger by a factor 2 than that for h = {eta}c(2S). As the subprocesses {gamma}* {yields} (c{bar c})(c{bar c}) and {gamma}* {yields} (c{bar c})(gg) are of the same nominal order in perturbative QCD, it is possible that some portion of the anomalously large signal observed by Belle in e{sup +}e{sup -} {yields} J/{psi}X may actually be due to the production of charmonium-glueball J/{psi}G{sub J} pairs.

  15. The 511 keV emission from positron annihilation in the Galaxy

    SciTech Connect

    Prantzos, N.; Boehm, C.; Bykov, A. M.; Diehl, R.; Ferriere, K.; Guessoum, N.; Jean, P.; Knoedlseder, J.; Marcowith, A.; Moskalenko, I. V.; Strong, A.; Weidenspointner, G.

    2011-07-01

    The first {gamma}-ray line originating from outside the Solar System that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO (Oriented Scintillation Spectrometer Experiment on GRO satellite/Compton Gamma Ray Observatory) showed that the emission is strongly concentrated toward the Galactic bulge. In the 2000s, the spectrometer SPI aboard the European Space Agency's (ESA) International Gamma Ray Astrophysics Laboratory (INTEGRAL) allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge-to-disk luminosity ratio is larger than observed at any other wavelength. This mapping prompted a number of novel explanations, including rather ''exotic'' ones (e.g., dark matter annihilation). However, conventional astrophysical sources, such as type Ia supernovae, microquasars, or x-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, in contrast to the rather well-understood propagation of high-energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low-energy ({approx}MeV) positrons in the turbulent, magnetized interstellar medium still remains a formidable challenge. The spectral and imaging properties of the observed 511 keV emission are reviewed and candidate positron sources and models of positron propagation in the Galaxy are critically discussed.

  16. The 511 keV emission from positron annihilation in the Galaxy

    NASA Astrophysics Data System (ADS)

    Prantzos, N.; Boehm, C.; Bykov, A. M.; Diehl, R.; Ferrire, K.; Guessoum, N.; Jean, P.; Knoedlseder, J.; Marcowith, A.; Moskalenko, I. V.; Strong, A.; Weidenspointner, G.

    2011-07-01

    The first ?-ray line originating from outside the Solar System that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of positrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO (Oriented Scintillation Spectrometer Experiment on GRO satellite/Compton Gamma Ray Observatory) showed that the emission is strongly concentrated toward the Galactic bulge. In the 2000s, the spectrometer SPI aboard the European Space Agencys (ESA) International Gamma Ray Astrophysics Laboratory (INTEGRAL) allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge-to-disk luminosity ratio is larger than observed at any other wavelength. This mapping prompted a number of novel explanations, including rather exotic ones (e.g., dark matter annihilation). However, conventional astrophysical sources, such as type Ia supernovae, microquasars, or x-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, in contrast to the rather well-understood propagation of high-energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low-energy (MeV) positrons in the turbulent, magnetized interstellar medium still remains a formidable challenge. The spectral and imaging properties of the observed 511 keV emission are reviewed and candidate positron sources and models of positron propagation in the Galaxy are critically discussed.

  17. Identification of Defects in Undoped Semi-insulating InP by Positron Lifetime

    NASA Astrophysics Data System (ADS)

    Mao, Wei-Dong; Wang, Shao-Jie; Wang, Zhu; Sun, Nie-Feng; Sun, Tong-Nian; Zhao, You-Wen

    2001-04-01

    Positron lifetime measurements, carried out over the temperature range of 10-300 K, have been used to investigate defects in two undoped semi-insulating InP samples. The positron lifetime spectra were analysed by both PATFIT and MELT techniques. The results at room temperature reveal a positron lifetime of around 273 ps, which is associated with indium vacancies VIn or VIn-hydrogen complexes. The positron average lifetime is temperature dependent and decreases with increasing temperature at the beginning (≤80 K and ≤120 K), and then remains unchanged, which is attributed to the influence of negative vacancies and detrapping of the positron from those negative ions of Mg, Zn, Ag and Ca with ionization level (1-).

  18. An investigation of point defects in NiAl using positron annihilation techniques

    SciTech Connect

    Puff, W.; Logar, B.; Balogh, A.G.

    1999-07-01

    Vacancy-like defects in NiAl in the composition range 47 at.% {lt} C{sub Ni} {lt} 53 at.% are investigated by means of positron lifetime spectroscopy and Doppler-broadening measurements. The observed lifetimes in the annealed samples confirm that defects are quenched-in during the production of the samples. Isochronal annealing of samples quenched at 1,600 C and after proton irradiation show that the induced defects are quite different.

  19. Donor-doping effect in BaTiO 3 ceramics using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohsen, M.; Krause-Rehberg, R.; Massoud, A. M.; Langhammer, H. T.

    2003-10-01

    Temperature-dependent measurements using positron lifetime spectroscopy (PLS) were carried out to study various defects in polycrystalline donor doped BaTiO 3 (BT) samples. Annealing under different donor-doping level of La and Y were performed. At high doping level, it was found that with increasing doping level the average lifetime increases. This is attributed to the interplay of complexes containing oxygen vacancies VO and other vacancies, such as VBa, VTi as well as grain boundaries.

  20. Effect of synthesis temperature on the ordered pore structure in mesoporous silica studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Qi, N.; Liu, Z. W.; Zhou, B.; Chen, Z. Q.; Wang, Z.

    2016-02-01

    Mesoporous silica with ordered pore structure was synthesized at various temperatures using TEOS as the silica source and P123 as the template. Both small angle X-ray scattering (SAXS) and high resolution transition electron microscopy (HRTEM) measurements verify the ordered pore structure of the synthesized SiO2. With synthesis temperature increasing, the pore structure has slight damage at 130 °C, while it shows ordered structure again at 150 °C. When the synthesis temperature increases to 180 °C, the ordered pore structure is severely destructed. The change of pore structure is further confirmed by scanning electron microscopy (SEM) measurements. Positron lifetime measurements reveal four lifetime components in the synthesized mesoporous SiO2, and the two long lifetimes τ3 and τ4 correspond to the annihilation of o-Ps in the micropores and large pores of the material, respectively. The longest lifetime τ4 tends to increase slightly with increasing synthesis temperature. However, its intensity I4 shows an overall decrease with exception at 150 °C. At the synthesis temperature of 180 °C, the intensity I4 decreases drastically to about 17.5%. This indicates variation of the size and fraction of pores with increasing synthesis temperature, and the pore structure is seriously destructed at 180 °C. By comparing with the N2 adsorption-desorption measurements, it was found that the Goworek's model is more suitable for the size estimation of cylindrical pores from the o-Ps lifetime, while Dull's and Ito's model is appropriate for the rectangular and spherical pores, respectively.

  1. Positron annihilation Doppler broadening measurement for bulk amorphous alloy by using high energy positron generated from LCS gamma-ray at NEW SUBARU

    NASA Astrophysics Data System (ADS)

    Hori, F.; Ueno, Y.; Ishii, K.; Ishiyama, T.; Iwase, A.; Miyamoto, S.; Terasawa, T.

    2016-01-01

    A simple positron annihilation measurement apparatus via pair creation has been developed using high energetic gamma beam generated by laser Compton scattering (LCS) of 1 GeV electrons circulated in a storage ring and laser light with the power more than 1 W at the New SUBARU synchrotron radiation facility, University of Hyogo. This MeV ordered energy changeable positron apparatus is useful to study defects in bulk materials. In this study, the average energy of 8MeV positron was selected by the wavelength of laser light and circulated electron energy in photon factory. As a demonstrate of non-destruction positron measurement by this apparatus, positron annihilation Doppler broadening measurement has performed for bulk size of amorphous and crystal structured Zr based alloys. The larger Doppler broadening S parameter for amorphous alloy than that for crystallized one has been successfully measured.

  2. Positron Lifetime Measurements in Semi-Interpenetrating Polymer Networks

    NASA Astrophysics Data System (ADS)

    Singh, Jag J.; Pater, Ruth H.; Sprinkle, Danny R.

    1998-03-01

    Physical interlocking is generally believed to be the dominant force that controls the morphology of a Semi-Interpenetrating Polymer Network (S-IPN). However, in our recent study (J. J. Singh, R. H. Pater, and A. Eftekhari: Nuclear Instruments and Methods - NIMB (To be published)) of S-IPN's prepared from thermosetting LaRC-RP46 and thermoplastic LaRC-IA polyimides, it was discovered that a strong electrostatic interaction between the constituent molecules enhances phase mixing. In order to further test this hypothesis, we replaced thermoplastic LaRC-IA by LaRC-SI. LaRC-SI has a rigid backbone which should prevent it from coming close to LaRCT-RP46 molecular chain, thereby minimizing electrostatic influences. Positron lifetime measurements were made in the new class of S-IPN samples. Experimental values of the free volume and the dielectric constant indicate that they are merely solid solutions of their constituents, without any measurable electrostatic effects. However, the density values of these materials suggest a slight repulsion (or enhanced separation) between the constituent chains.

  3. Positron annihilation on defects in silicon irradiated with 15 MeV protons

    NASA Astrophysics Data System (ADS)

    Arutyunov, N. Y.; Elsayed, M.; Krause-Rehberg, R.; Emtsev, V. V.; Oganesyan, G. A.; Kozlovski, V. V.

    2013-01-01

    Microstructure and thermal stability of the radiation defects in n-FZ-Si ([P] ? 7 1015 cm-3) single crystals have been investigated. The radiation defects have been induced by irradiation with 15 MeV protons and studied by means of both the positron lifetime spectroscopy and low-temperature measurements of the Hall effect. At each step of the isochronal annealing over the temperature range 60-700?C the positron lifetime has been measured for the temperature interval 30-300 K, and for samples-satellites the temperature dependences of the charge carriers and mobility have been determined over the range 4.2-300 K. It is argued that as-grown impurity centers influence the average positron lifetime by forming shallow (Eb ? 0.013 eV) positron states. The radiation-induced defects were also found to trap positrons into weakly bound (Eb ? 0.01 eV) states. These positron states are observed at cryogenic temperatures during the isochronal annealing up to Tanneal. = 340?C. The stages of annealing in the temperature intervals 60-180?C and 180-260?C reflect the disappearance of E-centers and divacancies, respectively. Besides these defects the positrons were found to be localized at deep donor centers hidden in the process of annealing up to the temperature Tanneal. ? 300?C. The annealing of the deep donors occurs over the temperature range 300-650?C. At these centers positrons are estimated to be bound with energies Eb ? 0.096 and 0.021 eV within the temperature intervals 200-270 K and 166-66 K, respectively. The positron trapping coefficient from these defects increases from 1.1 1016 to 6.5 1017 s-1 over the temperature range 266-66 K, thus substantiating a cascade phonon-assisted positron trapping mechanism whose efficiency is described by ?T-3 law. It is argued that the value of activation energy of the isochronal annealing Ea ? 0.74-0.59 eV is due to dissociation of the positron traps, which is accompanied by restoration of the electrical activity of the phosphorus atoms. The data suggest that the deep donors involve a phosphorus atom and at least two vacancies. Their energy levels are at least at E > Ec - 0.24 eV in the investigated material.

  4. Measurement of the hadronic cross section in electron-positron annihilation

    SciTech Connect

    Clearwater, S.

    1983-11-01

    This thesis describes the most precise measurement to date of the ratio R, the hadronic cross section in lowest order electron-positron annihilation to the cross section for muon pair production in lowest order electron-positron annihilation. This experiment is of interest because R is a fundamental parameter that tests in a model independent way the basic assumptions of strong interaction theories. According to the assumptions of one of these theories the value of R is determined simply from the electric charges, spin, and color assignments of the produced quark-pairs. The experiment was carried out with the MAgnetic Calorimeter using collisions of 14.5 GeV electrons and positrons at the 2200m circumference PEP storage ring at SLAC. The MAC detector is one of the best-suited collider detectors for measuring R due to its nearly complete coverage of the full angular range. The data for this experiment were accumulated between February 1982 and April 1983 corresponding to a total event sample of about 40,000 hadronic events. About 5% of the data were taken with 14 GeV beams and the rest of the data were taken with 14.5 GeV beams. A description of particle interactions and experimental considerations is given.

  5. Microstructural evolution of ZnS during sintering monitored by optical and positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Adams, M.; Mascher, P.; Kitai, A. H.

    1995-07-01

    Positron lifetime and optical absorption techniques were employed to track the microstructural evolution of polycrystalline ZnS grown by Chemical Vapor Deposition (CVD). As grown material and material treated with Hot Isostatic Pressure (HIP) was sintered at temperatures ranging from 400 to 1000 C for 2 18 h. A 290 ps defect lifetime could be resolved in all samples, while an additional longer lifetime (?=430 ps) was found only in samples annealed at low temperatures. This component gradually disappeared during annealing at 800 C. Associated with the disappearance of the long-lived component, the apparent bulk lifetime of the material changed from 235 to 215 ps. A 2152 ps bulk parameter was also found for HIP-treated material annealed at temperatures greater than 400 C and hence is taken to represent the delocalized state of the positrons in ZnS. Optical absorption measurements showed that annealing at 800 C also caused the absorption profiles of the CVD and HIP samples to converge. The rate of the bulk lifetime transition correlates with the absorption changes. The observed sharpening of the absorption profile is attributed to a decrease in scattering from grain boundaries and voids, and a decrease in absorption from point defects. The 430 ps lifetime is believed to be due to trapping at voids and grain boundaries, while the 290 ps lifetime likely is due to a monovacancy stabilized as a small complex.

  6. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation

    PubMed Central

    Ceeh, Hubert; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-01-01

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV. PMID:26879249

  7. Local electron-electron interaction strength in ferromagnetic nickel determined by spin-polarized positron annihilation.

    PubMed

    Ceeh, Hubert; Weber, Josef Andreass; Böni, Peter; Leitner, Michael; Benea, Diana; Chioncel, Liviu; Ebert, Hubert; Minár, Jan; Vollhardt, Dieter; Hugenschmidt, Christoph

    2016-01-01

    We employ a positron annihilation technique, the spin-polarized two-dimensional angular correlation of annihilation radiation (2D-ACAR), to measure the spin-difference spectra of ferromagnetic nickel. The experimental data are compared with the theoretical results obtained within a combination of the local spin density approximation (LSDA) and the many-body dynamical mean-field theory (DMFT). We find that the self-energy defining the electronic correlations in Ni leads to anisotropic contributions to the momentum distribution. By direct comparison of the theoretical and experimental results we determine the strength of the local electronic interaction U in ferromagnetic Ni as 2.0 ± 0.1 eV. PMID:26879249

  8. Cosmic-ray antiprotons, positrons, and gamma rays from halo dark matter annihilation

    NASA Technical Reports Server (NTRS)

    Rudaz, S.; Stecker, F. W.

    1988-01-01

    The subject of cosmic ray antiproton production is reexamined by considering other choices for the nature of the Majorana fermion chi other than the photino considered in a previous article. The calculations are extended to include cosmic-ray positrons and cosmic gamma rays as annihilation products. Taking chi to be a generic higgsino or simply a heavy Majorana neutrino with standard couplings to the Z-zero boson allows the previous interpretation of the cosmic antiproton data to be maintained. In this case also, the annihilation cross section can be calculated independently of unknown particle physics parameters. Whereas the relic density of photinos with the choice of parameters in the previous paper turned out to be only a few percent of the closure density, the corresponding value for Omega in the generic higgsino or Majorana case is about 0.2, in excellent agreement with the value associated with galaxies and one which is sufficient to give the halo mass.

  9. AC Dielectric Properties and Positron Annihilation Study on Co and Ti Substitution Effect on Ca-Sr M-Hexaferrites

    NASA Astrophysics Data System (ADS)

    Mahmoud, K. R.; Eraky, M. R.

    2016-03-01

    The dependence of AC conductivity σ AC, dielectric constant έ, and dielectric loss tangent tan δ on frequency and composition have been investigated at room temperature for polycrystalline Ca0.5Sr0.5Co x Ti x Fe12 - 2x O19 (where 0.0 ≤ x ≤ 0.8) hexaferrites. It was found that the parameters σ AC, ɛ ', and tan δ have maximum values at x = 0.4 of the Co and Ti substitution. The behavior of σ AC, ɛ ', and tan δ with frequency and composition was explained on the basis of the hopping conduction mechanism and the Koops model. Positron annihilation lifetime spectroscopy (PALS) was used to investigate the defects and changes in electron density for hexaferrite samples. The PAL parameters (τ 1, I 1, τ 2, I 2, and mean lifetime) show that altering the doping percentage of the Co and Ti ions affects the size and concentration of defects. The results reveal that there are some large voids in the studied samples. The obtained results indicate the high sensitivity of the PALS technique to the enhanced structure changes with changing composition of the investigated samples and correlate the results with the measured electrical parameters.

  10. Free volume studies of various polymeric systems using positron annihilation and PVT-EOS analyses

    NASA Astrophysics Data System (ADS)

    Kaushik, Mukul

    The glass transition phenomenon and free volume behavior below and above the glass transition temperature of various polymeric systems have been investigated. Several novel polymeric systems were considered for this study. Two generations of hyperbranched polyols, H40 and H20, were selected due to large number of hydroxyl groups on the periphery and within the bulk. The effect of hydrogen bonds and molecular weight was related with the glass transition and free volume behavior for the whole range of experimental temperature. The free volume behavior was experimentally studied using PVT and PALS to determine occupied volume, fractional free volume and number density of holes. Molecular dynamic simulation was performed to compare atmospheric pressure V-T data and visualize hydrogen bond structures. Linear as well as crosslinked isomeric polymers were selected for the study of isomerism on glass transition and free volume. Isomers were selected based on para and meta substitution on phenylene ring in the polymer repeat unit. In this way the polymer chemical composition was kept the same and only architecture was varied. Two linear polymers based on isomeric repeat unit, polyethylene terephthalate (para) and polyethylene isophthalate (meta), and five sets of epoxy networks prepared using isomeric diamine crosslinkers, 3,3'-DDS and 4,4'-DDS were used. The crosslinked networks followed the same trend of glass transitions and free volume properties as in linear polymers. The glass transition temperatures of para isomer based linear polymers and epoxy-amine networks were higher. It was observed for linear polymers as well as for all networks that para isomer generates structure with higher amount of free volume in the glassy state; however, in the rubbery state they are the same. Free volume studies were further extended for solvent uptake in epoxy-amine networks to correlate hole free volume and van der Waals volume of solvent. The higher frozen in free volume in all para isomers leads to higher solvent uptake as compared to meta isomers. Pressure-volume-temperature (PVT) data were used to calculate occupied volume and fractional free volume using Simha-Somcynsky (S-S) Equation of State (EOS). PALS was utilized to evaluate average hole free volume for a wide range of temperature. Both PALS and PVT were utilized to evaluate occupied volume and hole number density. The PVT fractional free volume was also correlated with positron annihilation lifetime spectroscopy (PALS) hole free volume, v3, and ortho-positronium formation intensity, I 3, to calculate the correlation coefficient, C.

  11. Positron annihilation spectroscopy: a new frontier for understanding nanoparticle-loaded polymer brushes

    NASA Astrophysics Data System (ADS)

    Panzarasa, Guido; Aghion, Stefano; Soliveri, Guido; Consolati, Giovanni; Ferragut, Rafael

    2016-01-01

    Nanoparticle-loaded polymer brushes are powerful tools for the development of innovative devices. However, their characterization is challenging and arrays of different techniques are typically required to gain sufficient insight. Here we demonstrate for the first time the suitability of positron annihilation spectroscopy (PAS) to investigate, with unprecedented detail and without making the least damage to samples, the physico-chemical changes experienced by pH-responsive polymer brushes after protonation and after loading of silver nanoparticles. One of the most important findings is the depth profiling of silver nanoparticles inside the brushes. These results open up a completely new way to understand the structure and behavior of such complex systems.

  12. Dynamics of Defects in X-Ray Irradiated Alkali Chloride Crystals Studied by Positron Annihilation.

    NASA Astrophysics Data System (ADS)

    Stern, Stanley Hy.

    This thesis reports first data on the time dependence of positron-electron annihilation characteristics in single crystals of the homologous series NaCl, KCl, RbCl, and CsCl after large doses of x irradiation. A new instrument, the (pi)-radian coincidence apparatus (PICA), recorded the coincidence count rate P of the two 0.5-MeV annihilation (gamma) rays emerging 180(DEGREES) apart from the crystal during isothermal and isochronal heating conditions. In most crystals one observes an initial rapid increase of P to a maximum followed by a slow decline toward the coincidence count rate corresponding to the pre-irradiation state of the crystal. Positron-annihilation data were completed by independent measurements of the optical absorption in KCl and NaCl crystals after various durations of isothermal heating. Absorption spectrophotometry revealed enhancement of the M band in KCl, of the R and N bands in NaCl, at the expense of the F band during the interval of increasing P. The PICA results are consistent with the interpretation that positrons are trapped by radiation-induced color centers in which they annihilate with a higher P than in the bulk of the crystal. The dynamics associated with the incipient rise of P during the initial heating period is attributable to the agglomeration of F centers into aggregate centers. The rise times of P give access to the diffusion rates for agglomeration. At equal temperatures, we observe a strong dependence of the rate of defect diffusion on the size of the cation. For example, it is 100 times faster in CsCl than in NaCl at 120(DEGREES)C. The data must be corrected for the effects of decoloration of the crystals by the positrons during the measurements. Activation energies for defect diffusion annealing are extracted. They test the hypotheses underlying the theories of macroscopic transport properties in these crystals in that they are indicative of the dominant microscopic lattice processes and their dependence on the crystal composition.

  13. The effect of vacancies on the microwave surface resistance of niobium revealed by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Romanenko, A.; Edwardson, C. J.; Coleman, P. G.; Simpson, P. J.

    2013-06-01

    Using variable-energy positron annihilation spectroscopy, we demonstrate that a different near-surface vacancy concentration accompanies drastic differences in surface resistance of superconducting niobium cavities for particle acceleration. Our data suggest that vacuum baking at 120 °C leads to the doping of a near-surface layer with vacancy-hydrogen complexes, and that higher vacancy-type defect concentration distinguishes electropolished from chemically etched cavities. Our findings may help to explain a strong dependence of cavity performance on heat and chemical treatments, and may be of interest to other physics fields including cavity quantum electrodynamics (QED), microresonators, and single photon detectors.

  14. Positron annihilation and thermoluminescence studies of thermally induced defects in ?-Al2O3 single crystals

    NASA Astrophysics Data System (ADS)

    Muthe, K. P.; Sudarshan, K.; Pujari, P. K.; Kulkarni, M. S.; Rawat, N. S.; Bhatt, B. C.; Gupta, S. K.

    2009-05-01

    ?-Al2O3 crystals were subjected to different thermal treatments at a temperature of 1500 C in a strongly reducing ambience of carbon and vacuum. Positron annihilation spectroscopy (PAS) and thermally stimulated luminescence (TL) studies were carried out to understand the nature of defects generated. Results show the presence of aluminium vacancies in crystals annealed in vacuum. On annealing in the presence of graphite, ingress of carbon in these vacancies is indicated by different PAS measurements. A simultaneous enhancement of dosimetry properties has been observed. The study provides evidence that association of carbon with aluminium vacancies helps in creation of effective dosimetry traps.

  15. Positron annihilation spectroscopy techniques applied to the study of an HPGe detector

    SciTech Connect

    Nascimento, E. do; Vanin, V. R.; Maidana, N. L.; Silva, T. F.; Rizzutto, M. A.; Fernandez-Varea, J. M.

    2013-05-06

    Doppler Broadening Spectroscopy of the large Ge crystal of an HPGe detector was performed using positrons from pair production of 6.13 MeV {gamma}-rays from the {sup 19}F(p,{alpha}{gamma}){sup 16}O reaction. Two HPGe detectors facing opposite sides of the Ge crystal acting as target provided both coincidence and singles spectra. Changes in the shape of the annihilation peak were observed when the high voltage applied to the target detector was switched on or off, amounting to somewhat less than 20% when the areas of equivalent energy intervals in the corresponding normalized spectra are compared.

  16. Gamma-ray lines from novae. [relationship to radioactive decay and positron annihilation

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Hoyle, F.

    1974-01-01

    An appropriate gamma-ray telescope could detect the gamma-rays associated with radioactive decays. The observable lines would be the annihilation radiation following the positron emission of N-13, O-14, O-15, and Na-22 and the 2.312-MeV line emitted following the O-14 decay and the 1.274-MeV line emitted following the Na-22 decay. The experimental possibility should be borne in mind for the occurrence of novae within a few kiloparsecs.

  17. The influence of microstructure on the sintering process in crystalline metal powders investigated by positron lifetime spectroscopy: II. Tungsten powders with different powder-particle sizes

    NASA Astrophysics Data System (ADS)

    Staab, T. E. M.; Krause-Rehberg, R.; Vetter, B.; Kieback, B.; Lange, G.; Klimanek, P.

    1999-02-01

    Compacts of tungsten powder with five different powder-particle sizes (from 0953-8984/11/7/010/img7 to 0953-8984/11/7/010/img8) are subjected to pressureless sintering. We investigate the change in microstructure during the sintering process by positron lifetime spectroscopy. So as to be able to distinguish between defects having the same positron lifetime, we investigate their kinetics when the sample is annealed. In particular, we consider the annealing out of vacancy clusters after low-temperature electron irradiation, as well as recovery and recrystallization of a tungsten sheet, in as-manufactured form. Making measurements on uncompacted powder, we find an increasing fraction of positrons annihilating in surface states with decreasing powder-particle size. The powder-particle and grain sizes (influencing the x-ray domain size) are monitored additionally by means of metallography and x-ray diffraction. We find that all of the methods give results in agreement with each other. The small grain sizes at lower temperature, about one fifth of the powder-particle size, cause positrons to annihilate at grain boundaries, leading to vacancy-cluster-like signals. At the intensive-shrinkage stage, there are certainly contributions from different shrinkage mechanisms. The observed shrinkage rates can be explained by Coble creep. It is possible that dislocations also play a role as vacancy sources and sinks, since the intensive-shrinkage stage occurs in a temperature region wherein recrystallization takes place.

  18. Thermal annealing of C ion irradiation defects in nuclear graphite studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Shi, C. Q.; Schut, H.; Li, Z. C.

    2016-01-01

    In order to investigate the thermal behaviour of radiation induced point defects in nuclear graphite, ETU10 graphite was implanted with 350 keV C+ ion to doses of 1015 and 1016 cm-2. The point defects introduced by the implantation were characterized by Positron Annihilation Doppler Broadening (PADB) and their thermal behaviour was studied during in situ annealing at Delft Variable Energy Positron beam (VEP). The annealing was performed for 5 minutes at temperatures ranging from 300 K (as implanted) to 1500 K in steps of 100 K. For both doses, an annealing stage at around 450 K is observed followed by a second stage around 700 K. For the high dose implantation vacancy complexes are found which are stable up to a temperature around 1400K.

  19. Study of microvoids in high-rate a-Si:H using positron annihilation

    SciTech Connect

    Zou, X.; Webb, D.P.; Lin, S.H.; Lam, Y.W.; Chan, Y.C.; Hu, Y.F.; Beling, C.D.; Fung, S.

    1997-07-01

    In this paper, the authors have carried out the positron annihilation measurement on high-rate and low-rate a-Si:H thin films deposited by PECVD. By means of the slow positron beam Doppler-broadening technique, the depth profiles of microvoids in a-Si:H have been determined. They have also studied the vacancy-type defect in the surface region in high-rate grown a-Si:H, making comparison between high-rate and low-rate a-Si:H. By plotting S and W parameters in the (S, W) plane, they have shown that the vacancies in all of the high-rate and low-rate deposited intrinsic samples, and in differently doped low-rate samples are of the same nature.

  20. Internal structure and positron annihilation in the four-body MuPs system

    NASA Astrophysics Data System (ADS)

    Frolov, Alexei M.

    2015-02-01

    A large number of bound state properties of the four-body muonium-positronium system MuPs (or ? + e - 2 e +) are determined to high accuracy. Based on these expectation values we predict that the weakly-bound four-body MuPs system has the `two-body' cluster structure Mu + Ps. The two neutral clusters Mu ( ? + e -) and Ps ( e + e -) interact with each other by the attractive van der Waals forces. By using our expectation values of the electron-positron delta-functions we evaluated the half-life ? a of the MuPs system against annihilation of the electron-positron pair: ?a = 1/? ? 4.071509 10-10 s. The hyperfine structure splitting of the ground state in the MuPs system evaluated with our expectation values is ? ? 23.064(5) MHz.

  1. Defect Density Mapping of Shot Peened Materials Using Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gagliardi, Marcus A.; Hunt, Alan W.

    2009-03-01

    Shot peening is a technique used in industry to increase the fatigue life of components by creating compressive residual stresses in the near surface region. This compressive stress is pinned in the material by defects such as dislocations and monovacancies to which positrons are sensitive. Using a 22Na source S-parameter measurements were made using positron annihilation spectroscopy (PAS) on both non-peened and peened copper coupons. These measurements show that a correlation exists between copper coupons shot peened at different intensities that in principal can be used for verification of shot intensity. Finally a relative defect density map was produced to show that the shot peening uniformity can also be measured across the surface of a large component.

  2. Assay of weathering effects on protective polymer coatings using positron annihilation spectroscopy

    SciTech Connect

    Hulett, L.D. Jr.; Wallace, S.; Xu, Jun; Nielsen, B.; Szeles, Cs.; Lynn, K.G.; Pfau, J.; Schaub, A.

    1995-02-01

    Polymer coatings, both with and without pigments, have been subjected to solar radiation and water spray weathering. The degrees of penetration of the weathering effects have been measured by injecting positrons of varying energy, i.e. to variable depths, into the films and observing the Doppler broadening of the annihilation radiation. The method is capable of detecting changes due to weathering effects at very early stages, long before visual examination reveals degradation. As little as one week of exposure caused measurable changes in the polymer structure, which were reflected in the Doppler broadening. Given further development, positron spectroscopy could possibly become a useful complement to the other methods of determining weatherabilities of protective polymer coatings.

  3. Computational studies of positron states and annihilation parameters in semiconductors vacancy-type defects in group-III nitrides

    NASA Astrophysics Data System (ADS)

    Ishibashi, S.; Uedono, A.

    2016-01-01

    We have computationally studied positron sates and annihilation parameters in semiconductors, especially in group-III nitrides. A random alloy system In0.5Ga0.5N was model with the special-quasirandom-structure scheme and distributions of annihilation parameters for cation monovacancies and divacancies were investigated. On GaN, we calculated annihilation parameters considering spin polarization for Ga vacancies with various charge sate and demonstrated how the positron annihilation technique is useful to study defect-induced or mediated magnetism in dilute magnetic semiconductors. We also made calculations based on the two-component density functional theory and compared their results with those obtained by the conventional scheme.

  4. Modification of steel surfaces induced by turning: non-destructive characterization using Barkhausen noise and positron annihilation

    NASA Astrophysics Data System (ADS)

    ?ek, J.; Nesluan, M.; ?illikov, M.; Mi?ietov, A.; Melikhova, O.

    2014-11-01

    This paper deals with the characterization of sub-surface damage caused by the machining of 100Cr6 roll bearing steel. The samples turned using tools with variable flank wears were characterized by two non-destructive techniques sensitive to defects introduced by plastic deformation: magnetic Barkhausen noise and positron annihilation. These techniques were combined with light and electron microscopy, x-ray diffraction and microhardness testing. The results of the experiment showed that damage in the sub-surface region increases with increasing flank wear, but from a certain critical value dynamic recovery takes place. The intensity of Barkhausen noise strongly decreases with increasing flank wear due to the increasing density of the dislocations pinning the Bloch walls and suppressing their motion. This was confirmed by positron annihilation spectroscopy, which enables the determination of the dislocation density directly. Hence, a good correlation between Barkhausen noise emission and positron annihilation spectroscopy was found.

  5. Tuning porosity of silica films by using various surfactants and changing their loading: A study of positron annihilation Doppler broadening based on a slow positron beam

    NASA Astrophysics Data System (ADS)

    Xiong, Bangyun; Mao, Wenfeng; He, Chunqing

    2013-06-01

    Porous silica films were synthesized via a sol-gel method using a nonionic amphiphilic triblock copolymer (F127) and a cationic surfactant (CTAB) as the structural templates with varying weight ratio. Positron annihilation Doppler broadening spectroscopy based on a slow positron beam was used to study the prepared silica films. For the porous silica films, the S parameter increased gradually with increasing the surfactant loading, which showed that higher porosity was introduced in the silica films with more porogen amount.

  6. Interstitial oxygen related defects and nanovoids in Au implanted a-SiO2 glass depth profiled by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Ravelli, L.; Macchi, C.; Mariazzi, S.; Mazzoldi, P.; Egger, W.; Hugenschmidt, C.; Somoza, A.; Brusa, R. S.

    2015-12-01

    Samples of amorphous silica were implanted with Au ions at an energy of 190 keV and fluences of 1 {{10}14} ions cm?2and 5 {{10}14} ions cm?2 at room temperature. The damage produced by ion implantation and its evolution with the thermal treatment at 800 C for one hour in nitrogen atmosphere was depth profiled using three positron annihilation techniques: Doppler broadening spectroscopy, positron annihilation lifetime spectroscopy and coincidence Doppler broadening spectroscopy. Around the ion projected range of {{R}\\text{p}}=67 nm, a size reduction of the silica matrix intrinsic nanovoids points out a local densification of the material. Oxygen related defects were found to be present at depths four times the ion projected range, showing a high mobility of oxygen molecules from the densified and stressed region towards the bulk. The 800 C thermal treatment leads to a recovery of the silica intrinsic nanovoids only in the deeper damaged region and the defect distribution, probed by positrons, shrinks around the ion projected range where the Au atoms aggregate. Open volume defects at the interface between Au and the amorphous matrix were evidenced in both the as implanted and in the thermal treated samples. A practically complete disappearance of the intrinsic nanovoids was observed around {{R}\\text{p}} when the implantation fluence was increased by two orders of magnitude (3 {{10}16} ions cm?2). In this case, the oxygen defects move to a depth five times larger than {{R}\\text{p}} .

  7. An investigation of molecular structure of copolymers using positron annihilation spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; St.clair, T. L.; Holt, W. H.; Mock, W., Jr.

    1985-01-01

    Positron lifetime measurements were made in copolyimides synthesized from linear 4,4 prime-bis(3,4-dicarboxyphenoxy) diphenylsulfide dianhydride (BDSDA)/4,4 prime-diaminodiphenyl (ODA) and BDSDA/1,3-diaminobenzene (m-phenylene diamine) homopolymers. The probability of positronium formation as well as its subsequent lifetime are lower in the BDSDA/ODA/MPD (50-50) copolyimide, indicating the presence of a transition molecular architecture characterized by higher electron density and stronger bonds which permit both chemical as well as physical entry of water molecules into it. The presence of this transition region imparts unique physical and mechanical properties to the copolyimide.

  8. Effect of thermal treatment condition on the Ag precipitates in Al-Ag alloy studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Zhang, Q. K.; Zou, B.; Li, X. F.; Chen, Z. Y.; Chen, Z. Q.; Liu, H. Q.; Yi, D. Q.

