Science.gov

Sample records for possess distinct roles

  1. Pseudomonas aeruginosa Possesses Two Putative Type I Signal Peptidases, LepB and PA1303, Each with Distinct Roles in Physiology and Virulence

    PubMed Central

    Rose, Ruth S.; Rangarajan, Minnie; Aduse-Opoku, Joseph; Hashim, Ahmed; Curtis, Michael A.

    2012-01-01

    Type I signal peptidases (SPases) cleave signal peptides from proteins during translocation across biological membranes and hence play a vital role in cellular physiology. SPase activity is also of fundamental importance to the pathogenesis of infection for many bacteria, including Pseudomonas aeruginosa, which utilizes a variety of secreted virulence factors, such as proteases and toxins. P. aeruginosa possesses two noncontiguous SPase homologues, LepB (PA0768) and PA1303, which share 43% amino acid identity. Reverse transcription (RT)-PCR showed that both proteases were expressed, while a FRET-based assay using a peptide based on the signal sequence cleavage region of the secreted LasB elastase showed that recombinant LepB and PA1303 enzymes were both active. LepB is positioned within a genetic locus that resembles the locus containing the extensively characterized SPase of E. coli and is of similar size and topology. It was also shown to be essential for viability and to have high sequence identity with SPases from other pseudomonads (≥78%). In contrast, PA1303, which is small for a Gram-negative SPase (20 kDa), was found to be dispensable. Mutation of PA1303 resulted in an altered protein secretion profile and increased N-butanoyl homoserine lactone production and influenced several quorum-sensing-controlled phenotypic traits, including swarming motility and the production of rhamnolipid and elastinolytic activity. The data indicate different cellular roles for these P. aeruginosa SPase paralogues; the role of PA1303 is integrated with the quorum-sensing cascade and includes the suppression of virulence factor secretion and virulence-associated phenotypes, while LepB is the primary SPase. PMID:22730125

  2. Cocoa Procyanidins with Different Degrees of Polymerization Possess Distinct Activities in Models of Colonic Inflammation

    PubMed Central

    Bitzer, Zachary T.; Glisan, Shannon L.; Dorenkott, Melanie R.; Goodrich, Katheryn M.; Ye, Liyun; O’Keefe, Sean F.; Lambert, Joshua D.; Neilson, Andrew P.

    2015-01-01

    Procyanidins are available in the diet from sources such as cocoa and grapes. Procyanidins are unique in that they are comprised of repeating monomeric units and can exist in various degrees of polymerization. The degree of polymerization plays a role in determining the biological activities of procyanidins. However, generalizations cannot be made regarding the correlation between procyanidin structure and bioactivity, because the size-activity relationship appears to be system-dependent. Our aim was to screen fractions of procyanidins with differing degrees of polymerization in vitro for anti-inflammatory activities in models of colonic inflammation. Monomeric, oligomeric, and polymeric cocoa procyanidin fractions were screened using cell models of disrupted membrane integrity and inflammation in human colon cells. High molecular weight polymeric procyanidins were the most effective at preserving membrane integrity and reducing secretion of interleukin-8 in response to inflammatory stimuli. Conversely, oligomeric procyanidins appeared to be the least effective. These results suggest that polymeric cocoa procyanidins may be the most effective for preventing loss of gut barrier function and epithelial inflammation, which are critical steps in the pathogenesis of metabolic endotoxemia, inflammatory bowel disease, and colon cancer. Therefore, further investigations of the potential health-protective benefits of cocoa procyanidins with distinct degrees of polymerization, particularly high molecular weight procyanidins, are warranted. PMID:25869594

  3. Strains of Burkholderia cenocepacia genomovar IIIA possessing the cblA gene that are distinct from ET12.

    PubMed

    Turton, Jane F; O'Brien, Emily; Megson, Brian; Kaufmann, Mary E; Pitt, Tyrone L

    2009-05-01

    Three strains of Burkholderia cenocepacia genomovar IIIA that were polymerase chain reaction positive for cblA, bcrA, and the epidemic strain marker, but were distinct from representatives of ET12 by pulsed-field gel electrophoresis, are described. One of these strains was shown to express cable pili by electron microscopy. PMID:19304435

  4. Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance

    PubMed Central

    Šmehilová, Mária; Dobrůšková, Jana; Novák, Ondřej; Takáč, Tomáš; Galuszka, Petr

    2016-01-01

    Plant hormones cytokinins (CKs) are one of the major mediators of physiological responses throughout plant life span. Therefore, a proper homeostasis is maintained by regulation of their active levels. Besides degradation, CKs are deactivated by uridine diphosphate glycosyltransferases (UGTs). Physiologically, CKs active levels decline in senescing organs, providing a signal to nutrients that a shift to reproductive tissues has begun. In this work, we show CK glucosides distribution in Arabidopsis leaves during major developmental transition phases. Besides continuous accumulation of N-glucosides we detected sharp maximum of the glucosides in senescence. This is caused prevalently by N7-glucosides followed by N9-glucosides and specifically also by trans-zeatin-O-glucoside (tZOG). Interestingly, we observed a similar trend in response to exogenously applied CK. In Arabidopsis, only three UGTs deactivate CKs in vivo: UGT76C1, UGT76C2 and UGT85A1. We thereby show that UGT85A1 is specifically expressed in senescent leaves whereas UGT76C2 is activated rapidly in response to exogenously applied CK. To shed more light on the UGTs physiological roles, we performed a comparative study on UGTs loss-of-function mutants, characterizing a true ugt85a1-1 loss-of-function mutant for the first time. Although no altered phenotype was detected under standard condition we observed reduced chlorophyll degradation with increased anthocyanin accumulation in our experiment on detached leaves accompanied by senescence and stress related genes modulated expression. Among the mutants, ugt76c2 possessed extremely diminished CK N-glucosides levels whereas ugt76c1 showed some specificity toward cis-zeatin (cZ). Besides tZOG, a broader range of CK glucosides was decreased in ugt85a1-1. Performing CK metabolism gene expression profiling, we revealed that activation of CK degradation pathway serves as a general regulatory mechanism of disturbed CK homeostasis followed by decreased CK signaling in

  5. Cytokinin-Specific Glycosyltransferases Possess Different Roles in Cytokinin Homeostasis Maintenance.

    PubMed

    Šmehilová, Mária; Dobrůšková, Jana; Novák, Ondřej; Takáč, Tomáš; Galuszka, Petr

    2016-01-01

    Plant hormones cytokinins (CKs) are one of the major mediators of physiological responses throughout plant life span. Therefore, a proper homeostasis is maintained by regulation of their active levels. Besides degradation, CKs are deactivated by uridine diphosphate glycosyltransferases (UGTs). Physiologically, CKs active levels decline in senescing organs, providing a signal to nutrients that a shift to reproductive tissues has begun. In this work, we show CK glucosides distribution in Arabidopsis leaves during major developmental transition phases. Besides continuous accumulation of N-glucosides we detected sharp maximum of the glucosides in senescence. This is caused prevalently by N7-glucosides followed by N9-glucosides and specifically also by trans-zeatin-O-glucoside (tZOG). Interestingly, we observed a similar trend in response to exogenously applied CK. In Arabidopsis, only three UGTs deactivate CKs in vivo: UGT76C1, UGT76C2 and UGT85A1. We thereby show that UGT85A1 is specifically expressed in senescent leaves whereas UGT76C2 is activated rapidly in response to exogenously applied CK. To shed more light on the UGTs physiological roles, we performed a comparative study on UGTs loss-of-function mutants, characterizing a true ugt85a1-1 loss-of-function mutant for the first time. Although no altered phenotype was detected under standard condition we observed reduced chlorophyll degradation with increased anthocyanin accumulation in our experiment on detached leaves accompanied by senescence and stress related genes modulated expression. Among the mutants, ugt76c2 possessed extremely diminished CK N-glucosides levels whereas ugt76c1 showed some specificity toward cis-zeatin (cZ). Besides tZOG, a broader range of CK glucosides was decreased in ugt85a1-1. Performing CK metabolism gene expression profiling, we revealed that activation of CK degradation pathway serves as a general regulatory mechanism of disturbed CK homeostasis followed by decreased CK signaling in

  6. How Risky Is Marijuana Possession? Considering the Role of Age, Race, and Gender

    ERIC Educational Resources Information Center

    Nguyen, Holly; Reuter, Peter

    2012-01-01

    Arrest rates per capita for possession of marijuana have increased threefold over the last 20 years and now constitute the largest single arrest offense category. Despite the increase in arrest numbers, rates of use have remained stable during much of the same period. This article presents the first estimates of the arrest probabilities for…

  7. Tetrahydropteridines possess antioxidant roles to guard against glucose-induced oxidative stress in Dictyostelium discoideum

    PubMed Central

    Park, Seon-Ok; Kim, Hye-Lim; Lee, Soo-Woong; Park, Young Shik

    2013-01-01

    Glucose effects on the vegetative growth of Dictyostelium discoideum Ax2 were studied by examining oxidative stress and tetrahydropteridine synthesis in cells cultured with different concentrations (0.5X, 7.7 g L-1; 1X, 15.4 g L-1; 2X, 30.8 g L-1) of glucose. The growth rate was optimal in 1X cells (cells grown in 1X glucose) but was impaired drastically in 2X cells, below the level of 0.5X cells. There were glucose-dependent increases in reactive oxygen species (ROS) levels and mitochondrial dysfunction in parallel with the mRNA copy numbers of the enzymes catalyzing tetrahydropteridine synthesis and regeneration. On the other hand, both the specific activities of the enzymes and tetrahydropteridine levels in 2X cells were lower than those in 1X cells, but were higher than those in 0.5X cells. Given the antioxidant function of tetrahydropteridines and both the beneficial and harmful effects of ROS, the results suggest glucose-induced oxidative stress in Dictyostelium, a process that might originate from aerobic glycolysis, as well as a protective role of tetrahydropteridines against this stress. [BMB Reports 2013; 46(2): 86-91] PMID:23433110

  8. Distinct roles of doublecortin modulating the microtubule cytoskeleton

    PubMed Central

    Moores, Carolyn A; Perderiset, Mylène; Kappeler, Caroline; Kain, Susan; Drummond, Douglas; Perkins, Stephen J; Chelly, Jamel; Cross, Rob; Houdusse, Anne; Francis, Fiona

    2006-01-01

    Doublecortin is a neuronal microtubule-stabilising protein, mutations of which cause mental retardation and epilepsy in humans. How doublecortin influences microtubule dynamics, and thereby brain development, is unclear. We show here by video microscopy that purified doublecortin has no effect on the growth rate of microtubules. However, it is a potent anti-catastrophe factor that stabilises microtubules by linking adjacent protofilaments and counteracting their outward bending in depolymerising microtubules. We show that doublecortin-stabilised microtubules are substrates for kinesin translocase motors and for depolymerase kinesins. In addition, doublecortin does not itself oligomerise and does not bind to tubulin heterodimers but does nucleate microtubules. In cells, doublecortin is enriched at the distal ends of neuronal processes and our data raise the possibility that the function of doublecortin in neurons is to drive assembly and stabilisation of non-centrosomal microtubules in these doublecortin-enriched distal zones. These distinct properties combine to give doublecortin a unique function in microtubule regulation, a role that cannot be compensated for by other microtubule-stabilising proteins and nucleating factors. PMID:16957770

  9. Two distinct roles of the yorkie/yap gene during homeostasis in the planarian Dugesia japonica.

    PubMed

    Hwang, Byulnim; An, Yang; Agata, Kiyokazu; Umesono, Yoshihiko

    2015-04-01

    Adult planarians possess somatic pluripotent stem cells called neoblasts that give rise to all missing cell types during regeneration and homeostasis. Recent studies revealed that the Yorkie (Yki)/Yes-associated protein (YAP) transcriptional coactivator family plays an important role in the regulation of tissue growth during development and regeneration, and therefore we investigated the role of a planarian yki-related gene (termed Djyki) during regeneration and homeostasis of the freshwater planarian Dugesia japonica. We found that knockdown of the function of Djyki by RNA interference (RNAi) downregulated neoblast proliferation and caused regeneration defects after amputation. In addition, Djyki RNAi caused edema during homeostasis. These seemingly distinct defects induced by Djyki RNAi were rescued by simultaneous RNAi of a planarian mats-related gene (termed Djmats), suggesting an important role of Djmats in the negative regulation of Djyki, in accordance with the conservation of the functional relationship of these two genes during the course of evolution. Interestingly, Djyki RNAi did not prevent normal protonephridial structure, suggesting that Djyki RNAi induced the edema phenotype without affecting the excretory system. Further analyses revealed that increased expression of the D. japonica gene DjaquaporinA (DjaqpA), which belongs to a large gene family that encodes a water channel protein for the regulation of transcellular water flow, promoted the induction of edema, but not defects in neoblast dynamics, in Djyki(RNAi) animals. Thus, we conclude that Djyki plays two distinct roles in the regulation of active proliferation of stem cells and in osmotic water transport across the body surface in D. japonica. PMID:25708270

  10. Dynamic melody recognition: distinctiveness and the role of musical expertise.

    PubMed

    Bailes, Freya

    2010-07-01

    The hypothesis that melodies are recognized at moments when they exhibit a distinctive musical pattern was tested. In a melody recognition experiment, point-of-recognition (POR) data were gathered from 32 listeners (16 musicians and 16 nonmusicians) judging 120 melodies. A series of models of melody recognition were developed, resulting from a stepwise multiple regression of two classes of information relating to melodic familiarity and melodic distinctiveness. Melodic distinctiveness measures were assembled through statistical analyses of over 15,000 Western themes and melodies. A significant model, explaining 85% of the variance, entered measures primarily of timing distinctiveness and pitch distinctiveness, but excluding familiarity, as predictors of POR. Differences between nonmusician and musician models suggest a processing shift from momentary to accumulated information with increased exposure to music. Supplemental materials for this article may be downloaded from http://mc.psychonomic-journals.org/content/supplemental. PMID:20551343

  11. Human spermatozoa possess an IL4I1 l-amino acid oxidase with a potential role in sperm function.

    PubMed

    Houston, B; Curry, B; Aitken, R J

    2015-06-01

    Reactive oxygen species (ROS) are known to play an important role in the regulation of human sperm function. In this study, we demonstrate for the first time that human spermatozoa possess interleukin-induced gene 1 (IL4I1), an l-amino acid oxidase (LAAO) which is capable of generating ROS on exposure to aromatic amino acids in the presence of oxygen. The preferred substrates were found to be phenylalanine and tryptophan while the enzyme was located in the acrosomal region and midpiece of these cells. In contrast to equine and bovine spermatozoa, enzyme activity was lost as soon as the spermatozoa became non-viable. On a cell-to-cell basis human spermatozoa were also shown to generate lower levels of hydrogen peroxide than their equine counterparts on exposure to phenylalanine. Stimulation of LAAO activity resulted in the induction of several hallmarks of capacitation including tyrosine phosphorylation of the sperm flagellum and concomitant activation of phospho-SRC expression. In addition, stimulation of LAAO resulted in an increase in the levels of acrosomal exocytosis in both the presence and absence of progesterone stimulation, via mechanisms that could be significantly reversed by the presence of catalase. As is often the case with free radical-mediated phenomena, prolonged exposure of human spermatozoa to phenylalanine resulted in the stimulation of apoptosis as indicated by significant increases in mitochondrial superoxide generation and the activation of intracellular caspases. These results confirm the existence of an LAAO in human spermatozoa with a potential role in driving the redox regulation of sperm capacitation and acrosomal exocytosis. PMID:25767141

  12. Mre11 Nuclease Activity has Essential Roles in DNA Repair and Genomic Stability Distinct from ATM Activation

    PubMed Central

    Buis, Jeffrey; Wu, Yipin; Deng, Yibin; Leddon, Jennifer; Westfield, Gerwin; Eckersdorff, Mark; Sekiguchi, JoAnn M.; Chang, Sandy; Ferguson, David O.

    2008-01-01

    Summary The Mre11/Rad50/NBS1 complex (MRN) maintains genomic stability by bridging DNA ends and initiating DNA damage signaling through activation of the ATM kinase. Mre11 possesses DNA nuclease activities that are highly conserved in evolution, but play unknown roles in mammals. To define functions of Mre11 we engineered targeted mouse alleles which either abrogate nuclease activities or inactivate the entire MRN complex. Mre11 nuclease deficiency causes a striking array of phenotypes indistinguishable from absence of MRN, including early embryonic lethality and dramatic genomic instability. We identify a crucial role for the nuclease activities in homology directed double strand break repair, and a contributing role in activating the ATR kinase. However, nuclease activities are not required to activate ATM after DNA damage or telomere deprotection. Therefore, nucleolytic processing by Mre11 is an essential function of fundamental importance in DNA repair distinct from MRN control of ATM signaling. PMID:18854157

  13. An avian retrovirus expressing chicken pp59c-myc possesses weak transforming activity distinct from v-myc that may be modulated by adjacent normal cell neighbors.

    PubMed Central

    Filardo, E J; Humphries, E H

    1991-01-01

    We demonstrate that EF168, an avian retrovirus that expresses the chicken pp59c-myc proto-oncogene, transforms quail embryo fibroblasts in vitro. An EF168-transformed quail clone, EF168-28, containing a single provirus, synthesizes several hundred copies of c-myc RNA and expresses elevated levels of the pp59c-myc gene product. The EF168 provirus in EF168-28 was isolated as a molecular clone, and the nucleotide sequence of its c-myc allele was confirmed as identical to that of exons 2 and 3 of the chicken c-myc proto-oncogene. Extended infection of quail embryo fibroblast cultures with EF168 induced a number of in vitro transformation-associated parameters similar to those elicited by the oncogenic v-myc-encoding retrovirus MC29, including alteration of cellular morphology, anchorage-independent growth, and induction of immortalized cell lines. Despite the fact that EF168 and MC29 shared these biological activities, further analysis revealed that EF168 initiated transformation in quail embryo fibroblasts, bone marrow, or adherent peripheral blood cultures 100- to 1,000-fold less efficiently than did MC29. Further, in contrast to MC29-induced foci, EF168 foci were smaller, morphologically diffuse, and less prominent. Analysis of newly infected cells demonstrated efficient expression of EF168 viral RNA in the absence of transformation. These differences suggest that while the pp59v-myc gene product can exert dominant transforming activity on quail embryo fibroblasts, its ability to initiate transformation is distinct from that of the pp110gag-v-myc gene product encoded by MC29 and may be suppressed by adjacent nontransformed cell neighbors. Images PMID:1942247

  14. Increase in a distinct pulmonary macrophage subset possessing an antigen-presenting cell phenotype and in vitro APC activity following silica exposure

    SciTech Connect

    Migliaccio, Christopher T. . E-mail: christopher.migliaccio@umontana.edu; Hamilton, Raymond F.; Holian, Andrij

    2005-06-01

    Silica inhalation results in chronic lung inflammation and fibrosis. While the role of the alveolar macrophage (AM) is considered key to the effects of silica on lung pathology, the etiology is not completely understood. Evidence suggests an increase in antigen presenting cell (APC) activity as a contributing factor to this process, as well as potential roles for both AM and interstitial macrophages (IM) in silicosis. In order to study the effects of crystalline silica on the APC activity of pulmonary macrophages, mice were exposed intranasally and changes in pulmonary macrophage populations were assessed using flow cytometry. Following intranasal instillation of silica, a significant increase in the APC activity of AM was observed, as well as a significant increase in a subset of IM expressing classic APC markers (MHC class II, CD11c). In addition, an in vitro system using bone marrow-derived macrophages (BMDM) was generated to assess the effects of silica on the APC activity of macrophages in vitro. Data using BMDM in the in vitro APC assay demonstrated a significant increase in APC activity following silica exposure, but not following exposure to saline or a control particle (TiO{sub 2}). Using a combination of in vivo and in vitro experiments, the current study describes a significant increase in an interstitial macrophage subset with an APC phenotype, as well as an increase in the APC activity of both AM and BMDM, as a direct result of exposure to crystalline silica. These studies suggest a specific mechanism, macrophage subset activation, by which crystalline silica exposure results in chronic pulmonary inflammation and, eventually, fibrosis.

  15. Distinct roles of PTCH2 splice variants in Hedgehog signalling.

    PubMed Central

    Rahnama, Fahimeh; Toftgård, Rune; Zaphiropoulos, Peter G

    2004-01-01

    The human PTCH2 gene is highly similar to PTCH1, a tumour suppressor gene frequently mutated in basal cell carcinoma and several other tumour types. PTCH1 is a transmembrane protein believed to inhibit another transmembrane protein SMO (Smoothened), which mediates HH (Hedgehog) signalling. In this study, we analysed the biological properties of several PTCH2 splice variants. An mRNA form that lacked the last exon was abundantly expressed in all tissues examined, in contrast with the one that included it. Moreover, a transcript lacking exon 9, which is a part of a conserved sterol-sensing domain, was identified in intestine, prostate and cerebellum. In ovary, spleen, testis, cerebellum and skin, an mRNA lacking both exons 9 and 10 could also be observed. The different PTCH2 isoforms localized in the cytoplasm were capable of internalizing the N-terminal fragment of Sonic HH (Shh-N). Additionally, the PTCH2 gene was found to be a target of HH signalling. PTCH2 promoter regulation assays demonstrated that only one of the PTCH2 variants could inhibit the activity of SHH-N, whereas none was capable of inhibiting the activated form of SMO (SMO-M2) and this contrasts with PTCH1. Despite the fact that the PTCH2 isoforms lacked the ability to inhibit SMO-M2 activity, all PTCH2 variants as well as PTCH1, on co-transfection with Smo, were able to change Smo localization from being largely dispersed in the cytoplasm to the juxtanuclear region. Furthermore, the PTCH2 isoforms and PTCH1 co-localized in doubly transfected cells and an interaction between them was confirmed using immunoprecipitation assays. Using Ptch1-/- mouse cells, it was shown that the PTCH2 variants and PTCH1 differentially act to reconstitute not only the SHH but also the Desert HH-dependent transcriptional response. We conclude that in spite of their structural similarities, the PTCH2 isoforms have distinct functional properties when compared with PTCH1. PMID:14613484

  16. Distinct Roles for CdtA and CdtC during Intoxication by Cytolethal Distending Toxins.

    PubMed

    Dixon, Shandee D; Huynh, Melanie M; Tamilselvam, Batcha; Spiegelman, Lindsey M; Son, Sophia B; Eshraghi, Aria; Blanke, Steven R; Bradley, Kenneth A

    2015-01-01

    Cytolethal distending toxins (CDTs) are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT) and enteropathogenic E. coli (Ec-CDT) are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways. PMID:26618479

  17. Two distinct roles of the yorkie/yap gene during homeostasis in the planarian Dugesia japonica

    PubMed Central

    Hwang, Byulnim; An, Yang; Agata, Kiyokazu; Umesono, Yoshihiko

    2015-01-01

    Adult planarians possess somatic pluripotent stem cells called neoblasts that give rise to all missing cell types during regeneration and homeostasis. Recent studies revealed that the Yorkie (Yki)/Yes-associated protein (YAP) transcriptional coactivator family plays an important role in the regulation of tissue growth during development and regeneration, and therefore we investigated the role of a planarian yki-related gene (termed Djyki) during regeneration and homeostasis of the freshwater planarian Dugesia japonica. We found that knockdown of the function of Djyki by RNA interference (RNAi) downregulated neoblast proliferation and caused regeneration defects after amputation. In addition, Djyki RNAi caused edema during homeostasis. These seemingly distinct defects induced by Djyki RNAi were rescued by simultaneous RNAi of a planarian mats-related gene (termed Djmats), suggesting an important role of Djmats in the negative regulation of Djyki, in accordance with the conservation of the functional relationship of these two genes during the course of evolution. Interestingly, Djyki RNAi did not prevent normal protonephridial structure, suggesting that Djyki RNAi induced the edema phenotype without affecting the excretory system. Further analyses revealed that increased expression of the D. japonica gene DjaquaporinA (DjaqpA), which belongs to a large gene family that encodes a water channel protein for the regulation of transcellular water flow, promoted the induction of edema, but not defects in neoblast dynamics, in Djyki(RNAi) animals. Thus, we conclude that Djyki plays two distinct roles in the regulation of active proliferation of stem cells and in osmotic water transport across the body surface in D. japonica. PMID:25708270

  18. Oxylipin Signaling: A Distinct Role for the Jasmonic Acid Precursor cis-(+)-12-Oxo-Phytodienoic Acid (cis-OPDA)

    PubMed Central

    Dave, Anuja; Graham, Ian A.

    2012-01-01

    Oxylipins are lipid-derived compounds, many of which act as signals in the plant response to biotic and abiotic stress. They include the phytohormone jasmonic acid (JA) and related jasmonate metabolites cis-(+)-12-oxo-phytodienoic acid (cis-OPDA), methyl jasmonate, and jasmonoyl-L-isoleucine (JA-Ile). Besides the defense response, jasmonates are involved in plant growth and development and regulate a range of processes including glandular trichome development, reproduction, root growth, and senescence. cis-OPDA is known to possess a signaling role distinct from JA-Ile. The non-enzymatically derived phytoprostanes are structurally similar to cis-OPDA and induce a common set of genes that are not responsive to JA in Arabidopsis thaliana. A novel role for cis-OPDA in seed germination regulation has recently been uncovered based on evidence from double mutants and feeding experiments showing that cis-OPDA interacts with abscisic acid (ABA), inhibits seed germination, and increases ABA INSENSITIVE5 (ABI5) protein abundance. Large amounts of cis-OPDA are esterified to galactolipids in A. thaliana and the resulting compounds, known as Arabidopsides, are thought to act as a rapidly available source of cis-OPDA. PMID:22645585

  19. The roles of shared vs. distinctive conceptual features in lexical access

    PubMed Central

    Vieth, Harrison E.; McMahon, Katie L.; de Zubicaray, Greig I.

    2014-01-01

    Contemporary models of spoken word production assume conceptual feature sharing determines the speed with which objects are named in categorically-related contexts. However, statistical models of concept representation have also identified a role for feature distinctiveness, i.e., features that identify a single concept and serve to distinguish it quickly from other similar concepts. In three experiments we investigated whether distinctive features might explain reports of counter-intuitive semantic facilitation effects in the picture word interference (PWI) paradigm. In Experiment 1, categorically-related distractors matched in terms of semantic similarity ratings (e.g., zebra and pony) and manipulated with respect to feature distinctiveness (e.g., a zebra has stripes unlike other equine species) elicited interference effects of comparable magnitude. Experiments 2 and 3 investigated the role of feature distinctiveness with respect to reports of facilitated naming with part-whole distractor-target relations (e.g., a hump is a distinguishing part of a CAMEL, whereas knee is not, vs. an unrelated part such as plug). Related part distractors did not influence target picture naming latencies significantly when the part denoted by the related distractor was not visible in the target picture (whether distinctive or not; Experiment 2). When the part denoted by the related distractor was visible in the target picture, non-distinctive part distractors slowed target naming significantly at SOA of −150 ms (Experiment 3). Thus, our results show that semantic interference does occur for part-whole distractor-target relations in PWI, but only when distractors denote features shared with the target and other category exemplars. We discuss the implications of these results for some recently developed, novel accounts of lexical access in spoken word production. PMID:25278914

  20. Phytochrome-Interacting Factors Have Both Shared and Distinct Biological Roles

    PubMed Central

    Jeong, Jinkil; Choi, Giltsu

    2013-01-01

    Phytochromes are plant photoreceptors that perceive red and far-red light. Upon the perception of light in Arabidopsis, light-activated phytochromes enter the nucleus and act on a set of interacting proteins, modulating their activities and thereby altering the expression levels of ∼10% of the organism’s entire gene complement. Phytochrome-interacting factors (PIFs) belonging to Arabidopsis basic helix-loop-helix (bHLH) subgroup 15 are key interacting proteins that play negative roles in light responses. Their activities are post-translationally countered by light-activated phytochromes, which promote the degradation of PIFs and directly or indirectly inhibit their binding to DNA. The PIFs share a high degree of similarity, but examinations of pif single and multiple mutants have indicated that they have shared and distinct functions in various developmental and physiological processes. These are believed to stem from differences in both intrinsic protein properties and their gene expression patterns. In an effort to clarify the basis of these shared and distinct functions, we compared recently published genome-wide ChIP data, developmental gene expression maps, and responses to various stimuli for the various PIFs. Based on our observations, we propose that the biological roles of PIFs stem from their shared and distinct DNA binding targets and specific gene expression patterns. PMID:23708772

  1. Distinct Roles of Central and Peripheral Prostaglandin E2 and EP Subtypes in Blood Pressure Regulation

    PubMed Central

    Yang, Tianxin; Du, Yaomin

    2012-01-01

    Prostaglandin E2 (PGE2) is a major prostanoid with a wide variety of biological activities. PGE2 can influence blood pressure (BP) both positively and negatively. In particular, centrally administered PGE2 induces hypertension whereas systemic administration of PGE2 produces a hypotensive effect. These physiologically opposing effects are generated by the existence of multiple EP receptors, namely EP1–4, which are G protein-coupled receptors with distinct signaling properties. This review highlights the distinct roles of PGE2 in BP regulation and the involvement of specific EP receptor subtypes. American Journal of Hypertension, advance online publication 14 June 2012; doi:10.1038/ajh.2012.67 PMID:22695507

  2. STRUCTURALLY DISTINCT UBIQUITIN- AND SUMO-MODIFIED PCNA: IMPLICATIONS FOR THEIR DISTINCT ROLES IN THE DNA DAMAGE RESPONSE

    PubMed Central

    Xu, Xiaojun; Weinacht, Christopher P.; Freudenthal, Bret D.; Yang, Kun; Zhuang, Zhihao; Washington, M. Todd; Tainer, John A.; Ivanov, Ivaylo

    2015-01-01

    SUMMARY Proliferating cell nuclear antigen (PCNA) is a pivotal replication protein, which also controls cellular responses to DNA damage. Posttranslational modification of PCNA by SUMO and ubiquitin modulate these responses. How the modifiers alter PCNA-dependent DNA repair and damage tolerance pathways is largely unknown. We used hybrid methods to identify atomic models of PCNAK107-Ub and PCNAK164-SUMO consistent with small angle X-ray scattering (SAXS) data of these complexes in solution. We show that SUMO and ubiquitin have distinct modes of association to PCNA. Ubiquitin adopts discrete docked binding positions. By contrast, SUMO associates by simple tethering and adopts extended flexible conformations. These structural differences are the result of the opposite electrostatic potentials of SUMO and Ub. The unexpected contrast in conformational behavior of Ub-PCNA and SUMO-PCNA has implications for interactions with partner proteins, interacting surfaces accessibility, and access points for pathway regulation. PMID:25773143

  3. Distinct physiological roles for the two L-asparaginase isozymes of Escherichia coli

    SciTech Connect

    Srikhanta, Yogitha N.; Atack, John M.; Beacham, Ifor R.; Jennings, Michael P.

    2013-07-05

    Highlights: •Escherichia coli contains two L-asparaginase isozymes with distinct localization, kinetics and regulation. •Mutant strains were used to examine the roles of these enzymes in L-asparagine utilization. •We report that L-asparaginase II permits growth on asparagine and glycerol under anaerobic conditions. •We propose that this enzyme is the first step in a co-regulated pathway leading to fumarate. •The pathway is regulated by anaerobiosis and cAMP and provides a terminal elector acceptor. -- Abstract: Escherichia coli expresses two L-asparaginase (EC 3.5.1.1) isozymes: L-asparaginse I, which is a low affinity, cytoplasmic enzyme that is expressed constitutively, and L-asparaginase II, a high affinity periplasmic enzyme that is under complex co-transcriptional regulation by both Fnr and Crp. The distinct localisation and regulation of these enzymes suggest different roles. To define these roles, a set of isogenic mutants was constructed that lacked either or both enzymes. Evidence is provided that L-asparaginase II, in contrast to L-asparaginase I, can be used in the provision of an anaerobic electron acceptor when using a non-fermentable carbon source in the presence of excess nitrogen.

  4. Distinct noise-controlling roles of multiple negative feedback mechanisms in a prokaryotic operon system.

    PubMed

    Nguyen, L K; Kulasiri, D

    2011-03-01

    Molecular fluctuations are known to affect dynamics of cellular systems in important ways. Studies aimed at understanding how molecular systems of certain regulatory architectures control noise therefore become essential. The interplay between feedback regulation and noise has been previously explored for cellular networks governed by a single negative feedback loop. However, similar issues within networks consisting of more complex regulatory structures remain elusive. The authors investigate how negative feedback loops manage noise within a biochemical cascade concurrently governed by multiple negative feedback loops, using the prokaryotic tryptophan (trp) operon system in Escherechia coli as the model system. To the authors knowledge, this is the first study of noise in the trp operon system. They show that the loops in the trp operon system possess distinct, even opposing, noise-controlling effects despite their seemingly analogous feedback structures. The enzyme inhibition loop, although controlling the last reaction of the cascade, was found to suppress noise not only for the tryptophan output but also for other upstream components. In contrast, the Repression (Rep) loop enhances noise for all systems components. Attenuation (Att) poses intermediate effects by attenuating noise for the upstream components but promoting noise for components downstream of its target. Regarding noise at the output tryptophan, Rep and Att can be categorised as noise-enhancing loops whereas Enzyme Inhibition as a noise-reducing loop. These findings suggest novel implications in how cellular systems with multiple feedback mechanisms control noise. [Includes supplementary material]. PMID:21405203

  5. Distinct physiological roles for the two L-asparaginase isozymes of Escherichia coli.

    PubMed

    Srikhanta, Yogitha N; Atack, John M; Beacham, Ifor R; Jennings, Michael P

    2013-07-01

    Escherichia coli expresses two L-asparaginase (EC 3.5.1.1) isozymes: L-asparaginse I, which is a low affinity, cytoplasmic enzyme that is expressed constitutively, and L-asparaginase II, a high affinity periplasmic enzyme that is under complex co-transcriptional regulation by both Fnr and Crp. The distinct localisation and regulation of these enzymes suggest different roles. To define these roles, a set of isogenic mutants was constructed that lacked either or both enzymes. Evidence is provided that L-asparaginase II, in contrast to L-asparaginase I, can be used in the provision of an anaerobic electron acceptor when using a non-fermentable carbon source in the presence of excess nitrogen. PMID:23726917

  6. Role of distinct CD4(+) T helper subset in pathogenesis of oral lichen planus.

    PubMed

    Wang, Hui; Zhang, Dunfang; Han, Qi; Zhao, Xin; Zeng, Xin; Xu, Yi; Sun, Zheng; Chen, Qianming

    2016-07-01

    Oral lichen planus (OLP) is one of the most common chronic inflammatory oral mucosal diseases with T-cell-mediated immune pathogenesis. In subepithelial and lamina propria of OLP local lesions, the presence of CD4(+) T helper (CD4(+) Th) cells appeared as the major lymphocytes. These CD4(+) T lymphocytes can differentiate into distinct Th cell types such as Th1, Th2, Treg, Th17, Th22, Th9, and Tfh within the context of certain cytokines environment. Growing evidence indicated that Th1/Th2 imbalance may greatly participate into the cytokine network of OLP immunopathology. In addition, Th1/Th2 imbalance can be regulated by the Treg subset and also greatly influenced by the emerging novel CD4(+) Th subset Th17. Furthermore, the presence of novel subsets Th22, Th9 and Tfh in OLP patients is yet to be clarified. All these Th subsets and their specific cytokines may play a critical role in determining the character, extent and duration of immune responses in OLP pathogenesis. Therefore, we review the roles of distinct CD4(+) Th subsets and their signature cytokines in determining disease severity and susceptibility of OLP and also reveal the novel therapeutic strategies based on T lymphocytes subsets in OLP treatment. PMID:26693958

  7. Distinct spatiotemporal roles of hedgehog signalling during chick and mouse cranial base and axial skeleton development

    PubMed Central

    Balczerski, B.; Zakaria, S.; Tucker, A. S.; Borycki, A.G.; Koyama, E.; Pacifici, M.; Francis-West, P.

