These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest  

USGS Publications Warehouse

It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas. ?? 2011 Taylor & Francis.

Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H.

2011-01-01

2

The Effect of Burn Severity on Short-Term Post-Fire Boreal Vegetation Recovery in Interior Alaska  

NASA Astrophysics Data System (ADS)

Fire is the dominant disturbance in the interior boreal region of Alaska and is predicted to increase with climate warming. This variation in the boreal fire regime could play a critical role in climate feedbacks by altering forest productivity and succession and, consequently, biogeochemical cycling, carbon sequestration, and surface energy fluxes. Due to limited fine-scale studies, however, it is not known how increased burn severity (i.e.-amount of organic material consumed) alters post-fire recovery of vegetation productivity, nor how the relationship between severity and post-fire recovery varies across heterogeneous landscapes. In examining fires from the 2004 Alaska fire season (n=72), the objective of this research was to determine how between and within fire variation in burn severity and related variables (pre-fire vegetation, elevation, insolation, etc.) mediates short-term post-fire recovery at the regional scale (i.e.-interior Alaska) and at the landscape scale (i.e.-a single fire complex).The Normalized Burn Ratio was used to measure burn severity and MODIS NDVI was used as a proxy for vegetation recovery. For the between fire analysis, remotely sensed data was overlaid on the fire perimeters in a GIS to create a multivariate dataset with variables aggregated by fire. The dependent variables for each fire were percent NDVI growing season change from 2003 to 2005 (i.e.-productivity drop) and from 2005 to 2007 (i.e.-productivity recovery), while the independent variables included mean dNBR, elevation, and insolation, and percentages of pre-fire land cover types. This dataset was explored in a geovisualization application (GeoViz Toolkit) to help interpret a more detailed adjusted R-square multivariate regression.The top 3 models (R-square ~ 0.60) for the productivity drop per fire showed that fires in higher elevations and containing higher percentages of pre-fire conifer forest were correlated with larger drops in NDVI. In contrast, the models for productivity recovery were not as strong (R-square ~ 0.30), but elevation and conifer land cover still accounted for the most variation. This supports the observation that upland areas with south-facing slopes are some of the most productive in Alaska and that conifer areas with larger NDVI drops will likely show a greater magnitude of post-fire recovery response. These results and further insights to be provided by a spatial analysis of within fire recovery patterns are important for understanding how increased burn severity alters boreal vegetation recovery-a critical climate feedback.

Oyler, J. W.; Smithwick, E.; Mack, M. C.

2008-12-01

3

Characterization of post-fire surface cover, soils, and burn severity at the Cerro Grande Fire, New Mexico, using hyperspectral and multispectral remote sensing  

USGS Publications Warehouse

Forest fires leave behind a changed ecosystem with a patchwork of surface cover that includes ash, charred organic matter, soils and soil minerals, and dead, damaged, and living vegetation. The distributions of these materials affect post-fire processes of erosion, nutrient cycling, and vegetation regrowth. We analyzed high spatial resolution (2.4??m pixel size) Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over the Cerro Grande fire, to map post-fire surface cover into 10 classes, including ash, soil minerals, scorched conifer trees, and green vegetation. The Cerro Grande fire occurred near Los Alamos, New Mexico, in May 2000. The AVIRIS data were collected September 3, 2000. The surface cover map revealed complex patterns of ash, iron oxide minerals, and clay minerals in areas of complete combustion. Scorched conifer trees, which retained dry needles heated by the fire but not fully combusted by the flames, were found to cover much of the post-fire landscape. These scorched trees were found in narrow zones at the edges of completely burned areas. A surface cover map was also made using Landsat Enhanced Thematic Mapper plus (ETM+) data, collected September 5, 2000, and a maximum likelihood, supervised classification. When compared to AVIRIS, the Landsat classification grossly overestimated cover by dry conifer and ash classes and severely underestimated soil and green vegetation cover. In a comparison of AVIRIS surface cover to the Burned Area Emergency Rehabilitation (BAER) map of burn severity, the BAER high burn severity areas did not capture the variable patterns of post-fire surface cover by ash, soil, and scorched conifer trees seen in the AVIRIS map. The BAER map, derived from air photos, also did not capture the distribution of scorched trees that were observed in the AVIRIS map. Similarly, the moderate severity class of Landsat-derived burn severity maps generated from the differenced Normalized Burn Ratio (dNBR) calculation had low agreement with the AVIRIS classes of scorched conifer trees. Burn severity and surface cover images were found to contain complementary information, with the dNBR map presenting an image of degree of change caused by fire and the AVIRIS-derived map showing specific surface cover resulting from fire.

Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V.

2007-01-01

4

The influence of burn severity on post-fire vegetation recovery and albedo change during early succession in North American boreal forests  

NASA Astrophysics Data System (ADS)

Severity of burning can influence multiple aspects of forest composition, carbon cycling, and climate forcing. We quantified how burn severity affected vegetation recovery and albedo change during early succession in Canadian boreal regions by combining satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Canadian Large Fire Data Base (LFDB). We used the difference Normalized Burn Ratio (dNBR) and changes in spring albedo derived from MODIS 500m albedo product as measures of burn severity. We found that the most severe burns had the greatest reduction in summer EVI in first year after fire, indicating greater loss of vegetation cover immediately following fire. By 5-7 years after fire, summer EVI for all severity classes had recovered to within 90-110% of pre-fire levels. Burn severity had a positive effect on the increase of post-fire spring albedo during the first 7 years after fire, and a shift from low to moderate or moderate to severe fires led to amplification of the post-fire albedo increase by approximately 30%. Fire-induced increases in both spring and summer albedo became progressively larger with stand age from years 1-7, with the trend in spring albedo likely driven by continued losses of needles and branches from trees killed by the fire (and concurrent losses of black carbon coatings on remaining debris), and the summer trend associated with increases in leaf area of short-stature herbs and shrubs. Our results suggest that increases in burn severity and carbon losses observed in some areas of boreal forests (e.g., Turetsky et al., 2011) may be at least partly offset by increases in negative forcing associated with changes in surface albedo.

Jin, Y.; Randerson, J. T.; Goetz, S. J.; Beck, P. S.; Loranty, M. M.; Goulden, M.

2011-12-01

5

Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data  

Microsoft Academic Search

To facilitate the identification of appropriate post-fire watershed treatments and minimize erosion effects after socio-economically important fires, Interagency Burned Area Emergency Rehabilitation (BAER) teams produce initial timely estimates of the fire perimeter and classifications of burn severity, forest mortality, and vegetation mortality. Accurate, cost-effective, and minimal time-consuming methods of mapping fire are desirable to assist rehabilitation efforts immediately after containment

Jay D. Miller; Stephen R. Yool

2002-01-01

6

A Burning Question: Does Post-Fire Rehabilitation Alter the Likelihood of Future Fires?  

NASA Astrophysics Data System (ADS)

Historically, aridlands have had infrequent fire due to patchy plant distributions, which limit fire spread. However, aridland fire regimes have changed because invasive annual grasses have created continuous fuel beds, which have led to increasingly frequent fires and a greater area burned each decade since the 1970s. Climate change is predicted to further increase the number and size of fires. Post-fire rehabilitation is enacted in order to reestablish plant communities and has the potential to further alter fire regimes. Rehabilitation treatments include tilling seeds using a tractor and drill (drill seeding), dropping seed aerially with helicopters (aerial seeding), or both. Few studies examine the impact of post-fire rehabilitation on the likelihood of future fires in these aridland ecosystems. We examined the effects of post-fire rehabilitation treatments on the number of years before the next fire. Using GIS layers detailing fire history and post-fire rehabilitation treatments in the southern Idaho Great Basin, we extracted information from randomly selected sites and analyzed them with generalized linear models. Preliminary analysis on 43 sites suggests the number of years before the next fire tended to be less in seeded than unseeded sites (P=0.055). Further investigation revealed that the number of years until the next fire differed among seed application methods. Sites that were drill seeded burned approximately 12 years later while sites with combined aerial and drill seeding burned again after 6.5 years (P=0.05). The total number of burns at a site was inversely related to the time before the next fire (P=0.001). After the first fire, sites averaged 17.4 years before the next fire occurred; this decreased with each subsequent fire to 7.1 years after the fifth fire. The number of times a site burned and the rehabilitation treatment interacted to affect the number of years between fires. In sites that burned once, there was on average 27.75 years before the second burn at unseeded sites, 18 years when only drill seeded, and 8.8 years when both aerially and drill seeded (P=0.038). Likewise, at sites that burned at least six times, the number of years before the next fire was significantly lower in the combination of aerial and drill seeding compared to unseeded sites (3.3 versus 6.9 years, respectively, P=0.047). The number of fires a site experienced altered the duration between fires, but the combination of drill and aerial seeding consistently experienced fire sooner than either technique used in isolation. These preliminary results suggest that post-fire rehabilitation may decrease the time between fires after the first two fires, but can decrease the time between after a threshold number of fires depending on the technique used. Drill seeding alone maintained a fire return interval of 9-10 years after 4, 5, or 6 fires which was the longest interval past that threshold, The results are shocking in a system that historically has fire return intervals of hundreds of years.

Bowman-Prideaux, C.; Newingham, B. A.

2013-12-01

7

Post-fire effects on hydrological and erodibility factors in a simulated burn and rainfall experiment  

NASA Astrophysics Data System (ADS)

Mediterranean forests are frequently subject to wildfires, inducing risks of runoff and loss of nutrient-rich topsoil. Post-fire causes for soil erosion are hard to separate. These mechanisms are spatially variable due to differences in vegetation density, litter composition, soil texture and structure, and fire intensity. However, the characteristics of soil and surface in the immediate post-fire period are of critical importance to the hydrological response and erosion susceptibility of the burned hillslope and catchment. The mentioned variation is still present in laboratory experiments, however a lot of it can be reduced by using homogeneous litter, uniform soil amounts and texture, controlled temperature and rain regimes and by replicating treatments. Moreover, fire and rain events can be simulated, enabling an imitation of a post-fire period. In this study we looked at post-fire observations for laboratory fire and rainfall (nozzle-type) simulation experiments to evaluate short-term effects of fire on soil hydrological and erodibility parameters by investigating (i) soil water repellency (WR) levels and distribution, (ii) surface cover features, and (iii) sat. hydraulic conductivity (Ksat), electrical conductivity and values of infiltration, runoff and erosion responses to simulated rain on control (bare and needle covered) and burned (with and without ash cover) samples. In the laboratory experiments we used a novel combination of techniques: (i) prepared trays of soil were manually burned; (ii) WR was measured before, in-between and after rainfall simulations; (iii) assessing of the degree and spatial variation for preferential surface flow; (iv) two rainfall simulations with drying period to simulate a part of a rainy season with cycles of wetting and drying (with its effects on soil hydrology, (re-)establishment hydrophobicity). The fire-induced surface WR in the lab, tested by grid-wise Water Drop Penetration tests, was moderate but decreased for all treatments after rain. The responses to rain (33 mm h-1) differed for the two simulation runs. The rates of drainage and runoff of the burned samples showed in the first run values in between the values of cover (low runoff, high infiltration) and bare (high runoff, low infiltration). The drainage in the ash-covered samples was twice as high as in the samples where the ash was removed. In the second run both samples showed a similar response compared to bare conditions. After the first run most ash and organic material was washed off and Ksat was low, indicating crust formation. After the first run the EC values showed a significant drop, which represents the infiltration of the cation-binding organic matter, as this is not present for the bare samples. These laboratory observations show that apart from soil crusting, WR and protection by ash are factors to consider in erosion susceptibility of a burned forest soil.

Keesstra, S. D.; Wittenberg, L.; Voogt, A.; Argaman, E.; Malkinson, D.

2012-04-01

8

The effects of fire severity on black carbon additions to forest soils - 10 years post fire  

NASA Astrophysics Data System (ADS)

Wildfires play an active role in the global carbon cycle. While large amounts of carbon dioxide are released, a small fraction of the biomass consumed by the fire is only partially combusted, yielding soot and charcoal. These products, also called black carbon (BC) make up only 1-5% of the biomass burnt, yet they can have a disproportionate effect on both the atmosphere and fluxes in long-term carbon pools. This project specifically considers the fraction that is sequestered in forest soils. Black carbon is not a specific compound, and exists along a continuum ranging from partially burned biomass to pure carbon or graphite. Increasing aromaticity as the result of partial combustion means charcoal is highly resistant to oxidation. Although debated, most studies indicate a turnover time on the order of 500-1,000 years in warm, wet, aerobic soils. Charcoal may function as a long-term carbon sink, however its overall significance depends on its rate of formation and loss. At the landscape level, fire characteristics are one of the major factors controlling charcoal production. A few studies suggest that charcoal production increases with cooler, less-severe fires. However, there are many factors to tease apart, partly because of a lack of specificity in how fire severity is defined. Within this greater context, our lab has been working on a landscape-level study within Routt National Forest, north of Steamboat Springs, Colorado. In 2002, a large fire swept through a subalpine spruce, fir and lodgepole pine forest. In 2011-2013 we sampled BC pools in 44 plots across a range of fire severities from unburned to severe crown We hypothesized that charcoal stocks will be higher in areas of low severity fire as compared to high severity because of decreased re-combustion of charcoal in the organic soil and increased overall charcoal production due to lower temperatures. In each of our plots we measured charcoal on snags and coarse woody debris, sampled the entire organic horizon and the top 10cm mineral horizon. The soils were sieved to 2mm and their BC content measured using the Kurth-MacKenzie-DeLuca method of digesting labile carbon using nitric acid and hydrogen peroxide at 95C for 20hrs. We integrated both remotely sensed data and field observations. We used the Relative Difference Normalized Burn Ratio (RdNBR) calculated by Monitoring Trends in Burn Severity (MTBS). This index used Landsat images from July in the years before and after the fire and is based on differences in bands 4 and 7, with the aim of assessing coarse scale changes in soil and vegetation post fire. For each plot we also collected data on tree mortality and organic soil depth. These metrics were chosen from the Composite Burn Index as those that were most reliable even 10 years after the fire. We observed no significant differences in BC totals between high severity fire and unburned plots, although BC increased slightly on burned plots. Early results for low severity sites (analysis still in progress) suggest that BC increased in plots experiencing lower severity fires compared to unburned and high severity plots. Comparing carbon and BC totals on unburned and severely burned plots, and assuming no loss of BC from mineral soil during the fire, we observed a 1.2% conversion of burned biomass to BC, which corresponds with literature estimates of 1-4%.