    2015-09-01

    Formation of Ag precipitates in an Al-1 wt%Ag alloy after aging at different temperatures was studied by positron annihilation spectroscopy. It is found that the aggregation of Ag atoms takes place during natural aging process after the Al-Ag alloy was homogenized at 550 C and quenched to room temperature water. The Ag nanoclusters could trap positrons and thus positron annihilation measurements give information on the precipitation of Ag atoms. After artificial aging at 120 C, the Ag signal is enhanced, which indicates further aggregation of Ag atoms. However, after artificial aging of the sample at 200 C, no Ag nanoclusters are observed. Instead, the quenched-in vacancies show gradual recovery during this aging process. This is probably due to the dissolving of Ag clusters into Al matrix at 200 C. Furthermore, after the sample was first heat treated at 200 C and then aged at 120 C, Ag nanoclusters appear again. This implies that the formation of Ag precipitates during natural aging process is assisted by the quenched-in vacancies. Temperature dependence of the positron annihilation measurements indicates that Ag nanoclusters are shallow positron traps, which makes it difficult to observe the real-time Ag precipitation formation by positrons during artificial aging of Al-Ag alloy.

  9. A slow positron beam generator for lifetime studies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; St.clair, Terry L.

    1989-01-01

    A slow positron beam generator using well-annealed polycrystalline tungsten moderators and a Na-22 positron source was developed. A 250 micro c source, deposited on a 2.54 micron thick aluminized mylar, is sandwiched between two (2.54 cm x 2.54 cm x 0.0127 cm) tungsten pieces. Two (2.54 cm x 2.54 cm x t cm) test polymer films insulate the two tungsten moderator pieces from the aluminized mylar source holder (t=0.00127 to 0.0127). A potential difference of 10 to 100 volts--depending on the test polymer film thickness (t)--is applied between the tungsten pieces and the source foil. Thermalized positrons diffusing out of the moderator pieces are attracted to the source foil held at an appropriate potential below the moderator pieces. These positrons have to pass through the test polymer films before they can reach the source foil. The potential difference between the moderator pieces and the aluminized mylar is so adjusted as to force the positrons to stop in the test polymer films. Thus the new generator becomes an effective source of positrons for assaying thin polymer films for their molecular morphology.

  10. Precipitation Behavior Investigated Through Positron Annihilation in Sc-doped Al-6Mg Followed by the Effects of Zr-addition

    NASA Astrophysics Data System (ADS)

    Sen, R.; Nambissan, P. M. G.; Mitra, M. K.; Banerjee, M. K.

    Phase decomposition in Al-6Mg alloy doped with Sc up to 0.6 wt.% was first investigated through positron lifetime and coincidence Doppler broadening spectroscopic (CDBS) measurements. The results varied significantly with the degrees of doping and heat treatment conditions due to the entrapment and annihilation of positrons at vacancies and lattice irregularities like coherent and semi-coherent precipitate-matrix interfaces. Sc-vacancy complexes helped in fine scale precipitation of Al3Sc during the annealing. The substructure stabilization is effected more at low annealing temperature and shorter annealing times. The precipitation behaviour in 0.2 wt.% Zr-doped Al-6Mg-0.4Sc alloy under different annealing conditions was also studied. Although Sc has better diffusivity in Al-6Mg than Zr, the latter appeared to be an ideal additive to generate new precipitates of the form Al3Sc1-xZrx and the differences are reflected in the positron lifetimes and CDBS ratio curves. Transmission electron microscopy showed spheroidal precipitates with complete absence of facets, implying the modification of the surface morphology of the precipitates.

  11. Positron annihilation spectroscopy of vacancy-related defects in CdTe:Cl and CdZnTe:Ge at different stoichiometry deviations

    NASA Astrophysics Data System (ADS)

    Šedivý, L.; Čížek, J.; Belas, E.; Grill, R.; Melikhova, O.

    2016-02-01

    Positron annihilation spectroscopy (PAS) was used to examine the effect of defined Cd-rich and Te-rich annealing on point defects in Cl-doped CdTe and Ge-doped CdZnTe semi-insulating single crystals. The as-grown crystals contain open-volume defects connected with Cd vacancies . It was found that the Cd vacancies agglomerate into clusters coupled with Cl in CdTe:Cl, and in CdZnTe:Ge they are coupled with Ge donors. While annealing in Cd pressure reduces of the density, subsequent annealing in Te pressure restores . The CdTe:Cl contains negatively-charged shallow traps interpreted as Rydberg states of A-centres and representing the major positron trapping sites at low temperature. Positrons confined in the shallow traps exhibit lifetime, which is shorter than the CdTe bulk lifetime. Interpretation of the PAS data was successfully combined with electrical resistivity, Hall effect measurements and chemical analysis, and allowed us to determine the principal point defect densities.

  12. The influence of twinning in YBa/sub 2/Cu/sub 3/O/sub 7/ on positron annihilation parameters

    SciTech Connect

    Usmar, S.G.; Lynn, K.G.; Moodenbaugh, A.R.; Suenaga, M.; Sabatini, R.L.

    1988-01-01

    Positron annihilation spectroscopy has been applied to the study of the high temperature superconductor YBa/sub 2/Cu/sub 3/O/sub 7/minus/delta/; delta = 0.1. Both positron lifetime and Doppler line shape measurements have been completed. Initial experiments revealed a correlation between a decrease in the line shape parameter S and the superconducting transition temperatures (T/sub c/) of YBa/sub 2/Cu/sub 3/O/sub 7/ (T/sub c/ = 90 K) and YBa/sub 2/Cu/sub 3/O/sub 6.6/ (T/sub c/ = 46 K). In YBa/sub 2/Cu/sub 3/O/sub 7/ the positron lifetime was also found to decrease at and below T/sub c/. More recent work revealed a different temperature dependence for the Doppler line shape parameter S. The physical origin of these samples dependent differences and their relevance to superconductivity is under investigation. Preliminary work suggest the differences be related to crystal twinning. 11 refs., 2 figs., 3 tabs.

  13. Positron annihilation spectroscopy of vacancy-related defects in CdTe:Cl and CdZnTe:Ge at different stoichiometry deviations

    PubMed Central

    Šedivý, L.; Čížek, J.; Belas, E.; Grill, R.; Melikhova, O.

    2016-01-01

    Positron annihilation spectroscopy (PAS) was used to examine the effect of defined Cd-rich and Te-rich annealing on point defects in Cl-doped CdTe and Ge-doped CdZnTe semi-insulating single crystals. The as-grown crystals contain open-volume defects connected with Cd vacancies . It was found that the Cd vacancies agglomerate into clusters coupled with Cl in CdTe:Cl, and in CdZnTe:Ge they are coupled with Ge donors. While annealing in Cd pressure reduces of the density, subsequent annealing in Te pressure restores . The CdTe:Cl contains negatively-charged shallow traps interpreted as Rydberg states of A-centres and representing the major positron trapping sites at low temperature. Positrons confined in the shallow traps exhibit lifetime, which is shorter than the CdTe bulk lifetime. Interpretation of the PAS data was successfully combined with electrical resistivity, Hall effect measurements and chemical analysis, and allowed us to determine the principal point defect densities. PMID:26860684

  14. On-ground detection of an electron-positron annihilation line from thunderclouds

    NASA Astrophysics Data System (ADS)

    Umemoto, D.; Tsuchiya, H.; Enoto, T.; Yamada, S.; Yuasa, T.; Kawaharada, M.; Kitaguchi, T.; Nakazawa, K.; Kokubun, M.; Kato, H.; Okano, M.; Tamagawa, T.; Makishima, K.

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ˜60 s. The spectrum of this prolonged emission reached ˜10 MeV, and contained a distinct line emission at 508 ±3 (stat .)±5 (sys .) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (˜80 keV) , and contained 520 ±50 photons which amounted to ˜10 % of the total signal photons of 5340 ±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280 ±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  15. Accounting for the lack of nano-effect in a thermoset/clay nanocomposite: A positron annihilation study

    NASA Astrophysics Data System (ADS)

    Rath, S. K.; Sudarshan, K.; Patri, M.; Pujari, P. K.

    2015-06-01

    The effect of nanoclay dispersion on the thermo-mechanical properties of an unsaturated polyester thermoset resin was studied by flexural and dynamic mechanical property measurements. Transmission electron microscopy studies revealed intercalated clay dispersion morphology in the nanocomposites. The thermomechanical measurements showed a steady decrease in the flexural strength and a relaxation temperature, with only moderate increase in the storage modulus at 1% clay loading, followed by a drop at higher clay loadings. In order to understand the absence of nano-effect in this case, free volume measurements were carried out by using positron annihilation lifetime spectroscopy. A bimodal distribution of o-Ps life times was observed. Nanoclay loading resulted in the increase of the o-Ps intensity corresponding to the longest life time as well as free volume fraction suggesting diminished chain packing efficiency in the nanocomposites. We posit that nanoclay induced decreased chain packing efficiency and the presence of higher free volume size elements might cause deterioration in mechanical properties of the nanocomposites.

  16. A study of defects in iron-based binary alloys by the Mssbauer and positron annihilation spectroscopies

    SciTech Connect

    Idczak, R. Konieczny, R.; Chojcan, J.

    2014-03-14

    The room temperature positron annihilation lifetime spectra and {sup 57}Fe Mssbauer spectra were measured for pure Fe as well as for iron-based Fe{sub 1?x}Re{sub x}, Fe{sub 1?x}Os{sub x}, Fe{sub 1?x}Mo{sub x}, and Fe{sub 1?x}Cr{sub x} solid solutions, where x is in the range between 0.01 and 0.05. The measurements were performed in order to check if the known from the literature, theoretical calculations on the interactions between vacancies and solute atoms in iron can be supported by the experimental data. The vacancies were created during formation and further mechanical processing of the iron systems under consideration so the spectra mentioned above were collected at least twice for each studied sample synthesized in an arc furnace after cold rolling to the thickness of about 40??m as well as after subsequent annealing at 1270?K for 2 h. It was found that only in Fe and the Fe-Cr system the isolated vacancies thermally generated at high temperatures are not observed at the room temperature and cold rolling of the materials leads to creation of another type of vacancies which were associated with edge dislocations. In the case of other cold-rolled systems, positrons detect vacancies of two types mentioned above and Mssbauer nuclei see the vacancies mainly in the vicinity of non-iron atoms. This speaks in favour of the suggestion that in iron matrix the solute atoms of Os, Re, and Mo interact attractively with vacancies as it is predicted by theoretical computations and the energy of the interaction is large enough for existing the pairs vacancy-solute atom at the room temperature. On the other hand, the corresponding interaction for Cr atoms is either repulsive or attractive but smaller than that for Os, Re, and Mo atoms. The latter is in agreement with the theoretical calculations.

  17. A study of defects in iron-based binary alloys by the Mssbauer and positron annihilation spectroscopies

    NASA Astrophysics Data System (ADS)

    Idczak, R.; Konieczny, R.; Chojcan, J.

    2014-03-01

    The room temperature positron annihilation lifetime spectra and 57Fe Mssbauer spectra were measured for pure Fe as well as for iron-based Fe1-xRex, Fe1-xOsx, Fe1-xMox, and Fe1-xCrx solid solutions, where x is in the range between 0.01 and 0.05. The measurements were performed in order to check if the known from the literature, theoretical calculations on the interactions between vacancies and solute atoms in iron can be supported by the experimental data. The vacancies were created during formation and further mechanical processing of the iron systems under consideration so the spectra mentioned above were collected at least twice for each studied sample synthesized in an arc furnace after cold rolling to the thickness of about 40 ?m as well as after subsequent annealing at 1270 K for 2 h. It was found that only in Fe and the Fe-Cr system the isolated vacancies thermally generated at high temperatures are not observed at the room temperature and cold rolling of the materials leads to creation of another type of vacancies which were associated with edge dislocations. In the case of other cold-rolled systems, positrons detect vacancies of two types mentioned above and Mssbauer nuclei "see" the vacancies mainly in the vicinity of non-iron atoms. This speaks in favour of the suggestion that in iron matrix the solute atoms of Os, Re, and Mo interact attractively with vacancies as it is predicted by theoretical computations and the energy of the interaction is large enough for existing the pairs vacancy-solute atom at the room temperature. On the other hand, the corresponding interaction for Cr atoms is either repulsive or attractive but smaller than that for Os, Re, and Mo atoms. The latter is in agreement with the theoretical calculations.

  18. Positron annihilation studies of fluorine-vacancy complexes in Si and SiGe

    SciTech Connect

    Edwardson, C. J.; Coleman, P. G.; El Mubarek, H. A. W.; Gandy, A. S.

    2012-04-01

    The formation of fluorine-vacancy (FV) complexes in strained Si-SiGe-Si multilayer structures and relaxed SiGe layers of varying Ge content has been investigated using variable-energy positron annihilation spectroscopy, including Doppler-broadened spectra ratio curves. It has been found that in all sample types there are two distinct regions defined only by the damage created by the implanted F ions. The first, shallower region (from the surface to a depth of {approx}200 nm) was found to contain a mixture of undecorated vacancies and FV complexes; there is no correlation between the vacancy or F concentration in this region and the Ge content. The multi-layer samples may also have O contamination that is not present in the relaxed samples. The second region (at depths {approx}200-440 nm) contains primarily FV complexes in all samples. In the multi-layer samples secondary ion mass spectrometry (SIMS) results show peaks of F accumulating in, or at the interfaces of, each SiGe multi-layer; the FV complexes, however, are distributed over depths similar to those in the relaxed samples, with some localization at the SiGe layer located within the second region. The positron response is primarily to FV complexes formed by the F implant in all samples. The F: FV ratios are approximately 3-7: 1 in the relaxed samples. Positrons appear to be relatively insensitive to the largest of the F SIMS peaks which lies beyond the second region. This is probably because the F has filled all the open volume at the SiGe layer, leaving no positron trapping sites.

  19. Determination of the vacancy formation enthalpy in chromium by positron annihilation

    SciTech Connect

    Loper, G.D.; Smedskjaer, L.C.; Chason, M.K.; Siegel, R.W.

    1985-01-01

    Doppler broadening of the positron annihilation lineshape in 99.99 at. % pure chromium was measured over the temperature range 296 to 2049/sup 0/K. The chromium sample was encapsulated in sapphire owing to its high vapor pressure near melting. Saturation-like behavior of the lineshape was observed near the melting temperature (2130/sup 0/K). A two-state trapping model fit to the data yielded a vacancy formation enthalpy of 2.0 +- 0.2 eV. This result is discussed in relation to extant empirical relations for vacancy migration and self-diffusion in metals and to data from previous self-diffusion and annealing experiments in chromium. It is concluded that the observed vacancy ensemble is unlikely to be responsible for the measured self-diffusion behavior. The implications of the present results in terms of our understanding of mechanisms for self-diffusion in chromium and other refractory bcc metals are discussed.

  20. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2015-06-01

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  1. PREFACE: The 16th International Conference on Positron Annihilation (ICPA-16)

    NASA Astrophysics Data System (ADS)

    Alam, Ashraf; Coleman, Paul; Dugdale, Stephen; Roussenova, Mina

    2013-06-01

    The 16th International Conference on Positron Annihilation (ICPA-16) was held at the University of Bristol, United Kingdom during 19-24 August, 2012. This triennial conference is the foremost gathering of the Positron Annihilation Physics community and it was hosted in the UK for the first time since the series of meetings first started back in 1965. The University of Bristol, the Alma Mater of Paul Dirac, is situated at the heart of the city, and it has established a worldwide reputation in research and teaching. Many of the topics which were discussed during ICPA-16 form an integral part of the research themes in the schools of Physics, Chemistry and Engineering of this University. ICPA-16 attracted a diverse audience, both from academic and industrial institutions, with over 200 participants from 29 countries. It continued the long held tradition of showcasing novel research in the field of positron annihilation and a total of 170 papers were presented as talks and posters. The papers reported studies of metallic and semi-conducting solids, polymers and soft matter, porous materials, surfaces and interfaces, as well as advances in experimental, analytical and biomedical applications. The high quality of the presented work, coupled with the enthusiastic exchange of ideas, provided an invaluable forum, especially for younger researchers and postgraduate students. The excellence of student presentations was acknowledged by the award of prizes for the best student posters, which were received by David Billington (University of Bristol, UK), Moussa Sidibe (CEMHTI, France) and Hongxia Xu (Tohoku University, Japan). All papers published in the Conference Proceedings were reviewed by ICPA-16 participants. We are indebted to all reviewers who contributed their time and intellectual resources, allowing the refereeing and editing process to move smoothly toward the compilation of the Proceedings. Our sincere thanks and gratitude go to everyone who contributed to the success of the conference. We are grateful to all participants for their informative talks, poster presentations and fruitful discussions; the session chairs for keeping to the tight time schedule and for making sure the oral presentation sessions ran smoothly; Maria Dugdale for her time and effort in organising the social programme for the accompanying persons; the student volunteers from the Bristol Positron Group for all their help and time before, during and after the conference; the Bath positron group for helping with the organisation of the excursion and last, but not least, the University of Bristol Conference Office staff for their help with the organisation of the conference. We are also very grateful for the financial and logistical help from the University of Bristol and financial support from our sponsors and exhibitors, Ortec and Canberra. We conclude by wishing the Organising Committee of ICPA-17 all the best for a successful conference. We look forward to seeing everyone in China in 2015. Ashraf Alam, Paul Coleman, Stephen Dugdale and Mina Roussenova Guest Editors Bristol, April 2013 Local organising committeeInternational Advisory committee M A Alam, S Dugdale and M Roussenova P Coleman (UK, Chairman) University of Bristol, UK R Krause-Rehberg(Germany, Vice-chairman) P Coleman and S Townrow M A Alam (UK) University of Bath, UK G Laricchia (UK) M Charlton R Brusa (Italy) University of Swansea, UK M Doyama (Japan) G Laricchia B Ganguly (India) University College London, UK C Hugenschmidt (Germany) D Keeble Zs Kajcsos (Hungary, deceased) University of Dundee, UK Y Kobayashi (Japan) J Kuriplach (Czech Republic) P Mascher (Canada) A Mills (USA) Y Nagashima (Japan) Steering committee M Puska (Finland) M A Alam (UK, Secretary) H Schut (Netherlands) P Coleman (UK) A Seeger (Germany) B Ganguly (India) Y Shirai (Japan) Y Kobayashi (Japan) A Somoza (Argentina) P Mascher (Canada) A Stewart (Canada) H Schut (Netherlands) Z Tang (China) R Krause-Rehberg (Germany) A Weiss (USA) Sponsor logos Conference photograph

  2. Free volume and phase transitions of 1-butyl-3-methylimidazolium based ionic liquids from positron lifetime spectroscopy.

    PubMed

    Yu, Yang; Beichel, Witali; Dlubek, Gnter; Krause-Rehberg, Reinhard; Paluch, Marian; Pionteck, Jrgen; Pfefferkorn, Dirk; Bulut, Safak; Friedrich, Christian; Pogodina, Natalia; Krossing, Ingo

    2012-05-21

    Positron annihilation lifetime spectroscopy (PALS) was used to study a series of ionic liquids (ILs) with the 1-butyl-3-methylimidazolium cation ([C4MIM](+)) but different anions [Cl](-), [BF4](-), [PF6](-), [OTf](-), [NTf2](-), and [B(hfip)4](-) with increasing anion volumes. Changes of the ortho-positronium (o-Ps) lifetime parameters with temperature were observed for crystalline and amorphous (glass, supercooled, and normal liquid) states. Evidence for distinct phase transitions, e.g. melting, crystallization and solid-solid transitions, was observed in several PALS experiments. The o-Ps mean lifetime ?3 showed smaller values in the crystalline phase due to dense packing of the material compared to the amorphous phase. The o-Ps lifetime intensity I3 in the liquid state is clearly smaller than in the crystallized state. This behaviour can be attributed to a solvation of e(+) by the anions, which reduces the Ps formation probability in the normal and supercooled liquid. These phenomena were observed for the first time when applying the PALS technique to ionic liquids by us in one preliminary and in this work. Four of the ionic liquids investigated in this work ([BF4](-), [NTf2](-), [PF6](-) and [Cl](-) ILs) exhibit supercooled phases. The specific hole densities and occupied volumes of those ILs were obtained by comparing the local free volume with the specific volume from pressure-volume-temperature (PVT) experiments. From the o-Ps lifetime, the mean size vh of free volume holes of the four samples was calculated and compared with that calculated according to Frth's hole theory. The hole volumes from both methods agree well. From the Cohen-Turnbull fitting of viscosity and conductivity against PALS/PVT results, the influence of the free volume on molecular transport properties was investigated. PMID:22472912

  3. Positron Lifetime Measurements of Subsurface Region in Aluminium Alloy and Aluminium Alloy Composite after Dry Sliding

    NASA Astrophysics Data System (ADS)

    Dryzek, E.

    2005-05-01

    This paper presents positron lifetime studies of the subsurface region of AK12 aluminium alloy and Al2O3-particle-reinforced AK12 aluminium alloy composite after sliding against steel in the pin-on-disc machine. The defect depth profile detected in the AK12 alloy extended up to 300?m but for the composite AK12 the range of this profile was significantly shortened to less than90?m. The positron lifetime dependence on depth evidences a steep gradient of defect concentration near the surface. The subsurface zones have been also examined using scanning electron microscopy.

  4. Gamma-ray spectroscopy of positron annihilation in the Milky Way

    NASA Astrophysics Data System (ADS)

    Siegert, Thomas; Diehl, Roland; Khachatryan, Gerasim; Krause, Martin G. H.; Guglielmetti, Fabrizia; Greiner, Jochen; Strong, Andrew W.; Zhang, Xiaoling

    2016-02-01

    Context. The annihilation of positrons in the Galaxy's interstellar medium produces characteristic gamma-rays with a line at 511 keV. This gamma-ray emission has been observed with the spectrometer SPI on ESA's INTEGRAL observatory, confirming a puzzling morphology with bright emission from an extended bulge-like region, while emission from the disk is faint. Most known or plausible sources of positrons are, however, believed to be distributed throughout the disk of the Milky Way. Aims: We aim to constrain characteristic spectral shapes for different spatial components in the disk and bulge using data with an exposure that has doubled since earlier reports. Methods: We exploit high-resolution gamma-ray spectroscopy with SPI on INTEGRAL based on a new instrumental background method and detailed multi-component sky model fitting. Results: We confirm the detection of the main extended components of characteristic annihilation gamma-ray signatures, altogether at 58σ significance in the 511 keV line. The total Galactic 511 keV line intensity amounts to (2.74 ± 0.25) × 10-3 ph cm-2 s-1 for our assumed model of the spatial distribution. We derive spectra for the bulge and disk, and a central source modelled as point-like and at the position of Sgr A*, and discuss spectral differences. The bulge (56σ) shows a 511 keV line intensity of (0.96 ± 0.07) × 10-3 ph cm-2 s-1 together with ortho-positronium continuum equivalent to a positronium fraction of (1.080 ± 0.029). The two-dimensional Gaussian that represents the disk emission (12σ) has an extent of 60+10-5 degrees in longitude and a rather large latitudinal extent of 10.5+2.5-1.5 degrees; the line intensity is (1.66 ± 0.35) × 10-3 ph cm-2 s-1 with a marginal detection of the annihilation continuum and an overall diffuse Galactic continuum of (5.85 ± 1.05) × 10-5 ph cm-2 s-1 keV-1 at 511 keV. The disk shows no flux asymmetry between positive and negative longitudes, although spectral details differ. The flux ratio between bulge and disk is (0.58 ± 0.13). The central source (5σ) has an intensity of (0.80 ± 0.19) × 10-4 ph cm-2 s-1.

  5. Multimessenger constraints on the annihilating dark matter interpretation of the positron excess

    NASA Astrophysics Data System (ADS)

    Pato, Miguel; Pieri, Lidia; Bertone, Gianfranco

    2009-11-01

    The rise in the energy spectrum of the positron ratio, observed by the PAMELA satellite above 10 GeV, and other cosmic-ray measurements, have been interpreted as a possible signature of dark matter annihilation in the Galaxy. However, the large number of free parameters, and the large astrophysical uncertainties, make it difficult to draw conclusive statements about the viability of this scenario. Here, we perform a multiwavelength, multimessenger analysis, that combines in a consistent way the constraints arising from different astrophysical observations. We show that if standard assumptions are made for the distribution of dark matter (we build models on the recent Via Lactea II and Aquarius simulations) and the propagation of cosmic rays, current dark matter models cannot explain the observed positron flux without exceeding the observed fluxes of antiprotons or gamma-ray and radio photons. To visualize the multimessenger constraints, we introduce star plots, a graphical method that shows in the same plot theoretical predictions and observational constraints for different messengers and wavelengths.

  6. The Positron Annihilation Study of Hydrogen Charged Copper and Copper-Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Pan, Yi.

    Hydrogen effects on Cu and Cu-Al alloys of varying stacking fault energies were investigated mainly by using the positron annihilation Doppler broadening technique. Samples were charged with hydrogen by the thermal hydrogen charging or, for comparison, treated at the same condition but in argon atmosphere. Hardening of Cu and Cu-Al alloys caused by hydrogen did not coincide with a narrowing of the Doppler spectrum of positron annihilation because of so called hydrogen screening of defects from positrons. Hydrogen hardening became more serious with more addition of aluminum to copper. But hydrogen screening conversely became weaker. This is explained by the interaction of vacancies and dissolved hydrogen atoms in pure copper and by the interaction of hydrogen atoms and extended dislocations in Cu-Al alloys. An imposed strain on samples lessened the hydrogen screening and showed a high work hardening rate of the hydrogen charged sample relative to the uncharged ones. But this effect became weaker as the aluminum concentration increased. Hydrogen effects were further investigated by isothermal and isochronal experiments, in which the narrowness of Doppler spectrum and microhardness were checked in several steps in both time and temperature of the thermal hydrogen charging process. It has been found that hydrogen dissolution followed a fast recrystalization in Cu, but happened concurrently with a slower recrystalization in Cu-Al alloys. Hydrogen hardening and screening started to occur at about 850(DEGREES)C and became obvious above that. This was explained by the fact that at this temperature and above, hydrogen and vacancy concentrations are high and comparable. Low temperature experiments let the transient process from the low temperature quenching state of samples to the room temperature state go on very slowly so that the narrowness of Doppler spectrum during warming could be examined. It was seen that hydrogen with high diffusivity at low temperatures was first trapped by stationary single vacancies and these hydrogen containing vacancies then clustered and agglomerated later at higher temperatures. But this was not obvious in Cu-Al alloys, which again was attributed to the existence of alloying element and low stacking fault energies of these alloys. The R parameter, which comes from the trapping model and is defect concentration independent, was used to identify the dominant type of defects in the sample in each of these experiments mentioned above. R parameter data suggest that the dominant type of defect in hydrogen charged copper is the vacancy cluster, but in charged Cu -Al alloys it is dislocations. R parameter analyses of other experiments have also given some results consistent with the results obtained by using other Doppler spectrum shape parameters.

  7. Positron annihilation spectroscopic study of high performance semi-interpenetrating network polyimids

    NASA Technical Reports Server (NTRS)

    Ray, Asit K.

    1995-01-01

    Semi-interpenetrating (S-IPN) network polyimids were made from different proportions of LaRC RP46 (a thermosetpolyimid) and LaRC BDTA-ODA (a thermoplastic polyimid). The ultimate goal of this networking is to improve the mechanical properties of the thermoset polyimid. Positron lifetime study was made to calculate lifetime based on second component of the life time spectra and the free volume & microvoid size. All these properties tend to decrease steadily with increasing thermoset content except at the 50 percent thermoset level where these properties show sudden drop. This result contradicts with the initial expectation that the blend properties should change gradually if it were a solid solution of thermoset (TSP) and thermoplastic (TPP) components. Thermal analyses (TMA, DSC, DMA & TGA) were run to complement the positron life time studies. The TMA and DSC studies confirm the contradiction mentioned above. Further experimentation with S-IPN polymers made at TSP/TTP content around 50/50 level are being conducted to explain this anomaly. Scanning electron microscope study of the S-IPN polyimid samples is under way in order to detect morphological differences which might help explain the phenomenon mentioned above.

  8. Positron annihilation spectroscopic study of high performance semi-interpenetrating network polyimids

    SciTech Connect

    Ray, A.K.

    1995-12-01

    Semi-interpenetrating (S-IPN) network polyimids were made from different proportions of LaRC RP46 (a thermosetpolyimid) and LaRC BDTA-ODA (a thermoplastic polyimid). The ultimate goal of this networking is to improve the mechanical properties of the thermoset polyimid. Positron lifetime study was made to calculate lifetime based on second component of the life time spectra and the free volume & microvoid size. All these properties tend to decrease steadily with increasing thermoset content except at the 50 percent thermoset level where these properties show sudden drop. This result contradicts with the initial expectation that the blend properties should change gradually if it were a solid solution of thermoset (TSP) and thermoplastic (TPP) components. Thermal analyses (TMA, DSC, DMA & TGA) were run to complement the positron life time studies. The TMA and DSC studies confirm the contradiction mentioned above. Further experimentation with S-IPN polymers made at TSP/TTP content around 50/50 level are being conducted to explain this anomaly. Scanning electron microscope study of the S-IPN polyimid samples is under way in order to detect morphological differences which might help explain the phenomenon mentioned above.

  9. Graphene networks and their influence on free-volume properties of graphene-epoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies.

    PubMed

    He, Canzhong; She, Xiaodong; Peng, Zheng; Zhong, Jieping; Liao, Shuangquan; Gong, Wei; Liao, Jianhe; Kong, Lingxue

    2015-05-14

    Epoxidized natural rubber-graphene (ENR-GE) composites with segregated GE networks were successfully fabricated using the latex mixing combined in situ reduced technology. The rheological behavior and electrical conductivity of ENR-GE composites were investigated. At low frequencies, the storage modulus (G') became frequency-independent suggesting a solid-like rheological behavior and the formation of GE networks. According to the percolation theory, the rheological threshold of ENR-GE composites was calculated to be 0.17 vol%, which was lower than the electrical threshold of 0.23 vol%. Both percolation thresholds depended on the evolution of the GE networks in the composites. At low GE concentrations (<0.17 vol%), GE existed as individual units, while a "polymer-bridged GE network" was constructed in the composites when GE concentrations exceeded 0.17 vol%. Finally, a "three-dimensional GE network" with percolation conductive paths was formed with a GE concentration of 0.23 vol%, where a remarkable increase in the conductivity of ENR-GE composites was observed. The effect of GE on the atom scale free-volume properties of composites was further studied by positron annihilation lifetime spectroscopy and positron age momentum correlation measurements. The motion of ENR chains was retarded by the geometric confinement of "GE networks", producing a high-density interfacial region in the vicinity of GE nanoplatelets, which led to a lower ortho-positronium lifetime intensity and smaller free-volume hole size. PMID:25881784

  10. Detection of 511 keV positron annihilation radiation from the galactic center direction. [gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Leventhal, M.; Maccallum, C. J.; Stang, P. D.

    1978-01-01

    A balloon-borne gamma ray telescope with an approximately 130 cu cm high purity germanium detector was flown over Australia to detect sharp spectral features from the galactic center direction. A 511 keV positron annihilation line was observed at a flux level of (1.21 plus or minus 0.22) x (10/cu cm) photons/sec/sp cm. Suggestive evidence for the detection of the three-photon positronium continuum is presented. The possible origin of the positrons is discussed.

  11. De-noising of two-dimensional angular correlation of positron annihilation radiation data using Daubechies wavelet thresholding

    NASA Astrophysics Data System (ADS)

    Major, A. G.; Fretwell, H. M.; Dugdale, S. B.; Rodriguez-Gonzlez, A.; Alam, M. A.

    1997-11-01

    Two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) experiments provide a means of determining the electron - positron momentum density in metals and alloys over a wide range of temperatures. A difficult task regarding this method is the reconstruction of the three-dimensional density from a limited number of two-dimensional projections. Difficulties arise from noise superimposed on the data. This paper explains and demonstrates the use of a wavelet noise filter, and gives a comparison of wavelet and Fourier filters.

  12. The effect of the nuclear Coulomb field on atomic ionization at positron-electron annihilation in ?+- decay

    NASA Astrophysics Data System (ADS)

    Fedotkin, Sergey

    2015-05-01

    We consider the process of the annihilation of a positron emitted at ?+- decay and a K-electron of the daughter atom. A part of energy during this process is passed to another K- electron and it leaves the atom. The influence of the Coulomb field on the positron and the ejected electron is considered. It was calculated the probability of this process for an atom with arbitrary Z is calculated. For the nucleus Ti the effect of the Coulomb field essentially increases the probability of the considered process.

  13. Defect identification using the core-electron contribution in Doppler-broadening spectroscopy of positron-annihilation radiation

    SciTech Connect

    Szpala, S.; Asoka-Kumar, P.; Nielsen, B.; Peng, J.P.; Hayakawa, S.; Lynn, K.G.; Gossmann, H.

    1996-08-01

    Reduction of background using a coincidence-detection system in Doppler-broadening spectroscopy of positron-annihilation radiation allows us to examine the contribution of high-momentum core electrons. The contribution is used as a fingerprint to identify chemical variations at a defect site. The technique is applied to study a variety of open volume defects in Si, including decorated vacancies associated with doping. {copyright} {ital 1996 The American Physical Society.}

  14. Comparative study of the binary icosahedral quasicrystal Cd{sub 5.7}Yb and its crystalline 1/1-approximant Cd{sub 6}Yb by positron annihilation spectroscopy

    SciTech Connect

    Sato, K.; Kobayashi, Y.; Arinuma, K.; Kanazawa, I.; Tamura, R.; Shibuya, T.; Takeuchi, S.

    2004-09-01

    Previously, we showed that the icosahedral quasicrystal Cd{sub 5.7}Yb possesses similar structural vacancies to those in its cubic 1/1-approximant Cd{sub 6}Yb by positron lifetime measurements [K. Sato, H. Uchiyama, K. Arinuma, I. Kanazawa, R. Tamura, T. Shibuya, and S. Takeuchi, Phys. Rev. B 66, 052201 (2002)]. In the present paper, the local chemical environment around the structural vacancies is specifically investigated by two-detector coincident Doppler broadening spectroscopy. Essentially the same annihilation sites with Cd-rich chemical environments are identified for the two phases. This strongly suggests that the quasicrystal is composed of the same cluster as the approximant. The difference in the structural vacancy density between the two phases is examined by positron diffusion experiments using a slow positron beam. The structural vacancy density in the quasicrystal is found to be 20% lower than that in the approximant.

  15. Microstructural evolution of RPV steels under proton and ion irradiation studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Wu, Y. C.; Liu, X. B.; Wang, R. S.; Nagai, Y.; Inoue, K.; Shimizu, Y.; Toyama, T.

    2015-03-01

    The microstructural evolution of reactor pressure vessel (RPV) steels induced by proton and heavy ion irradiation at low temperature (∼373 K) has been investigated using positron annihilation spectroscopy (PAS), atom probe tomography (APT), transmission electron microscopy (TEM) and nanoindentation. The PAS results indicated that both proton and heavy ion irradiation produce a large number of matrix defects, which contain small-size defects such as vacancies, vacancy-solute complexes, dislocation loops, and large-size vacancy clusters. In proton irradiated RPV steels, the size and number density of vacancy cluster defects increased rapidly with increasing dose due to the migration and agglomeration of vacancies. In contrast, for Fe ion irradiated steels, high density, larger size vacancy clusters can be easily induced at low dose, showing saturation in PAS response with increasing dose. No clear precipitates, solute-enriched clusters or other forms of solute segregation were observed by APT. Furthermore, dislocation loops were observed by TEM after 1.0 dpa, 240 keV proton irradiation, and an increase of the average nanoindentation hardness was found. It is suggested that ion irradiation produces many point defects and vacancy cluster defects, which induce the formation of dislocation loops and the increase of nanoindentation hardness.