    2012-01-01

    The cranial base exerts a supportive role for the brain and includes the occipital, sphenoid and ethmoid bones that arise from cartilaginous precursors in the early embryo. As the occipital bone and the posterior part of the sphenoid are mesoderm derivatives that arise in close proximity to the notochord and floor plate, it has been assumed that their development, like the axial skeleton, is dependent on Sonic hedgehog (Shh) and modulation of bone morphogenetic protein (Bmp) signalling. Here we examined the development of the cranial base in chick and mouse embryos to compare the molecular signals that are required for chondrogenic induction in the trunk and head. We found that Shh signalling is required but the molecular network controlling cranial base development is distinct from that in the trunk. In the absence of Shh, the presumptive cranial base did not undergo chondrogenic commitment as determined by the loss of Sox9 expression and there was a decrease in cell survival. In contrast, induction of the otic capsule occurred normally demonstrating that induction of the cranial base is uncoupled from formation of the sensory capsules. Lastly, we found that the early cranial mesoderm is refractory to Shh signalling, likely accounting for why development of the cranial base occurs after the axial skeleton. Our data reveal that cranial and axial skeletal induction is controlled by conserved, yet spatiotemporally distinct mechanisms that co-ordinate development of the cranial base with that of the cranial musculature and the pharyngeal arches. PMID:23009899

  8. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles

    PubMed Central

    Frej, Anna D.; Clark, Jonathan; Le Roy, Caroline I.; Lilla, Sergio; Thomason, Peter A.; Otto, Grant P.; Churchill, Grant; Insall, Robert H.; Claus, Sandrine P.; Hawkins, Phillip; Stephens, Len

    2016-01-01

    Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1− mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism. PMID:26951199

  9. The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles.

    PubMed

    Frej, Anna D; Clark, Jonathan; Le Roy, Caroline I; Lilla, Sergio; Thomason, Peter A; Otto, Grant P; Churchill, Grant; Insall, Robert H; Claus, Sandrine P; Hawkins, Phillip; Stephens, Len; Williams, Robin S B

    2016-05-15

    Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders, including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium discoideum, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in an inositol auxotrophy that can be rescued only partially by exogenous inositol. Removal of inositol supplementation from the ino1(-) mutant resulted in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis, and substrate adhesion. Inositol depletion also caused a dramatic generalized decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 that is independent of inositol biosynthesis. To characterize this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) and having homology to mammalian macromolecular complex adaptor proteins was identified. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism. PMID:26951199

  10. Distinct roles of neuropilin 1 signaling for radial and tangential extension of callosal axons.

    PubMed

    Hatanaka, Yumiko; Matsumoto, Tomoko; Yanagawa, Yuchio; Fujisawa, Hajime; Murakami, Fujio; Masu, Masayuki

    2009-05-20

    Cortical excitatory neurons migrate from their origin in the ventricular zone (VZ) toward the pial surface. During migration, these neurons exhibit a stellate shape in the intermediate zone (IZ), transform into bipolar cells, and then initiate radial migration, extending a trailing process, which may lead to an axon. Here we examined the role of neuropilin 1 (NRP1) in these developmental events. Both NRP1 mRNA and protein were highly expressed in the IZ, where stellate-shaped cells were located. DiI labeling experiments showed that neuronal migration occurred normally in Nrp1 mutant mice up to embryonic day (E) 14.5, the latest day to which the mutant survives, with only subtle axonal defasciculation. However, interference with Nrp1 signaling at a later stage caused pathfinding errors: when a dominant negative form of Nrp1 was electroporated into the cortical VZ cells at E12.5 or E15.5 and examined perinatally, guidance errors were found in tangential axonal extension toward the midline. In contrast, no significant effect was noted on the migration of cortical excitatory neurons. These findings indicate that NRP1 plays an important role in the guidance of callosal axons originating from cortical excitatory neurons but does not support a role in their migration. Moreover, insofar as radial axonal extension within the cortical plate was unaffected, the present findings imply that molecular mechanisms for the axonal extension of excitatory neurons within the cortical plate are distinct from those in the white matter. PMID:19296474

  11. Two Distinct Roles of Atlantic SSTs in ENSO Variability: North Tropical Atlantic SST and Atlantic Nino

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Kug, Jong-Seong; Park, Jong-Yeon

    2013-01-01

    Two distinct roles of the Atlantic sea surface temperatures (SSTs), namely, the North Tropical Atlantic (NTA) SST and the Atlantic Nino, on the El Nino-Southern Oscillation (ENSO) variability are investigated using the observational data from 1980 to 2010 and coupled model experiments. It appears that the NTA SST and the Atlantic Nino can be used as two independent predictors for predicting the development of ENSO events in the following season. Furthermore, they are likely to be linked to different types of El Nino events. Specifically, the NTA SST cooling during February, March, and April contributes to the central Pacific warming at the subsequent winter season, while the negative Atlantic Nino event during June, July, and August contributes to enhancing the eastern Pacific warming. The coupled model experiments support these results. With the aid of a lagged inverse relationship, the statistical forecast using two Atlantic indices can successfully predict various ENSO indices.

  12. Distinctive Role of Symbolic Number Sense in Mediating the Mathematical Abilities of Children with Autism.

    PubMed

    Hiniker, Alexis; Rosenberg-Lee, Miriam; Menon, Vinod

    2016-04-01

    Despite reports of mathematical talent in autism spectrum disorders (ASD), little is known about basic number processing abilities in affected children. We investigated number sense, the ability to rapidly assess quantity information, in 36 children with ASD and 61 typically developing controls. Numerical acuity was assessed using symbolic (Arabic numerals) as well as non-symbolic (dot array) formats. We found significant impairments in non-symbolic acuity in children with ASD, but symbolic acuity was intact. Symbolic acuity mediated the relationship between non-symbolic acuity and mathematical abilities only in children with ASD, indicating a distinctive role for symbolic number sense in the acquisition of mathematical proficiency in this group. Our findings suggest that symbolic systems may help children with ASD organize imprecise information. PMID:26659551

  13. Crystal Structures of the Viral Protease Npro Imply Distinct Roles for the Catalytic Water in Catalysis

    PubMed Central

    Zögg, Thomas; Sponring, Michael; Schindler, Sabrina; Koll, Maria; Schneider, Rainer; Brandstetter, Hans; Auer, Bernhard

    2013-01-01

    Summary Npro is a key effector protein of pestiviruses such as bovine viral diarrhea virus and abolishes host cell antiviral defense mechanisms. Synthesized as the N-terminal part of the viral polyprotein, Npro releases itself via an autoproteolytic cleavage, triggering its immunological functions. However, the mechanisms of its proteolytic action and its immune escape were unclear. Here, we present the crystal structures of Npro to 1.25 Å resolution. Structures of pre- and postcleavage intermediates identify three catalytically relevant elements. The trapping of the putative catalytic water reveals its distinct roles as a base, acid, and nucleophile. The presentation of the substrate further explains the enigmatic latency of the protease, ensuring a single in cis cleavage. Additionally, we identified a zinc-free, disulfide-linked conformation of the TRASH motif, an interaction hub of immune factors. The structure opens additional opportunities in utilizing Npro as an autocleaving fusion protein and as a pharmaceutical target. PMID:23643950

  14. Aminoterminal amphipathic α-helix AH1 of hepatitis C virus nonstructural protein 4B possesses a dual role in RNA replication and virus production.

    PubMed

    Gouttenoire, Jérôme; Montserret, Roland; Paul, David; Castillo, Rosa; Meister, Simon; Bartenschlager, Ralf; Penin, François; Moradpour, Darius

    2014-10-01

    Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B. PMID:25392992

  15. Distinct roles for protein kinase C isoforms in regulating platelet purinergic receptor function.

    PubMed

    Mundell, Stuart J; Jones, Matthew L; Hardy, Adam R; Barton, Johanna F; Beaucourt, Stephanie M; Conley, Pamela B; Poole, Alastair W

    2006-09-01

    ADP is a critical regulator of platelet activation, mediating its actions through two G protein-coupled receptors (GPCRs), P2Y1 and P2Y12. We have shown previously that the receptors are functionally desensitized, in a homologous manner, by distinct kinase-dependent mechanisms in which P2Y1 is regulated by protein kinase C (PKC) and P2Y12 by G protein-coupled receptor kinases. In this study, we addressed whether different PKC isoforms play different roles in regulating the trafficking and activity of these two GPCRs. Expression of PKCalpha and PKCdelta dominant-negative mutants in 1321N1 cells revealed that both isoforms regulated P2Y1 receptor signaling and trafficking, although only PKCdelta was capable of regulating P2Y12, in experiments in which PKC was directly activated by the phorbol ester phorbol 12-myristate 13-acetate (PMA). These results were paralleled in human platelets, in which PMA reduced subsequent ADP-induced P2Y1 and P2Y12 receptor signaling. PKC isoform-selective inhibitors revealed that novel, but not conventional, isoforms of PKC regulate P2Y12 function, whereas both novel and classic isoforms regulate P2Y1 activity. It is also noteworthy that we studied receptor internalization in platelets by a radioligand binding approach showing that both receptors internalize rapidly in these cells. ADP-induced P2Y1 receptor internalization is attenuated by PKC inhibitors, whereas that of the P2Y12 receptor is unaffected. Both P2Y1 and P2Y12 receptors can also undergo PMA-stimulated internalization, and here again, novel but not classic PKCs regulate P2Y12, whereas both novel and classic isoforms regulate P2Y1 internalization. This study therefore is the first to reveal distinct roles for PKC isoforms in the regulation of platelet P2Y receptor function and trafficking. PMID:16804093

  16. Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action.

    PubMed

    Xu, Yingke; Nan, Di; Fan, Jiannan; Bogan, Jonathan S; Toomre, Derek

    2016-05-15

    Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation. PMID:27076519

  17. Transcripts of two ent-copalyl diphosphate synthase genes differentially localize in rice plants according to their distinct biological roles

    PubMed Central

    Toyomasu, Tomonobu; Usui, Masami; Sugawara, Chizu; Kanno, Yuri; Sakai, Arisa; Takahashi, Hirokazu; Nakazono, Mikio; Kuroda, Masaharu; Miyamoto, Koji; Morimoto, Yu; Mitsuhashi, Wataru; Okada, Kazunori; Yamaguchi, Shinjiro; Yamane, Hisakazu

    2015-01-01

    Gibberellins (GAs) are diterpenoid phytohormones that regulate various aspects of plant growth. Tetracyclic hydrocarbon ent-kaurene is a biosynthetic intermediate of GAs, and is converted from geranylgeranyl diphosphate, a common precursor of diterpenoids, via ent-copalyl diphosphate (ent-CDP) through successive cyclization reactions catalysed by two distinct diterpene synthases, ent-CDP synthase and ent-kaurene synthase. Rice (Oryza sativa L.) has two ent-CDP synthase genes, OsCPS1 and OsCPS2. It has been thought that OsCPS1 participates in GA biosynthesis, while OsCPS2 participates in the biosynthesis of phytoalexins, phytocassanes A–E, and oryzalexins A–F. It has been shown previously that loss-of-function OsCPS1 mutants display a severe dwarf phenotype caused by GA deficiency despite possessing another ent-CDP synthase gene, OsCPS2. Here, experiments were performed to account for the non-redundant biological function of OsCPS1 and OsCPS2. Quantitative reverse transcription–PCR (qRT–PCR) analysis showed that OsCPS2 transcript levels were drastically lower than those of OsCPS1 in the basal parts, including the meristem of the second-leaf sheaths of rice seedlings. qRT–PCR results using tissue samples prepared by laser microdissection suggested that OsCPS1 transcripts mainly localized in vascular bundle tissues, similar to Arabidopsis CPS, which is responsible for GA biosynthesis, whereas OsCPS2 transcripts mainly localized in epidermal cells that address environmental stressors such as pathogen attack. Furthermore, the OsCPS2 transgene under regulation of the OsCPS1 promoter complemented the dwarf phenotype of an OsCPS1 mutant, oscps1-1. The results indicate that transcripts of the two ent-CDP synthase genes differentially localize in rice plants according to their distinct biological roles, OsCPS1 for growth and OsCPS2 for defence. PMID:25336684

  18. Distinct roles of class IA PI3K isoforms in primary and immortalised macrophages.

    PubMed

    Papakonstanti, Evangelia A; Zwaenepoel, Olivier; Bilancio, Antonio; Burns, Emily; Nock, Gemma E; Houseman, Benjamin; Shokat, Kevan; Ridley, Anne J; Vanhaesebroeck, Bart

    2008-12-15

    The class IA isoforms of phosphoinositide 3-kinase (p110alpha, p110beta and p110delta) often have non-redundant functions in a given cell type. However, for reasons that are unclear, the role of a specific PI3K isoform can vary between cell types. Here, we compare the relative contributions of PI3K isoforms in primary and immortalised macrophages. In primary macrophages stimulated with the tyrosine kinase ligand colony-stimulating factor 1 (CSF1), all class IA PI3K isoforms participate in the regulation of Rac1, whereas p110delta selectively controls the activities of Akt, RhoA and PTEN, in addition to controlling proliferation and chemotaxis. The prominent role of p110delta in these cells correlates with it being the main PI3K isoform that is recruited to the activated CSF1 receptor (CSF1R). In immortalised BAC1.2F5 macrophages, however, the CSF1R also engages p110alpha, which takes up a more prominent role in CSF1R signalling, in processes including Akt phosphorylation and regulation of DNA synthesis. Cell migration, however, remains dependent mainly on p110delta. In other immortalised macrophage cell lines, such as IC-21 and J774.2, p110alpha also becomes more prominently involved in CSF1-induced Akt phosphorylation, at the expense of p110delta.These data show that PI3K isoforms can be differentially regulated in distinct cellular contexts, with the dominant role of the p110delta isoform in Akt phosphorylation and proliferation being lost upon cell immortalisation. These findings suggest that p110delta-selective PI3K inhibitors may be more effective in inflammation than in cancer. PMID:19033389

  19. Separate and distinctive roles for Wnt5a in tongue, lingual tissue and taste papilla development

    PubMed Central

    Liu, Hong-Xiang; Grosse, Ann S.; Iwatsuki, Ken; Mishina, Yuji; Gumucio, Deborah L.; Mistretta, Charlotte M.

    2012-01-01

    Although canonical Wnt signaling is known to regulate taste papilla induction and numbers, roles for noncanonical Wnt pathways in tongue and taste papilla development have not been explored. With mutant mice and whole tongue organ cultures we demonstrate that Wnt5a protein and message are within anterior tongue mesenchyme across embryo stages from the initiation of tongue formation, through papilla placode appearance and taste papilla development. The Wnt5a mutant tongue is severely shortened, with an ankyloglossia, and lingual mesenchyme is disorganized. However, fungiform papilla morphology, number and innervation are preserved, as is expression of the papilla marker, Shh. These data demonstrate that the genetic regulation for tongue size and shape can be separated from that directing lingual papilla development. Preserved number of papillae in a shortened tongue results in an increased density of fungiform papillae in the mutant tongues. In tongue organ cultures, exogenous Wnt5a profoundly suppresses papilla formation and simultaneously decreases canonical Wnt signaling as measured by the TOPGAL reporter. These findings suggest that Wnt5a antagonizes canonical Wnt signaling to dictate papilla number and spacing. In all, distinctive roles for Wnt5a in tongue size, fungiform papilla patterning and development are shown and a necessary balance between non-canonical and canonical Wnt paths in regulating tongue growth and fungiform papillae is proposed in a model, through the Ror2 receptor. PMID:22024319

  20. Two distinct DNA binding modes guide dual roles Of a CRISPR-Cas protein complex

    PubMed Central

    Westra, Edze R.; Vlot, Marnix; Künne, Tim; Sobota, Małgorzata; Dekker, Cees; Brouns, Stan J.J.; Joo, Chirlmin

    2015-01-01

    SUMMARY Small RNA-guided protein complexes play an essential role in CRISPR-mediated immunity in prokaryotes. While these complexes initiate interference by flagging cognate invader DNA for destruction, recent evidence has implicated their involvement in new CRISPR memory formation, called priming, against mutated invader sequences. The mechanism by which the target recognition complex mediates these disparate responses—interference and priming—remains poorly understood. Using single-molecule FRET, we visualize how bona fide and mutated targets are differentially probed by E. coli Cascade. We observe that the recognition of bona fide targets is an ordered process that is tightly controlled for high fidelity. Mutated targets are recognized with low fidelity, which is featured by short-lived and PAM- and seed-independent binding by any segment of the crRNA. These dual roles of Cascade in immunity with distinct fidelities underpin CRISPR-Cas robustness, allowing for efficient degradation of bona fide targets and priming of mutated DNA targets. PMID:25752578

  1. The Splice Isoforms of the Drosophila Ecdysis Triggering Hormone Receptor Have Developmentally Distinct Roles.

    PubMed

    Diao, Feici; Mena, Wilson; Shi, Jonathan; Park, Dongkook; Diao, Fengqiu; Taghert, Paul; Ewer, John; White, Benjamin H

    2016-01-01

    To grow, insects must periodically shed their exoskeletons. This process, called ecdysis, is initiated by the endocrine release of Ecdysis Trigger Hormone (ETH) and has been extensively studied as a model for understanding the hormonal control of behavior. Understanding how ETH regulates ecdysis behavior, however, has been impeded by limited knowledge of the hormone's neuronal targets. An alternatively spliced gene encoding a G-protein-coupled receptor (ETHR) that is activated by ETH has been identified, and several lines of evidence support a role in ecdysis for its A-isoform. The function of a second ETHR isoform (ETHRB) remains unknown. Here we use the recently introduced "Trojan exon" technique to simultaneously mutate the ETHR gene and gain genetic access to the neurons that express its two isoforms. We show that ETHRA and ETHRB are expressed in largely distinct subsets of neurons and that ETHRA- but not ETHRB-expressing neurons are required for ecdysis at all developmental stages. However, both genetic and neuronal manipulations indicate an essential role for ETHRB at pupal and adult, but not larval, ecdysis. We also identify several functionally important subsets of ETHR-expressing neurons including one that coexpresses the peptide Leucokinin and regulates fluid balance to facilitate ecdysis at the pupal stage. The general strategy presented here of using a receptor gene as an entry point for genetic and neuronal manipulations should be useful in establishing patterns of functional connectivity in other hormonally regulated networks. PMID:26534952

  2. Posterior Wnts Have Distinct Roles in Specification and Patterning of the Planarian Posterior Region

    PubMed Central

    Sureda-Gómez, Miquel; Pascual-Carreras, Eudald; Adell, Teresa

    2015-01-01

    The wnt signaling pathway is an intercellular communication mechanism essential in cell-fate specification, tissue patterning and regional-identity specification. A βcatenin-dependent signal specifies the AP (Anteroposterior) axis of planarians, both during regeneration of new tissues and during normal homeostasis. Accordingly, four wnts (posterior wnts) are expressed in a nested manner in central and posterior regions of planarians. We have analyzed the specific role of each posterior wnt and the possible cooperation between them in specifying and patterning planarian central and posterior regions. We show that each posterior wnt exerts a distinct role during re-specification and maintenance of the central and posterior planarian regions, and that the integration of the different wnt signals (βcatenin dependent and independent) underlies the patterning of the AP axis from the central region to the tip of the tail. Based on these findings and data from the literature, we propose a model for patterning the planarian AP axis. PMID:26556349

  3. Distinct Roles for Intracellular and Extracellular Lipids in Hepatitis C Virus Infection

    PubMed Central

    Narayanan, Sowmya; Nieh, Albert H.; Kenwood, Brandon M.; Davis, Christine A.; Tosello-Trampont, Annie-Carole; Elich, Tedd D.; Breazeale, Steven D.; Ward, Eric; Anderson, Richard J.; Caldwell, Stephen H.; Hoehn, Kyle L.; Hahn, Young S.

    2016-01-01

    Hepatitis C is a chronic liver disease that contributes to progressive metabolic dysfunction. Infection of hepatocytes by hepatitis C virus (HCV) results in reprogramming of hepatic and serum lipids. However, the specific contribution of these distinct pools of lipids to HCV infection remains ill defined. In this study, we investigated the role of hepatic lipogenesis in HCV infection by targeting the rate-limiting step in this pathway, which is catalyzed by the acetyl-CoA carboxylase (ACC) enzymes. Using two structurally unrelated ACC inhibitors, we determined that blockade of lipogenesis resulted in reduced viral replication, assembly, and release. Supplementing exogenous lipids to cells treated with ACC inhibitors rescued HCV assembly with no effect on viral replication and release. Intriguingly, loss of viral RNA was not recapitulated at the protein level and addition of 2-bromopalmitate, a competitive inhibitor of protein palmitoylation, mirrored the effects of ACC inhibitors on reduced viral RNA without a concurrent loss in protein expression. These correlative results suggest that newly synthesized lipids may have a role in protein palmitoylation during HCV infection. PMID:27280294

  4. Two novel regulators of N-acetyl-galactosamine utilization pathway and distinct roles in bacterial infections.

    PubMed

    Zhang, Huimin; Ravcheev, Dmitry A; Hu, Dan; Zhang, Fengyu; Gong, Xiufang; Hao, Lina; Cao, Min; Rodionov, Dmitry A; Wang, Changjun; Feng, Youjun

    2015-12-01

    Bacterial pathogens can exploit metabolic pathways to facilitate their successful infection cycles, but little is known about roles of d-galactosamine (GalN)/N-acetyl-d-galactosamine (GalNAc) catabolism pathway in bacterial pathogenesis. Here, we report the genomic reconstruction of GalN/GalNAc utilization pathway in Streptococci and the diversified aga regulons. We delineated two new paralogous AgaR regulators for the GalN/GalNAc catabolism pathway. The electrophoretic mobility shift assays experiment demonstrated that AgaR2 (AgaR1) binds the predicted palindromes, and the combined in vivo data from reverse transcription quantitative polymerase chain reaction and RNA-seq suggested that AgaR2 (not AgaR1) can effectively repress the transcription of the target genes. Removal of agaR2 (not agaR1) from Streptococcus suis 05ZYH33 augments significantly the abilities of both adherence to Hep-2 cells and anti-phagocytosis against RAW264.7 macrophage. As anticipated, the dysfunction in AgaR2-mediated regulation of S. suis impairs its pathogenicity in experimental models of both mice and piglets. Our finding discovered two novel regulators specific for GalN/GalNAc catabolism and assigned them distinct roles into bacterial infections. To the best of our knowledge, it might represent a first paradigm that links the GalN/GalNAc catabolism pathway to bacterial pathogenesis. PMID:26540018

  5. Distinct Roles of Muscle and Motoneuron LRP4 in Neuromuscular Junction Formation

    PubMed Central

    Wu, Haitao; Lu, Yisheng; Shen, Chengyong; Patel, Neil; Gan, Lin; Xiong, Wen C.; Mei, Lin

    2012-01-01

    SUMMARY Neuromuscular junction (NMJ) formation requires precise interaction between motoneurons and muscle fibers. LRP4 is a receptor of agrin that is thought to act incis to stimulate MuSK in muscle fibers for postsynaptic differentiation. Here we dissected the roles of LRP4 in muscle fibers and motoneurons in NMJ formation by cell-specific mutation. Studies of muscle-specific mutants suggest that LRP4 is involved in deciding where to form AChR clusters in muscle fibers, postsynaptic differentiation, and axon terminal development. LRP4 in HEK293 cells increased synapsin or SV2 puncta in contacting axons of co-cultured neurons, suggesting a synaptogenic function. Analysis of LRP4 muscle and motoneuron double mutants and mechanistic studies suggest that NMJ formation may also be regulated by LRP4 in motoneurons, which could serve as agrin’s receptor in trans to induce AChR clusters. These observations uncovered distinct roles of LRP4 in motoneurons and muscles in NMJ development. PMID:22794264

  6. Distinct roles of muscle and motoneuron LRP4 in neuromuscular junction formation.

    PubMed

    Wu, Haitao; Lu, Yisheng; Shen, Chengyong; Patel, Neil; Gan, Lin; Xiong, Wen C; Mei, Lin

    2012-07-12

    Neuromuscular junction (NMJ) formation requires precise interaction between motoneurons and muscle fibers. LRP4 is a receptor of agrin that is thought to act in cis to stimulate MuSK in muscle fibers for postsynaptic differentiation. Here we dissected the roles of LRP4 in muscle fibers and motoneurons in NMJ formation by cell-specific mutation. Studies of muscle-specific mutants suggest that LRP4 is involved in deciding where to form AChR clusters in muscle fibers, postsynaptic differentiation, and axon terminal development. LRP4 in HEK293 cells increased synapsin or SV2 puncta in contacting axons of cocultured neurons, suggesting a synaptogenic function. Analysis of LRP4 muscle and motoneuron double mutants and mechanistic studies suggest that NMJ formation may also be regulated by LRP4 in motoneurons, which could serve as agrin's receptor in trans to induce AChR clusters. These observations uncovered distinct roles of LRP4 in motoneurons and muscles in NMJ development. PMID:22794264

  7. Posterior Wnts Have Distinct Roles in Specification and Patterning of the Planarian Posterior Region.

    PubMed

    Sureda-Gómez, Miquel; Pascual-Carreras, Eudald; Adell, Teresa

    2015-01-01

    The wnt signaling pathway is an intercellular communication mechanism essential in cell-fate specification, tissue patterning and regional-identity specification. A βcatenin-dependent signal specifies the AP (Anteroposterior) axis of planarians, both during regeneration of new tissues and during normal homeostasis. Accordingly, four wnts (posterior wnts) are expressed in a nested manner in central and posterior regions of planarians. We have analyzed the specific role of each posterior wnt and the possible cooperation between them in specifying and patterning planarian central and posterior regions. We show that each posterior wnt exerts a distinct role during re-specification and maintenance of the central and posterior planarian regions, and that the integration of the different wnt signals (βcatenin dependent and independent) underlies the patterning of the AP axis from the central region to the tip of the tail. Based on these findings and data from the literature, we propose a model for patterning the planarian AP axis. PMID:26556349

  8. Picking sides: Distinct roles for CYP76M6 and -8 in rice oryzalexin biosynthesis

    PubMed Central

    Wu, Yisheng; Wang, Qiang; Hillwig, Matthew L.; Peters, Reuben J.

    2013-01-01

    Natural products biosynthesis often requires the action of multiple cytochromes P450 (CYPs), whose ability to introduce oxygen, increasing solubility, is critical for imparting biological activity. In previous investigations of rice diterpenoid biosynthesis, we have characterized CYPs that catalyze alternative hydroxylation of ent-sandaracopimaradiene, the precursor to the rice oryzalexin antibiotic phytoalexins. In particular, CYP76M5, -6 and -8 were all shown to carry out C7β-hydroxylation, while CYP701A8 catalyzes C3α-hydroxylation, with oxy groups found at both positions in oryzalexins A–D, suggesting that these may act consecutively in oryzalexin biosynthesis. Here we report that, although CYP701A8 only poorly reacts with 7β-hydroxy-ent-sandaracopimaradiene, CYP76M6 and -8 readily react with 3α-hydroxy-ent-sandaracopimaradiene. Notably, their activity yields distinct products, resulting from hydroxylation at C9β by CYP76M6 or C7β by CYP76M8, on different sides of the core tricyclic ring structure. Thus, CYP76M6 and -8 have distinct, non-redundant roles in orzyalexin biosynthesis. Moreover, the resulting 3α,7β- and 3α,9β- diols correspond to oryzalexins D and E, respectively. Accordingly, our results complete the functional identification of the biosynthetic pathway underlying the production of these bioactive phytoalexins. In addition, the altered regiochemistry catalyzed by CYP76M6 following C3α-hydroxylation has some implications for its active site configuration, offering further molecular insight. PMID:23795884

  9. Distinct roles of T-cell lymphopenia and the microbial flora for gastrointestinal and CNS autoimmunity.

    PubMed

    Fischer, Henrike J; Witte, Ann-Kathrin; Walter, Lutz; Gröne, Hermann-Josef; van den Brandt, Jens; Reichardt, Holger M

    2016-05-01

    T-cell lymphopenia is a major risk factor for autoimmunity. Here we describe congenic Lewis (LEW) rats with a loss-of-function mutation in the Gimap5 gene, leading to a 92% reduction in peripheral T-cell numbers. Gimap5-deficient LEW rats developed eosinophilic autoimmune gastroenteritis accompanied by a 40-fold increase in IgE serum levels. This phenotype was ameliorated by antibiotic treatment, indicating a critical role of the microbial flora in the development of inflammatory bowel disease. Interestingly, Gimap5-deficient LEW rats showed strongly aggravated experimental autoimmune encephalomyelitis (EAE) after immunization with guinea pig myelin basic protein. This phenotype, however, persisted after antibiosis, confirming that the enhanced CNS autoimmune response in T-cell lymphopenic Gimap5-deficient LEW rats was unrelated to the composition of the microbial flora. Rather, it seems that it was caused by the 7-fold increase in the percentage of activated T cells producing IL-17 and IFN-γ, and the skewed T-cell receptor (TCR) repertoire, both of which were the result of T-cell lymphopenia and not affected by antibiosis. This notion was supported by the observation that adoptive T-cell transfer corrected the TCR repertoire and improved EAE. Collectively, our findings confirm a critical albeit differential role of T-cell lymphopenia in the susceptibility to organ-specific autoimmune responses.-Fischer, H. J., Witte, A.-K., Walter, L., Gröne, H.-J., van den Brandt, J., Reichardt, H. M. Distinct roles of T-cell lymphopenia and the microbial flora for gastrointestinal and CNS autoimmunity. PMID:26740263

  10. Protein phosphatase 2A regulatory subunits perform distinct functional roles in the maize pathogen Fusarium verticillioides.

    PubMed

    Shin, Joon-Hee; Kim, Jung-Eun; Malapi-Wight, Martha; Choi, Yoon-E; Shaw, Brian D; Shim, Won-Bo

    2013-06-01

    Fusarium verticillioides is a pathogen of maize causing ear rot and stalk rot. The fungus also produces fumonisins, a group of mycotoxins linked to disorders in animals and humans. A cluster of genes, designated FUM genes, plays a key role in the synthesis of fumonisins. However, our understanding of the regulatory mechanism of fumonisin biosynthesis is still incomplete. We have demonstrated previously that Cpp1, a protein phosphatase type 2A (PP2A) catalytic subunit, negatively regulates fumonisin production and is involved in cell shape maintenance. In general, three PP2A subunits, structural A, regulatory B and catalytic C, make up a heterotrimer complex to perform regulatory functions. Significantly, we identified two PP2A regulatory subunits in the F. verticillioides genome, Ppr1 and Ppr2, which are homologous to Saccharomyces cerevisiae Cdc55 and Rts1, respectively. In this study, we hypothesized that Ppr1 and Ppr2 are involved in the regulation of fumonisin biosynthesis and/or cell development in F. verticillioides, and generated a series of mutants to determine the functional role of Ppr1 and Ppr2. The PPR1 deletion strain (Δppr1) resulted in drastic growth defects, but increased microconidia production. The PPR2 deletion mutant strain (Δppr2) showed elevated fumonisin production, similar to the Δcpp1 strain. Germinating Δppr1 conidia formed abnormally swollen cells with a central septation site, whereas Δppr2 showed early hyphal branching during conidia germination. A kernel rot assay showed that the mutants were slow to colonize kernels, but this is probably a result of growth defects rather than a virulence defect. Results from this study suggest that two PP2A regulatory subunits in F. verticillioides carry out distinct roles in the regulation of fumonisin biosynthesis and fungal development. PMID:23452277

  11. Distinct roles for histone chaperones in the deposition of Htz1 in chromatin

    PubMed Central

    Liu, Hongde; Zhu, Min; Mu, Yawen; Liu, Lingjie; Li, Guanghui; Wan, Yakun

    2014-01-01

    Histone variant Htz1 substitution for H2A plays important roles in diverse DNA transactions. Histone chaperones Chz1 and Nap1 (nucleosome assembly protein 1) are important for the deposition Htz1 into nucleosomes. In literatures, it was suggested that Chz1 is a Htz1–H2B-specific chaperone, and it is relatively unstructured in solution but it becomes structured in complex with the Htz1–H2B histone dimer. Nap1 (nucleosome assembly protein 1) can bind (H3–H4)2 tetramers, H2A–H2B dimers and Htz1–H2B dimers. Nap1 can bind H2A–H2B dimer in the cytoplasm and shuttles the dimer into the nucleus. Moreover, Nap1 functions in nucleosome assembly by competitively interacting with non-nucleosomal histone–DNA. However, the exact roles of these chaperones in assembling Htz1-containing nucleosome remain largely unknown. In this paper, we revealed that Chz1 does not show a physical interaction with chromatin. In contrast, Nap1 binds exactly at the genomic DNA that contains Htz1. Nap1 and Htz1 show a preferential interaction with AG-rich DNA sequences. Deletion of chz1 results in a significantly decreased binding of Htz1 in chromatin, whereas deletion of nap1 dramatically increases the association of Htz1 with chromatin. Furthermore, genome-wide nucleosome-mapping analysis revealed that nucleosome occupancy for Htz1p-bound genes decreases upon deleting htz1 or chz1, suggesting that Htz1 is required for nucleosome structure at the specific genome loci. All together, these results define the distinct roles for histone chaperones Chz1 and Nap1 to regulate Htz1 incorporation into chromatin. PMID:25338502

  12. The distinctiveness effect in forenames: the role of subjective experiences and recognition memory.

    PubMed

    Brandt, Karen R; Gardiner, John M; Macrae, C Neil

    2006-05-01

    We describe two experiments that tested the prediction that distinctive forenames would be better recognized than typical forenames and which investigated whether this distinctiveness effect, if obtained, occurred in subjective experiences of the recollective or familiarity components of recognition memory. To that end, the remember-know paradigm was used to measure people's experiences of recollection or familiarity. The results revealed that distinctive forenames were more memorable than typical forenames and that that this distinctiveness effect was present only in the subjective experience of remembering. Additionally, the present research showed that these distinctiveness effects were present after retention intervals of both 1 and 7 days. These results replicate and extend past research on distinctiveness effects and also provide support for Rajaram's (1996) distinctiveness-fluency account of the 2 states of subjective awareness. PMID:16613653

  13. The role of self-other distinction in understanding others' mental and emotional states: neurocognitive mechanisms in children and adults.

    PubMed

    Steinbeis, Nikolaus

    2016-01-19

    Social interactions come with the fundamental problem of trying to understand others' mental and affective states while under the overpowering influence of one's own concurrent thoughts and feelings. The ability to distinguish between simultaneous representations of others' current experiences as well as our own is crucial to navigate our complex social environments successfully. The developmental building blocks of this ability and how this is given rise to by functional and structural brain development remains poorly understood. In this review, I outline some of the key findings on the role of self-other distinction in understanding others' mental as well as emotional states in children and adults. I will begin by clarifying the crucial role for self-other distinction in avoiding egocentric attributions of one's own cognitive as well as affective states to others in adults and outline the underlying neural circuitry in overcoming such egocentricity. This will provide the basis for a discussion of the emergence of self-other distinction in early childhood as well as developmental changes therein throughout childhood and into adulthood. I will demonstrate that self-other distinction of cognitive and emotional states is already dissociable early in development. Concomitantly, I will show that processes of self-other distinction in cognitive and affective domains rely on adjacent but distinct neural circuitry each with unique connectivity profiles, presumably related to the nature of the distinction that needs to be made. PMID:26644593

  14. Distinct roles for IT and IH in controlling the frequency and timing of rebound spike responses

    PubMed Central

    Engbers, Jordan D T; Anderson, Dustin; Tadayonnejad, Reza; Mehaffey, W Hamish; Molineux, Michael L; Turner, Ray W

    2011-01-01

    Abstract The ability for neurons to generate rebound bursts following inhibitory synaptic input relies on ion channels that respond in a unique fashion to hyperpolarization. Inward currents provided by T-type calcium channels (IT) and hyperpolarization-activated HCN channels (IH) increase in availability upon hyperpolarization, allowing for a rebound depolarization after a period of inhibition. Although rebound responses have long been recognized in deep cerebellar nuclear (DCN) neurons, the actual extent to which IT and IH contribute to rebound spike output following physiological levels of membrane hyperpolarization has not been clearly established. The current study used recordings and simulations of large diameter cells of the in vitro rat DCN slice preparation to define the roles for IT and IH in a rebound response. We find that physiological levels of hyperpolarization make only small proportions of the total IT and IH available, but that these are sufficient to make substantial contributions to a rebound response. At least 50% of the early phase of the rebound spike frequency increase is generated by an IT-mediated depolarization. An additional frequency increase is provided by IH in reducing the time constant and thus the extent of IT inactivation as the membrane returns from a hyperpolarized state to the resting level. An IH-mediated depolarization creates an inverse voltage-first spike latency relationship and produces a 35% increase in the precision of the first spike latency of a rebound. IT and IH can thus be activated by physiologically relevant stimuli and have distinct roles in the frequency, timing and precision of rebound responses. PMID:21969455

  15. Components of the Engulfment Machinery Have Distinct Roles in Corpse Processing

    PubMed Central

    Meehan, Tracy L.; Joudi, Tony F.; Timmons, Allison K.; Taylor, Jeffrey D.; Habib, Corey S.; Peterson, Jeanne S.; Emmanuel, Shanan; Franc, Nathalie C.; McCall, Kimberly

    2016-01-01

    Billions of cells die in our bodies on a daily basis and are engulfed by phagocytes. Engulfment, or phagocytosis, can be broken down into five basic steps: attraction of the phagocyte, recognition of the dying cell, internalization, phagosome maturation, and acidification. In this study, we focus on the last two steps, which can collectively be considered corpse processing, in which the engulfed material is degraded. We use the Drosophila ovarian follicle cells as a model for engulfment of apoptotic cells by epithelial cells. We show that engulfed material is processed using the canonical corpse processing pathway involving the small GTPases Rab5 and Rab7. The phagocytic receptor Draper is present on the phagocytic cup and on nascent, phosphatidylinositol 3-phosphate (PI(3)P)- and Rab7-positive phagosomes, whereas integrins are maintained on the cell surface during engulfment. Due to the difference in subcellular localization, we investigated the role of Draper, integrins, and downstream signaling components in corpse processing. We found that some proteins were required for internalization only, while others had defects in corpse processing as well. This suggests that several of the core engulfment proteins are required for distinct steps of engulfment. We also performed double mutant analysis and found that combined loss of draper and αPS3 still resulted in a small number of engulfed vesicles. Therefore, we investigated another known engulfment receptor, Crq. We found that loss of all three receptors did not inhibit engulfment any further, suggesting that Crq does not play a role in engulfment by the follicle cells. A more complete understanding of how the engulfment and corpse processing machinery interact may enable better understanding and treatment of diseases associated with defects in engulfment by epithelial cells. PMID:27347682

  16. [Distinct roles of the direct and indirect pathways in the basal ganglia circuit mechanism].

    PubMed

    Morita, Makiko; Hikida, Takatoshi

    2015-11-01

    The basal ganglia are key neural substrates that control not only motor balance but also emotion, motivation, cognition, learning, and decision-making. Dysfunction of the basal ganglia leads to neurodegenerative diseases (e.g. Parkinson's disease and Huntington's disease) and psychiatric disorders (e.g. drug addiction, schizophrenia, and depression). In the basal ganglia circuit, there are two important pathways: the direct and indirect striatal pathways. Recently, new molecular techniques that activate or inactive selectively the direct or indirect pathway neurons have revealed the function of each pathway. Here we review the distinct roles of the direct and indirect striatal pathways in brain function and drug addiction. We have developed a reversible neurotransmission blocking technique, in which transmission of each pathway is selectively blocked by specific expression of transmission-blocking tetanus toxin, and revealed that the activation of D1 receptors in the direct pathway is critical for reward learning/cocaine addiction, and that the inactivation of D2 receptors is critical for aversive learning/learning flexibility. We propose a new circuit mechanism by which the dopaminergic input from the ventral tegmental area can switch the direct and indirect pathways in the nucleus accumbens. These basal ganglia circuit mechanisms will give us insights into the pathophysiology of mental diseases. PMID:26785520

  17. Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis

    PubMed Central

    Deakin, Nicholas O.; Turner, Christopher E.