Poore, R.; Wessman, C. A.; Buma, B.

2013-12-01

9

Burned area mapping and post-fire impact assessment in the Kassandra peninsula (Greece) using Landsat TM and Quickbird data  

Microsoft Academic Search

The purpose of this study was to assess the environmental impacts of forest fires on part of the Mediterranean basin. The study area is on the Kassandra peninsula, prefecture of Halkidiki, Greece. A maximum likelihood supervised classification was applied to a post-fire Landsat TM image for mapping the exact burned area. Land-cover types that had been affected by fire were

Dimitris Palandjian; Ioannis Z. Gitas; Robert Wright

2009-01-01

10

Post-Fire Debris-Flow Hazard Assessment of the Area Burned by the 2013 Beaver Creek Fire near Hailey, Central Idaho  

E-print Network

Hailey, Central Idaho U.S. Department of the Interior U.S. Geological Survey Open-File Report 2013­1273 Prepared in cooperation with Blaine County, Idaho #12;#12;Post-Fire Debris-Flow Hazard Assessment of the Area Burned by the 2013 Beaver Creek Fire near Hailey, Central Idaho By Kenneth D. Skinner Prepared

Torgersen, Christian

11

EARLY POST-FIRE PLANT ESTABLISHMENT ON A MOJAVE DESERT BURN SCOTT R. ABELLA  

E-print Network

cover of the exotic annual Bromus rubens averaged nine times lower on the burn than on a paired unburnedH, conductivity, and total P and K on burned Yucca microsites. Bromus rubens density in 0­5 cm soil seed banks

Abella, Scott R.

12

Post-fire Vegetation Recovery--Remote Sensing  

NSDL National Science Digital Library

This Module uses real-world data from the October 2003 Paradise Fire in San Diego County, California to (1) determine vegetation loss and burn severity due to wildfire through generating pre- and post-fire Normalized Burn Ratios (NBRs) and an approximated dNBR for study area; (2) monitor post-fire vegetation regeneration through landscape-scale remotely sensed imagery performing a multi-temporal Normalized Difference Vegetation Index (NDVI) analysis; and (3) import the derived datasets into a GIS and, using a DEM for the study area, derive slope and aspect. Analysis of pre- and post-fire recovery of vegetation will be completed using products from derived datasets and Map Algebra in GIS. The materials are available for download in PDF and RAR format.

13

Post-fire debris-flow hazard assessment of the area burned by the 2013 Beaver Creek Fire near Hailey, central Idaho  

USGS Publications Warehouse

A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range from a minimal debris flow volume of 10 cubic meters [m3]) to greater than 100,000 m3. Estimated debris-flow volumes increased with basin size and distance downstream. For the 25-year storm, estimated debris-flow volumes were greater than 100,000 m3 for 4 basins and between 50,000 and 100,000 m3 for 10 basins. The debris-flow hazard rankings did not result in the highest hazard ranking of 5, indicating that none of the basins had a high probability of debris-flow occurrence and a high debris-flow volume estimate. The hazard ranking was 4 for one basin using the 10-year-recurrence storm model and for three basins using the 25-year-recurrence storm model. The maps presented herein may be used to prioritize areas where post-wildfire remediation efforts should take place within the 2- to 3-year period of increased erosional vulnerability.

Skinner, Kenneth D.

2013-01-01

14

Land surface temperature as potential indicator of burn severity in forest Mediterranean ecosystems  

NASA Astrophysics Data System (ADS)

Forest fires are one of the most important causes of environmental alteration in Mediterranean countries. Discrimination of different degrees of burn severity is critical for improving management of fire-affected areas. This paper aims to evaluate the usefulness of land surface temperature (LST) as potential indicator of burn severity. We used a large convention-dominated wildfire, which occurred on 19-21 September, 2012 in Northwestern Spain. From this area, a 1-year series of six LST images were generated from Landsat 7 Enhanced Thematic Mapper (ETM+) data using a single channel algorithm. Further, the Composite Burn Index (CBI) was measured in 111 field plots to identify the burn severity level (low, moderate, and high). Evaluation of the potential relationship between post-fire LST and ground measured CBI was performed by both correlation analysis and regression models. Correlation coefficients were higher in the immediate post-fire LST images, but decreased during the fall of 2012 and increased again with a second maximum value in summer, 2013. A linear regression model between post-fire LST and CBI allowed us to represent spatially predicted CBI (R-squaredadj > 85%). After performing an analysis of variance (ANOVA) between post-fire LST and CBI, a Fisher's least significant difference test determined that two burn severity levels (low-moderate and high) could be statistically distinguished. The identification of such burn severity levels is sufficient and useful to forest managers. We conclude that summer post-fire LST from moderate resolution satellite data may be considered as a valuable indicator of burn severity for large fires in Mediterranean forest ecosytems.

Quintano, C.; Fernndez-Manso, A.; Calvo, L.; Marcos, E.; Valbuena, L.

2015-04-01

15

Mapping burned areas and burn severity patterns across the Mediterranean region  

NASA Astrophysics Data System (ADS)

The Mediterranean region is highly susceptible to wildfires. On average, about 60,000 fires take place in this region every year, burning on average half a million hectares of forests and natural vegetation. Wildfires cause environmental degradation and affect the lives of thousands of people in the region. In order to minimize the consequences of these catastrophic events, fire managers and national authorities need to have in their disposal accurate and updated spatial information concerning the size of the burned area as well as the burn severity patterns. Mapping burned areas and burn severity patterns is necessary to effectively support the decision-making process in what concerns strategic (long-term) planning with the definition of post-fire actions at European and national scales. Although a comprehensive archive of burnt areas exists at the European Forest Fire Information System, the analysis of the severity of the areas affected by forest fires in the region is not yet available. Fire severity is influenced by many variables, including fuel type, topography and meteorological conditions before and during the fire. The analysis of fire severity is essential to determine the socio-economic impact of forest fires, to assess fire impacts, and to determine the need of post-fire rehabilitation measures. Moreover, fire severity is linked to forest fire emissions and determines the rate of recovery of the vegetation after the fire. Satellite imagery can give important insights about the conditions of the live fuel moisture content and can be used to assess changes on vegetation structure and vitality after forest fires. Fire events occurred in Greece, Portugal and Spain during the fire season of 2009 were recorded and analyzed in a GIS environment. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the Normalized Burn Ratio (NBR) were calculated from 8-days composites MODIS/TERRA imagery from March to October 2009. In addition, subtracting a post-fire from a pre-fire image derived index produces a measure of absolute change of the vegetation condition, like the differenced Normalized Burn Ratio index (dNBR). The aim of this study was the assessment of fire severity across diverse ecological and environmental conditions in the Mediterranean region. The specific objectives were: The analysis of the correlation between the fire severity and local site conditions, including topography, fuel type, land use, land cover. The analysis of the correlation between fire severity and fire danger conditions during the fire, as estimated by the European Forest Fire Information System. Assessing the performance of several vegetation indices derived from MODIS imagery in estimating fire severity. Assessing the permanence of the burnt signal for large fires as an estimate of fire severity.

Kalogeropoulos, Christos; Amatulli, Giuseppe; Kempeneers, Pieter; Sedano, Fernando; San Miguel-Ayanz, Jesus; Camia, Andrea

2010-05-01

16

Decades-old silvicultural treatments influence surface wildfire severity and post-fire nitrogen availability in a ponderosa pine forest  

Microsoft Academic Search

Wildfire severity and subsequent ecological effects may be influenced by prior land management, via modification of forest structure and lingering changes in fuels. In 2002, the Hayman wildfire burned as a low to moderate-severity surface fire through a 21-year pine regeneration experiment with two overstory harvest cuttings (shelterwood, seed-tree) and two site preparations (scarified, unscarified) that had been applied in

Ann L. Lezberg; Michael A. Battaglia; Wayne D. Shepperd; Anna W. Schoettle

2008-01-01

17

Several Flame Balls Burning  

NASA Technical Reports Server (NTRS)

The Structure of Flameballs at Low Lewis Numbers (SOFBALL) experiments aboard the space shuttle in 1997 a series of sturningly successful burns. This sequence was taken during STS-94, July 12, 1997, MET:10/08:18 (approximate). It was thought these extremely dim flameballs (1/20 the power of a kitchen match) could last up to 200 seconds -- in fact, they can last for at least 500 seconds. This has ramifications in fuel-spray design in combustion engines, as well as fire safety in space. The SOFBALL principal investigator was Paul Ronney, University of Southern California, Los Angeles. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations planned for the International Space Station. (925KB, 9-second MPEG spanning 10 minutes, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300186.html.

2003-01-01

18

Modeling post-fire water erosion mitigation strategies  

NASA Astrophysics Data System (ADS)

Severe wildfires are often followed by significant increase in runoff and erosion, due to vegetation damage and changes in physical and chemical soil properties. Peak flows and sediment yields can increase up to two orders of magnitude, becoming dangerous for human lives and the ecosystem, especially in the wildland-urban interface. Watershed post-fire rehabilitation measures are usually used to mitigate the effects of fire on runoff and erosion, by protecting soil from splash and shear stress detachment and enhancing its infiltration capacity. Modeling post-fire erosion and erosion mitigation strategies can be useful in selecting the effectiveness of a rehabilitation method. In this paper a distributed model based on the Revised Universal Soil Loss Equation (RUSLE), properly parameterized for a Mediterranean basin located in Sardinia, is used to determine soil losses for six different scenarios describing both natural and post-fire basin condition, the last also accounting for the single and combined effect of different erosion mitigation measures. Fire effect on vegetation and soil properties have been mimed by changing soil drainage capacity and organic matter content, and RUSLE factors related to soil cover and protection measures. Model results, validated using measured data on erosion rates from the literature and in situ field campaigns, show the effect of the analyzed rehabilitation treatments in reducing the amount of soil losses with the peculiar characteristics of the spatial distribution of such changes. In particular, the mulching treatment substantially decreases erosion both in its mean value (-75%) and in the spatially distribution of the erosion levels over the burned area . On the contrary, the breaking up of the hydrophobic layer decreases post-fire mean soil losses of about the 14%, although it strongly influences the spatial distribution of the erosion levels.

Rulli, M. C.; Offeddu, L.; Santini, M.

2013-06-01

19

Factors affecting plant diversity during post-fire recovery and succession of mediterranean-climate shrublands in California, USA  

USGS Publications Warehouse

Plant community diversity, measured as species richness, is typically highest in the early post-fire years in California shrublands. However, this generalization is overly simplistic and the present study demonstrates that diversity is determined by a complex of temporal and spatial effects. Ninety sites distributed across southern California were studied for 5 years after a series of fires. Characteristics of the disturbance event, in this case fire severity, can alter post-fire diversity, both decreasing and increasing diversity, depending on life form. Spatial variability in resource availability is an important factor explaining patterns of diversity, and there is a complex interaction between landscape features and life form. Temporal variability in resource availability affects diversity, and the diversity peak in the immediate post-fire year (or two) appears to be driven by factors different from subsequent diversity peaks. Early post-fire diversity is influenced by life-history specialization, illustrated by species that spend the bulk of their life cycle as a dormant seed bank, which is then triggered to germinate by fire. Resource fluctuations, precipitation in particular, may be associated with subsequent post-fire diversity peaks. These later peaks in diversity comprise a flora that is compositionally different from the immediate post-fire flora, and their presence may be due to mass effects from population expansion of local populations in adjacent burned areas. ?? 2005 Blackwell Publishing Ltd.

Keeley, J.E.; Fotheringham, C.J.; Baer-Keeley, M.

2005-01-01

20

Modeling post-fire vegetation succession and its effect on permafrost vulnerability and carbon balance  

NASA Astrophysics Data System (ADS)

Wildfires are one of the main disturbances in high latitude ecosystems and have important consequences for the large stocks of carbon stored in permafrost soils. Fire affects carbon balance directly by burning vegetation and surface organic material and indirectly by influencing post-fire vegetation composition and soil thermal and hydrological regimes. Recent developments of ecosystem models allow a better representation of the effects of fire on organic soil dynamics and the soil environment, but there is a need to better integrate post-fire vegetation succession in these models. Post-fire vegetation regeneration is sensitive to fire consumption of soil organic layer horizons, where high severity burning promotes the establishment of deciduous broadleaf trees. In comparison to conifers, deciduous forests are less flammable, more productive, have higher nutrient turnover, and deeper permafrost. However, deciduous forests generally store less soil carbon than conifer forests. Therefore, the fire-induced shifts in vegetation composition have consequences for ecosystem carbon balance. In this study, we present the development of an ecosystem model that integrates post-fire succession with changes in the structure and function of organic soil horizons to better represent the relationship between fire severity and vegetation succession across the landscape. The model is then used to assess changes in the carbon balance at a 1km resolution, in response to changing fire regime across the landscape in Interior Alaska.

Genet, H.; McGuire, A. D.; Johnstone, J. F.; Breen, A. L.; Euskirchen, E. S.; Mack, M. C.; Melvin, A. M.; Rupp, T. S.; Schuur, E. A.; Yuan, F.

2013-12-01

21

Is proportion burned severely related to daily area burned?  

NASA Astrophysics Data System (ADS)

The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall ? = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day.

Birch, Donovan S.; Morgan, Penelope; Kolden, Crystal A.; Hudak, Andrew T.; Smith, Alistair M. S.