  16. Development of positron annihilation spectroscopy for investigating deuterium decorated voids in neutron-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Taylor, C. N.; Shimada, M.; Merrill, B. J.; Akers, D. W.; Hatano, Y.

    2015-08-01

    The present work is a continuation of a recent research to develop and optimize positron annihilation spectroscopy (PAS) for characterizing neutron-irradiated tungsten. Tungsten samples were exposed to neutrons in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory and damaged to 0.025 and 0.3 dpa. Subsequently, they were exposed to deuterium plasmas in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory. The implanted deuterium was desorbed through sample heating to 900 °C, and Doppler broadening (DB)-PAS was performed both before and after heating. Results show that deuterium impregnated tungsten is identified as having a smaller S-parameter. The S-parameter increases after deuterium desorption. Microstructural changes also occur during sample heating. These effects can be isolated from deuterium desorption by comparing the S-parameters from the deuterium-free back face with the deuterium-implanted front face. The application of using DB-PAS to examine deuterium retention in tungsten is examined.

  17. Enhanced positron annihilation in small gaseous hydrocarbons: Threshold effects from symmetric C-H bond deformations

    SciTech Connect

    Nishimura, Tamio; Gianturco, Franco A.

    2005-08-15

    The present results report a computational analysis of the effects of symmetric bond stretching during positron scattering from polyatomic hydrocarbon molecules in the gas phase. The collisions are considered at very low energies where the behavior of the s-wave scattering length can be analyzed and where signatures of virtual state formation appear for all the three systems considered (C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}). Furthermore, the present calculations show that the stretching of the CH bonds in all molecules causes the moving of the existing virtual state closer to threshold and further makes it become a bound state whenever highly distorted molecules are involved. The effects of these changes are further seen to cause a marked enhancing of the corresponding annihilation parameters Z{sub eff} at low collision energies, in line with what is experimentally observed for such gases. The significance of such model calculations is discussed in some detail.

  18. Early stages of precipitation in Mg-RE alloys studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Vlček, M.; Čížek, J.; Melikhova, O.; Hruška, P.; Procházka, I.; Vlach, M.; Stulíková, I.; Smola, B.

    2016-01-01

    Magnesium alloys with rare earth (RE) elements are promising structural materials exhibiting favourable mechanical properties at elevated temperatures. However, the processes occurring during early stages of precipitation in these alloys are still not completely understood. In this work positron lifetime spectroscopy combined with coincidence Doppler broadening was employed for investigation of early stages of precipitation in Mg-RE alloys. Presence of quenched-in vacancy clusters was observed after solution treatment of studied alloys. These quenched-in vacancy clusters are bound to RE solutes and thereby stabilized at room temperature. During natural aging, RE clusters are formed by vacancy-assisted long-range diffusion. In addition, hardness of studied materials increases and quenched-in vacancy clusters are annealed out during the course of natural aging. Simple model was developed to describe hardening during natural aging.

  19. Vacancy-type defects in Mg-doped InN probed by means of positron annihilation

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Nakamori, H.; Narita, K.; Suzuki, J.; Wang, X.; Che, S.-B.; Ishitani, Y.; Yoshikawa, A.; Ishibashi, S.

    2009-03-01

    The introduction of vacancy-type defects into InN by Mg-doping was studied using a monoenergetic positron beam. Doppler broadening spectra of the annihilation radiation were measured for Mg-doped InN (N-polar) grown on GaN/sapphire templates using plasma-assisted molecular beam epitaxy. The concentration of In-vacancy (VIn) related defects was high near the InN/GaN interface, and the defect-rich region expanded from the interface toward the surface with increasing Mg concentration [Mg]. Using electrolyte-based capacitance-voltage analysis, we determined that the conduction type of InN with low [Mg] (≤1×1018 cm-3) was still n-type. It became p-type with increasing [Mg] (3×1018-2×1019 cm-3), but turned into n-type again above 3×1019 cm-3. The point defects introduced at the conductivity transition from p-type and n-type were found to be complexes between In-vacancy (VIn) and N-vacancy clusters such as VIn(VN)3. Below [Mg]=4×1019 cm-3, an observed behavior of positron annihilation parameters was well explained by assuming the trapping of positrons by N-vacancy clusters such as (VN)3. This fact suggests that, although isolated VN is positively charged, a VN cluster could be a positron trapping center because of the increased electron concentration in the local In-rich region.

  20. Post-irradiation annealing behavior of microstructure and hardening of a reactor pressure vessel steel studied by positron annihilation and atom probe tomography

    NASA Astrophysics Data System (ADS)

    Kuramoto, A.; Toyama, T.; Takeuchi, T.; Nagai, Y.; Hasegawa, M.; Yoshiie, T.; Nishiyama, Y.

    2012-06-01

    Post-irradiation annealing (PIA) behavior of irradiation-induced microstructural changes and hardening of an A533B (0.16 wt.% Cu) steel after neutron-irradiation of 3.9 × 1019 n cm-2 (0.061 displacement per atom (dpa)) at 290 °C was studied by positron annihilation spectroscopy (PAS), atom probe tomography (APT) and Vickers microhardness measurements. Coincidence Doppler broadening and positron lifetime measurements clearly reveal two recovery stages; (i) as-irradiated state to annealing at 450 °C and (ii) annealing from 450 to 600 °C. The first stage is due to annealing out of the most of irradiation-induced vacancy-related defects, while the second stage corresponds to dissolving of irradiation-induced solute nanoclusters (SCs). APT observations reveal that the SCs are enriched with Cu, Mn, Ni and Si and that their number densities decrease with increasing annealing temperature without coarsening to give almost complete recovery at 550 °C. The experimental hardening is almost twice the SC hardening estimated by the Russell-Brown model below 350 °C, whereas it is almost the same as that estimated in the range 400-550 °C.

  1. On the Morphology of the Electron-Positron Annihilation Emission as Seen by Spi/integral

    NASA Astrophysics Data System (ADS)

    Bouchet, L.; Roques, J. P.; Jourdain, E.

    2010-09-01

    The 511 keV positron annihilation emission remains a mysterious component of the high energy emission of our Galaxy. Its study was one of the key scientific objectives of the SPI spectrometer on board the International Gamma-Ray Astrophysics Laboratory satellite. In fact, a lot of observing time has been dedicated to the Galactic disk with a particular emphasis on the central region. A crucial issue in such an analysis concerns the reduction technique used to treat this huge quantity of data, and more particularly the background modeling. Our method, after validation through a variety of tests, is based on detector pattern determination per ~6 month period, together with a normalization variable on a few hour timescale. The Galactic bulge is detected at a level of ~70?, allowing more detailed investigations. The main result is that the bulge morphology can be modeled with two axisymmetric Gaussians of 3fdg2 and 11fdg8 FWHM and respective fluxes of 2.5 and 5.4 10^{-4} photons cm^{-2} s^{-1}. We found a possible shift of the bulge center toward negative longitude at l = -0fdg6 0fdg2. In addition to the bulge, a more extended structure is detected significantly with flux ranging from 1.7 to 2.9 10^{-3} photons cm^{-2} s^{-1} depending on its assumed geometry (pure disk or disk plus halo). The disk emission is also found to be symmetric within the limits of the statistical errors. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), the Czech Republic, and Poland, with the participation of Russia and USA.

  2. Positron annihilation and relaxation dynamics from dielectric spectroscopy and nuclear magnetic resonance: Cis-trans-1,4-poly(butadiene)

    NASA Astrophysics Data System (ADS)

    Barto, J.; aua, O.; Schwartz, G. A.; Alegra, A.; Alberdi, J. M.; Arbe, A.; Kritiak, J.; Colmenero, J.

    2011-04-01

    We report a joint analysis of positron annihilation lifetime spectroscopy (PALS), dielectric spectroscopy (BDS), and nuclear magnetic resonance (NMR) on cis-trans-1,4-poly(butadiene) (c-t-1,4-PBD). Phenomenological analysis of the orthopositronium lifetime ?3 - T dependence by linear fitting reveals four characteristic PALS temperatures: T_{b1} ^G = 0{.63}T_g^{PALS}, T_g^{PALS}, T_{b1} ^L = 1.22T_g^{PALS}, and T_{b2} ^L = 1.52T_g^{PALS}. Slight bend effects in the glassy and supercooled liquid states are related to the fast or slow secondary ? process, from neutron scattering, respectively, the latter being connected with the trans-isomers. In addition, the first bend effect in the supercooled liquid coincides with a deviation of the slow effective secondary ?eff relaxation related to the cis-isomers from low-T Arrhenius behavior to non-Arrhenius one and correlates with the onset of the primary ? process from BDS. The second plateau effect in the liquid state occurs when ?3 becomes commensurable with the structural relaxation time ??(Tb2). It is also approximately related to its crossover from non-Arrhenius to Arrhenius regime in the combined BDS and NMR data. Finally, the combined BDS and NMR structural relaxation data, when analyzed in terms of the two-order parameter (TOP) model, suggest the influence of solidlike domains on both the annihilation behavior and the local and segmental chain mobility in the supercooled liquid. All these findings indicate the influence of the dynamic heterogeneity in both the primary and secondary relaxations due to the cis-trans isomerism in c-t-1,4-PBD and their impact into the PALS response.

  3. Physical Selectivity of Molecularly Imprinted polymers evaluated through free volume size distributions derived from Positron Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pasang, T.; Ranganathaiah, C.

    2015-06-01

    The technique of imprinting molecules of various sizes in a stable structure of polymer matrix has derived multitudes of applications. Once the template molecule is extracted from the polymer matrix, it leaves behind a cavity which is physically (size and shape) and chemically (functional binding site) compatible to the particular template molecule. Positron Annihilation Lifetime Spectroscopy (PALS) is a well known technique to measure cavity sizes precisely in the nanoscale and is not being used in the field of MIPs effectively. This method is capable of measuring nanopores and hence suitable to understand the physical selectivity of the MIPs better. With this idea in mind, we have prepared molecular imprinted polymers (MIPs) with methacrylicacid (MAA) as monomer and EGDMA as cross linker in different molar ratio for three different size template molecules, viz. 4-Chlorophenol (4CP)(2.29 ), 2-Nephthol (2NP) (3.36 ) and Phenolphthalein (PP) (4.47). FTIR and the dye chemical reactions are used to confirm the complete extraction of the template molecules from the polymer matrix. The free volume size and its distribution have been derived from the measured o-Ps lifetime spectra. Based on the free volume distribution analysis, the percentage of functional cavities for the three template molecules are determined. Percentage of functional binding cavities for 4-CP molecules has been found out to be 70.2% and the rest are native cavities. Similarly for 2NP it is 81.5% and nearly 100% for PP. Therefore, PALS method proves to be very precise and accurate for determining the physical selectivity of MIPs.

  4. Revealing the nano-level molecular packing in chitosan-NiO nanocomposite by using positron annihilation spectroscopy and small-angle X-ray scattering.

    PubMed

    Sharma, Sandeep K; Bahadur, Jitendra; Patil, Pushkar N; Maheshwari, Priya; Mukherjee, Saurabh; Sudarshan, Kathi; Mazumder, Subhasish; Pujari, Pradeep K

    2013-04-01

    Chitosan-NiO nanocomposite (CNC) is shown to be a potential dielectric material with promising properties. CNCs containing NiO nanoparticles (0.2, 0.6, 1, 2, 5 wt?%) are prepared through chemical methods. The inclusion of NiO nanoparticles in the chitosan matrix is confirmed by scanning electron microscopy (SEM) and X-ray diffraction. The morphology of the NiO nanoparticles and the nanocomposites is investigated by transmission electron microscopy and SEM, respectively. Positron annihilation lifetime spectroscopy (PALS) and the coincidence Doppler broadening (CDB) technique are used to quantify the free volume and molecular packing in the nanocomposites. The triplet-state positronium lifetime and the corresponding intensity show the changes in nanohole size, density, and size distribution as a function of NiO loading. Small-angle X-ray scattering indicates that the NiO aggregates are identical in all the CNCs. The momentum density distribution obtained from CDB measurements excludes the possibility of a contribution of vacant spaces (pores) available in NiO aggregates to the free volume of nanocomposites upon determination by using PALS. The results show systematic variation in free-volume properties and nano-level molecular packing as a function of NiO loading, which is presumed to play a vital role in determining the various properties of the nanocomposites. PMID:23418038

  5. Positron-lifetime study of compensation defects in undoped semi-insulating InP

    NASA Astrophysics Data System (ADS)

    Beling, C. D.; Deng, A. H.; Shan, Y. Y.; Zhao, Y. W.; Fung, S.; Sun, N. F.; Sun, T. N.; Chen, X. D.

    1998-11-01

    Positron-lifetime and infrared-absorption spectroscopies have been used to investigate the compensation defects that render undoped n-type liquid encapsulated Czochralski-grown InP semi-insulating under high-temperature annealing. The positron measurements, carried out over the temperature range of 25-300 K, reveal in the as-grown material a positron lifetime of 282+/-5 ps which we associate with either the isolated indium vacancy V3-In or related hydrogen complexes. The shallow donor complex VInH4, responsible for much of the n-type conductivity and the strong infrared absorption signal at 4320 nm, is ruled out as a significant trapping site on the grounds that its neutral state is present at too low a concentration. After annealing at 950 °C, in conjunction with the disappearance of the VInH4 infrared-absorption signal, trapping into VIn-related centers is observed to increase slightly, and an additional positron trapping defect having a lifetime of 330 ps appears at a concentration of ~1016 cm-3, indicating divacancy trapping. These results support the recent suggestion that the VInH4 complex present in as-grown InP dissociates during annealing, forming VInH(3-n)-n(0<=n<=3) complexes and that the recombination of VIn with a phosphorus atom results in the formation of EL2-like deep donor PIn antisite defect, which compensates the material. It is suggested that the divacancy formed on annealing is VInVP, and that this defect is probably a by-product of the PIn antisite formation.

  6. Characterization of Vacancy Defects in Electroplated Cu Films by Positron Annihilation and its Impact on Stress Migration Reliability

    SciTech Connect

    Suzuki, T.; Nakamura, T.; Mizushima, Y.; Kouno, T.; Uedono, A.; Tsuchikawa, H.

    2006-02-07

    Positron annihilation was used to evaluate vacancy concentrations in electroplated Cu films with different kinds of electrolytes. The influence of various electrolytes on the impurities, grain boundaries, and micro-voids were also investigated. We found a higher impurity concentration and larger micro-voids were observed in copper films with higher vacancy concentrations. We reduced the failure rate in our stress migration results using a copper film with a higher concentration of vacancy and impurity. The stress migration performance improved because impurity nucleated vacancy clusters act as effective traps for diffusing vacancies.

  7. Characterization of fatigue-induced free volume changes in a bulk metallic glass using positron annihilation spectroscopy

    SciTech Connect

    Vallery, R. S.; Liu, M.; Gidley, D. W.; Launey, M. E.; Kruzic, J. J.

    2007-12-24

    Depth-profiled Doppler broadening spectroscopy of positron annihilation on the cyclic fatigue-induced fracture surfaces of three amorphous Zr{sub 44}Ti{sub 11}Ni{sub 10}Cu{sub 10}Be{sub 25} metallic glass specimens reveals the presence of a 30-50 nm layer of increased free volume that is generated by the propagating fatigue crack tip. The presence and character of this fatigue transformation zone is independent of the initial amount of bulk free volume, which was varied by structural relaxation via annealing, and the voids generated in the zone by intense cyclic deformation are distinct from those typical of the bulk.

  8. Modification of the mesoscopic structure in neutron irradiated EPDM viewed through positron annihilation spectroscopy and dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Lambri, O. A.; Plazaola, F.; Axpe, E.; Mocellini, R. R.; Zelada-Lambri, G. I.; Garca, J. A.; Matteo, C. L.; Sorichetti, P. A.

    2011-02-01

    This article focuses on the study of the mesoscopic structure in neutron irradiated EPDM both from experimental and theoretical points of view. In this work we reveal completely the modification of the mesostructure of the EPDM due to neutron irradiation, resolving volume fraction, size and distribution of the crystalline zones as a function of the irradiation dose. Positron annihilation spectroscopy and dynamic mechanical analysis techniques are applied and the results are discussed by means of new theoretical results for describing the interaction process between the crystals and amorphous zones in EPDM.

  9. Positron annihilation study for enhanced nitrogen-vacancy center formation in diamond by electron irradiation at 77 K

    SciTech Connect

    Tang, Z.; Chiba, T.; Nagai, Y.; Inoue, K.; Toyama, T.; Hasegawa, M.

    2014-04-28

    A compact ensemble of high density nitrogen-vacancy (NV) centers in diamond is essential to sense various external fields with a high precision at the nanoscale. Here, defects in type IIa and type Ib diamonds induced by 28 MeV electron irradiation at 77 K were studied by combining the positron annihilation spectroscopy and first-principles calculations. It is shown that the electron irradiation at 77 K can significantly enhance the NV center formation by directly converting 24% vacancies into the NV centers, indicating that it is an efficient way to produce the high density NV centers in the type Ib diamond.

  10. Structural transition of partially Ba-filled thermoelectric CoSb{sub 3} investigated by positron annihilation spectroscopy

    SciTech Connect

    Zhang, T.; Li, X. F.; Chen, Z. Q.; Zhou, K.; Su, X. L.; Tang, X. F.

    2015-02-07

    Microstructure of unfilled and Ba-filled CoSb{sub 3} has been studied by positron lifetime measurements together with theoretical calculation. Positron trapping in intrinsic voids is observed in the CoSb{sub 3}, which contributes a positron lifetime of 263 ± 2 ps. After filling Ba atoms with content up to x = 0.4, the positron lifetime shows continuous increase. By comparing the experimental results with calculation following the phase diagram of Ba{sub x}Co{sub 4}Sb{sub 12} with x in the range of 0–0.5, it is found that when the Ba content is lower than 0.16, the filling of Ba atoms is in a phase of solid solution. At x = 0.2, γ phase is formed, which is mixed with solid solution. At x > 0.25, transition from γ phase to a mixture of γ and α phases is confirmed.

  11. Investigation of Oxygen-Induced Quenching of Phosphorescence in Photoexcited Aromatic Molecules by Positron Annihilation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe

    1996-01-01

    Platinum OctaEthyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state P(T(Sup 1)) is readily quenched by the oxygen O2 molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the P(T(Sup 1) approaches P(S(Sub O)) transitions is still unknown. The diamagnetic singlet states P(S(Sub n)), which feed P(T(Sub 1)) states via intersystem crossings, would presumably not be affected by O2. It must be only the magnetic P(T(Sub 1)) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of O2P(S(Sub n)), complexes which can also eventually reduce the population of the P(T(Sub 1)) states (i.e., quench phosphorescence). This reduction is possible because higher triplet states in (Pt.OEP) are admixed with the P(S(Sub 1)), states via spin orbit interactions. The experimental procedures and the results of various measurements are presented in this paper.

  12. Mechanism of phosphorescence quenching in photomagnetic molecules determined by positron annihilation spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, A.; Naidu, S. V. N.

    1994-01-01

    Platinum Octaethyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state (T(sub 1)) is readily quenched by the oxygen (O2) molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the (T(sub 1)-S(sub 0)) transitions is still unknown. The diamagnetic S(sub n) singlet states, which feed T(sub 1) states via intersystem crossings, would presumably not be affected by O2. It must be the magnetic T(sub 1) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of (S(sub n).02) complexes which can also eventually reduce the population of the T(sub 1) states (i.e. quench phosphorescence). This is possible since higher triplet states in (Pt-OEP) are admixed with the S(sub n) states via spin orbit interactions. The experimental procedures and the results of various measurements are discussed in this paper.

  13. Mechanism of phosphorescence quenching in photomagnetic molecules determined by positron annihilation spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, A.; Naidu, S. V. N.

    1994-01-01

    Platinum Octaethyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state (T(sub 1)) is readily quenched by the oxygen (O2) molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the (T(sub 1) - S(sub 0)) transitions is still unknown. The diamagnetic S(sub n) singlet states, which feed T(sub 1) states via intersystem crossings, would presumably not be affected by O2. It must be the magnetic T(sub 1) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of (S(sub n) central dot O2) complexes which can also eventually reduce the population of the T(sub 1) states (i.e. quench phosphorescence). This is possible since higher triplet states in (Pt.OEP) are admixed with the S(sub n) states via spin orbit interactions. The experimental procedures and the results of various measurements are discussed in this paper.

  14. Thermal cycling effects in Cu-Zn-Al shape memory alloy by positron lifetime measurements

    SciTech Connect

    Lin, G.M.; Lai, J.K.L.; Chung, C.Y.

    1995-06-01

    This paper presents the results of an investigation on the effects of thermal cycling on the transformation and memory properties of a CuZnAl shape memory alloy. The positron annihilation technique was used to elucidate the micro-mechanism of transformation during thermal cycling. The present paper shows that martensite finish temperature and austenite start temperature of CuZuAl shape memory material will decrease with increasing number of thermal cycles, while martensite start temperature and austenite finish temperature remain constant. On the other hand, the thermal hysteresis will decrease and the shape memory strain will remain constant. The thermal cycling behavior is closely related to the formation of vacancy clusters by vacancy agglomeration.

  15. Free volume in imidazolium triflimide ([C3MIM][NTf2]) ionic liquid from positron lifetime: Amorphous, crystalline, and liquid states

    NASA Astrophysics Data System (ADS)

    Dlubek, G.; Yu, Yang; Krause-Rehberg, R.; Beichel, W.; Bulut, S.; Pogodina, N.; Krossing, I.; Friedrich, Ch.

    2010-09-01

    Positron annihilation lifetime spectroscopy (PALS) is used to study the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [C3MIM][NTf2] in the temperature range between 150 and 320 K. The positron decay spectra are analyzed using the routine LifeTime-9.0 and the size distribution of local free volumes (subnanometer-size holes) is calculated. This distribution is in good agreement with Frth's classical hole theory of liquids when taking into account Frth's hole coalescence hypothesis. During cooling, the liquid sample remains in a supercooled, amorphous state and shows the glass transition in the ortho-positronium (o-Ps) lifetime at 187 K. The mean hole volume varies between 70 3 at 150 K and 250 3 at 265-300 K. From a comparison with the macroscopic volume, the hole density is estimated to be constant at 0.201021 g-1 corresponding to 0.30 nm-3 at 265 K. The hole free volume fraction varies from 0.023 at 185 K to 0.073 at Tm+12 K=265 K and can be estimated to be 0.17 at 430 K. It is shown that the viscosity follows perfectly the Cohen-Turnbull free volume theory when using the free volume determined here. The heating run clearly shows crystallization at 200 K by an abrupt decrease in the mean ??3? and standard deviation ?3 of the o-Ps lifetime distribution and an increase in the o-Ps intensity I3. The parameters of the second lifetime component ??2? and ?2 behave parallel to the o-Ps parameters, which also shows the positron's (e+) response to structural changes. During melting at 253 K, all lifetime parameters recover to the initial values of the liquid. An abrupt decrease in I3 is attributed to the solvation of e- and e+ particles. Different possible interpretations of the o-Ps lifetime in the crystalline state are briefly discussed.

  16. Free volume in imidazolium triflimide ([C3MIM][NTf2]) ionic liquid from positron lifetime: amorphous, crystalline, and liquid states.

    PubMed

    Dlubek, G; Yu, Yang; Krause-Rehberg, R; Beichel, W; Bulut, S; Pogodina, N; Krossing, I; Friedrich, Ch

    2010-09-28

    Positron annihilation lifetime spectroscopy (PALS) is used to study the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [C(3)MIM][NTf(2)] in the temperature range between 150 and 320 K. The positron decay spectra are analyzed using the routine LifeTime-9.0 and the size distribution of local free volumes (subnanometer-size holes) is calculated. This distribution is in good agreement with Frth's classical hole theory of liquids when taking into account Frth's hole coalescence hypothesis. During cooling, the liquid sample remains in a supercooled, amorphous state and shows the glass transition in the ortho-positronium (o-Ps) lifetime at 187 K. The mean hole volume varies between 70 (3) at 150 K and 250 (3) at 265-300 K. From a comparison with the macroscopic volume, the hole density is estimated to be constant at 0.2010(21) g(-1) corresponding to 0.30 nm(-3) at 265 K. The hole free volume fraction varies from 0.023 at 185 K to 0.073 at T(m)+12 K=265 K and can be estimated to be 0.17 at 430 K. It is shown that the viscosity follows perfectly the Cohen-Turnbull free volume theory when using the free volume determined here. The heating run clearly shows crystallization at 200 K by an abrupt decrease in the mean and standard deviation ?(3) of the o-Ps lifetime distribution and an increase in the o-Ps intensity I(3). The parameters of the second lifetime component and ?(2) behave parallel to the o-Ps parameters, which also shows the positron's (e(+)) response to structural changes. During melting at 253 K, all lifetime parameters recover to the initial values of the liquid. An abrupt decrease in I(3) is attributed to the solvation of e(-) and e(+) particles. Different possible interpretations of the o-Ps lifetime in the crystalline state are briefly discussed. PMID:20886945

  17. Free volume in imidazolium triflimide ([C{sub 3}MIM][NTf{sub 2}]) ionic liquid from positron lifetime: Amorphous, crystalline, and liquid states

    SciTech Connect

    Dlubek, G.; Beichel, W.; Bulut, S.; Pogodina, N.; Krossing, I.; Friedrich, Ch.

    2010-09-28

    Positron annihilation lifetime spectroscopy (PALS) is used to study the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [C{sub 3}MIM][NTf{sub 2}] in the temperature range between 150 and 320 K. The positron decay spectra are analyzed using the routine LifeTime-9.0 and the size distribution of local free volumes (subnanometer-size holes) is calculated. This distribution is in good agreement with Fuerth's classical hole theory of liquids when taking into account Fuerth's hole coalescence hypothesis. During cooling, the liquid sample remains in a supercooled, amorphous state and shows the glass transition in the ortho-positronium (o-Ps) lifetime at 187 K. The mean hole volume varies between 70 A{sup 3} at 150 K and 250 A{sup 3} at 265-300 K. From a comparison with the macroscopic volume, the hole density is estimated to be constant at 0.20x10{sup 21} g{sup -1} corresponding to 0.30 nm{sup -3} at 265 K. The hole free volume fraction varies from 0.023 at 185 K to 0.073 at T{sub m}+12 K=265 K and can be estimated to be 0.17 at 430 K. It is shown that the viscosity follows perfectly the Cohen-Turnbull free volume theory when using the free volume determined here. The heating run clearly shows crystallization at 200 K by an abrupt decrease in the mean <{tau}{sub 3}> and standard deviation {sigma}{sub 3} of the o-Ps lifetime distribution and an increase in the o-Ps intensity I{sub 3}. The parameters of the second lifetime component <{tau}{sub 2}> and {sigma}{sub 2} behave parallel to the o-Ps parameters, which also shows the positron's (e{sup +}) response to structural changes. During melting at 253 K, all lifetime parameters recover to the initial values of the liquid. An abrupt decrease in I{sub 3} is attributed to the solvation of e{sup -} and e{sup +} particles. Different possible interpretations of the o-Ps lifetime in the crystalline state are briefly discussed.

  18. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation.

    PubMed

    Hassan, H E; Refat, Moamen S; Sharshar, T

    2016-04-15

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70kGy of γ radiation using (60)Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation. PMID:26867205

  19. Optical and positron annihilation spectroscopic studies on PMMA polymer doped by rhodamine B/chloranilic acid charge transfer complex: Special relevance to the effect of γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, H. E.; Refat, Moamen S.; Sharshar, T.

    2016-04-01

    Polymeric sheets of poly (methylmethaclyerate) (PMMA) containing charge transfer (CT) complex of rhodamine B/chloranilic acid (Rho B/CHA) were synthesized in methanol solvent at room temperature. The systematic analysis done on the Rho B and its CT complex in the form of powder or polymeric sheets confirmed their structure and thermal stability. The IR spectra interpreted the charge transfer mode of interaction between the CHA central positions and the terminal carboxylic group. The polymer sheets were irradiated with 70 kGy of γ radiation using 60Co source to study the enhanced changes in the structure and optical parameters. The microstructure changes of the PMMA sheets caused by γ-ray irradiation were analyzed using positron annihilation lifetime (PAL) and positron annihilation Doppler broadening (PADB) techniques. The positron life time components (τi) and their corresponding intensities (Ii) as well as PADB line-shape parameters (S and W) were found to be highly sensitive to the enhanced disorder occurred in the organic chains of the polymeric sheets due to γ-irradiation.

  20. Type IA Supernovae & 511 keV Annihilation Radiation

    NASA Astrophysics Data System (ADS)

    Milne, P. A.; Leising, M. D.; The, L. S.

    1998-12-01

    This dissertation investigates the contributions of supernovae (SNe) to galactic positrons. Previous works have suggested that for favorable conditions, (56) Co positrons can escape from the SN ejecta into the ISM. The lifetimes of positrons are long enough to permit the contributions of many SNe to collectively produce a ``sea of positrons". The transport of positrons through SN ejecta and annihilation of positrons in the ISM give rise to two observable effects; the deposition of positron kinetic energy into the SN ejecta drives the SN emission at late times, and the annihilation of positrons with electrons in the ISM produces 511 keV photons. We model the transport of positrons in SN ejecta, estimating positron yields and generating bolometric light curves. The curves are compared with observed SN light curves and positron escape is indicated. The yields from SN models are combined with SN rates, galactic SN distributions and estimates of the yield of positrons from other SN-synthesized positron emitting radionuclei to generate a collective SN map of the galactic annihilation radiation. The SN map and many other maps are then compared to the observations of galactic annihilation radiation taken by the Oriented Scintillation Spectrometer Experiment (OSSE) to determine if the SN map is favored. The SN distribution was found to agree with the data if certain assumptions are made about the distribution of type Ia SNe in the Galaxy, and if other sources of galactic annihilation radiation were present. We conclude with a discussion of what observations would further the arguments for positron escape from SNe, and the SN galactic annihilation radiation map.

  1. Positron lifetime studies of decomposition in 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) alloys

    SciTech Connect

    Dlubek, G.; Lademann, P.; Krause, H.; Krause, S.; Unger, R.

    1998-09-04

    In the current paper, the decomposition behavior of the engineering alloys 2024 (Al-Cu-Mg) and 7010 (Al-Zn-Cu-Mg) is studied using positron lifetime measurements. Positrons probe open volume defects such as vacancies and dislocations. However, they may also be used to investigate coherent zones and incoherent precipitates. In order to understand the rather complicated precipitation sequences and the response of positrons to different type of precipitates occurring in 2024 and 7010 alloys, binary and ternary laboratory alloys were also investigated under the same experimental conditions as the engineering alloys. The interpretations of the results are based on experiences of the group from extensive positron studies of laboratory alloys such as Al-Zn, Al-Zn-Mg, Al-Cu, and further Al alloys (see also the review (4)). Their collected results are shown as lifetimes and curve-shape parameters S of the electron-positron momentum distribution curves characteristic for different precipitates in Al alloys.

  2. Structural vacancies and their local atomic environment in the Zn-Mg-Sc alloy system studied by positron annihilation spectroscopy

    SciTech Connect

    Sato, K.; Kobayashi, Y.; Takagiwa, Y.; Kanazawa, I.; Tamura, R.; Takeuchi, S.

    2004-11-01

    Recently discovered P-type icosahedral quasicrystal Zn{sub 80}Mg{sub 5}Sc{sub 15} of high structural perfection and its crystalline 1/1-approximant Zn{sub 85}Sc{sub 15} are investigated by positron annihilation spectroscopy. Positrons are trapped by high concentration of the vacancy-type sites surrounded by Zn atoms in both the quasicrystal and approximant. Based on the atomic structure of the approximant, the vacancy-type sites are identified to be inside the dodecahedral 20 Zn first shell, suggesting that the quasicrystal is composed of the same cluster units as the approximant. In contrast to the proposed structure model of Zn{sub 85}Sc{sub 15} where inside of the dodecahedral first shell is empty, the present results indicate the existence of several atoms inside the dodecahedral first shell. Positron diffusion experiments using a slow positron beam reveal that the structural vacancy density in the quasicrystal is 35% lower than that in the approximant.

  3. Early stages of superplasticity and positron lifetime spectroscopy in an Al-Mg-Cu alloy

    SciTech Connect

    Ayciriex, M.D.; Romero, R.; Somoza, A.

    1996-07-01

    In the present paper, by using positron lifetime technique, a careful study is carried out to analyze the microstructural changes induced on samples of an Al-based commercial alloy (Al-Mg-Cu-Mn-Cr) by superplastic deformation in the early stages of superplastic behavior of the alloy (strain range from 0.2% to 100%). These results are compared with those obtained on specimens only heat treated at the same temperature and for a time equivalent to the elapsed time during each tensile test, in order to evaluate the thermal contribution to the microstructural changes induced during the superplastic deformation process. Moreover, the positron results were linked with the microstructural evolution of the samples followed by means of optical microscopy and Vickers microhardness technique.

  4. Photo-degradation of Lexan polycarbonate studied using positron lifetime spectroscopy

    SciTech Connect

    Hareesh, K.; Sanjeev, Ganesh; Pandey, A. K.; Meghala, D.; Ranganathaiah, C.

    2013-02-05

    The free volume properties of pristine and UV irradiated Lexan polycarbonate have been investigated using Positron Lifetime Spectroscopy (PLS). The decrease in o-Ps life time and free volume size of irradiated sample is attributed to free volume modification and formation of more stable free radicals. These free radicals are formed due to the breakage of C-O bonds in Lexan polycarbonate after irradiation. This is also supported by the decrease in the intensity of C-O bond after exposure to UV-radiation as studied from Fourier Transform Infrared (FTIR) spectroscopy and it also shows that benzene ring does not undergo any changes after irradiation.

  5. Investigation of microstructural changes in polyetherether-ketone films at cryogenic temperatures by positron lifetime spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; St.clair, Terry L.; Sprinkle, Danny R.

    1991-01-01

    Microstructural changes in Polyetherether-ketone (PEEK) films were investigated in the temperature ranges of 23 to -196 C, using Positron Lifetime Spectroscopy (PLS) technique. It was determined that the total free volume decreases by about 46 percent in amorphous PEEK samples and about 36 percent in semicrystalline PEEK samples when they are cooled down from room temperature to liquid nitrogen (LN2) temperature. If this trend in reduction in free volume with decreasing temperature continues, as expected, it is surmised that PEEK will be able to withstand cooling down to liquid hydrogen (LH2) temperature without any detrimental effect on its diffusivity for liquid hydrogen.

  6. Microstructural Characterization of Semi-Interpenetrating Polymer Networks by Positron Lifetime Spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Pater, Ruth H.; Eftekhari, Abe

    1996-01-01

    Thermoset and thermoplastic polyimides have complementary physical and mechanical properties. Whereas thermoset polyimides are brittle and generally easier to process, thermoplastic polyimides are tough but harder to process. A combination of these two types of polyimides may help produce polymers more suitable for aerospace applications. Semi-Interpenetrating Polymer Networks (S-IPN) of thermoset LaRC(TM)-RP46 and thermoplastic LaRC(TM)-IA polyimides were prepared in weight percent ratios ranging from 100:0 to 0:100. Positron lifetime measurements were made in these samples to correlate their free volume features with physical and mechanical properties. As expected, positronium atoms are not formed in these samples. The second lifetime component has been used to infer the positron trap dimensions. The 'free volume' goes through a minimum at a ratio of about 50:50, and this suggests that S-IPN samples are not merely solid solutions of the two polymers. These data and related structural properties of the S-IPN samples are discussed.