    2011-01-01

    Individual metastatic tumor cells exhibit two interconvertible modes of cell motility during tissue invasion that are classified as either mesenchymal or amoeboid. The molecular mechanisms by which invasive breast cancer cells regulate this migratory plasticity have yet to be fully elucidated. Herein we show that the focal adhesion adaptor protein, paxillin, and the closely related Hic-5 have distinct and unique roles in the regulation of breast cancer cell lung metastasis by modulating cell morphology and cell invasion through three-dimensional extracellular matrices (3D ECMs). Cells depleted of paxillin by RNA interference displayed a highly elongated mesenchymal morphology, whereas Hic-5 knockdown induced an amoeboid phenotype with both cell populations exhibiting reduced plasticity, migration persistence, and velocity through 3D ECM environments. In evaluating associated signaling pathways, we determined that Rac1 activity was increased in cells devoid of paxillin whereas Hic-5 silencing resulted in elevated RhoA activity and associated Rho kinase–induced nonmuscle myosin II activity. Hic-5 was essential for adhesion formation in 3D ECMs, and analysis of adhesion dynamics and lifetime identified paxillin as a key regulator of 3D adhesion assembly, stabilization, and disassembly. PMID:21148292

  18. Distinct roles for secreted semaphorin signaling in spinal motor axon guidance.

    PubMed

    Huber, Andrea B; Kania, Artur; Tran, Tracy S; Gu, Chenghua; De Marco Garcia, Natalia; Lieberam, Ivo; Johnson, Dontais; Jessell, Thomas M; Ginty, David D; Kolodkin, Alex L

    2005-12-22

    Neuropilins, secreted semaphorin coreceptors, are expressed in discrete populations of spinal motor neurons, suggesting they provide critical guidance information for the establishment of functional motor circuitry. We show here that motor axon growth and guidance are impaired in the absence of Sema3A-Npn-1 signaling. Motor axons enter the limb precociously, showing that Sema3A controls the timing of motor axon in-growth to the limb. Lateral motor column (LMC) motor axons within spinal nerves are defasciculated as they grow toward the limb and converge in the plexus region. Medial and lateral LMC motor axons show dorso-ventral guidance defects in the forelimb. In contrast, Sema3F-Npn-2 signaling guides the axons of a medial subset of LMC neurons to the ventral limb, but plays no major role in regulating their fasciculation. Thus, Sema3A-Npn-1 and Sema3F-Npn-2 signaling control distinct steps of motor axon growth and guidance during the formation of spinal motor connections. PMID:16364899

  19. Distinctive roles of unsaturated and saturated fatty acids in hyperlipidemic pancreatitis

    PubMed Central

    Chang, Yu-Ting; Chang, Ming-Chu; Tung, Chien-Chih; Wei, Shu-Chen; Wong, Jau-Min

    2015-01-01

    AIM: To investigate how the saturated and unsaturated fatty acid composition influences the susceptibility of developing acute pancreatitis. METHODS: Primary pancreatic acinar cells were treated with low and high concentrations of different saturated and unsaturated fatty acids, and changes in the cytosolic Ca2+ signal and the expression of protein kinase C (PKC) were measured after treatment. RESULTS: Unsaturated fatty acids at high concentrations, including oleic acid, linoleic acid, palmitoleic acid, docosahexaenoic acid, and arachidonic acid, induced a persistent rise in cytosolic Ca2+ concentrations in acinar cells. Unsaturated fatty acids at low concentrations and saturated fatty acids, including palmitic acid, stearic acid, and triglycerides, at low and high concentrations were unable to induce a rise in Ca2+ concentrations in acinar cells. Unsaturated fatty acids at high concentrations but not saturated fatty acids induced intra-acinar cell trypsin activation and cell damage and increased PKC expression. CONCLUSION: At sufficiently high concentrations, unsaturated fatty acids were able to induce acinar cells injury and promote the development of pancreatitis. Unsaturated fatty acids may play a distinctive role in the pathogenesis of pancreatitis through the activation of PKC family members. PMID:26327761

  20. Ideas Exchange: Should School Districts Have a Specific Individual Designated as the Director or Coordinator for Physical Education? What Credentials Should One Possess to Be Effective in Such a Role?

    ERIC Educational Resources Information Center

    Kerekes, Jack; Chase, Melissa A.; Reiss, Carole B.; Fennel, Adam; Vulpis,Dominick; Magnotta, John; Arcadi, Mary; Siracuse, Robert M.; Christenson, Robert S.; Wright, Jim

    2010-01-01

    This article presents the opinions/ideas of professionals who were asked these questions: "Should school districts have a specific individual designated as the Director or Coordinator for Physical Education? What credentials should one possess to be effective in such a role?" The professionals contend that every school district needs to have a…

  1. The phosphoglycerate kinase isoenzymes have distinct roles in the regulation of carbohydrate metabolism in Trypanosoma cruzi.

    PubMed

    Barros-Álvarez, Ximena; Cáceres, Ana J; Michels, Paul A M; Concepción, Juan Luis; Quiñones, Wilfredo

    2014-08-01

    The glycolytic enzyme phosphoglycerate kinase (PGK) is present in Trypanosoma cruzi as three isoenzymes, two of them located inside glycosomes (PGKA and PGKC) and another one in the cytosol (PGKB). The three isoenzymes are expressed at all stages of the life cycle of the parasite. A heterologous expression system for PGKA (rPGKA) was developed and the substrate affinities of the natural and recombinant PGKA isoenzyme were determined. Km values measured for 3-phosphoglycerate (3PGA) were 174 and 850 μM, and for ATP 217 and 236 μM, for the natural and recombinant enzyme, respectively. No significant differences were found between the two forms of the enzyme. The rPGKA was inhibited by Suramin with Ki values of 10.08 μM and 12.11 μM for ATP and 3PGA, respectively, and the natural enzyme was inhibited at similar values. A site-directed mutant was created in which the 80 amino acids PGKA sequence, present as a distinctive insertion in the N-terminal domain, was deleted. This internally truncated PGKA showed the same Km values and specific activity as the full-length rPGKA. The natural PGKC isoenzyme was purified from epimastigotes and separated from PGKA through molecular exclusion chromatography and its kinetic characteristics were determined. The Km value obtained for 3PGA was 192 μM, and 10 μM for ATP. Contrary to PGKA, the activity of PGKC is tightly regulated by ATP (substrate inhibition) with a Ki of 270 μM, suggesting a role for this isoenzyme in regulating metabolic fluxes inside the glycosomes. PMID:24858924

  2. Assembly of RecA-like recombinases: Distinct roles for mediator proteins in mitosis and meiosis

    PubMed Central

    Gasior, Stephen L.; Olivares, Heidi; Ear, Uy; Hari, Danielle M.; Weichselbaum, Ralph; Bishop, Douglas K.

    2001-01-01

    Members of the RecA family of recombinases from bacteriophage T4, Escherichia coli, yeast, and higher eukaryotes function in recombination as higher-order oligomers assembled on tracts of single-strand DNA (ssDNA). Biochemical studies have shown that assembly of recombinase involves accessory factors. These studies have identified a class of proteins, called recombination mediator proteins, that act by promoting assembly of recombinase on ssDNA tracts that are bound by ssDNA-binding protein (ssb). In the absence of mediators, ssb inhibits recombination reactions by competing with recombinase for DNA-binding sites. Here we briefly review mediated recombinase assembly and present results of new in vivo experiments. Immuno-double-staining experiments in Saccharomyces cerevisiae suggest that Rad51, the eukaryotic recombinase, can assemble at or near sites containing ssb (replication protein A, RPA) during the response to DNA damage, consistent with a need for mediator activity. Correspondingly, mediator gene mutants display defects in Rad51 assembly after DNA damage and during meiosis, although the requirements for assembly are distinct in the two cases. In meiosis, both Rad52 and Rad55/57 are required, whereas either Rad52 or Rad55/57 is sufficient to promote assembly of Rad51 in irradiated mitotic cells. Rad52 promotes normal amounts of Rad51 assembly in the absence of Rad55 at 30°C but not 20°C, accounting for the cold sensitivity of rad55 null mutants. Finally, we show that assembly of Rad51 is induced by radiation during S phase but not during G1, consistent with the role of Rad51 in repairing the spontaneous damage that occurs during DNA replication. PMID:11459983

  3. Increasing the complexity of chromatin: functionally distinct roles for replication-dependent histone H2A isoforms in cell proliferation and carcinogenesis

    PubMed Central

    Singh, Rajbir; Mortazavi, Amir; Telu, Kelly H.; Nagarajan, Prabakaran; Lucas, David M.; Thomas-Ahner, Jennifer M.; Clinton, Steven K.; Byrd, John C.; Freitas, Michael A.; Parthun, Mark R.

    2013-01-01

    Replication-dependent histones are encoded by multigene families found in several large clusters in the human genome and are thought to be functionally redundant. However, the abundance of specific replication-dependent isoforms of histone H2A is altered in patients with chronic lymphocytic leukemia. Similar changes in the abundance of H2A isoforms are also associated with the proliferation and tumorigenicity of bladder cancer cells. To determine whether these H2A isoforms can perform distinct functions, expression of several H2A isoforms was reduced by siRNA knockdown. Reduced expression of the HIST1H2AC locus leads to increased rates of cell proliferation and tumorigenicity. We also observe that regulation of replication-dependent histone H2A expression can occur on a gene-specific level. Specific replication-dependent histone H2A genes are either up- or downregulated in chronic lymphocytic leukemia tumor tissue samples. In addition, discreet elements are identified in the 5′ untranslated region of the HIST1H2AC locus that confer translational repression. Taken together, these results indicate that replication-dependent histone isoforms can possess distinct cellular functions and that regulation of these isoforms may play a role in carcinogenesis. PMID:23956221

  4. Learning of Syllable-Object Relations by Preverbal Infants: The Role of Temporal Synchrony and Syllable Distinctiveness

    ERIC Educational Resources Information Center

    Gogate, Lakshmi J.

    2010-01-01

    The role of temporal synchrony and syllable distinctiveness in preverbal infants' learning of word-object relations was investigated. In Experiment 1, 7- and 8-month-olds (N=64) were habituated under conditions where two "similar-sounding" syllables, /tah/ and /gah/, were spoken simultaneously with the motions of one of two sets of objects…

  5. The role of lithological contrasts in the formation of sinkholes: a Distinct Element Method modelling perspective

    NASA Astrophysics Data System (ADS)

    Al-Halbouni, Djamil; Holohan, Eoghan P.; Dahm, Torsten

    2015-04-01

    Sinkhole formation is a geological phenomenon resulting from dissolution and subrosion of rocks or sediments at depth, where large secondary pore space and cavities may develop, and from the eventual subsidence of the overburden. Although sinkholes may develop slowly as a natural process, their formation is often intensified by human activities. For instance, sinkhole hazard has intensified at the Dead Sea shoreline in the Middle East since the beginning of the recession of the Dead Sea level. Another example concerns sinkhole formation induced by solution mining of salt rock in the Lorraine district, France. Signs of precursors to collapse sinkholes have sometimes been indicated by monitoring studies, but are not well understood in terms of quantitative models. Here we report on a general, simplified approach to simulating sinkhole formation by using 2D Distinct Element Method (PFC2D) models comprising elastically bonded particles. The presence of bonds leads to elastic rock deformation under loading conditions and bond breakage may result in spontaneous formation of faults and cracks. Using different rheological parameters like Young's modulus, density, cohesion and friction coefficients, this method is able to simulate realistic rock layering contrasts. The dissolution or subrosion process leading to the formation of underground cavities is simulated via simple incremental particle deletion, whereby an arbitrary dissolution rate can be determined. Model structures preceding a sinkhole collapse, as well as precursory changes in density or porosity, are explicitly simulated and may be linked to measured geophysical parameters such as microseismicity, seismic velocity and electric conductivity. As well as examining precursory phenomena, we study the effect of lithological contrasts on (1) the geometry of sinkholes (diameter to depth ratio) and (2) the onset of collapse. Beside the formulation of general relations, we compare our simulations to well documented case

  6. Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making

    PubMed Central

    Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K.; Murphy, Gillian; Keeley, Sophie; Whone, Alan L.

    2012-01-01

    plan, a pattern of behaviour that mirrors the impulsivity described clinically in some patients with subthalamic nucleus deep brain stimulation. Thus, we demonstrate distinct mechanisms for two important facets of human decision making: first, a role for dopamine in memory consolidation, and second, the critical importance of the subthalamic nucleus in successful decision making when multiple pieces of information must be combined. PMID:23114368

  7. Distinct Signaling Roles of Ceramide Species in Yeast Revealed Through Systematic Perturbation and Systems Biology Analyses

    PubMed Central

    Montefusco, David J.; Chen, Lujia; Matmati, Nabil; Lu, Songjian; Newcomb, Benjamin; Cooper, Gregory F.; Hannun, Yusuf A.; Lu, Xinghua

    2014-01-01

    Ceramide, the central molecule of sphingolipid metabolism, is an important bioactive molecule participating in cellular regulatory events and having implications for disease. A challenge in deciphering ceramide signaling emanates from the myriad of ceramide species that exist and the possibility that many of them may have distinct functions. Here, we applied systems biology and molecular approaches to perturb ceramide metabolism in the yeast (Saccharomyces cerevisiae) and inferred causal relationships between ceramide species and their potential targets by combining lipidomic, genomic, and transcriptomic analyses. We find that during heat stress distinct metabolic mechanisms control the abundance of different groups of ceramide species. Additionally, distinct groups of ceramide species regulated different sets of functionally related genes, indicating that specific sub-groups of lipids participated in different regulatory pathways. These results indicate a previously unrecognized complexity and versatility of lipid-mediated cell regulation. PMID:24170935

  8. Schizophrenia or possession?

    PubMed

    Irmak, M Kemal

    2014-06-01

    Schizophrenia is typically a life-long condition characterized by acute symptom exacerbations and widely varying degrees of functional disability. Some of its symptoms, such as delusions and hallucinations, produce great subjective psychological pain. The most common delusion types are as follows: "My feelings and movements are controlled by others in a certain way" and "They put thoughts in my head that are not mine." Hallucinatory experiences are generally voices talking to the patient or among themselves. Hallucinations are a cardinal positive symptom of schizophrenia which deserves careful study in the hope it will give information about the pathophysiology of the disorder. We thought that many so-called hallucinations in schizophrenia are really illusions related to a real environmental stimulus. One approach to this hallucination problem is to consider the possibility of a demonic world. Demons are unseen creatures that are believed to exist in all major religions and have the power to possess humans and control their body. Demonic possession can manifest with a range of bizarre behaviors which could be interpreted as a number of different psychotic disorders with delusions and hallucinations. The hallucination in schizophrenia may therefore be an illusion-a false interpretation of a real sensory image formed by demons. A local faith healer in our region helps the patients with schizophrenia. His method of treatment seems to be successful because his patients become symptom free after 3 months. Therefore, it would be useful for medical professions to work together with faith healers to define better treatment pathways for schizophrenia. PMID:23269538

  9. Role of Importance and Distinctiveness of Semantic Features in People with Aphasia: A Replication Study

    ERIC Educational Resources Information Center

    Mason-Baughman, Mary Beth; Wallace, Sarah E.

    2014-01-01

    Previous studies suggest that people with aphasia have incomplete lexical-semantic representations with decreased low-importance distinctive (LID) feature knowledge. In addition, decreased LID feature knowledge correlates with ability to discriminate among semantically related words. The current study seeks to replicate and extend previous…

  10. Distinct roles of RalA and RalB in the progression of cytokinesis are supported by distinct RalGEFs.

    PubMed

    Cascone, Ilaria; Selimoglu, Rasim; Ozdemir, Cafer; Del Nery, Elaine; Yeaman, Charles; White, Michael; Camonis, Jacques

    2008-09-17

    The Ras family G-proteins RalA and RalB make critical non-overlapping contributions to the generation of a tumorigenic regulatory network, supporting bypass of the normal restraints on both cell proliferation and survival. The Sec6/8 complex, or exocyst, has emerged as a principal direct effector complex for Ral GTPases. Here, we show that RalA and RalB support mitotic progression through mobilization of the exocyst for two spatially and kinetically distinct steps of cytokinesis. RalA is required to tether the exocyst to the cytokinetic furrow in early cytokinesis. RalB is then required for recruitment of the exocyst to the midbody of this bridge to drive abscission and completion of cytokinesis. The collaborative action of RalA and RalB is specified by discrete subcellular compartmentalization and unique pairs of RalGEF proteins that provide inputs from both Ras-family protein-dependent and protein-independent regulatory cues. This suggests that Ral GTPases integrate diverse upstream signals to choreograph multiple roles for the exocyst in mitotic progression. PMID:18756269

  11. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons.

    PubMed

    Lobo, Mary Kay; Nestler, Eric J

    2011-01-01

    The striatum plays a key role in mediating the acute and chronic effects of addictive drugs, with drugs of abuse causing long-lasting molecular and cellular alterations in both dorsal striatum and nucleus accumbens (ventral striatum). Despite the wealth of research on the biological actions of abused drugs in striatum, until recently, the distinct roles of the striatum's two major subtypes of medium spiny neurons (MSNs) in drug addiction remained elusive. Recent advances in cell-type-specific technologies, including fluorescent reporter mice, transgenic, or knockout mice, and viral-mediated gene transfer, have advanced the field toward a more comprehensive understanding of the two MSN subtypes in the long-term actions of drugs of abuse. Here we review progress in defining the distinct molecular and functional contributions of the two MSN subtypes in mediating addiction. PMID:21811439

  12. The Striatal Balancing Act in Drug Addiction: Distinct Roles of Direct and Indirect Pathway Medium Spiny Neurons

    PubMed Central

    Lobo, Mary Kay; Nestler, Eric J.

    2011-01-01

    The striatum plays a key role in mediating the acute and chronic effects of addictive drugs, with drugs of abuse causing long-lasting molecular and cellular alterations in both dorsal striatum and nucleus accumbens (ventral striatum). Despite the wealth of research on the biological actions of abused drugs in striatum, until recently, the distinct roles of the striatum’s two major subtypes of medium spiny neurons (MSNs) in drug addiction remained elusive. Recent advances in cell-type-specific technologies, including fluorescent reporter mice, transgenic, or knockout mice, and viral-mediated gene transfer, have advanced the field toward a more comprehensive understanding of the two MSN subtypes in the long-term actions of drugs of abuse. Here we review progress in defining the distinct molecular and functional contributions of the two MSN subtypes in mediating addiction. PMID:21811439

  13. RMP Plays Distinct Roles in the Proliferation of Hepatocellular Carcinoma Cells and Normal Hepatic Cells

    PubMed Central

    Yang, Sijun; Wang, Hongmin; Guo, Yunlan; Chen, Shaomu; Zhang, Mei-Yin; Shen, Jian; Yu, Huijun; Miao, Jingcheng; Wang, Hui-Yun; Wei, Wenxiang

    2013-01-01

    RMP has been shown to function in the transcription regulation through association with RNA polymerase (RNAP) II subunit RPB5. It also has been shown to be required for the proliferation of hepatocellular carcinoma (HCC) cells with an antiapoptotic property. In this article, we further demonstrate that RMP displays distinct features in HCC cells compared with normal hepatic cells. RMP expression is remarkably increased in various cancer cell lines including HCC cells when compared with normal cells. Depletion of RMP could inhibit the proliferation of HCC cells, but not the normal hepatic cells. RMP significantly prevented apoptosis of HCC cells in SMMC-7721 and HepG2, but had little effect on apoptosis in the normal hepatic cells. The mechanisms of RMP's distinct features rely on different responsive expressions of apoptosis factors induced by RMP in HCC and hepatic cells. Either overexpression or depletion of RMP significantly affected the expression of apoptosis factors in HCC cells. However, normal hepatic cells showed a tendency to resist RMP for the regulation of apoptosis. In the clinical samples, the increased expression of RMP in HCCs was also observed when compared with the matched non-tumor tissues from 30 HCC patients. The different expression levels of and distinct responses to RMP between HCC and hepatic cells suggest that RMP might serve as not only a biomarker for the diagnosis of HCC, but also a potential target for the HCC therapy. PMID:23847445

  14. Sex and Sex-Role Identification: An Important Distinction for Organizational Research.

    ERIC Educational Resources Information Center

    Powell, Gary N.; Butterfield, R. Anthony

    Studies which have investigated males' and females' attitudes and behavior in organizations have yielded apparently contradictory results. In some studies, individuals have followed traditional sex-role stereotypes; in others, they have not. A proposed explanation for these inconsistencies is that sex-role identification is a more important…

  15. Distinctive Roles for Amygdalar CREB in Reconsolidation and Extinction of Fear Memory

    ERIC Educational Resources Information Center

    Tronson, Natalie C.; Wiseman, Shari L.; Neve, Rachael L.; Nestler, Eric J.; Olausson, Peter; Taylor, Jane R.

    2012-01-01

    Cyclic AMP response element binding protein (CREB) plays a critical role in fear memory formation. Here we determined the role of CREB selectively within the amygdala in reconsolidation and extinction of auditory fear. Viral overexpression of the inducible cAMP early repressor (ICER) or the dominant-negative mCREB, specifically within the lateral…

  16. Observational distinction between black holes and naked singularities: the role of the redshift function

    NASA Astrophysics Data System (ADS)

    Ortiz, Néstor; Sarbach, Olivier; Zannias, Thomas

    2015-12-01

    We suggest that the redshift of photons traveling from past to future null infinity through a collapsing object could provide an observational signature capable of differentiating between the formation of a globally naked singularity and the formation of an event horizon. Supporting evidence for this idea is drawn from the analysis of photons with zero angular momentum through the center of a collapsing spherical dust cloud. We show that the frequency shift as a function of proper time with respect to stationary observers has distinct features depending on whether the object collapses to a black hole or a naked singularity.

  17. Distinct Temporal Regulation of RET Isoform Internalization: Roles of Clathrin and AP2.

    PubMed

    Crupi, Mathieu J F; Yoganathan, Piriya; Bone, Leslie N; Lian, Eric; Fetz, Andrew; Antonescu, Costin N; Mulligan, Lois M

    2015-11-01

    The RET receptor tyrosine kinase (RTK) contributes to kidney and nervous system development, and is implicated in a number of human cancers. RET is expressed as two protein isoforms, RET9 and RET51, with distinct interactions and signaling properties that contribute to these processes. RET isoforms are internalized from the cell surface into endosomal compartments in response to glial cell line-derived neurotropic factor (GDNF) ligand stimulation but the specific mechanisms of RET trafficking remain to be elucidated. Here, we used total internal reflection fluorescence (TIRF) microscopy to demonstrate that RET internalization occurs primarily through clathrin coated pits (CCPs). Activated RET receptors colocalize with clathrin, but not caveolin. The RET51 isoform is rapidly and robustly recruited to CCPs upon GDNF stimulation, while RET9 recruitment occurs more slowly and is less pronounced. We showed that the clathrin-associated adaptor protein complex 2 (AP2) interacts directly with each RET isoform through its AP2 μ subunit, and is important for RET internalization. Our data establish that interactions with the AP2 complex promote RET receptor internalization via clathrin-mediated endocytosis but that RET9 and RET51 have distinct internalization kinetics that may contribute to differences in their biological functions. PMID:26304132

  18. Telomere dysfunction and cell survival: roles for distinctTIN2-containing complexes

    SciTech Connect

    Kim, Sahn-Ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Beausejour, Christian; Kaminker, Patrick; Campisi, Judith

    2006-11-07

    Telomeres are maintained by three DNA binding proteins, TRF1, TRF2 and POT1, and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. These and two other proteins form a soluble complex that may be the core telomere-maintenance complex. It is not clear whether subcomplexes exist or function in vivo. Here, we provide evidence for two TIN2 subcomplexes with distinct functions in human cells. TIN2 ablation by RNA interference caused telomere uncapping and p53-independent cell death in all cells tested. However, we isolated two TIN2 complexes from cell lysates, each selectively sensitive to a TIN2 mutant (TIN2-13, TIN2-15C). In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN215C more than TIN2-13 caused genomic instability and cell death. Thus, TIN2 subcomplexes likely have distinct functions in telomere maintenance, and may provide selective targets for eliminating cells with mutant p53.

  19. Telomere dysfunction and cell survival: Roles for distinct TIN2-containing complexes

    SciTech Connect

    Kim, Sahn-ho; Davalos, Albert R.; Heo, Seok-Jin; Rodier, Francis; Zou, Ying; Beausejour, Christian; Kaminker, Patrick; Yannone, Steven M.; Campisi, Judith

    2007-10-02

    Telomeres are maintained by three DNA binding proteins (TRF1, TRF2 and POT1), and several associated factors. One factor, TIN2, binds TRF1 and TRF2 directly and POT1 indirectly. Along with two other proteins, TPP1 and hRap1, these form a soluble complex that may be the core telomere maintenance complex. It is not clear whether sub-complexes also exist in vivo. We provide evidence for two TIN2 sub-complexes with distinct functions in human cells. We isolated these two TIN2 sub-complexes from nuclear lysates of unperturbed cells and cells expressing TIN2 mutants TIN2-13, TIN2-15C, which cannot bind TRF2 or TRF1, respectively. In cells with wild-type p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere uncapping and eventual growth arrest. In cells lacking p53 function, TIN2-15C was more potent than TIN2-13 in causing telomere dysfunction and cell death. Our findings suggest that distinct TIN2 complexes exist, and that TIN2-15C-sensitive subcomplexes are particularly important for cell survival in the absence of functional p53.

  20. Distinct Roles of Frontal and Rear Cell-Substrate Adhesions in Fibroblast MigrationV⃞

    PubMed Central

    Munevar, Steven; Wang, Yu-li; Dembo, Micah

    2001-01-01

    Cell migration involves complex physical and chemical interactions with the substrate. To probe the mechanical interactions under different regions of migrating 3T3 fibroblasts, we have disrupted cell-substrate adhesions by local application of the GRGDTP peptide, while imaging stress distribution on the substrate with traction force microscopy. Both spontaneous and GRGDTP-induced detachment of the trailing edge caused extensive cell shortening, without changing the overall level of traction forces or the direction of migration. In contrast, disruption of frontal adhesions caused dramatic, global loss of traction forces before any significant shortening of the cell. Although traction forces and cell migration recovered within 10–20 min of transient frontal treatment, persistent treatment with GRGDTP caused the cell to develop traction forces elsewhere and reorient toward a new direction. We conclude that contractile forces of a fibroblast are transmitted to the substrate through two distinct types of adhesions. Leading edge adhesions are unique in their ability to transmit active propulsive forces. Their functions cannot be transferred directly to existing adhesions upon detachment. Trailing end adhesions create passive resistance during cell migration and readily redistribute their loads upon detachment. Our results indicate the distinct nature of mechanical interactions at the leading versus trailing edges, which together generate the mechanical interactions for fibroblast migration. PMID:11739792

  1. The pleasures and pains of distinct self-construals: the role of interdependence in regulatory focus.

    PubMed

    Lee, A Y; Aaker, J L; Gardner, W L

    2000-06-01

    Regulatory focus theory distinguishes between self-regulatory processes that focus on promotion and prevention strategies for goal pursuit. Five studies provide support for the hypothesis that these strategies differ for individuals with distinct self-construals. Specifically, individuals with a dominant independent self-construal were predicted to place more emphasis on promotion-focused information, and those with a dominant interdependent self-construal on prevention-focused information. Support for this hypothesis was obtained for participants who scored high versus low on the Self-Construal Scale, participants who were presented with an independent versus interdependent situation, and participants from a Western versus Eastern culture. The influence of interdependence on regulatory focus was observed in both importance ratings of information and affective responses consistent with promotion or prevention focus. PMID:10870913

  2. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity.

    PubMed

    Ishihara, Naotada; Eura, Yuka; Mihara, Katsuyoshi

    2004-12-15

    The mammalian homologues of yeast and Drosophila Fzo, mitofusin (Mfn) 1 and 2, are both essential for mitochondrial fusion and maintenance of mitochondrial morphology. Though the GTPase domain is required for Mfn protein function, the molecular mechanisms of the GTPase-dependent reaction as well as the functional division of the two Mfn proteins are unknown. To examine the function of Mfn proteins, tethering of mitochondrial membranes was measured in vitro by fluorescence microscopy using green fluorescence protein- or red fluorescent protein-tagged and Mfn1-expressing mitochondria, or by immunoprecipitation using mitochondria harboring HA- or FLAG-tagged Mfn proteins. These experiments revealed that Mfn1-harboring mitochondria were efficiently tethered in a GTP-dependent manner, whereas Mfn2-harboring mitochondria were tethered with only low efficiency. Sucrose density gradient centrifugation followed by co-immunoprecipitation revealed that Mfn1 produced oligomerized approximately 250 kDa and approximately 450 kDa complexes in a GTP-dependent manner. The approximately 450 kDa complex contained oligomerized Mfn1 from distinct apposing membranes (docking complex), whereas the approximately 250 kDa complex was composed of Mfn1 present on the same membrane or in the membrane-solubilized state (cis complex). These results were also confirmed using blue-native PAGE. Mfn1 exhibited higher activity for this reaction than Mfn2. Purified recombinant Mfn1 exhibited approximately eightfold higher GTPase activity than Mfn2. These findings indicate that the two Mfn proteins have distinct activities, and suggest that Mfn1 is mainly responsible for GTP-dependent membrane tethering. PMID:15572413

  3. Distinct roles for two purified factors in transcription of Xenopus mitochondrial DNA

    SciTech Connect

    Antoshechkin, I.; Bogenhagen, D.F.

    1995-12-01

    This report investigates transcription of mitochondrial DNA in Xenopus laevis (xl-mtDNA) by mitochondrial RNA polymerases. Details regarding the characterization of xl-mtDNA and its role in transcription in the presence of mtRNA polymerase are provided. 40 refs., 8 figs., 1 tab.

  4. NFAT isoforms play distinct roles in TNFα-induced retinal leukostasis

    PubMed Central

    Bretz, Colin A.; Savage, Sara R.; Capozzi, Megan E.; Suarez, Sandra; Penn, John S.

    2015-01-01

    The objective of this study was to determine the role of individual NFAT isoforms in TNFα-induced retinal leukostasis. To this end, human retinal microvascular endothelial cells (HRMEC) transfected with siRNA targeting individual NFAT isoforms were treated with TNFα, and qRT-PCR was used to examine the contribution of each isoform to the TNFα-induced upregulation of leukocyte adhesion proteins. This showed that NFATc1 siRNA increased ICAM1 expression, NFATc2 siRNA reduced CX3CL1, VCAM1, SELE, and ICAM1 expression, NFATc3 siRNA increased CX3CL1 and SELE expression, and NFATc4 siRNA reduced SELE expression. Transfected HRMEC monolayers were also treated with TNFα and assayed using a parallel plate flow chamber, and both NFATc2 and NFATc4 knockdown reduced TNFα-induced cell adhesion. The effect of isoform-specific knockdown on TNFα-induced cytokine production was also measured using protein ELISAs and conditioned cell culture medium, and showed that NFATc4 siRNA reduced CXCL10, CXCL11, and MCP-1 protein levels. Lastly, the CN/NFAT-signaling inhibitor INCA-6 was shown to reduce TNFα-induced retinal leukostasis in vivo. Together, these studies show a clear role for NFAT-signaling in TNFα-induced retinal leukostasis, and identify NFATc2 and NFATc4 as potentially valuable therapeutic targets for treating retinopathies in which TNFα plays a pathogenic role. PMID:26527057

  5. Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory

    PubMed Central

    Gyurkó, M. Dávid; Csermely, Péter; Sőti, Csaba; Steták, Attila

    2015-01-01

    The Ras GTPase activating proteins (RasGAPs) are regulators of the conserved Ras/MAPK pathway. Various roles of some of the RasGAPs in learning and memory have been reported in different model systems, yet, there is no comprehensive study to characterize all gap genes in any organism. Here, using reverse genetics and neurobehavioural tests, we studied the role of all known genes of the rasgap family in C. elegans in associative learning and memory. We demonstrated that their proteins are implicated in different parts of the learning and memory processes. We show that gap-1 contribute redundantly with gap-3 to the chemosensation of volatile compounds, gap-1 plays a major role in associative learning, while gap-2 and gap-3 are predominantly required for short- and long-term associative memory. Our results also suggest that the C. elegans Ras orthologue let-60 is involved in multiple processes during learning and memory. Thus, we show that the different classes of RasGAP proteins are all involved in cognitive function and their complex interplay ensures the proper formation and storage of novel information in C. elegans. PMID:26469632

  6. Microfluidic Investigation Reveals Distinct Roles for Actin Cytoskeleton and Myosin II Activity in Capillary Leukocyte Trafficking

    PubMed Central

    Gabriele, Sylvain; Benoliel, Anne-Marie; Bongrand, Pierre; Théodoly, Olivier

    2009-01-01

    Circulating leukocyte sequestration in pulmonary capillaries is arguably the initiating event of lung injury in acute respiratory distress syndrome. We present a microfluidic investigation of the roles of actin organization and myosin II activity during the different stages of leukocyte trafficking through narrow capillaries (entry, transit and shape relaxation) using specific drugs (latrunculin A, jasplakinolide, and blebbistatin). The deformation rate during entry reveals that cell stiffness depends strongly on F-actin organization and hardly on myosin II activity, supporting a microfilament role in leukocyte sequestration. In the transit stage, cell friction is influenced by stiffness, demonstrating that the actin network is not completely broken after a forced entry into a capillary. Conversely, membrane unfolding was independent of leukocyte stiffness. The surface area of sequestered leukocytes increased by up to 160% in the absence of myosin II activity, showing the major role of molecular motors in microvilli wrinkling and zipping. Finally, cell shape relaxation was largely independent of both actin organization and myosin II activity, whereas a deformed state was required for normal trafficking through capillary segments. PMID:19450501

  7. Cardiomyocytes hypertrophic status after myocardial infarction determines distinct types of arrhythmia: role of the ryanodine receptor.

    PubMed

    Fauconnier, Jérémy; Pasquié, Jean-Luc; Bideaux, Patrice; Lacampagne, Alain; Richard, Sylvain

    2010-09-01

    The mechanisms responsible for sudden cardiac death in heart failure (HF) are unclear. We investigated early and delayed afterdepolarizations (EADs, DADs) in HF. Cardiomyocytes were enzymatically isolated from the right ventricle (RV) and the septum of rats 8 weeks after myocardial infarction (MI) and sham-operated animals. Membrane capacitance, action potentials (AP) and ionic currents were measured by whole-cell patch-clamp. The [Ca(2+)](i) transients and Ca(2+) sparks were recorded with Fluo-4 during fluorescence measurements. Arrhythmia was triggered in 40% of MI cells (not in sham) using trains of 5 stimulations at 2.0 Hz. EADs and DADs occurred in distinct cell populations both in the RV and the septum. EADs occurred in normal-sized PMI cells (<230 pF), whereas DADs occurred in hypertrophic PMI cells (>230 pF). All cells exhibited prolonged APs due to reduced I(to) current. However, additional modifications in Ca(2+)-dependent ionic currents occurred in hypertrophic cells: a decrease in the inward rectifier K(+) current I(K1), and a slowing of L-type Ca(2+) current inactivation which was responsible for the lack of adaptation of APs to abrupt changes in the pacing rate. The occurrence of spontaneous Ca(2+) sparks, reflecting ryanodine receptor (RyR2) diastolic activity, increased with hypertrophy. The [Ca(2+)](i) transient amplitude, sarcoplasmic reticulum (SR) Ca(2+) load and Ca(2+) sparks amplitude were all inversely correlated with cell size. We conclude that the trophic status of cardiomyocytes determines the type of cellular arrhythmia in MI rats, based on differential electrophysiological remodeling which may reflect early-mild and late-severe or differential modifications in the RyR2 function. PMID:20109482

  8. Distinct roles of NR2A and NR2B cytoplasmic tails in long term potentiation

    PubMed Central

    Foster, Kelly A.; McLaughlin, Nathan; Edbauer, Dieter; Phillips, Marnie; Bolton, Andrew; Constantine-Paton, Martha; Sheng, Morgan

    2010-01-01

    NMDA receptors (NMDARs) are critical mediators of activity-dependent synaptic plasticity, but the differential roles of NR2A- versus NR2B-containing NMDARs have been controversial. Here, we investigate the roles of NR2A and NR2B in LTP in organotypic hippocampal slice cultures using RNAi and overexpression, to complement pharmacological approaches. In young slices, when NR2B is the predominant subunit expressed, LTP is blocked by the NR2B-selective antagonist Ro25-6981. As slices mature, and NR2A expression rises, activation of NR2B receptors became no longer necessary for LTP induction. LTP was blocked, however, by RNAi knockdown of NR2B, and this was rescued by coexpression of an RNAi-resistant NR2B (NR2B*) cDNA. Interestingly, a chimeric NR2B subunit in which the C-terminal cytoplasmic tail was replaced by that of NR2A failed to rescue LTP while the reverse chimera, NR2A channel with NR2B tail, was able to restore LTP. Thus expression of NR2B with its intact cytoplasmic tail is required for LTP induction, at an age when channel activity of NR2B-NMDARs is not required for LTP. Overexpression of wildtype NR2A failed to rescue LTP in neurons transfected with NR2B-RNAi construct, despite restoring NMDA-EPSC amplitude to a similar level as NR2B*. Surprisingly, an NR2A construct lacking its entire C-terminal cytoplasmic tail regained its ability to restore LTP. Together these data suggest that the NR2B subunit plays a critical role for LTP, presumably by recruiting relevant molecules important for LTP via its cytoplasmic tail. By contrast, NR2A is not essential for LTP and its cytoplasmic tail seems to carry inhibitory factors for LTP. PMID:20164351

  9. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    PubMed Central

    Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer’s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory. PMID:26246157

  10. Distinct Roles of SOM and VIP Interneurons during Cortical Up States

    PubMed Central

    Neske, Garrett T.; Connors, Barry W.