2014-05-01

22

Avifaunal responses to fire in southwestern montane forests along a burn severity gradient  

USGS Publications Warehouse

The effects of burn severity on avian communities are poorly understood, yet this information is crucial to fire management programs. To quantify avian response patterns along a burn severity gradient, we sampled 49 random plots (2001-2002) at the 17 351-ha Cerro Grande Fire (2000) in New Mexico, USA. Additionally, pre-fire avian surveys (1986-1988, 1990) created a unique opportunity to quantify avifaunal changes in 13 pre-fire transects (resampled in 2002) and to compare two designs for analyzing the effects of unplanned disturbances: after-only analysis and before-after comparisons. Distance analysis was used to calculate densities. We analyzed after-only densities for 21 species using gradient analysis, which detected a broad range of responses to increasing burn severity: (I) large significant declines, (II) weak, but significant declines, (III) no significant density changes, (IV) peak densities in low- or moderate-severity patches, (V) weak, but significant increases, and (VI) large significant increases. Overall, 71% of the species included in the after-only gradient analysis exhibited either positive or neutral density responses to fire effects across all or portions of the severity gradient (responses III-VI). We used pre/post pairs analysis to quantify density changes for 15 species using before-after comparisons; spatiotemporal variation in densities was large and confounded fire effects for most species. Only four species demonstrated significant effects of burn severity, and their densities were all higher in burned compared to unburned forests. Pre- and post-fire community similarity was high except in high-severity areas. Species richness was similar pre- and post-fire across all burn severities. Thus, ecosystem restoration programs based on the assumption that recent severe fires in Southwestern ponderosa pine forests have overriding negative ecological effects are not supported by our study of post-fire avian communities. This study illustrates the importance of quantifying burn severity and controlling confounding sources of spatiotemporal variation in studies of fire effects. After-only gradient analysis can be an efficient tool for quantifying fire effects. This analysis can also augment historical data sets that have small samples sizes coupled with high non-process variation, which limits the power of before-after comparisons. ?? 2007 by the Ecological Society of America.

Kotliar, N.B.; Kennedy, P.L.; Ferree, K.

2007-01-01

23

Assessing the temporal sensitivity of the differenced Normalized Burn Ratio (dNBR) to estimate burn severity using MODIS time series  

NASA Astrophysics Data System (ADS)

The temporal sensitivity of the differenced Normalized Burn Ratio (dNBR) to assess burn severity was evaluated for the case of the 2007 Peloponnese (Greece) wildfires. Prior to the analysis, a pixel-based control plot selection procedure was initiated for each burned pixel based on time series similarity of the pre-fire year 2006. Post-fire near infrared (NIR) dramatically dropped immediately post-fire, while the highest MIR reflectance values were reached three weeks after the fire. Both NIR and MIR reflectance showed an increased variability during the wet Mediterranean winter. Due to the process of early vegetation recovery, the burned pixels' NIR reflectance approached the control pixels' values during the productive spring-time. Because of the three weeks post-fire delay in MIR reflectance increase, the NBR drop and dNBR peak were obtained synchronously. Both the standard deviation of the NBR and dNBR were high during winter, as a consequence of the simultaneous increase in NIR and MIR reflectance variability. In spite of the high variation in dNBR during winter, this moment is suboptimal to estimate burn severity due to low rates of image availability and low optimality values. Index performance was clearly lower during winter and spring because vegetation regeneration clearly diminishes the distance in the bi-spectral feature space to which the dNBR is sensitive at the favor of displacements to which the index is insensitive. In contrast, NIR reflectance, MIR reflectance, NBR, dNBR and dNBR optimality changes achieved a maximum three weeks post. Consequently this was the optimal time to estimate burn severity in our case study retaining a maximal degree of information with a high reliability. Conclusions should be verified for other fires and in other ecoregions.

Veraverbeke, Sander; Lhermitte, Stefaan; Verstraeten, Willem; Goossens, Rudi

2010-05-01

24

Rapid Response Tools and Datasets for Post-fire Erosion Modeling: An Online Database to Support Post-fire Erosion Modeling  

NASA Astrophysics Data System (ADS)

Once the danger posed by an active wildfire has passed, land managers must rapidly assess risks posed by post-fire runoff and erosion due to fire-induced changes in soil properties and the loss of surface cover. Post-fire assessments and proposals to mitigate risks to downstream areas due to flooding, erosion, and sedimentation are typically undertaken by interdisciplinary Burned Area Emergency Response (BAER) teams. One of the first and most important priorities of a BAER team is the development of a burn severity map that reflects the fire-induced changes in both vegetative cover and soils. Currently these maps are known as BARC (Burned Area Reflectance Classification) maps and they are generated from multi-spectral remote sensing data. BAER teams also have access to many erosion modeling tools and datasets, but process-based, spatially explicit models are currently under-utilized relative to simpler, lumped models because they are more difficult to set up and they require the preparation of spatially-explicit data layers such as digital elevation models (DEM), soils, and land cover. We are working to make spatially-explicit modeling easier by preparing large-scale spatial data sets that can be rapidly combined with burn severity maps and then used to quickly run more accurate, process-based models for spatially explicit predictions of post-fire erosion and runoff. A prototype database consisting of 30-m DEM, soil, land cover, and Monitoring Trends in Burn Severity (MTBS) maps for Colorado has been created for use in GeoWEPP (Geo-spatial interface for the Water Erosion Prediction Project) with Disturbed WEPP parameters developed for post-fire conditions. Additional soil data layers have been gathered to support a spatial empirical debris flow model that also utilizes BARC maps. Future plans include developing the dataset to support other models commonly used by BAER teams. The importance of preparing spatial data ahead of time can be illustrated with two contrasting modeling exercises from recent fires. The 2012 High Park Fire that burned near Fort Collins, Colorado and a small portion of the 2011 Rock House Fire (Hospital Canyon) that burned in western Texas. A lack of preparatory work meant useful products could not be produced in a timely manner for the Rock House Fire. In contrast, an earlier project meant that baseline soil and land cover data were readily available for the 2012 High Park Fire, which burned 330 km2 and threatened the drinking water for Fort Collins, Greeley, and other downstream communities. These datasets were combined with the burn severity map and used to model post-fire erosion and run-off in GeoWEPP using a two hour storm event with a total rainfall of 2.2 inches. Predictions of post-fire erosion rates ranged from 0 to 10.4 Mg/ha and the maps were used by the BAER team to assess relative erosion risks, and develop the associated proposals for post-fire mitigation efforts.

Miller, M. E.; Russel, A. M.; Billmire, M.; Endsley, K.; Elliot, W. E.; Robichaud, P. R.; MacDonald, L. H.; Renschler, C. S.

2013-12-01

25

High severity experimental burns in Siberian larch forests increase permafrost thaw and larch tree regeneration  

NASA Astrophysics Data System (ADS)

Global change models predict increased fire activity in boreal forests as climate warms and dries. We hypothesized that fire-driven decreases in soil organic layer (SOL) depth will (1) increase permafrost thaw by reducing the insulating capacity of the SOL and (2) improve seedbed conditions for tree regeneration. Over time, these changes will lead to altered patterns of above- and belowground carbon (C) accumulation. To test these hypotheses, we conducted plot-level experimental burns in July 2012 in a low-density, mature larch stand near the Northeast Science Station in Cherskii, Siberia. Dried fuels of naturally occurring vegetation were added to plots to achieve four burn severity treatments based on residual SOL depths: control, low (> 8 cm), moderate (5-8 cm), and high severity (2-5 cm). Pre-fire and during two growing seasons post-fire, we measured thaw depth, soil moisture, and soil temperature to determine severity effects on permafrost thaw. We also sowed larch seeds in fall 2012 and quantified germination rates the following growing season. By 1 wk post-fire, thaw depth was 15-25 cm deeper in plots burned at high severity (55 cm) compared to other treatments (30-40 cm). These differences in thaw depth with burn severity were maintained during the subsequent growing season and were associated with increased soil temperature and moisture. Larch regeneration was 10x higher on severely burned plots than those unburned. Our findings highlight the potential for increased fire severity to degrade permafrost and alter successional dynamics and patterns of C accumulation.

Alexander, H. D.; Davydov, S.; Zimov, N.; Mack, M. C.

2013-12-01

26

Monitoring post-fire recovery of shrublands in Mediterranean-type ecosystems using MODIS and TM/ETM+ data  

NASA Astrophysics Data System (ADS)

Wildland fires in Mediterranean-Type Ecosystems (MTEs) are episodic events that dramatically alter land-cover conditions. Monitoring post-fire vegetation recovery is important for land management applications such as the scheduling of prescribed burns, post-fire resource management and soil erosion control. Full recovery of MTE shrublands may take many years and have a prolonged effect on water, energy and carbon fluxes in these ecosystems. Comparative studies of fynbos ecosystems in the Cape Floristic Region of South Africa (Western Cape Region) and chaparral ecosystems of California have demonstrated that there is a considerable degree of convergence in some aspects of post-fire vegetation regeneration and marked differences in other aspects. Since these MTEs have contrasting rainfall and soil nutrient conditions, an obvious question arises as to the similarity or dissimilarity in remotely sensed post-fire recovery pathways of vegetation stands in these two regions and the extent to which fire severity and drought impact the rate of vegetation recovery. Post-fire recovery pathways of chaparral and fynbos vegetation stands were characterized using the normalized difference vegetation index (NDVI) based on TM/ETM+ and MODIS (250 m) data. Procedures based on stands of unburned vegetation (control) were implemented to normalize the NDVI for variations associated with inter-annual differences in rainfall. Only vegetation stands that had not burned for 20 years were examined in this study to eliminate potential effects of variable fire histories on the recovery pathways. Post-fire recovery patterns of vegetation in both regions and across different vegetation types were found to be very similar. Post-fire stand age was the primary control over vegetation recovery and the NDVI returned to pre-fire values within seven to 10 years of the fires. Droughts were shown to cause slight interruptions in recovery rates while fire severity had no discernable effect. Intra-stand variability in the NDVI (pixel-scale) also returned to pre-fire values within the same time frame but increased with water stress associated with droughts. While these studies indicated that the NDVI of fynbos and chaparral stands recovered to pre-fire values within 10 years, it is recognized that other ecosystem characteristics may take considerably longer to recover. Despite the larger pixel size, MODIS data were found to be more suitable for monitoring vegetation post-fire recovery than TM/ETM+ data, requiring considerably less pre-processing and providing substantially more information regarding phenological characteristics of recovery pathways. Future studies will include consideration of fire history in the post-fire recovery characteristics of vegetation in these two MTEs.

Hope, Allen; Albers, Noah; Bart, Ryan

2010-05-01

27

Effects of fire and post-fire salvage logging on avian communities in conifer-dominated forests of the western United States  

USGS Publications Warehouse

Historically, fire was one of the most widespread natural disturbances in the western United States. More recently, however, significant anthropogenic activities, especially fire suppression and silvicultural practices, have altered fire regimes; as a result, landscapes and associated communities have changed as well. Herein, we review current knowledge of how fire and post-fire salvaging practices affect avian communities in conifer-dominated forests of the western United States. Specifically, we contrast avian communities in (1) burned vs. unburned forest, and (2) unsalvaged vs. salvage-logged burns. We also examine how variation in burn characteristics (e.g., severity, age, size) and salvage logging can alter avian communities in burns. Of the 41 avian species observed in three or more studies comparing early post-fire and adjacent unburned forests, 22% are consistently more abundant in burned forests, 34% are usually more abundant in unburned forests, and 44% are equally abundant in burned and unburned forests or have varied responses. In general, woodpeckers and aerial foragers are more abundant in burned forest, whereas most foliage-gleaning species are more abundant in unburned forests. Bird species that are frequently observed in stand-replacement burns are less common in understory burns; similarly, species commonly observed in unburned forests often decrease in abundance with increasing burn severity. Granivores and species common in open-canopy forests exhibit less consistency among studies. For all species, responses to fire may be influenced by a number of factors including burn severity, fire size and shape, proximity to unburned forests, pre- and post-fire cover types, and time since fire. In addition, post-fire management can alter species' responses to burns. Most cavity-nesting species do not use severely salvaged burns, whereas some cavity-nesters persist in partially salvaged burns. Early post-fire specialists, in particular, appear to prefer unsalvaged burns. We discuss several alternatives to severe salvage-logging that will help provide habitat for cavity nesters. We provide an overview of critical research questions and design considerations crucial for evaluating the effects of prescribed fire and other anthropogenic disturbances, such as forest fragmentation. Management of native avifaunas may be most successful if natural disturbance regimes, including fire, are permitted to occur when possible. Natural fires could be augmented with practices, such as prescribed fire (including high-severity fire), that mimic inherent disturbance regimes.

Kotliar, N.B.; Hejl, S.J.; Hutto, R.L.; Saab, V.A.; Melcher, C.P.; McFadzen, M.E.

2002-01-01

28

Relationships between fire severity and post-fire landscape pattern following a large mixed-severity fire in the Valle Vidal, New Mexico, USA  

Microsoft Academic Search

The predominant fire regime associated with ponderosa pine (Pinus ponderosa) forests in the southwestern US has shifted from the historic norm of frequent, low-severity fires to less frequent mixed-severity and crown fires. This change in the severity of fire has altered ponderosa pine forests from the open stands typical of pre-settlement times to even-aged, high-density stands at increased risk of

James J. Hayes; Scott M. Robeson

2011-01-01

29

Myocardial Autophagy after Severe Burn in Rats  

PubMed Central

Background Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. Methods Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. Results Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. Conclusion Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction. PMID:22768082

Zhang, Qiong; Shi, Xiao-hua; Huang, Yue-sheng

2012-01-01

30

Post-fire vegetation dynamics in Portugal  

NASA Astrophysics Data System (ADS)

The number of fires and the extent of the burned surface in Mediterranean Europe have increased significantly during the last three decades. This may be due either to modifications in land-use (e.g. land abandonment and fuel accumulation) or to climatic changes (e.g. reduction of fuel humidity), both factors leading to an increase of fire risk and fire spread. As in the Mediterranean ecosystems, fires in Portugal have an intricate effect on vegetation regeneration due to the complexity of landscape structures as well as to the different responses of vegetation to the variety of fire regimes. A thorough evaluation of vegetation recovery after fire events becomes therefore crucial in land management. In the above mentioned context remote sensing plays an important role because of its ability to monitor and characterise post-fire vegetation dynamics. A number of fire recovery studies, based on remote sensing, have been conducted in regions characterised by Mediterranean climates and the use of NDVI to monitor plant regeneration after fire events was successfully tested (Daz-Delgado et al., 1998). In particular, several studies have shown that rapid regeneration occurs within the first 2 years after the fire occurrences, with distinct recovery rates according to the geographical facing of the slopes (Pausas and Vallejo, 1999). In 2003 Portugal was hit by the most devastating sequence of large fires, responsible by a total burnt area of 450 000 ha (including 280 000 ha of forest), representing about 5% of the Portuguese mainland (Trigo et al., 2006). The aim of the present work is to assess and monitor the vegetation behaviour over Portugal following the 2003 fire episodes. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2008. We developed a methodology to identify large burnt scars in Portugal for the 2003 fire season. The vegetation dynamics was then analysed for some selected areas and a regression model of post-fire recovery was fitted to the recorded values of NDVI. The model allowed characterising the dynamics of the regeneration process. It was found that recovery rates depend on geographical location, fire intensity/severity and type of vegetation cover. Daz-Delgado, R., Salvador, R. and Pons, X., 1998: Monitoring of plant community regeneration after fire by remote sensing. In L. Traboud (Ed.), Fire management and landscape ecology (pp. 315-324). International Association of Wildland Fire, Fairfield, WA. Pausas, G.J. and Vallejo, V.R., 1999: The role of fire in European Mediterranean Ecosystems. In: E. Chuvieco (Ed.), Remote sensing of large wildfires in the European Mediterranean basin (pp. 3-16). Springer-Verlag. Trigo R.M., Pereira J.M.C., Pereira M.G., Mota B., Calado M.T., DaCamara C.C., Santo F.E., 2006: Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. International Journal of Climatology 26 (13): 1741-1757 NOV 15 2006.

Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

2009-04-01

31

Establishment of non-native plant species after wildfires: Effects of fuel treatments, abiotic and biotic factors, and post-fire grass seeding treatments  

USGS Publications Warehouse

Establishment and spread of non-native species following wildfires can pose threats to long-term native plant recovery. Factors such as disturbance severity, resource availability, and propagule pressure may influence where non-native species establish in burned areas. In addition, pre- and post-fire management activities may influence the likelihood of non-native species establishment. In the present study we examine the establishment of non-native species after wildfires in relation to native species richness, fire severity, dominant native plant cover, resource availability, and pre- and post-fire management actions (fuel treatments and post-fire rehabilitation treatments). We used an information-theoretic approach to compare alternative hypotheses. We analysed post-fire effects at multiple scales at three wildfires in Colorado and New Mexico. For large and small spatial scales at all fires, fire severity was the most consistent predictor of non-native species cover. Non-native species cover was also correlated with high native species richness, low native dominant species cover, and high seeded grass cover. There was a positive, but non-significant, association of non-native species with fuel-treated areas at one wildfire. While there may be some potential for fuels treatments to promote non-native species establishment, wildfire and post-fire seeding treatments seem to have a larger impact on non-native species. ?? IAWF 2006.

Hunter, M.E.; Omi, P.N.; Martinson, E.J.; Chong, G.W.

2006-01-01

32

RAPID POST-FIRE HYDROLOGIC WATERSHED ASSESSMENT USING THE AGWA GIS-BASED HYDROLOGIC MODELING TOOL  

EPA Science Inventory

Rapid post-fire watershed assessment to identify potential trouble spots for erosion and flooding can potentially aid land managers and Burned Area Emergency Rehabilitation (BAER) teams in deploying mitigation and rehabilitation resources. These decisions are inherently co...

33

Current treatment of severely burned patients.  

PubMed Central

OBJECTIVE: The authors provide an update on a multidisciplinary approach to the treatment of severely burned patients. A review of studies and clinical trials from the past to the present include fluid resuscitation, sepsis, immune function, hypermetabolism, early excision, wound healing, scar formation, and inhalation injury. SUMMARY BACKGROUND DATA: Advances in treating initial burn shock, infection control, early wound closure, and modulation of the hypermetabolic response have decreased morbidity and mortality in the last two decades. Specialized burn care centers, using a multidisciplinary approach, not only successfully treat large burns and their complications, but provide the necessary rehabilitation and psychological support required for readjustment back into society. CONCLUSIONS: Thermal injury results in a number of physiologic alterations that can be minimized by adequate fluid resuscitation to maintain tissue perfusion, early excision of burn wounds, and rapid wound coverage. These measures, in combination with antibiotic coverage and nutritional support in the form of early enteral tube feedings, will decrease the hypermetabolic response and the incidence of sepsis that can lead to hemodynamic instability and organ failure. Ongoing clinical trials using anabolic agents (e.g., recombinant human growth hormone) and pharmacologic agents that modulate inflammatory and endocrine mediators (e.g., ibuprofen and propranolol) show promise in the treatment of severe burn injuries. PMID:8554414

Nguyen, T T; Gilpin, D A; Meyer, N A; Herndon, D N

1996-01-01

34

A man with severe leg burns.  

PubMed

A 52-year-old Hispanic male was transported to the emergency department after sustaining severe bilateral lower extremity burns in an electroplating factory. His examination revealed circumferential burns to the lower extremities with spotting in the perineum. The epidermis was stained green and sloughed off with gentle pressure. The underlying dermis was white and non-blanching, consistent with a full thickness burn. His feet were partially protected by his work boots where he had small areas of pink, blanchable, partial thickness burns (Fig. 1). Pertinent initial studies included a lactic acid level of 3.1 mmol/L and a creatinine of 1.02 mg/dL. PMID:23992444

Chapman, A J; Deschler, D; Judge, B S

2013-11-01

35

Transdermal fluid loss in severely burned patients  

PubMed Central

Introduction: The skin protects against fluid and electrolyte loss. Burn injury does affect skin integrity and protection against fluid loss is lost. Thus, a systemic dehydration can be provoked by underestimation of fluid loss through burn wounds. Purpose: We wanted to quantify transdermal fluid loss in burn wounds. Method: Retrospective study. 40 patients admitted to a specialized burn unit were analyzed and separated in two groups without (Group A) or with (Group B) hypernatremia. Means of daily infusion-diuresis-ratio (IDR) and the relationship to totally burned surface area (TBSA) were analyzed. Results: In Group A 25 patients with a mean age of 4718 years, a mean TBSA of 2311%, and a mean abbreviated burned severity index (ABSI) score of 6.92.1 were summarized. In Group B 15 patients with a mean age of 4722 years, a mean TBSA of 3013%, and a mean ABSI score of 8.11.7 were included. Statistical analysis of the period from day 3 to day 6 showed a significant higher daily IDR-amount in Group A (Group A vs. Group B: 7861029 ml vs. 1811021 ml; p<0.001) and for daily IDR-TBSA-ratio (Group A vs. Group B: 4041 ml/% vs. 436 ml/%; p<0.001). Conclusions: There is a systemic relevant transdermal fluid loss in burn wounds after severe burn injury. Serum sodium concentration can be used to calculate need of fluid resuscitation for fluid maintenance. There is a need of an established fluid removal strategy to avoid water and electrolyte imbalances. PMID:21063470

Namdar, Thomas; Stollwerck, Peter L.; Stang, Felix H.; Siemers, Frank; Mailnder, Peter; Lange, Thomas

2010-01-01

36

Optimizing burn severity assessments in Alaskan tussock tundra from optical imagery  

NASA Astrophysics Data System (ADS)

Over the past decade Alaskan tundra has experienced an increase in fire occurrence prompting rising concerns in the scientific community. Fire occurrence in tundra ecosystems has the potential to release a large amount of organic carbon stored in the deep organic layer, modify soil moisture and respiration, and make more organic matter available for decomposition and future burning through impacts on the active depth layer. Monitoring and characterization of fire occurrence and impacts in extensive, remote, and largely inaccessible tundra regions rely on satellite observations of land surface and require robust approaches to burn severity measurements. The relatively low fire activity in tundra regions between 1950 and 2000 has resulted in overall lack of understanding of fire impacts on tundra landscapes outside the Seward Peninsula where tundra fire record is better known. Thus satellite-based mapping of burn severity is limited by the lack of quantified knowledge of fire-induced physical changes on the landscape on the one hand and the capabilities of optical remote sensing systems to capture those characteristics on the other. Here we present an analysis of satellite mapping of burn severity using multi-date Landsat imagery and two field-based measurements of burn severity - the operationally applied Composite Burn Index (CBI) and the more simplistic Burn Severity Index (BSI), also known as the Burn Severity Code Matrix. The BSI used here is a four-point scale (unburned, low, moderate, severe) assessed for the surface substrate and vegetation layers. The BSI and CBI used to compare to the remote sensing data were determined from the field data by converting the qualitative fractional assessment of burn severity within 10 x 10 m plots to a single value. Since both indices represent mostly ocular assessment of the fire-impacted surface, they can relate well to Landsat's optical sensors measurements. The analysis shows that overall satellite indices have closer relationships with CBI compared to BSI (exceeding R2 of 0.8 in 10 and 4 instances for CBI and BSI, respectively) for single-date assessments. Similarly, for multi-date differenced assessments, the R2 between CBI and various Landsat-based indices exceeded 0.8 in 76 instances compared to only 20 instances for BSI. However, there are considerable differences between the timing of image acquisition post fire when the relationships between satellite observations and CBI or BSI are the closest as well and indices which field assessments of burn severity appear to be best correlated with. CBI produces closest relationships with near infrared, short-wave infrared at 1.5?m, relative differenced Normalized Burn Ratio, and Tasseled Cap Greenness indices when the post-fire image is acquired immediately after the fire event irrespective of the pre-burn date selection. In contrast, the relationship between BSI and spectral indices peaks when pre- and post-burn indices are computed from images preceding the full green-up conditions (i.e. late May imagery), with Tasseled Cap Brightness showing the closest relationship. Although on average CBI outperforms BSI, BSI produces closer relationships to spectral indices than CBI indicating that the two field assessments provide complimentary information which can be related to biophysical properties of impacted surface.

Loboda, T. V.; Jenkins, L. K.; French, N. H.; Bourgeau-Chavez, L. L.

2013-12-01

37

A time-integrated MODIS burn severity assessment using the multi-temporal differenced normalized burn ratio (dNBR MT)  

NASA Astrophysics Data System (ADS)

Burn severity is an important parameter in post-fire management. It incorporates both the direct fire impact (vegetation depletion) and ecosystem responses (vegetation regeneration). From a remote sensing perspective, burn severity is traditionally estimated using Landsat's differenced normalized burn ratio (dNBR). In this case study of the large 2007 Peloponnese (Greece) wildfires, Landsat dNBR estimates correlated reasonably well with Geo composite burn index (GeoCBI) field data of severity ( R2 = 0.56). The usage of Landsat imagery is, however, restricted by cloud cover and image-to-image normalization constraints. Therefore a multi-temporal burn severity approach based on coarse spatial, high temporal resolution moderate resolution imaging spectroradiometer (MODIS) imagery is presented in this study. The multi-temporal dNBR (dNBR MT) is defined as the 1-year integrated difference between burned pixels and their unique control pixels. These control pixels were selected based on time series similarity and spatial context and reflect how burned pixels would have behaved in the case no fire had occurred. Linear regression between downsampled Landsat dNBR and dNBR MT estimates resulted in a moderate-high coefficient of determination R2 = 0.54. dNBR MT estimates are indicative for the change in vegetation productivity due to the fire. This change is considerably higher for forests than for more sparsely vegetated areas like shrub lands. Although Landsat dNBR is superior for spatial detail, MODIS-derived dNBR MT estimates present a valuable alternative for burn severity mapping at continental to global scale without image availability constraints. This is beneficial to compare trends in burn severity across regions and time. Moreover, thanks to MODIS's repeated temporal sampling, the dNBR MT accounts for both first- and second-order fire effects.

Veraverbeke, S.; Lhermitte, S.; Verstraeten, W. W.; Goossens, R.

2011-02-01

38

Initial Results Comparing Spectral Signatures of Post-fire Materials, Western Montana  

NASA Astrophysics Data System (ADS)

Current algorithms for estimating fire severity from remotely sensed imagery are based on pre-fire to post-fire changes in reflectance values within the sensor's bands, rather than on an understanding of how spectral signatures of burned areas differ from unburned areas. However, spectral signatures for materials commonly found in burned areas of the landscape, including ash, charcoal, and burned pine needles have not been published. With a fundamental understanding of how fire alters the spectral signatures of a landscape, fire severity algorithms could readily be derived for any sensor. Spectral signatures of charcoal, soil and other materials were collected for this project in several burned areas in western Montana during the summer of 2006. An ASD FieldSpec3 spectroradiometer (350-2500 nm) was used for collection. Time since burn ranged from one week to one year. Spectral signatures were also collected for vegetation and other common materials outside the burn perimeter and for areas 26 inches in diameter with a mix of vegetation and burned materials. We present characteristic spectra for these types of materials associated with wildland fire, and regions of the electromagnetic spectrum that experience the most change due to wildfire. These results aid interpretation of the environmental effects of wildfire in remotely sensed imagery of burned areas.

Klene, A.; Riley, K. L.; Kamp, U.

2006-12-01

39

Measuring and Modeling the Effects of Alternate Post-Fire Successional Trajectories on Boreal Forest Carbon Dynamics  

NASA Astrophysics Data System (ADS)

High latitude ecosystems are experiencing amplified climate warming, and recent evidence suggests concurrent intensification of fire disturbance regimes. In central Alaskan boreal forests, severe burns consume more of the soil organic layer, resulting in increased establishment of deciduous seedlings and altered post-fire stand composition with increased deciduous dominance. Quantifying differences in ecosystem carbon (C) dynamics between forest successional trajectories in response to burn severity is essential for understanding potential changes in regional or global feedbacks between boreal forests and climate. We used the Biome BioGeochemical Cycling model (Biome-BGC) to quantify differences in C stocks and fluxes associated with alternate post-fire successional trajectories related to fire severity. A version of Biome-BGC that allows alternate competing vegetation types was calibrated against a series of aboveground biomass observations from chronosequences of stands with differing post-fire successional trajectories characterized by the proportion of deciduous biomass. The model was able to reproduce observed patterns of biomass accumulation after fire, with stands dominated by deciduous species sequestering more C at a faster rate than stands dominated by conifers. Modeled C fluxes suggest that stands dominated by deciduous species are a stronger sink of atmospheric C soon after disturbance than coniferous stands. These results agree with the few available C flux observations. We use a historic database in conjunction with a map of deciduous canopy cover to explore the consequences of ongoing and potential future changes in the fire regime on central Alaskan C balance.