  7. Elementally specific electron-positron annihilation radiation emitted from ion cores of group-V impurity-vacancy complexes in germanium

    NASA Astrophysics Data System (ADS)

    Arutyunov, N. Yu.; Emtsev, V. V.

    2007-12-01

    High-momentum component (HMC) of the electron-positron annihilation has been detected by the angular correlation of annihilation radiation (ACAR) technique in order to obtain elementally specific information about the ion cores of the donor-vacancy complexes (DV) formed by irradiation with 60Co ?-rays at Tirr.?280 K in oxygen-lean n-Ge doped with group-V donors (D=As, Sb, and Bi). The probability of annihilation of positrons with the core electrons of DV complexes reconstructed from ACAR spectra increases in passing from AsV to SbV and BiV complexes. This increase correlates with the shift of the D atom from its regular position towards the vacancy site predicted by the results of spin-density functional modeling study. The data obtained suggest inward relaxation of the ion cores of DV complexes (including the one directed inward towards the vacancy).

  8. Positron annihilation studies of the AlO{sub x}/SiO{sub 2}/Si interface in solar cell structures

    SciTech Connect

    Edwardson, C. J.; Coleman, P. G.; Li, T.-T. A.; Cuevas, A.; Ruffell, S.

    2012-03-01

    Film and film/substrate interface characteristics of 30 and 60 nm-thick AlO{sub x} films grown on Si substrates by thermal atomic layer deposition (ALD), and 30 nm-thick AlO{sub x} films by sputtering, have been probed using variable-energy positron annihilation spectroscopy (VEPAS) and Doppler-broadened spectra ratio curves. All samples were found to have an interface which traps positrons, with annealing increasing this trapping response, regardless of growth method. Thermal ALD creates an AlO{sub x}/SiO{sub x}/Si interface with positron trapping and annihilation occurring in the Si side of the SiO{sub x}/Si boundary. An induced positive charge in the Si next to the interface reduces diffusion into the oxides and increases annihilation in the Si. In this region there is a divacancy-type response (20 {+-} 2%) before annealing which is increased to 47 {+-} 2% after annealing. Sputtering seems to not produce samples with this same electrostatic shielding; instead, positron trapping occurs directly in the SiO{sub x} interface in the as-deposited sample, and the positron response to it increases after annealing as an SiO{sub 2} layer is formed. Annealing the film has the effect of lowering the film oxygen response in all film types. Compared to other structural characterization techniques, VEPAS shows larger sensitivity to differences in film preparation method and between as-deposited and annealed samples.

  9. A study of Pd-Ta on Si(100) using AES, RBS and variable energy positron annihilation

    SciTech Connect

    Van Der Kolk, G.J.; Kuiper, A.E.T.; Duchateau, J.P.W.B.; Willemsen, M.; Nielsen, B.; Lynn, K.G.

    1988-01-01

    The applicability of Pd/sub x/Ta/sub 1-x/ as a diffusion barrier on Si has been investigated. For this purpose Pd/sub x/Ta/sub 1-x/ films of 200 nm thickness (x ranges from 0 to 1) were deposited on Si(100), and the reaction between over-layer and substrate was studied as a function of temperature. Interaction was found to occur at temperatures increasing with the Ta content. The as-deposited Pd/sub x/Ta/sub 1-x/ films with 0.2 less than or equal to x less than or equal to 0.6 were found to be amorphous. The amorphous phase had a higher reaction temperature than the crystalline one, causing a discontinuous step in the reaction temperature. RBS spectra revealed that for the Pd-rich compositions first a stoichiometric Pd2Si layer formed underneath a pure Ta layer. At higher temperatures TaSi2 formed at the surface. For Ta-rich compositions Pd2Si formed first as well, however, the reaction temperature was so high that Pd2Si grains formed in a Si matrix. The defect density of the Ta layer, which remained after outdiffusion of Pd, was investigated using variable energy positron annihilation. The defect concentration is very high, as deduced from the trapped positron fraction. A model is presented that describes the composition dependence of the reaction temperature. 26 refs., 6 figs., 1 tab.

  10. GRO: Red-shifted electron-positron annihilation gamma-rays from radiopulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1993-01-01

    Reported red-shifted e(+) + e(-) yields gamma + gamma 511 keV gamma-rays from the Crab pulsar would, if ultimately confirmed, provide crucial clues about the structure of the powerful magnetospheric accelerator in that rapidly spinning gamma-ray pulsar. In an attempt to understand the origin of this component of the Crab pulsar's emission, we try to account for the following: (1) a flow of approximately 10 exp 40 e(+/-)/s into near the surface of the neutron star; (2) a relatively narrow annihilation line implying that the annihilating e(+/-) pairs probably had a velocity (along vector B) less than or approximately = 10(exp -1)c; and (3) a tentative light curve suggesting a doubly peaked structure different from that of the rest of the Crab pulsar's nonthermal radiation.

  11. Effect of proton irradiation on positron annihilation and micro-Vickers hardness of Fe-C-Cu model alloys

    SciTech Connect

    Shibamoto, Hiroshi; Koyama, Kunio; Yuya, Hideki; Hasegawa, Masayuki; Kimura, Akihiko; Matsui, Hideki; Yamaguchi, Sadae

    1996-12-31

    Positron lifetime and micro-Vickers hardness were measured on well annealed model alloys, Fe-C(0%, 0.2%, 0.35%)-Cu(0%, 0.15%, 0.3%), after 1 MeV proton irradiation with a dose of 3 {times} 10{sup 17}/cm{sup 2} below 80 C. Longer lifetime, ranging from 310 to 360 ps, component appears and gives evidence of formation of microvoids containing about 10 vacancies. The longer lifetime decreases with increasing copper content and suggests smaller microvoids for Fe-Cu alloys. The longer lifetime increases with annealing temperature up to 400 C in pure Fe, but exhibits decrease around 300 C in Fe-C-Cu alloys. This decrease indicates reduction in effective size of microvoid around 350 C. Irradiation hardening is accelerated by copper but retarded by carbon. Post-irradiation anneal hardening is revealed at about 150 C and 350 C in Fe-C and Fe-C-Cu alloys. In Fe-Cu alloys, however, a single narrow hardening peak is observed around 350 C. The irradiation hardening in Fe-C alloy anneals out around 550 C, while that in alloys containing Cu makes complete recovery at about 650 C.

  12. Spectroscopic, Elemental and Thermal Analysis, and Positron Annihilation Studies on Ca(II), Sr(II), Ba(II), Pb(II), and Fe(III) Penicillin G Potassium Complexes

    NASA Astrophysics Data System (ADS)

    Refat, M. S.; Sharshara, T.

    2015-11-01

    The [Pb(Pin)2] · 3H2O, [M(Pin)(H2O)2(Cl)] · nH2O (M = SrII, CaII or BaII; n = 0-1), and [Fe(Pin)2(Cl)(H2O)] · H2O penicillin G potassium (Pin) complexes were synthesized and characterized using elemental analyses, molar conductivity, thermal analysis and electronic spectroscopy techniques. The positron annihilation lifetime (PAL) and Doppler broadening (DB) techniques have been employed to probe the defects and structural changes of Pin ligand and its complexes. The PAL and DB line-shape parameters were discussed in terms of the structure, molecular weight, ligand-metal molar ratio, and other properties of the Pin complexes.

  13. Factorization of the dijet cross section in electron-positron annihilation with jet algorithms

    NASA Astrophysics Data System (ADS)

    Chay, Junegone; Kim, Chul; Kim, Inchol

    2015-08-01

    We analyze the effects of jet algorithms on each factorized part of the dijet cross sections in e+e- annihilation using the soft-collinear effective theory. The jet function and the soft function with a cone-type jet algorithm and the Sterman-Weinberg jet algorithm are computed to next-to-leading order in ?s , and are shown to be infrared finite using pure dimensional regularization. The integrated and unintegrated jet functions are presented, and compared with other types of jet functions.

  14. Lambda production in electron-positron annihilation at 29 GeV

    SciTech Connect

    Baden, A.R.

    1986-08-01

    The inclusive cross-secton for the production of the singly-strange baryons lambda and anti lambda, along with the differential cross-sections in momentum and energy, are measured by e/sup +/e/sup -/ annihilation at a center-of-mass energy of 29GeV. The charged decay mode lambda ..-->.. p..pi.. is used in a search for polarization. Such a polarization may be used as a check of CP invariance in lambda production. The sample of events with two detected decays is analyzed for correlations in production angle. 43 refs., 44 figs.

  15. The local free volume, glass transition, and ionic conductivity in a polymer electrolyte: A positron lifetime study

    NASA Astrophysics Data System (ADS)

    Bamford, D.; Dlubek, G.; Reiche, A.; Alam, M. A.; Meyer, W.; Galvosas, P.; Rittig, F.

    2001-10-01

    The size of free-volume holes in neat poly[(ethylene glycol)23dimethacrylate] [poly((EG)23DMA)] and in the same polymer doped with 0.6 mol/kg LiCF3SO3 have been studied as a function of temperature in the range between 100 and 370 K using positron annihilation lifetime spectroscopy. The results are compared with differential scanning calorimetry and ionic conductivity measurements. In both systems, the hole volume ?h shows a typical glass-transition behavior, i.e., a small linear increase with temperature below the glass transition temperature Tg and a steeper increase above Tg. From these measurements Tg was estimated to be 233 K (neat polymer) and 240 K (polymer with salt) and the coefficients of the thermal expansion of the hole volume were determined. The fractional free volume (f=0.080) and the number density of holes (Nh=0.6 nm-3) were also estimated. Below Tg the average hole volume of the polymer electrolyte is larger than in the neat polymer. This is consistent with the bulky character of the CF3SO3- anion. Above Tg the salt-doped system shows the lower hole volume of the two systems, probably caused by a reduced segmental mobility as a consequence of the interactions of the Li+ ions with the ethylene oxide units of the polymer. Based on the free-volume theory of Cohen-Turnbull the ionic conductivity ? is correlated with the mean hole volume ?h. A linear relation between log(?T 0.5) and 1/?h was observed to be valid for variations of the conductivity over several orders of magnitudes. From these plots critical hole sizes of ??*=0.65 nm3 (neat polymer) and 0.87 nm3 (polymer-salt system) were estimated. The parameters B and T0 of the Vogel-Tamman-Fulcher equation were also determined, as well as the apparent activation volume ?Vapp by pressure-dependent conductivity measurements. The cationic transference number in the polymer-salt system was determined by pulsed field gradient-nuclear magnetic resonance to be t+?0.3.

  16. Premelting as studied by positron annihilation and emission Mössbauer spectroscopies

    NASA Astrophysics Data System (ADS)

    Stepanov, S. V.; Byakov, V. M.; Zvezhinskiy, D. S.; Duplâtre, G.; Dubov, L. Yu; Stepanov, P. S.; Perfiliev, Yu D.; Kulikov, L. A.

    2016-01-01

    We have estimated a local heating which takes place owing to the ionization energy losses at the terminal part of a fast positron track and at nano-vicinities of the 57Fe Mössbauer nuclei in case of the emission Mössbauer spectroscopy. It is shown that in experiments close to the melting point one may expect local melting near the probe species.

  17. Positron annihilation investigation of a Y1Ba2Cu3O7- ? epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Lee, C. Y.

    2015-10-01

    An enhanced signal-to-noise ratio, slow positron coincidence Doppler broadening technique has been applied to study the characteristics of a Y1Ba2Cu3O7- ? superconducting thin film at sample temperatures of 15 K and 290 K. In this investigation, a numerical analysis of the Doppler spectra was employed to the determine the shape parameter S, defined as the ratio between the number of counts in a central portion of the spectrum and the total number of counts in the entire spectrum. The S-parameter values near 0.56 were relatively constant while the positron energies increased, which indicated the presence of voids in the thin film. The S-parameter values for the Y1Ba2Cu3O7- ? thin film showed no temperature dependence at temperatures above or below Tc because the positron trapping rate in vacancy-type defects was mostly influenced. The effect of the S-parameters caused by open volume defects is believed to be greater than the effect of the S-parameters caused by the electronic state transition in the Y1Ba2Cu3O7- ? superconductor.

  18. Generalized threshold resummation in inclusive DIS and semi-inclusive electron-positron annihilation

    NASA Astrophysics Data System (ADS)

    Almasy, A. A.; Lo Presti, N. A.; Vogt, A.

    2016-01-01

    We present analytic all-order results for the highest three threshold logarithms of the space-like and time-like off-diagonal splitting functions and the corresponding coefficient functions for inclusive deep-inelastic scattering (DIS) and semi-inclusive e + e - annihilation. All these results, obtained through an order-by-order analysis of the structure of the corresponding unfactorized quantities in dimensional regularization, can be expressed in terms of the Bernoulli functions introduced by one of us and leading-logarithmic soft-gluon exponentials. The resulting numerical corrections are small for the splitting functions but large for the coefficient functions. In both cases more terms in the threshold expansion need to be determined in order to arrive at quantitatively reliable results.

  19. Positron scattering and annihilation from the hydrogen molecule at zero energy.

    PubMed

    Zhang, J-Y; Mitroy, J; Varga, K

    2009-11-27

    The confined variational method is used to generate a basis of correlated Gaussians to describe the interaction region wave function for positron scattering from the H2 molecule. The scattering length was approximately = -2.7a(0) while the zero energy Z(eff) of 15.7 is compatible with experimental values. The variation of the scattering length and Z(eff) with internuclear distance was surprisingly rapid due to virtual state formation at R approximately = 3.4a(0). PMID:20366093

  20. Nondestructive Induced Residual Stress Assessment in Superalloy Turbine Engine Components Using Induced Positron Annihilation (IPA)

    SciTech Connect

    Rideout, C. A.; Ritchie, S. J.; Denison, A.

    2007-03-21

    Induced Positron Analysis (IPA) has demonstrated the ability to nondestructively quantify shot peening/surface treatments and relaxation effects in single crystal superalloys, steels, titanium and aluminum with a single measurement as part of a National Science Foundation SBIR program and in projects with commercial companies. IPA measurement of surface treatment effects provides a demonstrated ability to quantitatively measure initial treatment effectiveness along with the effect of operationally induced changes over the life of the treated component. Use of IPA to nondestructively quantify surface and subsurface residual stresses in turbine engine materials and components will lead to improvements in current engineering designs and maintenance procedures.

  1. Defects in electron-irradiated GaAs studied by positron lifetime spectroscopy

    SciTech Connect

    Polity, A.; Rudolf, F.; Nagel, C.; Eichler, S.; Krause-Rehberg, R.

    1997-04-01

    A systematic study of electron-irradiation-induced defects in GaAs was carried out. The irradiation was performed at low temperature (4 K) with an incident energy of 2 MeV. Both, the defect formation and annealing behavior were studied in dependence on the fluence (10{sup 15}--10{sup 19} cm{sup {minus}2}) in undoped, n-, and p-doped GaAs. Temperature-dependent positron lifetime measurements were performed between 20 and 600 K. The thermal stability of defects was studied by annealing experiments in the temperature range of 90--600 K. A defect complex, which anneals in a main stage at 300 K, was found in all GaAs samples after electron irradiation. A possible candidate for this defect is a complex of a vacancy connected with an intrinsic defect. A second vancancylike defect was observed in n-type material after annealing at 550 K. This defect was assumed to be in the As sublattice. {copyright} {ital 1997} {ital The American Physical Society}

  2. Positron Annihilation Study of Zr-2.5 wt.% Nb alloy Irradiated by Ar9+ heavy ions

    NASA Astrophysics Data System (ADS)

    Devi, Aruna; Menon, Ranjini; Maheshwari, Priya; Neogy, S.; Mukherjee, P.; Nabhiraj, P. Y.; Pujari, P. K.; Srivastava, D.; Dey, G. K.

    2015-06-01

    Zr-2.5 Nballoy is used as a pressure tube material in pressurized heavy water reactor (PHWR). It is one of the most critical component which decides the lifespan of the reactor. The in-reactor degrading phenomenon of prime concern is dimensional changes caused by irradiation induced creep and growth processes. The present study aims to understand the mechanism of irradiation damage by irradiating the alloy with heavy ion. Such type of irradiation study would facilitate larger damage of material in a shorter time. Zr-2.5Nb alloy samples were irradiated using 315 keV Ar9+ ion for different durations. The irradiation doses were varied in the range of 3.1X1015 to 4.17X1016 Ar9+/cm2. SRIM calculation was carried out to evaluate damage profile in the irradiated samples. Beam based Positron Annihilation Spectroscopy (PAS) technique was used for depth profiling to characterize defect distribution in the alloys. The no. of defects generated is seen to increase with the increase in the fluence.

  3. Effect of phosphorus on vacancy-type defect behaviour in electron-irradiated Ni studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Druzhkov, A. P.; Danilov, S. E.; Perminov, D. A.; Arbuzov, V. L.

    2015-02-01

    Very dilute Ni-P system (containing 50-240 appm phosphorus) irradiated by 5 MeV electrons at various temperatures (270-543 K) was studied by positron annihilation spectroscopy (PAS) and the electrical resistivity measurements. Under irradiation at 270 K (below stage III in Ni), the accumulation of the monovacancies in the Ni-P system is 1.5-2.0 times greater than that in pure Ni irradiated in the same conditions. This fact attests to the strong interaction between P atoms and self-interstitial atoms (SIAs). As a result of the non-mobile SIA-P complexes formation, the mutual recombination of point defects is suppressed and the vacancy accumulation is, respectively, enhanced. During post-irradiation annealing, the vacancy migration induces the transport process of the phosphorus atoms and leads to the formation of the vacancy clusters decorated with P atoms. The annealing behaviour of the defect structures in Ni-P systems after irradiation at enhanced temperatures was also studied. The influence of phosphorus on the formation and further evolution of the vacancy aggregates decrease with increasing of the irradiation temperature.

  4. Investigation of the defect structure in Cd 1- xZn xTe by positron lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Martyniuk, M.; Mascher, P.

    2001-12-01

    Positron lifetime spectroscopy has been employed to explore grown-in defects in Cd 1- xZn xTe (CZT) as a function of increasing Zn content. We find that with the increase of Zn content, both the average positron lifetime ?Avg, and the lifetime in the bulk ?Bulk, change smoothly from values typical for CdTe to those for ZnTe. In all samples, a defect-related lifetime component, ?D could be resolved with values decreasing from 347 ps in CdTe to 333 ps in ZnTe. This lifetime component is attributed to neutral Na (Cd,Zn)-V Te complexes in concentrations of around 10 16 cm -3, with a transition energy level below 0.19 eV above the valence band. It is established that these complexes are not connected to the p-type conductivity and their general characteristics are independent of the Zn content. This picture holds for stoichiometrically grown CZT and is independent of the growth method, whereas growth under Cd-rich conditions introduces a neutral impurity-V Te complex with higher concentrations as compared to growth from stoichiometric conditions.

  5. A program for the interactive analysis of positron lifetime spectra on personal computers with the aid of screen graphics

    NASA Astrophysics Data System (ADS)

    Dai, G. H.; Fu, J.; Liu, Q. S.

    1991-10-01

    A personal computer program has been developed for use in the interactive analysis of positron lifetime spectra with the aid of a graphic display. The multi-exponential function model is used to fit a spectrum by the linear least-squares method. The spectrum displayed on the screen is altered simultaneously as the lifetime components are stripped one by one from the longest-lived to the shortest. The merit of this code is that it provides the user with a visual feedback at any stage of the analysis. Moreover, the obtained model parameters of the spectrum can be used as initial estimates for the POSITRONFIT program used for final analysis.

  6. Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool.

    PubMed

    Shpotyuk, Oleh; Filipecki, Jacek; Ingram, Adam; Golovchak, Roman; Vakiv, Mykola; Klym, Halyna; Balitska, Valentyna; Shpotyuk, Mykhaylo; Kozdras, Andrzej

    2015-01-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy applied to characterize different types of nanomaterials treated within three-term fitting procedure are critically reconsidered. In contrast to conventional three-term analysis based on admixed positron- and positronium-trapping modes, the process of nanostructurization is considered as substitutional positron-positronium trapping within the same host matrix. Developed formalism allows estimate interfacial void volumes responsible for positron trapping and characteristic bulk positron lifetimes in nanoparticle-affected inhomogeneous media. This algorithm was well justified at the example of thermally induced nanostructurization occurring in 80GeSe2-20Ga2Se3 glass. PMID:25852373

  7. Positronics of subnanometer atomistic imperfections in solids as a high-informative structure characterization tool

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Oleh; Filipecki, Jacek; Ingram, Adam; Golovchak, Roman; Vakiv, Mykola; Klym, Halyna; Balitska, Valentyna; Shpotyuk, Mykhaylo; Kozdras, Andrzej

    2015-02-01

    Methodological possibilities of positron annihilation lifetime (PAL) spectroscopy applied to characterize different types of nanomaterials treated within three-term fitting procedure are critically reconsidered. In contrast to conventional three-term analysis based on admixed positron- and positronium-trapping modes, the process of nanostructurization is considered as substitutional positron-positronium trapping within the same host matrix. Developed formalism allows estimate interfacial void volumes responsible for positron trapping and characteristic bulk positron lifetimes in nanoparticle-affected inhomogeneous media. This algorithm was well justified at the example of thermally induced nanostructurization occurring in 80GeSe2-20Ga2Se3 glass.

  8. Analysis of exclusive kT jet algorithms in electron-positron annihilation

    NASA Astrophysics Data System (ADS)

    Chay, Junegone; Kim, Chul; Kim, Inchol

    2015-10-01

    We study the factorization of the dijet cross section in e+e- annihilation using the generalized exclusive jet algorithm which includes the cone-type, the JADE, the kT, the anti-kT and the Cambridge/Aachen jet algorithms as special cases. In order to probe the characteristics of the jet algorithms in a unified way, we consider the generalized kT jet algorithm with an arbitrary weight of the energies, in which various types of the kT-type algorithms are included for specific values of the parameter. We show that the jet algorithm respects the factorization property for the parameter ? <2 . The factorized jet function and the soft function are well defined and infrared safe for all the jet algorithms except the kT algorithm. The kT algorithm (? =2 ) breaks the factorization since the jet and the soft functions are infrared divergent and are not defined for ? =2 , though the dijet cross section is infrared finite. In the jet algorithms which enable factorization, we give a phenomenological analysis using the resummed and the fixed-order results.

  9. Hard photon processes in electron-positron annihilation at 29 GeV

    SciTech Connect

    Gold, M.S.

    1986-11-01

    The hard photon processes ..mu mu gamma.. and hadrons + ..gamma.. in e/sup +/e/sup -/ annihilation at 29 GeV have been studied. The study is based on an integrated luminosity of 226 pb/sup -1/ taken at PEP with the Mark II detector. For the ..mu mu gamma.. process, a small fraction of non-planar events are observed with missing momentum along the beam direction. The resulting missing energy spectrum is consistent with that expected from higher order effects. The observed cross section is consistent with the predicted cross section for this process, sigma/sup exp/sigma/sup th/ = .90 +- .05 +- .06. The observed hard photon energy spectrum and mass distributions are found to be in agreement with O(..cap alpha../sup 3/) QED. The measured charge asymmetry is in good agreement with the predicted value, A/sub exp/A/sub th/ = .83 +- .25 +- .12. The ..mu gamma.. invariant mass distribution is used to place a limit on a possible excited muon coupling G..gamma../M* for excited muon masses in the range 1 < M* < 21 GeV of (G..gamma../M*)/sup 2/ < 10/sup -5/ GeV/sup -2/ at a 95% confidence level. In the hadrons + ..gamma.. process, evidence for final state radiation is found in an excess of events over that predicted from initial state radiation alone of 253 +- 54 +- 60 events. Further evidence for final state radiation is found in a large hadronic charge asymmetry A/sub Had+..gamma../= (-24.6 +- 5.5)%.

  10. Early processes in positron and positronium chemistry: possible scavenging of epithermal e+ by nitrate ion in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Stepanov, Serge V.; Byakov, Vsevolod M.; Dupltre, Gilles; Zvezhinskiy, Dmitrii S.; Stepanov, Petr S.; Zaluzhnyi, Alexandr G.

    2015-06-01

    Positron ionization slowing down, formation of the positron track, reactions of e+ with track species and its interaction with a scavenger on a subpicosecond timescale, including the process of the positronium formation process are discussed. Interpretation of the positron annihilation lifetime data on positronium formation in aqueous solutions of NO-3 anions, known as efficient scavengers of the presolvated track electrons, suggests that these ions may also capture epithermal (presolvated) positrons as well.

  11. Positron spectroscopy for materials characterization

    SciTech Connect

    Schultz, P.J.; Snead, C.L. Jr.

    1988-01-01

    One of the more active areas of research on materials involves the observation and characterization of defects. The discovery of positron localization in vacancy-type defects in solids in the 1960's initiated a vast number of experimental and theoretical investigations which continue to this day. Traditional positron annihilation spectroscopic techniques, including lifetime studies, angular correlation, and Doppler broadening of annihilation radiation, are still being applied to new problems in the bulk properties of simple metals and their alloys. In addition new techniques based on tunable sources of monoenergetic positron beams have, in the last 5 years, expanded the horizons to studies of surfaces, thin films, and interfaces. In the present paper we briefly review these experimental techniques, illustrating with some of the important accomplishments of the field. 40 refs., 19 figs.

  12. Positron spectroscopy for materials characterization

    NASA Astrophysics Data System (ADS)

    Schultz, Peter J.; Snead, C. L., Jr.

    One of the more active areas of research on materials involves the observation and characterization of defects. The discovery of positron localization in vacancy-type defects in solids in the 1960's initiated a vast number of experimental and theoretical investigations which continue to this day. Traditional positron annihilation spectroscopic techniques, including lifetime studies, angular correlation, and Doppler broadening of annihilation radiation, are still being applied to new problems in the bulk properties of simple metals and their alloys. In addition new techniques based on tunable sources of monoenergetic positron beams have, in the last 5 years, expanded the horizons to studies of surfaces, thin films, and interfaces. In the present paper we briefly review these experimental techniques, illustrating with some of the important accomplishments of the field.

  13. Development of a compact and fast response detector using an Yb:Lu2O3 scintillator for lifetime sensitive positron emission tomography

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Kuroda, R.; Tanaka, M.; Oshima, N.; O'Rourke, B. E.; Suzuki, R.; Toyokawa, H.; Watanabe, K.; Yanagida, T.; Yagi, H.; Yanagitani, T.

    2014-05-01

    We propose a method for obtaining three-dimensional imaging measurements of the defect distribution inside industrial materials by measuring positron lifetimes, in addition to using the imaging technique of positron emission tomography. A compact and fast response detector that uses an Yb3+-doped Lu2O3 scintillator and a photomultiplier tube was developed and tested. Yb3+ charge transfer luminescence exhibits a fast response in the ultraviolet and visible regions. The first measurement of the positron lifetime for a bulk material using an Yb:Lu2O3 scintillator was carried out. The lifetime of positrons created inside an yttria-stabilized zirconia block via pair production produced by ultrashort photon pulses was successfully measured.

  14. Diffuse galactic annihilation radiation from supernova nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Higdon, J. C.

    1985-01-01

    The propagation of MeV positrons in the outer ejecta of type I supernovae was investigated. It was found that the positrons created at times of approx 100 days propagated along magnetic field lines in the outer ejecta without any appreciable pitch-angle scattering or excitation of hydromagnetic waves. The lack of significant pitch-angle scattering is well consistent with models of wave excitation and scattering by resonant interactions. This occurs because time periods to scatter the particles or to excite waves are significantly longer than escape times. Thus it is expected that, when positrons are not coupled to the ejecta by Coulomb collisions, they escape from the relatively cold, dense ejecta and reside predominantly in the tenuous, hotter, shock-heated interstellar gas. In the tenuous shock-heated gas the positron lifetime against annihilation is much greater than lifetimes in the dense ejectra. Thus the production of steady-state diffuse annihilation radiation by some fraction of these escaped positrons seems probable.

  15. Spin-Resolved Fermi Surface of the Localized Ferromagnetic Heusler Compound Cu2 MnAl Measured with Spin-Polarized Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Weber, Josef A.; Bauer, Andreas; Bni, Peter; Ceeh, Hubert; Dugdale, Stephen B.; Ernsting, David; Kreuzpaintner, Wolfgang; Leitner, Michael; Pfleiderer, Christian; Hugenschmidt, Christoph

    2015-11-01

    We determined the bulk electronic structure of the prototypical Heusler compound Cu2 MnAl by measuring the angular correlation of annihilation radiation using spin-polarized positrons. To this end, a new algorithm for reconstructing 3D densities from projections is introduced that allows us to corroborate the excellent agreement between our electronic structure calculations and the experimental data. The contribution of each individual Fermi surface sheet to the magnetization was identified, and summed to a total spin magnetic moment of 3.6 0.5 ?B/f .u . .

  16. Observation of the electron ridge Fermi surface in YBa{sub 2}Cu{sub 3}O{sub 7-x} by positron annihilation

    SciTech Connect

    Smedskjaer, L.C.; Fang, Y.; Bailey, K.G.; Welp, U.; Bansil, A.

    1991-04-01

    Positron annihilation (two-dimensional-angular-correlation) experiments on an untwinned single crystal of metallic YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} sample are reported in the c-projection. The measurements were carried out at room temperature and involved 94 Mcounts. An analysis of the spectra reveals clearly for the first time the presence of the electron ridge Fermi surface associated with the one-dimensional chain bands, and orthorhombic anisotropies in momentum density in good agreement with the band theory predictions.

  17. Tailoring the chain packing in ultrathin polyelectrolyte films formed by sequential adsorption: nanoscale probing by positron annihilation spectroscopy.

    PubMed

    Quinn, John F; Pas, Steven J; Quinn, Anthony; Yap, Heng Pho; Suzuki, Ryoichi; Tuomisto, Filip; Shekibi, Bijan S; Mardel, James I; Hill, Anita J; Caruso, Frank

    2012-12-01

    Depth profiling experiments by positron annihilation spectroscopy have been used to investigate the free volume element size and concentration in films assembled using the layer-by-layer (LbL) adsorption method. Films prepared from strong polyelectrolytes, weak polyelectrolytes, hydrogen-bonding polymers, and blended polyelectrolyte multilayers have different chain packing that is reflected in the free volume characteristics. The influence of various parameters on free volume, such as number of bilayers, salt concentration, solution pH, and molecular weight, has been systematically studied. The free volume cavity diameters vary from 4 to 6 Å, and the free volume concentrations vary from (1.1-4.3) × 10(20) cm(-3), depending on the choice of assembly polymers and conditions. Films assembled from strong polyelectrolytes have fewer free volume cavities with a larger average size than films prepared from weak polyelectrolytes. Blending the weak polyanion poly(acrylic acid), PAA, with the strong polyanion poly(styrene sulfonate), PSS, to layer alternately with the polycation poly(allyamine hydrochloride), PAH, is shown to be a viable method to achieve intermediate free volume characteristics in these LbL films. An increase in salt concentration of the adsorption solutions for films prepared from strong polyelectrolytes makes these films tend toward weaker polyelectrolyte free volume characteristics. Hydrogen-bonded layered films show larger free volume element size and concentration than do their electrostatically bonded counterparts, while reducing the molecular weight of these hydrogen-bonded polymers results in slightly reduced free volume size and concentration. A study of the effect of solution pH on films prepared from weak polyelectrolytes shows that when both polyelectrolytes are substantially charged in solution (assembly pH = 7.5), the chains pack similarly to strong polyelectrolytes (i.e., lower free volume concentration), but with smaller average cavity sizes. These results give, for the first time, a clear indication of how the free volume profile develops in LbL thin films, offering numerous methods to tailor the Ångström-scale free volume properties by judicious selection of the assembly polymers and conditions. These findings can be potentially exploited to tailor the properties of thin polymer films for applications spanning membranes, sensing, and drug delivery. PMID:23170945

  18. Bounds on Cross-sections and Lifetimes for Dark Matter Annihilation and Decay into Charged Leptons from Gamma-ray Observations of Dwarf Galaxies

    SciTech Connect

    Essig, Rouven; Sehgal, Neelima; Strigari, Louis E.; /KIPAC, Menlo Park

    2009-06-19

    We provide conservative bounds on the dark matter cross-section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle {phi}. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion {approx} 10 to 20 times lower than that of the local Galactic halo, then the cross-sections for dark matter annihilating through {phi}'s required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into {tau}'s is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross-section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after one year of observation.

  19. Positron bunching and electrostatic transport system for the production and emission of dense positronium clouds into vacuum

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Belov, A. S.; Bonomi, G.; Brunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Fesel, J.; Fontana, A.; Forslund, O. K.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gninenko, S.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jernelv, I. L.; Jordan, E.; Kaltenbacher, T.; Kellerbauer, A.; Kimura, M.; Koetting, T.; Krasnicky, D.; Lagomarsino, V.; Lebrun, P.; Lansonneur, P.; Lehner, S.; Liberadzka, J.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Riencker, B.; Rhne, O. M.; Rosenberger, S.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Vamosi, S.; Widmann, E.; Yzombard, P.; Zavatarelli, S.; Zmeskal, J.

    2015-11-01

    We describe a system designed to re-bunch positron pulses delivered by an accumulator supplied by a positron source and a Surko-trap. Positron pulses from the accumulator are magnetically guided in a 0.085 T field and are injected into a region free of magnetic fields through a ? -metal field terminator. Here positrons are temporally compressed, electrostatically guided and accelerated towards a porous silicon target for the production and emission of positronium into vacuum. Positrons are focused in a spot of less than 4 mm FWTM in bunches of ?8 ns FWHM. Emission of positronium into the vacuum is shown by single shot positron annihilation lifetime spectroscopy.

  20. Ligand-surface interactions and surface oxidation of colloidal PbSe quantum dots revealed by thin-film positron annihilation methods

    NASA Astrophysics Data System (ADS)

    Shi, Wenqin; Eijt, Stephan W. H.; Suchand Sandeep, C. S.; Siebbeles, Laurens D. A.; Houtepen, Arjan J.; Kinge, Sachin; Brück, Ekkes; Barbiellini, Bernardo; Bansil, Arun

    2016-02-01

    Positron Two Dimensional Angular Correlation of Annihilation Radiation (2D-ACAR) measurements reveal modifications of the electronic structure and composition at the surfaces of PbSe quantum dots (QDs), deposited as thin films, produced by various ligands containing either oxygen or nitrogen atoms. In particular, the 2D-ACAR measurements on thin films of colloidal PbSe QDs capped with oleic acid ligands yield an increased intensity in the electron momentum density (EMD) at high momenta compared to PbSe quantum dots capped with oleylamine. Moreover, the EMD of PbSe QDs is strongly affected by the small ethylenediamine ligands, since these molecules lead to small distances between QDs and favor neck formation between near neighbor QDs, inducing electronic coupling between neighboring QDs. The high sensitivity to the presence of oxygen atoms at the surface can be also exploited to monitor the surface oxidation of PbSe QDs upon exposure to air. Our study clearly demonstrates that positron annihilation spectroscopy applied to thin films can probe surface transformations of colloidal semiconductor QDs embedded in functional layers.

  1. Formation of isolated Zn vacancies in ZnO single crystals by absorption of ultraviolet radiation: a combined study using positron annihilation, photoluminescence, and mass spectroscopy.