    2016-01-01

    During cortical network activity, recurrent synaptic excitation among pyramidal neurons is approximately balanced by synaptic inhibition, which is provided by a vast diversity of inhibitory interneurons. The relative contributions of different interneuron subtypes to inhibitory tone during cortical network activity is not well-understood. We previously showed that many of the major interneuron subtypes in mouse barrel cortex are highly active during Up states (Neske et al., 2015); while fast-spiking (FS), parvalbumin (PV)-positive cells were the most active interneuron subtype, many non-fast-spiking (NFS), PV-negative interneurons were as active or more active than neighboring pyramidal cells. This suggests that the NFS cells could play a role in maintaining or modulating Up states. Here, using optogenetic techniques, we further dissected the functional roles during Up states of two major NFS, PV-negative interneuron subtypes: somatostatin (SOM)-positive cells and vasoactive intestinal peptide (VIP)-positive cells. We found that while pyramidal cell excitability during Up states significantly increased when SOM cells were optogenetically silenced, VIP cells did not influence pyramidal cell excitability either upon optogenetic silencing or activation. VIP cells failed to contribute to Up states despite their ability to inhibit SOM cells strongly. We suggest that the contribution of VIP cells to the excitability of pyramidal cells may vary with cortical state. PMID:27507936

  11. Expression Profiling of Macrophages Reveals Multiple Populations with Distinct Biological Roles in an Immunocompetent Orthotopic Model of Lung Cancer.

    PubMed

    Poczobutt, Joanna M; De, Subhajyoti; Yadav, Vinod K; Nguyen, Teresa T; Li, Howard; Sippel, Trisha R; Weiser-Evans, Mary C M; Nemenoff, Raphael A

    2016-03-15

    Macrophages represent an important component of the tumor microenvironment and play a complex role in cancer progression. These cells are characterized by a high degree of plasticity, and they alter their phenotype in response to local environmental cues. Whereas the M1/M2 classification of macrophages has been widely used, the complexity of macrophage phenotypes has not been well studied, particularly in lung cancer. In this study we employed an orthotopic immunocompetent model of lung adenocarcinoma in which murine lung cancer cells are directly implanted into the left lobe of syngeneic mice. Using multimarker flow cytometry, we defined and recovered several distinct populations of monocytes/macrophages from tumors at different stages of progression. We used RNA-seq transcriptional profiling to define distinct features of each population and determine how they change during tumor progression. We defined an alveolar resident macrophage population that does not change in number and expresses multiple genes related to lipid metabolism and lipid signaling. We also defined a population of tumor-associated macrophages that increase dramatically with tumor and selectively expresses a panel of chemokine genes. A third population, which resembles tumor-associated monocytes, expresses a large number of genes involved in matrix remodeling. By correlating transcriptional profiles with clinically prognostic genes, we show that specific monocyte/macrophage populations are enriched in genes that predict outcomes in lung adenocarcinoma, implicating these subpopulations as critical determinants of patient survival. Our data underscore the complexity of monocytes/macrophages in the tumor microenvironment, and they suggest that distinct populations play specific roles in tumor progression. PMID:26873985

  12. Distinct Roles of Mic12 and Mic27 in the Mitochondrial Contact Site and Cristae Organizing System.

    PubMed

    Zerbes, Ralf M; Höß, Philipp; Pfanner, Nikolaus; van der Laan, Martin; Bohnert, Maria

    2016-04-24

    The mitochondrial inner membrane consists of two morphologically distinct domains, the inner boundary membrane and large invaginations termed cristae. Narrow membrane structures, the crista junctions, link these two domains. Maintenance of this elaborate architecture depends on the evolutionarily conserved mitochondrial contact site and cristae organizing system (MICOS), a multisubunit inner membrane protein complex. MICOS consists of two functional modules, a Mic60-Mic19 subcomplex that forms Mic60-mediated contact sites with the outer mitochondrial membrane and a Mic10-Mic12-Mic26-Mic27 membrane-sculpting subcomplex that contains large Mic10 oligomers. Deletion of MIC10 or MIC60 results in the loss of most crista junctions. Distinct views have been discussed about how the MICOS modules cooperate with each other. We searched for components required for the structural organization of MICOS and identified Mic12 and Mic27 as crucial factors with specific roles in MICOS complex formation. Mic27 promotes the stability of the Mic10 oligomers in the membrane-sculpting subcomplex, whereas Mic12 is required for the coupling of the two MICOS subcomplexes. We conclude that in addition to the MICOS core components Mic10 and Mic60, Mic12 and Mic27 play specific roles in the organization of the MICOS complex. PMID:26968360

  13. A Distinct Role of the Queen in Coordinated Workload and Soil Distribution in Eusocial Naked Mole-Rats

    PubMed Central

    Kutsukake, Nobuyuki; Inada, Masayuki; Sakamoto, Shinsuke H.; Okanoya, Kazuo

    2012-01-01

    We investigated how group members achieve collective decision-making, by considering individual intrinsic behavioural rules and behavioural mechanisms for maintaining social integration. Using a simulated burrow environment, we investigated the behavioural rules of coordinated workload for soil distribution in a eusocial mammal, the naked mole-rat (Heterocephalus glaber). We tested two predictions regarding a distinct role of the queen, a socially dominant individual in the caste system: the presence of a queen would increase the workload of other caste individuals, and the cues by a queen would affect the soil distribution. In experiment 1, we placed four individuals of various castes from the same colony into an experimental burrow. Workers exhibited the highest frequency of workload compared to other castes. The presence of a queen activated the workload by other individuals. Individuals showed a consistent workload in a particular direction so as to bias the soil distribution. These results suggest that individuals have a consensus on soil distribution and that the queen plays a distinct role. In experiment 2, we placed the odour of a queen in one of four cells and observed its effect on other individuals’ workload and soil distribution. Relative to other cells, individuals frequently dug in the queen cell so the amount of soil in the queen cell decreased. These results suggest that queen odour is an important cue in coordinated workload and soil distribution in this species. PMID:22957085

  14. Distinct Roles of the Prefrontal and Posterior Parietal Cortices in Response Inhibition.

    PubMed

    Zhou, Xin; Qi, Xue-Lian; Constantinidis, Christos

    2016-03-29

    The dorsolateral prefrontal cortex and posterior parietal cortex have been implicated in the planning of movements and inhibition of inappropriate responses, though their precise roles in these functions are not known. To address this question, we trained monkeys to perform memory-guided saccade and anti-saccade tasks and compared neural responses in the same animals. A population of neurons with no motor responses was also activated by a stimulus appearing out of the receptive field and could therefore mediate vector inversion. These neurons were found almost exclusively in the prefrontal cortex. Prefrontal cortical activity better predicted the level of performance in the task. Representation of the saccade goal also peaked in the prefrontal cortex at a time that was predictive of reaction time. These results suggest that the prefrontal cortex is the primary site of vector inversion in the cerebral cortex and explain the importance of this area in response inhibition. PMID:26997283

  15. Actin cap associated focal adhesions and their distinct role in cellular mechanosensing

    PubMed Central

    Kim, Dong-Hwee; Khatau, Shyam B.; Feng, Yunfeng; Walcott, Sam; Sun, Sean X.; Longmore, Gregory D.; Wirtz, Denis

    2012-01-01

    The ability for cells to sense and adapt to different physical microenvironments plays a critical role in development, immune responses, and cancer metastasis. Here we identify a small subset of focal adhesions that terminate fibers in the actin cap, a highly ordered filamentous actin structure that is anchored to the top of the nucleus by the LINC complexes; these differ from conventional focal adhesions in morphology, subcellular organization, movements, turnover dynamics, and response to biochemical stimuli. Actin cap associated focal adhesions (ACAFAs) dominate cell mechanosensing over a wide range of matrix stiffness, an ACAFA-specific function regulated by actomyosin contractility in the actin cap, while conventional focal adhesions are restrictively involved in mechanosensing for extremely soft substrates. These results establish the perinuclear actin cap and associated ACAFAs as major mediators of cellular mechanosensing and a critical element of the physical pathway that transduce mechanical cues all the way to the nucleus. PMID:22870384

  16. Distinct Roles of the Prefrontal and Posterior Parietal Cortices in Response Inhibition

    PubMed Central

    Zhou, Xin; Qi, Xue-Lian; Constantinidis, Christos

    2016-01-01

    SUMMARY The dorsolateral prefrontal and posterior parietal cortex have been implicated in planning of movements and inhibition of inappropriate responses, though their precise roles in these functions are not known. To address this question we trained monkeys to perform memory guided saccade and anti-saccade tasks and compared neural responses in the same animals. A population of neurons with no motor responses was also activated by a stimulus appearing out of the receptive field and could therefore mediate vector inversion. These neurons were found almost exclusively in the prefrontal cortex. Prefrontal cortical activity better predicted the level of performance in the task. Representation of the saccade goal also peaked in the prefrontal cortex at a time that was predictive of reaction time. These results suggest that prefrontal cortex is the primary site of vector inversion in the cerebral cortex and explain the importance of this area in response inhibition. PMID:26997283

  17. Distinct Roles of Myosins in Aspergillus fumigatus Hyphal Growth and Pathogenesis.

    PubMed

    Renshaw, Hilary; Vargas-Muñiz, José M; Richards, Amber D; Asfaw, Yohannes G; Juvvadi, Praveen R; Steinbach, William J

    2016-05-01

    Myosins are a family of actin-based motor proteins found in many organisms and are categorized into classes based on their structures. Class II and V myosins are known to be important for critical cellular processes, including cytokinesis, endocytosis, exocytosis, and organelle trafficking, in the model fungi Saccharomyces cerevisiae and Aspergillus nidulans However, the roles of myosins in the growth and virulence of the pathogen Aspergillus fumigatus are unknown. We constructed single- and double-deletion strains of the class II and class V myosins in A. fumigatus and found that while the class II myosin (myoB) is dispensable for growth, the class V myosin (myoE) is required for proper hyphal extension; deletion of myoE resulted in hyperbranching and loss of hyphal polarity. Both myoB and myoE are necessary for proper septation, conidiation, and conidial germination, but only myoB is required for conidial viability. Infection with the ΔmyoE strain in the invertebrate Galleria mellonella model and also in a persistently immunosuppressed murine model of invasive aspergillosis resulted in hypovirulence, while analysis of bronchoalveolar lavage fluid revealed that tumor necrosis factor alpha (TNF-α) release and cellular infiltration were similar compared to those of the wild-type strain. The ΔmyoE strain showed fungal growth in the murine lung, while the ΔmyoB strain exhibited little fungal burden, most likely due to the reduced conidial viability. These results show, for the first time, the important role these cytoskeletal components play in the growth of and disease caused by a known pathogen, prompting future studies to understand their regulation and potential targeting for novel antifungal therapies. PMID:26953327

  18. Distinct roles of prostaglandin D2 receptors in chronic skin inflammation.

    PubMed

    Matsushima, Yuki; Satoh, Takahiro; Yamamoto, Yoshihiro; Nakamura, Masataka; Yokozeki, Hiroo

    2011-10-01

    Prostaglandin D2 (PGD2) is a prostanoid implicated in allergic inflammation. However, the roles of PGD2 in immune and allergic responses remain controversial. PGD2 exerts its effect through the CRTH2 and DP receptors. To elucidate functional differences of PGD2 and its receptors in chronic skin inflammation, chronic contact hypersensitivity (chronic CHS) and IgE-mediated chronic allergic skin inflammation (IgE-CAI) were induced in mice deficient in the CRTH2 and/or DP genes. DP (-/-) mice and CRTH2 (-/-)/DP (-/-) mice showed exacerbated chronic CHS, and conversely, CRTH2 (-/-) mice exhibited diminished skin responses. Skin responses correlated with local levels of IL-13, CCL11, and CCL22. These phenotypic changes in chronic CHS of mutant mice were similar to those in acute CHS despite the differences in the cytokine milieus; chronic CHS and acute CHS were mediated by Th2 and Th1/Th17 immunity, respectively. However, in IgE-CAI, DP (-/-) mice showed comparable skin responses to wild-type mice. Alleviation of IgE-CAI was observed in CRTH2 (-/-) mice, and as a consequence, CRTH2 (-/-)/DP (-/-) mice exhibited diminished IgE-CAI compared with wild-type mice. IgE-CAI in mutant mice correlated with local IL-4 and CCL22 production. Consistent with these results, a CRTH2-specific antagonist exerted inhibitory effects in both chronic CHS and IgE-CAI. The present study demonstrates that functional roles of PGD2 and its receptors appear to depend on the nature of the inflammation. Nevertheless, tools targeted against PGD2-CRTH2 signals could offer therapeutic potential for both types of chronic skin inflammation. PMID:21943706

  19. Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (Review).

    PubMed

    Zhang, Xu; Huang, Shuai; Guo, Junchao; Zhou, Li; You, Lei; Zhang, Taiping; Zhao, Yupei

    2016-05-01

    The biological processes of cancer cells such as tumorigenesis, proliferation, angiogenesis, apoptosis and invasion are greatly influenced by the surrounding microenvironment. The ability of solid malignant tumors to alter the microenvironment represents an important characteristic through which tumor cells are able to acquire specific functions necessary for their malignant biological behaviors. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases with the capacity of remodeling extracellular matrix (ECM) by degrading almost all ECM proteins, which plays essential roles during the invasion and metastasis process of solid malignant tumors, including allowing tumor cells to modify the ECM components and release cytokines, ultimately facilitating protease-dependent tumor progression. MMP-11, also named stromelysin-3, is a member of the stromelysin subgroup belonging to MMPs superfamily, which has been detected in cancer cells, stromal cells and adjacent microenvironment. Differently, MMP-11 exerts a dual effect on tumors. On the one hand MMP-11 promotes cancer development by inhibiting apoptosis as well as enhancing migration and invasion of cancer cells, on the other hand MMP-11 plays a negative role against cancer development via suppressing metastasis in animal models. Overexpression of MMP-11 was discovered in sera of cancer patients compared with normal control group as well as in multiple tumor tissue specimens, such as gastric cancer, breast cancer, and pancreatic cancer. At present, some evidence supports that MMP-11 may work as a significant tumor biomarker for early detection of cancer, tumor staging, prognostic analysis, monitoring recurrence during follow-up and also a potential target for immunotherapy against cancer. In view of the importance of MMP-11 in modifying tumor microenvironment and potent antitumoral effects on solid tumors, there is an urgent need for a deeper understanding of how MMP-11 modulates tumor progression

  20. The distinct role of performing euthanasia on depression and suicide in veterinarians.

    PubMed

    Tran, Lily; Crane, Monique F; Phillips, Jacqueline K

    2014-04-01

    Veterinarians are more likely to experience mood disorders and suicide than other occupational groups (Fritschi, Morrison, Shirangi & Day, 2009; Platt, Hawton, Simkin, & Mellanby, 2010). The performance of euthanasia has been implicated as contributing determinately to the prevalence of suicide risk and psychological distress in veterinarians (Bartram & Baldwin, 2008, 2010). In contrast, the application of psychological approaches would suggest a possible protective role for euthanasia administration. This paper is the first to investigate the association between euthanasia-administration frequency and depressed mood and suicide risk. A cross-sectional survey sampled 540 Australia-registered veterinarians (63.8% women), ranging in age from 23 to 74. Results revealed that the administration of objectionable euthanasia (i.e., euthanasia that the veterinarian disagreed with) was not related to our mental health variables. In contrast, overall euthanasia frequency had a weak positive linear relationship with depression. Moreover, overall euthanasia frequency moderated the impact of depression on suicide risk. The nature of this moderation suggested that average frequency per week of performing euthanasia attenuated the relationship between depressed mood and suicide risk. The implications of these findings and directions for further research are discussed. PMID:24635739

  1. Distinct Roles of Histone H3 and H2A Tails in Nucleosome Stability

    PubMed Central

    Li, Zhenhai; Kono, Hidetoshi

    2016-01-01

    Nucleosome breathing potentially increases the DNA exposure, which in turn recruits DNA-binding protein and regulates gene transcription. Numerous studies have shown the critical roles of N-terminal tails of histones H3 and H4 in gene expression; however, few studies have focused on the H2A C-terminal tail. Here we present thorough computational studies on a single nucleosome particle showing the linker DNA closing and opening, which is thought to be nucleosome breathing. With our simulation, the H2A C-terminal and H3 N-terminal tails were found to modulate the nucleosome conformation differently. The H2A C-terminal tail regulates nucleosome conformation by binding to linker DNA at different locations, whereas the H3 N-terminal tail regulates linker DNA by binding to it in different patterns. Further MD simulation on tail truncated structures corroborates this analysis. These findings replenish our understanding of the histone tail regulation mechanism on atomic level. PMID:27527579

  2. Distinct Roles of Cytoskeletal Components in Immunological Synapse Formation and Directed Secretion

    PubMed Central

    Ueda, Hironori; Zhou, Jie; Xie, Jianming

    2015-01-01

    A hallmark of CD4+ T cell activation and immunological synapse (IS) formation is the migration of the microtubule organization center and associated organelles toward the APCs. In this study, we found that when murine CD4+ T cells were treated with a microtubule-destabilizing agent (vinblastine) after the formation of IS, the microtubule organization center dispersed and all of the major cellular organelles moved away from the IS. Cytokines were no longer directed toward the synapse but were randomly secreted in quantities similar to those seen in synaptic secretion. However, if the actin cytoskeleton was disrupted at the same time with cytochalasin D, the organelles did not shift away from the IS. These findings suggest that there is a complex interplay between the microtubules and actin cytoskeleton, where microtubules are important for directing particular cytokines into the synapse, but they are not involved in the amount of cytokines that are produced for at least 1 h after IS formation. In addition, we found that they play a critical role in mobilizing organelles to reorient toward the synapse during T cell activation and in stabilizing organelles against the force that is generated through actin polymerization so that they move toward the APCs. These findings show that there is a complex interplay between these major cytoskeletal components during synapse formation and maintenance. PMID:26392461

  3. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions.

    PubMed

    Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka

    2016-01-01

    Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution. PMID:27490481

  4. Comprehensive RNA Polymerase II Interactomes Reveal Distinct and Varied Roles for Each Phospho-CTD Residue.

    PubMed

    Harlen, Kevin M; Trotta, Kristine L; Smith, Erin E; Mosaheb, Mohammad M; Fuchs, Stephen M; Churchman, L Stirling

    2016-06-01

    Transcription controls splicing and other gene regulatory processes, yet mechanisms remain obscure due to our fragmented knowledge of the molecular connections between the dynamically phosphorylated RNA polymerase II (Pol II) C-terminal domain (CTD) and regulatory factors. By systematically isolating phosphorylation states of the CTD heptapeptide repeat (Y1S2P3T4S5P6S7), we identify hundreds of protein factors that are differentially enriched, revealing unappreciated connections between the Pol II CTD and co-transcriptional processes. These data uncover a role for threonine-4 in 3' end processing through control of the transition between cleavage and termination. Furthermore, serine-5 phosphorylation seeds spliceosomal assembly immediately downstream of 3' splice sites through a direct interaction with spliceosomal subcomplex U1. Strikingly, threonine-4 phosphorylation also impacts splicing by serving as a mark of co-transcriptional spliceosome release and ensuring efficient post-transcriptional splicing genome-wide. Thus, comprehensive Pol II interactomes identify the complex and functional connections between transcription machinery and other gene regulatory complexes. PMID:27239037

  5. Distinct Roles of Histone H3 and H2A Tails in Nucleosome Stability.

    PubMed

    Li, Zhenhai; Kono, Hidetoshi

    2016-01-01

    Nucleosome breathing potentially increases the DNA exposure, which in turn recruits DNA-binding protein and regulates gene transcription. Numerous studies have shown the critical roles of N-terminal tails of histones H3 and H4 in gene expression; however, few studies have focused on the H2A C-terminal tail. Here we present thorough computational studies on a single nucleosome particle showing the linker DNA closing and opening, which is thought to be nucleosome breathing. With our simulation, the H2A C-terminal and H3 N-terminal tails were found to modulate the nucleosome conformation differently. The H2A C-terminal tail regulates nucleosome conformation by binding to linker DNA at different locations, whereas the H3 N-terminal tail regulates linker DNA by binding to it in different patterns. Further MD simulation on tail truncated structures corroborates this analysis. These findings replenish our understanding of the histone tail regulation mechanism on atomic level. PMID:27527579

  6. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions

    PubMed Central

    Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka

    2016-01-01

    Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution. DOI: http://dx.doi.org/10.7554/eLife.13764.001 PMID:27490481

  7. Liver X Receptors (LXRs) Alpha and Beta Play Distinct Roles in the Mouse Epididymis.

    PubMed

    Whitfield, Marjorie; Ouvrier, Aurélia; Cadet, Rémi; Damon-Soubeyrand, Christelle; Guiton, Rachel; Janny, Laurent; Kocer, Ayhan; Marceau, Geoffroy; Pons-Rejraji, Hanae; Trousson, Amalia; Drevet, Joël R; Saez, Fabrice

    2016-03-01

    After its production in the testis, a spermatozoon has to undergo posttesticular maturation steps to become fully motile and fertile. The first step is epididymal maturation, during which immature spermatozoa are transformed into biochemically mature cells ready to proceed to the next step, capacitation, a physiological process occurring in the female genital tract. The biochemical transformations include modification of sperm lipid composition during epididymal transit, with significant changes in fatty acids, phospholipids, and sterols between the caput and the cauda epididymal spermatozoa. Although quantitative aspects of these changes are well documented for several mammalian species, molecular mechanisms governing these steps are poorly understood. Transgenic male mice invalidated for the two liver X receptors (LXRalpha and LXRbeta, nuclear oxysterol receptors regulating cholesterol and lipid metabolism) become sterile when aging, showing an epididymal phenotype. We used single-knockout-model mice to characterize the role of each LXR isoform during sperm maturation in the epididymis. We show here that although a certain redundancy exists in the functions of the two LXR isoforms, some physiological processes are more under the influence of only one of them. In both cases, aging males showed slight subfertility, associated with dyslipidemia, emphasizing the importance of lipid metabolism in relation with male fertility. PMID:26792941

  8. Distinct roles of cytochrome P450 reductase in mitomycin c redox cycling and cytotoxicity

    PubMed Central

    Wang, Yun; Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-01-01

    Mitomycin c (MMC), a quinone-containing anticancer drug, is known to redox cycle and generate reactive oxygen species. A key enzyme mediating MMC redox cycling is cytochrome P450 reductase, a microsomal NADPH-dependent flavoenzyme. In the present studies, CHO cells overexpressing this enzyme (CHO-OR cells) and corresponding control cells (CHO-WT cells) were used to investigate the role of cytochrome P450 reductase in the actions of MMC. In lysates from both cell types, MMC was found to redox cycle and generate H2O2; this activity was greater in CHO-OR cells (Vmax = 1.2 ± 0.1 nmol H2O2/min/mg protein in CHO-WT cells vs. 32.4 ± 3.9 nmol H2O2/min/mg protein in CHO-OR cells). MMC was also more effective in generating superoxide anion and hydroxyl radicals in CHO-OR cells, relative to CHO-WT cells. Despite these differences in MMC redox cycling, MMC-induced cytotoxicity, as measured by growth inhibition, was similar in the two cell types (IC50 = 72 ± 20 nM for CHO-WT and 75 ± 23 nM for CHO-OR cells), as was its ability to induce G2/M and S phase arrest. Additionally, in 9 different tumor cell lines, although a strong correlation was observed between MMC-induced H2O2 generation and cytochrome P450 reductase activity, there was no relationship between redox cycling and cytotoxicity. Hypoxia, which stabilizes MMC radicals generated by redox cycling, also had no effect on the sensitivity of tumor cells to MMC-induced cytotoxicity. These data indicate that NADPH cytochrome P450 reductase-mediated MMC redox cycling is not involved in cytotoxicity of this chemotherapeutic agent. PMID:20501808

  9. Distinct functional roles of cardiac mitochondrial subpopulations revealed by a 3D simulation model.

    PubMed

    Hatano, Asuka; Okada, Jun-Ichi; Washio, Takumi; Hisada, Toshiaki; Sugiura, Seiryo

    2015-06-01

    Experimental characterization of two cardiac mitochondrial subpopulations, namely, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), has been hampered by technical difficulties, and an alternative approach is eagerly awaited. We previously developed a three-dimensional computational cardiomyocyte model that integrates electrophysiology, metabolism, and mechanics with subcellular structure. In this study, we further developed our model to include intracellular oxygen diffusion, and determined whether mitochondrial localization or intrinsic properties cause functional variations. For this purpose, we created two models: one with equal SSM and IFM properties and one with IFM having higher activity levels. Using these two models to compare the SSM and IFM responses of [Ca(2+)], tricarboxylic acid cycle activity, [NADH], and mitochondrial inner membrane potential to abrupt changes in pacing frequency (0.25-2 Hz), we found that the reported functional differences between these subpopulations appear to be mostly related to local [Ca(2+)] heterogeneity, and variations in intrinsic properties only serve to augment these differences. We also examined the effect of hypoxia on mitochondrial function. Under normoxic conditions, intracellular oxygen is much higher throughout the cell than the half-saturation concentration for oxidative phosphorylation. However, under limited oxygen supply, oxygen is mostly exhausted in SSM, leaving the core region in an anoxic condition. Reflecting this heterogeneous oxygen environment, the inner membrane potential continues to decrease in IFM, whereas it is maintained to nearly normal levels in SSM, thereby ensuring ATP supply to this region. Our simulation results provide clues to understanding the origin of functional variations in two cardiac mitochondrial subpopulations and their differential roles in maintaining cardiomyocyte function as a whole. PMID:26039174

  10. Distinct Functional Roles of Cardiac Mitochondrial Subpopulations Revealed by a 3D Simulation Model

    PubMed Central

    Hatano, Asuka; Okada, Jun-ichi; Washio, Takumi; Hisada, Toshiaki; Sugiura, Seiryo

    2015-01-01

    Experimental characterization of two cardiac mitochondrial subpopulations, namely, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), has been hampered by technical difficulties, and an alternative approach is eagerly awaited. We previously developed a three-dimensional computational cardiomyocyte model that integrates electrophysiology, metabolism, and mechanics with subcellular structure. In this study, we further developed our model to include intracellular oxygen diffusion, and determined whether mitochondrial localization or intrinsic properties cause functional variations. For this purpose, we created two models: one with equal SSM and IFM properties and one with IFM having higher activity levels. Using these two models to compare the SSM and IFM responses of [Ca2+], tricarboxylic acid cycle activity, [NADH], and mitochondrial inner membrane potential to abrupt changes in pacing frequency (0.25–2 Hz), we found that the reported functional differences between these subpopulations appear to be mostly related to local [Ca2+] heterogeneity, and variations in intrinsic properties only serve to augment these differences. We also examined the effect of hypoxia on mitochondrial function. Under normoxic conditions, intracellular oxygen is much higher throughout the cell than the half-saturation concentration for oxidative phosphorylation. However, under limited oxygen supply, oxygen is mostly exhausted in SSM, leaving the core region in an anoxic condition. Reflecting this heterogeneous oxygen environment, the inner membrane potential continues to decrease in IFM, whereas it is maintained to nearly normal levels in SSM, thereby ensuring ATP supply to this region. Our simulation results provide clues to understanding the origin of functional variations in two cardiac mitochondrial subpopulations and their differential roles in maintaining cardiomyocyte function as a whole. PMID:26039174

  11. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles.

    PubMed

    Ang, Swee Kim; Zhang, Mengqi; Lodi, Tiziana; Lu, Hui

    2014-06-01

    Erv1 (essential for respiration and viability 1), is an essential component of the MIA (mitochondrial import and assembly) pathway, playing an important role in the oxidative folding of mitochondrial intermembrane space proteins. In the MIA pathway, Mia40, a thiol oxidoreductase with a CPC motif at its active site, oxidizes newly imported substrate proteins. Erv1 a FAD-dependent thiol oxidase, in turn reoxidizes Mia40 via its N-terminal Cys30-Cys33 shuttle disulfide. However, it is unclear how the two shuttle cysteine residues of Erv1 relay electrons from the Mia40 CPC motif to the Erv1 active-site Cys130-Cys133 disulfide. In the present study, using yeast genetic approaches we showed that both shuttle cysteine residues of Erv1 are required for cell growth. In organelle and in vitro studies confirmed that both shuttle cysteine residues were indeed required for import of MIA pathway substrates and Erv1 enzyme function to oxidize Mia40. Furthermore, our results revealed that the two shuttle cysteine residues of Erv1 are functionally distinct. Although Cys33 is essential for forming the intermediate disulfide Cys33-Cys130' and transferring electrons to the redox active-site directly, Cys30 plays two important roles: (i) dominantly interacts and receives electrons from the Mia40 CPC motif; and (ii) resolves the Erv1 Cys33-Cys130 intermediate disulfide. Taken together, we conclude that both shuttle cysteine residues are required for Erv1 function, and play complementary, but distinct, roles to ensure rapid turnover of active Erv1. PMID:24625320

  12. Adverse possession of subsurface minerals

    SciTech Connect

    Bowles, P.N.

    1983-01-01

    Concepts applicable to adverse possession of subsurface minerals are generally the same as those that apply to adverse possession of all real estate. However, special requirements must be satisfied in order to perfect title to subsurface minerals by adverse possession, particularly when there has been a severance of the true title between surface and subsurface minerals. In those jurisdictions where senior and junior grants came from the state or commonwealth covering the same or some of the same land and in those areas where descriptions of land were vague or not carefully drawn, adverse possession serves to solidify land and mineral ownership. There may be some public, social, and economic justification in rewarding, with good title, those who take possession and use real estate for its intended use, including the extraction of subsurface minerals. 96 refernces.

  13. The Atypical Occurrence of Two Biotin Protein Ligases in Francisella novicida Is Due to Distinct Roles in Virulence and Biotin Metabolism

    PubMed Central

    Feng, Youjun; Chin, Chui-Yoke; Chakravartty, Vandana; Gao, Rongsui; Crispell, Emily K.

    2015-01-01

    ABSTRACT The physiological function of biotin requires biotin protein ligase activity in order to attach the coenzyme to its cognate proteins, which are enzymes involved in central metabolism. The model intracellular pathogen Francisella novicida is unusual in that it encodes two putative biotin protein ligases rather than the usual single enzyme. F. novicida BirA has a ligase domain as well as an N-terminal DNA-binding regulatory domain, similar to the prototypical BirA protein in E. coli. However, the second ligase, which we name BplA, lacks the N-terminal DNA binding motif. It has been unclear why a bacterium would encode these two disparate biotin protein ligases, since F. novicida contains only a single biotinylated protein. In vivo complementation and enzyme assays demonstrated that BirA and BplA are both functional biotin protein ligases, but BplA is a much more efficient enzyme. BirA, but not BplA, regulated transcription of the biotin synthetic operon. Expression of bplA (but not birA) increased significantly during F. novicida infection of macrophages. BplA (but not BirA) was required for bacterial replication within macrophages as well as in mice. These data demonstrate that F. novicida has evolved two distinct enzymes with specific roles; BplA possesses the major ligase activity, whereas BirA acts to regulate and thereby likely prevent wasteful synthesis of biotin. During infection BplA seems primarily employed to maximize the efficiency of biotin utilization without limiting the expression of biotin biosynthetic genes, representing a novel adaptation strategy that may also be used by other intracellular pathogens. PMID:26060274

  14. Distinct roles for the complement regulators factor H and Crry in protection of the kidney from injury.

    PubMed

    Laskowski, Jennifer; Renner, Brandon; Le Quintrec, Moglie; Panzer, Sarah; Hannan, Jonathan P; Ljubanovic, Danica; Ruseva, Marieta M; Borza, Dorin-Bogdan; Antonioli, Alexandra H; Pickering, Matthew C; Holers, V Michael; Thurman, Joshua M

    2016-07-01

    Mutations in the complement regulatory proteins are associated with several different diseases. Although these mutations cause dysregulated alternative pathway activation throughout the body, the kidneys are the most common site of injury. The susceptibility of the kidney to alternative pathway-mediated injury may be due to limited expression of complement regulatory proteins on several tissue surfaces within the kidney. To examine the roles of the complement regulatory proteins factor H and Crry in protecting distinct renal surfaces from alternative pathway mediated injury, we generated mice with targeted deletions of the genes for both proteins. Surprisingly, mice with combined genetic deletions of factor H and Crry developed significantly milder renal injury than mice deficient in only factor H. Deficiency of both factor H and Crry was associated with C3 deposition at multiple locations within the kidney, but glomerular C3 deposition was lower than that in factor H alone deficient mice. Thus, factor H and Crry are critical for regulating complement activation at distinct anatomic sites within the kidney. However, widespread activation of the alternative pathway reduces injury by depleting the pool of C3 available at any 1 location. PMID:27165610

  15. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation.

    PubMed

    Abdallah, Abdallah M; Bestebroer, Jovanka; Savage, Nigel D L; de Punder, Karin; van Zon, Maaike; Wilson, Louis; Korbee, Cees J; van der Sar, Astrid M; Ottenhoff, Tom H M; van der Wel, Nicole N; Bitter, Wilbert; Peters, Peter J

    2011-11-01

    During infection of humans and animals, pathogenic mycobacteria manipulate the host cell causing severe diseases such as tuberculosis and leprosy. To understand the basis of mycobacterial pathogenicity, it is crucial to identify the molecular virulence mechanisms. In this study, we address the contribution of ESX-1 and ESX-5--two homologous type VII secretion systems of mycobacteria that secrete distinct sets of immune modulators--during the macrophage infection cycle. Using wild-type, ESX-1- and ESX-5-deficient mycobacterial strains, we demonstrate that these secretion systems differentially affect subcellular localization and macrophage cell responses. We show that in contrast to ESX-1, the effector proteins secreted by ESX-5 are not required for the translocation of Mycobacterium tuberculosis or Mycobacterium marinum to the cytosol of host cells. However, the M. marinum ESX-5 mutant does not induce inflammasome activation and IL-1β activation. The ESX-5 system also induces a caspase-independent cell death after translocation has taken place. Importantly, by means of inhibitory agents and small interfering RNA experiments, we reveal that cathepsin B is involved in both the induction of cell death and inflammasome activation upon infection with wild-type mycobacteria. These results reveal distinct roles for two different type VII secretion systems during infection and shed light on how virulent mycobacteria manipulate the host cell in various ways to replicate and spread. PMID:21957139

  16. Distinct roles of residual xylan and lignin in limiting enzymatic hydrolysis of organosolv pretreated loblolly pine and sweetgum.

    PubMed

    Li, Mi; Tu, Maobing; Cao, Dongxu; Bass, Patrick; Adhikari, Sushil

    2013-01-23

    The interactions between xylan/lignin and cellulase enzymes play a key role in the effective hydrolysis of lignocellulosic biomass. Organosolv pretreated loblolly pine (OPLP) and sweetgum (OPSG) were used to quantitatively elucidate the distinct roles of residual xylan and lignin on enzymatic hydrolysis, based on the initial hydrolysis rates and the final hydrolysis yields. The initial hydrolysis rates of OPLP and OPSG were 1.45 (glucose) and 1.19 g/L/h (glucose), respectively, under the enzyme loading of 20 FPU/g glucan. The final glucan hydrolysis yields of OPLP and OPSG at 72 h were 76.4 and 98.9%, respectively. By correlating the amount of residual lignin and xylan to the initial hydrolysis rate and the final hydrolysis yield in OPLP and OPSG, a more accurate fundamental understanding of the roles of xylan and lignin in limiting the enzymatic hydrolysis has been developed. The higher amount of residual xylan (9.7%) in OPSG resulted in lower initial hydrolysis rate (1.19 g/L/h). The higher amount of residual lignin in OPLP (18.6%) resulted in lower final hydrolysis yield of glucan (76.4%). In addition, we observed in the simultaneous saccharification and fermentation (SSF) that ethyl xyloside was produced by the enzymatic catalysis of xylose/xylan and ethanol. PMID:23270516

  17. Four Isoforms of Arabidopsis 4-Coumarate:CoA Ligase Have Overlapping yet Distinct Roles in Phenylpropanoid Metabolism1[OPEN

    PubMed Central

    Kim, Jeong Im

    2015-01-01

    The biosynthesis of lignin, flavonoids, and hydroxycinnamoyl esters share the first three enzymatic steps of the phenylpropanoid pathway. The last shared step is catalyzed by 4-coumarate:CoA ligase (4CL), which generates p-coumaroyl CoA and caffeoyl CoA from their respective acids. Four isoforms of 4CL have been identified in Arabidopsis (Arabidopsis thaliana). Phylogenetic analysis reveals that 4CL1, 4CL2, and 4CL4 are more closely related to each other than to 4CL3, suggesting that the two groups may serve different biological functions. Promoter-GUS analysis shows that 4CL1 and 4CL2 are expressed in lignifying cells. In contrast, 4CL3 is expressed in a broad range of cell types, and 4CL3 has acquired a distinct role in flavonoid metabolism. Sinapoylmalate, the major hydroxycinnamoyl ester found in Arabidopsis, is greatly reduced in the 4cl1 4cl3 mutant, showing that 4CL1 and 4CL3 function redundantly in its biosynthesis. 4CL1 accounts for the majority of the total 4CL activity, and loss of 4CL1 leads to reduction in lignin content but no growth defect. The 4cl1 4cl2 and 4cl1 4cl2 4cl3 mutants are both dwarf but do not have further reduced lignin than the 4cl1 mutant, indicating that either 4CL1 or 4CL2 is required for normal plant growth. Although 4CL4 has a limited expression profile, it does make a modest contribution to lignin biosynthesis. Together, these data show that the four isoforms of 4CL in Arabidopsis have overlapping yet distinct roles in phenylpropanoid metabolism. PMID:26491147

  18. Distinct Roles for Two Gα–Gβ Interfaces in Cell Polarity Control by a Yeast Heterotrimeric G Protein

    PubMed Central

    Strickfaden, Shelly C.