Loranty, M. M.; Goetz, S. J.; Mack, M. C.; Alexander, H. D.; Beck, P. S.

2011-12-01

40

Post-fire recolonization of dominant epiphytic lichen species on Quercus hypoleucoides (Fagaceae).  

PubMed

Following a forest fire (27?500 ha) in 1994, post-fire recolonization of Quercus hypoeleucoides by epiphytic lichens was documented as changes in lichen cover, number of small thalli, specific factors that affected reestablishment of lichens, and modes of dispersal. Three sites in the Chiricahua Mountains (Arizona, USA) were chosen according to the severity of fire damage-unburned, moderately burned, and severely burned. From 1994 through 1997, the amount of dead lichen cover significantly increased at the moderately burned site. For the same time period, the amount of live lichen cover significantly increased at the severely burned site. Numbers of new thalli increased significantly at the severely burned site each year but only in the last year (1996-1997) for the moderately burned site. Bark texture and proximity to trees with lichens were among the most important physical factors for recolonization. The most important means of dispersal for Flavopunctelia praesignis was fragmentation. For Punctelia hypoleucites, the primary means of dispersal was spores. Increases in live lichen cover and numbers of new thalli occur faster in severely burned areas probably due to the loss of lichens on tree trunks, which provides space and a lack of competition. PMID:11118419

Romagni, J G; Gries, C

2000-12-01

41

Severe gastrointestinal burn with hydrochloric acid  

PubMed Central

Inadvertantly or purposely, an oral intake of corrosive substances may cause life-threatening problems. Early admission to the hospital, clinical and endoscopic evaluation, and early surgery when required, may reduce morbidity and mortality. We report the case of a 49-year-old male patient, who had attempted suicide, by drinking about 800 mL of 25% hydrochloric acid, and who had severe intra-abdominal damage. The aim of this report is to state the fact that a good outcome is possible in severe burns caused by oral intake of corrosive substances, when fast, multidisciplinary, and appropriate management is provided on time. PMID:24174955

Araz, Co?kun; ekmen, Nedim; Erdemli, zcan; Soylu, Lutfu; Atalay, Fuat; Demirba?, Tevfik Ali; Demirba?, Ali; Celep, Bahadir

2013-01-01

42

THE PATHOPHYSIOLOGIC RESPONSE TO SEVERE BURN INJURY  

PubMed Central

Objective To improve clinical outcome and to determine new treatment options, we studied the pathophysiologic response postburn in a large prospective, single center, clinical trial. Summary Background Data A severe burn injury leads to marked hypermetabolism and catabolism, which are associated with morbidity and mortality. The underlying pathophysiology and the correlations between humoral changes and organ function have not been well delineated. Methods Two hundred forty-two severely burned pediatric patients [>30% total body surface area (TBSA)], who received no anabolic drugs, were enrolled in this study. Demographics, clinical data, serum hormones, serum cytokine expression profile, organ function, hypermetabolism, muscle protein synthesis, incidence of wound infection sepsis, and body composition were obtained throughout acute hospital course. Results Average age was 8 0.2 years, and average burn size was 56 1% TBSA with 43 1% third-degree TBSA. All patients were markedly hypermetabolic throughout acute hospital stay and had significant muscle protein loss as demonstrated by a negative muscle protein net balance (?0.05% 0.007 nmol/100 mL leg/min) and loss of lean body mass (LBM) (?4.1% 1.9%); P < 0.05. Patients lost 3% 1% of their bone mineral content (BMC) and 2 1% of their bone mineral density (BMD). Serum proteome analysis demonstrated profound alterations immediately postburn, which remained abnormal throughout acute hospital stay; P < 0.05. Cardiac function was compromised immediately after burn and remained abnormal up to discharge; P < 0.05. Insulin resistance appeared during the first week postburn and persisted until discharge. Patients were hyperinflammatory with marked changes in IL-8, MCP-1, and IL-6, which were associated with 2.5 0.2 infections and 17% sepsis. Conclusions In this large prospective clinical trial, we delineated the complexity of the postburn pathophysiologic response and conclude that the postburn response is profound, occurring in a timely manner, with derangements that are greater and more protracted than previously thought. PMID:18791359

Jeschke, Marc G; Chinkes, David L; Finnerty, Celeste C; Kulp, Gabriela; Suman, Oscar E; Norbury, William B; Branski, Ludwik K; Gauglitz, Gerd G; Mlcak, Ronald P; Herndon, David N

2014-01-01

43

Snow Cover Contributes to Post-fire Vegetation Regeneration in Mediterranean Climate Regions  

NASA Astrophysics Data System (ADS)

Predictions for the 21st century western United States climate include amplified fire regimes, earlier spring snowmelt and reduced snowpack. In the Pacific Northwest, burned area is projected to increase by as much as 300% by the end of this century. Continued declines in snowpack are also anticipated, especially at lower elevations. Previous research has established a link between declining snowpacks and wildfire. But what is the role of snow in the regeneration of vegetation after a fire? This investigation examines the relationship between post-fire vegetation and snowcover. We analyze the complex relationships between remotely sensed winter snow frequency and subsequent spring and summer vegetation biomass before and after large wildfires using a form of nonparametric multiplicative regression. We use snow cover and vegetation biomass data from the Moderate Resolution Imaging Spectroradiometer (MODIS). At each fire site, multiple physiographic predictor variables, (snow frequency, elevation, slope, aspect, vegetation type, and burn severity), are incorporated for the vegetation biomass response variable. For the Biscuit Fire (Klamath Mountains Ecoregion in SW Oregon), we see a negative correlation between winter snow frequency and subsequent spring EVI before the 2002 Biscuit Fire and a shift to a positive correlation after the fire during regeneration, while fires in other western ecoregions do not exhibit this shift. We also examine fire sites in the California Sierra Nevada and the Oregon Cascade Mountains. Snow cover frequency appears to be a valid predictor of post-fire biomass in climate regions where the summer dry period is relatively long. This research evaluates the relative importance of snowpack and other physiographic variables in post-fire vegetation regeneration across a latitudinal gradient of fire sites.

Blauvelt, K. J.; Nolin, A. W.; Lintz, H. E.; Sproles, E. A.

2012-12-01

44

Rapid Response Tools and Datasets for Post-fire Erosion Modeling: Linking Remote Sensing and Process-based Hydrological Models to support Post-fire Remediation  

NASA Astrophysics Data System (ADS)

Post-fire flooding and erosion can pose a serious threat to life, property, and municipal water supplies. Increased peak flows and sediment delivery due to the loss of surface cover and fire-induced changes in soil properties are of great concern to both resource managers and the public. To respond to this threat, interdisciplinary Burned Area Emergency Response (BAER) Teams are formed to assess potential erosion and flood risks. These teams are under tight deadlines as remediation plans and treatments must be developed and implemented before the first major storms in order to be effective. One of the primary sources of information for making these decisions is a burn severity map derived from remote sensing data (typically Landsat) that reflects fire induced changes in vegetative cover and soil properties. Slope, soils, land cover, and climate are also important parameters that need to be considered when accessing risk. Many modeling tools and datasets have been developed to assist BAER teams, but process-based and spatially explicit empirical models are currently under-utilized compared to simpler, lumped models because they are both more difficult to set up and require spatially explicit inputs such as digital elevation models, soils, and land cover. We are working to facilitate the use of models by preparing spatial datasets within a web-based tool that rapidly modifies model inputs using burn severity maps derived from earth observation data. Automating the creation of model inputs facilitates the wider use of more accurate, process-based models for spatially explicit predictions of post-fire erosion and runoff.

Miller, M. E.; Elliot, W. J.; Endsley, K. A.; Robichaud, P. R.; Billmire, M.

2014-11-01

45

Post-fire vegetation recovery in Portugal based on spot/vegetation data  

NASA Astrophysics Data System (ADS)

A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI), with a 1 km1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation indices.

Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

2010-04-01

46

Post-fire Sediment Production From Hillslopes in the Colorado Front Range  

NASA Astrophysics Data System (ADS)

Post-fire erosion and sediment yields are an important concern in the Colorado Front Range because past fires have adversely affected domestic water supplies, reservoir storage capacity, and coldwater fisheries habitat. The goal of this study was to evaluate the effects of season, fire severity, time since burning, and percent cover on erosion rates at the hillslope scale. Sediment production was monitored for 1-2 years from 48 sediment fences on six different wild and prescribed fires. Sediment production rates varied greatly between seasons, by time since burning, by fire severity, and between years. Summer rainstorms from June-September generally produced 10-50 times more sediment than snowmelt or mixed rain-and-snow events between October and May. The two oldest fires (1994 and 1998) had sediment production rates that were approximately 1-2 orders of magnitude lower than the four more recent fires. Fire severity was an important control on sediment production in the 2000 Bobcat wildfire and the November 1999 Old Flowers prescribed fire. In the case of the Bobcat fire, the high severity sites produced 50 times more sediment than the sites burned at moderate severity, and 500 times more sediment than the sites burned at low severity. There was little difference in sediment production rates between 2000 and 2001 for the Bobcat fire, while the other four more recent fires yielded very different amounts of sediment in 2000 and 2001. For two fires sediment production rates in summer 2000 were approximately seven times greater than in summer 2001, while the reverse was true for two other fires. The observed differences indicate that, at least for the first couple of years after burning, the amount and intensity of summer rainstorms can have a greater effect on sediment yields than time since burning. The decreases in sediment production with decreasing fire severity and increasing time since burning were strongly correlated with percent ground cover, as sites with more than 35% ground cover generally produced much less sediment than sites with less than 20% cover. The results suggest that relative sediment yields from burned areas are much easier to predict than absolute values, and that post-fire erosion control efforts should focus on increasing percent ground cover through mulching or other treatments.

Benavides-Solorio, J.; MacDonald, L. H.

2001-12-01

47

Factors Associated With Post-fire Sediment Yields From Hillslope Plots in the Colorado Front Range  

NASA Astrophysics Data System (ADS)

In recent years there has been a large increase in the number and size of wildfires in the mid-elevation zones of the Colorado Front Range. High-intensity rainstorms after these fires have increased erosion rates by several orders of magnitude and severely affected downstream aquatic resources. The objective of this study was to measure sediment production rates at the hillslope scale and determine the key controlling variables. To this end 48 sediment fences have been continuously monitored in three wildfires and three prescribed fires at elevations ranging from 1670 to 3050 m. The most intensively-studied area is the Bobcat fire, which burned 43 km2 in June 2000. Within this fire sediment production rates exceeded 10 Mg ha-1 yr-1 for areas burned at high severity. Prescribed fires produced substantially less sediment than the corresponding wildfires. Sediment production rates from sites burned at high severity were nearly 200 times higher than sites burned at moderate severity. Nearly all of the erosion occurred as a result of summer rainstorms rather than winter snowmelt. Sediment production rates per unit area were 2-3 times higher in swales or small drainages than from planar hillslopes. Data from the older fires indicate that sediment production rates remain elevated for sites burned at high severity for at least three years after burning. When the data from all fires were combined, 77% of the variability in sediment production rates could be explained by fire severity, percent bare soil, rainfall erosivity, soil water repellency, and soil texture. A simpler model using only percent cover and rainfall erosivity had a R2 of 0.62. Various models were tested against an independent data set from the Bobcat fire, and this showed that fire severity, percent bare soil, and rainfall erosivity could successfully predict post-fire erosion rates. The understanding and models developed in this project can help land managers predict the likely impacts from future wildfires and assist in the design of more effective post-fire rehabilitation techniques.

Benavides-Solorio, J.; MacDonald, L. H.

2003-12-01

48

Post-fire Erosion: Long-term Recovery and Effectiveness of Rehabilitation Techniques  

NASA Astrophysics Data System (ADS)

Millions of dollars are spent each year to reduce runoff and erosion rates after high-severity wildfires, but there are relatively few data evaluating their effectiveness over longer time periods relative to natural recovery. In this study we summarize six years of hillslope erosion data from 18 untreated plots and five replicated post-fire rehabilitation treatments applied after the 2002 Hayman and Schoonover wildfires in the ponderosa pine zone in the central Colorado Front Range. The rate of recovery and effectiveness of these treatments are compared to the results from the 2000 Bobcat fire 130 km to the north (Wagenbrenner et al., 2006). On the Hayman fire straw mulching reduced hillslope-scale sediment yields by more than 90% in the first two summers after burning and by 77% in the third summer after burning. By the fourth summer the straw mulch had no significant effect on the amount of ground cover or sediment yields relative to the untreated controls. Aerial hydromulching had a similar effectiveness and longevity, but a ground-based hydromulch treatment was poorly formulated and did not significantly reduce sediment yields. Scarification and seeding did not increase the amount of surface cover or reduce sediment yields. The initial wet application of a polyacylamide appeared to reduce sediment yields, but subsequent applications did not have any significant effect. None of the treatments was effective for more than three summers after burning. The results confirm the fundamental importance of ground cover and are consistent with the mulching and seeding results from the Bobcat fire. The primary difference is the slower vegetative recovery rates for the coarser-textured soils in the Hayman and Schoonover fires, and this has caused post-fire sediment yields to remain elevated for six summers after burning as compared to a maximum of four summers for the Bobcat fire. Land managers must evaluate the duration of treatment effectiveness and post-fire erosion as well as the shorter-term efficacy of their proposed treatments, and these evaluations must be done on a site-specific basis.

MacDonald, L. H.; Rough, D. T.; Schaffrath, K.

2007-12-01

49

Post-fire forest sustainability in north-central Portugal: Assessing the impacts of pre- and post-fire ground preparations, logging and mitigation treatments on post-fire runoff and erosion.  