    PubMed

    Khan, Enamul H; Weber, Marc H; McCluskey, Matthew D

    2013-07-01

    Positron annihilation spectra reveal isolated zinc vacancy (V(Zn)) creation in single-crystal ZnO exposed to 193-nm radiation at 100 mJ/cm(2) fluence. The appearance of a photoluminescence excitation peak at 3.18 eV in irradiated ZnO is attributed to an electronic transition from the V(Zn) acceptor level at ~100 meV to the conduction band. The observed V(Zn) density profile and hyperthermal Zn(+) ion emission support zinc vacancy-interstitial Frenkel pair creation by exciting a wide 6.34 eV Zn-O antibonding state at 193-nm photon-a novel photoelectronic process for controlled V(Zn) creation in ZnO. PMID:23863026

  2. Tau and muon pair production cross sections in electron-positron annihilations at {radical}(s)=10.58 GeV

    SciTech Connect

    Banerjee, Swagato; Roney, J. Michael; Pietrzyk, Bolek

    2008-03-01

    The calculational precision of e{sup +}e{sup -}{yields}{tau}{sup +}{tau}{sup -} and e{sup +}e{sup -}{yields}{mu}{sup +}{mu}{sup -} production cross sections in electron-positron annihilations at {radical}(s)=10.58 GeV is studied for the KKMC Monte Carlo simulation program, modified to include contributions from recent implementation of the hadronic part of vacuum polarization. We determine {sigma}(e{sup +}e{sup -}{yields}{tau}{sup +}{tau}{sup -})=(0.919{+-}0.003) nb and {sigma}(e{sup +}e{sup -}{yields}{mu}{sup +}{mu}{sup -})=(1.147{+-}0.005) nb, where the error represents the precision of the calculation.

  3. Time-dependent investigation of sub-monolayers of Ni on Pd using Positron-annihilation induced Auger Electron Spectroscopy and XPS

    NASA Astrophysics Data System (ADS)

    Zimnik, Samantha; Piochacz, Christian; Vohburger, Sebastian; Hugenschmidt, Christoph

    2016-01-01

    The surface of a polycrystalline Pd-substrate covered with (sub-) monolayers of Ni was investigated with Positron-annihilation induced Auger Electron Spectroscopy (PAES). Comparative studies using conventional AES induced by electrons and X-rays showed the outstanding surface sensitivity of PAES. Time-dependent PAES was performed on a 0.5 ML Ni cover layer on Pd and compared with conventional X-ray induced Photoelectron Spectroscopy (XPS) in order to observe changes in the elemental composition of the surface. The PAES results appear to show a migration of Ni atoms into the Pd substrate, whereas the Ni signal shows a decrease of 12% within 13 h with respect to the initial value.

  4. Positron-annihilation studies of the influence of nanodimensional intermetallic precipitates on the evolution of radiation defects in the FeNiAl alloy

    NASA Astrophysics Data System (ADS)

    Perminov, D. A.; Druzhkov, A. P.; Arbuzov, V. L.

    2015-11-01

    The influence of precipitates of the Ni3Al intermetallic compound on the accumulation of vacancy defects in the aged Fe-Ni-Al alloy upon electron irradiation has been studied by the method of positron annihilation spectroscopy. The samples of the alloy with different initial microstructures (quenched, aged under different conditions) were irradiated at temperatures of 300 and 423 K to a damaging dose of 5 10-4 displacements per atom (dpa), after which they were isochronously annealed in the temperature range of 300-850 K. The results obtained have shown that the presence of particles of the intermetallic precipitates leads to the retardation of the accumulation of vacancy defects. The rate of accumulation substantially depends on the irradiation temperature. Furthermore, the effect of precipitates depends on the size, density, and type of particles. An analysis of the experimental data has shown that this effect is caused by the presence of elastic stresses at the precipitate-matrix boundaries.

  5. Direct Observation of the Surface Segregation of Cu in Pd by Time-Resolved Positron-Annihilation-Induced Auger Electron Spectroscopy

    SciTech Connect

    Mayer, J.; Hugenschmidt, C.; Schreckenbach, K.

    2010-11-12

    Density functional theory calculations predict the surface segregation of Cu in the second atomic layer of Pd which has not been unambiguously confirmed by experiment so far. We report measurements on Pd surfaces covered with three and six monolayers of Cu using element selective positron-annihilation-induced Auger electron spectroscopy (PAES) which is sensitive to the topmost atomic layer. Moreover, time-resolved PAES, which was applied for the first time, enables the investigation of the dynamics of surface atoms and hence the observation of the segregation process. The time constant for segregation was experimentally determined to {tau}=1.38(0.21) h, and the final segregated configuration was found to be consistent with calculations. Time-dependent PAES is demonstrated to be a novel element selective technique applicable for the investigation of, e.g., heterogeneous catalysis, corrosion, or surface alloying.

  6. Effect of microstructure on positron-annihilation parameters in YBa/sub 2/Cu/sub 3/O/sub 7/

    SciTech Connect

    Usmar, S.G.; Lynn, K.G.; Moodenbaugh, A.R.; Suenaga, M.; Sabatini, R.L.

    1988-09-01

    The temperature dependence of positron Doppler line shape has been measured for several samples of YBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ (xless than or equal to0.1). Two distinct temperature dependences have been observed. In one case the line-shape parameter S increases by approx. =0.5% between 15 and 100 K, remains constant between 100 and 230 K, and then decreases by approx. =0.25% between 230 and 290 K. In the second case, S remains constant between 20 and 100 K, decreases by approx. =1% between 100 and 200 K, and then remains constant up to 290 K. Room-temperature positron-lifetime measurements also reveal distinct differences between samples. An explanation of these differences based on micro- structural differences observed by transmission electron microscopy is suggested.

  7. Detection of a feature at 0. 44 MeV in the Crab pulsar spectrum with FIGARO II - A redshifted positron annihilation line

    SciTech Connect

    Massaro, E.; Matt, G.; Salvati, M.; Costa, E.; Mandrou, P. Arcetri, Osservatorio Astrofisico, Florence CNR, Inst. di Astrofisica Spaziale, Frascati Centre d'Etude Spatiale des Rayonnements, Toulouse )

    1991-07-01

    The balloon-borne experiment FIGARO II was launched from the base of Trapani-Milo on July 9, 1990 at 0433 UT and observed the Crab pulsar for about 5 hr. The light curve of the signal from PSR 0531 + 21 folded with the radio period shows clearly the known double-peak structure. The spectrum of the second peak, the dominant structure in the hard X-rays and low-energy gamma rays, is characterized by a feature which, if interpreted as an emission line, gives the intensity of (0.86 {plus minus} 0.33) {times} 10 to the {minus}4th photons/sq cm per sec at the energy of 0.44 {plus minus} 0.01 MeV at a confidence level of 99.6 percent. If this feature is the signature of positron annihilation close to the neutron star surface, redshifted by the intense gravitational field, it is possible to estimate the mass-to-radius ratio of the Crab neutron star and the positron production rate from one of the polar caps. The former is equal to 0.087 solar masses/km and the latter 8.2 {times} 10 to the 39th e(+)/s for a pencil-beam pattern, in reasonable agreement with some heuristic estimates based on the number of energetic particles radiating the optical pulses. 16 refs.

  8. Structure and sublimation of water ice films grown in vacuo at 120-190 K studied by positron and positronium annihilation.

    PubMed

    Townrow, S; Coleman, P G

    2014-03-26

    The crystalline structure of ? 5-20 ?m water ice films grown at 165 and 172 K has been probed by measuring the fraction of positrons forming ortho-positronium (ortho-Ps) and decaying into three gamma photons. It has been established that films grown at slower rates (water vapour pressure ? 1 mPa) have lower concentrations of lattice defects and closed pores, which act as Ps traps, than those grown at higher rates (vapour pressure ? 100 mPa), evidenced by ortho-Ps diffusion lengths being approximately four times greater in the former. By varying the growth temperature between 162 and 182 K it was found that films become less disordered at temperatures above ? 172 K, with the ortho-Ps diffusion length rising by ? 60%, in this range. The sublimation energy for water ice films grown on copper has been measured to be 0.462(5) eV using the time dependence of positron annihilation parameters from 165 to 195 K, in agreement with earlier studies and with no measurable dependence on growth rate and thermal history. PMID:24599176

  9. Positron annihilation in the epitaxial superconducting thin-film GdBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} studied by using a pulsed positron beam

    SciTech Connect

    Zhou, X.Y.; Stoermer, J.; Wang, R.L.; Keimel, J.; Li, H.C.; Koegel, G.; Triftshaeuser, W.

    1996-07-01

    The positron lifetime as a function of implantation energy was measured on the epitaxial superconducting thin film GdBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} at different temperatures. The coexistence of both shallow and deep positron trapping centers was observed in the film. The shallow trapping centers include the screw dislocations and twin boundaries. The binding energy of the shallow trapping centers was estimated to be 56{plus_minus}12 meV. The deep trapping centers are assigned the cation vacancies, especially barium vacancies. On the surface of the sample there are macroscopic free volume holes in which positronium could be formed. {copyright} {ital 1996 The American Physical Society.}

  10. Thermal and optical excitation of trapped electrons in high-density polyethylene (HDPE) studied through positron annihilation

    NASA Astrophysics Data System (ADS)

    Nahid, F.; Zhang, J. D.; Yu, T. F.; Ling, C. C.; Fung, S.; Beling, C. D.

    2011-04-01

    Positronium (Ps) formation in high-density polyethylene (HDPE) has been studied below the glass transition temperature. The formation probability increases with positron irradiation time due to an increasing number of inter-track trapped electrons becoming available for positron capture. The temperature variation of the saturated Ps level is discussed in different models. The quenching of trapped electrons by light has been studied and the optical de-trapping cross-section for different photon energies has been estimated over the visible region.

  11. The size of smallest subnanometric voids estimated by positron annihilation method. Correction to the Tao-Eldrup model

    NASA Astrophysics Data System (ADS)

    Zgardzi?ska, B.

    2015-02-01

    The Tao-Eldrup model, commonly applied in estimation of free volume sizes in solids, uses the concept of infinitely deep potential well, which can lead to inaccuracies when the ortho-positronium (o-Ps) lifetime is very short (less than 1.5 ns). A simple correction allowing to estimate properly the free volume radii at the o-Ps lifetime down to 0.8 ns is proposed.

  12. Charged Particle Multiplicities in Electron-Positron Annihilation at Center-Of Energies from 50 TO 61.4 GEV.

    NASA Astrophysics Data System (ADS)

    Zheng, Hong Wei

    We present the charged particle multiplicity distributions for e^+e^- annihilation at center-of-mass energies from 50 to 61.4 GeV. The results are based on a data sample corresponding to a total integrated luminosity of 29.6 pb^ {-1} obtained with the AMY detector at the TRISTAN storage ring. The charged particle multiplicity distributions deviate significantly from the modified-Poisson and pair-Poisson distributions, but follow KNO scaling and are well reproduced by the Lund parton-shower model.

  13. To the problem of positron states in metal-insulator nanosandwiches

    NASA Astrophysics Data System (ADS)

    Babich, A. V.; Vakula, P. V.; Pogosov, V. V.

    2015-01-01

    The potential profiles, wave functions, energies of surface subbands, and lifetimes of positrons in aluminum nanofilms bordering insulators (solid inert gases and SiO2) have been calculated self-consistently in the previously proposed models. The size effects and the influence of the effective masses of electrons and positrons on the energy and annihilation characteristics in systems with double potential wells formed by image potentials have been investigated. The possibility of localizing a positronium atom in nanosandwiches has been discussed.

  14. Positronium annihilation lifetimes and dielectric spectroscopy studies on diethyl phthalate: Phenomenological correlations and microscopic analyses in terms of the extended free volume model by Cohen-Grest

    NASA Astrophysics Data System (ADS)

    Pawlus, S.; Barto, J.; aua, O.; Kritiak, J.; Paluch, M.

    2006-03-01

    A combined positronium annihilation lifetime spectroscopy (PALS) and dielectric spectroscopy (DS) study on a typical van der Waals glass-former diethyl phthalate (DEP) was performed and the results were compared. From phenomenological point of view, the mutual relationships between the characteristic PALS temperatures, the glass temperature TgPALS, and the crossover temperatures Tb1L and Tb2L on the ortho-positronium (o-Ps ) lifetime versus the temperature plot, have been discussed with respect to the characteristic DS temperatures, the glass temperature TgDS and the dynamic crossover temperature TBST, concerning the crossover behavior of primary ?-relaxation times. Next, simultaneous application of the extended free volume (EFV) model by Cohen-Grest on the temperature dependence of both the mean free volume hole size data as extracted from PALS and the dielectric ?-relaxation time revealed a good agreement between the experimental Tb1L and the characteristic EFV temperatures T0DS and T0PALS at which a free volume percolation should occur. These results indicate the important role of free volume in control of the primary (?) dynamics of supercooled DEP.

  15. Defects in ZnO thin films grown on ScAlMgO4 substrates probed by a monoenergetic positron beam

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Koida, T.; Tsukazaki, A.; Kawasaki, M.; Chen, Z. Q.; Chichibu, SF.; Koinuma, H.

    2003-03-01

    Zinc oxide (ZnO) thin films grown on ScAlMgO4 substrates were characterized by means of positron annihilation. We measured Doppler broadening spectra of annihilation radiation and photoluminescence spectra for the ZnO films deposited by laser molecular-beam epitaxy and single-crystal ZnO. Although the lifetime of positrons in single-crystal ZnO was close to the lifetime of positrons annihilated from the free state, the diffusion length of positrons was shorter than that for typical defect-free materials. We attribute this to the scattering of positrons by native defects. For the ZnO films, we observed a correlation between the defects and the lifetime of bound exciton emissions ?Ex; the main defect species detected by positron annihilation was Zn vacancies or other related defects. Isochronal annealing at 750-850 C was found to introduce additional vacancy-type defects into the film, although the value of ?Ex was scarcely changed by the annealing.

  16. Positron accumulation effect in particles embedded in a low-density matrix

    SciTech Connect

    Dryzek, Jerzy; Siemek, Krzysztof

    2015-02-07

    Systematic studies of the so-called positron accumulation effect for samples with particles embedded in a matrix are reported. This effect is related to energetic positrons which penetrate inhomogeneous medium. Due to differences in the linear absorption coefficient, different amounts of positrons are accumulated and annihilate in the identical volume of both materials. Positron lifetime spectroscopy and Doppler broadening of the annihilation line using Na-22 positrons were applied to the studies of the epoxy resin samples with embedded micro-sized particles of transition metals, i.e., Ni, Sn, Mo, W, and nonmetal particles, i.e., Si and NaF. The significant difference between the determined fraction of positrons annihilating in the particles and the particle volume fraction indicates the positron accumulation effect. The simple phenomenological model and Monte Carlo simulations are able to describe the main features of the obtained dependencies. The aluminum alloy with embedded Sn nanoparticles is also considered for demonstration differences between the accumulation and another related effect, i.e., the positron affinity.

  17. Oxygen-Atom Defects In 6H Silicon Carbide Implanted Using 24- MeV O{sup 3+} Ions Measured Using Three-Dimensional Positron Annihilation Spectroscopy System (3DPASS)

    SciTech Connect

    Williams, Christopher S.; Petrosky, James C.; Burggraf, Larry W.

    2011-06-01

    Three dimensional electron-positron (e{sup -}-e{sup +}) momentum distributions were measured for single crystal 6H silicon carbide (SiC); both virgin and having implanted oxygen-atom defects. 6H SiC samples were irradiated by 24- MeV O{sup 3+} ions at 20 particle-nanoamps at the Sandia National Laboratory's Ion Beam Facility. O{sup 3+} ions were implanted 10.8 {mu}m deep normal to the (0001) face of one side of the SiC samples. During positron annihilation measurements, the opposite face of the 254.0-{mu}m thick SiC samples was exposed to positrons from a {sup 22}Na source. This technique reduced the influence on the momentum measurements of vacancy-type defects resulting from knock-on damage by the O{sup 3+} ions. A three-dimensional positron annihilation spectroscopy system (3DPASS) was used to measure e{sup -}-e{sup +} momentum distributions for virgin and irradiated 6H SiC crystal both before and following annealing. 3DPASS simultaneously measures coincident Doppler-broadening (DBAR) and angular correlation of annihilation radiation (ACAR) spectra. DBAR ratio plots and 2D ACAR spectra are presented. Changes in the momentum anisotropies relative to crystal orientation observed in 2D ACAR spectra for annealed O-implanted SiC agree with the local structure of defect distortion predicted using Surface Integrated Molecular Orbital/Molecular Mechanics (SIMOMM). Oxygen atoms insert between Si and C atoms increasing their separation by 0.9 A forming a Si-O-C bond angle of {approx}150 deg.

  18. Comparison of three-jet and radiative two-jet events in electron-positron annihilation at 29 GeV

    SciTech Connect

    Sheldon, P.D.

    1986-11-01

    By comparing 3-jet (e/sup +/e/sup -/ ..-->.. q anti q g) and radiative 2-jet (e/sup +/e/sup -/ ..-->.. q anti q ..gamma..) events from electron-positron annihilation, we have studied the local and global effects of the presence of a hard bremsstrahlung gluon in hadronic events. Detector and event selection efficiencies and biases affect these two kinds of events almost equally because they have very similar kinematics and topologies. Accurate comparisons of q anti q g and q anti q ..gamma.. events can therefore be made. Globally, we observe a depletion of hadrons in q anti q g events relative to q anti q ..gamma.. events on the opposite side of the event plane from the gluon, in the angular region between the q and anti q jets. This depletion is shown to be in agreement with the predictions of Quantum Chromodynamics (QCD). The existence of this effect demonstrates that the presence of a gluon significantly alters the color forces and hence the fragmentation process in hadronic events. We also use these q anti q ..gamma.. and q anti q g events to compare low energy (4.5 GeV) gluon and quark jets. Our data indicate that gluon jets have softer x/sub p/ distributions than quark jets, while the transverse momentum distributions of these two types of jets are identical within our errors. Although we are unable to determine if the multiplicities of gluon (n/sub /) and quark (n/sub q/) jets are different, the ratio n/sub g//n/sub q/ = 9/4 predicted asymptotically in QCD would not be consistent with our data.

  19. SMM observations of gamma-ray transients. 3: A search for a broadened, redshifted positron annihilation line from the direction of the Galactic center

    NASA Technical Reports Server (NTRS)

    Harris, Michael J.; Share, Gerald H.; Leising, Mark D.

    1994-01-01

    We have searched for 1980-1988 Solar Maximum Mission gamma-ray spectrometer data for transient emission on timescales from hours to approximately 12 days of broad gamma-ray lines at energies approximately 400 keV, which were reported by the High Energy Astronomy Observatory (HEAO) 1 and SIGMA experiments from two sources lying toward the Galactic center. The lines have been interpreted as the product of the annihilation of positrons in pair plasmas surrounding the black hole candidate 1E 1740.7-2942 and the X-ray binary 1H 1822-371. Our results from a combined exposure of approximately 1.5 x 10(exp 7)s provide no convincing evidence for transient emission of this line on any timescale between approximately 9 hr and approximately 1 yr. Our 3 sigma upper limits on the line flux during approximately 12 day intervals are characteristically 4.8 x 10(exp -3) photon/sq cm/s, while for approximately 1 day intervals our 3 sigma upper limits are characteristically 4.9 x 10(exp -3) photon/sq cm/s. These results imply a duty cycle of less than 1.3% for the transient line measured from 1H 1822-371 during a approximately 3 week interval in 1977 by HEAO 1, and a duty cycle of less than or = 0.8% for the transient line detected in 1990 and 1992 from 1E 1740.7-2942 on approximately 1 day timescales by SIGMA.

  20. Local electron structure and vacancy properties for oxygen deficient YBa2Cu3O7-?(? = 0.06 ~ 0.68) by positron lifetime data

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Cheng, G.; Cao, S.; Liu, F.; Liu, J.

    1994-12-01

    We report the positron lifetime results for oxygen deficient YBa2Ca3O7-?(? = 0.06 ~ 0.68) systems and calculate the local electron density ne and vacancy concentration Cv as a function of ? at 77K and 300K. The results show that there exist a significant dependence on oxygen-deficient and near ? = 0.4, corresponding only right to O-T transition, an anomalous change occurses. These may be explained by the electronic weak localization and orthorhombic structural characteristic of Y(123) cuprate.

  1. Local electron structure and vacancy properties for oxygen deficient YBa 2Cu 3O 7- ?( ? = 0.06?0.68) by positron lifetime data

    NASA Astrophysics Data System (ADS)

    Jincang, Zhang; Guosheng, Cheng; Junzheng, Liu; Shixun, Cao; Fengqi, Liu

    1994-12-01

    We report the positron lifetime results for oxygen deficient YBa 2Ca 3O 7- ?( ? = 0.06?0.68) systems and calculate the local electron density n e and vacancy concentration C v as a function of ? at 77K and 300K. The results show that there exist a significant dependence on oxygen-deficient and near ? = 0.4, corresponding only right to O-T transition, an anomalous change occurses. These may be explained by the electronic weak localization and orthorhombic structural characteristic of Y(123) cuprate.

  2. Construction of concentration density profile across the interface in SAN/EVA immiscible blend from positron lifetime parameters

    NASA Astrophysics Data System (ADS)

    Ramya, P.; Meghala, D.; Pasang, T.; Ranganathaiah, C.

    2013-02-01

    The interface width determination through the construction of composition density profile across the interface in an immiscible binary polymer blend using ortho-positronium lifetime parameters is described in this paper. The distribution of free volume and hence the hydrodynamic interaction parameter has been evaluated for this purpose making use of the CONTIN routine analysis of the lifetime spectra. The results showed the broad free volume distribution and narrow interface width were reminiscent of lack of interaction between SAN and EVA the constituents.

  3. Annihilation in Gases and Galaxies

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J. (Editor)

    1990-01-01

    This publication contains most of the papers, both invited and contributed, that were presented at the Workshop of Annihilation in Gases and Galaxies. This was the fifth in a biennial series associated with the International Conference on the Physics of Electronic and Atomic Collisions. Subjects covered included the scattering and annihilation of positrons and positronium atoms in various media, including those of astrophysical interest. In addition, the topics of antimatter and dark matter were covered.

  4. Nuclear Instruments and Methods in Physics Research. Section B; Microstructural Characterization of Semi-Interpenetrating Polymer Networks by Positron Lifetime Spectroscopy

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Pater, Ruth H.; Eftekhari, Abe

    1998-01-01

    Thermoset and thermoplastic polyimides have complementary physical/mechanical properties. Whereas thermoset polyimides are brittle and generally easier to process, thermoplastic polyimides are tough but harder to process. It is expected that a combination of these two types of polyimides may help produce polymers more suitable for aerospace applications. Semi-Interpenetrating Polymer Networks (S-IPNs) of thermoset LaRC(Trademark)-RP46 and thermoplastic LARC(Trademark)-IA polyimides were prepared in weight percent ratios ranging from 100:0 to 0: 100. Positron lifetime measurements were made in these samples to correlate their free volume features with physical/mechanical properties. As expected, positronium atoms are not formed in these samples. The second life time component has been used to infer the positron trap dimensions. The "free volume" goes through a minimum at about 50:50 ratio, suggesting that S-IPN samples are not merely solid solutions of the two polymers. These data and related structural properties of the S-IPN samples have been discussed in this paper.

  5. Two-component density functional theory within the projector augmented-wave approach: Accurate and self-consistent computations of positron lifetimes and momentum distributions

    NASA Astrophysics Data System (ADS)

    Wiktor, Julia; Jomard, Gérald; Torrent, Marc

    2015-09-01

    Many techniques have been developed in the past in order to compute positron lifetimes in materials from first principles. However, there is still a lack of a fast and accurate self-consistent scheme that could handle accurately the forces acting on the ions induced by the presence of the positron. We will show in this paper that we have reached this goal by developing the two-component density functional theory within the projector augmented-wave (PAW) method in the open-source code abinit. This tool offers the accuracy of the all-electron methods with the computational efficiency of the plane-wave ones. We can thus deal with supercells that contain few hundreds to thousands of atoms to study point defects as well as more extended defects clusters. Moreover, using the PAW basis set allows us to use techniques able to, for instance, treat strongly correlated systems or spin-orbit coupling, which are necessary to study heavy elements, such as the actinides or their compounds.

  6. Cold Positrons from Decaying Dark Matter

    SciTech Connect

    Boubekeur, Lotfi; Dodelson, Scott; Vives, Oscar

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  7. Two-dimensional analysis of positron age-momentum correlation (AMOC) data

    NASA Astrophysics Data System (ADS)

    Siegle, A.; Stoll, H.; Castellaz, P.; Major, J.; Schneider, H.; Seeger, A.

    1997-05-01

    By measuring the individual positron lifetimes (= positron ages) together with the energies of one of the annihilation quanta in a triple-coincidence set-up ( age-momentum correlation, AMOC), time-resolved information on the evolution of the positron states may be obtained. The present paper describes a data evaluation procedure that makes full use of the time-resolved information provided by the AMOC relief (number of counts versus positron age and photon energy) by fitting the parameters of an appropriate physical model directly to the two-dimensional relief without prior data reduction. The power of this novel analysis is illustrated by analyzing complex formation and spin conversion of positronium in solutions of HTEMPO in solid and liquid benzene.

  8. High-field penning-malmberg trap: confinement properties and use in positron accumulation

    SciTech Connect

    Hartley, J.H.

    1997-09-01

    This dissertation reports on the development of the 60 kG cryogenic positron trap at Lawrence Livermore National Laboratory, and compares the trap`s confinement properties with other nonneutral plasma devices. The device is designed for the accumulation of up to 2{times}10{sup 9} positrons from a linear-accelerator source. This positron plasma could then be used in Bhabha scattering experiments. Initial efforts at time-of-flight accumulation of positrons from the accelerator show rapid ({approximately}100 ms) deconfinement, inconsistent with the long electron lifetimes. Several possible deconfinement mechanisms have been explored, including annihilation on residual gas, injection heating, rf noise from the accelerator, magnet field curvature, and stray fields. Detailed studies of electron confinement demonstrate that the empirical scaling law used to design the trap cannot be extrapolated into the parameter regime of this device. Several possible methods for overcoming these limitations are presented.

  9. Microwave irradiation induced modifications on the interfaces in SAN/EVA/PVC and PVAc/BPA/PVP ternary polymer blends: Positron lifetime study

    NASA Astrophysics Data System (ADS)

    Dinesh, Meghala; Chikkakuntappa, Ranganathaiah

    2013-09-01

    Ternary polymer blends of poly(styrene-co-acrylonitrile)/poly(ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and poly(vinyl acetate)/bisphenol A/polyvinylpyrrolidone (PVAc/BPA/PVP) with different compositions have been prepared by solvent casting method and characterized by positron lifetime spectroscopy and differential scanning calorimetry DSC. Phase modifications have been induced by irradiating the blends with microwave radiation. These changes have been monitored by measuring the free-volume content in the blends. The results clearly show improved interactions between the constituent polymers of the blends upon microwave irradiation. However, the free-volume data and DSC measurements are found to be inadequate to reveal the changes at the interfaces and the interfaces determine the final properties of the blend. For this we have used hydrodynamic interaction (αij) approach developed by us to measure strength of hydrodynamic interaction at the interfaces. These results show that microwave irradiation stabilizes the interfaces if the blend contains strong polar groups. SAN/EVA/PVC blend shows an increased effective hydrodynamic interaction from -3.18 to -4.85 at composition 50/35/15 upon microwave irradiation and PVAc/BPA/PVP blend shows an increased effective hydrodynamic interaction from -3.81 to -7.57 at composition 20/50/30 after irradiation.

  10. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2013-05-28

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  11. Portable Positron Measurement System (PPMS)

    SciTech Connect

    2011-01-01

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  12. Investigating the binding properties of porous drug delivery systems using nuclear sensors (radiotracers) and positron annihilation lifetime spectroscopy--predicting conditions for optimum performance.

    PubMed

    Mume, Eskender; Lynch, Daniel E; Uedono, Akira; Smith, Suzanne V

    2011-06-21

    Understanding how the size, charge and number of available pores in porous material influences the uptake and release properties is important for optimising their design and ultimately their application. Unfortunately there are no standard methods for screening porous materials in solution and therefore formulations must be developed for each encapsulated agent. This study investigates the potential of a library of radiotracers (nuclear sensors) for assessing the binding properties of hollow silica shell materials. Uptake and release of Cu(2+) and Co(2+) and their respective complexes with polyazacarboxylate macrocycles (dota and teta) and a series of hexa aza cages (diamsar, sarar and bis-(p-aminobenzyl)-diamsar) from the hollow silica shells was monitored using their radioisotopic analogues. Coordination chemistry of the metal (M) species, subtle alterations in the molecular architecture of ligands (Ligand) and their resultant complexes (M-Ligand) were found to significantly influence their uptake over pH 3 to 9 at room temperature. Positively charged species were selectively and rapidly (within 10 min) absorbed at pH 7 to 9. Negatively charged species were preferentially absorbed at low pH (3 to 5). Rates of release varied for each nuclear sensor, and time to establish equilibrium varied from minutes to days. The subtle changes in design of the nuclear sensors proved to be a valuable tool for determining the binding properties of porous materials. The data support the development of a library of nuclear sensors for screening porous materials for use in optimising the design of porous materials and the potential of nuclear sensors for high through-put screening of materials. PMID:21409200

  13. a Measurement of the Bottom Quark Forward-Backward Charge Asymmetry in Electron-Positron Annihilation at a Center-Of Energy of 58 GEV

    NASA Astrophysics Data System (ADS)

    Thomas, Timothy Lester

    1995-01-01

    The AMY detector, part of the TRISTAN electron -positron accelerator complex at the KEK National Laboratory for High Energy Physics in Tsukuba, Japan, was used to perform a measurement of rm A_{b }, the forward-backward charge asymmetry for the process rm e^+e^-to {b| b}. The result, based on 145.6 pb^{-1} of data acquired between 1990 and 1992, is A_{b } = -0.810 +/- 0.129 +/- 0.234, in good agreement with the rm SU(3)_ {c} times SU(2)_{L} times U(1)_{Y} Standard Model of elementary particle interactions including a third generation weak isodoublet.

  14. Fermi-surface reconstruction from two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) data using maximum-likelihood fitting of wavelet-like functions

    NASA Astrophysics Data System (ADS)

    Major, A. G.; Fretwell, H. M.; Dugdale, S. B.; Alam, M. A.

    1998-11-01

    A novel method for reconstructing the Fermi surface from experimental two-dimensional angular correlation of positron annihilation radiation (2D-ACAR) projections is proposed. In this algorithm, the 3D electron momentum-density distribution is expanded in terms of a basis of wavelet-like functions. The parameters of the model, the wavelet coefficients, are determined by maximizing the likelihood function corresponding to the experimental data and the projections calculated from the model. In contrast to other expansions, in the case of that in terms of wavelets a relatively small number of model parameters are sufficient for representing the relevant parts of the 3D distribution, thus keeping computation times reasonably short. Unlike other reconstruction methods, this algorithm takes full account of the statistical information content of the data and therefore may help to reduce the amount of time needed for data acquisition. An additional advantage of wavelet expansion may be the possibility of retrieving the Fermi surface directly from the wavelet coefficients rather than indirectly using the reconstructed 3D distribution.

  15. Effects of post-irradiation annealing and re-irradiation on microstructure in surveillance test specimens of the Loviisa-1 reactor studied by atom probe tomography and positron annihilation

    NASA Astrophysics Data System (ADS)

    Toyama, T.; Kuramoto, A.; Nagai, Y.; Inoue, K.; Nozawa, Y.; Shimizu, Y.; Matsukawa, Y.; Hasegawa, M.; Valo, M.

    2014-06-01

    This paper presents a microstructural study of a surveillance test specimen from the Loviisa-1 reactor in Finland, which is a Russian-type pressurized water reactor (VVER-440), after initial irradiation to a neutron fluence of 2.5 1019 n/cm2 (E > 1 MeV), post-irradiation annealing at 475 C for 100 h and re-irradiation to three different fluences up to 2.7 1019 n/cm2. Atom probe tomography (APT) and positron annihilation spectroscopy (PAS) were used to characterize the test specimens. APT results showed the formation of Cu-rich solute clusters (SCs) during the initial irradiation and their subsequent coarsening during annealing. After re-irradiation, a small number of SCs formed once again. The hardening due to the SCs was estimated using the Russell-Brown model based on the APT results, and was in good agreement with the measured hardening after the initial irradiation and post-irradiation annealing. In contrast, during the first-step of re-irradiation, the estimated hardening due to the SCs was smaller than the measured hardening. This suggested that the hardening after re-irradiation was due to some microstructure other than the observed SCs. This difference was attributed to newly-formed matrix defects during re-irradiation, which was supported by the PAS results. However in subsequent steps of re-irradiation, the hardening was almost constant.

  16. A calorimetric measurement of the strong coupling constant in electron-positron annihilation at a center-of-mass energy of 91.6 GeV

    SciTech Connect

    Martirena, S.G.

    1994-04-01

    In this work, a measurement of the strong coupling constant {alpha}{sub s} in e{sup +}e{sup {minus}} annihilation at a center-of-mass energy of 91.6 GeV is presented. The measurement was performed with the SLD at the Stanford Linear Collider facility located at the Stanford Linear Accelerator Center in California. The procedure used consisted of measuring the rate of hard gluon radiation from the primary quarks in a sample of 9,878 hadronic events. After defining the asymptotic manifestation of partons as `jets`, various phenomenological models were used to correct for the hadronization process. A value for the QCD scale parameter {Lambda}{sub bar MS}, defined in the {sub bar MS} renormalization convention with 5 active quark flavors, was then obtained by a direct fit to O({alpha}{sub s}{sup 2}) calculations. The value of {alpha}{sub s} obtained was {alpha}{sub s}(M{sub z0}) = 0.122 {plus_minus} 0.004 {sub {minus}0.007} {sup +0.008} where the uncertainties are experimental (combined statistical and systematic) and theoretical (systematic) respectively. Equivalently, {Lambda}{sub bar MS} = 0.28 {sub {minus}0.10}{sup +0.16} GeV where the experimental and theoretical uncertainties have been combined.

  17. Pair annihilation in superstrong magnetic fields

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Bussard, R. W.

    1980-01-01

    The kinematical and dynamical aspects of the annihilation processes in superstrong magnetic fields are studied. The feasibility and potential significance of detecting from magnetic neutron stars are discussed. The discussion proceeds from the derivation of the fully relativistic differential cross sections and annihilation rates for both one- and two-photon emission from a ground-state gas of electrons and positrons in a static, uniform magnetic field.

  18. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Dai, Yong

    2015-10-01

    This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ?1MBq of 44Ti per 1g of f/m steels irradiated at 1dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti?44Sc?44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  19. Applicability of the MCPNX particle transport code for determination of the source correction effect in positron lifetime measurements on thin polymer films

    SciTech Connect

    J.M. Urban-Klaehn

    2007-09-01

    The method presented herein uses the MCNPX Monte Carlo particle transport code to track individual positrons and other particles through geometry that accounts for the detectors, backing foils, samples and sources with their actual sizes, positions and material characteristics. Polymer material, polydimethylsiloxane (PDMS), with different thickness of films served as samples. The excellent agreement between the experimental results and the MCNPX simulation of source correction effects for varied positron sources and different film thicknesses validates the applicability of the MCNPX code.