    2008-01-01

    Saccharomyces cerevisiae mating pheromones trigger dissociation of a heterotrimeric G protein (Gαβγ) into Gα-guanosine triphosphate (GTP) and Gβγ. The Gβγ dimer regulates both mitogen-activated protein (MAP) kinase cascade signaling and cell polarization. Here, by independently activating the MAP kinase pathway, we studied the polarity role of Gβγ in isolation from its signaling role. MAP kinase signaling alone could induce cell asymmetry but not directional growth. Surprisingly, active Gβγ, either alone or with Gα-GTP, could not organize a persistent polarization axis. Instead, following pheromone gradients (chemotropism) or directional growth without pheromone gradients (de novo polarization) required an intact receptor–Gαβγ module and GTP hydrolysis by Gα. Our results indicate that chemoattractant-induced cell polarization requires continuous receptor–Gαβγ communication but not modulation of MAP kinase signaling. To explore regulation of Gβγ by Gα, we mutated Gβ residues in two structurally distinct Gα–Gβ binding interfaces. Polarity control was disrupted only by mutations in the N-terminal interface, and not the Switch interface. Incorporation of these mutations into a Gβ–Gα fusion protein, which enforces subunit proximity, revealed that Switch interface dissociation regulates signaling, whereas the N-terminal interface may govern receptor–Gαβγ coupling. These findings raise the possibility that the Gαβγ heterotrimer can function in a partially dissociated state, tethered by the N-terminal interface. PMID:17978098

  19. Distinct roles for lymphotoxin-alpha and tumor necrosis factor in the control of Leishmania donovani infection.

    PubMed

    Engwerda, Christian R; Ato, Manabu; Stäger, Simona; Alexander, Clare E; Stanley, Amanda C; Kaye, Paul M

    2004-12-01

    Tumor necrosis factor (TNF) is critical for the control of visceral leishmaniasis caused by Leishmania donovani. However, the role of the related cytokine lymphotoxin (LT) alpha in this infection is unknown. Here we report that C57BL/6 mice deficient in TNF (B6.TNF(-/-)) or LT alpha (B6.LT alpha(-/-)) have increased susceptibility to hepatic L. donovani infection. Furthermore, the outcome of infection in bone marrow chimeric mice is dependent on donor hematopoietic cells, indicating that developmental defects in lymphoid organs were not responsible for increased susceptibility to L. donovani. Although both LT alpha and TNF regulated the migration of leukocytes into the sinusoidal area of the infected liver, their roles were distinct. LT alpha was essential for migration of leukocytes from periportal areas, an event consistent with LT alpha-dependent up-regulation of VCAM-1 on liver sinusoid lining cells, whereas TNF was essential for leukocyte recruitment to the liver. During visceral leishmaniasis, both cytokines were produced by radio-resistant cells and by CD4(+) T cells. LT alpha and TNF production by the former was required for granuloma assembly, while production of these cytokines by CD4(+) T cells was necessary to control parasite growth. The production of inducible nitric oxide synthase was also found to be deficient in TNF- and LT alpha-deficient infected mice. These results demonstrate that both LT alpha and TNF are required for control of L. donovani infection in noncompensatory ways. PMID:15579454

  20. Distinct roles for two Galpha-Gbeta interfaces in cell polarity control by a yeast heterotrimeric G protein.

    PubMed

    Strickfaden, Shelly C; Pryciak, Peter M

    2008-01-01

    Saccharomyces cerevisiae mating pheromones trigger dissociation of a heterotrimeric G protein (Galphabetagamma) into Galpha-guanosine triphosphate (GTP) and Gbetagamma. The Gbetagamma dimer regulates both mitogen-activated protein (MAP) kinase cascade signaling and cell polarization. Here, by independently activating the MAP kinase pathway, we studied the polarity role of Gbetagamma in isolation from its signaling role. MAP kinase signaling alone could induce cell asymmetry but not directional growth. Surprisingly, active Gbetagamma, either alone or with Galpha-GTP, could not organize a persistent polarization axis. Instead, following pheromone gradients (chemotropism) or directional growth without pheromone gradients (de novo polarization) required an intact receptor-Galphabetagamma module and GTP hydrolysis by Galpha. Our results indicate that chemoattractant-induced cell polarization requires continuous receptor-Galphabetagamma communication but not modulation of MAP kinase signaling. To explore regulation of Gbetagamma by Galpha, we mutated Gbeta residues in two structurally distinct Galpha-Gbeta binding interfaces. Polarity control was disrupted only by mutations in the N-terminal interface, and not the Switch interface. Incorporation of these mutations into a Gbeta-Galpha fusion protein, which enforces subunit proximity, revealed that Switch interface dissociation regulates signaling, whereas the N-terminal interface may govern receptor-Galphabetagamma coupling. These findings raise the possibility that the Galphabetagamma heterotrimer can function in a partially dissociated state, tethered by the N-terminal interface. PMID:17978098

  1. Picking sides: distinct roles for CYP76M6 and CYP76M8 in rice oryzalexin biosynthesis.

    PubMed

    Wu, Yisheng; Wang, Qiang; Hillwig, Matthew L; Peters, Reuben J

    2013-09-01

    Natural products biosynthesis often requires the action of multiple CYPs (cytochromes P450), whose ability to introduce oxygen, increasing solubility, is critical for imparting biological activity. In previous investigations of rice diterpenoid biosynthesis, we characterized CYPs that catalyse alternative hydroxylation of ent-sandaracopimaradiene, the precursor to the rice oryzalexin antibiotic phytoalexins. In particular, CYP76M5, CYP76M6 and CYP76M8 were all shown to carry out C-7β hydroxylation, whereas CYP701A8 catalyses C-3α hydroxylation, with oxy groups found at both positions in oryzalexins A-D, suggesting that these may act consecutively in oryzalexin biosynthesis. In the present paper, we report that, although CYP701A8 only poorly reacts with 7β-hydroxy-ent-sandaracopimaradiene, CYP76M6 and CYP76M8 readily react with 3α-hydroxy-ent-sandaracopimaradiene. Notably, their activity yields distinct products, resulting from hydroxylation at C-9β by CYP76M6 or C-7β by CYP76M8, on different sides of the core tricyclic ring structure. Thus CYP76M6 and CYP76M8 have distinct non-redundant roles in orzyalexin biosynthesis. Moreover, the resulting 3α,7β- and 3α,9β-diols correspond to oryzalexins D and E respectively. Accordingly, the results of the present study complete the functional identification of the biosynthetic pathway underlying the production of these bioactive phytoalexins. In addition, the altered regiochemistry catalysed by CYP76M6 following C-3α hydroxylation has some implications for its active-site configuration, offering further molecular insight. PMID:23795884

  2. Distinct Roles of Apolipoproteins A1 and E in the Modulation of High-Density Lipoprotein Composition and Function.

    PubMed

    Filou, Serafoula; Lhomme, Marie; Karavia, Eleni A; Kalogeropoulou, Christina; Theodoropoulos, Vassilis; Zvintzou, Evangelia; Sakellaropoulos, George C; Petropoulou, Peristera-Ioanna; Constantinou, Caterina; Kontush, Anatol; Kypreos, Kyriakos E

    2016-07-12

    In addition to high-density lipoprotein cholesterol (HDL-C) levels, HDL quality also appears to be very important for atheroprotection. Analysis of various clinical paradigms suggests that the lipid and apolipoprotein composition of HDL defines its size, shape, and functions and may determine its beneficial effects on human health. Previously, we reported that like apolipoprotein A-I (Apoa1), apolipoprotein E (Apoe) is also capable of promoting the de novo biogenesis of HDL with the participation of ATP binding cassette A lipid transporter member 1 (Abca1) and plasma enzyme lecithin:cholesterol acyltransferase (Lcat), in a manner independent of a functional Apoa1. Here, we performed a comparative analysis of the functions of these HDL subpopulations. Specifically, Apoe and Apoa1 double-deficient (Apoe(-/-) × Apoa1(-/-)) mice were infected with APOA1- or APOE3-expressing adenoviruses, and APOA1-containing HDL (APOA1-HDL) and APOE3-containing HDL (APOE3-HDL), respectively, were isolated and analyzed by biochemical and physicochemical methods. Western blot and lipidomic analyses indicated significant differences in the apolipoprotein and lipid composition of the two HDL species. Moreover APOE3-HDL presented a markedly reduced antioxidant potential and Abcg1-mediated cholesterol efflux capacity. Surprisingly, APOE3-HDL but not APOA1-HDL attenuated LPS-induced production of TNFα in RAW264.7 cells, suggesting that the anti-inflammatory effects of APOA1 are dependent on APOE expression. Taken together, our data indicate that APOA1 and APOE3 recruit different apolipoproteins and lipids on the HDL particle, leading to structurally and functionally distinct HDL subpopulations. The distinct role of these two apolipoproteins in the modulation of HDL functionality may pave the way toward the development of novel pharmaceuticals that aim to improve HDL functionality. PMID:27332083

  3. Distinct roles for mammalian target of rapamycin complexes in the fibroblast response to transforming growth factor-beta.

    PubMed

    Rahimi, Rod A; Andrianifahanana, Mahefatiana; Wilkes, Mark C; Edens, Maryanne; Kottom, Theodore J; Blenis, John; Leof, Edward B

    2009-01-01

    Transforming growth factor-beta (TGF-beta) promotes a multitude of diverse biological processes, including growth arrest of epithelial cells and proliferation of fibroblasts. Although the TGF-beta signaling pathways that promote inhibition of epithelial cell growth are well characterized, less is known about the mechanisms mediating the positive response to this growth factor. Given that TGF-beta has been shown to promote fibrotic diseases and desmoplasia, identifying the fibroblast-specific TGF-beta signaling pathways is critical. Here, we investigate the role of mammalian target of rapamycin (mTOR), a known effector of phosphatidylinositol 3-kinase (PI3K) and promoter of cell growth, in the fibroblast response to TGF-beta. We show that TGF-beta activates mTOR complex 1 (mTORC1) in fibroblasts but not epithelial cells via a PI3K-Akt-TSC2-dependent pathway. Rapamycin, the pharmacologic inhibitor of mTOR, prevents TGF-beta-mediated anchorage-independent growth without affecting TGF-beta transcriptional responses or extracellular matrix protein induction. In addition to mTORC1, we also examined the role of mTORC2 in TGF-beta action. mTORC2 promotes TGF-beta-induced morphologic transformation and is required for TGF-beta-induced Akt S473 phosphorylation but not mTORC1 activation. Interestingly, both mTOR complexes are necessary for TGF-beta-mediated growth in soft agar. These results define distinct and overlapping roles for mTORC1 and mTORC2 in the fibroblast response to TGF-beta and suggest that inhibitors of mTOR signaling may be useful in treating fibrotic processes, such as desmoplasia. PMID:19117990

  4. Distinct roles of the DmNav and DSC1 channels in the action of DDT and pyrethroids.

    PubMed

    Rinkevich, Frank D; Du, Yuzhe; Tolinski, Josh; Ueda, Atsushi; Wu, Chun-Fang; Zhorov, Boris S; Dong, Ke

    2015-03-01

    Voltage-gated sodium channels (Nav channels) are critical for electrical signaling in the nervous system and are the primary targets of the insecticides DDT and pyrethroids. In Drosophila melanogaster, besides the canonical Nav channel, Para (also called DmNav), there is a sodium channel-like cation channel called DSC1 (Drosophila sodium channel 1). Temperature-sensitive paralytic mutations in DmNav (para(ts)) confer resistance to DDT and pyrethroids, whereas DSC1 knockout flies exhibit enhanced sensitivity to pyrethroids. To further define the roles and interaction of DmNav and DSC1 channels in DDT and pyrethroid neurotoxicology, we generated a DmNav/DSC1 double mutant line by introducing a para(ts1) allele (carrying the I265N mutation) into a DSC1 knockout line. We confirmed that the I265N mutation reduced the sensitivity to two pyrethroids, permethrin and deltamethrin of a DmNav variant expressed in Xenopus oocytes. Computer modeling predicts that the I265N mutation confers pyrethroid resistance by allosterically altering the second pyrethroid receptor site on the DmNav channel. Furthermore, we found that I265N-mediated pyrethroid resistance in para(ts1) mutant flies was almost completely abolished in para(ts1);DSC1(-/-) double mutant flies. Unexpectedly, however, the DSC1 knockout flies were less sensitive to DDT, compared to the control flies (w(1118A)), and the para(ts1);DSC1(-/-) double mutant flies were even more resistant to DDT compared to the DSC1 knockout or para(ts1) mutant. Our findings revealed distinct roles of the DmNav and DSC1 channels in the neurotoxicology of DDT vs. pyrethroids and implicate the exciting possibility of using DSC1 channel blockers or modifiers in the management of pyrethroid resistance. PMID:25687544

  5. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.

    PubMed

    Zhou, Zhen; Wang, Xiaohui; Liu, Hao-Yang; Zou, Xiaoqin; Li, Min; Hwang, Tzyh-Chang

    2006-10-01

    Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC (ATP binding cassette) transporter family, is a chloride channel whose activity is controlled by protein kinase-dependent phosphorylation. Opening and closing (gating) of the phosphorylated CFTR is coupled to ATP binding and hydrolysis at CFTR's two nucleotide binding domains (NBD1 and NBD2). Recent studies present evidence that the open channel conformation reflects a head-to-tail dimerization of CFTR's two NBDs as seen in the NBDs of other ABC transporters (Vergani et al., 2005). Whether these two ATP binding sites play an equivalent role in the dynamics of NBD dimerization, and thus in gating CFTR channels, remains unsettled. Based on the crystal structures of NBDs, sequence alignment, and homology modeling, we have identified two critical aromatic amino acids (W401 in NBD1 and Y1219 in NBD2) that coordinate the adenine ring of the bound ATP. Conversion of the W401 residue to glycine (W401G) has little effect on the sensitivity of the opening rate to [ATP], but the same mutation at the Y1219 residue dramatically lowers the apparent affinity for ATP by >50-fold, suggesting distinct roles of these two ATP binding sites in channel opening. The W401G mutation, however, shortens the open time constant. Energetic analysis of our data suggests that the free energy of ATP binding at NBD1, but not at NBD2, contributes significantly to the energetics of the open state. This kinetic and energetic asymmetry of CFTR's two NBDs suggests an asymmetric motion of the NBDs during channel gating. Opening of the channel is initiated by ATP binding at the NBD2 site, whereas separation of the NBD dimer at the NBD1 site constitutes the rate-limiting step in channel closing. PMID:16966475

  6. The Two ATP Binding Sites of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Play Distinct Roles in Gating Kinetics and Energetics

    PubMed Central

    Zhou, Zhen; Wang, Xiaohui; Liu, Hao-Yang; Zou, Xiaoqin; Li, Min; Hwang, Tzyh-Chang

    2006-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ABC (ATP binding cassette) transporter family, is a chloride channel whose activity is controlled by protein kinase–dependent phosphorylation. Opening and closing (gating) of the phosphorylated CFTR is coupled to ATP binding and hydrolysis at CFTR's two nucleotide binding domains (NBD1 and NBD2). Recent studies present evidence that the open channel conformation reflects a head-to-tail dimerization of CFTR's two NBDs as seen in the NBDs of other ABC transporters (Vergani et al., 2005). Whether these two ATP binding sites play an equivalent role in the dynamics of NBD dimerization, and thus in gating CFTR channels, remains unsettled. Based on the crystal structures of NBDs, sequence alignment, and homology modeling, we have identified two critical aromatic amino acids (W401 in NBD1 and Y1219 in NBD2) that coordinate the adenine ring of the bound ATP. Conversion of the W401 residue to glycine (W401G) has little effect on the sensitivity of the opening rate to [ATP], but the same mutation at the Y1219 residue dramatically lowers the apparent affinity for ATP by >50-fold, suggesting distinct roles of these two ATP binding sites in channel opening. The W401G mutation, however, shortens the open time constant. Energetic analysis of our data suggests that the free energy of ATP binding at NBD1, but not at NBD2, contributes significantly to the energetics of the open state. This kinetic and energetic asymmetry of CFTR's two NBDs suggests an asymmetric motion of the NBDs during channel gating. Opening of the channel is initiated by ATP binding at the NBD2 site, whereas separation of the NBD dimer at the NBD1 site constitutes the rate-limiting step in channel closing. PMID:16966475

  7. The Chang'E-1 orbiter plays a distinctive role in China's first successful selenodetic lunar mission

    NASA Astrophysics Data System (ADS)

    Ping, Jinsong; Su, Xiaoli; Huang, Qian; Yan, Jianguo

    2011-12-01

    The first Chinese lunar orbiter Chang'E-1 is a successful mission with many fruitful results obtained in various disciplines. The scientific data acquired by the Chang'E-1 payloads can benefit studies of the lunar origin and evolution, as well as other relevant research areas, after careful validation of the data. Among the new results, the Chang'E-1 selenodetic products are continually uncovering characteristics of the lunar surface, undersurface and inner structure. Successful lunar orbiters such as the Clementine, Lunar Prospector, KAGUYA/SELENE, Chang'E-1, Lunar Reconnaissance Orbiter and GRAIL have been revealing, with increasing clarity, global selenodetic characteristics with state-of-the-art fine resolution and high precision. In particular, the Chang'E-1 plays an important distinctive role in selenodetic exploration through enhancing lunar topography and gravity models. The gravity model has been successfully improved with a factor of two after applying the Chang'E-1 long-wavelength tracking data. Using the new models, some medium-scale lunar surface characteristics such as basins and volcanoes have been identified. Furthermore, the old mascon basins of Bouguer, gravity anomaly and craters have been discovered with the Chang'E-1 selenodetic data.

  8. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks

    PubMed Central

    van Attikum, Haico; Fritsch, Olivier; Gasser, Susan M

    2007-01-01

    INO80 and SWR1 are two closely related ATP-dependent chromatin remodeling complexes that share several subunits. Ino80 was reported to be recruited to the HO endonuclease-induced double-strand break (DSB) at the budding yeast mating-type locus, MAT. We find Swr1 similarly recruited in a manner dependent on the phosphorylation of H2A (γH2AX). This is not unique to cleavage at MAT; both Swr1 and Ino80 bind near an induced DSB on chromosome XV. Whereas Swr1 incorporates the histone variant H2A.Z into chromatin at promoters, H2A.Z levels do not increase at DSBs. Instead, H2A.Z, γH2AX and core histones are coordinately removed near the break in an INO80-dependent, but SWR1-independent, manner. Mutations in INO80-specific subunits Arp8 or Nhp10 impair the binding of Mre11 nuclease, yKu80 and ATR-related Mec1 kinase at the DSB, resulting in defective end-processing and checkpoint activation. In contrast, Mre11 binding, end-resection and checkpoint activation were normal in the swr1 strain, but yKu80 loading and error-free end-joining were impaired. Thus, these two related chromatin remodelers have distinct roles in DSB repair and checkpoint activation. PMID:17762868

  9. Cucumber SUPERMAN has conserved function in stamen and fruit development and a distinct role in floral patterning.

    PubMed

    Zhao, Jianyu; Liu, Meiling; Jiang, Li; Ding, Lian; Yan, Shuang Shuang; Zhang, Juan; Dong, Zhaobin; Ren, Huazhong; Zhang, Xiaolan

    2014-01-01

    The Arabidopsis SUPERMAN (SUP) gene encodes a C2H2 type zinc finger protein that is required for maintaining the boundaries between stamens and carpels, and for regulating development of ovule outer integument. Orthologs of SUP have been characterized in bisexual flowers as well as dioecious species, but it remains elusive in monoecious plants with unisexual flowers on the same individual. Here we isolate the SUP ortholog in Cucumis sativus L (CsSUP), a monoecious vegetable. CsSUP is predominantly expressed in female specific organs: the female flower buds and ovules. Ectopic expression of CsSUP in Arabidopsis can partially complement the fruit development in sup-5 mutant, and its over-expression in wide-type leads to reduced silique length, suppressed stamen development and distorted petal patterning. Our data suggest that CsSUP plays conserved as well as distinct roles during flower and fruit development, and it may function in the boundaries and ovules to balance petal patterning, stamen and ovule development in Arabidopsis. PMID:24465952

  10. RNase P: role of distinct protein cofactors in tRNA substrate recognition and RNA-based catalysis

    PubMed Central

    Sharin, Ela; Schein, Aleks; Mann, Hagit; Ben-Asouli, Yitzhak; Jarrous, Nayef

    2005-01-01

    The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5′ leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA–Rpp29 and M1 RNA–C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P. PMID:16155184

  11. The Distinct Role of the Amygdala, Superior Colliculus and Pulvinar in Processing of Central and Peripheral Snakes

    PubMed Central

    Almeida, Inês; Soares, Sandra C.; Castelo-Branco, Miguel

    2015-01-01

    pulvinar. Conclusion These results show that subcortical structures containing foveal representations such as the amygdala, pulvinar and superior colliculus play distinct roles in the central and peripheral processing of snake shapes. Our findings suggest multiple phylogenetic fingerprints in the responses of subcortical structures to fear-relevant stimuli. PMID:26075614

  12. NF-κB p50 Plays Distinct Roles in the Establishment and Control of Murine Gammaherpesvirus 68 Latency ▿

    PubMed Central

    Krug, Laurie T.; Collins, Christopher M.; Gargano, Lisa M.; Speck, Samuel H.

    2009-01-01

    NF-κB signaling is critical to the survival and transformation of cells infected by the human gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. Here we have examined how elimination of the NF-κB transcription factor p50 from mice affects the life cycle of murine gammaherpesvirus 68 (MHV68). Notably, mice lacking p50 in every cell type were unable to establish a sufficiently robust immune response to control MHV68 infection, leading to high levels of latently infected B cells detected in the spleen and persistent virus replication in the lungs. The latter correlated with very low levels of virus-specific immunoglobulin G (IgG) in the infected p50−/− mice at day 48 postinfection. Because the confounding impact of the loss of p50 on the host response to MHV68 infection prevented a direct analysis of the role of this NF-κB family member on MHV68 latency in B cells, we generated and infected mixed p50+/+/p50−/− bone marrow chimeric mice. We show that the chimeric mice were able to control acute virus replication and exhibited normal levels of virus-specific IgG at 3 months postinfection, indicating the induction of a normal host immune response to MHV68 infection. However, in p50+/+/p50−/− chimeric mice the p50−/− B cells exhibited a significant defect compared to p50+/+ B cells in supporting MHV68 latency. In addition to identifying a role for p50 in the establishment of latency, we determined that the absence of p50 in a subset of the hematopoietic compartment led to persistent virus replication in the lungs of the chimeric mice, providing evidence that p50 is required for controlling virus reactivation. Taken together, these data demonstrate that p50 is required for immune control by the host and has distinct tissue-dependent roles in the regulation of murine gammaherpesvirus latency during chronic infection. PMID:19264770

  13. Orexin/Hypocretin and Histamine: Distinct Roles in the Control of Wakefulness Demonstrated Using Knock-Out Mouse Models

    PubMed Central

    Anaclet, Christelle; Parmentier, Régis; Ouk, Koliane; Guidon, Gérard; Buda, Colette; Sastre, Jean-Pierre; Akaoka, Hidéo; Sergeeva, Olga A.; Yanagisawa, Masashi; Ohtsu, Hiroshi; Franco, Patricia; Haas, Helmut L.; Lin, Jian Sheng

    2009-01-01

    To determine the respective role played by orexin/hypocretin and histamine (HA) neurons in maintaining wakefulness (W), we characterized the behavioral and sleep-wake phenotypes of orexin(Ox) knockout(−/−) mice and compared them with those of histidine-decarboxylase(HDC, HA-synthesizing enzyme)−/−mice. While both mouse strains displayed sleep fragmentation and increased paradoxical sleep(PS), they presented a number of marked differences: 1) The PS-increase in HDC−/−mice was seen during lightness, whereas that in Ox−/−mice occurred during darkness; 2) Contrary to HDC−/−, Ox−/−mice had no W deficiency around lights-off, nor an abnormal EEG and responded to a new environment with increased W; 3) Only Ox−/−, but not HDC−/−mice, displayed narcolepsy and deficient W when faced with motor challenge. Thus, when placed on a wheel, WT, but not littermate Ox−/−mice, voluntarily spent their time in turning it and as a result, remained highly awake; this was accompanied by dense c-fos expression in many areas of their brains, including Ox-neurons in the dorsolateral hypothalamus. The W and motor deficiency of Ox−/−mice was due to the absence of Ox because intraventricular dosing of Ox-A restored their W amount and motor performance whereas SB-334867 (Ox1-receptor antagonist, i.p.) impaired W and locomotion of WT mice during the test. These data indicate that Ox, but not HA, promotes W through enhanced locomotion and suggest that HA and Ox neurons exert a distinct, but complementary and synergistic control of W: the neuropeptide being more involved in its behavioral aspects, whereas the amine is mainly responsible for its qualitative cognitive aspects and cortical-EEG activation. PMID:19923277

  14. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation

    PubMed Central

    Moura, Danielle MN; Reis, Christian RS; Xavier, Camila C; da Costa Lima, Tamara D; Lima, Rodrigo P; Carrington, Mark; de Melo Neto, Osvaldo P

    2015-01-01

    In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation. PMID:25826663

  15. Two related trypanosomatid eIF4G homologues have functional differences compatible with distinct roles during translation initiation.

    PubMed

    Moura, Danielle M N; Reis, Christian R S; Xavier, Camila C; da Costa Lima, Tamara D; Lima, Rodrigo P; Carrington, Mark; de Melo Neto, Osvaldo P

    2015-01-01

    In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation. PMID:25826663

  16. Antiviral immunity of Anopheles gambiae is highly compartmentalized, with distinct roles for RNA interference and gut microbiota.

    PubMed

    Carissimo, Guillaume; Pondeville, Emilie; McFarlane, Melanie; Dietrich, Isabelle; Mitri, Christian; Bischoff, Emmanuel; Antoniewski, Christophe; Bourgouin, Catherine; Failloux, Anna-Bella; Kohl, Alain; Vernick, Kenneth D

    2015-01-13

    Arboviruses are transmitted by mosquitoes and other arthropods to humans and animals. The risk associated with these viruses is increasing worldwide, including new emergence in Europe and the Americas. Anopheline mosquitoes are vectors of human malaria but are believed to transmit one known arbovirus, o'nyong-nyong virus, whereas Aedes mosquitoes transmit many. Anopheles interactions with viruses have been little studied, and the initial antiviral response in the midgut has not been examined. Here, we determine the antiviral immune pathways of the Anopheles gambiae midgut, the initial site of viral infection after an infective blood meal. We compare them with the responses of the post-midgut systemic compartment, which is the site of the subsequent disseminated viral infection. Normal viral infection of the midgut requires bacterial flora and is inhibited by the activities of immune deficiency (Imd), JAK/STAT, and Leu-rich repeat immune factors. We show that the exogenous siRNA pathway, thought of as the canonical mosquito antiviral pathway, plays no detectable role in antiviral defense in the midgut but only protects later in the systemic compartment. These results alter the prevailing antiviral paradigm by describing distinct protective mechanisms in different body compartments and infection stages. Importantly, the presence of the midgut bacterial flora is required for full viral infectivity to Anopheles, in contrast to malaria infection, where the presence of the midgut bacterial flora is required for protection against infection. Thus, the enteric flora controls a reciprocal protection tradeoff in the vector for resistance to different human pathogens. PMID:25548172

  17. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana.

    PubMed

    Fujimoto, Masaru; Suda, Yasuyuki; Vernhettes, Samantha; Nakano, Akihiko; Ueda, Takashi

    2015-02-01

    The oriented deposition of cellulose microfibrils in the plant cell wall plays a crucial role in various plant functions such as cell growth, organ formation and defense responses. Cellulose is synthesized by cellulose synthase complexes (CSCs) embedded in the plasma membrane (PM), which comprise the cellulose synthases (CESAs). The abundance and localization of CSCs at the PM should be strictly controlled for precise regulation of cellulose deposition, which strongly depends on the membrane trafficking system. However, the mechanism of the intracellular transport of CSCs is still poorly understood. In this study, we explored requirements for phosphoinositides (PIs) in CESA trafficking by analyzing the effects of inhibitors of PI synthesis in Arabidopsis thaliana expressing green fluorescent protein-tagged CESA3 (GFP-CESA3). We found that a shift to a sucrose-free condition accelerated re-localization of PM-localized GFP-CESA3 into the periphery of the Golgi apparatus via the clathrin-enriched trans-Golgi network (TGN). Treatment with wortmannin (Wm), an inhibitor of phosphatidylinositol 3- (PI3K) and 4- (PI4K) kinases, and phenylarsine oxide (PAO), a more specific inhibitor for PI4K, inhibited internalization of GFP-CESA3 from the PM. In contrast, treatment with LY294002, which impairs the PI3K activity, did not exert such an inhibitory effect on the sequestration of GFP-CESA3, but caused a predominant accumulation of GFP-CESA3 at the ring-shaped periphery of the Golgi apparatus, resulting in the removal of GFP-CESA3 from the PM. These results indicate that PIs are essential elements for localization and intracellular transport of CESA3 and that PI4K and PI3K are required for distinct steps in secretory and/or endocytic trafficking of CESA3. PMID:25516570

  18. 50 CFR 20.33 - Possession limit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Possession limit. 20.33 Section 20.33... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.33 Possession limit. No person shall possess more migratory game birds taken in the United States than the possession limit or the...

  19. Involuntary mass spirit possession among the Miskitu.

    PubMed

    Wedel, Johan

    2012-01-01

    This paper seeks to understand the outbreaks and the development of grisi siknis, a form of mass spirit possession among the Miskitu of north-eastern Nicaragua. Earlier documented outbreaks typically involved a few adolescents, however, in recent years, violent large-scale epidemics have taken place, involving many people of all ages. This has coincided with recent developments in Miskitu society marked by conflicts, contradictions and tense social relations. The anthropological field technique of participant-observation was used. The research took place during 11 months from 2005 to 2008 in the port town of Puerto Cabezas. A total of 38 informants were interviewed. Group discussions, narratives and informal and semi-structured interviews were carried out, as well as participation in healing rituals. The paper shows that socio-economic, cultural, personal as well as environmental factors all contribute to outbreaks of grisi siknis. The affliction has previously been considered a 'culture-bound syndrome' only occurring among the Miskitu. However, when viewed in a more contemporary context and cross-cultural perspective, grisi siknis shows similarities with other forms of involuntary mass spirit possession, particularly in the ways it is manifested, experienced and appears to be spreading. The paper argues that the phenomenon should no longer be considered a 'culture-bound condition' but in fact a Miskitu version of involuntary mass spirit possession. Further research that seeks to understand other forms of involuntary mass spirit possession should emphasize the social, personal and environmental context as well as cross-cultural comparisons in order to encompass fully the role of culture in relation to illness and suffering. PMID:22746214

  20. Distinct Functions of Neutrophil in Cancer and Its Regulation

    PubMed Central

    Granot, Zvi; Jablonska, Jadwiga

    2015-01-01

    Neutrophils are the most abundant of all white blood cells in the human circulation and are usually associated with inflammation and with fighting infections. In recent years the role immune cells play in cancer has been a matter of increasing interest. In this context the function of neutrophils is controversial as neutrophils were shown to possess both tumor promoting and tumor limiting properties. Here we provide an up-to-date review of the pro- and antitumor properties neutrophils possess as well as the environmental cues that regulate these distinct functions. PMID:26648665

  1. 50 CFR 648.125 - Possession limit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Possession limit. 648.125 Section 648.125... § 648.125 Possession limit. (a) No person shall possess more than 10 scup in, or harvested from, the EEZ... moratorium permit are subject to this possession limit. The owner, operator, and crew of a charter or...

  2. 50 CFR 648.145 - Possession limit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Possession limit. 648.145 Section 648.145... Fishery § 648.145 Possession limit. (a) No person shall possess more than 25 black sea bass, in, or... that is not eligible for a black sea bass moratorium permit are subject to this possession limit....

  3. The Distinct Roles of Sociometric and Perceived Popularity in Friendship: Implications for Adolescent Depressive Affect and Self-Esteem

    ERIC Educational Resources Information Center

    Litwack, Scott D.; Aikins, Julie Wargo; Cillessen, Antonius H. N.

    2012-01-01

    The primary goal of this study was to examine the similarities and distinctions between two types of popularity, sociometric and perceived, in their associations with friendship characteristics and how they in turn are related to depressive affect and self-esteem. Among 245 eighth graders, sociometric popularity was associated with a greater…

  4. Exploring the effects of icon characteristics on user performance: the role of icon concreteness, complexity, and distinctiveness.

    PubMed

    McDougall, S J; de Bruijn, O; Curry, M B

    2000-12-01

    Because icons, signs, and symbols are now widely used to communicate information, it is essential for system designers to know what makes them easy to use and interpret. The authors report a series of studies that examine characteristics considered central to icon usability. After quantifying the properties of icon concreteness, complexity, and discriminability, the authors assessed each property's effects on user performance when user experience, task demands, and presentation context were systematically varied. Findings indicated that the effects of icon concreteness were primarily associated with the initial grasp of meaning, whereas complexity effects were found to persist longer and to be associated with search efficacy. The effects of icon distinctiveness were complex, but distinctiveness was enhanced by using both semantic and visual contrasts. The implications of these findings for interface design are discussed. PMID:11218339

  5. Computational identification and analysis of signaling subnetworks with distinct functional roles in the regulation of TNF production.

    PubMed

    Tomaiuolo, Maurizio; Kottke, Melissa; Matheny, Ronald W; Reifman, Jaques; Mitrophanov, Alexander Y

    2016-03-01

    Inflammation is a complex process driven by the coordinated action of a vast number of pro- and anti-inflammatory molecular mediators. While experimental studies have provided an abundance of information about the properties and mechanisms of action of individual mediators, essential system-level regulatory patterns that determine the time-course of inflammation are not sufficiently understood. In particular, it is not known how the contributions from distinct signaling pathways involved in cytokine regulation combine to shape the overall inflammatory response over different time scales. We investigated the kinetics of the intra- and extracellular signaling network controlling the production of the essential pro-inflammatory cytokine, tumor necrosis factor (TNF), and its anti-inflammatory counterpart, interleukin 10 (IL-10), in a macrophage culture. To tackle the intrinsic complexity of the network, we employed a computational modeling approach using the available literature data about specific molecular interactions. Our computational model successfully captured experimentally observed short- and long-term kinetics of key inflammatory mediators. Subsequent model analysis showed that distinct subnetworks regulate IL-10 production by impacting different temporal phases of the cAMP response element-binding protein (CREB) phosphorylation. Moreover, the model revealed that functionally similar inhibitory control circuits regulate the early and late activation phases of nuclear factor κB and CREB. Finally, we identified and investigated distinct signaling subnetworks that independently control the peak height and tail height of the TNF temporal trajectories. The knowledge of such subnetwork-specific regulatory effects may facilitate therapeutic interventions aimed at precise modulation of the inflammatory response. PMID:26751842

  6. Distinct Roles of Type I and Type III Interferons in Intestinal Immunity to Homologous and Heterologous Rotavirus Infections

    PubMed Central

    Balan, Murugabaskar; Tseng, Hsiang-Chi; McElrath, Constance; Smirnov, Sergey V.; Peng, Jianya; Yasukawa, Linda L.; Durbin, Russell K.; Durbin, Joan E.; Greenberg, Harry B.; Kotenko, Sergei V.

    2016-01-01

    Type I (IFN-α/β) and type III (IFN-λ) interferons (IFNs) exert shared antiviral activities through distinct receptors. However, their relative importance for antiviral protection of different organ systems against specific viruses remains to be fully explored. We used mouse strains deficient in type-specific IFN signaling, STAT1 and Rag2 to dissect distinct and overlapping contributions of type I and type III IFNs to protection against homologous murine (EW-RV strain) and heterologous (non-murine) simian (RRV strain) rotavirus infections in suckling mice. Experiments demonstrated that murine EW-RV is insensitive to the action of both types of IFNs, and that timely viral clearance depends upon adaptive immune responses. In contrast, both type I and type III IFNs can control replication of the heterologous simian RRV in the gastrointestinal (GI) tract, and they cooperate to limit extra-intestinal simian RRV replication. Surprisingly, intestinal epithelial cells were sensitive to both IFN types in neonatal mice, although their responsiveness to type I, but not type III IFNs, diminished in adult mice, revealing an unexpected age-dependent change in specific contribution of type I versus type III IFNs to antiviral defenses in the GI tract. Transcriptional analysis revealed that intestinal antiviral responses to RV are triggered through either type of IFN receptor, and are greatly diminished when receptors for both IFN types are lacking. These results also demonstrate a murine host-specific resistance to IFN-mediated antiviral effects by murine EW-RV, but the retention of host efficacy through the cooperative action by type I and type III IFNs in restricting heterologous simian RRV growth and systemic replication in suckling mice. Collectively, our findings revealed a well-orchestrated spatial and temporal tuning of innate antiviral responses in the intestinal tract where two types of IFNs through distinct patterns of their expression and distinct but overlapping sets

  7. Are you upset? Distinct roles for orbitofrontal and lateral prefrontal cortex in detecting and distinguishing facial expressions of emotion.