NASA Astrophysics Data System (ADS)

Wildfires have been reported worldwide as producing strong and sometimes extreme responses in runoff and soil erosion. However, in the case of North-Central Portugal, little research had been carried out regarding the hydrologic and erosive impacts of several land management activities in recently burnt areas (such as ground preparation, post-fire logging or post-fire mitigation treatments). This is the main objective of this research. Several pre- and post-fire ground preparation operations (down-slope rip-ploughed, contour ploughed and terracing), post-fire logging activities, and post-fire soil erosion mitigation treatments (forest residue mulches, polyacrylamide and hydromulch) were assessed from the first to the third post-fire years. Repeated rainfall simulation experiments (RSE's), micro-scale runoff plots and bounded sediment fences were installed immediately after the wildfire in twelve burnt slopes and monitored at weekly-basis intervals. The results for the first post-fire year showed comparable runoff coefficient (20-60%) but lower sediment losses (1.2-10 Mg ha-1) than prior studies in Portugal and worldwide, which corresponded well with the historic intensive land use in the area. Terracing sharply increased soil erosion (up to 30 Mg ha-1) at the micro-plots scale during the first year after a wildfire and terracing. However, sediment limited erosion was measured in all the pre-fire ploughed sites, probably due to the time elapsed since ploughing. Post-fire logging activities enhanced 5- to 10- fold the sediment losses, which was related to the disturbance of the soil surface cover. The mulches (forest residue or hydromulch) were highly effective reducing post-fire soil erosion in more than 80%. The increase on sediment losses of the recently terraced area and the measured sediment exhaustion at all the pre-fire ploughed sites as well as the increasing frequency of ploughing in the forest areas implies the need to consider ploughing as a hazardous activity in the region. Furthermore, logging activities that maintain the needle cast and/or logging litter over the soil surface are suggested. The best options for post-fire mitigation treatments were forest residue or hydromulch. Due to its comparatively lower price, the forest residue mulch is highly recommended.

Malvar, Maruxa; Prats, Srgio A.; Martins, Martinho A. S.; Gonzalez-Pelayo, scar; Keizer, Jacob J.

2014-05-01

50

Analysis of Alaskan burn severity patterns using remotely sensed data  

USGS Publications Warehouse

Wildland fire is the dominant large-scale disturbance mechanism in the Alaskan boreal forest, and it strongly influences forest structure and function. In this research, patterns of burn severity in the Alaskan boreal forest are characterised using 24 fires. First, the relationship between burn severity and area burned is quantified using a linear regression. Second, the spatial correlation of burn severity as a function of topography is modelled using a variogram analysis. Finally, the relationship between vegetation type and spatial patterns of burn severity is quantified using linear models where variograms account for spatial correlation. These results show that: 1) average burn severity increases with the natural logarithm of the area of the wildfire, 2) burn severity is more variable in topographically complex landscapes than in flat landscapes, and 3) there is a significant relationship between burn severity and vegetation type in flat landscapes but not in topographically complex landscapes. These results strengthen the argument that differential flammability of vegetation exists in some boreal landscapes of Alaska. Additionally, these results suggest that through feedbacks between vegetation and burn severity, the distribution of forest vegetation through time is likely more stable in flat terrain than it is in areas with more complex topography. ?? IAWF 2007.

Duffy, P.A.; Epting, J.; Graham, J.M.; Rupp, T.S.; McGuire, A.D.

2007-01-01

51

The Emergency Management and Treatment of Severe Burns  

PubMed Central

Burn injuries continue to cause morbidity and mortality internationally. Despite international collaborations and preventative measures, there are still many cases reported in high- and low-income countries. The treatment of these patients is often protracted and requires extensive resources. The adequate resuscitation of these patients coupled with meticulous wound care can have a huge impact on their outcome. The authors present a simple guideline for the initial management of severe burns which is utilised by the South African Burn Society and is based on the guidelines of the American Burn Association and the Australian and New Zealand Burn Association. PMID:22046536

Stander, Melanie; Wallis, Lee Alan

2011-01-01

52

Perturbed mononuclear phagocyte system in severely burned and septic patients  

PubMed Central

Burn is one of the most common and devastating forms of trauma. Major burn injury disturbs the immune system, resulting in marked alterations in bone marrow hematopoiesis and a progressive suppression of the immune response, which are thought to contribute to increased susceptibility to secondary infections and the development of sepsis. Immunosuppression in severely burned and septic patients leads to high morbidity and mortality in these patients. Mononuclear Phagocytes System (MPS) is a critical component of the innate immune response and play key roles in burn immunity. These phagocytes are the first cellular responders to severe burn injury after acute disruption of the skin barrier. They are not only able to internalize and digest bacteria and dead cells and scavenge toxic compounds produced by metabolism, but also able to initiate an adaptive immune response. Severe burn and sepsis profoundly inhibit the functions of DC, monocyte and macrophage. Adoptive transfer of MPS or stem cells to severely burned and septic patients that aim to restore MPS function is promising. A better understanding of the roles played by MPS in the pathophysiology of severe burn and sepsis will guarantee a more rational and effective immunotherapy of severely burned and septic patients. PMID:23860581

Xiu, Fangming; Jeschke, Marc G.

2013-01-01

53

Stem demography and post-fire recruitment of a resprouting serotinous conifer  

USGS Publications Warehouse

The contribution of resprouts and seedling recruitment to post-fire regeneration of the South African fynbos conifer Widdringtonia nodiflora was compared eight months after wildfires in 1990. Stems on all trees were killed by fire but resprouting success was > 90 % at all but one site. A demographic study of burned skeletons revealed that prior to these fires, nearly all plants were multi-stemmed (4 - 9 stems/plant) and multi-aged, indicating continuous sprout production between fires. All stems were killed by these 1990 fires and at most sites > 90 % of the stems were burned to ground level. All diameter stems were susceptible to such incineration as, at most sites, there was no difference in average diameter of stems burned to ground level and those left standing. Individual genets usually had all ramets incinerated to ground level or all ramets charred, but intact, suggesting certain micro-sites burned hotter, whereas other sites were somewhat protected. Although not true of the 1990 fires, there was evidence that occasionally Widdringtonia stems may survive fire. At one site, four of the 16 plants sampled had a burned stem twice as old as the oldest burned stem on the other 12 plants at the site, suggesting some stems had survived the previous fire (ca. 1970) and this conclusion was supported by fire-scars on these four stems that dated to ca. 1970. Based on the highly significant correlation between stem diameter and cone density left standing after the 1990 fries, we calculated that for most sites > 80 % of the initial cone crop was incinerated by fire. This is important because we observed a strong relationship between size of the canopy cone crop surviving fire and post-fire seedling recruitment. Under these conditions we hypothesize that sprouting confers a selective advantage to genets when fires cause heavy losses of seed. The infrequent occurrence of sprouting in the Cupressaceae suggests the hypothesis that resprouting is an apomorphic or derived trait in Widdringtonia. Data from this study suggests resprouting provides a selective advantage under severe fynbos fires, which are not only 'stand-replacing fires,' but also are intense enough to incinerate cone-bearing stems.

Keeley, J.E.; Keeley, M.B.; Bond, W.J.

1999-01-01

54

Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity  

NASA Astrophysics Data System (ADS)

Frequent monitoring of early-stage burns is necessary for deciding optimal treatment and management. Both superficial and full thickness burns are relatively easy to diagnose based on clinical observation. In between these two extremes are superficial-partial thickness and deep-partial thickness burns. These burns, while visually similar, differ dramatically in terms of clinical treatment and are known to progress in severity over time. The objective of this study was to determine the potential of spatial frequency domain imaging (SFDI) for noninvasively mapping quantitative changes in chromophore and optical properties that may be an indicative of burn wound severity. A controlled protocol of graded burn severity was developed and applied to 17 rats. SFDI data was acquired at multiple near-infrared wavelengths over a course of 3 h. Burn severity was verified using hematoxylin and eosin histology. From this study, we found that changes in water concentration (edema), deoxygenated hemoglobin concentration, and optical scattering (tissue denaturation) to be statistically significant at differentiating superficial partial-thickness burns from deep-partial thickness burns.

Nguyen, John Quan; Crouzet, Christian; Mai, Tuan; Riola, Kathleen; Uchitel, Daniel; Liaw, Lih-Huei; Bernal, Nicole; Ponticorvo, Adrien; Choi, Bernard; Durkin, Anthony J.

2013-06-01

55

Predictive modelling of burn probability and burn severity in a desert spring ecosystem  

E-print Network

Predictive modelling of burn probability and burn severity in a desert spring ecosystem Stephanie O: pweisberg@cabnr.unr.edu Abstract. Little is known about the fire ecology of desert springs, despite their importance for biodiversity and for provision of ecosystem services. Desert spring ecosystems

Weisberg, Peter J.

56

Modelling post-fire vegetation recovery in Portugal  

NASA Astrophysics Data System (ADS)

Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 years (1998-2009), at 1 km 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland-shrub, which tend to dominate the areas following the fire event.

Bastos, A.; Gouveia, C. M.; Dacamara, C. C.; Trigo, R. M.

2011-12-01

57

Modelling post-fire vegetation recovery in Portugal  

NASA Astrophysics Data System (ADS)

Wildfires in Mediterranean Europe have been increasing in number and extension over the last decades and constitute one of the major disturbances of these ecosystems. Portugal is the country with more burnt area in the last decade and the years of 2003 and 2005 were particularly devastating, the total burned areas of 425 000 and 338 000 ha being several times higher than the corresponding average. The year of 2005 further coincided with one of the most severe droughts since early 20th century. Due to different responses of vegetation to diverse fire regimes and to the complexity of landscape structures, fires have complex effects on vegetation recovery. Remote sensing has revealed to be a powerful tool in studying vegetation dynamics and in monitoring post-fire vegetation recovery, which is crucial to land-management and to prevent erosion. The main goals of the present work are (i) to assess the accuracy of a vegetation recovery model previously developed by the authors; (ii) to assess the model's performance, namely its sensitivity to initial conditions, to the temporal length of the input dataset and to missing data; (iii) to study vegetation recovery over two selected areas that were affected by two large wildfire events in the fire seasons of 2003 and 2005, respectively. The study relies on monthly values of NDVI over 11 yr (1998-2009), at 1 1 km spatial resolution, as obtained by the VEGETATION instrument. According to results from sensitivity analysis, the model is robust and able to provide good estimations of recovery times of vegetation when the regeneration process is regular, even when missing data is present. In what respect to the two selected burnt scars, results indicate that fire damage is a determinant factor of regeneration, as less damaged vegetation recovers more rapidly, which is mainly justified by the high coverage of Pinus Pinaster over the area, and by the fact that coniferous forests tend to recover slower than transitional woodland-shrub, which tend to dominate the areas following the fire event.

Bastos, A.; Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

2011-05-01

58

Postfire soil burn severity mapping with hyperspectral image unmixing  

USGS Publications Warehouse

Burn severity is mapped after wildfires to evaluate immediate and long-term fire effects on the landscape. Remotely sensed hyperspectral imagery has the potential to provide important information about fine-scale ground cover components that are indicative of burn severity after large wildland fires. Airborne hyperspectral imagery and ground data were collected after the 2002 Hayman Fire in Colorado to assess the application of high resolution imagery for burn severity mapping and to compare it to standard burn severity mapping methods. Mixture Tuned Matched Filtering (MTMF), a partial spectral unmixing algorithm, was used to identify the spectral abundance of ash, soil, and scorched and green vegetation in the burned area. The overall performance of the MTMF for predicting the ground cover components was satisfactory (r2 = 0.21 to 0.48) based on a comparison to fractional ash, soil, and vegetation cover measured on ground validation plots. The relationship between Landsat-derived differenced Normalized Burn Ratio (dNBR) values and the ground data was also evaluated (r2 = 0.20 to 0.58) and found to be comparable to the MTMF. However, the quantitative information provided by the fine-scale hyperspectral imagery makes it possible to more accurately assess the effects of the fire on the soil surface by identifying discrete ground cover characteristics. These surface effects, especially soil and ash cover and the lack of any remaining vegetative cover, directly relate to potential postfire watershed response processes. ?? 2006 Elsevier Inc. All rights reserved.

Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A.

2007-01-01

59

Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA  

NASA Astrophysics Data System (ADS)

The role of fire in shaping steep, forested landscapes depends on a suite of hydrologic, biologic, and geological characteristics, including the propensity for hydrophobic soil layers to promote runoff erosion during subsequent rainfall events. In the Oregon Coast Range, several studies postulate that fire primarily modulates sediment production via root reinforcement and shallow landslide susceptibility, although few studies have documented post-fire geomorphic response. Here, we describe field observations and topographic analyses for three sites in the central Oregon Coast Range that burned in 1999, 2002, and 2003. The fires generated strongly hydrophobic soil layers that did not promote runoff erosion because the continuity of the layers was interrupted by pervasive discontinuities that facilitated rapid infiltration. At each of our sites, fire generated significant colluvial transport via dry ravel, consistent with other field-based studies in the western United States. Fire-driven dry ravel accumulation in low-order valleys of our Sulphur Creek site equated to a slope-averaged landscape lowering of 2.5 mm. Given Holocene estimates of fire frequency, these results suggest that fire may contribute 10-20% of total denudation across steep, dissected portions of the Oregon Coast Range. In addition, we documented more rapid decline of root strength at our sites than has been observed after timber harvest, suggesting that root strength was compromised prior to fire or that intense heat damaged roots in the shallow subsurface. Given that fire frequencies in the Pacific Northwest are predicted to increase with continued climate change, our findings highlight the importance of fire-induced dry ravel and post-fire debris flow activity in controlling sediment delivery to channels.

Jackson, Molly; Roering, Joshua J.

2009-06-01

60

Linking runoff response to burn severity after a wildfire  

USGS Publications Warehouse

Extreme floods often follow wildfire in mountainous watersheds. However, a quantitative relation between the runoff response and burn severity at the watershed scale has not been established. Runoff response was measured as the runoff coefficient C, which is equal to the peak discharge per unit drainage area divided by the average maximum 30 min rainfall intensity during each rain storm. The magnitude of the bum severity was expressed as the change in the normalized burn ratio. A new burn severity variable, hydraulic functional connectivity ?? was developed and incorporates both the magnitude of the burn severity and the spatial sequence of the bum severity along hillslope flow paths. The runoff response and the burn severity were measured in seven subwatersheds (0.24 to 0.85 km2) in the upper part of Rendija Canyon burned by the 2000 Cerro Grande Fire Dear Los Alamos, New Mexico, USA. A rainfall-discharge relation was determined for four of the subwatersheds with nearly the same bum severity. The peak discharge per unit drainage area Qupeak was a linear function of the maximum 30 min rainfall intensity I30. This function predicted a rainfall intensity threshold of 8.5 mm h-1 below which no runoff was generated. The runoff coefficient C = Qupeak/I30 was a linear function of the mean hydraulic functional connectivity of the subwatersheds. Moreover, the variability of the mean hydraulic functional connectivity was related to the variability of the mean runoff coefficient, and this relation provides physical insight into why the runoff response from the same subwatershed can vary for different rainstorms with the same rainfall intensity. Published in 2007 by John Wiley & Sons, Ltd.