  20. Low Energy Positron Interactions with Biological Molecules

    NASA Astrophysics Data System (ADS)

    Wanniarachchi, Indika; Morgan, Caroline; Schlegel, Bernhard; Kedziora, Gary; Burgrraf, Larry; Pak, Michael; Hammes-Schiffer, Sharon

    2012-10-01

    There is some experimental evidence that positrons can produce distinctive molecular fragmentation patterns. It is known that tuning the incident positron energy to near resonance with molecule vibrations can strongly enhance the positron annihilation probability for a molecule. This suggests that fragmentation induced by slow positrons may provide valuable complementary information to existing techniques for identification and study of proteins. In order to study this concept, we are developing a general quantum method for reliably calculating the density distribution for positrons bound to large biological molecules using NEO/GAMESS. We find that the outer molecular orbitals as well as the higher p orbitals on the O atoms contribute heavily to the total annihilation rate. Using the basis sets and approximations we have tested to predict where annihilation occurs can ultimately help us understand the resulting fragmentation patterns of larger biological molecules.

  1. Positrons as imaging agents and probes in nanotechnology

    NASA Astrophysics Data System (ADS)

    Smith, Suzanne V.

    2009-09-01

    Positron emission tomography (PET) tracks a positron emitting radiopharmaceutical injected into the body and generates a 3-dimensional image of its location. Introduced in the early 70s, it has now developed into a powerful medical diagnostic tool for routine clinical use as well as in drug development. Unrivalled as a highly sensitive, specific and non-invasive imaging tool, PET unfortunately lacks the resolution of Computer Tomography (CT) and Magnetic Resonance Imaging (MRI). As the resolution of PET depends significantly on the energy of the positron incorporated in the radiopharmaceutical and its interaction with its surrounding tissue, there is growing interest in expanding our understanding of how positrons interact at the atomic and molecular level. A better understanding of these interactions will contribute to improving the resolution of PET and assist in the design of better imaging agents. Positrons are also used in Positron Annihilation Lifetime Spectroscopy (PALS) to determine electron density and or presence and incidence of micro- and mesopores (0.1 to 10 nm) in materials. The control of porosity in engineered materials is crucial for applications such as controlled release or air and water resistant films. Equally important to the design of nano and microtechnologies, is our understanding of the microenvironments within these pores and on surfaces. Hence as radiopharmaceuticals are designed to track disease, nuclear probes (radioactive molecules) are synthesized to investigate the chemical properties within these pores. This article will give a brief overview of the present role of positrons in imaging as well as explore its potential to contribute in the engineering of new materials to the marketplace.

  2. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J. (Bellport, NY); O'Connor, Paul (Bellport, NY); Woody, Craig (Setauket, NY); Junnarkar, Sachin Shrirang (Sound Beach, NY); Radeka, Veljko (Bellport, NY); Vaska, Paul (Sound Beach, NY); Pratte, Jean-Francois (Stony Brook, NY)

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  3. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    SciTech Connect

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-19

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e{sup +}-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e{sup +}-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  4. Descriptions of positron defect analysis capabilities

    SciTech Connect

    Howell, R.H.

    1994-10-01

    A series of descriptive papers and graphics appropriate for distribution to potential collaborators has been assembled. These describe the capabilities for defect analysis using positron annihilation spectroscopy. The application of positrons to problems in the polymer and semiconductor industries is addressed.

  5. Low Energy Positron Interactions with Biological Molecules

    NASA Astrophysics Data System (ADS)

    Wanniarachchi, Indika; Morgan, Caroline; Schlegel, Bernhard; Kedziora, Gary; Burggraf, Larry; Pak, Michael; Hammes-Schiffer, Sharon

    2012-02-01

    There is some experimental evidence that positrons can produce distinctive molecular fragmentation patterns. It is known that tuning the incident positron energy to near resonance with molecule vibrations can strongly enhance the positron annihilation probability for a molecule.ootnotetextGribakin, Young, and Surko, Rev. Mod. Phys. 82 (2010) 2577 This suggests that fragmentation induced by slow positrons may provide valuable complementary information to existing techniques for identification and study of proteins. In order to study this concept, we are developing a general quantum method for reliably calculating the density distribution for positrons bound to large biological molecules using NEO/GAMESS. We developed transferrable atom-centered positron basis sets for first-principles calculations for molecules containing O, N, C, and H. The positron density in the bound state is concentrated near the most electronegative atomic sites so that e^-e^+ annihilation will be most likely to occur in these regions for low incident positron energies leading to positron trapping in the bound state. Using the basis sets and approximations we have tested to predict where annihilation occurs can ultimately help us understand the resulting fragmentation patterns of larger biological molecules.

  6. Positron deposition in plasmas by positronium beam ionization and transport of positrons in tokamak plasmas

    SciTech Connect

    Murphy, T.J.

    1986-11-01

    In a recently proposed positron transport experiment, positrons would be deposited in a fusion plasma by forming a positronium (Ps) beam and passing it through the plasma. Positrons would be deposited as the beam is ionized by plasma ions and electrons. Radial transport of the positrons to the limiter could then be measured by detecting the gamma radiation produced by annihilation of positrons with electrons in the limiter. This would allow measurements of the transport of electron-mass particles and might shed some light on the mechanisms of electron transport in fusion plasmas. In this paper, the deposition and transport of positrons in a tokamak are simulated and the annihilation signal determined for several transport models. Calculations of the expected signals are necessary for the optimal design of a positron transport experiment. There are several mechanisms for the loss of positrons besides transport to the limiter. Annihilation with plasma electrons and reformation of positronium in positron-hydrogen collisions are two such processes. These processes can alter the signal and place restrictions ons on the plasma conditions in which positron transport experiments can be effectively performed.

  7. What is the fate of runaway positrons in tokamaks?

    DOE PAGESBeta

    Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; Teng, Qian; Wang, Xiaogang

    2014-06-19

    In this study, massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  8. What is the fate of runaway positrons in tokamaks?

    SciTech Connect

    Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; Teng, Qian; Wang, Xiaogang

    2014-06-15

    Massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  9. Observation of positronium annihilation in the 2S state: towards a new measurement of the 1S-2S transition frequency

    NASA Astrophysics Data System (ADS)

    Cooke, D. A.; Crivelli, P.; Alnis, J.; Antognini, A.; Brown, B.; Friedreich, S.; Gabard, A.; Haensch, T. W.; Kirch, K.; Rubbia, A.; Vrankovic, V.

    2015-08-01

    We report the first observation of the annihilation of positronium from the 2S state. Positronium (Ps) is excited with a two-photon transition from the 1S to the 2S state where its lifetime is increased by a factor of eight compared to the ground state due to the decrease in the overlap of the positron electron wave-function. The yield of delayed annihilation photons detected as a function of laser frequency is used as a new method of detecting laser-excited Ps in the 2S state. This can be considered the first step towards a new high precision measurement of the 1S-2S Ps line.

  10. Vacancy-type defects in Si-doped InN grown by plasma-assisted molecular-beam epitaxy probed using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, A.; Chichibu, S. F.; Higashiwaki, M.; Matsui, T.; Ohdaira, T.; Suzuki, R.

    2005-02-01

    High-quality InN layers grown on sapphire substrates by plasma-assisted molecular-beam epitaxy were characterized using monoenergetic positron beams. The carrier concentrations of the films were controlled by Si doping (2.1×1018to1.4×1019cm-3), and the highest obtained Hall mobility was 1300cm2V-1s-1. The Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons were measured as a function of the incident positron energy for undoped and Si-doped InN films. The line-shape parameter S increased with increasing carrier concentration, suggesting the introduction of vacancy-type defects by a Fermi-level effect. The major defect species were varied with carrier concentration, and its species were identified as In vacancies (VIn) or their related defects.

  11. Damage-depth profiling of an ion-irradiated polymer by monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshinori; Kojima, Isao; Hishita, Shunichi; Suzuki, Takenori; Asari, Eiji; Kitajima, Masahiro

    1995-07-01

    Poly(aryl-ether-ether ketone) (PEEK) films irradiated with 1-MeV and 2-MeV O+ ions were exposed to positron beams to measure the positron annihilation Doppler broadening as a function of the positron energy. The annihilation lines recorded at relatively low positron energies were found to become broader with increasing irradiation dose, suggesting that positronium (Ps) formation is inhibited in the damaged regions. The positron data were compared with the results of dynamic hardness and electron-spin-resonance measurements. The slow-positron Doppler broadening technique is found to be a useful means for damage-depth profiling of Ps-forming polymers.

  12. Annihilation physics of exotic galactic dark matter particles

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1990-01-01

    Various theoretical arguments make exotic heavy neutral weakly interacting fermions, particularly those predicted by supersymmetry theory, attractive candidates for making up the large amount of unseen gravitating mass in galactic halos. Such particles can annihilate with each other, producing secondary particles of cosmic-ray energies, among which are antiprotons, positrons, neutrinos, and gamma-rays. Spectra and fluxes of these annihilation products can be calculated, partly by making use of positron electron collider data and quantum chromodynamic models of particle production derived therefrom. These spectra may provide detectable signatures of exotic particle remnants of the big bang.

  13. Positron implantation in solids

    SciTech Connect

    Ghosh, V.J.; Lynn, K.G.; Welch, D.O.

    1993-12-31

    The Monte Carlo technique for modeling positron prior to annihilation and electron implantation in semi-infinite metals is described. Particle implantation is modelled as a multistep process, a series of collisions with the atoms of the host material. In elastic collisions with neutral atoms there is no transfer of energy. The particle loses energy by several different channels, excitation of the electron gas, ionization of the ion cores, or, at low energies, by phonon excitation. These competing scattering mechanisms have been incorporated into the Monte Carlo framework and several different models are being used. Brief descriptions of these Monte Carlo schemes, as well as an analytic model for positron implantation are included. Results of the Monte Carlo simulations are presented and compared with expermental data. Problems associated with modeling positron implantation are discuss and the need for more expermental data on energy-loss in different materials is stressed. Positron implantation in multilayers of different metals is briefly described and extensions of this work to include a study of multilayers and heterostructures is suggested.

  14. Positron clouds within thunderstorms

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.; Smith, David M.; Hazelton, Bryna J.; Grefenstette, Brian W.; Kelley, Nicole A.; Lowell, Alexander W.; Schaal, Meagan M.; Rassoul, Hamid K.

    2015-08-01

    We report the observation of two isolated clouds of positrons inside an active thunderstorm. These observations were made by the Airborne Detector for Energetic Lightning Emissions (ADELE), an array of six gamma-ray detectors, which flew on a Gulfstream V jet aircraft through the top of an active thunderstorm in August 2009. ADELE recorded two 511 keV gamma-ray count rate enhancements, 35 s apart, each lasting approximately 0.2 s. The enhancements, which were approximately a factor of 12 above background, were both accompanied by electrical activity as measured by a flat-plate antenna on the underside of the aircraft. The energy spectra were consistent with a source mostly composed of positron annihilation gamma rays, with a prominent 511 keV line clearly visible in the data. Model fits to the data suggest that the aircraft was briefly immersed in clouds of positrons, more than a kilometre across. It is not clear how the positron clouds were created within the thunderstorm, but it is possible they were caused by the presence of the aircraft in the electrified environment.

  15. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  16. Positron microscopy

    SciTech Connect

    Hulett, L.D. Jr.; Xu, J.

    1995-02-01

    The negative work function property that some materials have for positrons make possible the development of positron reemission microscopy (PRM). Because of the low energies with which the positrons are emitted, some unique applications, such as the imaging of defects, can be made. The history of the concept of PRM, and its present state of development will be reviewed. The potential of positron microprobe techniques will be discussed also.

  17. Positron trapping at grain boundaries

    SciTech Connect

    Dupasquier, A. ); Romero, R.; Somoza, A. )

    1993-10-01

    The standard positron trapping model has often been applied, as a simple approximation, to the interpretation of positron lifetime spectra in situations of diffusion-controlled trapping. This paper shows that this approximation is not sufficiently accurate, and presents a model based on the correct solution of the diffusion equation, in the version appropriate for studying positron trapping at grain boundaries. The model is used for the analysis of new experimental data on positron lifetime spectra in a fine-grained Al-Ca-Zn alloy. Previous results on similar systems are also discussed and reinterpreted. The analysis yields effective diffusion coefficients not far from the values known for the base metals of the alloys.

  18. Positron astrophysics and areas of relation to low-energy positron physics

    NASA Astrophysics Data System (ADS)

    Guessoum, Nidhal

    2014-05-01

    I briefly review our general knowledge of positron astrophysics, focusing mostly on the theoretical and modelling aspects. The experimental/observational aspects of the topic have recently been reviewed elsewhere [E. Churazov et al., Mon. Nat. R. Astron. Soc. 411, 1727 (2011); N. Prantazos et al., Rev. Mod. Phys. 83, 1001 (2011)]. In particular, I highlight the interactions and cross sections of the reactions that the positrons undergo in various cosmic media. Indeed, these must be of high interest to both the positron astrophysics community and the low-energy positron physics community in trying to find common areas of potential collaboration for the future or areas of research that will help the astrophysics community make further progress on the problem. The processes undergone by positrons from the moments of their birth to their annihilation (in the interstellar medium or other locations) are thus examined. The physics of the positron interactions with gases and solids (dust grains) and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation take place, are briefly reviewed. An explanation is given about how all the relevant physical information is taken into account in order to calculate annihilation rates and spectra of the 511 keV emission in the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. In particular, an attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of low-energy positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place, and ultimately about the birth place and history of positrons in the Galaxy. The important complementarity between work done by the astrophysical and the positron physics communities is emphasised, and attempts are made to suggest avenues of future research for progress in the two fields. Contribution to the Topical Issue "Electron and Positron Induced Processes", edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Inglfsson, Paulo Limo-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

  19. Sympathetically cooled and compressed positron plasma

    NASA Astrophysics Data System (ADS)

    Jelenkovi?, B. M.; Newbury, A. S.; Bollinger, J. J.; Itano, W. M.; Mitchell, T. B.

    2003-06-01

    We report sympathetic cooling and compression of a few thousand positrons by laser-cooled 9Be+ ions in a Penning ion trap. The observed centrifugal separation of the two species implies approximate rigid rotation of the positrons and 9Be+ ions, and a positron density comparable to the 9Be+ ion density of ?4109 cm-3. We use the sharpness of the separation to place a 5-K upper limit on the positron temperature of motion parallel to the magnetic field. The positron lifetime is greater than two weeks in our room-temperature Penning trap.

  20. Positrons in the Galaxy: Their Births, Marriages and Deaths

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    High energy (approximately GeV) positrons are seen within cosmic rays and observation of a narrow line at 511 keV shows that positrons are annihilating in the galaxy after slowing down to approximately keV energies or less. Our state of knowledge of the origin of these positrons, of the formation of positronium 'atoms', and of the circumstances of their annihilation or escape from the galaxy are reviewed and the question of whether the two phenomena are linked is discussed.

  1. Positron Spectroscopy Investigation of Normal Brain Section and Brain Section with Glioma Derived from a Rat Glioma Model

    SciTech Connect

    Yang, SH.; Ballmann, C.; Quarles, C. A.

    2009-03-10

    The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixed in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.

  2. SIMION simulation of a slow pulsed positron beam

    NASA Astrophysics Data System (ADS)

    Xu, Hong-Xia; Liu, Jian-Dang; Gao, Chuan-Bo; Weng, Hui-Min; Ye, Bang-Jiao

    2012-03-01

    A new slow pulsed positron beam, including a positron source, a moderator, a chopper, a pre-buncher, a main-buncher and a sample chamber, etc, has been installed and tested. It is necessary to simulate the acceleration, transportation and space focusing of positrons to meet the needs of beam debugging and further positron annihilation experiments. The result from SIMION simulations shows that the radius of the focused positron beam is less than 5 mm, which is further confirmed in our practical debugging process.

  3. Radiative proton-antiproton annihilation to a lepton pair

    SciTech Connect

    Ahmadov, A. I.; Bytev, V. V.; Kuraev, E. A.; Tomasi-Gustafsson, E.

    2010-11-01

    The annihilation of proton and antiproton to an electron-positron pair, including radiative corrections due to the emission of virtual and real photons is considered. The results are generalized to leading and next-to leading approximations. The relevant distributions are derived and numerical applications are given in the kinematical range accessible to the PANDA experiment at the FAIR facility.

  4. CALET's sensitivity to Dark Matter annihilation in the galactic halo

    NASA Astrophysics Data System (ADS)

    Motz, H.; Asaoka, Y.; Torii, S.; Bhattacharyya, S.

    2015-12-01

    CALET (Calorimetric Electron Telescope), installed on the ISS in August 2015, directly measures the electron+positron cosmic rays flux up to 20 TeV. With its proton rejection capability of 1 : 105 and an aperture of 1200 cm2· sr, it will provide good statistics even well above one TeV, while also featuring an energy resolution of 2%, which allows it to detect fine structures in the spectrum. Such structures may originate from Dark Matter annihilation or decay, making indirect Dark Matter search one of CALET's main science objectives among others such as identification of signatures from nearby supernova remnants, study of the heavy nuclei spectra and gamma astronomy. The latest results from AMS-02 on positron fraction and total electron+positron flux can be fitted with a parametrization including a single pulsar as an extra power law source with exponential cut-off, which emits an equal amount of electrons and positrons. This single pulsar scenario for the positron excess is extrapolated into the TeV region and the expected CALET data for this case are simulated. Based on this prediction for CALET data, the sensitivity of CALET to Dark Matter annihilation in the galactic halo has been calculated. It is shown that CALET could significantly improve the limits compared to current data, especially for those Dark Matter candidates that feature a large fraction of annihilation directly into e+ + e-, such as the LKP (Lightest Kaluza-Klein particle).

  5. Monochromatic gamma rays from dark matter annihilation to leptons

    NASA Astrophysics Data System (ADS)

    Coogan, Adam; Profumo, Stefano; Shepherd, William

    2015-08-01

    We investigate the relation between the annihilation of dark matter (DM) particles into lepton pairs and into 2-body final states including one or two photons. We parametrize the DM interactions with leptons in terms of contact interactions, and calculate the loop-level annihilation into monochromatic gamma rays, specifically computing the ratio of the DM annihilation cross sections into two gamma rays versus lepton pairs. While the loop-level processes are generically suppressed in comparison with the tree-level annihilation into leptons, we find that some choices for the mediator spin and coupling structure lead to large branching fractions into gamma-ray lines. This result has implications for a dark matter contribution to the AMS-02 positron excess. We also explore the possibility of mediators which are charged under a dark symmetry and find that, for these loop-level processes, an effective field theory description is accurate for DM masses up to about half the mediator mass.

  6. Characterization of dynamics in complex lyophilized formulations: II. Analysis of density variations in terms of glass dynamics and comparisons with global mobility, fast dynamics, and Positron Annihilation Lifetime Spectroscopy (PALS)

    PubMed Central

    Chieng, Norman; Cicerone, Marcus T.; Zhong, Qin; Liu, Ming; Pikal, Michael J.

    2013-01-01

    Amorphous HES/disaccharide (trehalose or sucrose) formulations, with and without added polyols (glycerol and sorbitol) and disaccharide formulations of human growth hormone (hGH), were prepared by freeze drying and characterized with particular interest in methodology for using high precision density measurements to evaluate free volume changes and a focus on comparisons between free volume changes obtained from analysis of density data, fast dynamics (local mobility), and PALS characterization of free volume hole size. Density measurements were performed using a helium gas pycnometer, and fast dynamics was characterized using incoherent neutron scattering spectrometer. Addition of sucrose and trehalose to hGH decreases free volume in the system with sucrose marginally more effective than trehalose, consistent with superior pharmaceutical stability of sucrose hGH formulations well below Tg relative to trehalose. We find that density data may be analyzed in terms of free volume changes by evaluation of volume changes on mixing and calculation of apparent specific volumes from the densities. Addition of sucrose to HES decreases free volume, but the effect of trehalose is not detectable above experimental error. Addition of sorbitol or glycerol to HES/trehalose base formulations appears to significantly decrease free volume, consistent with the positive impact of such additions on pharmaceutical stability (i.e., degradation) in the glassy state. Free volume changes, evaluated from density data, fast dynamics amplitude of local motion, and PALS hole size data generally are in qualitative agreement for the HES/disaccharide systems studied. All predict decreasing molecular mobility as disaccharides are added to HES. Global mobility as measured by enthalpy relaxation times, increases as disaccharides, particularly sucrose, are added to HES. PMID:23623797

  7. Nuclear annihilation by antinucleons

    DOE PAGESBeta

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2016-01-25

    We examine the momentum dependence ofmore » $$\\bar p$$$p$ and $$\\bar n$$$p$ annihilation cross sections by considering the transmission through a nuclear potential and the $$\\bar p p$$ Coulomb interaction. Compared to the $$\\bar n p$$ annihilation cross section, the $$\\bar p p$$ annihilation cross section is significantly enhanced by the Coulomb interaction for projectile momenta below $$p_{\\rm lab} <$$ 500 MeV/$c$$, and the two annihilation cross sections approach the Pomeranchuk's equality limit [JETP {\\bb 30}, 423 (1956)] at $$p_{\\rm lab}\\sim 500$ MeV/$c$. Using these elementary cross sections as the basic input data, the extended Glauber model is employed to evaluate the annihilation cross sections for $$\\bar n$$ and $$\\bar p$$ interaction with nuclei and the results compare well with experimental data.« less

  8. Nuclear annihilation by antinucleons

    NASA Astrophysics Data System (ADS)

    Lee, Teck-Ghee; Wong, Cheuk-Yin

    2016-01-01

    We examine the momentum dependence of p p and n p annihilation cross sections by considering the transmission through a nuclear potential and the p p Coulomb interaction. Compared to the n p annihilation cross section, the p p annihilation cross section is significantly enhanced by the Coulomb interaction for projectile momenta below plab< 500 MeV/c , and the two annihilation cross sections approach the Pomeranchuk's equality limit [JETP Lett. 30, 423 (1956)] at plab500 MeV/c . Using these elementary cross sections as the basic input data, the extended Glauber model is employed to evaluate the annihilation cross sections for n and p interaction with nuclei and the results compare well with experimental data.

  9. One-photon pair annihilation in magnetized relativistic plasmas

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1986-01-01

    In supersonic magnetic fields, electron-positron pairs may annihilate into single photons producing spectral features above 1 MeV. The paper calculates the exact one-photon annihilation rate in the general case where pairs may annihilate from excited Landau states, extending the previous studies which were restricted to pairs in the ground state. Asymptotic expressions for annihilation spectra and rates in the limit of large pair quantum numbers are also derived. It is found that the rate of annihilation from excited states can exceed the rate from the ground state by orders of magnitude in fields less than about 2 x 10 to the 12th G. This allows one-photon annihilation to be competitive with the two-photon process at typical neutron star field strengths. Annihilation spectra from a Maxwellian pair plasma at transrelativistic temperatures show fine structure near threshold on a scale (h/2pi)omega sub B as the result of contributions from individual pair states, which blend into a smooth continuum at higher energies.

  10. The Positron as a Probe for Studying Bulk and Defect Properties in Semiconductors

    NASA Astrophysics Data System (ADS)

    Dlubek, G.; Brmmer, O.

    Positron lifetime measurements are used to study various doped and undoped III-V compound semiconductors like GaAs, GaP, InAs and InP. In some as-grown crystals native vacancies (V, V) or their complexes with dopants (TeAsV, VPZnInV) are detected with maximum concentrations of a few 1018 cm-3. In undoped GaAs neutral As vacancies V are identified, the concentration of which varies locally. The vacancies have their origin in deviations from the stoichiometrie composition of the compound. They disappear at 500C. At this temperature defects created by irradiation with fast neutrons anneal also out. The relation between the bulk positron lifetime and the density and polarization of valence electrons is analyzed. Further, the potential of the positron annihilation method in identifying and characterizing vacancy-type defects in semiconductors is discussed.Translated AbstractDas Positron als Sonde zur Untersuchung der Volumen- und Fehlstelleneigenschaften in HalbleiternPositronenlebensdauermessungen werden angewandt, um verschiedene dotierte und undotierte AIIIBV-Verbindungshalbleiter, wie GaAs, GaP, InAs und InP, zu untersuchen. In einigen Kristallen werden Leerstellen (V, V) oder ihre Komplexe mit Dotierungen (TeAsV, VPZnInV) mit maximalen Konzentrationen von einigen 1018 cm-3 nachgewiesen. In undotierten GaAs werden neutrale As-Leerstellen V identifiziert, deren Konzentration lokal variiert. Die Leerstellen haben ihren Ursprung in Abweichungen von der stchiometrischen Zusammensetzung der Verbindung. Sie verschwinden bei 500C. Bei dieser Temperatur heilen auch Defekte aus, welche durch Bestrahlung mit schnellen Neutronen erzeugt wurden. Die Beziehung zwischen der Positronenlebensdauer im Kristall und der Dichte und Polarisierung der Valenzelektronen wird analysiert. Weiterhin wird das Potential der Methode der Positronenannihilation zur Identifizierung und Charakterisierung leerstellenartiger Defekte in Halbleitern diskutiert.

  11. Gamma-Ray background spectrum and annihilation rate in the baryon-symmetric big-bang cosmology

    NASA Technical Reports Server (NTRS)

    Puget, J. L.

    1973-01-01

    An attempt was made to extract experimental data on baryon symmetry by observing annihilation products. Specifically, gamma rays and neutrons with long mean free paths were analyzed. Data cover absorption cross sections and radiation background of the 0.511 MeV gamma rays from positron annihilations and the 70 MeV gamma rays from neutral pion decay.

  12. Pair momentum distribution in Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8+. delta. measured by positron annihilation: Existence and nature of the Fermi surface

    SciTech Connect

    Chan, L.P. ); Harshman, D.R. ); Lynn, K.G. ); Massidda, S. , PHB Ecublens, CH-105 Lausanne ); Mitzi, D.B. )

    1991-09-02

    We report the first measurement of the positron-electron momentum density in superconducting single-crystal Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} ({ital T}{sub {ital c}}{approx}90 K). The observed anisotropy exhibits a twofold (rather than fourfold) symmetry, which is attributed to the superlattice modulation along the {ital b} axis of the BiO{sub 2} layers. Subtraction of the superlattice contribution also reveals a pair momentum distribution consistent with the CuO{sub 2} and BiO{sub 2} Fermi surfaces, and in reasonable agreement with the theoretical pair momentum density derived from band theory.

  13. Reduction of Positron Range Effects by the Application of a Magnetic Field: for Use with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond Robert

    The process of positron emission tomography has become a valuable medical research tool. This procedure involves the administration of a radiopharmaceutical labelled with a positron-emitting isotope to a living organism. Upon the emission and subsequent annihilation of a positron, the gamma rays produced are detected to create an image of metabolic activity within the subject. Many factors such as Compton scattering and photoelectric absorption of the gamma rays tend to limit the quality of these images. Another important limitation is the non-negligible distance the positron travels prior to annihilation. This phenomenon leads to the misplacement of data in the final image. A method for reducing this effect utilizing a magnetic field has been tested and evaluated. The application of a magnetic field constrains the positrons to travel in helical paths instead of their relatively straight courses. Thus, the effective distance the positrons travel from their point of emission is reduced. Results indicate that this technique is successful in reducing the blurring caused in PET images by positron range. The results also indicate that the amount of resolution improvement depends upon the choice of positron emitter and scanner resolution. Reduction of this blurring helps to produce clearer PET images which can allow for more precise localization of tumors, in addition to better measurement of metabolic rate constants. The use of a magnetic field to reduce the range of positrons will lead to more useful images produced by positron emission tomography.

  14. Positron-molecule bound states and positive ion production

    NASA Technical Reports Server (NTRS)

    Leventhal, M.; Passner, A.; Surko, C. M.

    1990-01-01

    The interaction was studied of low energy positrons with large molecules such as alkanes. These data provide evidencce for the existence of long lived resonances and bound states of positrons with neutral molecules. The formation process and the nature of these resonances are discussed. The positive ions produced when a positron annihilates with an electron in one of these resonances were observed and this positive ion formation process is discussed. A review is presented of the current state of the understanding of these positron-molecule resonances and the resulting positive ion formation. A number of outstanding issues in this area is also discussed.

  15. Evidence of the participation of electronic excited states in the mechanism of positronium formation in substitutional Tb(1-x)Eu(x)(dpm)3 solid solutions studied by optical and positron annihilation spectroscopies.

    PubMed

    Fulgncio, F; de Oliveira, F C; Windmller, D; Brito, H F; Malta, O L; de S, G F; Magalhes, W F; Machado, J C

    2012-07-28

    Positronium formation in the bimary molecular solid solutions Tb(1-x)Eu(x) (dpm)(3) (dpm = dipivaloylmethanate) has been investigated. A strong linear correlation between the (5)D(4) Tb(iii) energy level excited state lifetime and the positronium formation probability has been observed. This correlation indicates that the ligand-to-metal charge transfer LMCT states act in both luminescence quenching and positronium formation inhibition, as previously proposed. A kinetic mechanism is proposed to explain this correlation and shows that excited electronic states have a very important role in the positronium formation mechanism. PMID:22699816

  16. Characterization of defects in Si and SiO{sub 2}-Si using positrons

    SciTech Connect

    Asoka-Kumar, P.; Lynn, K.G.

    1993-12-31

    Positron annihilation spectroscopy of overlayers, interfaces, and buried regions of semiconductors has seen a rapid growth in recent years. The characteristics of the annihilation gamma rays depend strongly on the local environment of the annihilation sites, and can be used to probe defect concentrations in a range inaccessible to conventional defect probes. Some of the recent success of the technique in examining low concentrations of point defects in technologically important Si-based structures is discussed.

  17. Positron kinetics in an idealized PET environment.

    PubMed

    Robson, R E; Brunger, M J; Buckman, S J; Garcia, G; Petrovi?, Z Lj; White, R D

    2015-01-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the 'gas-phase' assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations. PMID:26246002

  18. Positron kinetics in an idealized PET environment

    PubMed Central

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrovi?, Z. Lj.; White, R. D.

    2015-01-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the gas-phase assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations. PMID:26246002

  19. Positron kinetics in an idealized PET environment

    NASA Astrophysics Data System (ADS)

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrovi?, Z. Lj.; White, R. D.

    2015-08-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the gas-phase assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.

  20. On the localization of positrons in metal vacancies

    NASA Astrophysics Data System (ADS)

    Babich, A. V.; Pogosov, V. V.; Reva, V. I.

    2015-11-01

    The probability of localization of positrons in single vacancies of Al, Cu, and Zn as a function of temperature has been calculated. Vacancy has been simulated by a cavity with a radius of the Wigner-Seitz cell in the stabilized jellium model. A formula for the rate of trapping of a positron by a vacancy as a function of the positron energy has been obtained using the "golden" rule for transitions under the assumption that the positron energy is spent on excitation of electron-hole pairs. The temperature dependence of the localization rate has been calculated for thermalized positrons. It has been found that, in the vicinity of the triple point, the localization rate is close in order of magnitude to the annihilation rate. Based on the results reported in our previous publications devoted to the evaluation of the influence of vacancies on the work function of free positrons, it has been assumed that, near the surface of the metal, there are vacancies charged by positrons. In the approximation of a two-dimensional superlattice, the near-surface vacancy barrier has been estimated. The experimentally revealed shift of the energy distribution of re-emitted positrons has been assumed to be caused by the reflection of low-energy positrons from the vacancy barrier back into the bulk of the metal where they annihilate.

  1. Manipulating the annihilation dynamics of positronium via collective radiation.

    PubMed

    Cui, Ni; Macovei, Mihai; Hatsagortsyan, Karen Z; Keitel, Christoph H

    2012-06-15

    A method is investigated to manipulate the annihilation dynamics of a dense gas of positronium atoms employing superradiance and subradiance regimes of the cooperative spontaneous emission of the system. The corresponding annihilation dynamics is explored in two setups with regard to its fundamental novel properties and controlled by the gas density and by the intensity of a driving strong resonant laser field. In particular, the method allows us to increase the annihilation lifetime of an ensemble of positronium atoms by trapping the atoms in the excited state via collective radiative effects in the resonant laser field. In the second setup, the effect is enhanced by employing a cavity field. The maximum lifetime increase is by a factor of about 200 for para-positronium and by a factor of about 100 for ortho-positronium. PMID:23004269

  2. Controlling Positronium Annihilation with Electric Fields.

    PubMed

    Alonso, A M; Cooper, B S; Deller, A; Hogan, S D; Cassidy, D B

    2015-10-30

    We show that the annihilation dynamics of excited positronium (Ps) atoms can be controlled using parallel electric and magnetic fields. To achieve this, Ps atoms were optically excited to n=2 sublevels in fields that were adjusted to control the amount of short-lived and long-lived character of the resulting mixed states. Inclusion of the former offers a practical approach to detection via annihilation radiation, whereas the increased lifetimes due to the latter can be exploited to optimize resonance-enhanced two-photon excitation processes (e.g., 1^{3}S?2^{3}P?nS/nD), either by minimizing losses through intermediate state decay, or by making it possible to separate the excitation laser pulses in time. In addition, photoexcitation of mixed states with a 2^{3}S_{1} component represents an efficient route to producing long-lived pure 2^{3}S_{1} atoms via single-photon excitation. PMID:26565466

  3. Electroweak fragmentation functions for dark matter annihilation

    SciTech Connect

    Cavasonza, Leila Ali; Krämer, Michael; Pellen, Mathieu

    2015-02-18

    Electroweak corrections can play a crucial role in dark matter annihilation. The emission of gauge bosons, in particular, leads to a secondary flux consisting of all Standard Model particles, and may be described by electroweak fragmentation functions. To assess the quality of the fragmentation function approximation to electroweak radiation in dark matter annihilation, we have calculated the flux of secondary particles from gauge-boson emission in models with Majorana fermion and vector dark matter, respectively. For both models, we have compared cross sections and energy spectra of positrons and antiprotons after propagation through the galactic halo in the fragmentation function approximation and in the full calculation. Fragmentation functions fail to describe the particle fluxes in the case of Majorana fermion annihilation into light fermions: the helicity suppression of the lowest-order cross section in such models cannot be lifted by the leading logarithmic contributions included in the fragmentation function approach. However, for other classes of models like vector dark matter, where the lowest-order cross section is not suppressed, electroweak fragmentation functions provide a simple, model-independent and accurate description of secondary particle fluxes.

  4. Electron capture from solids by positrons

    SciTech Connect

    Howell, R.

    1987-08-01

    The capture of electrons in solids is modified from that in gasses by several factors. The most important is the collective interaction of the electrons which results in a density of electron states in the solid in wide bands. Also the high density of electrons in many solids gives a high frequency of interaction as compared to gasses, and quickly destroys any electron-positron states in the metal matrix. Consequently, most positrons implanted in a metal will rapidly thermalize, and unless they reach the surface will annihilate with an electron in an uncorrelated state. Positronium formation from positrons scattered at a metal surface is analogous to ion neutralization however, most of the positronium comes from positrons passing through the surface from the bulk. The dominant motivation for studying positronium formation has been the hope that the distribution of the electrons at the surface would be obtained through the annihilation properties of positrons trapped at the surface or through analysis of the energy and angular distributions of the positronium emitted into the vacuum. These distributions have been measured and are included in this paper. 17 refs.

  5. Measurement of the positron diffusion constants in polycrystalline molybdenum by the observation of positronium negative ions

    NASA Astrophysics Data System (ADS)

    Suzuki, Takuji; Iida, Simpei; Yamashita, Takashi; Nagashima, Yasuyuki

    2015-06-01

    We have measured the positron diffusion constants in polycrystalline molybdenum by the observation of positronium negative ions (Ps-). The Ps- ions emitted from the sample surface coated with Na were accelerated. The ?-rays from the accelerated Ps- ions were Doppler- shifted and thus the signals of self-annihilation of the Ps- ions were isolated from those of self-annihilation of para-positronium (p-Ps) or pair-annihilation of positrons in the bulk. Clear and reliable values of the diffusion constants have been obtained.