    PubMed

    Tsuchida, Ami; Fellows, Lesley K

    2012-12-01

    Navigating our complex social world requires effective processing of subtle emotional signals, such as those conveyed by facial expressions. Failure to do so may underlie some of the disabling social-emotional deficits common in a range of neuropsychiatric and neurological conditions. Prefrontal cortex (PFC) has long been implicated in these processes, but the particular contributions of subregions within PFC remain unclear. We used a sensitive facial emotion rating task in patients with focal lesions to different regions within PFC to identify distinct contributions of 2 prefrontal regions to recognizing emotions from facial expressions. A combination of region-of-interest and voxel-based lesion-symptom mapping established that damage to ventromedial PFC impaired the detection of subtle facial expressions of emotion. Such patients had difficulty distinguishing emotional from neutral expressions. In contrast, patients with left ventrolateral PFC were able to detect the presence of emotional signals but had difficulty discriminating between specific emotions. These effects were regionally specific: Dorsomedial prefrontal damage had no effect on either aspect of emotion recognition. These findings suggest that separable processes relying critically on distinct regions within PFC responsible, on the one hand, for detecting emotional signals from facial expressions and, on the other, for correctly classifying such signals. PMID:22223852

  8. Male homosexuality and spirit possession in Brazil.

    PubMed

    Fry, P

    1985-01-01

    This paper examines the relationship between male homosexuality and the Afro-Brazilian possession cults in Belém do Parà. After a discussion of the literature follows a description of the cults' beliefs, rites and social organization. Male sex roles are then discussed and the two categories, bicha and man, analyzed. It is noted that there is no term which is equivalent to the western category of "homosexual" in this taxonomic system. After putting forward folk explanations for the presence of many bichas in the cults, an analysis is put forward of the social rewards available to bichas within these cults, and the structural relationship between homosexuality and these regions in terms of their congruent marginality vis-à-vis "normal society." PMID:4093598

  9. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair

    PubMed Central

    Pipalia, Tapan G.; Koth, Jana; Roy, Shukolpa D.; Hammond, Christina L.; Kawakami, Koichi

    2016-01-01

    ABSTRACT Heterogeneity of stem cells or their niches is likely to influence tissue regeneration. Here we reveal stem/precursor cell diversity during wound repair in larval zebrafish somitic body muscle using time-lapse 3D confocal microscopy on reporter lines. Skeletal muscle with incision wounds rapidly regenerates both slow and fast muscle fibre types. A swift immune response is followed by an increase in cells at the wound site, many of which express the muscle stem cell marker Pax7. Pax7+ cells proliferate and then undergo terminal differentiation involving Myogenin accumulation and subsequent loss of Pax7 followed by elongation and fusion to repair fast muscle fibres. Analysis of pax7a and pax7b transgenic reporter fish reveals that cells expressing each of the duplicated pax7 genes are distinctly localised in uninjured larvae. Cells marked by pax7a only or by both pax7a and pax7b enter the wound rapidly and contribute to muscle wound repair, but each behaves differently. Low numbers of pax7a-only cells form nascent fibres. Time-lapse microscopy revealed that the more numerous pax7b-marked cells frequently fuse to pre-existing fibres, contributing more strongly than pax7a-only cells to repair of damaged fibres. pax7b-marked cells are more often present in rows of aligned cells that are observed to fuse into a single fibre, but more rarely contribute to nascent regenerated fibres. Ablation of a substantial portion of nitroreductase-expressing pax7b cells with metronidazole prior to wounding triggered rapid pax7a-only cell accumulation, but this neither inhibited nor augmented pax7a-only cell-derived myogenesis and thus altered the cellular repair dynamics during wound healing. Moreover, pax7a-only cells did not regenerate pax7b cells, suggesting a lineage distinction. We propose a modified founder cell and fusion-competent cell model in which pax7a-only cells initiate fibre formation and pax7b cells contribute to fibre growth. This newly discovered cellular

  10. 50 CFR 648.204 - Possession restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Atlantic Herring Fishery § 648.204 Possession restrictions. (a) A vessel must be issued and possess a valid limited access herring permit to fish for, possess, or land more than 6,600 lb (3 mt) of Atlantic herring from any herring management area in the EEZ, provided that the area has not been closed due to...

  11. 50 CFR 648.204 - Possession restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Atlantic Herring Fishery § 648.204 Possession restrictions. (a) A vessel must be issued and possess a valid limited access herring permit to fish for, possess, or land more than 6,600 lb (3 mt) of Atlantic herring from any herring management area in the EEZ, provided that the area has not been closed due to...

  12. 50 CFR 648.204 - Possession restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Atlantic Herring Fishery § 648.204 Possession restrictions. (a) A vessel must be issued and possess a valid limited access herring permit to fish for, possess, or land more than 6,600 lb (3 mt) of Atlantic herring from any herring management area in the EEZ, provided that the area has not been closed due to...

  13. 50 CFR 648.204 - Possession restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Atlantic Herring Fishery § 648.204 Possession restrictions. (a) A vessel must be issued and possess a valid limited access herring permit to fish for, possess, or land more than 6,600 lb (3 mt) of Atlantic herring from any herring management area in the EEZ, provided that the area has not been closed due to...

  14. Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways

    PubMed Central

    Reyniers, Lauran; Del Giudice, Maria Grazia; Civiero, Laura; Belluzzi, Elisa; Lobbestael, Evy; Beilina, Alexandra; Arrigoni, Giorgio; Derua, Rita; Waelkens, Etienne; Li, Yan; Crosio, Claudia; Iaccarino, Ciro; Cookson, Mark R.; Baekelandt, Veerle; Greggio, Elisa; Taymans, Jean-Marc

    2014-01-01

    Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinson’s disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1- and LRRK2-specific cellular processes by identifying their distinct interacting proteins. A protein microarray-based interaction screen was performed with recombinant 3xFlag-LRRK1 and 3xFlag-LRRK2 and, in parallel, co-immunoprecipitation followed by mass spectrometry was performed from SH-SY5Y neuroblastoma cell lines stably expressing 3xFlag-LRRK1 or 3xFlag-LRRK2. We identified a set of LRRK1- and LRRK2-specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14-3-3 consensus binding motifs. To assess the functional relevance of these interactions, SH-SY5Y-LRRK1 and -LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14-3-3 binding, or with EGF, an EGF-R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins. PMID:24947832

  15. Transnational Geographies of Academic Distinction: The Role of Social Capital in the Recognition and Evaluation of "Overseas" Credentials

    ERIC Educational Resources Information Center

    Waters, Johanna L.

    2009-01-01

    This paper examines the role of specific and place-based social capital in the recognition and evaluation of international credentials. Whilst research on labour market segmentation has contributed towards an understanding of the spatial variability of the value of human capital, very little attention has been paid to the ways in which the…

  16. Histone H3 K79 methylation states play distinct roles in UV-induced sister chromatid exchange and cell cycle checkpoint arrest in Saccharomyces cerevisiae

    PubMed Central

    Rossodivita, Alyssa A.; Boudoures, Anna L.; Mecoli, Jonathan P.; Steenkiste, Elizabeth M.; Karl, Andrea L.; Vines, Eudora M.; Cole, Arron M.; Ansbro, Megan R.; Thompson, Jeffrey S.

    2014-01-01

    Histone post-translational modifications have been shown to contribute to DNA damage repair. Prior studies have suggested that specific H3K79 methylation states play distinct roles in the response to UV-induced DNA damage. To evaluate these observations, we examined the effect of altered H3K79 methylation patterns on UV-induced G1/S checkpoint response and sister chromatid exchange (SCE). We found that the di- and trimethylated states both contribute to activation of the G1/S checkpoint to varying degrees, depending on the synchronization method, although methylation is not required for checkpoint in response to high levels of UV damage. In contrast, UV-induced SCE is largely a product of the trimethylated state, which influences the usage of gene conversion versus popout mechanisms. Regulation of H3K79 methylation by H2BK123 ubiquitylation is important for both checkpoint function and SCE. H3K79 methylation is not required for the repair of double-stranded breaks caused by transient HO endonuclease expression, but does play a modest role in survival from continuous exposure. The overall results provide evidence for the participation of H3K79 methylation in UV-induced recombination repair and checkpoint activation, and further indicate that the di- and trimethylation states play distinct roles in these DNA damage response pathways. PMID:24748660

  17. Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing

    PubMed Central

    Leu, Kuan-Chieh; Hsieh, Ming-Hsiun; Wang, Huei-Jing; Hsieh, Hsu-Liang

    2016-01-01

    ABSTRACT The mitochondrion is an important power generator in most eukaryotic cells. To preserve its function, many essential nuclear-encoded factors play specific roles in mitochondrial RNA metabolic processes, including RNA editing. RNA editing consists of post-transcriptional deamination, which alters specific nucleotides in transcripts to mediate gene expression. In plant cells, many pentatricopeptide repeat proteins (PPRs) participate in diverse organellar RNA metabolic processes, but only PLS-type PPRs are involved in RNA editing. Here, we report a P-type PPR protein from Arabidopsis thaliana, P-type PPR-Modulating Editing (PPME), which has a distinct role in mitochondrial nad1 RNA editing via RNA binding activity. In the homozygous ppme mutant, cytosine (C)-to-uracil (U) conversions at both the nad1-898 and 937 sites were abolished, disrupting Arg300-to-Trp300 and Pro313-to-Ser313 amino acid changes in the mitochondrial NAD1 protein. NAD1 is a critical component of mitochondrial respiration complex I; its activity is severely reduced in the homozygous ppme mutant, resulting in significantly altered growth and development. Both abolished RNA editing and defective complex I activity were completely rescued by CaMV 35S promoter- and PPME native promoter-driven PPME genomic fragments tagged with GFP in a homozygous ppme background. Our experimental results demonstrate a distinct role of a P-type PPR protein, PPME, in RNA editing in plant organelles. PMID:27149614

  18. Distinct role of Arabidopsis mitochondrial P-type pentatricopeptide repeat protein-modulating editing protein, PPME, in nad1 RNA editing.

    PubMed

    Leu, Kuan-Chieh; Hsieh, Ming-Hsiun; Wang, Huei-Jing; Hsieh, Hsu-Liang; Jauh, Guang-Yuh

    2016-06-01

    The mitochondrion is an important power generator in most eukaryotic cells. To preserve its function, many essential nuclear-encoded factors play specific roles in mitochondrial RNA metabolic processes, including RNA editing. RNA editing consists of post-transcriptional deamination, which alters specific nucleotides in transcripts to mediate gene expression. In plant cells, many pentatricopeptide repeat proteins (PPRs) participate in diverse organellar RNA metabolic processes, but only PLS-type PPRs are involved in RNA editing. Here, we report a P-type PPR protein from Arabidopsis thaliana, P-type PPR-Modulating Editing (PPME), which has a distinct role in mitochondrial nad1 RNA editing via RNA binding activity. In the homozygous ppme mutant, cytosine (C)-to-uracil (U) conversions at both the nad1-898 and 937 sites were abolished, disrupting Arg(300)-to-Trp(300) and Pro(313)-to-Ser(313) amino acid changes in the mitochondrial NAD1 protein. NAD1 is a critical component of mitochondrial respiration complex I; its activity is severely reduced in the homozygous ppme mutant, resulting in significantly altered growth and development. Both abolished RNA editing and defective complex I activity were completely rescued by CaMV 35S promoter- and PPME native promoter-driven PPME genomic fragments tagged with GFP in a homozygous ppme background. Our experimental results demonstrate a distinct role of a P-type PPR protein, PPME, in RNA editing in plant organelles. PMID:27149614

  19. Distinct effects of TRAIL on the mitochondrial network in human cancer cells and normal cells: role of plasma membrane depolarization

    PubMed Central

    Suzuki-Karasaki, Yoshihiro; Fujiwara, Kyoko; Saito, Kosuke; Suzuki-Karasaki, Miki; Ochiai, Toyoko; Soma, Masayoshi

    2015-01-01

    Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a promising anticancer drug due to its tumor-selective cytotoxicity. Here we report that TRAIL exhibits distinct effects on the mitochondrial networks in malignant cells and normal cells. Live-cell imaging revealed that multiple human cancer cell lines and normal cells exhibited two different modes of mitochondrial responses in response to TRAIL and death receptor agonists. Mitochondria within tumor cells became fragmented into punctate and clustered in response to toxic stimuli. The mitochondrial fragmentation was observed at 4 h, then became more pronounced over time, and associated with apoptotic cell death. In contrast, mitochondria within normal cells such as melanocytes and fibroblasts became only modestly truncated, even when they were treated with toxic stimuli. Although TRAIL activated dynamin-related protein 1 (Drp1)-dependent mitochondrial fission, inhibition of this process by Drp1 knockdown or with the Drp1 inhibitor mdivi-1, potentiated TRAIL-induced apoptosis, mitochondrial fragmentation, and clustering. Moreover, mitochondrial reactive oxygen species (ROS)-mediated depolarization accelerated mitochondrial network abnormalities in tumor cells, but not in normal cells, and TRAIL caused higher levels of mitochondrial ROS accumulation and depolarization in malignant cells than in normal cells. Our findings suggest that tumor cells are more prone than normal cells to oxidative stress and depolarization, thereby being more vulnerable to mitochondrial network abnormalities and that this vulnerability may be relevant to the tumor-targeting killing by TRAIL. PMID:26057632

  20. Vacuolar Nicotianamine Has Critical and Distinct Roles under Iron Deficiency and for Zinc Sequestration in Arabidopsis[C][W

    PubMed Central

    Haydon, Michael J.; Kawachi, Miki; Wirtz, Markus; Hillmer, Stefan; Hell, Rüdiger; Krämer, Ute

    2012-01-01

    The essential micronutrients Fe and Zn often limit plant growth but are toxic in excess. Arabidopsis thaliana ZINC-INDUCED FACILITATOR1 (ZIF1) is a vacuolar membrane major facilitator superfamily protein required for basal Zn tolerance. Here, we show that overexpression of ZIF1 enhances the partitioning into vacuoles of the low molecular mass metal chelator nicotianamine and leads to pronounced nicotianamine accumulation in roots, accompanied by vacuolar buildup of Zn. Heterologous ZIF1 protein localizes to vacuolar membranes and enhances nicotianamine contents of yeast cells engineered to synthesize nicotianamine, without complementing a Zn-hypersensitive mutant that additionally lacks vacuolar membrane Zn2+/H+ antiport activity. Retention in roots of Zn, but not of Fe, is enhanced in ZIF1 overexpressors at the expense of the shoots. Furthermore, these lines exhibit impaired intercellular Fe movement in leaves and constitutive Fe deficiency symptoms, thus phenocopying nicotianamine biosynthesis mutants. Hence, perturbing the subcellular distribution of the chelator nicotianamine has profound, yet distinct, effects on Zn and Fe with respect to their subcellular and interorgan partitioning. The zif1 mutant is also hypersensitive to Fe deficiency, even in media lacking added Zn. Therefore, accurate levels of ZIF1 expression are critical for both Zn and Fe homeostasis. This will help to advance the biofortification of crops. PMID:22374397

  1. Pivotal and distinct role for Plasmodium actin capping protein alpha during blood infection of the malaria parasite

    PubMed Central

    Ganter, Markus; Rizopoulos, Zaira; Schüler, Herwig; Matuschewski, Kai

    2015-01-01

    Accurate regulation of microfilament dynamics is central to cell growth, motility and response to environmental stimuli. Stabilizing and depolymerizing proteins control the steady-state levels of filamentous (F-) actin. Capping protein (CP) binds to free barbed ends, thereby arresting microfilament growth and restraining elongation to remaining free barbed ends. In all CPs characterized to date, alpha and beta subunits form the active heterodimer. Here, we show in a eukaryotic parasitic cell that the two CP subunits can be functionally separated. Unlike the beta subunit, the CP alpha subunit of the apicomplexan parasite Plasmodium is refractory to targeted gene deletion during blood infection in the mammalian host. Combinatorial complementation of Plasmodium berghei CP genes with the orthologs from Plasmodium falciparum verified distinct activities of CP alpha and CP alpha/beta during parasite life cycle progression. Recombinant Plasmodium CP alpha could be produced in Escherichia coli in the absence of the beta subunit and the protein displayed F-actin capping activity. Thus, the functional separation of two CP subunits in a parasitic eukaryotic cell and the F-actin capping activity of CP alpha expand the repertoire of microfilament regulatory mechanisms assigned to CPs. PMID:25565321

  2. Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency.

    PubMed

    Mathieu, Julie; Zhou, Wenyu; Xing, Yalan; Sperber, Henrik; Ferreccio, Amy; Agoston, Zsuzsa; Kuppusamy, Kavitha T; Moon, Randall T; Ruohola-Baker, Hannele

    2014-05-01

    Pluripotent stem cells have distinct metabolic requirements, and reprogramming cells to pluripotency requires a shift from oxidative to glycolytic metabolism. Here, we show that this shift occurs early during reprogramming of human cells and requires hypoxia-inducible factors (HIFs) in a stage-specific manner. HIF1α and HIF2α are both necessary to initiate this metabolic switch and for the acquisition of pluripotency, and the stabilization of either protein during early phases of reprogramming is sufficient to induce the switch to glycolytic metabolism. In contrast, stabilization of HIF2α during later stages represses reprogramming, partly because of the upregulation of TNF-related apoptosis-inducing ligand (TRAIL). TRAIL inhibits induced pluripotent stem cell (iPSC) generation by repressing apoptotic caspase 3 activity specifically in cells undergoing reprogramming but not human embryonic stem cells (hESCs), and inhibiting TRAIL activity enhances human iPSC generation. These results shed light on the mechanisms underlying the metabolic shifts associated with the acquisition of a pluripotent identity during reprogramming. PMID:24656769

  3. Distinct roles of Rho1, Cdc42, and Cyk3 in septum formation and abscission during yeast cytokinesis

    PubMed Central

    Onishi, Masayuki; Ko, Nolan; Nishihama, Ryuichi

    2013-01-01

    In yeast and animal cytokinesis, the small guanosine triphosphatase (GTPase) Rho1/RhoA has an established role in formation of the contractile actomyosin ring, but its role, if any, during cleavage-furrow ingression and abscission is poorly understood. Through genetic screens in yeast, we found that either activation of Rho1 or inactivation of another small GTPase, Cdc42, promoted secondary septum (SS) formation, which appeared to be responsible for abscission. Consistent with this hypothesis, a dominant-negative Rho1 inhibited SS formation but not cleavage-furrow ingression or the concomitant actomyosin ring constriction. Moreover, Rho1 is temporarily inactivated during cleavage-furrow ingression; this inactivation requires the protein Cyk3, which binds Rho1-guanosine diphosphate via its catalytically inactive transglutaminase-like domain. Thus, unlike the active transglutaminases that activate RhoA, the multidomain protein Cyk3 appears to inhibit activation of Rho1 (and thus SS formation), while simultaneously promoting cleavage-furrow ingression through primary septum formation. This work suggests a general role for the catalytically inactive transglutaminases of fungi and animals, some of which have previously been implicated in cytokinesis. PMID:23878277

  4. Drp2 and Periaxin form Cajal Bands with Dystroglycan but have Distinct Roles in Schwann Cell Growth

    PubMed Central

    Sherman, Diane L.; Wu, Lai Man N.; Grove, Matthew; Gillespie, C. Stewart; Brophy, Peter J.

    2012-01-01

    Cajal bands are cytoplasmic channels flanked by appositions where the abaxonal surface of Schwann cell myelin apposes and adheres to the overlying plasma membrane. These appositions contain a dystroglycan complex that includes periaxin and dystrophin-related protein 2 (Drp2). Loss of periaxin disrupts appositions and Cajal bands in Schwann cells and causes a severe demyelinating neuropathy in mouse and man. Here we have investigated the role of mouse Drp2 in apposition assembly and Cajal band function and compared it to periaxin. We show that Periaxin and Drp2 are not only both required to form appositions, but they must also interact. Periaxin-Drp2 interaction is also required for Drp2 phosphorylation but phosphorylation is not required for the assembly of appositions. Drp2 loss causes corresponding increases in Dystrophin family members, utrophin and dystrophin Dp116 though dystroglycan remains unchanged. We also show that all dystroglycan complexes in Schwann cells utilise the uncleaved form of β-dystroglycan. Drp2-null Schwann cells have disrupted appositions and Cajal bands, and they undergoe focal hypermyelination and concomitant demyelination. Nevertheless, they do not have the short internodal lengths and associated reduced nerve conduction velocity seen in the absence of periaxin, showing that periaxin regulates Schwann cell elongation independent of its role in the dystroglycan complex. We conclude that the primary role of the dystroglycan complex in appositions is to stabilize and limit the radial growth of myelin. PMID:22764250

  5. IRE1/bZIP60-Mediated Unfolded Protein Response Plays Distinct Roles in Plant Immunity and Abiotic Stress Responses

    PubMed Central

    Blanco, Francisca; Boatwright, Jon Lucas; Moreno, Ignacio; Jordan, Melissa R.; Chen, Yani; Brandizzi, Federica; Dong, Xinnian

    2012-01-01

    Endoplasmic reticulum (ER)-mediated protein secretion and quality control have been shown to play an important role in immune responses in both animals and plants. In mammals, the ER membrane-located IRE1 kinase/endoribonuclease, a key regulator of unfolded protein response (UPR), is required for plasma cell development to accommodate massive secretion of immunoglobulins. Plant cells can secrete the so-called pathogenesis-related (PR) proteins with antimicrobial activities upon pathogen challenge. However, whether IRE1 plays any role in plant immunity is not known. Arabidopsis thaliana has two copies of IRE1, IRE1a and IRE1b. Here, we show that both IRE1a and IRE1b are transcriptionally induced during chemically-induced ER stress, bacterial pathogen infection and treatment with the immune signal salicylic acid (SA). However, we found that IRE1a plays a predominant role in the secretion of PR proteins upon SA treatment. Consequently, the ire1a mutant plants show enhanced susceptibility to a bacterial pathogen and are deficient in establishing systemic acquired resistance (SAR), whereas ire1b is unaffected in these responses. We further demonstrate that the immune deficiency in ire1a is due to a defect in SA- and pathogen-triggered, IRE1-mediated cytoplasmic splicing of the bZIP60 mRNA, which encodes a transcription factor involved in the expression of UPR-responsive genes. Consistently, IRE1a is preferentially required for bZIP60 splicing upon pathogen infection, while IRE1b plays a major role in bZIP60 processing upon Tunicamycin (Tm)-induced stress. We also show that SA-dependent induction of UPR-responsive genes is altered in the bzip60 mutant resulting in a moderate susceptibility to a bacterial pathogen. These results indicate that the IRE1/bZIP60 branch of UPR is a part of the plant response to pathogens for which the two Arabidopsis IRE1 isoforms play only partially overlapping roles and that IRE1 has both bZIP60-dependent and bZIP60-independent functions in

  6. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development.

    PubMed

    Zhang, Xiao-Ning; Mount, Stephen M

    2009-07-01

    The serine-arginine-rich (SR) proteins constitute a conserved family of pre-mRNA splicing factors. In Arabidopsis (Arabidopsis thaliana), they are encoded by 19 genes, most of which are themselves alternatively spliced. In the case of SR45, the use of alternative 3' splice sites 21 nucleotides apart generates two alternatively spliced isoforms. Isoform 1 (SR45.1) has an insertion relative to isoform 2 (SR45.2) that replaces a single arginine with eight amino acids (TSPQRKTG). The biological implications of SR45 alternative splicing have been unclear. A previously described loss-of-function mutant affecting both isoforms, sr45-1, shows several developmental defects, including defects in petal development and root growth. We found that the SR45 promoter is highly active in regions with actively growing and dividing cells. We also tested the ability of each SR45 isoform to complement the sr45-1 mutant by overexpression of isoform-specific green fluorescent protein (GFP) fusion proteins. As expected, transgenic plants overexpressing either isoform displayed both nuclear speckles and GFP fluorescence throughout the nucleoplasm. We found that SR45.1-GFP complements the flower petal phenotype, but not the root growth phenotype. Conversely, SR45.2-GFP complements root growth but not floral morphology. Mutation of a predicted phosphorylation site within the alternatively spliced segment, SR45.1-S219A-GFP, does not affect complementation. However, a double mutation affecting both serine-219 and the adjacent threonine-218 (SR45.1-T218A + S219A-GFP) behaves like isoform 2, complementing the root but not the floral phenotype. In conclusion, our study provides evidence that the two alternatively spliced isoforms of SR45 have distinct biological functions. PMID:19403727

  7. Distinctive anabolic roles of 1,25-dihydroxyvitamin D(3) and parathyroid hormone in teeth and mandible versus long bones.

    PubMed

    Liu, Hong; Guo, Jian; Wang, Lin; Chen, Ning; Karaplis, Andrew; Goltzman, David; Miao, Dengshun

    2009-11-01

    To assess the roles of 1,25-dihydroxyvitamin D (1,25(OH)(2)D) and parathyroid hormone (PTH) in hard tissue formation in oro-facial tissues, we examined the effect of either 1,25(OH)(2)D or PTH deficiency on dentin and dental alveolar bone formation and mineralization in the mandibles, and osteoblastic bone formation in long bones of 1alpha-hydroxylase knockout (1alpha(OH)ase(-/-)) mice. Compared with wild-type mice, the mineral density was decreased in the teeth and mandibles, and unmineralized dentin (predentin and biglycan immunopositive dentin) and unmineralized bone matrix in the dental alveolar bone were increased in 1alpha(OH)ase(-/-) mice. The dental volume, reparative dentin volume, and dentin sialoprotein immunopositive areas were reduced in 1alpha(OH)ase(-/-) mice. The cortical thickness, dental alveolar bone volume, and osteoblast number were all decreased significantly in the mandibles; in contrast, the osteoblast number and surface were increased in the trabecular bone of the tibiae in 1alpha(OH)ase(-/-) mice consistent with their secondary hyperparathyroidism. The expression of PTH receptor and IGF1 was reduced slightly in mandibles, but enhanced significantly in the long bones in the 1alpha(OH)ase(-/-) mice. To control for the role of secondary hyperparathyroidism, we also examined teeth and mandibles in 6-week-old PTH(-/-) mice. In these animals, dental and bone volumes in mandibles were not altered when compared with their wild-type littermates. These results suggest that 1,25(OH)(2)D(3) plays an anabolic role in both dentin and dental alveolar bone as it does in long bones, whereas PTH acts predominantly in long bones rather than mandibular bone. PMID:19713218

  8. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport

    PubMed Central

    Han, Xiaobin; Yang, Jiancheng; Li, Linqiang; Huang, Jinsong; King, Gwendalyn; Quarles, L. Darryl

    2016-01-01

    A postnatal role of fibroblast growth factor receptor-1 (FGFR1) in the kidney is suggested by its binding to α-Klotho to form an obligate receptor for the hormone fibroblast growth factor-23 (FGF-23). FGFR1 is expressed in both the proximal and distal renal tubular segments, but its tubular specific functions are unclear. In this study, we crossed Fgfr1flox/flox mice with either gamma-glutamyltransferase-Cre (γGT-Cre) or kidney specific-Cre (Ksp-Cre) mice to selectively create proximal tubule (PT) and distal tubule (DT) Fgfr1 conditional knockout mice (designated Fgfr1PT-cKO and Fgfr1DT-cKO, respectively). Fgfr1PT-cKO mice exhibited an increase in sodium-dependent phosphate co-transporter expression, hyperphosphatemia, and refractoriness to the phosphaturic actions of FGF-23, consistent with a direct role of FGFR1 in mediating the proximal tubular phosphate responses to FGF-23. In contrast, Fgfr1DT-cKO mice unexpectedly developed hypercalciuria, secondary elevations of parathyroid hormone (PTH), hypophosphatemia and enhanced urinary phosphate excretion. Fgfr1PT-cKO mice also developed a curly tail/spina bifida-like skeletal phenotype, whereas Fgfr1DT-cKO mice developed renal tubular micro-calcifications and reductions in cortical bone thickness. Thus, FGFR1 has dual functions to directly regulate proximal and distal tubule phosphate and calcium reabsorption, indicating a physiological role of FGFR1 signaling in both phosphate and calcium homeostasis. PMID:26839958

  9. Distinct roles of the endocannabinoids anandamide and 2-arachidonoylglycerol in social behavior and emotionality at different developmental ages in rats.

    PubMed

    Manduca, Antonia; Morena, Maria; Campolongo, Patrizia; Servadio, Michela; Palmery, Maura; Trabace, Luigia; Hill, Matthew N; Vanderschuren, Louk J M J; Cuomo, Vincenzo; Trezza, Viviana

    2015-08-01

    To date, our understanding of the relative contribution and potential overlapping roles of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the regulation of brain function and behavior is still limited. To address this issue, we investigated the effects of systemic administration of JZL195, that simultaneously increases AEA and 2-AG signaling by inhibiting their hydrolysis, in the regulation of socio-emotional behavior in adolescent and adult rats. JZL195, administered at the dose of 0.01mg/kg, increased social play behavior, that is the most characteristic social activity displayed by adolescent rats, and increased social interaction in adult animals. At both ages, these behavioral effects were antagonized by the CB1 cannabinoid receptor antagonist SR141716A and were associated with increased brain levels of 2-AG, but not AEA. Conversely, at the dose of 1mg/kg, JZL195 decreased general social exploration in adolescent rats without affecting social play behavior, and induced anxiogenic-like effects in the elevated plus-maze test both in adolescent and adult animals. These effects, mediated by activation of CB1 cannabinoid receptors, were paralleled by simultaneous increase in AEA and 2-AG levels in adolescent rats, and by an increase of only 2-AG levels in adult animals. These findings provide the first evidence for a role of 2-AG in social behavior, highlight the different contributions of AEA and 2-AG in the modulation of emotionality at different developmental ages and suggest that pharmacological inhibition of AEA and 2-AG hydrolysis is a useful approach to investigate the role of these endocannabinoids in neurobehavioral processes. PMID:25914159

  10. Perforin and Granzyme B Have Separate and Distinct Roles during Atherosclerotic Plaque Development in Apolipoprotein E Knockout Mice

    PubMed Central

    Hiebert, Paul R.; Boivin, Wendy A.; Zhao, Hongyan; McManus, Bruce M.; Granville, David J.

    2013-01-01

    The granzyme B/perforincytotoxic pathway is a well established mechanism of initiating target cell apoptosis. Previous studies have suggested a role for the granzyme B/perforin cytotoxic pathway in vulnerable atherosclerotic plaque formation. In the present study, granzyme B deficiency resulted in reduced atherosclerotic plaque development in the descending aortas of apolipoprotein E knockout mice fed a high fat diet for 30 weeks while perforindeficiency resulted in greater reduction in plaque development with significantly less plaque area than granzyme Bdeficient mice. In contrast to the descending aorta, no significant change in plaque size was observed in aortic roots from either granzyme Bdeficient or perforindeficient apolipoprotein E knockout mice. However, atherosclerotic plaques in the aortic roots did exhibit significantly more collagen in granzyme B, but not perforin deficient mice. Together these results suggest significant, yet separate roles for granzyme B and perforin in the pathogenesis of atherosclerosis that go beyond the traditional apoptotic pathway with additional implications in plaque development, stability and remodelling of extracellular matrix. PMID:24205352

  11. Distinctive roles of PLD signaling elicited by oxidative stress in synaptic endings from adult and aged rats.

    PubMed

    Mateos, Melina V; Giusto, Norma M; Salvador, Gabriela A

    2012-12-01

    The role of iron in oxidative injury in the nervous system has been extensively described. However, little is known about the role of lipid signal transduction in neurodegeneration processes triggered by iron overload. The purpose of this work was to characterize the regulation and the crosstalk between phosphatidylcholine (PC)-derived diacylglycerol (DAG) and cannonical signaling pathways during iron-induced oxidative stress in cerebral cortex synaptic endings (Syn) obtained from adult (4 months old) and aged (28 months old) rats. DAG production was increased in Syn exposed to iron. This rise in DAG formation was due to phospholipase D1 (PLD1) and PLD2 activations. In adult rats, PKD1, ERK1/2 and PKCα/βII activations were PLD1 and PLD2 dependent. In contrast, in senile rats, DAG formation catalyzed by PLDs did not participate in PKD1, ERK1/2 and PKCα/βII regulations, but it was dependent on ERK and PKC activities. Iron-induced oxidative stress promoted an increased localization of PLD1 in membrane rafts, whereas PLD2 was excluded from these domains and appeared to be involved in glutamate transporter function. Our results show a differential regulation and synaptic function of DAG generated by PLDs during iron-induced oxidative stress as a consequence of aging. PMID:23010583

  12. The Distinct Roles of Two GPCRs, MrgprC11 and PAR2, in Itch and Hyperalgesia

    PubMed Central

    Liu, Qin; Weng, Hao-Jui; Patel, Kush N.; Tang, Zongxiang; Bai, Haihua; Steinhoff, Martin; Dong, Xinzhong

    2011-01-01

    Itch has been defined as an unpleasant skin sensation that triggers the urge to scratch. Primary sensory dorsal root ganglia neurons detect itch stimuli through peripheral axons in the skin, playing an important role in generating itch. Itch is broadly categorized as histaminergic (sensitive to antihistamines) or nonhistaminergic. The peptide Ser-Leu-Ile-Gly-Arg-Leu (SLIGRL) is an itch-inducing agent widely used to study histamine-independent itch. Here, we show that Mrgprs (Mas-related G protein–coupled receptors), particularly MrgprC11, rather than PAR2 (protease-activated receptor 2) as previously thought, mediate this type of itch. A shorter peptide, SLIGR, which specifically activates PAR2 but not MrgprC11, induced thermal pain hypersensitivity in mice but not a scratch response. Therefore, although both Mrgpr and PAR2 are SLIGRL-responsive G protein–coupled receptors present in dorsal root ganglia, each plays a specific role in mediating itch and pain. PMID:21775281

  13. Opinion: uracil DNA glycosylase (UNG) plays distinct and non-canonical roles in somatic hypermutation and class switch recombination

    PubMed Central

    Yousif, Ashraf S.; Stanlie, Andre; Begum, Nasim A.

    2014-01-01

    Activation-induced cytidine deaminase (AID) is essential to class switch recombination (CSR) and somatic hypermutation (SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair complex, is required for CSR. The role of UNG in CSR and SHM is extremely controversial. AID deficiency in mice abolishes both CSR and SHM, while UNG-deficient mice have drastically reduced CSR but augmented SHM raising a possibility of differential functions of UNG in CSR and SHM. Interestingly, UNG has been associated with a CSR-specific repair adapter protein Brd4, which interacts with acetyl histone 4, γH2AX and 53BP1 to promote non-homologous end joining during CSR. A non-canonical scaffold function of UNG, but not the catalytic activity, can be attributed to the recruitment of essential repair proteins associated with the error-free repair during SHM, and the end joining during CSR. PMID:24994819

  14. Opinion: uracil DNA glycosylase (UNG) plays distinct and non-canonical roles in somatic hypermutation and class switch recombination.

    PubMed

    Yousif, Ashraf S; Stanlie, Andre; Begum, Nasim A; Honjo, Tasuku

    2014-10-01

    Activation-induced cytidine deaminase (AID) is essential to class switch recombination (CSR) and somatic hypermutation (SHM). Uracil DNA glycosylase (UNG), a member of the base excision repair complex, is required for CSR. The role of UNG in CSR and SHM is extremely controversial. AID deficiency in mice abolishes both CSR and SHM, while UNG-deficient mice have drastically reduced CSR but augmented SHM raising a possibility of differential functions of UNG in CSR and SHM. Interestingly, UNG has been associated with a CSR-specific repair adapter protein Brd4, which interacts with acetyl histone 4, γH2AX and 53BP1 to promote non-homologous end joining during CSR. A non-canonical scaffold function of UNG, but not the catalytic activity, can be attributed to the recruitment of essential repair proteins associated with the error-free repair during SHM, and the end joining during CSR. PMID:24994819

  15. Distinct Roles of Kaposi's Sarcoma-Associated Herpesvirus-Encoded Viral Interferon Regulatory Factors in Inflammatory Response and Cancer

    PubMed Central

    Baresova, Petra; Pitha, Paula M.

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman disease (MCD). Similar to other herpesviruses, KSHV has two life cycles, latency and lytic replication. In latency, the KSHV genome persists as a circular episome in the nucleus of the host cell and only a few viral genes are expressed. In this review, we focus on oncogenic, antiapoptotic, and immunomodulating properties of KSHV-encoded homologues of cellular interferon regulatory factors (IRFs)—viral IRF1 (vIRF1) to vIRF4—and their possible role in the KSHV-mediated antiviral response, apoptosis, and oncogenicity. PMID:23785197

  16. Bone marrow ablation demonstrates that excess endogenous parathyroid hormone plays distinct roles in trabecular and cortical bone.