Moody, J.A.; Martin, D.A.; Haire, S.L.; Kinner, D.A.

2008-01-01

61

Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California.  

PubMed

Post-fire runoff has the potential to be a large source of contaminants to downstream areas. However, the magnitude of this effect in urban fringe watersheds adjacent to large sources of airborne contaminants is not well documented. The current study investigates the impacts of wildfire on stormwater contaminant loading from the upper Arroyo Seco watershed, burned in 2009. This watershed is adjacent to the Greater Los Angeles, CA, USA area and has not burned in over 60 years. Consequently, it acts as a sink for regional urban pollutants and presents an opportunity to study the impacts of wildfire. Pre- and post-fire storm samples were collected and analyzed for basic cations, trace metals, and total suspended solids. The loss of vegetation and changes in soil properties from the fire greatly increased the magnitude of storm runoff, resulting in sediment-laden floods carrying high concentrations of particulate-bound constituents. Post-fire concentrations and loads were up to three orders of magnitude greater than pre-fire values for many trace metals, including lead and cadmium. A shift was also observed in the timing of chemical delivery, where maximum suspended sediment, trace metal, and cation concentrations coincided with, rather than preceded, peak discharge in the post-fire runoff, amplifying the fire's impacts on mass loading. The results emphasize the importance of sediment delivery as a primary mechanism for post-fire contaminant transport and suggest that traditional management practices that focus on treating only the early portion of storm runoff may be less effective following wildfire. We also advocate that watersheds impacted by regional urban pollutants have the potential to pose significant risk for downstream communities and ecosystems after fire. PMID:23912423

Burke, M P; Hogue, T S; Kinoshita, A M; Barco, J; Wessel, C; Stein, E D

2013-12-01

62

Post-fire resilience in the Alpine region estimated from MODIS satellite multispectral data  

NASA Astrophysics Data System (ADS)

In this study, a methodology based on the analysis of MODIS (MODerate-resolution Imaging Spectroradiometer) time series was developed to estimate post-fire resilience of Alpine vegetation. To this end, satellite images of two vegetation indices (VIs), the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) were used. The analysis was conducted on wildfire affected areas in the Lombardy region (Italy) between 2003 and 2007. Some land surface (LS) descriptors (i.e. mean and maximum VI, growing season start, end and length) were extracted to characterize the time evolution of the vegetation. The descriptors from a burned area were compared to those from an undisturbed adjacent control site by means of analysis of variance (one-way ANOVA). Post-fire resilience was estimated on the basis of the number of subsequent years exhibiting a statistical difference between burned area and control site. The same methodologies were also applied to events aggregated by main land cover (broadleaf forest, prairies and mixed forest). The averaged resilience of broadleaf forest was 5-6 years, whereas prairie ecosystems exhibited a faster response of 0-2 years. Phenological analysis revealed that fire induces a shift of the start and end of growing season in forest ecosystems but has no effect on prairies. The method provides a useful and quantitative insight into complex post-fire vegetation dynamics in the Alps from a remote sensing perspective; results can apply to post-fire forest management and to multi-risk analysis. to compare the performance of NDVI and EVI for inferring post fire resilience.; to evaluate different LS descriptors (i.e. mean and maximum VI, start, end and length of the growing season) for resilience estimations; to compare the resilience to fire of different land covers (LCs) (i.e. broadleaf forest, mixed forest and prairies) affected by fire in Alpine areas.

Di Mauro, B.; Fava, F.; Busetto, L.; Crosta, G. F.; Colombo, R.

2014-10-01

63

Rhabdomyolysis and acute renal failure in severely burned patients.  

PubMed

Rhabdomyolysis (RML) is a precarious complication in severely burned patients and the principal treatment goal is prevention of acute renal failure (ARF). This 10-year retrospective study analyses the causes for RML in severely burned patients and evaluates treatment algorithms. Eight of 714 patients (1%) were diagnosed with RML. Percentage TBSA burn was 25 13%. The mean abbreviated burn severity index score (ABSI) was 9 2. ARF was found in 75% (6/8) of the patients. Serum myoglobin (MB) was reduced by 41 16% after 24-h treatment by solitary volume repletion (VR) and by 44 20% through VR+continuous veno-venous hemodiafiltration (CVVHDF). Mortality was 50% (4/8). Peak mean CPK-levels were more than two and MB-levels more than four times higher in non-survivors than in survivors. Burns associated with RML result in poor survival. VR and CVVHDF are effective measures in treating RML. CVVHDF is effective in removing MB when using high flux filter membranes. Early CVVHDF (within 24h of diagnosis) with high-cut off membranes could reduce the risk of ARF and mortality. PMID:20965664

Stollwerck, Peter L; Namdar, Thomas; Stang, Felix H; Lange, Thomas; Mailnder, Peter; Siemers, Frank

2011-03-01

64

A database on post-fire erosion rates and debris flows in Mediterranean-Basin watersheds  

NASA Astrophysics Data System (ADS)

Wildfires can affect many Mediterranean countries on a yearly bases, producing damage and economic losses, both as direct effect of the fires and as consequent events, including erosion and sedimentation in the recently burned areas. Even though most of the wildfires occur in Spain, Portugal, southern France, Italy and Greece, it can be stated that no one of the Mediterranean countries is completely immune by such hazards. In addition to destruction of the vegetation, and in addition to direct losses to the built-up environment, further effects may also be registered as a consequence of the fire, even weeks or months after its occurrence. Wildfire can have, in fact, profound effects on the hydrologic response of watersheds, and debris-flow activity is among the most destructive consequences of these effects, often causing extensive damage to human infrastructure. Wildfires are today continuously monitored by several European institutions, and forecasting of the conditions (weather, temperature, wind, etc.) more likely conducive to their occurrence is often available in real time. On the other hand, not much is known about the processes that occur as a consequence of the fire, including erosion and debris flows. These are often underestimated, and become object of study only after some catastrophic event has occurred. This is in strong contrast with all the established techniques of risk mitigation; as a result, no prevention action is generally considered, and the society relies only on the emergency phase following a disaster. Aimed at contributing to gather information about the occurrence of erosional and debris-flow activity in recently burned Mediterranean areas, and at making available these information to land planners and scientists, a specific database has been compiled and presented in this contribution. To date, scientific literature on the topic in Europe has never been catalogued, and was dispersed in a number of different journals and in conference proceedings. The database derives from critical analysis of the existing literature, integrated by case studies directly studied by the authors. Studies on recently burned areas in the Mediterranean basin are most frequently carried out on small experimental plots, often with simulated rainfall A problem of scale therefore exists when trying to extrapolate the erosion rates (also reported as sediment yields or as sediment losses) from these studies to a watershed scale. Very few articles, on the other hand, were found that document the watershed-scale response of basins to rainfall-induced erosion and debris flows following wildfires. The few reported cases of debris flows in the Mediterranean Basin describe erosion of sediment from the hillslopes and the channels (sometimes down to bedrock), and, for a limited number of sites, failure of discrete landslides. This information indicates that debris-flow generation from recently burned areas in the Mediterranean basin appears to occur primarily through sediment bulking processes. Nevertheless, the database so far compiled shows a distribution of post-fire erosion and debris flows in the western Mediterranean basin (Spain, essentially, but also Portugal), followed by the eastern Mediterranean area (Israel), and then by France, Italy and Greece. Even though still in a preliminary version, that needs to be integrated and updated from further sources, our data compilation allows for the unique opportunity to examine issues related to the generation of post-wildfire debris flows across a variety of environments and under a variety of conditions, and to move from a qualitative conception of the controls on post-fire debris-flow generation to the definition of specific conditions that result in their occurrence. Future activities of the project will include: i) updating and integration of the preliminary version of the database; ii) development of models that can be used to identify the probability of debris-flow occurrence and the magnitude of the event for pre- and post-fire hazard assessment in Mediterranean climates;

Parise, M.; Cannon, S. H.

2009-04-01

65

Monitoring the Effects of Forest Restoration Treatments on Post-Fire Vegetation Recovery with MODIS Multitemporal Data  

PubMed Central

This study examines how satellite based time-series vegetation greenness data and phenological measurements can be used to monitor and quantify vegetation recovery after wildfire disturbances and examine how pre-fire fuel reduction restoration treatments impact fire severity and impact vegetation recovery trajectories. Pairs of wildfire affected sites and a nearby unburned reference site were chosen to measure the post-disturbance recovery in relation to climate variation. All site pairs were chosen in forested uplands in Arizona and were restricted to the area of the Rodeo-Chediski fire that occurred in 2002. Fuel reduction treatments were performed in 1999 and 2001. The inter-annual and seasonal vegetation dynamics before, during, and after wildfire events can be monitored using a time series of biweekly composited MODIS NDVI (Moderate Resolution Imaging Spectroradiometer - Normalized Difference Vegetation Index) data. Time series analysis methods included difference metrics, smoothing filters, and fitting functions that were applied to extract seasonal and inter-annual change and phenological metrics from the NDVI time series data from 2000 to 2007. Pre- and post-fire Landsat data were used to compute the Normalized Burn Ratio (NBR) and examine burn severity at the selected sites. The phenological metrics (pheno-metrics) included the timing and greenness (i.e. NDVI) for the start, peak and end of the growing season as well as proxy measures for the rate of green-up and senescence and the annual vegetation productivity. Pre-fire fuel reduction treatments resulted in lower fire severity, which reduced annual productivity much less than untreated areas within the Rodeo-Chediski fire perimeter. The seasonal metrics were shown to be useful for estimating the rate of post-fire disturbance recovery and the timing of phenological greenness phases. The use of satellite time series NDVI data and derived pheno-metrics show potential for tracking vegetation cover dynamics and successional changes in response to drought, wildfire disturbances, and forest restoration treatments in fire-suppressed forests.

van Leeuwen, Willem J. D.

2008-01-01

66

[Research progress in post-fire debris flow].  

PubMed

The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow. PMID:24380363

Di, Xue-ying; Tao, Yu-zhu

2013-08-01

67

A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty  

USGS Publications Warehouse

This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study. ?? 2011.

Friedel, M.J.

2011-01-01

68

Biogeochemistry and plant physiological traits interact to reinforce patterns of post-fire dominance in boreal forests  

NASA Astrophysics Data System (ADS)

Increases in the frequency, extent, and severity of fire in the North American boreal region are projected to continue under a warming climate and are likely to be associated with changes in future vegetation composition. In interior Alaska, fire severity is linked to the relative dominance of deciduous versus coniferous canopy species. Severely burned areas have high levels of deciduous recruitment and subsequent stand dominance, while lightly burned areas exhibit black spruce self-replacement. To elucidate potential mechanisms by which differential fire severity results in differential post-fire vegetation development, we examined changes in soil nitrogen (N) supply (NO3- and NH4+) and in situ 15N uptake by young aspen (Populus tremuloides) and black spruce (Picea mariana) trees growing in lightly and severely burned areas. We hypothesized that (a) soil nitrate supply would be higher in severely burned sites and (b) since conifers have been shown to have a reduced physiological capacity for NO3- uptake, aspen would display greater rates of NO3- uptake than spruce in severely burned sites. Our results suggested that the composition and magnitude of inorganic N supply 14 years after the fire was nearly identical in high-severity and low-severity sites, and nitrate represented nearly 50% of the supply. However, both aspen and spruce took up substantially more NH4+-N than NO3- -N regardless of fire severity. Surprisingly, spruce exhibited only a moderately lower rate of NO3- uptake (?g N/g root-1h-1) than aspen. At the stand level, aspen took up nearly an order-of-magnitude more N per hectare in severely burned sites compared to lightly burned sites, while spruce exhibited the opposite pattern of N uptake with respect to fire severity. Whereas ammonium appeared to be preferred by both species, nitrate represented a larger component of N uptake (based on the NO3-:NH4+ uptake ratio) in aspen (0.7) than in spruce (0.4). We suggest that these species-specific differences in N preference coupled with their respective physiological response to fire severity represent a positive feedback loop that reinforce the opposing stand dominance patterns that have developed at the two ends of the fire severity spectrum. Shifts in forest composition from the current dominance by conifers to a future landscape dominated by deciduous forest are of concern due to impacts on climate-albedo feedbacks, forest productivity, ecosystem carbon storage, and wildlife habitat use.

Shenoy, A.; Kielland, K.; Johnstone, J. F.

2011-12-01

69

Developing a post-fire flood chronology and recurrence probability from alluvial stratigraphy in the Buffalo Creek watershed, Colorado, USA  

USGS Publications Warehouse

Stratigraphic and geomorphic evidence indicate floods that occur soon after forest fires have been intermittent but common events in many mountainous areas during the past several thousand years. The magnitude and recurrence of these post-fire flood events reflects the joint probability between the recurrence of fires and the recurrence of subsequent rainfall events of varying magnitude and intensity. Following the May 1996 Buffalo Creek, Colorado, forest fire, precipitation amounts and intensities that generated very little surface runoff outside of the burned area resulted in severe hillslope erosion, floods, and streambed sediment entrainment in the rugged, severely burned, 48 km2 area. These floods added sediment to many existing alluvial fans, while simultaneously incising other fans and alluvial deposits. Incision of older fans revealed multiple sequences of fluvially transported sandy gravel that grade upward into charcoal-rich, loamy horizons. We interpret these sequences to represent periods of high sediment transport and aggradation during floods, followed by intervals of quiescence and relative stability in the watershed until a subsequent fire occurred. An alluvial sequence near the mouth of a tributary draining a 0??82 km2 area indicated several previous post-fire flood cycles in the watershed. Dendrochronologic and radiocarbon ages of material in this deposit span approximately 2900 years, and define three aggradational periods. The three general aggradational periods are separated by intervals of approximately nine to ten centuries and reflect a 'millennium-scale' geomorphic response to a closely timed sequence of events: severe and intense, watershed-scale, stand-replacing fires and subsequent rainstorms and flooding. Millennium-scale aggradational units at the study site may have resulted from a scenario in which the initial runoff from the burned watershed transported and deposited large volumes of sediment on downstream alluvial surfaces and tributary fans. Subsequent storm runoff may have produced localized incision and channelization, preventing additional vertical aggradation on the sampled alluvial deposit for several centuries. Two of the millennium-scale aggradational periods at the study site consist of multiple gravel and loam sequences with similar radiocarbon ages. These closely dated sequences may reflect a 'multidecade-scale' geomorphic response to more frequent, but aerially limited and less severe fires, followed by rainstorms of relatively common recurrence. Published in 2001 by John Wiley and Sons, Ltd.