  6. Asymmetries involving dihadron fragmentation functions: from DIS to e+ e- annihilation

    SciTech Connect

    Bacchetta, Alessandro; Radici, M.; Mukherjee, Asmita; Ceccopieri, Federico

    2009-01-01

    Using a model calculation of dihadron fragmentation functions, we fit the spin asymmetry recently extracted by HERMES for the semi-inclusive pion pair production in deep-inelastic scattering on a transversely polarized proton target. By evolving the obtained dihadron fragmentation functions, we make predictions for the correlation of the angular distributions of two pion pairs produced in electron-positron annihilations at BELLE kinematics. Our study shows that the combination of two-hadron inclusive deep-inelastic scattering and electron-positron annihilation measurements can provide a valid alternative to Collins effect for the extraction of the quark transversity distribution in the nucleon.

  7. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  8. KENO lifetimes

    SciTech Connect

    Petrie, L.; Parsons, D.K.; Spriggs, G.D.

    1997-01-30

    When performing k-eigenvalue solutions with KENO-V.a, two different prompt neutron lifetimes are estimated - a system lifetime and a neutron generation time. The meaning of these two lifetimes has been ascertained by comparing values of various neutron lifespans/lifetimes predicted by MCNP and DANTSYS based on the neutron-balance theory. The system lifetime in KENO-Va corresponds to the unweighted removal lifetime calculated by both MCNP and DANTSYS. The unweighted removal lifetime is the average time between removal events resulting from a neutron absorption or a neutron leakage. The generation time in KENO-V.a corresponds to the fission lifespan calculated by MCNP, where the fission lifespan in MCNP represents the average time for a newly born neutron to cause another fission. As such, the generation time in KENO-Va does not represent the generation time that appears in the point kinetic model. The generation time in the point kinetic model is the adjoint-weighted removal lifetime divided by k{sub eff}, which is identically equal to the adjoint-weighted neutron production rate. In small bare systems operating in the vicinity of delayed critical, the difference between the adjoint-weighted neutron generation time and the fission lifespan can be as small as a few percent. However, in reflected systems, the difference between these two quantities can be several orders of magnitude. In conclusion, the prompt neutron generation time predicted by KENO-Va corresponds to the fission lifespan of a prompt neutron in a given system. The fission lifespan is the average time from birth-to-fission and, in general, is not a good approximation for the adjoint-weighted neutron generation time that appears in the point-kinetic model.

  9. PhytoBeta imager: a positron imager for plant biology

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew G.; Kross, Brian; Lee, Seungjoon; McKisson, John; McKisson, J. E.; Xi, Wenze; Zorn, Carl; Reid, Chantal D.; Howell, Calvin R.; Crowell, Alexander S.; Cumberbatch, Laurie; Fallin, Brent; Stolin, Alexander; Smith, Mark F.

    2012-07-01

    Several positron emitting radioisotopes such as 11C and 13N can be used in plant biology research. The 11CO2 tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from 11C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus many of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.

  10. PhytoBeta imager: a positron imager for plant biology

    SciTech Connect

    Weisenberger, Andrew G; Lee, Seungjoon; McKisson, John; McKisson, J E; Xi, Wenze; Zorn, Carl; Reid, Chantal D; Howell, Calvin R; Crowell, Alexander S; Cumberbatch, Laurie; Fallin, Brent; Stolin, Alexander

    2012-06-01

    Several positron emitting radioisotopes such as 11C and 13N can be used in plant biology research. The 11CO2 tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Because plants typically have very thin leaves, little medium is present for the emitted positrons to undergo an annihilation event. The emitted positrons from 11C (maximum energy 960 keV) could require up to approximately 4 mm of water equivalent material for positron annihilation. Thus many of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive, beta-minus particle imager (PhytoBeta imager) for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease to a 0.5 mm thick Eljen EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation over or under the leaf to be studied while maintaining the leaf's original orientation. To test the utility of the system the detector was used to measure carbon translocation in a leaf of the spicebush (Lindera benzoin) under two transient light conditions.

  11. Positron range estimations with PeneloPET.

    PubMed

    Cal-Gonzlez, J; Herraiz, J L; Espaa, S; Corzo, P M G; Vaquero, J J; Desco, M; Udias, J M

    2013-08-01

    Technical advances towards high resolution PET imaging try to overcome the inherent physical limitations to spatial resolution. Positrons travel in tissue until they annihilate into the two gamma photons detected. This range is the main detector-independent contribution to PET imaging blurring. To a large extent, it can be remedied during image reconstruction if accurate estimates of positron range are available. However, the existing estimates differ, and the comparison with the scarce experimental data available is not conclusive. In this work we present positron annihilation distributions obtained from Monte Carlo simulations with the PeneloPET simulation toolkit, for several common PET isotopes ((18)F, (11)C, (13)N, (15)O, (68)Ga and (82)Rb) in different biological media (cortical bone, soft bone, skin, muscle striated, brain, water, adipose tissue and lung). We compare PeneloPET simulations against experimental data and other simulation results available in the literature. To this end the different positron range representations employed in the literature are related to each other by means of a new parameterization for positron range profiles. Our results are generally consistent with experiments and with most simulations previously reported with differences of less than 20% in the mean and maximum range values. From these results, we conclude that better experimental measurements are needed, especially to disentangle the effect of positronium formation in positron range. Finally, with the aid of PeneloPET, we confirm that scaling approaches can be used to obtain universal, material and isotope independent, positron range profiles, which would considerably simplify range correction. PMID:23835700

  12. Modeling Positron Transport in Gaseous and Soft-condensed Systems with Kinetic Theory and Monte Carlo

    NASA Astrophysics Data System (ADS)

    Boyle, G.; Tattersall, W.; Robson, R. E.; White, Ron; Dujko, S.; Petrovic, Z. Lj.; Brunger, M. J.; Sullivan, J. P.; Buckman, S. J.; Garcia, G.

    2013-09-01

    An accurate quantitative understanding of the behavior of positrons in gaseous and soft-condensed systems is important for many technological applications as well as to fundamental physics research. Optimizing Positron Emission Tomography (PET) technology and understanding the associated radiation damage requires knowledge of how positrons interact with matter prior to annihilation. Modeling techniques developed for electrons can also be employed to model positrons, and these techniques can also be extended to account for the structural properties of the medium. Two complementary approaches have been implemented in the present work: kinetic theory and Monte Carlo simulations. Kinetic theory is based on the multi-term Boltzmann equation, which has recently been modified to include the positron-specific interaction processes of annihilation and positronium formation. Simultaneously, a Monte Carlo simulation code has been developed that can likewise incorporate positron-specific processes. Funding support from ARC (CoE and DP schemes).

  13. Monte Carlo analysis of germanium detector performance in slow positron beam experiments

    NASA Astrophysics Data System (ADS)

    Heikinheimo, J.; Tuominen, R.; Tuomisto, F.

    2016-01-01

    Positron annihilation Doppler broadening spectroscopy is one of the most popular positron annihilation vacancy characterization techniques in experimental materials research. The measurements are often carried out with a slow positron beam setup, which enables depth profiling of the samples. The key measurement devices of Doppler broadening spectroscopy setups are high-purity germanium detectors. Since Doppler broadening spectroscopy is one of the standard techniques in defect characterization, there is a demand to evaluate different kinds of factors that might have an effect on the results. Here we report the results of Monte Carlo simulations of detector response in different geometries and compare the data to experiments.

  14. Solving the charging effect in insulating materials probed by a variable monoenergy slow positron beam.

    PubMed

    Hung, Wei-Song; De Guzman, Manuel; An, Quanfu; Lee, Kueir-Rarn; Jean, Yan-Ching; Lai, Juin-Yih

    2011-03-15

    A variable monoenergy slow positron beam (VMSPB) operating at a high vacuum on insulating materials encounters a problem of significant surface charging effect with time. As a result, positronium formation is inhibited, and the positron annihilation radiation counting rate is reduced; these consequently distorted the experimental positron annihilation and results. To solve such problems, a technique of depositing an ultrathin layer of sputtering noble metals on insulators is developed. We report a successful method of sputtering a few atomic layers of platinum (?1 nm) on a polyamide membrane to completely remove the charging effect for VMSPB applications in insulators. PMID:21332167

  15. Fluxes and spectra of quasimonochromatic annihilation photons for studying E1 giant resonances in nuclei

    SciTech Connect

    Dzhilavyan, L. Z.

    2014-12-15

    The fluxes and spectra of quasimonochromatic photons originating from the in-flight annihilation of positrons interacting with electrons of targets are analyzed in the energy region characteristic of the excitation of E1 giant resonances in nuclei. Targets of small thickness and low atomic number are used. The dependences of the spectra on the energy and angle (and their scatter) for positrons incident to the target, on the collimation angle for photons, and on the target thickness are studied.

  16. A constraint on the pair-density ratio (Z+) in an electron-positron pair wind

    NASA Technical Reports Server (NTRS)

    Moscoso, M. D.; Wheeler, J. C.

    1994-01-01

    We derive a constraint on the pair density ratio, z(sub +) = n(sub +)/n(sub p), in an electron-positron pair wind flowing away from the central region of an accretion disk around a compact object under the assumption of a coupling between electrons, positrons, and protons. The minimum rate at which positrons are injected into the annihilation volume is given by the observed annihilation flux per unit volume. This rate is then used to determine a minimum mass loss rate per unit area, M(dot)(sub *) for a given pair density ratio at the base of the streamline. The requirement that M(dot)(sub *) less than M(dot)(sub *)(sub Edd) (the mean Eddington mass loss rate per unit area) then places a lower limit on the pair density ratio, z(sub +,)(sub min). A positron annihilation line was observed in Nova Muscae 1991 by GRANAT/SIGMA. The narrow width and redshift of the line suggest that the pair production and annihilation regions are physically distinct. We hypothesize that an electron-positron pair wind transports the pairs from the production to the annihilation region and calculate z(sub +),(sub min). We then determine constraints on the physical parameters on the pair production region by comparing z(sub +),(sub min) with previous studies of two-temperature and one-temperature accretion disks with electron-positron pairs.

  17. The Isotropic Radio Background and Annihilating Dark Matter

    SciTech Connect

    Hooper, Dan; Belikov, Alexander V.; Jeltema, Tesla E.; Linden, Tim; Profumo, Stefano; Slatyer, Tracy R.

    2012-11-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.

  18. Microstructural Characterization of Polymers with Positrons

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1997-01-01

    Positrons provide a versatile probe for monitoring microstructural features of molecular solids. In this paper, we report on positron lifetime measurements in two different types of polymers. The first group comprises polyacrylates processed on earth and in space. The second group includes fully-compatible and totally-incompatible Semi-Interpenetrating polymer networks of thermosetting and thermoplastic polyimides. On the basis of lifetime measurements, it is concluded that free volumes are a direct reflection of physical/electromagnetic properties of the host polymers.

  19. Positron production using a 1.7 MV pelletron accelerator

    SciTech Connect

    Alcantara, K. F.; Santos, A. C. F.; Crivelli, P.

    2013-04-19

    We report the foremost phase of a fourth generation positron source, being constructed at the Federal University of Rio de Janeiro. Positron yields are reported by making use of the {sup 19}F(p,{alpha}e{sup +}e{sup -}){sup 16}O reaction, where the fluorine target is in the form of a CaF{sub 2} pellet. Positron production has been observed by detecting 511 keV annihilation gamma rays emerging from the irradiated CaF{sub 2} target.

  20. Models of pair annihilation in 1E 1740.7-2942 and the HEAO 1 A-4 annihilation source

    NASA Technical Reports Server (NTRS)

    Maciolek-Niedzwiecki, Andrzej; Zdziarski, Andrzej

    1994-01-01

    We study possible models of two Galactic sources of transient pair annihilation radiation, 1E 1740.7-2942 and a source observed by High Energy Astronomy Observatory (HEAO) 1 A-4. We fit the observed spectral features by thermal annihilation spectra and find that the redshifts obtained by us are much larger than those obtained from fitting Caussian lines centered on 511 keV. This effect, which is due to the net blueshift (with respect to 511 keV) of the annihilation spectrum due to the thermal energies of pairs, puts strong constraints on models of sources. We consider those constraints first without considering the mechanism of positron production. From the shape of the observed spectra, we are able to rule out both spherical clouds and layers above cold matter as possible source geometries. The observed spectra are compatible with two source geometries: (1) a nearly face-on disk in the Kerr metric and (2) a jet close to a black hole. We consider, then, the origin of the pairs. Theories of both thermal and nonthermal pair equilibria predict that photon-pair production is unable to produce annihilation features that contain as much as half of the bolometric luminosity, which is observed. A possible solution to this problem is obscuration of a nonthermal source (in which pairs are produced by photon-photon collisions) and an outflow of pairs to an unobscured region. This makes annihilation in a jet the most likely model of the considered sources.

  1. Vacancy-type defects induced by grinding of Si wafers studied by monoenergetic positron beams

    SciTech Connect

    Uedono, Akira; Yoshihara, Nakaaki; Mizushima, Yoriko; Kim, Youngsuk; Nakamura, Tomoji; Ohba, Takayuki; Oshima, Nagayasu; Suzuki, Ryoichi

    2014-10-07

    Vacancy-type defects introduced by the grinding of Czochralski-grown Si wafers were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and the lifetime spectra of positrons showed that vacancy-type defects were introduced in the surface region (<98 nm), and the major defect species were identified as (i) relatively small vacancies incorporated in dislocations and (ii) large vacancy clusters. Annealing experiments showed that the defect concentration decreased with increasing annealing temperature in the range between 100 and 500°C. After 600–700°C annealing, the defect-rich region expanded up to about 170 nm, which was attributed to rearrangements of dislocation networks, and a resultant emission of point defects toward the inside of the sample. Above 800°C, the stability limit of those vacancies was reached and they started to disappear. After the vacancies were annealed out (900°C), oxygen-related defects were the major point defects and they were located at <25 nm.

  2. Evidence of a Positron bound state on the surface of Bi2Te2Se

    NASA Astrophysics Data System (ADS)

    Shastry, K.; Lim, Z. H.; Joglekar, P. V.; Chirayath, Varghese Anto; Badih, B. A.; Heiman, D.; Barbiellini, B.; Weiss, A. H.,

    2015-03-01

    We describe experiments aimed at probing the sticking of positrons to the surfaces of topological insulators performed at University of Texas at Arlington using the Positron Annihilation induced Auger electron Spectrometer. A magnetically guided beam was used to deposit positrons at the surface of Bi2Te2Se sample at energy of ~ 2 eV. Peaks observed in the energy spectra and intensities of electrons emitted as a result of positron annihilation showed peaks at energies corresponding to Auger peaks in Bi and Te providing clear evidence of Auger emission associated with the annihilation of positrons in a surface bound state. Theoretical estimates of the binding energy of this state are compared with estimates obtained by measuring the incident beam energy threshold for secondary electron emission and the temperature dependence positronium emission. The experiments provide strong evidence for the existence of a positron bound state at the surface of Bi2Te2Se and indicate the practicality of using positron annihilation to selectively probe the critically important top most layer of topological insulator system. Welch Grant 1100 NSF DMR 0907679.

  3. Evidence for a positron bound state on the surface of a topological insulator

    NASA Astrophysics Data System (ADS)

    Shastry, K.; Weiss, A. H.; Barbiellini, B.; Assaf, B. A.; Lim, Z. H.; Joglekar, P. V.; Heiman, D.

    2015-06-01

    We describe experiments aimed at probing the sticking of positrons to the surfaces of topological insulators using the Positron Annihilation induced Auger Electron Spectrometer (PAES). A magnetically guided beam was used to deposit positrons at the surface of Bi2Te2Se sample at energy of ?2eV. Peaks observed in the energy spectra and intensities of electrons emitted as a result of positron annihilation showed peaks at energies corresponding to Auger peaks in Bi, Teand Se providing clear evidence of Auger emission associated with the annihilation of positrons in a surface bound state. Theoretical estimates of the binding energy of this state are compared with estimates obtained by measuring the incident beam energy threshold for secondary electron emission and the temperature dependence positronium(Ps) emission. The experiments provide strong evidence for the existence of a positron bound state at the surface of Bi2Te2Se and indicate the practicality of using positron annihilation to selectively probe the critically important top most layer of topological insulator system.

  4. NUCLEAR PHYSICS: Lifetime of Antibaryon Bound in Finite Nuclei

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Li, Ning; Yao, Hai-Bo; Qin, Xu-Ming; Wu, Shi-Shu

    2010-01-01

    The study of finite nuclei containing antibaryon(s) in addition to nucleons is an interesting topic in nuclear physics. The calculation of the lifetime of an antibaryon embedded in a nucleus was performed in the framework of the standard quantum field theory. It was shown that the annihilation probability of the antibaryon in nuclei is strongly dependent on the effective masses of mesons involved in the annihilation channels. The contribution of the Dirac sea to the annihilation probability makes the lifetime of the antibaryon short. If the Dirac sea effect is neglected, the lifetime of the bound antibaryon tends to be longer with the nuclear density increasing. Particularly, when the nuclear density is larger than a critical value, the antibaryon may exist stably in a nucleus.

  5. Theoretical calculation of positron affinities of solute clusters in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Mizuno, Masataka; Araki, Hideki; Shirai, Yasuharu

    2016-01-01

    We have performed theoretical calculations of positron states for solute clusters in aluminum alloys to estimate the positron affinity of solute clusters. Positron states of solute clusters in aluminum alloys were calculated under the electronic structures obtained by first- principles molecular orbital calculations using Al158-X13 clusters. We defined the positron affinity of the solute clusters by the difference in the lowest potential sensed by positrons between the solute clusters and Al bulk. With increasing atomic number of 3d metals, the annihilation fraction of the solute clusters rapidly increases at Mn and shows a maximum at Ni. A similar trend is observed for 4d metals. The localization of positron at the solute clusters mainly arises from charge transfer from Al matrix to solute clusters. The positron affinity defined in this work well represents the localization of positron at the solute clusters in aluminum alloys.

  6. Compact Beta Particle/Positron Imager for Plant Biology

    SciTech Connect

    Weisenberger, Andrew; Lee, Seung Joon; McKisson, John; Xi, Wenze; Zorn, Carl; Stolin, Alexander; Majewski, Stan; Majewski, Stanislaw; Howell, Calvin; Crowell, Alec

    2011-06-01

    The 11CO2 tracer is used to facilitate plant biology research towards optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using 11CO2. Plants typically have very thin leaves resulting in little medium for the emitted positrons to undergo an annihilation event. For the emitted positron from 11C decay approximately 1mm of water equivalent material is needed for positron annihilation. Thus most of the positrons do not annihilate inside the leaf, resulting in limited sensitivity for PET imaging. To address this problem we have developed a compact beta-positive beta-minus particle (BPBM) imager for 11CO2 leaf imaging. The detector is based on a Hamamatsu H8500 position sensitive photomultiplier tube optically coupled via optical grease and a 3mm thick glass plate to a 0.5mm thick Eljin EJ-212 plastic scintillator. The detector is equipped with a flexible arm to allow its placement and orientation on the leaf of the plant of interest while maintaining the leaf's original orientation. We are planning to utilize the imaging device at the Duke University Phytotron to investigate dynamic carbon transport differences between invasive and native species.

  7. Antiproton annihilations in nuclei

    SciTech Connect

    McGaughey, P.L.; Bol, K.D.; Clover, M.R.; DeVries, R.M.; DiGiacomo, N.J.; Kapustinsky, J.S.; Smith, G.R.; Sunier, J.W.; Sondheim, W.E.; Yariv, Y.; and others

    1985-09-15

    Recent results from LEAR experiment PS187 are presented. Preliminary data for the inclusive production of ..pi../sup +/, K/sup +/, and p from the annihilation of 180 MeV antiprotons in /sup 28/Si and /sup 238/U are compared with predictions of intranuclear cascade calculations. Proton and pion production data are well reproduced by the calculations, but kaon yields at low momenta appear to be strongly suppressed in the experimental data.

  8. Antiproton annihilations in nuclei

    SciTech Connect

    McGaughey, P.L.; Bol, K.D.; Clover, M.R.; DeVries, R.M.; DiGiacomo, N.J.; Kapustinsky, J.S.; Smith, G.R.; Sunier, J.W.; Sondheim, W.E.; Yariv, Y.

    1985-01-01

    Recent results from LEAR experiment PS187 are presented. Preliminary data for the inclusive production of ..pi../sup +/, K/sup +/, and p from the annihilation of 180 MeV antiprotpns in /sup 28/Si and /sup 238/U are compared with predictions of intranuclear cascade calculations. Proton and pion production data are well reproduced by the calculations, but kaon yields at low momenta appear to be strongly suppressed in the experimental data. 8 refs., 5 figs.

  9. Study of Baryon Production in e+e- Annihilation near 10 GeV at BABAR

    NASA Astrophysics Data System (ADS)

    Jennings, Darren; Brown, David; BaBar Collaboration

    2011-04-01

    Electron-positron annihilation provides a clean environment in which to study particle production in QCD processes. Using approximately 100 fb-1 of data collected by the BABAR detector at the SLAC National Accelerator Laboratory, we study how the production of protons and ?0 baryons depends on event topology and jets. We also investigate angular correlations between baryons in events.

  10. Inclusive Hadron Production in e+e- Annihilation near 10 GeV at BABAR

    NASA Astrophysics Data System (ADS)

    Braun, Adam; Brown, David; BaBar Collaboration

    2011-04-01

    Electron-positron annihilation provides a clean environment in which to study particle production in QCD processes. Using approximately 100 fb-1 of data collected by the BABAR detector at the SLAC National Accelerator Laboratory, we measure inclusive production rates for a variety of charged and neutral hadrons produced in the continuum and at the ?(2 S) and ?(3 S) peaks.

  11. Annihilation, bound state properties and photodetachment of the positronium negatively charged ion

    NASA Astrophysics Data System (ADS)

    Frolov, Alexei M.

    2015-04-01

    Bound state properties of the negatively charged Ps- ion (or e-e+e-) are discussed. The expectation values of operators which correspond to these properties have been determined with the use of the highly accurate wave functions constructed for this ion. Our best variational energy obtained for the Ps- ion is E = -0.2620050 7023298 0107770 40051 a.u. Annihilation of the electron-positron pair(s) in the negatively charged Ps- ion (or e-e+e-) is considered in detail. By using accurate values for a number annihilation rates ?n?, where n = 1, 2, 3, 4 and 5, we evaluated the half-life ?a of the Ps- ion against positron annihilation (?a = 1/? ? 4.793584140 10-10 s). Photodetachment of the Ps- ion is considered in the long-range, asymptotic approximation. The overall accuracy of our photodetachment cross-section of the Ps- ion is very good for such a simple approximation.

  12. Positronic Atoms --- Understanding a Sticky (Few-Body) Situation

    NASA Astrophysics Data System (ADS)

    Bromley, Michael W. J.

    2006-05-01

    It has been known for about a decade that positrons definitely bind to neutral atoms and, at last count, 11 different atoms are theoretically known to bind positrons, of which none have yet been demonstrated experimentally [1]. We have revisited the application of the configuration interaction (CI) method to the study of various positronic atoms [2]. The accurate representation of electron-positron clustering using only single particle orbitals centered on the nucleus requires the inclusion of orbitals with much higher angular momenta than a roughly equivalent electron-only calculation. Given that helium is described as slowly convergent [3], one struggles to find an adjective that could characterize the CI convergence properties of positronic systems! And this says nothing of the additional radial convergence induced horrors involved in calculating annihilation rates to even within 5%. However, armed with convergence patterns, we have obtained reliable estimates of various positronic atom structures and annihilation properties. Our CI calculations, for example, have shown that positronic calcium is the strongest positron binding system yet found, binding a positron much more strongly than it does an extra electron [4]. Recent progress on understanding the role of the p-wave in low-energy positron-atom interactions using a hybrid CI-Kohn scattering method will also be discussed. [1] J.Mitroy, M.W.J.Bromley and G.G.Ryzhikh J.Phys.B 35 R81 (2002)[2] J.Mitroy and M.W.J.Bromley Phys. Rev. A (under review)[3] C.Schwartz Phys. Rev. 126 1015 (1962)[4] M.W.J.Bromley and J.Mitroy Phys. Rev. A (under review)

  13. PREFACE: The International Workshop on Positron Studies of Defects 2014

    NASA Astrophysics Data System (ADS)

    Sugita, Kazuki; Shirai, Yasuharu

    2016-01-01

    The International Workshop on Positron Studies of Defects 2014 (PSD-14) was held in Kyoto, Japan from 1419 September, 2014. The PSD Workshop brought together positron scientists interested in studying defects to an international platform for presenting and discussing recent results and achievements, including new experimental and theoretical methods in the field. The workshop topics can be characterized as follows: Positron studies of defects in semiconductors and oxides Positron studies of defects in metals New experimental methods and equipment Theoretical calculations and simulations of momentum distributions, positron lifetimes and other characteristics for defects Positron studies of defects in combination with complementary methods Positron beam studies of defects at surfaces, interfaces, in sub-surface regions and thin films Nanostructures and amorphous materials

  14. Analytical positron range modelling in heterogeneous media for PET Monte Carlo simulation.

    PubMed

    Lehnert, Wencke; Gregoire, Marie-Claude; Reilhac, Anthonin; Meikle, Steven R

    2011-06-01

    Monte Carlo simulation codes that model positron interactions along their tortuous path are expected to be accurate but are usually slow. A simpler and potentially faster approach is to model positron range from analytical annihilation density distributions. The aims of this paper were to efficiently implement and validate such a method, with the addition of medium heterogeneity representing a further challenge. The analytical positron range model was evaluated by comparing annihilation density distributions with those produced by the Monte Carlo simulator GATE and by quantitatively analysing the final reconstructed images of Monte Carlo simulated data. In addition, the influence of positronium formation on positron range and hence on the performance of Monte Carlo simulation was investigated. The results demonstrate that 1D annihilation density distributions for different isotope-media combinations can be fitted with Gaussian functions and hence be described by simple look-up-tables of fitting coefficients. Together with the method developed for simulating positron range in heterogeneous media, this allows for efficient modelling of positron range in Monte Carlo simulation. The level of agreement of the analytical model with GATE depends somewhat on the simulated scanner and the particular research task, but appears to be suitable for lower energy positron emitters, such as (18)F or (11)C. No reliable conclusion about the influence of positronium formation on positron range and simulation accuracy could be drawn. PMID:21558591

  15. Quark flavor identification in electron-positron annihilation

    SciTech Connect

    Kaye, H.S.

    1983-09-01

    The theoretical issues relevant to inclusive muon analysis, the MAC detector and its data flow structure, the identification of muons in hadronic events and the measurement of their momenta, and the selection of events so as to minimize background are described. Experimental results are presented describing the fragmentation of heavy quarks into hadrons, the semimuonic branching fractions of the heavy quarks, the asymmetry in the angular distribution of the heavy quarks, and the invariant mass and charged multiplicity of heavy quark jets. In addition, lower limits are set on the masses of certain proposed particles that are expected to decay semileptonically. Finally, events containing two muons are analyzed in order to investigate the possibility of mixing in the B-B system and whether the b might form its own SU(2) singlet.

  16. Eternal annihilations: New constraints on long-lived particles from big-bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Frieman, Joshua A.; Kolb, Edward W.; Turner, Michael S.

    1990-05-01

    In the early Universe, the relative abundance of a massive weakly interacting particle species ``freezes out'' when the annihilation rate becomes less than the expansion rate. Although ineffective in reducing the total number of the species, occasional annihilations still occur after freeze-out. The residual annihilations of massive particles (10 MeV<~mX<~1 GeV) after primordial nucleosynthesis can strongly alter the light-element abundances through photodissociation. For particles with typical weak-interaction cross sections and lifetimes τX>~5×106 sec, we find that the mass range mX<~1 GeV is ruled out, independent of how they subsequently decay.

  17. New constraints from PAMELA anti-proton data on annihilating and decaying dark matter

    SciTech Connect

    Cholis, Ilias

    2011-09-01

    Recently the PAMELA experiment has released its updated anti-proton flux and anti-proton to proton flux ratio data up to energies of ? 200GeV. With no clear excess of cosmic ray anti-protons at high energies, one can extend constraints on the production of anti-protons from dark matter. In this letter, we consider both the cases of dark matter annihilating and decaying into standard model particles that produce significant numbers of anti-protons. We provide two sets of constraints on the annihilation cross-sections/decay lifetimes. In the one set of constraints we ignore any source of anti-protons other than dark matter, which give the highest allowed cross-sections/inverse lifetimes. In the other set we include also anti-protons produced in collisions of cosmic rays with interstellar medium nuclei, getting tighter but more realistic constraints on the annihilation cross-sections/decay lifetimes.

  18. Is the PAMELA positron excess winos?

    SciTech Connect

    Grajek, Phill; Kane, Gordon L.; Phalen, Daniel J.; Pierce, Aaron; Watson, Scott

    2009-02-15

    Recently the PAMELA satellite-based experiment reported an excess of galactic positrons that could be a signal of annihilating dark matter. The PAMELA data may admit an interpretation as a signal from a winolike lightest supersymmetric particle of mass about 200 GeV, normalized to the local relic density, and annihilating mainly into W bosons. This possibility requires the current conventional estimate for the energy loss rate of positrons to be too large by roughly a factor of 5. Data from antiprotons and gamma rays also provide tension with this interpretation, but there are significant astrophysical uncertainties associated with their propagation. It is not unreasonable to take this well-motivated candidate seriously, at present, in part because it can be tested in several ways soon. The forthcoming PAMELA data on higher energy positrons and the Fermi Gamma-ray Space Telescope (formerly the Gamma-ray Large Area Space Telescope) data should provide important clues as to whether this scenario is correct. If correct, the wino interpretation implies a cosmological history in which the dark matter does not originate in thermal equilibrium.

  19. Positron studies in catalysis research. Final report, September 1993-- May 1995

    SciTech Connect

    1996-05-01

    During the past 20 months, we have completed our positron microscope and performed several studies in our nonmicroscopic depth-profiling positron spectrometer which should ultimately be applicable to catalysis. These studies involve using depth-profiled positron spectrometers to observe the growth dynamics of metal silicides on silicon substrates and to observe defects in glassy polymer surfaces and thin films, and the use of bulk positron lifetime measurements to observe pore-size variations in zeolites.

  20. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J. (Bellport, NY); O'Connor, Paul (Bellport, NY); Woody, Craig (Setauket, NY); Junnarkar, Sachin Shrirang (Sound Beach, NY); Radeka, Veljko (Bellport, NY); Vaska, Paul (Sound Beach, NY); Pratte, Jean-Francois (Stony Brook, NY); Volkow, Nora (Chevy Chase, MD)

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  1. Photoinduced carrier annihilation in silicon pn junction

    NASA Astrophysics Data System (ADS)

    Sameshima, Toshiyuki; Motoki, Takayuki; Yasuda, Keisuke; Nakamura, Tomohiko; Hasumi, Masahiko; Mizuno, Toshihisa

    2015-08-01

    We report analysis of the photo-induced minority carrier effective lifetime (?eff) in a p+n junction formed on the top surfaces of a n-type silicon substrate by ion implantation of boron and phosphorus atoms at the top and bottom surfaces followed by activation by microwave heating. Bias voltages were applied to the p+ boron-doped surface with n+ phosphorus-doped surface kept at 0 V. The values of ?eff were lower than 1 10-5 s under the reverse-bias condition. On the other hand, ?eff markedly increased to 1.4 10-4 s as the forward-bias voltage increased to 0.7 V and then it leveled off when continuous-wave 635 nm light was illuminated at 0.74 mW/cm2 on the p+ surface. The carrier annihilation velocity S\\text{p + } at the p+ surface region was numerically estimated from the experimental ?eff. S\\text{p + } ranged from 4000 to 7200 cm/s under the reverse-bias condition when the carrier annihilation velocity S\\text{n + } at the n+ surface region was assumed to be a constant value of 100 cm/s. S\\text{p + } markedly decreased to 265 cm/s as the forward-bias voltage increased to 0.7 V.

  2. Controlling Positronium Annihilation with Electric Fields

    NASA Astrophysics Data System (ADS)

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Hogan, S. D.; Cassidy, D. B.

    2015-10-01

    We show that the annihilation dynamics of excited positronium (Ps) atoms can be controlled using parallel electric and magnetic fields. To achieve this, Ps atoms were optically excited to n =2 sublevels in fields that were adjusted to control the amount of short-lived and long-lived character of the resulting mixed states. Inclusion of the former offers a practical approach to detection via annihilation radiation, whereas the increased lifetimes due to the latter can be exploited to optimize resonance-enhanced two-photon excitation processes (e.g., 1 S 3 ?2 P 3 ?n S /n D ), either by minimizing losses through intermediate state decay, or by making it possible to separate the excitation laser pulses in time. In addition, photoexcitation of mixed states with a 2 S1 3 component represents an efficient route to producing long-lived pure 2 S1 3 atoms via single-photon excitation.

  3. An asymmetric distribution of positrons in the Galactic disk revealed by gamma-rays.

    PubMed

    Weidenspointner, Georg; Skinner, Gerry; Jean, Pierre; Knödlseder, Jürgen; von Ballmoos, Peter; Bignami, Giovanni; Diehl, Roland; Strong, Andrew W; Cordier, Bertrand; Schanne, Stéphane; Winkler, Christoph

    2008-01-10

    Gamma-ray line radiation at 511 keV is the signature of electron-positron annihilation. Such radiation has been known for 30 years to come from the general direction of the Galactic Centre, but the origin of the positrons has remained a mystery. Stellar nucleosynthesis, accreting compact objects, and even the annihilation of exotic dark-matter particles have all been suggested. Here we report a distinct asymmetry in the 511-keV line emission coming from the inner Galactic disk ( approximately 10-50 degrees from the Galactic Centre). This asymmetry resembles an asymmetry in the distribution of low mass X-ray binaries with strong emission at photon energies >20 keV ('hard' LMXBs), indicating that they may be the dominant origin of the positrons. Although it had long been suspected that electron-positron pair plasmas may exist in X-ray binaries, it was not evident that many of the positrons could escape to lose energy and ultimately annihilate with electrons in the interstellar medium and thus lead to the emission of a narrow 511-keV line. For these models, our result implies that up to a few times 10(41) positrons escape per second from a typical hard LMXB. Positron production at this level from hard LMXBs in the Galactic bulge would reduce (and possibly eliminate) the need for more exotic explanations, such as those involving dark matter. PMID:18185581

  4. Pair annihilation into neutrinos in strong magnetic fields.

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Fassio-Canuto, L.

    1973-01-01

    Among the processes that are of primary importance for the thermal history of a neutron star is electron-positron annihilation into neutrinos and photoneutrinos. These processes are computed in the presence of a strong magnetic field typical of neutron stars, and the results are compared with the zero-field case. It is shown that the neutrino luminosity Q(H) is greater than Q(O) for temperatures up to T about equal to 3 x 10 to the 8th power K and densities up to 1,000,000 g/cu cm.