    PubMed

    Yan, Jun; Sun, Weiwei; Zhang, Jing; Goltzman, David; Miao, Dengshun

    2012-07-01

    Mice null for Cyp27b1, which encodes the 25-hydroxyvitamin D-1α-hydroxylase [1α(OH)ase(-/-) mice], lack 1,25-dihydroxyvitamin D [1,25(OH)(2)D] and have hypocalcemia and high parathyroid hormone (PTH) secretion. Intermittent, exogenous PTH is anabolic for bone. To determine the effect of the chronic excess endogenous PTH on osteogenesis and bone turnover, bone marrow ablations (BMX) were performed in tibiae and femurs of 6-week-old 1α(OH)ase(-/-) mice and in wild-type (WT) controls. Newly formed bone tissue was analyzed at 1, 2, and 3 weeks after BMX. BMX did not alter the higher levels of PTH in 1α(OH)ase(-/-) mice. In the marrow cavity, trabecular volume, osteoblast number, alkaline phosphatase-positive areas, type I collagen-positive areas, bone formation-related genes, and protein expression levels all increased significantly after BMX in 1α(OH)ase(-/-) mice, compared with WT. Osteoclast numbers and surface and ratio of RANKL/OPG-relative mRNA levels decreased significantly after BMX in 1α(OH)ase(-/-) mice, compared with WT. In the cortex, alkaline phosphatase-positive osteoblasts and osteoclast numbers increased significantly after BMX in 1α(OH)ase(-/-) mice, compared with WT. These results demonstrate that chronic excess endogenous PTH exerts an anabolic role in trabecular bone by stimulating osteogenic cells and reducing bone resorption, but plays a catabolic role in cortical bone by enhancing bone turnover with an increase in resorption. PMID:22640808

  17. ROS, MAPK/ERK and PKC play distinct roles in EGF-stimulated human corneal cell proliferation and migration.

    PubMed

    Huo, Y-N; Chen, W; Zheng, X-X

    2015-01-01

    Cornea is at the outermost surface of eye globe, and it easily receives damage from ultraviolet light exposure, physiology wounding, and infections. It is essential to understand the mechanisms controlling human corneal epithelial (HCE) cell proliferation and wound healing. Epidermal growth factor (EGF) could stimulate cell proliferation and migration in various cell types. Therefore, we investigated the roles and mechanisms of EGF on HCE cell proliferation and migration. CCK-8 kit and wound healing experiment were used to investigate HCE cell proliferation and cell migration, respectively. ROS activity was quantified by DCFDA and flow cytometry. Western blot and Q-PCR were performed to examine protein and RNA levels. EGF could promote HCE cell proliferation and migration in both physiology status and UV irradiation conditions, which is used to mimic the disease condition in human corneal epithelial cells. Interestingly, the promotion effect of EGF on HCE cell proliferation is mainly mediated by activated ROS signaling under disease condition. However, the EGF function is mediated by ROS and MAPK/ERK pathway in EGF-treated corneal epithelial cells in physiology status, in which ROS and MAPK/ERK pathway have no mutual influence on the other signaling pathway in EGF-stimulated corneal epithelial cells. We also revealed that MAPK/ERK pathway instead of ROS mediates EGF-stimulated HCE cell migration. Interestingly, we found that PKC proteins were downregulated by EGF in HCE cells that is partially mediated by ROS signaling, while PKC pathway was not involved in EGF-stimulated corneal cell proliferation and migration. EGF promotes human corneal cell proliferation and migration both in physiology and disease conditions, and ROS, MAPK/ERK and PKC pathways play different roles in these processes. PMID:26567598

  18. Chelating agents exert distinct effects on biofilm formation in Staphylococcus aureus depending on strain background: role for clumping factor B

    PubMed Central

    Abraham, Nabil M.; Lamlertthon, Supaporn; Fowler, Vance G.

    2012-01-01

    Staphylococcus aureus is a leading cause of catheter infections, and biofilm formation plays a key role in the pathogenesis. Metal ion chelators inhibit bacterial biofilm formation and viability, making them attractive candidates as components in catheter lock solutions. The goal of this study was to characterize further the effect of chelators on biofilm formation. The effect of the calcium chelators ethylene glycol tetraacetic acid (EGTA) and trisodium citrate (TSC) on biofilm formation by 30 S. aureus strains was tested. The response to subinhibitory doses of EGTA and TSC varied dramatically depending on strain variation. In some strains, the chelators prevented biofilm formation, in others they had no effect, and they actually enhanced biofilm formation in others. The molecular basis for this phenotypic variability was investigated using two related strains: Newman, in which biofilm formation was inhibited by chelators, and 10833, which formed strong biofilms in the presence of chelators. It was found that deletion of the gene encoding the surface adhesin clumping factor B (clfB) completely eliminated chelator-induced biofilm formation in strain 10833. The role of ClfB in biofilm formation activity in chelators was confirmed in additional strains. It was concluded that biofilm-forming ability varies strikingly depending on strain background, and that ClfB is involved in biofilm formation in the presence EGTA and citrate. These results suggest that subinhibitory doses of chelating agents in catheter lock solutions may actually augment biofilm formation in certain strains of S. aureus, and emphasize the importance of using these agents appropriately so that inhibitory doses are achieved consistently. PMID:22516131

  19. The intrinsically disordered tails of PTEN and PTEN-L have distinct roles in regulating substrate specificity and membrane activity

    PubMed Central

    Masson, Glenn R.; Perisic, Olga; Burke, John E.; Williams, Roger L.

    2015-01-01

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase, and both activities are necessary for its role as a tumour suppressor. PTEN activity is controlled by phosphorylation of its intrinsically disordered C-terminal tail. A recently discovered variant of PTEN, PTEN-long (PTEN-L), has a 173-residue N-terminal extension that causes PTEN-L to exhibit unique behaviour, such as movement from one cell to another. Using hydrogen/deuterium exchange mass spectrometry (HDX–MS) and biophysical assays, we show that both the N-terminal extension of PTEN-L and C-terminal tail of PTEN affect the phosphatase activity using unique mechanisms. Phosphorylation of six residues in the C-terminal tail of PTEN results in auto-inhibitory interactions with the phosphatase and C2 domains, effectively blocking both the active site and the membrane-binding interface of PTEN. Partially dephosphorylating PTEN on pThr366/pSer370 results in sufficient exposure of the active site to allow a selective activation for soluble substrates. Using HDX–MS, we identified a membrane-binding element in the N-terminal extension of PTEN-L, termed the membrane-binding helix (MBH). The MBH radically alters the membrane binding mechanism of PTEN-L compared with PTEN, switching PTEN-L to a ‘scooting’ mode of catalysis from the ‘hopping’ mode that is characteristic of PTEN. PMID:26527737

  20. Distinct roles of apolipoprotein components within the trypanosome lytic factor complex revealed in a novel transgenic mouse model.

    PubMed

    Molina-Portela, Maria Pilar; Samanovic, Marie; Raper, Jayne

    2008-08-01

    Humans express a unique subset of high-density lipoproteins (HDLs) called trypanosome lytic factors (TLFs) that kill many Trypanosoma parasite species. The proteins apolipoprotein (apo) A-I, apoL-I, and haptoglobin-related protein, which are involved in TLF structure and function, were expressed through the introduction of transgenes in mice to explore their physiological roles in vivo. Transgenic expression of human apolipoprotein L-I alone conferred trypanolytic activity in vivo. Coexpression of human apolipoprotein A-I and haptoglobin-related protein (Hpr) had an effect on the integration of apolipoprotein L-I into HDL, and both proteins were required to increase the specific activity of TLF, which was measurable in vitro. Unexpectedly, truncated apolipoprotein L-I devoid of the serum resistance gene interacting domain, which was previously shown to kill human infective trypanosomes, was not trypanolytic in transgenic mice despite being coexpressed with human apolipoprotein A-I and Hpr and incorporated into HDLs. We conclude that all three human apolipoproteins act cooperatively to achieve maximal killing capacity and that truncated apolipoprotein L-I does not function in transgenic animals. PMID:18606856

  1. Adjacent proline residues in the inhibitory domain of the Oct-2 transcription factor play distinct functional roles.

    PubMed Central

    Liu, Y Z; Lee, I K; Locke, I; Dawson, S J; Latchman, D S

    1998-01-01

    A 40 amino acid region of Oct-2 from amino acids 142 to 181 functions as an active repressor domain capable of inhibiting both basal activity and activation of promoters containing a TATA box, but not of those that contain an initiator element. Based on our observation that the equivalent region of the closely related Oct-1 factor does not act as an inhibitory domain, we have mutated specific residues in the Oct-2 domain in an attempt to probe their importance in repressor domain function. Although mutations of several residues have no or minimal effect, mutation of proline 175 to arginine abolishes the ability to inhibit both basal and activated transcription. In contrast, mutation of proline 174 to arginine confers upon the domain the ability to repress activation of an initiator-containing promoter by acidic activation domains, and also suppresses the effect of the proline 175 mutation. Hence, adjacent proline residues play key roles in the functioning of the inhibitory domain and in limiting its specificity to TATA-box-containing promoters. PMID:9580701

  2. Two distinct domains of Flo8 activator mediates its role in transcriptional activation and the physical interaction with Mss11.

    PubMed

    Kim, Hye Young; Lee, Sung Bae; Kang, Hyen Sam; Oh, Goo Taeg; Kim, TaeSoo

    2014-06-27

    Flo8 is a transcriptional activator essential for the inducible expression of a set of target genes such as STA1, FLO11, and FLO1 encoding an extracellular glucoamylase and two cell surface proteins, respectively. However, the molecular mechanism of Flo8-mediated transcriptional activation remains largely elusive. By generating serial deletion constructs, we revealed here that a novel transcriptional activation domain on its extreme C-terminal region plays a crucial role in activating transcription. On the other hand, the N-terminal LisH motif of Flo8 appears to be required for its physical interaction with another transcriptional activator, Mss11, for their cooperative transcriptional regulation of the shared targets. Additionally, GST pull-down experiments uncovered that Flo8 and Mss11 can directly form either a heterodimer or a homodimer capable of binding to DNA, and we also showed that this formed complex of two activators interacts functionally and physically with the Swi/Snf complex. Collectively, our findings provide valuable clues for understanding the molecular mechanism of Flo8-mediated transcriptional control of multiple targets. PMID:24813990

  3. Distinct but Concerted Roles of ATR, DNA-PK, and Chk1 in Countering Replication Stress during S Phase.

    PubMed

    Buisson, Rémi; Boisvert, Jessica L; Benes, Cyril H; Zou, Lee

    2015-09-17

    The ATR-Chk1 pathway is critical for DNA damage responses and cell-cycle progression. Chk1 inhibition is more deleterious to cycling cells than ATR inhibition, raising questions about ATR and Chk1 functions in the absence of extrinsic replication stress. Here we show that a key role of ATR in S phase is to coordinate RRM2 accumulation and origin firing. ATR inhibitor (ATRi) induces massive ssDNA accumulation and replication catastrophe in a fraction of early S-phase cells. In other S-phase cells, however, ATRi induces moderate ssDNA and triggers a DNA-PK and Chk1-mediated backup pathway to suppress origin firing. The backup pathway creates a threshold such that ATRi selectively kills cells under high replication stress, whereas Chk1 inhibitor induces cell death at a lower threshold. The levels of ATRi-induced ssDNA correlate with ATRi sensitivity in a panel of cell lines, suggesting that ATRi-induced ssDNA could be predictive of ATRi sensitivity in cancer cells. PMID:26365377

  4. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data

    PubMed Central

    Okada, Hiroki; Ohnuki, Shinsuke; Roncero, Cesar; Konopka, James B.; Ohya, Yoshikazu

    2014-01-01

    The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs. PMID:24258022

  5. Distinct roles of N-acetyl and 5-methoxy groups in the antiproliferative and neuroprotective effects of melatonin.

    PubMed

    Letra-Vilela, Ricardo; Sánchez-Sánchez, Ana María; Rocha, Ana Maia; Martin, Vanesa; Branco-Santos, Joana; Puente-Moncada, Noelia; Santa-Marta, Mariana; Outeiro, Tiago Fleming; Antolín, Isaac; Rodriguez, Carmen; Herrera, Federico

    2016-10-15

    Melatonin (N-acetyl-5-methoxytryptamine) is a highly pleiotropic hormone with antioxidant, antiproliferative, oncolytic and neuroprotective properties. Here, we present evidence that the N-acetyl side chain plays a key role in melatonin's antiproliferative effect in HT22 and sw-1353 cells, but it does so at the expense of antioxidant and neuroprotective properties. Removal of the N-acetyl group enhances the antioxidant and neuroprotective properties of the indole, but it can lead to toxic methamphetamine-like effects in several cell lines. Inhibition of NFkB mimicked melatonin's antiproliferative and antioxidant effects, but not neuroprotection. Our results strongly suggest that neuroprotective and antiproliferative effects of melatonin rely on different parts of the molecule and are likely mediated by different mechanisms. We also predict that melatonin metabolism by target cells could determine whether melatonin inhibits cell proliferation, prevents toxicity or induces cell death (e.g. apoptosis or autophagy). These observations could have important implications for the rational use of melatonin in personalized medicine. PMID:27402602

  6. Distinct roles for inhibition in spatial and temporal tuning of local edge detectors in the rabbit retina.

    PubMed

    Venkataramani, Sowmya; Van Wyk, Michiel; Buldyrev, Ilya; Sivyer, Benjamin; Vaney, David I; Taylor, W Rowland

    2014-01-01

    This paper examines the role of inhibition in generating the receptive-field properties of local edge detector (LED) ganglion cells in the rabbit retina. We confirm that the feed-forward inhibition is largely glycinergic but, contrary to a recent report, our data demonstrate that the glycinergic inhibition contributes to temporal tuning for the OFF and ON inputs to the LEDs by delaying the onset of spiking; this delay was more pronounced for the ON inputs (∼ 340 ms) than the OFF inputs (∼ 12 ms). Blocking glycinergic transmission reduced the delay to spike onset and increased the responses to flickering stimuli at high frequencies. Analysis of the synaptic conductances indicates that glycinergic amacrine cells affect temporal tuning through both postsynaptic inhibition of the LEDs and presynaptic modulation of the bipolar cells that drive the LEDs. The results also confirm that presynaptic GABAergic transmission contributes significantly to the concentric surround antagonism in LEDs; however, unlike presumed LEDs in the mouse retina, the surround is only partly generated by spiking amacrine cells. PMID:24586343

  7. The intrinsically disordered tails of PTEN and PTEN-L have distinct roles in regulating substrate specificity and membrane activity.

    PubMed

    Masson, Glenn R; Perisic, Olga; Burke, John E; Williams, Roger L

    2016-01-15

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase, and both activities are necessary for its role as a tumour suppressor. PTEN activity is controlled by phosphorylation of its intrinsically disordered C-terminal tail. A recently discovered variant of PTEN, PTEN-long (PTEN-L), has a 173-residue N-terminal extension that causes PTEN-L to exhibit unique behaviour, such as movement from one cell to another. Using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and biophysical assays, we show that both the N-terminal extension of PTEN-L and C-terminal tail of PTEN affect the phosphatase activity using unique mechanisms. Phosphorylation of six residues in the C-terminal tail of PTEN results in auto-inhibitory interactions with the phosphatase and C2 domains, effectively blocking both the active site and the membrane-binding interface of PTEN. Partially dephosphorylating PTEN on pThr(366)/pSer(370) results in sufficient exposure of the active site to allow a selective activation for soluble substrates. Using HDX-MS, we identified a membrane-binding element in the N-terminal extension of PTEN-L, termed the membrane-binding helix (MBH). The MBH radically alters the membrane binding mechanism of PTEN-L compared with PTEN, switching PTEN-L to a 'scooting' mode of catalysis from the 'hopping' mode that is characteristic of PTEN. PMID:26527737

  8. Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination

    NASA Astrophysics Data System (ADS)

    Savard, Martine M.; Somers, George; Smirnoff, Anna; Paradis, Daniel; van Bochove, Eric; Liao, Shawna

    2010-02-01

    SummaryGlobally, fertilizers are identified as principle sources of nitrate in waters of intensely cultivated areas. Here this general concept is appraised on a seasonal basis over a two year period, under temperate climatic conditions. Water ( δ2H and δ18O) and nitrate ( δ15N and δ18O) isotopes in surface water and groundwater suggest that freshwater is acting as a transport vector conducting nitrate from agricultural soils to groundwater and ultimately to surface water. Measured nitrate isotopes of organic and inorganic fertilizers and of nitrate in groundwater are used to constrain a conceptual apportionment model quantifying the relative seasonal N contributions in an area of intense potato production. Source inputs differ strongly between the growing (summer and fall) and non-growing (winter and spring) periods. Chemical fertilizers and soil organic matter equally dominate and contribute to the growing period load, whereas soil organic matter dominates the non-growing period load, and accounts for over half of the overall annual nitrogen charge. These findings reveal the magnitude of nitrogen cycling by soil organic matter, and point to the benefits of controlling the timing of its nitrate release from this organic material. We conclude that strategies to attenuate contamination by nitrate in waters of temperate climate row-cropping regions must consider nitrogen cycling by soil organic matter, including the crucial role of crop residues throughout both the growing and non-growing seasons.

  9. Distinct roles of STAT3 and STAT5 in the pathogenesis and targeted therapy of breast cancer

    PubMed Central

    Walker, Sarah R.; Xiang, Michael; Frank, David A.

    2013-01-01

    The transcription factors STAT3 and STAT5 play important roles in the regulation of mammary gland function during pregnancy, lactation, and involution. Given that STAT3 and STAT5 regulate genes involved in proliferation and survival, it is not surprising that inappropriate activation of STAT3 and STAT5 occurs commonly in breast cancer. Although these proteins are structurally similar, they have divergent and opposing effects on gene expression and cellular phenotype. Notably, when STAT5 and STAT3 are activated simultaneously, STAT5 has a dominant effect, and leads to decreased proliferation and increased sensitivity to cell death. Similarly, in breast cancer, activation of both STAT5 and STAT3 is associated with longer patient survival than activation of STAT3 alone. Pharmacological inhibitors of STAT3 and STAT5 are being developed for cancer therapy, though understanding the activation state and functional interaction of STAT3 and STAT5 in a patient's tumor may be critical for the optimal use of this strategy. PMID:23531638

  10. Postsynaptic TrkB signaling has distinct roles in spine maintenance in adult visual cortex and hippocampus

    PubMed Central

    Chakravarthy, Sridhara; Saiepour, M. Hadi; Bence, Matthew; Perry, Sean; Hartman, Robin; Couey, Jonathan J.; Mansvelder, Huibert D.; Levelt, Christiaan N.

    2006-01-01

    In adult primary visual cortex (V1), dendritic spines are more persistent than during development. Brain-derived neurotrophic factor (BDNF) increases synaptic strength, and its levels rise during cortical development. We therefore asked whether postsynaptic BDNF signaling through its receptor TrkB regulates spine persistence in adult V1. This question has been difficult to address because most methods used to alter TrkB signaling in vivo affect cortical development or cannot distinguish between pre- and postsynaptic mechanisms. We circumvented these problems by employing transgenic mice expressing a dominant negative TrkB–EGFP fusion protein in sparse pyramidal neurons of the adult neocortex and hippocampus, producing a Golgi-staining-like pattern. In adult V1, expression of dominant negative TrkB-EGFP resulted in reduced mushroom spine maintenance and synaptic efficacy, accompanied by an increase in long and thin spines and filopodia. In contrast, mushroom spine maintenance was unaffected in CA1, indicating that TrkB plays fundamentally different roles in structural plasticity in these brain areas. PMID:16418274

  11. PI3-Kinase-γ Has a Distinct and Essential Role in Lung-Specific Dendritic Cell Development.

    PubMed

    Nobs, Samuel Philip; Schneider, Christoph; Dietrich, Maren Gil; Brocker, Thomas; Rolink, Antonius; Hirsch, Emilio; Kopf, Manfred

    2015-10-20

    Development of dendritic cells (DCs) commences in the bone marrow, from where pre-DCs migrate to peripheral organs to differentiate into mature DCs in situ. However, the factors that regulate organ-specific differentiation to give rise to tissue-specific DC subsets remain unclear. Here we show that the Ras-PI3Kγ-Akt-mTOR signaling axis acted downstream of FLT3L signaling and was required for development of lung CD103(+) DCs and, to a smaller extent, for lung CD11b(+) DCs, but not related DC populations in other non-lymphoid organs. Furthermore, we show that in lymphoid organs such as the spleen, DCs depended on a similar signaling network to respond to FLT3 ligand with overlapping and partially redundant roles for kinases PI3Kγ and PI3Kδ. Thus we identified PI3Kγ as an essential organ-specific regulator of lung DC development and discovered a signaling network regulating tissue-specific DC development mediated by FLT3. PMID:26453378

  12. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain

    PubMed Central

    Labuz, Dominika; Celik, Melih Ö.; Zimmer, Andreas; Machelska, Halina

    2016-01-01

    Neuropathic pain often results from peripheral nerve damage, which can involve immune response. Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and sensory modality may determine the outcome of neuropathic pain treatment. PMID:27605249

  13. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain.

    PubMed

    Labuz, Dominika; Celik, Melih Ö; Zimmer, Andreas; Machelska, Halina

    2016-01-01

    Neuropathic pain often results from peripheral nerve damage, which can involve immune response. Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and sensory modality may determine the outcome of neuropathic pain treatment. PMID:27605249

  14. Secreted Phospholipases A2 Are Intestinal Stem Cell Niche Factors with Distinct Roles in Homeostasis, Inflammation, and Cancer.

    PubMed

    Schewe, Matthias; Franken, Patrick F; Sacchetti, Andrea; Schmitt, Mark; Joosten, Rosalie; Böttcher, René; van Royen, Martin E; Jeammet, Louise; Payré, Christine; Scott, Patricia M; Webb, Nancy R; Gelb, Michael; Cormier, Robert T; Lambeau, Gérard; Fodde, Riccardo

    2016-07-01

    The intestinal stem cell niche provides cues that actively maintain gut homeostasis. Dysregulation of these cues may compromise intestinal regeneration upon tissue insult and/or promote tumor growth. Here, we identify secreted phospholipases A2 (sPLA2s) as stem cell niche factors with context-dependent functions in the digestive tract. We show that group IIA sPLA2, a known genetic modifier of mouse intestinal tumorigenesis, is expressed by Paneth cells in the small intestine, while group X sPLA2 is expressed by Paneth/goblet-like cells in the colon. During homeostasis, group IIA/X sPLA2s inhibit Wnt signaling through intracellular activation of Yap1. However, upon inflammation they are secreted into the intestinal lumen, where they promote prostaglandin synthesis and Wnt signaling. Genetic ablation of both sPLA2s improves recovery from inflammation but increases colon cancer susceptibility due to release of their homeostatic Wnt-inhibitory role. This "trade-off" effect suggests sPLA2s have important functions as genetic modifiers of inflammation and colon cancer. PMID:27292189

  15. Sequential and Distinct Roles of the Cadherin Domain-containing Protein Axl2p in Cell Polarization in Yeast Cell Cycle

    PubMed Central

    Gao, Xiang-Dong; Sperber, Lauren M.; Kane, Steven A.; Tong, Zongtian; Tong, Amy Hin Yan; Boone, Charles

    2007-01-01

    Polarization of cell growth along a defined axis is essential for the generation of cell and tissue polarity. In the budding yeast Saccharomyces cerevisiae, Axl2p plays an essential role in polarity-axis determination, or more specifically, axial budding in MATa or α cells. Axl2p is a type I membrane glycoprotein containing four cadherin-like motifs in its extracellular domain. However, it is not known when and how Axl2p functions together with other components of the axial landmark, such as Bud3p and Bud4p, to direct axial budding. Here, we show that the recruitment of Axl2p to the bud neck after S/G2 phase of the cell cycle depends on Bud3p and Bud4p. This recruitment is mediated via an interaction between Bud4p and the central region of the Axl2p cytoplasmic tail. This region of Axl2p, together with its N-terminal region and its transmembrane domain, is sufficient for axial budding. In addition, our work demonstrates a previously unappreciated role for Axl2p. Axl2p interacts with Cdc42p and other polarity-establishment proteins, and it regulates septin organization in late G1 independently of its role in polarity-axis determination. Together, these results suggest that Axl2p plays sequential and distinct roles in the regulation of cellular morphogenesis in yeast cell cycle. PMID:17460121

  16. Distinct roles for the p53-like transcription factor XprG and autophagy genes in the response to starvation.

    PubMed

    Katz, Margaret E; Buckland, Rebecca; Hunter, Cameron C; Todd, Richard B

    2015-10-01

    Autophagy and autolysis are two cannibalistic pathways which allow filamentous fungi to obtain nutrients once environmental nutrient sources are exhausted. In Aspergillus nidulans, the effects of mutations in two key autophagy genes, atgA, the ATG1 ortholog, and atgH, the ATG8 ortholog, were compared with mutations in xprG, which encodes a transcriptional activator that plays a key role in autolysis. The anti-fungal drug rapamycin induces autophagy in a range of organisms. Mutations in atgA and atgH did not alter sensitivity to rapamycin, which inhibits growth and asexual spore production (conidiation), indicating that autophagy is not required for rapamycin sensitivity in A. nidulans. In contrast, inhibition of conidiation by rapamcyin was partially suppressed by the xprG1 gain-of-function mutation, indicating that XprG acts in the pathway(s) affected by rapamycin. It was anticipated that the absence of an intact autophagy pathway would accelerate the response to starvation. However, extracellular and intracellular protease production in response to carbon or nitrogen starvation was not increased in the atgAΔ and atgHΔ mutants, and the onset of autolysis was not accelerated. Compared to wild-type strains and the xprGΔ and xprG1 mutants, conidiation of the autophagy mutants was reduced in carbon- or nitrogen-limiting conditions but not during growth on nutrient-sufficient medium. Nuclear localization of the global nitrogen regulator AreA in response to nitrogen starvation was blocked in the xprG2 loss-of-function mutant, but not in the atgHΔ mutant. Conversely, the atgAΔ mutation but not the xprGΔ mutation prevented vacuolar accumulation of GFP-AtgH, a hallmark of autophagy. These results indicate that in A. nidulans there is little interaction between autophagy and autolysis and the two pathways are activated in parallel during starvation. PMID:26296599

  17. Predominant Expression of Hybrid N-Glycans Has Distinct Cellular Roles Relative to Complex and Oligomannose N-Glycans

    PubMed Central

    Hall, M. Kristen; Weidner, Douglas A.; Zhu, Yong; Dayal, Sahil; Whitman, Austin A.; Schwalbe, Ruth A.

    2016-01-01

    Glycosylation modulates growth, maintenance, and stress signaling processes. Consequently, altered N-glycosylation is associated with reduced fitness and disease. Therefore, expanding our understanding of N-glycans in altering biological processes is of utmost interest. Herein, clustered regularly interspaced short palindromic repeats/caspase9 (CRISPR/Cas9) technology was employed to engineer a glycosylation mutant Chinese Hamster Ovary (CHO) cell line, K16, which expresses predominantly hybrid type N-glycans. This newly engineered cell line enabled us to compare N-glycan effects on cellular properties of hybrid type N-glycans, to the well-established Pro−5 and Lec1 cell lines, which express complex and oligomannose types of N-glycans, respectively. Lectin binding studies revealed the predominant N-glycan expressed in K16 is hybrid type. Cell dissociation and migration assays demonstrated the greatest strength of cell–cell adhesion and fastest migratory rates for oligomannose N-glycans, and these properties decreased as oligomannose type were converted to hybrid type, and further decreased upon conversion to complex type. Next, we examined the roles of three general types of N-glycans on ectopic expression of E-cadherin, a cell–cell adhesion protein. Microscopy revealed more functional E-cadherin at the cell–cell border when N-glycans were oligomannose and these levels decreased as the oligomannose N-glycans were processed to hybrid and then to complex. Thus, we provide evidence that all three general types of N-glycans impact plasma membrane architecture and cellular properties. PMID:27304954

  18. Distinct Roles for Intestinal Epithelial Cell-Specific Hdac1 and Hdac2 in the Regulation of Murine Intestinal Homeostasis.

    PubMed

    Gonneaud, Alexis; Turgeon, Naomie; Boudreau, François; Perreault, Nathalie; Rivard, Nathalie; Asselin, Claude

    2016-02-01

    The intestinal epithelium responds to and transmits signals from the microbiota and the mucosal immune system to insure intestinal homeostasis. These interactions are in part conveyed by epigenetic modifications, which respond to environmental changes. Protein acetylation is an epigenetic signal regulated by histone deacetylases, including Hdac1 and Hdac2. We have previously shown that villin-Cre-inducible intestinal epithelial cell (IEC)-specific Hdac1 and Hdac2 deletions disturb intestinal homeostasis. To determine the role of Hdac1 and Hdac2 in the regulation of IEC function and the establishment of the dual knockout phenotype, we have generated villin-Cre murine models expressing one Hdac1 allele without Hdac2, or one Hdac2 allele without Hdac1. We have also investigated the effect of short-term deletion of both genes in naphtoflavone-inducible Ah-Cre and tamoxifen-inducible villin-Cre(ER) mice. Mice with one Hdac1 allele displayed normal tissue architecture, but increased sensitivity to DSS-induced colitis. In contrast, mice with one Hdac2 allele displayed intestinal architecture defects, increased proliferation, decreased goblet cell numbers as opposed to Paneth cells, increased immune cell infiltration associated with fibrosis, and increased sensitivity to DSS-induced colitis. In comparison to dual knockout mice, intermediary activation of Notch, mTOR, and Stat3 signaling pathways was observed. While villin-Cre(ER) Hdac1 and Hdac2 deletions led to an impaired epithelium and differentiation defects, Ah-Cre-mediated deletion resulted in blunted proliferation associated with the induction of a DNA damage response. Our results suggest that IEC determination and intestinal homeostasis are highly dependent on Hdac1 and Hdac2 activity levels, and that changes in the IEC acetylome may alter the mucosal environment. PMID:26174178

  19. Distinct roles of GPVI and integrin α2β1 in platelet shape change and aggregation induced by different collagens

    PubMed Central

    Jarvis, Gavin E; Atkinson, Ben T; Snell, Daniel C; Watson, Steve P

    2002-01-01

    Various platelet membrane glycoproteins have been proposed as receptors for collagen, in some cases as receptors for specific collagen types. In this study we have compared the ability of a range of collagen types to activate platelets. Bovine collagen types I–V, native equine tendon collagen fibrils and collagen-related peptide (CRP) all induced platelet aggregation and shape change. Responses were abolished in FcRγ chain-deficient platelets, which also lack GPVI, indicating a critical dependence on the GPVI/FcRγ chain complex. Responses to all collagens were unaffected in CD36-deficient platelets. A monoclonal antibody (6F1) which binds to the α2 integrin subunit of human platelets had a minimal effect on the rate and extent of aggregation induced by the collagens; however, it delayed the onset of aggregation following addition of all collagens. For shape change, 6F1 abolished the response induced by collagen types I and IV, substantially attenuated that to collagen types II, III and V, but only partially inhibited Horm collagen. Simultaneous blockade of the P2Y1 and P2Y12 receptors, and inhibition of cyclo-oxygenase demonstrated that CRP can activate platelets independently of ADP and TxA2; however, responses to the collagens were dependent on these mediators. This study confirms the importance of the GPVI/FcRγ chain complex in platelet responses induced by a range of collagen agonists, while providing no evidence for collagen type-specific receptors. It also provides evidence for a modulatory role of α2β1, the significance of which depends on the collagen preparation. PMID:12183336

  20. Predominant Expression of Hybrid N-Glycans Has Distinct Cellular Roles Relative to Complex and Oligomannose N-Glycans.

    PubMed

    Hall, M Kristen; Weidner, Douglas A; Zhu, Yong; Dayal, Sahil; Whitman, Austin A; Schwalbe, Ruth A

    2016-01-01

    Glycosylation modulates growth, maintenance, and stress signaling processes. Consequently, altered N-glycosylation is associated with reduced fitness and disease. Therefore, expanding our understanding of N-glycans in altering biological processes is of utmost interest. Herein, clustered regularly interspaced short palindromic repeats/caspase9 (CRISPR/Cas9) technology was employed to engineer a glycosylation mutant Chinese Hamster Ovary (CHO) cell line, K16, which expresses predominantly hybrid type N-glycans. This newly engineered cell line enabled us to compare N-glycan effects on cellular properties of hybrid type N-glycans, to the well-established Pro(-)5 and Lec1 cell lines, which express complex and oligomannose types of N-glycans, respectively. Lectin binding studies revealed the predominant N-glycan expressed in K16 is hybrid type. Cell dissociation and migration assays demonstrated the greatest strength of cell-cell adhesion and fastest migratory rates for oligomannose N-glycans, and these properties decreased as oligomannose type were converted to hybrid type, and further decreased upon conversion to complex type. Next, we examined the roles of three general types of N-glycans on ectopic expression of E-cadherin, a cell-cell adhesion protein. Microscopy revealed more functional E-cadherin at the cell-cell border when N-glycans were oligomannose and these levels decreased as the oligomannose N-glycans were processed to hybrid and then to complex. Thus, we provide evidence that all three general types of N-glycans impact plasma membrane architecture and cellular properties. PMID:27304954

  1. Possession and Morality in Early Development

    ERIC Educational Resources Information Center

    Rochat, Philippe

    2011-01-01

    From the moment children say "mine!" by two years of age, objects of possession change progressively from being experienced as primarily unalienable property (i.e., something that is absolute or nonnegotiable), to being alienable (i.e., something that is negotiable in reciprocal exchanges). As possession begins to be experienced as alienable, the…

  2. 50 CFR 648.105 - Possession restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Summer Flounder Fisheries § 648.105 Possession restrictions. (a) Unless otherwise specified pursuant to § 648.107, no person shall possess more than two summer flounder in, or harvested from, the EEZ, unless that person is the owner or operator of a fishing vessel issued a summer flounder moratorium permit,...

  3. 50 CFR 648.25 - Possession restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atlantic Mackerel, Squid, and Butterfish Fisheries § 648.25 Possession restrictions. (a) Atlantic mackerel. During a closure of the directed Atlantic mackerel fishery that occurs prior to June 1, vessels may not fish for, possess, or land more than 20,000 lb (9.08 mt) of Atlantic mackerel per trip at any time,...

  4. 50 CFR 648.204 - Possession restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atlantic Herring Fishery § 648.204 Possession restrictions. (a) A vessel must be issued a valid limited access herring permit to fish for, possess, or land more than 6,600 lb (3 mt) of Atlantic herring from or in the EEZ from any herring management area, provided that the area has not been closed due to...

  5. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

    SciTech Connect

    Simian, Marina; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Shyamala, Gopalan

    2009-05-11

    Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our objective was to determine the roles of estrogen (E) and progesterone (P) in the genesis of mammary hyperplasias/preneoplasias in PR-A transgenics. We subjected PR-A mice to hormonal treatments and analyzed mammary glands for the presence of hyperplasias and used BrdU incorporation to measure proliferation. Quantitative image analysis was carried out to compare levels of latency-associated peptide and transforming growth factor beta 1 (TGF{beta}1) between PR-A and PR-B transgenics. Basement membrane disruption was examined by immunofluorescence and proteolytic activity by zymography. The hyperplastic phenotype of PR-A transgenics is inhibited by ovariectomy, and is reversed by treatment with E + P. Studies using the antiestrogen ICI 182,780 or antiprogestins RU486 or ZK 98,299 show that the increase in proliferation requires signaling through E/estrogen receptor alpha but is not sufficient to give rise to hyperplasias, whereas signaling through P/PR has little impact on proliferation but is essential for the manifestation of hyperplasias. Increased proliferation is correlated with decreased TGF{beta}1 activation in the PR-A transgenics. Analysis of basement membrane integrity showed loss of laminin-5, collagen III and collagen IV in mammary glands of PR-A mice, which is restored by ovariectomy. Examination of matrix metalloproteases (MMPs) showed that total levels of MMP-2 correlate with the steady-state levels of PR, and that areas of laminin-5 loss coincide with those of activation of MMP-2 in PR-A transgenics. Activation of MMP-2 is dependent on treatment with E and P in ovariectomized wild-type mice, but is achieved only by treatment with P in PR-A mice. These data

  6. Possession and carrying of firearms among suburban youth.

    PubMed

    Sheley, J F; Brewer, V E

    1995-01-01

    Despite a growing body of anecdotal evidence suggesting the spread of firearms to suburban juvenile populations, most studies of firearm activity by juveniles focus either on urban youth or on nationally representative samples that blur urban and nonurban distinctions. This study represents the first systematic empirical investigation specifically of a suburban population of juveniles. The authors examine both ownership and carrying behaviors, distinguish types of handguns involved, and assess the influence of drug activity, violent criminality, and the perception of one's social environment as dangerous upon the possession and carrying of firearms. Among the variables linked at the bivariate level to possession and carrying of guns were sex, involvement in criminal activity, involvement in drug activity, and most indicators of a dangerous social environment. At the multivariate level, however, only sex was associated with possession of a revolver, and only sex, criminal activity (for boys only), and one indicator of dangerous environment (having been threatened with a gun, for girls only) were associated with possession of an automatic or semiautomatic handgun. Aside from sex, criminal and drug activities were associated with gun carrying. Despite its importance among urban samples, in this study the dangerous environment was not linked to firearm activity. Possible reasons for this difference are explored in the conclusion. PMID:7838938

  7. The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization.

    PubMed

    Leslie, Patrick L; Ke, Hengming; Zhang, Yanping

    2015-05-15

    The oncoprotein murine double minute 2 (MDM2) is an E3 ligase that plays a prominent role in p53 suppression by promoting its polyubiquitination and proteasomal degradation. In its active form, MDM2 forms homodimers as well as heterodimers with the homologous protein murine double minute 4 (MDMX), both of which are thought to occur through their respective C-terminal RING (really interesting new gene) domains. In this study, using multiple MDM2 mutants, we show evidence suggesting that MDM2 homo- and heterodimerization occur through distinct mechanisms because MDM2 RING domain mutations that inhibit MDM2 interaction with MDMX do not affect MDM2 interaction with WT MDM2. Intriguingly, deletion of a portion of the MDM2 central acidic domain selectively inhibits interaction with MDM2 while leaving intact the ability of MDM2 to interact with MDMX and to ubiquitinate p53. Further analysis of an MDM2 C-terminal deletion mutant reveals that the C-terminal residues of MDM2 are required for both MDM2 and MDMX interaction. Collectively, our results suggest a model in which MDM2-MDMX heterodimerization requires the extreme C terminus and proper RING domain structure of MDM2, whereas MDM2 homodimerization requires the extreme C terminus and the central acidic domain of MDM2, suggesting that MDM2 homo- and heterodimers utilize distinct MDM2 domains. Our study is the first to report mutations capable of separating MDM2 homo- and heterodimerization. PMID:25809483

  8. The two SAMP repeats and their phosphorylation state in Drosophila Adenomatous polyposis coli-2 play mechanistically distinct roles in negatively regulating Wnt signaling

    PubMed Central

    Kunttas-Tatli, Ezgi; Von Kleeck, Ryan A.; Greaves, Bradford D.; Vinson, David; Roberts, David M.; McCartney, Brooke M.

    2015-01-01

    The tumor suppressor Adenomatous polyposis coli (APC) plays a key role in regulating the canonical Wnt signaling pathway as an essential component of the β-catenin destruction complex. C-terminal truncations of APC are strongly implicated in both sporadic and familial forms of colorectal cancer. However, many questions remain as to how these mutations interfere with APC’s tumor suppressor activity. One set of motifs frequently lost in these cancer-associated truncations is the SAMP repeats that mediate interactions between APC and Axin. APC proteins in both vertebrates and Drosophila contain multiple SAMP repeats that lack high sequence conservation outside of the Axin-binding motif. In this study, we tested the functional redundancy between different SAMPs and how these domains are regulated, using Drosophila APC2 and its two SAMP repeats as our model. Consistent with sequence conservation–based predictions, we show that SAMP2 has stronger binding activity to Axin in vitro, but SAMP1 also plays an essential role in the Wnt destruction complex in vivo. In addition, we demonstrate that the phosphorylation of SAMP repeats is a potential mechanism to regulate their activity. Overall our findings support a model in which each SAMP repeat plays a mechanistically distinct role but they cooperate for maximal destruction complex function. PMID:26446838

  9. Structural and functional analysis of the Crb2–BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair

    PubMed Central

    Kilkenny, Mairi L.; Doré, Andrew S.; Roe, S. Mark; Nestoras, Konstantinos; Ho, Jenny C.Y.; Watts, Felicity Z.; Pearl, Laurence H.

    2008-01-01

    Schizosaccharomyces pombe Crb2 is a checkpoint mediator required for the cellular response to DNA damage. Like human 53BP1 and Saccharomyces cerevisiae Rad9 it contains Tudor2 and BRCT2 domains. Crb2-Tudor2 domain interacts with methylated H4K20 and is required for recruitment to DNA dsDNA breaks. The BRCT2 domain is required for dimerization, but its precise role in DNA damage repair and checkpoint signaling is unclear. The crystal structure of the Crb2–BRCT2 domain, alone and in complex with a phosphorylated H2A.1 peptide, reveals the structural basis for dimerization and direct interaction with γ-H2A.1 in ionizing radiation-induced foci (IRIF). Mutational analysis in vitro confirms the functional role of key residues and allows the generation of mutants in which dimerization and phosphopeptide binding are separately disrupted. Phenotypic analysis of these in vivo reveals distinct roles in the DNA damage response. Dimerization mutants are genotoxin sensitive and defective in checkpoint signaling, Chk1 phosphorylation, and Crb2 IRIF formation, while phosphopeptide-binding mutants are only slightly sensitive to IR, have extended checkpoint delays, phosphorylate Chk1, and form Crb2 IRIF. However, disrupting phosphopeptide binding slows formation of ssDNA-binding protein (Rpa1/Rad11) foci and reduces levels of Rad22(Rad52) recombination foci, indicating a DNA repair defect. PMID:18676809

  10. The two SAMP repeats and their phosphorylation state in Drosophila Adenomatous polyposis coli-2 play mechanistically distinct roles in negatively regulating Wnt signaling.

    PubMed

    Kunttas-Tatli, Ezgi; Von Kleeck, Ryan A; Greaves, Bradford D; Vinson, David; Roberts, David M; McCartney, Brooke M

    2015-12-01

    The tumor suppressor Adenomatous polyposis coli (APC) plays a key role in regulating the canonical Wnt signaling pathway as an essential component of the β-catenin destruction complex. C-terminal truncations of APC are strongly implicated in both sporadic and familial forms of colorectal cancer. However, many questions remain as to how these mutations interfere with APC's tumor suppressor activity. One set of motifs frequently lost in these cancer-associated truncations is the SAMP repeats that mediate interactions between APC and Axin. APC proteins in both vertebrates and Drosophila contain multiple SAMP repeats that lack high sequence conservation outside of the Axin-binding motif. In this study, we tested the functional redundancy between different SAMPs and how these domains are regulated, using Drosophila APC2 and its two SAMP repeats as our model. Consistent with sequence conservation-based predictions, we show that SAMP2 has stronger binding activity to Axin in vitro, but SAMP1 also plays an essential role in the Wnt destruction complex in vivo. In addition, we demonstrate that the phosphorylation of SAMP repeats is a potential mechanism to regulate their activity. Overall our findings support a model in which each SAMP repeat plays a mechanistically distinct role but they cooperate for maximal destruction complex function. PMID:26446838

  11. The salt tolerant yeast Zygosaccharomyces rouxii possesses two plasma-membrane Na+/H+-antiporters (ZrNha1p and ZrSod2-22p) playing different roles in cation homeostasis and cell physiology.

    PubMed

    Pribylova, Lenka; Papouskova, Klara; Sychrova, Hana

    2008-10-01

    Antiporters exporting Na(+) and K(+) in exchange for protons are conserved among yeast species. The only exception so far has been Zygosaccharomyces rouxii, an osmotolerant species closely related to Saccharomyces cerevisiae. Z. rouxii was described as possessing one plasma-membrane antiporter transporting only Na(+) (ZrSod2-22p in the CBS 732(T) type strain). We report the characterization of a second gene, ZrNHA1, encoding a new K(+)(Na(+))/H(+)-antiporter capable of both K(+) and Na(+) export. Synteny analyses suggested that ZrSOD2-22 originated by single duplication of the ZrNHA1 gene. Substrate specificities and transport properties of ZrNha1p and ZrSod2-22p were compared upon heterologous expression in S. cerevisiae, and then directly in Z. rouxii. Deletion mutants and phenotype analyses revealed that ZrSod2-22 antiporter is important for Na(+) detoxification, probably together with ZrEna1 ATPase; ZrNha1p is indispensable to maintain potassium homeostasis and ZrEna1p is not, in contrast to the situation in S. cerevisiae, involved in this function. PMID:18761413

  12. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo.

    PubMed Central

    von Andrian, U H; Chambers, J D; McEvoy, L M; Bargatze, R F; Arfors, K E; Butcher, E C

    1991-01-01

    The lectin homing receptor LECAM-1 (LAM-1, Leu8) and the beta 2 integrins, particularly Mac-1 (CD11b/CD18), participate in leukocyte-endothelial cell interactions in inflammation. LECAM-1 is rapidly shed while Mac-1 expression is dramatically increased upon neutrophil activation, suggesting functionally distinct roles for these molecules. Using intravital video microscopy, we have compared the effect of antibodies against LECAM-1 and CD18 on leukocyte interactions with rabbit mesenteric venules. Anti-LECAM-1 monoclonal antibody and its Fab fragments inhibited initial reversible leukocyte rolling along the vascular wall. Anti-CD18 monoclonal antibody had no effect on rolling but prevented subsequent firm attachment of leukocytes to venular endothelium. These results support a two-step model of leukocyte-endothelial cell interactions: reversible rolling mediated in part by LECAM-1 facilitates leukocyte recruitment by the local microenvironment and precedes activation-dependent firm attachment involving beta 2 integrins. Images PMID:1715568

  13. 22 CFR 72.14 - Nominal possession; property not normally taken into physical possession.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and quantity that they can readily be taken into physical possession with the rest of the personal... into physical possession. 72.14 Section 72.14 Foreign Relations DEPARTMENT OF STATE PROTECTION AND... States Citizens and Nationals § 72.14 Nominal possession; property not normally taken into...

  14. 22 CFR 72.14 - Nominal possession; property not normally taken into physical possession.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and quantity that they can readily be taken into physical possession with the rest of the personal... into physical possession. 72.14 Section 72.14 Foreign Relations DEPARTMENT OF STATE PROTECTION AND... States Citizens and Nationals § 72.14 Nominal possession; property not normally taken into...

  15. Subself theory and reincarnation/possession.

    PubMed

    Lester, David

    2004-12-01

    A subself model of the mind is used to account for multiple personality, possession, the spirit controls of mediums, reincarnation, and the auditory hallucinations of schizophrenics, with suggestions for empirical research. PMID:15739836

  16. Decriminalizing Possession of All Controlled Substances.

    ERIC Educational Resources Information Center

    Kurzman, Marc G.

    1978-01-01

    Excerpts from the Minnesota Bar Association's Blue Ribbon Committee report of findings and recommendations, with regard to dealing with possession of heroin and other controlled substances, are presented here. (Author/DS)

  17. Mexico decriminalizes small-scale drug possession.

    PubMed

    2009-12-01

    On 20 August 2009, the Mexican government adopted legislation decriminalizing possession of small amounts of drugs. According to the new law, possession amounts for "personal and immediate use"--defined as up to half a gram of cocaine, five grams of marijuana, 50 milligrams of heroin, 40 milligrams of methamphetamine and 0.015 milligrams of LSD--will not lead to criminal prosecution. PMID:20225507

  18. The Plasmodium serine-type SERA proteases display distinct expression patterns and non-essential in vivo roles during life cycle progression of the malaria parasite.

    PubMed

    Putrianti, Elyzana D; Schmidt-Christensen, Anja; Arnold, Iris; Heussler, Volker T; Matuschewski, Kai; Silvie, Olivier

    2010-06-01

    Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs. PMID:20039882

  19. Distinct Roles of PKCι/λ and PKMζ in the Initiation and Maintenance of Hippocampal Long-Term Potentiation and Memory.

    PubMed

    Wang, Shaoli; Sheng, Tao; Ren, Siqiang; Tian, Tian; Lu, Wei

    2016-08-16

    PKMζ has been proposed to be essential for maintenance of long-term potentiation (LTP) and long-term memory (LTM). However, recent data from PKMζ-knockout mice has called this role into question. Instead, the other atypical isoform, protein kinase C iota/lambda (PKCι/λ), has emerged as a potential alternative player. Therefore, the nature of the "memory molecule" maintaining learned information remains uncertain. Here, we report knockdown (KD) of PKCι/λ and PKMζ in the dorsal hippocampus and find deficits in early expression and late maintenance, respectively, during both LTP and hippocampus-dependent LTM. Sequential increases in the active form of PKCι/λ and PKMζ are detected during LTP or fear conditioning. Importantly, PKMζ, but not PKCι/λ, KD disrupts previously established LTM. Thus, PKCι/λ and PKMζ have distinct functions in LTP and memory, with PKMζ playing a specific role in memory maintenance. This relaying pattern may represent a precise molecular mechanism by which atypical PKCs regulate the different stages of memory. PMID:27498875

  20. Distinctive Roles of 5-aza-2′-deoxycytidine in Anterior Agranular Insular and Basolateral Amygdala in Reconsolidation of Aversive Memory Associated with Morphine in Rats

    PubMed Central

    Liu, Peng; Zhang, JianJun; Li, Ming; Sui, Nan

    2016-01-01

    5-aza-2′-deoxycytidine (5-aza), an inhibitor of DNA methyltransferases (DNMTs), has been implicated in aversive memory and the function of brain region involved in processing emotion. However, little is known about the role of 5-aza in the reconsolidation of opiate withdrawal memory. In the present study, using the morphine-naloxone induced conditioned place aversion (CPA) model in rats, we injected 5-aza into agranular insular (AI), granular insular (GI), basolateral amygdala (BLA) and central amygdala (CeA) immediately after the memory retrieval and tested the behavioral consequences at 24 h, 7 and 14 days after retrieval test. We found that 5-aza injection into AI disrupted the reconsolidation of morphine-associated withdrawal memory, but 5-aza injection into GI had no impact on the reconsolidation. Meanwhile, 5-aza injection into BLA but not CeA attenuated the withdrawal memory trace 14 days later. However, 5-aza administration to rats, in the absence of memory reactivation, had no effect on morphine-associated withdrawal memory. These findings suggest that 5-aza interferes with the reconsolidation of opiate withdrawal memory, and the roles of insular and amygdala in reconsolidation are distinctive. PMID:27014010

  1. Distinct roles of isoforms of the heme-liganded nuclear receptor E75, an insect orthologue of the vertebrate Rev-Erb, in mosquito reproduction

    PubMed Central

    Cruz, Josefa; Mane-Padros, Daniel; Zou, Zhen; Raikhel, Alexander S.

    2012-01-01

    Mosquitoes are adapted to using vertebrate blood as a nutrient source to promote egg development and as a consequence serve as disease vectors. Blood-meal activated reproductive events in female mosquitoes are hormonally and nutritionally controlled with an insect steroid hormone 20-hydroxyecdysone (20E) playing a central role. The nuclear receptor E75 is an essential factor in the 20E genetic hierarchy, however functions of its three isoforms - E75A, E75B, and E75C – in mosquito reproduction are unclear. By means of specific RNA interference depletion of E75 isoforms, we identified their distinct roles in regulating the level and timing of expression of key genes involved in vitellogenesis in the fat body (an insect analogue of vertebrate liver and adipose tissue) of the mosquito Aedes aegypti. Heme is required in a high level of expression of 20E-controlled genes in the fat body, and this heme action depends on E75. Thus, in mosquitoes, heme is an important signaling molecule, serving as a sensor of the availability of a protein meal for egg development. Disruption of this signaling pathway could be explored in the design of mosquito control approaches. PMID:22115961

  2. Unexpected Distinct Roles of the Related Histone H3 Lysine 9 Methyltransferases G9a and G9a-Like Protein in Myoblasts.

    PubMed

    Battisti, Valentine; Pontis, Julien; Boyarchuk, Ekaterina; Fritsch, Lauriane; Robin, Philippe; Ait-Si-Ali, Slimane; Joliot, Véronique

    2016-06-01

    Lysine methyltransferases G9a and GLP (G9a-like protein) are highly homologous and form functional heterodimeric complexes that establish mono- and dimethylation on histone H3 lysine 9 (H3K9me1, H3K9me2) in euchromatin. Here, we describe unexpected distinct roles for G9a and GLP in skeletal muscle terminal differentiation. Indeed, gain- or loss-of-function assays in myoblasts showed, in agreement with previous reports, that G9a inhibits terminal differentiation. While GLP plays a more intricate role in muscle differentiation,in one hand, both GLP gain and loss of function inhibit late steps of differentiation; on the other hand, in contrast to G9a, GLP overexpression promotes abnormal precocious expression of muscle differentiation-specific genes already in proliferating myoblasts. In agreement, transcriptomic analysis indicates that G9a and GLP regulate different sets of genes. Thus, GLP, but not G9a, inhibits proteasome subunit-encoding genes expression, resulting in an inhibition of the proteasome activities. Subsequently, GLP, but not G9a, overexpression stabilizes MyoD that is likely to be responsible for muscle markers expression in proliferating myoblasts. PMID:27056598

  3. Haemophilus ducreyi RpoE and CpxRA Appear To Play Distinct yet Complementary Roles in Regulation of Envelope-Related Functions

    PubMed Central

    Gangaiah, Dharanesh; Zhang, Xinjun; Baker, Beth; Fortney, Kate R.; Liu, Yunlong; Munson, Robert S.

    2014-01-01

    Haemophilus ducreyi causes the sexually transmitted disease chancroid and a chronic limb ulceration syndrome in children. In humans, H. ducreyi is found in an abscess and overcomes a hostile environment to establish infection. To sense and respond to membrane stress, bacteria utilize two-component systems (TCSs) and extracytoplasmic function (ECF) sigma factors. We previously showed that activation of CpxRA, the only intact TCS in H. ducreyi, does not regulate homologues of envelope protein folding factors but does downregulate genes encoding envelope-localized proteins, including many virulence determinants. H. ducreyi also harbors a homologue of RpoE, which is the only ECF sigma factor in the organism. To potentially understand how H. ducreyi responds to membrane stress, here we defined RpoE-dependent genes using transcriptome sequencing (RNA-Seq). We identified 180 RpoE-dependent genes, of which 98% were upregulated; a major set of these genes encodes homologues of envelope maintenance and repair factors. We also identified and validated a putative RpoE promoter consensus sequence, which was enriched in the majority of RpoE-dependent targets. Comparison of RpoE-dependent genes to those controlled by CpxR showed that each transcription factor regulated a distinct set of genes. Given that RpoE activated a large number of genes encoding envelope maintenance and repair factors and that CpxRA represses genes encoding envelope-localized proteins, these data suggest that RpoE and CpxRA appear to play distinct yet complementary roles in regulating envelope homeostasis in H. ducreyi. PMID:25201944

  4. P. aeruginosa SGNH Hydrolase-Like Proteins AlgJ and AlgX Have Similar Topology but Separate and Distinct Roles in Alginate Acetylation

    PubMed Central

    Moynihan, Patrick J.; Kitova, Elena N.; Walvoort, Marthe T. C.; Little, Dustin J.; Whitney, John C.; Dawson, Karen; Weadge, Joel T.; Robinson, Howard; Ohman, Dennis E.; Codée, Jeroen D. C.; Klassen, John S.; Clarke, Anthony J.; Howell, P. Lynne

    2014-01-01

    The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 Å resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation. PMID:25165982

  5. Differential Loss of Prolyl Isomerase or Chaperone Activity of Ran-binding Protein 2 (Ranbp2) Unveils Distinct Physiological Roles of Its Cyclophilin Domain in Proteostasis*

    PubMed Central

    Cho, Kyoung-in; Patil, Hemangi; Senda, Eugene; Wang, Jessica; Yi, Haiqing; Qiu, Sunny; Yoon, Dosuk; Yu, Minzhong; Orry, Andrew; Peachey, Neal S.; Ferreira, Paulo A.

    2014-01-01

    The immunophilins, cyclophilins, catalyze peptidyl cis-trans prolyl-isomerization (PPIase), a rate-limiting step in protein folding and a conformational switch in protein function. Cyclophilins are also chaperones. Noncatalytic mutations affecting the only cyclophilins with known but distinct physiological substrates, the Drosophila NinaA and its mammalian homolog, cyclophilin-B, impair opsin biogenesis and cause osteogenesis imperfecta, respectively. However, the physiological roles and substrates of most cyclophilins remain unknown. It is also unclear if PPIase and chaperone activities reflect distinct cyclophilin properties. To elucidate the physiological idiosyncrasy stemming from potential cyclophilin functions, we generated mice lacking endogenous Ran-binding protein-2 (Ranbp2) and expressing bacterial artificial chromosomes of Ranbp2 with impaired C-terminal chaperone and with (Tg-Ranbp2WT-HA) or without PPIase activities (Tg-Ranbp2R2944A-HA). The transgenic lines exhibit unique effects in proteostasis. Either line presents selective deficits in M-opsin biogenesis with its accumulation and aggregation in cone photoreceptors but without proteostatic impairment of two novel Ranbp2 cyclophilin partners, the cytokine-responsive effectors, STAT3/STAT5. Stress-induced STAT3 activation is also unaffected in Tg-Ranbp2R2944A-HA::Ranbp2−/−. Conversely, proteomic analyses found that the multisystem proteinopathy/amyotrophic lateral sclerosis proteins, heterogeneous nuclear ribonucleoproteins A2/B1, are down-regulated post-transcriptionally only in Tg-Ranbp2R2944A-HA::Ranbp2−/−. This is accompanied by the age- and tissue-dependent reductions of diubiquitin and ubiquitylated proteins, increased deubiquitylation activity, and accumulation of the 26 S proteasome subunits S1 and S5b. These manifestations are absent in another line, Tg-Ranbp2CLDm-HA::Ranbp2−/−, harboring SUMO-1 and S1-binding mutations in the Ranbp2 cyclophilin-like domain. These results unveil

  6. Possession Divestment by Sales in Later Life

    PubMed Central

    Ekerdt, David J.; Addington, Aislinn

    2015-01-01

    Residential relocation in later life is almost always a downsizing, with many possessions to be divested in a short period of time. This article examines older movers’ capacities for selling things, and ways that selling attenuates people's ties to those things, thus accomplishing the human dis-possession of the material convoy. In qualitative interviews in 79 households in the Midwestern United States, older adults reported their experience with possession sales associated with residential relocation. Among this group, three-quarters of the households downsized by selling some belongings. Informal sales seemed the least fraught of all strategies, estate sales had mixed reviews, and garage sales were recalled as laborious. Sellers’ efforts were eased by social relations and social networks as helpers and buyers came forward. As selling proceeded, sentiment about possessions waned as their materiality and economic value came to the fore, easing their detachment from the household. Possession selling is challenging because older adults are limited in the knowledge, skills, and efforts that they can apply to the recommodification of their belongings. Selling can nonetheless be encouraged as a divestment strategy as long as the frustrations and drawbacks are transparent, and the goal of ridding is kept in view. PMID:26162722

  7. Possession divestment by sales in later life.

    PubMed

    Ekerdt, David J; Addington, Aislinn

    2015-08-01

    Residential relocation in later life is almost always a downsizing, with many possessions to be divested in a short period of time. This article examines older movers' capacities for selling things, and ways that selling attenuates people's ties to those things, thus accomplishing the human dis-possession of the material convoy. In qualitative interviews in 79 households in the Midwestern United States, older adults reported their experience with possession sales associated with residential relocation. Among this group, three-quarters of the households downsized by selling some belongings. Informal sales seemed the least fraught of all strategies, estate sales had mixed reviews, and garage sales were recalled as laborious. Sellers' efforts were eased by social relations and social networks as helpers and buyers came forward. As selling proceeded, sentiment about possessions waned as their materiality and economic value came to the fore, easing their detachment from the household. Possession selling is challenging because older adults are limited in the knowledge, skills, and efforts that they can apply to the recommodification of their belongings. Selling can nonetheless be encouraged as a divestment strategy as long as the frustrations and drawbacks are transparent, and the goal of ridding is kept in view. PMID:26162722

  8. Is Face Distinctiveness Gender Based?

    ERIC Educational Resources Information Center

    Baudouin, Jean-Yves; Gallay, Mathieu

    2006-01-01

    Two experiments were carried out to study the role of gender category in evaluations of face distinctiveness. In Experiment 1, participants had to evaluate the distinctiveness and the femininity-masculinity of real or artificial composite faces. The composite faces were created by blending either faces of the same gender (sexed composite faces,…

  9. P130Cas Src-Binding and Substrate Domains Have Distinct Roles in Sustaining Focal Adhesion Disassembly and Promoting Cell Migration

    PubMed Central

    Meenderink, Leslie M.; Ryzhova, Larisa M.; Donato, Dominique M.; Gochberg, Daniel F.; Kaverina, Irina; Hanks, Steven K.

    2010-01-01

    The docking protein p130Cas is a prominent Src substrate found in focal adhesions (FAs) and is implicated in regulating critical aspects of cell motility including FA disassembly and protrusion of the leading edge plasma membrane. To better understand how p130Cas acts to promote these events we examined requirements for established p130Cas signaling motifs including the SH3-binding site of the Src binding domain (SBD) and the tyrosine phosphorylation sites within the substrate domain (SD). Expression of wild type p130Cas in Cas −/− mouse embryo fibroblasts resulted in enhanced cell migration associated with increased leading-edge actin flux, increased rates of FA assembly/disassembly, and uninterrupted FA turnover. Variants lacking either the SD phosphorylation sites or the SBD SH3-binding motif were able to partially restore the migration response, while only a variant lacking both signaling functions was fully defective. Notably, the migration defects associated with p130Cas signaling-deficient variants correlated with longer FA lifetimes resulting from aborted FA disassembly attempts. However the SD mutational variant was fully defective in increasing actin assembly at the protruding leading edge and FA assembly/disassembly rates, indicating that SD phosphorylation is the sole p130Cas signaling function in regulating these processes. Our results provide the first quantitative evidence supporting roles for p130Cas SD tyrosine phosphorylation in promoting both leading edge actin flux and FA turnover during cell migration, while further revealing that the p130Cas SBD has a function in cell migration and sustained FA disassembly that is distinct from its known role of promoting SD tyrosine phosphorylation. PMID:20976150

  10. Structural and Functional Modularity of the Orange Carotenoid Protein: Distinct Roles for the N- and C-Terminal Domains in Cyanobacterial Photoprotection[C][W

    PubMed Central

    Leverenz, Ryan L.; Jallet, Denis; Li, Ming-De; Mathies, Richard A.; Kirilovsky, Diana; Kerfeld, Cheryl A.

    2014-01-01

    The orange carotenoid protein (OCP) serves as a sensor of light intensity and an effector of phycobilisome (PB)–associated photoprotection in cyanobacteria. Structurally, the OCP is composed of two distinct domains spanned by a single carotenoid chromophore. Functionally, in response to high light, the OCP converts from a dark-stable orange form, OCPO, to an active red form, OCPR. The C-terminal domain of the OCP has been implicated in the dynamic response to light intensity and plays a role in switching off the OCP’s photoprotective response through its interaction with the fluorescence recovery protein. The function of the N-terminal domain, which is uniquely found in cyanobacteria, is unclear. To investigate its function, we isolated the N-terminal domain in vitro using limited proteolysis of native OCP. The N-terminal domain retains the carotenoid chromophore; this red carotenoid protein (RCP) has constitutive PB fluorescence quenching activity comparable in magnitude to that of active, full-length OCPR. A comparison of the spectroscopic properties of the RCP with OCPR indicates that critical protein–chromophore interactions within the C-terminal domain are weakened in the OCPR form. These results suggest that the C-terminal domain dynamically regulates the photoprotective activity of an otherwise constitutively active carotenoid binding N-terminal domain. PMID:24399299

  11. Expression patterns suggest that despite considerable functional redundancy, galectin-4 and -6 play distinct roles in normal and damaged mouse digestive tract.

    PubMed

    Houzelstein, Denis; Reyes-Gomez, Edouard; Maurer, Marie; Netter, Pierre; Higuet, Dominique

    2013-05-01

    The galectin-4 protein is mostly expressed in the digestive tract and is associated with lipid raft stabilization, protein apical trafficking, wound healing, and inflammation. While most mammalian species, including humans, have a single Lgals4 gene, some mice have two paralogues: Lgals4 and Lgals6. So far, their significant similarities have hindered the analysis of their respective expression and function. We took advantage of two antibodies that discriminate between the galectin-4 and galectin-6 proteins to document their patterns of expression in the normal and the dextran sodium sulfate (DSS)-damaged digestive tract in the mouse. In the normal digestive tract, their pattern of expression from tongue to colon is quite similar, which suggests functional redundancy. However, the presence of galectin-4, but not galectin-6, in the lamina propria of the DSS-damaged colon, its association with luminal colonic bacteria, and differences in subcellular localization of these proteins suggest that they also have distinct roles in the normal and the damaged mouse digestive tract. Our results provide a rare example of ancestral and derived functions evolving after tandem gene duplication. PMID:23360694

  12. Genome-Wide Occupancy of SREBP1 and Its Partners NFY and SP1 Reveals Novel Functional Roles and Combinatorial Regulation of Distinct Classes of Genes

    PubMed Central

    Reed, Brian D.; Charos, Alexandra E.; Szekely, Anna M.; Weissman, Sherman M.; Snyder, Michael

    2008-01-01

    The sterol regulatory element-binding protein (SREBP) family member SREBP1 is a critical transcriptional regulator of cholesterol and fatty acid metabolism and has been implicated in insulin resistance, diabetes, and other diet-related diseases. We globally identified the promoters occupied by SREBP1 and its binding partners NFY and SP1 in a human hepatocyte cell line using chromatin immunoprecipitation combined with genome tiling arrays (ChIP-chip). We find that SREBP1 occupies the promoters of 1,141 target genes involved in diverse biological pathways, including novel targets with roles in lipid metabolism and insulin signaling. We also identify a conserved SREBP1 DNA-binding motif in SREBP1 target promoters, and we demonstrate that many SREBP1 target genes are transcriptionally activated by treatment with insulin and glucose using gene expression microarrays. Finally, we show that SREBP1 cooperates extensively with NFY and SP1 throughout the genome and that unique combinations of these factors target distinct functional pathways. Our results provide insight into the regulatory circuitry in which SREBP1 and its network partners coordinate a complex transcriptional response in the liver with cues from the diet. PMID:18654640

  13. 50 CFR 648.25 - Possession restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Atlantic Mackerel, Squid, and Butterfish Fisheries § 648.25 Possession restrictions. Link to an amendment... Atlantic Mackerel, squid, and butterfish framework adjustments to management measures. (a) Within season... the Atlantic Mackerel, Squid, and Butterfish FMP if it finds that action is necessary to meet or...

  14. 27 CFR 479.121 - Insular possessions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Insular possessions. 479.121 Section 479.121 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  15. 27 CFR 479.121 - Insular possessions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Insular possessions. 479.121 Section 479.121 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  16. 27 CFR 479.121 - Insular possessions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2012-04-01 2010-04-01 true Insular possessions. 479.121 Section 479.121 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  17. 27 CFR 479.121 - Insular possessions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Insular possessions. 479.121 Section 479.121 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  18. 27 CFR 479.121 - Insular possessions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2014-04-01 2014-04-01 false Insular possessions. 479.121 Section 479.121 Alcohol, Tobacco Products, and Firearms BUREAU OF ALCOHOL, TOBACCO, FIREARMS, AND EXPLOSIVES, DEPARTMENT OF JUSTICE FIREARMS AND AMMUNITION MACHINE GUNS, DESTRUCTIVE DEVICES, AND...

  19. Distinct Roles of the Salmonella enterica Serovar Typhimurium CyaY and YggX Proteins in the Biosynthesis and Repair of Iron-Sulfur Clusters

    PubMed Central

    Velayudhan, Jyoti; Karlinsey, Joyce E.; Frawley, Elaine R.; Becker, Lynne A.; Nartea, Margaret

    2014-01-01

    Labile [4Fe-4S]2+ clusters found at the active sites of many dehydratases are susceptible to damage by univalent oxidants that convert the clusters to an inactive [3Fe-4S]1+ form. Bacteria repair damaged clusters in a process that does not require de novo protein synthesis or the Isc and Suf cluster assembly pathways. The current study investigates the participation of the bacterial frataxin ortholog CyaY and the YggX protein, which are proposed to play roles in iron trafficking and iron-sulfur cluster repair. Previous reports found that individual mutations in cyaY or yggX were not associated with phenotypic changes in Escherichia coli and Salmonella enterica serovar Typhimurium, suggesting that CyaY and YggX might have functionally redundant roles. However, we have found that individual mutations in cyaY or yggX confer enhanced susceptibility to hydrogen peroxide in Salmonella enterica serovar Typhimurium. In addition, inactivation of the stm3944 open reading frame, which is located immediately upstream of cyaY and which encodes a putative inner membrane protein, dramatically enhances the hydrogen peroxide sensitivity of a cyaY mutant. Overexpression of STM3944 reduces the elevated intracellular free iron levels observed in an S. Typhimurium fur mutant and also reduces the total cellular iron content under conditions of iron overload, suggesting that the stm3944-encoded protein may mediate iron efflux. Mutations in cyaY and yggX have different effects on the activities of the iron-sulfur cluster-containing aconitase, serine deaminase, and NADH dehydrogenase I enzymes of S. Typhimurium under basal conditions or following recovery from oxidative stress. In addition, cyaY and yggX mutations have additive effects on 6-phosphogluconate dehydratase-dependent growth during nitrosative stress, and a cyaY mutation reduces Salmonella virulence in mice. Collectively, these results indicate that CyaY and YggX play distinct supporting roles in iron-sulfur cluster biosynthesis

  20. 22 CFR 72.14 - Nominal possession; property not normally taken into physical possession.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Nominal possession; property not normally taken into physical possession. 72.14 Section 72.14 Foreign Relations DEPARTMENT OF STATE PROTECTION AND WELFARE OF AMERICANS, THEIR PROPERTY AND ESTATES DEATHS AND ESTATES Personal Estates of Deceased United States Citizens and Nationals § 72.14...

  1. Possession Versus Position: Strategic Evaluation in AFL

    PubMed Central

    O’Shaughnessy, Darren M.

    2006-01-01

    In sports like Australian Rules football and soccer, teams must battle to achieve possession of the ball in sufficient space to make optimal use of it. Ultimately the teams need to score, and to do that the ball must be brought into the area in front of goal - the place where the defence usually concentrates on shutting down space and opportunity time. Coaches would like to quantify the trade-offs between contested play in good positions and uncontested play in less promising positions, in order to inform their decision-making about where to put their players, and when to gamble on sending the ball to a contest rather than simply maintain possession. To evaluate football strategies, Champion Data has collected the on-ground locations of all 350,000 possessions and stoppages in the past two seasons of AFL (2004, 2005). By following each chain of play through to the next score, we can now reliably estimate the scoreboard “equity ”of possessing the ball at any location, and measure the effect of having sufficient time to dispose of it effectively. As expected, winning the ball under physical pressure (through a “hard ball get”) is far more difficult to convert into a score than winning it via a mark. We also analyse some equity gradients to show how getting the ball 20 metres closer to goal is much more important in certain areas of the ground than in others. We conclude by looking at the choices faced by players in possession wanting to maximise their likelihood of success. Key Points Equity analysis provides a way of estimating the net value of actions on the sporting field. Combined with spatial data analysis, the relative merits of gaining position or maintaining possession can be judged. The advantage of having time and space to use the ball is measured in terms of scoreboard value, and is found to vary with field position. Each sport has identifiable areas of the field with high equity gradients, meaning that it is most important to gain territory there

  2. Tracking the actions and possessions of agents

    PubMed Central

    Gelman, Susan A.; Noles, Nicholaus S.; Stilwell, Sarah

    2014-01-01

    We propose that there is a powerful human disposition to track the actions and possessions of agents. In two experiments, 3-year-olds and adults viewed sets of objects, learned a new fact about one of the objects in each set (either that it belonged to the participant, or that it possessed a particular label), and were queried about either the taught fact or an unrelated dimension (preference) immediately after a spatiotemporal transformation, and after a delay. Adults uniformly tracked object identity under all conditions, whereas children tracked identity more when taught ownership versus labeling information, and only regarding the taught fact (not the unrelated dimension). These findings suggest that the special attention that children and adults pay to agents readily extends to include inanimate objects. That young children track an object’s history, despite their reliance on surface features on many cognitive tasks, suggests that unobservable historical features are foundational in human cognition. PMID:25111732

  3. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter.

    PubMed

    Smart, Jonathan P; Cliff, Matthew J; Kelly, David J

    2009-11-01

    The food-borne pathogen Campylobacter jejuni possesses no known tungstoenzymes, yet encodes two ABC transporters (Cj0300-0303 and Cj1538-1540) homologous to bacterial molybdate (ModABC) uptake systems and the tungstate transporter (TupABC) of Eubacterium acidaminophilum respectively. The actual substrates and physiological role of these transporters were investigated. Tryptophan fluorescence spectroscopy and isothermal titration calorimetry of the purified periplasmic binding proteins of each system revealed that while Cj0303 is unable to discriminate between molybdate and tungstate (K(D) values for both ligands of 4-8 nM), Cj1540 binds tungstate with a K(D) of 1.0 +/- 0.2 pM; 50 000-fold more tightly than molybdate. Induction-coupled plasma mass spectroscopy of single and double mutants showed that this large difference in affinity is reflected in a lower cellular tungsten content in a cj1540 (tupA) mutant compared with a cj0303c (modA) mutant. Surprisingly, formate dehydrogenase (FDH) activity was decreased approximately 50% in the tupA strain, and supplementation of the growth medium with tungstate significantly increased FDH activity in the wild type, while inhibiting known molybdoenzymes. Our data suggest that C. jejuni possesses a specific, ultra-high affinity tungstate transporter that supplies tungsten for incorporation into FDH. Furthermore, possession of two MoeA paralogues may explain the formation of both molybdopterin and tungstopterin in this bacterium. PMID:19818021

  4. 50 CFR 20.38 - Possession of live birds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Possession of live birds. 20.38 Section 20... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.38 Possession of live birds. Every migratory game bird wounded by hunting and reduced to possession by the hunter shall be immediately...

  5. 50 CFR 20.38 - Possession of live birds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Possession of live birds. 20.38 Section 20... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.38 Possession of live birds. Every migratory game bird wounded by hunting and reduced to possession by the hunter shall be immediately...

  6. 50 CFR 20.38 - Possession of live birds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Possession of live birds. 20.38 Section 20... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.38 Possession of live birds. Every migratory game bird wounded by hunting and reduced to possession by the hunter shall be immediately...

  7. 50 CFR 20.38 - Possession of live birds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Possession of live birds. 20.38 Section 20... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.38 Possession of live birds. Every migratory game bird wounded by hunting and reduced to possession by the hunter shall be immediately...

  8. 50 CFR 20.38 - Possession of live birds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Possession of live birds. 20.38 Section 20... WILDLIFE AND PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Possession § 20.38 Possession of live birds. Every migratory game bird wounded by hunting and reduced to possession by the hunter shall be immediately...

  9. Planctomycetes do possess a peptidoglycan cell wall

    PubMed Central

    Jeske, Olga; Schüler, Margarete; Schumann, Peter; Schneider, Alexander; Boedeker, Christian; Jogler, Mareike; Bollschweiler, Daniel; Rohde, Manfred; Mayer, Christoph; Engelhardt, Harald; Spring, Stefan; Jogler, Christian

    2015-01-01

    Most bacteria contain a peptidoglycan (PG) cell wall, which is critical for maintenance of shape and important for cell division. In contrast, Planctomycetes have been proposed to produce a proteinaceous cell wall devoid of PG. The apparent absence of PG has been used as an argument for the putative planctomycetal ancestry of all bacterial lineages. Here we show, employing multiple bioinformatic methods, that planctomycetal genomes encode proteins required for PG synthesis. Furthermore, we biochemically demonstrate the presence of the sugar and the peptide components of PG in Planctomycetes. In addition, light and electron microscopic experiments reveal planctomycetal PG sacculi that are susceptible to lysozyme treatment. Finally, cryo-electron tomography demonstrates that Planctomycetes possess a typical PG cell wall and that their cellular architecture is thus more similar to that of other Gram-negative bacteria. Our findings shed new light on the cellular architecture and cell division of the maverick Planctomycetes. PMID:25964217

  10. [The phenomenon of possession. Conception and experiences of possession in youth].

    PubMed

    Bron, B

    1975-01-01

    In the last few years, a trend to the multiplication of experiences of possession has been observed in young people. On the basis of four typical examples, the author examines this phenomenon in the light of the psychiatric, psychoanalytic and theological understanding of possession. It involves mostly young people, who do not have hysterical fits or psychotic episodes during spiritualist practices but who specially tend to take a strong interest in occultism, who very often consume drugs and have contacts with groups in which the interest for demonology plays an important part. PMID:1192724