  5. Electron emission from surfaces resulting from low energy positron bombardment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Saurabh

    Measurements of the secondary electron energy spectra resulting from very low energy positron bombardment of a polycrystalline Au and Cu (100) surfaces are presented that provide evidence for a single step transition from an unbound scattering state to an image potential bound state. The primary positron energy threshold for secondary electron emission and energy cutoff of the positron induced secondary electron energy peak are consistent with an Auger like process in which an incident positron make a transition from a scattering state to a surface-image potential bound while transferring all of the energy difference to an outgoing secondary electron. We term this process: the Auger mediated quantum sticking effect (AQSE). The intensities of the positron induced secondary electron peak are used to estimate the probability of this process as a function of incident positron energy. Positron annihilation induced Auger spectra (PAES) of Cu and Au are presented that are free of all primary beam induced secondary electron background. This background was eliminated by setting the positron beam energy below AQSE threshold. The background free PAES spectra obtained include the first measurements of the low energy tail of CVV Auger transitions all the way down to zero kinetic energy. The integrated intensity of this tail is several times larger than Auger peak itself which provides strong evidence for multi-electron Auger processes.

  6. Positronic complexes with unnatural parity

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.; Varga, K.

    2007-06-15

    The structure of the unnatural parity states of PsH, LiPs, NaPs, and KPs are investigated with the configuration interaction and stochastic variational methods. The binding energies (in hartree) are found to be 8.17x10{sup -4}, 4.42x10{sup -4}, 15.14x10{sup -4}, and 21.80x10{sup -4}, respectively. These states are constructed by first coupling the two electrons into a configuration which is predominantly {sup 3}P{sup e}, and then adding a p-wave positron. All the active particles are in states in which the relative angular momentum between any pair of particles is at least L=1. The LiPs state is Borromean since there are no three-body bound subsystems (of the correct symmetry) of the (Li{sup +}, e{sup -}, e{sup -}, e{sup +}) particles that make up the system. The dominant decay mode of these states will be radiative decay into a configuration that autoionizes or undergoes positron annihilation.

  7. Brane annihilations during inflation

    SciTech Connect

    Battefeld, Diana; Battefeld, Thorsten; Firouzjahi, Hassan; Khosravi, Nima E-mail: tbattefe@princeton.edu E-mail: nima@ipm.ir

    2010-07-01

    We investigate brane inflation driven by two stacks of mobile branes in a throat. The stack closest to the bottom of the throat annihilates first with antibranes, resulting in particle production and a change of the equation of state parameter w. We calculate analytically some observable signatures of the collision; related decays are common in multi-field inflation, providing the motivation for this case study. The discontinuity in w enters the matching conditions relating perturbations in the remaining degree of freedom before and after the collision, affecting the power-spectrum of curvature perturbations. We find an oscillatory modulation of the power-spectrum for scales within the horizon at the time of the collision, and a slightly redder spectrum on super-horizon scales. We comment on implications for staggered inflation.

  8. Singlet-triplet annihilation in single LHCII complexes.

    PubMed

    Gruber, J Michael; Chmeliov, Jevgenij; Krger, Tjaart P J; Valkunas, Leonas; van Grondelle, Rienk

    2015-08-14

    In light harvesting complex II (LHCII) of higher plants and green algae, carotenoids (Cars) have an important function to quench chlorophyll (Chl) triplet states and therefore avoid the production of harmful singlet oxygen. The resulting Car triplet states lead to a non-linear self-quenching mechanism called singlet-triplet (S-T) annihilation that strongly depends on the excitation density. In this work we investigated the fluorescence decay kinetics of single immobilized LHCIIs at room temperature and found a two-exponential decay with a slow (3.5 ns) and a fast (35 ps) component. The relative amplitude fraction of the fast component increases with increasing excitation intensity, and the resulting decrease in the fluorescence quantum yield suggests annihilation effects. Modulation of the excitation pattern by means of an acousto-optic modulator (AOM) furthermore allowed us to resolve the time-dependent accumulation and decay rate (?7 ?s) of the quenching species. Inspired by singlet-singlet (S-S) annihilation studies, we developed a stochastic model and then successfully applied it to describe and explain all the experimentally observed steady-state and time-dependent kinetics. That allowed us to distinctively identify the quenching mechanism as S-T annihilation. Quantitative fitting resulted in a conclusive set of parameters validating our interpretation of the experimental results. The obtained stochastic model can be generalized to describe S-T annihilation in small molecular aggregates where the equilibration time of excitations is much faster than the annihilation-free singlet excited state lifetime. PMID:26156159

  9. Structural and phase changes in amorphous solid water films revealed by positron beam spectroscopy.

    PubMed

    Wu, Y C; Kallis, A; Jiang, J; Coleman, P G

    2010-08-01

    The evolution and annealing of pores in, and the crystallization of, vapor-deposited films of amorphous solid water have been studied by using variable-energy positron annihilation spectroscopy for temperatures in the range 50-150K. Both positron and positronium annihilation provide insight to the nature of the grown-in pores and their evolution with temperature. Crystallization of the films was observed at just below 140K, in agreement with earlier studies, with the topmost 80nm undergoing a transition consistent with crystallization at 90-100K. PMID:20867990

  10. The multi-scattering model for calculations of positron spatial distribution in the multilayer stacks, useful for conventional positron measurements

    SciTech Connect

    Dryzek, Jerzy; Institute of Physics, Opole University, ul. Oleska 48, 45-052 Opole ; Siemek, Krzysztof

    2013-08-21

    The spatial distribution of positrons emitted from radioactive isotopes into stacks or layered samples is a subject of the presented report. It was found that Monte Carlo (MC) simulations using GEANT4 code are not able to describe correctly the experimental data of the positron fractions in stacks. The mathematical model was proposed for calculations of the implantation profile or positron fractions in separated layers or foils being components of a stack. The model takes into account only two processes, i.e., the positron absorption and backscattering at interfaces. The mathematical formulas were applied in the computer program called LYS-1 (layers profile analysis). The theoretical predictions of the model were in the good agreement with the results of the MC simulations for the semi infinite sample. The experimental verifications of the model were performed on the symmetrical and non-symmetrical stacks of different foils. The good agreement between the experimental and calculated fractions of positrons in components of a stack was achieved. Also the experimental implantation profile obtained using the depth scanning of positron implantation technique is very well described by the theoretical profile obtained within the proposed model. The LYS-1 program allows us also to calculate the fraction of positrons which annihilate in the source, which can be useful in the positron spectroscopy.

  11. A new look at the cosmic ray positron fraction

    NASA Astrophysics Data System (ADS)

    Boudaud, M.; Aupetit, S.; Caroff, S.; Putze, A.; Belanger, G.; Genolini, Y.; Goy, C.; Poireau, V.; Poulin, V.; Rosier, S.; Salati, P.; Tao, L.; Vecchi, M.

    2015-03-01

    Context. The positron fraction in cosmic rays has recently been measured with improved accuracy up to 500 GeV, and it was found to be a steadily increasing function of energy above ~10 GeV. This behaviour contrasts with standard astrophysical mechanisms, in which positrons are secondary particles, produced in the interactions of primary cosmic rays during their propagation in the interstellar medium. The observed anomaly in the positron fraction triggered a lot of excitement, as it could be interpreted as an indirect signature of the presence of dark matter species in the Galaxy, the so-called weakly interacting massive particles (WIMPs). Alternatively, it could be produced by nearby sources, such as pulsars. Aims: These hypotheses are probed in light of the latest AMS-02 positron fraction measurements. As regards dark matter candidates, regions in the annihilation cross section to mass plane, which best fit the most recent data, are delineated and compared to previous measurements. The explanation of the anomaly in terms of a single nearby pulsar is also explored. Methods: The cosmic ray positron transport in the Galaxy is described using a semi-analytic two-zone model. Propagation is described with Green functions as well as with Bessel expansions. For consistency, the secondary and primary components of the positron flux are calculated together with the same propagation model. The above mentioned explanations of the positron anomaly are tested using χ2 fits. The numerical package MicrOMEGAs is used to model the positron flux generated by dark matter species. The description of the positron fraction from conventional astrophysical sources is based on the pulsar observations included in the Australia Telescope National Facility (ATNF) catalogue. Results: The masses of the favoured dark matter candidates are always larger than 500 GeV, even though the results are very sensitive to the lepton flux. The Fermi measurements point systematically to much heavier candidates than the recently released AMS-02 observations. Since the latter are more precise, they are much more constraining. A scan through the various individual annihilation channels disfavours leptons as the final state. On the contrary, the agreement is excellent for quark, gauge boson, or Higgs boson pairs, with best-fit masses in the 10 to 40 TeV range. The combination of annihilation channels that best matches the positron fraction is then determined at fixed WIMP mass. A mixture of electron and tau lepton pairs is only acceptable around 500 GeV. Adding b-quark pairs significantly improves the fit up to a mass of 40 TeV. Alternatively, a combination of the four-lepton channels provides a good fit between 0.5 and 1 TeV, with no muons in the final state. Concerning the pulsar hypothesis, the region of the distance-to-age plane that best fits the positron fraction for a single source is determined. Conclusions: The only dark matter species that fulfils the stringent gamma ray and cosmic microwave background bounds is a particle annihilating into four leptons through a light scalar or vector mediator, with a mixture of tau (75%) and electron (25%) channels, and a mass between 0.5 and 1 TeV. The positron anomaly can also be explained by a single pulsar, and a list of five pulsars from the ATNF catalogue is given. We investigate how this list could evolve when more statistics are accumulated. Those results are obtained with the cosmic ray transport parameters that best fit the B/C ratio. Uncertainties in the propagation parameters turn out to be very significant. In the WIMP annihilation cross section to mass plane for instance, they overshadow the error contours derived from the positron data.

  12. A Doppler-broadening facility for positron spin relaxation (e +SR) experiments

    NASA Astrophysics Data System (ADS)

    Gessmann, Th.; Harmat, P.; Major, J.; Seeger, A.

    1997-05-01

    A set-up is described for the determination of the spin polarization of positrons emitted from radioactive sources that makes use of the dependence of the Doppler broadening of the 511 keV annihilation photon line on the strength and direction (with regard to the spin polarization) of an applied magnetic field. In the so-called e +SR (positron spin relaxation) technique the sample to be investigated is part of the e +-spin polarimeter. Its application to the investigation of positronium formation in condensed matter is illustrated using crystalline quartz as an example. The method earlier applied to the positron annihilation in magnetized ferromagnets is now transferred to the detection of positronium (Ps) in condensed matter. This new approach makes use of the fact, that the ratio of Ps atoms in the singlet and the triplet states is larger in a magnetic field applied parallel to the positron-spin polarization than in an antiparallel field.

  13. Compensation for crystal penetration in high resolution positron tomography

    SciTech Connect

    Huesman, R.H.; Salmeron, E.M.; Baker, J.R.

    1988-11-01

    We have characterized the effects of crystal penetration by annihilation photons in circular ring positron tomographs. They are most serious in high resolution instruments having small detectors. When annihilation photons are not normally incident and penetrate some distance into the scintillator before interacting, the measurement of their transverse position becomes uncertain. This penetration of photons into the detector material before interaction is a statistical process which leads to significant displacement and anisotropy of the point spread function. The subject of this work is mathematical correction of emission datasets by performing a two-dimensional spatially variant deconvolution of the emission data in sinogram format. Examples for the Donner 600-Crystal Positron Tomograph are presented, and the amplification of statistical errors resulting from the correction procedure is also discussed. 7 refs., 9 figs., 2 tabs.

  14. Elastic positron-cadmium scattering at low energies

    NASA Astrophysics Data System (ADS)

    Bromley, M. W. J.; Mitroy, J.

    2010-05-01

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e+-Cd system. The s-wave binding energy is estimated to be 12642 meV, with a scattering length of Ascat=(14.22.1)a0, while the threshold annihilation parameter, Zeff, was 93.926.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Zeff of 9117 at a collision energy of about 49050 meV.

  15. Elastic positron-cadmium scattering at low energies

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.

    2010-05-15

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e{sup +}-Cd system. The s-wave binding energy is estimated to be 126{+-}42 meV, with a scattering length of A{sub scat}=(14.2{+-}2.1)a{sub 0}, while the threshold annihilation parameter, Z{sub eff}, was 93.9{+-}26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z{sub eff} of 91{+-}17 at a collision energy of about 490{+-}50 meV.

  16. Characteristics of a new automated blood sampling system for positron emission tomography

    SciTech Connect

    Eriksson, L.; Ingvar, M.; Rosenqvist, G.; Ekdahl, T.; Kappel, P.

    1995-08-01

    A new commercially available automated blood sampling system (ABSS) for positron emission tomography has been evaluated. The system uses a single BGO crystal and detects with high efficiency the annihilation radiation from tracers, labelled with positron emitting isotopes, in arterial blood. In addition the possibilities to use the ABSS as a detector in the analysis of the plasma samples with liquid chromatography techniques under flow conditions has been explored.

  17. Indirect and direct signatures of Higgs portal decaying vector dark matter for positron excess in cosmic rays

    SciTech Connect

    Baek, Seungwon; Ko, P.; Park, Wan-Il; Tang, Yong E-mail: pko@kias.re.kr E-mail: ytang@kias.re.kr

    2014-06-01

    We investigate the indirect signatures of the Higgs portal U(1){sub X} vector dark matter (VDM) X{sub μ} from both its pair annihilation and decay. The VDM is stable at renormalizable level by Z{sub 2} symmetry, and thermalized by Higgs-portal interactions. It can also decay by some nonrenormalizable operators with very long lifetime at cosmological time scale. If dim-6 operators for VDM decays are suppressed by 10{sup 16} GeV scale, the lifetime of VDM with mass ∼ 2 TeV is just right for explaining the positron excess in cosmic ray observed by PAMELA and AMS02 Collaborations. The VDM decaying into μ{sup +}μ{sup −} can fit the data, evading various constraints on cosmic rays. We give one UV-complete model as an example. This scenario for Higgs portal decaying VDM with mass around ∼ 2 TeV can be tested by DM direct search at XENON1T, and also at the future colliders by measuring the Higgs self-couplings.

  18. The scattering of low energy positrons by helium

    NASA Technical Reports Server (NTRS)

    Humberston, J. W.

    1973-01-01

    Kohn's variational method is used to calculate the positron-helium scattering length and low energy S-wave phase shifts for a quite realistic Hylleraas type of helium function containing an electron-electron correlation term. The zero energy wavefunction is used to calculate the value of the annihilation rate parameter Z sub eff. All the results are significantly different from those for Drachman's helium model B, but are in better agreement with the available experimental data.

  19. Measurements of heavy quark and lepton lifetimes

    SciTech Connect

    Jaros, J.A.

    1985-02-01

    The PEP/PETRA energy range has proved to be well-suited for the study of the lifetimes of hadrons containing the b and c quarks and the tau lepton for several reasons. First, these states comprise a large fraction of the total interaction rate in e/sup +/e/sup -/ annihilation and can be cleanly identified. Second, the storage rings have operated at high luminosity and so produced these exotic states copiously. And finally, thanks to the interplay of the Fermi coupling strength, the quark and lepton masses, and the beam energy, the expected decay lengths are in the 1/2 mm range and so are comparatively easy to measure. This pleasant coincidence of cleanly identified and abundant signal with potentially large effects has made possible the first measurements of two fundamental weak couplings, tau ..-->.. nu/sub tau/W and b ..-->.. cW. These measurements have provided a sharp test of the standard model and allowed, for the first time, the full determination of the magnitudes of the quark mixing matrix. This paper reviews the lifetime studies made at PEP during the past year. It begins with a brief review of the three detectors, DELCO, MAC and MARK II, which have reported lifetime measurements. Next it discusses two new measurements of the tau lifetime, and briefly reviews a measurement of the D/sup 0/ lifetime. Finally, it turns to measurements of the B lifetime, which are discussed in some detail. 18 references, 14 figures, 1 table.

  20. Induced Positron Annihiliation Investigation of Cadmium Zinc Telluride Crystal Microstructures

    SciTech Connect

    D. W. Akers

    2005-06-01

    Cadmium-Zinc-Telluride (CZT) crystals are used in semiconductor radiation detectors for the detection of x-ray and gamma radiation. However, production of detector grade crystals is difficult as small variations in compositional uniformity and primarily the zinc content can significantly affect the ability of the CZT crystal to function as a radiation detector. Currently there are no known nondestructive methods that can be used to identify detector grade crystals. The current test method is to fabricate and test the detector to determine if the crystal is sufficiently uniform and of the correct composition to be considered a detector grade crystal. Consequently, nondestructive detection methods are needed to identify detector grade crystals prior to the fabrication process. The purpose of this feasibility study was to perform a preliminary assessment of the ability of several new, nondestructive technologies based on Induced Positron Annihilation (IPA) to determine if detector grade CZT crystals can be identified. Results of measurements performed on specimens from Fisk University and EV Products, Inc. indicate that both the near surface Distributed Source Positron Annihilation (up to 3 mm penetration) and the volumetric Photon Induced Positron Annihilation methods may be suitable for determining CZT crystal quality. Further work on CZT crystals with a broader range of compositions and detector characteristics is needed to provide a well defined, calibrated, method for assessing CZT crystal quality.

  1. Compton-backscattered annihilation radiation from the Galactic Center region

    NASA Technical Reports Server (NTRS)

    Smith, D. M.; Lin, R. P.; Feffer, P.; Slassi, S.; Hurley, K.; Matteson, J.; Bowman, H. B.; Pelling, R. M.; Briggs, M.; Gruber, D.

    1993-01-01

    On 1989 May 22, the High Energy X-ray and Gamma-ray Observatory for Nuclear Emissions, a balloon-borne high-resolution germanium spectrometer with an 18-deg FOV, observed the Galactic Center (GC) from 25 to 2500 keV. The GC photon spectrum is obtained from the count spectrum by a model-independent method which accounts for the effects of passive material in the instrument and scattering in the atmosphere. Besides a positron annihilation line with a flux of (10.0 +/- 2.4) x 10 exp -4 photons/sq cm s and a full width at half-maximum (FWHM) of (2.9 + 1.0, -1.1) keV, the spectrum shows a peak centered at (163.7 +/- 3.4) keV with a flux of (1.55 +/- 0.47) x 10 exp -3 photons/sq cm s and a FWHM of (24.4 +/- 9.2) keV. The energy range 450-507 keV shows no positronium continuum associated with the annihilation line, with a 2-sigma upper limit of 0.90 on the positronium fraction. The 164 keV feature is interpreted as Compton backscatter of broadened and redshifted annihilation radiation, possibly from the source 1E 1740.7-2942.

  2. Compton-backscattered annihilation radiation from the Galactic Center region

    NASA Astrophysics Data System (ADS)

    Smith, D. M.; Lin, R. P.; Feffer, P.; Slassi, S.; Hurley, K.; Matteson, J.; Bowman, H. B.; Pelling, R. M.; Briggs, M.; Gruber, D.; Peterson, L. E.; Lingenfelter, R. E.; von Ballmoos, P.; Malet, I.; Niel, M.; Vedrenne, G.; Durouchoux, P.; Wallyn, P.; Chapuis, C.; Cork, C.; Landis, D.; Luke, P.; Madden, N.; Malone, D.; Pehl, R.

    1993-09-01

    On 1989 May 22, the High Energy X-ray and Gamma-ray Observatory for Nuclear Emissions, a balloon-borne high-resolution germanium spectrometer with an 18-deg FOV, observed the Galactic Center (GC) from 25 to 2500 keV. The GC photon spectrum is obtained from the count spectrum by a model-independent method which accounts for the effects of passive material in the instrument and scattering in the atmosphere. Besides a positron annihilation line with a flux of (10.0 +/- 2.4) x 10 exp -4 photons/sq cm s and a full width at half-maximum (FWHM) of (2.9 + 1.0, -1.1) keV, the spectrum shows a peak centered at (163.7 +/- 3.4) keV with a flux of (1.55 +/- 0.47) x 10 exp -3 photons/sq cm s and a FWHM of (24.4 +/- 9.2) keV. The energy range 450-507 keV shows no positronium continuum associated with the annihilation line, with a 2-sigma upper limit of 0.90 on the positronium fraction. The 164 keV feature is interpreted as Compton backscatter of broadened and redshifted annihilation radiation, possibly from the source 1E 1740.7-2942.

  3. A fiber-optically coupled positron-sensitive surgical probe

    SciTech Connect

    Raylman, R.R.; Wahl, R.L.

    1994-05-01

    Positron-emitting radiopharmaceuticals such as {sup 18}F-labeled 2-deoxy-D-glucose (FDG) have considerable utility in the noninvasive imaging of cancers due to their rapid and excellent tumor-localizing properties. In addition, the relatively short range of positrons in tissue facilitates the precise delineation of FDG-avid tumors. Therefore, FDG used in conjunction with a positron-sensitive probe may be capable of guiding surgical procedures. Many of the current probe systems, however, are sensitive to the intense flux of background photons produced by positron annihilation. The authors describe the design, manufacture and initial in vitro and in vivo testing of a probe well-suited to the detection of positron-emitting isotopes in a high-photon background. The device consists of a small piece of plastic scintillator coupled by fiber-optic cable to a photomultiplier tube. Measurements of resolution and detector sensitivity were obtained. In addition, the reduction in resolution caused by the effects of various levels of background photon flux was determined. These measurements indicate that resolution is degraded minimally ({approximately}5% with a background-to-source ratio of 2:1) due to annihilation photon background. Sensitivity for positrons is good, detecting amounts of radioactivity as low as 10.2 nCi of FDG in vitro. In rats given FDG subcutaneously, lymph nodes containing as little as 11 nCi of FDG could be detected above the background activity levels present in normal surrounding tissues. A plastic scintillator probe system has been devised which may be highly suitable for intraoperative FDG-guided (or other positron or beta emitting-tracer) surgery. 29 refs., 7 figs.

  4. High resolution positron Q-value measurements and nuclear structure studies far from the stability line. Progress report, July 1, 1979-June 30, 1980. [Dept. of Physics and Astronomy, Univ. of South Carolina, Columbia

    SciTech Connect

    Avignone, F.T. III

    1980-02-22

    This document represents a progress report and renewal proposal for the contract DEAS 09 79 ER10434 between the USDOE and USC. During the time from 1 July 1979 to 1 March 1980, the large 35% intrinsic Ge detector was purchased and tested, and the new hyperpure Ge detector for positron end-point-energy measurements was designed and fabricated by ORTEC. It was delivered just prior to January 1, 1980. Measurements using this special equipment began in January 1980. During this period, a new effort in the measurement of short nuclear lifetimes was completed, and nuclear structure measurements of /sup 206/Rn nd /sup 208/Rn were completed. The results of these efforts are described in the text. A search for the Post Doctoral Research Associate was started last summer and the position will be filled on or about 1 March 1980. The first experiments to measure positron end-point-energies were proposed to the ORIC scheduling committee, and measurements will begin in March 1980. Theoretical efforts describe accurately the interference of annihilation radiation with positron end-point-energy measurements were begun.

  5. Single and couple doping ZnO nanocrystals characterized by positron techniques

    NASA Astrophysics Data System (ADS)

    Pasang, Tenzin; Namratha, Keerthiraj; Guagliardo, Paul; Byrappa, Kullaiah; Ranganathaiah, Chikkakuntappa; Samarin, S.; Williams, J. F.

    2015-04-01

    Zinc oxide (ZnO) nanocrystals have been synthesized using a mild hydrothermal process using low temperatures and pressures with the advantages of free growth catalyst, low cost and alternative technology. Positron annihilation lifetime spectroscopy and coincidence Doppler broadening (CDB) spectroscopic methods have been used to investigate the roles of single- and co-dopants and native defects of the ZnO nanocrystals controlled by the synthesis process. It is shown that single Ag1+ and Pd2+ dopants occupy interstitial sites of the ZnO lattice and single Ru3+ doping replaces Zn vacancies substitutionally with a significant effect on the CDB momentum ratio curves when compared using ZnO as the reference spectrum. The co-doping of the ZnO lattice with (Sn4+ + Co2+) shows similar CDB ratios as Ru3+ single-doping. Also co-doping with (Ag1+ + Pd2+) or (Ag1+ + W6+) shows significant decreases in the band gap energy up to about 12.6% compared to single doping. The momentum ratio curves, referenced to undoped ZnO, indicate dopants in interstitial and substitutional sites. The presence of transition metal ions interstitially will trap electrons which resist the recombination of electrons and in turn affect the conductivity of the material.

  6. Precise tests of QCD in e{sup +}e{sup {minus}} annihilation

    SciTech Connect

    Burrows, P.N.

    1997-03-01

    A pedagogical review is given of precise tests of QCD in electron-positron annihilation. Emphasis is placed on measurements that have served to establish QCD as the correct theory of strong interactions, as well as measurements of the coupling parameter {alpha}{sub s}. An outlook is given for future important tests at a high-energy e{sup +}e{sup {minus}} collider.

  7. Photon spectra from WIMP annihilation

    SciTech Connect

    Cembranos, J. A. R.; Cruz-Dombriz, A. de la; Dobado, A.; Maroto, A. L.; Lineros, R. A.

    2011-04-15

    If the present dark matter in the Universe annihilates into standard model particles, it must contribute to the fluxes of cosmic rays that are detected on the Earth and, in particular, to the observed gamma-ray fluxes. The magnitude of such a contribution depends on the particular dark matter candidate, but certain features of the produced photon spectra may be analyzed in a rather model-independent fashion. In this work we provide the complete photon spectra coming from WIMP annihilation into standard model particle-antiparticle pairs obtained by extensive Monte Carlo simulations. We present results for each individual annihilation channel and provide analytical fitting formulas for the different spectra for a wide range of WIMP masses.

  8. Exploring positron characteristics utilizing two new positron-electron correlation schemes based on multiple electronic structure calculation methods

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Shuai; Gu, Bing-Chuan; Han, Xiao-Xi; Liu, Jian-Dang; Ye, Bang-Jiao

    2015-10-01

    We make a gradient correction to a new local density approximation form of positron-electron correlation. The positron lifetimes and affinities are then probed by using these two approximation forms based on three electronic-structure calculation methods, including the full-potential linearized augmented plane wave (FLAPW) plus local orbitals approach, the atomic superposition (ATSUP) approach, and the projector augmented wave (PAW) approach. The differences between calculated lifetimes using the FLAPW and ATSUP methods are clearly interpreted in the view of positron and electron transfers. We further find that a well-implemented PAW method can give near-perfect agreement on both the positron lifetimes and affinities with the FLAPW method, and the competitiveness of the ATSUP method against the FLAPW/PAW method is reduced within the best calculations. By comparing with the experimental data, the new introduced gradient corrected correlation form is proved to be competitive for positron lifetime and affinity calculations. Project supported by the National Natural Science Foundation of China (Grant Nos. 11175171 and 11105139).

  9. Scintillators for positron emission tomography

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ``ultimate`` scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length ({le} 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times {le} 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so {le}5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ``fully-3D`` cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm.

  10. PIMC Simulation of Ps Annihilation: From Micro to Mesopores

    SciTech Connect

    Bug, A R; Sterne, P A

    2005-08-23

    Path Integral Monte Carlo (PIMC) can reproduce the results of simple analytical calculations in which a single quantum particle is used to represent positronium within an idealized, spherical pore. Our calculations improve on this approach by explicitly treating the positronium as a two-particle e{sup -}, e{sup +} system interacting via the Coulomb interaction. We study the lifetime and the internal contact density, {kappa}, which controls the self-annihilation behavior, for positronium in model spherical pores, as a function of temperature and pore size. We compare the results with both PIMC and analytical calculations for a single-particle model.

  11. Computational Study of Positron-Monovacancy Interaction in d-Block Metals

    NASA Astrophysics Data System (ADS)

    Ishibashi, Shoji

    2015-08-01

    The positron-monovacancy interaction in d-block metals (except for Mn, Tc, and Hg) has been studied by the two-component density-functional-theory formalism [E. Boroński and R. M. Nieminen, Phys. Rev. B 34, 3820 (1986)]. On the unrelaxed structure, the positron lifetime calculated with the presence of a positron is generally longer than that obtained neglecting the positron effect. When the atomic positions are relaxed, the difference is widened, especially for the group V metals. The inward relaxation of the atoms surrounding the monovacancy is suppressed when the positron effect is taken into account. The difference in the positron lifetime can be also related to the bulk modulus and the cohesive energy.

  12. Vacancy-type defects in InxGa1-xN grown on GaN templates probed using monoenergetic positron beams

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Watanabe, Tomohito; Kimura, Shogo; Zhang, Yang; Lozac'h, Mickael; Sang, Liwen; Ishibashi, Shoji; Oshima, Nagayasu; Suzuki, Ryoichi; Sumiya, Masatomo

    2013-11-01

    Native defects in InxGa1-xN layers grown by metalorganic chemical vapor deposition were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and lifetime spectra of positrons for a 200-nm-thick In0.13Ga0.87N layer showed that vacancy-type defects were introduced by InN alloying, and the major species of such defects was identified as complexes between a cation vacancy and nitrogen vacancies. The presence of the defects correlated with lattice relaxation of the In0.13Ga0.87N layer and the increase in photon emissions from donor-acceptor-pair recombination. The species of native defects in In0.06Ga0.94N layers was the same but its concentration was decreased by decreasing the InN composition. With the layer thickness increased from 120 nm to 360 nm, a defect-rich region was introduced in the subsurface region (<160 nm), which can be associated with layer growth with the relaxation of compressive stress.

  13. Vacancy-type defects in In{sub x}Ga{sub 1−x}N grown on GaN templates probed using monoenergetic positron beams

    SciTech Connect

    Uedono, Akira; Watanabe, Tomohito; Kimura, Shogo; Zhang, Yang; Lozac'h, Mickael; Sang, Liwen; Sumiya, Masatomo; Ishibashi, Shoji; Oshima, Nagayasu; Suzuki, Ryoichi

    2013-11-14

    Native defects in In{sub x}Ga{sub 1−x}N layers grown by metalorganic chemical vapor deposition were studied using monoenergetic positron beams. Measurements of Doppler broadening spectra of the annihilation radiation and lifetime spectra of positrons for a 200-nm-thick In{sub 0.13}Ga{sub 0.87}N layer showed that vacancy-type defects were introduced by InN alloying, and the major species of such defects was identified as complexes between a cation vacancy and nitrogen vacancies. The presence of the defects correlated with lattice relaxation of the In{sub 0.13}Ga{sub 0.87}N layer and the increase in photon emissions from donor-acceptor-pair recombination. The species of native defects in In{sub 0.06}Ga{sub 0.94}N layers was the same but its concentration was decreased by decreasing the InN composition. With the layer thickness increased from 120 nm to 360 nm, a defect-rich region was introduced in the subsurface region (<160 nm), which can be associated with layer growth with the relaxation of compressive stress.

  14. Positrons from quantum evaporation of primordial black-holes

    NASA Technical Reports Server (NTRS)

    Durouchoux, P.; Wallyn, P.; Dubus, G.

    1997-01-01

    The unconfirmed prediction of quantum evaporation of primordial black holes (PBHs) is considered together with the related unanswered questions of whether PBHs ever existed and whether any could still exist. The behavior of the positrons from PHBs is modeled in relation to three facts. Firstly, the integrated emitted number spectrum of positrons is six to eight times larger than that of photons. Secondly, positrons emitted from PBHs lose energy and annihilate, producing a prominent line at 511 keV which is redshifted by the expansion of the universe. Thirdly, these photons may be detectable in the X-ray and low gamma ray energy ranges. The model predicts a flux which is significantly inferior to the instrument sensitivities of the foreseeable future.

  15. Are mildly active galaxies sources of e+/- annihilation radiation

    SciTech Connect

    Marscher, A.P.; Brecher, K.; Wheaton, W.A.; Ling, J.C.; Mahoney, W.A.; Jacobson, A.S.

    1983-01-01

    The Galactic Center has been established as a source of 511 keV line radiation resulting from electron-position annihilation. The Galactic Center is also the site of a compact, nonthermal radio source similar to the scaled-down version of those found in the nuclei of active galaxies and quasars. This suggests that there is a mildly active central engine at the Galactic Center, which is capable of producing the high output of positrons required to explain the strength of the 511 keV line. If this is the case, then one would expect other active galaxies to also contain positron sources in their nuclei. Because of possible escape routes for positrons, it was decided that a promising candidate for 511 keV line detection would be any active galaxy whose nonthermal radio activity is contained within the galaxy. Seven galaxies were chosen using this criteria. The HEAO-3 ..gamma.. Ray Spectrometer was operable from 20 September 1979 until June 1980, and none of these galaxies were detected in the 511 keV line. 19 references, 1 table.

  16. Electron emission from surfaces resulting from low energy positron bombardment

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Shastry, K.; Weiss, A. H.

    2009-03-01

    Measurements of the energy distribution of electrons resulting from very low energy positron bombardment of a polycrystalline Au and Cu(100) surfaces provide evidence for a single step transition from an unbound scattering state to an image potential bound state. The primary positron energy threshold for secondary electron emission and cutoff in the secondary electron energy spectra are consistent with a process in which an incident positrons make a transition from a scattering state to a surface-image potential bound while transferring all of the energy difference to an outgoing secondary electron. Estimates of the probability of this process as a function of incident positron energy are also presented. Background free Auger spectra of the MVV transition in Cu and the OVV transition in Au were obtained by setting the incident positron beam energy below the secondary electron emission threshold. Auger electron emission resulted from the annihilation of surface state positrons with core electrons. The low energy tail associated with the low energy CVV Auger transitions in Cu and Au were found to have integrated intensity several times larger than Auger peak providing strong evidence for multi-electron Auger processes.

  17. Optimization of drift bias in an UHV based pulsed positron beam system

    NASA Astrophysics Data System (ADS)

    Anto, C. Varghese; Rajaraman, R.; Rao, G. Venugopal; Abhaya, S.; Parimala, J.; Amarendra, G.

    2012-06-01

    We report here the design of ultra high vacuum (UHV) compatible pulsed positron beam lifetime system, which combines the principles of a conventional slow positron beam and RF based pulsing scheme. The mechanical design and construction of the UHV system to house the beam has been completed and it has been tested for a vacuum of ˜ 10-10 mbar. The voltages applied to the drift tube as a function of positron energies have been optimized using SIMION.

  18. Microstructural characterization of thin polymer films using Langley low energy positron flux generator

    NASA Technical Reports Server (NTRS)

    Singh, Jag. J.

    1992-01-01

    We have developed a highly efficient scheme for generating high fluxes of slow positrons. These positrons have been successfully used to measure lifetimes in thin test films. The lifetime data have been used to develop two structure-property models for the test films. The first model relates the free volume cell size to the molecular weight of the polymer repeat unit. The second model relates the free volume fraction to the dielectric constant of the polymer film.

  19. Dark matter with multiannihilation channels and the AMS-02 positron excess and antiproton data

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Heng; Cheung, Kingman; Tseng, Po-Yan

    2016-01-01

    AMS-02 provided the unprecedented statistics in the measurement of the positron fraction from cosmic rays. That may offer a unique opportunity to distinguish the positron spectrum coming from various dark matter (DM) annihilation channels, if DM is the source of this positron excess. Therefore, we consider the scenario that the DM can annihilate into leptonic, quark, and massive gauge-boson channels simultaneously with floating branching ratios to test this hypothesis. We also study the impacts from MAX, MED, MIN, and DC diffusion models as well as from isothermal, NFW, and Einasto DM density profiles on our results. We found two parameter regions that can satisfy both AMS-02 e/+ e++e- and p ¯/p data sets at 95% C.L.: (i) under the NFW-MIN combination with Mχ⊂[10 ,30 ] TeV , and (ii) under the Einasto-DC combination with Mχ⊂[500 ,1500 ] GeV .

  20. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOEpatents

    Asokakumar, P.P.V.; Lynn, K.G.

    1993-04-06

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.