Elliott, J.G.; Parker, R.S.

2001-01-01

70

Developing a post-fire flood chronology and recurrence probability from alluvial stratigraphy in the Buffalo Creek watershed, Colorado, USA  

NASA Astrophysics Data System (ADS)

Stratigraphic and geomorphic evidence indicate floods that occur soon after forest fires have been intermittent but common events in many mountainous areas during the past several thousand years. The magnitude and recurrence of these post-fire flood events reflects the joint probability between the recurrence of fires and the recurrence of subsequent rainfall events of varying magnitude and intensity. Following the May 1996 Buffalo Creek, Colorado, forest fire, precipitation amounts and intensities that generated very little surface runoff outside of the burned area resulted in severe hillslope erosion, floods, and streambed sediment entrainment in the rugged, severely burned, 48 km2 area. These floods added sediment to many existing alluvial fans, while simultaneously incising other fans and alluvial deposits. Incision of older fans revealed multiple sequences of fluvially transported sandy gravel that grade upward into charcoal-rich, loamy horizons. We interpret these sequences to represent periods of high sediment transport and aggradation during floods, followed by intervals of quiescence and relative stability in the watershed until a subsequent fire occurred.An alluvial sequence near the mouth of a tributary draining a 082 km2 area indicated several previous post-fire flood cycles in the watershed. Dendrochronologic and radiocarbon ages of material in this deposit span approximately 2900 years, and define three aggradational periods. The three general aggradational periods are separated by intervals of approximately nine to ten centuries and reflect a millennium-scale geomorphic response to a closely timed sequence of events: severe and intense, watershed-scale, stand-replacing fires and subsequent rainstorms and flooding. Millennium-scale aggradational units at the study site may have resulted from a scenario in which the initial runoff from the burned watershed transported and deposited large volumes of sediment on downstream alluvial surfaces and tributary fans. Subsequent storm runoff may have produced localized incision and channelization, preventing additional vertical aggradation on the sampled alluvial deposit for several centuries. Two of the millennium-scale aggradational periods at the study site consist of multiple gravel and loam sequences with similar radiocarbon ages. These closely dated sequences may reflect a multidecade-scale geomorphic response to more frequent, but aerially limited and less severe fires, followed by rainstorms of relatively common recurrence. Published in 2001 John Wiley & Sons, Ltd.

Elliott, John G.; Parker, R. S.

2001-10-01

71

Post-fire land treatments and wind erosion -- lessons from the Milford Flat Fire, UT, USA  

USGS Publications Warehouse

We monitored sediment flux at 25 plots located at the northern end of the 2007 Milford Flat Fire (Lake Bonneville Basin, west-central Utah) to examine the effectiveness of post-fire rehabilitation treatments in mitigating risks of wind erosion during the first 3 years post fire. Maximum values were recorded during MarJul 2009 when horizontal sediment fluxes measured with BSNE samplers ranged from 16.3 to 1251.0 g m?2 d?1 in unburned plots (n = 8; data represent averages of three sampler heights per plot), 35.2555.3 g m?2 d?1 in burned plots that were not treated (n = 5), and 21.044,010.7 g m?2 d?1 in burned plots that received one or more rehabilitation treatments that disturbed the soil surface (n = 12). Fluxes during this period exhibited extreme spatial variability and were contingent on upwind landscape characteristics and surficial soil properties, with maximum fluxes recorded in settings downwind of treated areas with long treatment length and unstable fine sand. Nonlinear patterns of wind erosion attributable to soil and fetch effects highlight the profound importance of landscape setting and soil properties as spatial factors to be considered in evaluating risks of alternative post-fire rehabilitation strategies. By MarJul 2010, average flux for all plots declined by 73.6% relative to the comparable 2009 period primarily due to the establishment and growth of exotic annual plants rather than seeded perennial plants. Results suggest that treatments in sensitive erosion-prone settings generally exacerbated rather than mitigated wind erosion during the first 3 years post fire, although long-term effects remain uncertain.

Miller, Mark E.; Bowker, Matthew A.; Reynolds, Richard L.; Goldstein, Harland L.

2012-01-01

72

Size-dependent enhancement of water relations during post-fire resprouting.  

PubMed

In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (?leaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in ?leaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size. PMID:24682534

Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A

2014-04-01

73

Post-fire land treatments and wind erosion - Lessons from the Milford Flat Fire, UT, USA  

NASA Astrophysics Data System (ADS)

We monitored sediment flux at 25 plots located at the northern end of the 2007 Milford Flat Fire (Lake Bonneville Basin, west-central Utah) to examine the effectiveness of post-fire rehabilitation treatments in mitigating risks of wind erosion during the first 3 years post fire. Maximum values were recorded during Mar-Jul 2009 when horizontal sediment fluxes measured with BSNE samplers ranged from 16.3 to 1251.0 g m-2 d-1 in unburned plots (n = 8; data represent averages of three sampler heights per plot), 35.2-555.3 g m-2 d-1 in burned plots that were not treated (n = 5), and 21.0-44,010.7 g m-2 d-1 in burned plots that received one or more rehabilitation treatments that disturbed the soil surface (n = 12). Fluxes during this period exhibited extreme spatial variability and were contingent on upwind landscape characteristics and surficial soil properties, with maximum fluxes recorded in settings downwind of treated areas with long treatment length and unstable fine sand. Nonlinear patterns of wind erosion attributable to soil and fetch effects highlight the profound importance of landscape setting and soil properties as spatial factors to be considered in evaluating risks of alternative post-fire rehabilitation strategies. By Mar-Jul 2010, average flux for all plots declined by 73.6% relative to the comparable 2009 period primarily due to the establishment and growth of exotic annual plants rather than seeded perennial plants. Results suggest that treatments in sensitive erosion-prone settings generally exacerbated rather than mitigated wind erosion during the first 3 years post fire, although long-term effects remain uncertain.

Miller, Mark E.; Bowker, Matthew A.; Reynolds, Richard L.; Goldstein, Harland L.

2012-12-01

74

Fire intensity, fire severity and burn severity: A brief review and suggested usage  

USGS Publications Warehouse

Several recent papers have suggested replacing the terminology of fire intensity and fire severity. Part of the problem with fire intensity is that it is sometimes used incorrectly to describe fire effects, when in fact it is justifiably restricted to measures of energy output. Increasingly, the term has created confusion because some authors have restricted its usage to a single measure of energy output referred to as fireline intensity. This metric is most useful in understanding fire behavior in forests, but is too narrow to fully capture the multitude of ways fire energy affects ecosystems. Fire intensity represents the energy released during various phases of a fire, and different metrics such as reaction intensity, fireline intensity, temperature, heating duration and radiant energy are useful for different purposes. Fire severity, and the related term burn severity, have created considerable confusion because of recent changes in their usage. Some authors have justified this by contending that fire severity is defined broadly as ecosystem impacts from fire and thus is open to individual interpretation. However, empirical studies have defined fire severity operationally as the loss of or change in organic matter aboveground and belowground, although the precise metric varies with management needs. Confusion arises because fire or burn severity is sometimes defined so that it also includes ecosystem responses. Ecosystem responses include soil erosion, vegetation regeneration, restoration of community structure, faunal recolonization, and a plethora of related response variables. Although some ecosystem responses are correlated with measures of fire or burn severity, many important ecosystem processes have either not been demonstrated to be predicted by severity indices or have been shown in some vegetation types to be unrelated to severity. This is a critical issue because fire or burn severity are readily measurable parameters, both on the ground and with remote sensing, yet ecosystem responses are of most interest to resource managers.

Keeley, J.E.

2009-01-01

75

Drought impact on vegetation in pre and post fire events in Iberian Peninsula  

NASA Astrophysics Data System (ADS)

In 2004/2005, the Iberian Peninsula was stricken by an exceptional drought that affected more than one third of Portugal and part of southern Spain during more than 9 months. This severe drought had a strong negative impact on vegetation dynamics, as it coincided with the period of high photosynthetic activity (Gouveia et al., 2009). Since water availability is a crucial factor in post-fire vegetation recovery, it is desirable to assess the impact that such water-stress conditions had on fire sensitivity and post-fire vegetation recovery. Fire events in the European Mediterranean areas have become a serious problem and a major ecosystem disturbance, increasing erosion and soil degradation. In Portugal, the years 2003 and 2005 were particularly devastating. In 2003 it was registered the maximal burnt area since 1980, with more than 425000 ha burned, representing about 5% of Portuguese mainland. The 2005 fire season registered the highest number of fire occurrences in Portugal and the second year with the greatest number of fires in Spain. The high number of fire events observed during the summer 2005 in the Iberian Peninsula is linked, in part, to the extreme drought conditions that prevailed during the preceding winter and spring seasons of 2004/2005. Vegetation recovery after the 2003 and 2005 fire seasons was estimated using the mono-parametric model developed by Gouveia et al. (2010), which relies on monthly values of Normalized Difference Vegetation Index (NDVI), from 1999 to 2009, at 1kmresolution, as obtained from the VEGETATION-SPOT5 instrument.. This model was further used to evaluate the effect of drought in pre and post vegetation activity. Besides the standard NDVI, the Normalized Difference Water Index (NDWI) and the Normalized Difference Drought Index (NDDI) were computed in order to evaluate drought intensity. In the case of the burnt scars of 2003, when data corresponding to the months of drought are removed, recovery times are considerably shorter. The extreme water stress conditions to which vegetation is subject during drought events appear, therefore, to delay the regeneration process, which is to be expected since water availability is determinant to primary productivity. On the other hand, in the case of 2005 burnt areas, vegetation is more stressed and dryer in summer than in spring and, in general, fire damage is higher for pixels with higher vegetation density and higher moisture content during the months before the fire. These relationships are also related with the distinct vegetation behavior of the different land covers: in general, shrubland holds less quantity of very dry biomass, while needle leaf presents higher amounts of fairly dry biomass. Gouveia C., Trigo R.M., DaCamara C.C (2009) "Drought and Vegetation Stress Monitoring in Portugal using Satellite Data". Natural Hazards and Earth System Sciences, 9, 1-11 Gouveia C., DaCamara C.C, Trigo R.M. (2010). "Post-fire vegetation dynamics in Portugal". Natural Hazards and Earth System Sciences, 10, 4, 673-684.

Gouveia, C. M.; Bastos, A.; Trigo, R. M.; DaCamara, C.

2012-04-01

76

Comparison of post-fire seedling establishment between scrub communities in mediterranean and non-mediterranean climate ecosystems  

USGS Publications Warehouse

I Both fire regimes and the conditions under which fires occur vary widely. Abiotic conditions (such as climate) in combination with fire season, frequency and intensity could influence vegetation responses to fire. A variety of adaptations facilitate post-fire recruitment in mediterranean climate ecosystems, but responses of other communities are less well known. We evaluated the importance of climate by comparing sites with mediterranean and subtropical climates. 2 We used paired burned and mature sites in chamise chaparral, mixed chaparral and coastal sage scrub (California), and rosemary scrub, sand pine scrub and sand-hill (Florida), to test whether (i) patterns of pre-fire and post-fire seedling recruitment are more similar between communities within a region than between regions, and (ii) post-fire stimulation of seedling establishment is greater in regions with marked fire-induced contrasts in abiotic site characteristics. 3 Post-fire seedling densities were more similar among sites within climatic regions than between regions. Both seedling densities and proportions of species represented by seedlings after fires were generally higher in California. 4 The only site characteristic showing a pre-fire-post-fire contrast was percentage open canopy, and the effect was greater in California than in Florida. Soil properties were unaffected by fire. 5 Mediterranean climate ecosystems in other regions have nutrient-poor soils similar to our subtropical Florida sites, but show post-fire seedling recruitment patterns more similar to the nutrient-rich sites in California. Climate therefore appears to play a more major role than soil characteristics.

Carrington, M.E.; Keeley, J.E.

1999-01-01

77

Assessing post-fire combustion of polyurethane  

SciTech Connect

In defining hypothetical accident condition thermal test requirements, 10 CFR 71.73(c)(3) states that ``any combustion of materials of construction must be allowed to proceed until it terminates naturally.`` Two examples of extended burning of packages following the regulatory fire are documented. This paper addresses extended burning after cessation of the 30-min, 1475{degrees}F regulatory fire from an analytical perspective with specific application to a package containing polyurethane insulation. Issues include identifying conditions under which materials of construction bum, estimating burn rate, and establishing criteria for cessation of burning. These data and criteria are then applied to determine package temperature profiles using a finite element model. Development of the illustrative problem demonstrates a number of difficulties that are faced when using analytical models to simulate hypothetical thermal accident conditions.

Williams, W.R.; Anderson, J.C.

1994-05-01

78

Transport and demand of oxygen in severe burns.  

PubMed

The balance equation or oxygen-conservation equation in which oxygen consumption is equal to cardiac output times the maximal oxygen binding capacity times the oxygen saturation difference between arterial and mixed venous blood shows the three factors by which the oxygen supply to the tissues can be regulated according to the need. The release of oxygen to the tissues is regulated directly through the venous oxygen tension and indirectly through cardiac output, the 2,3-DPG system, and erythropoietin. Of these indirect regulation mechanisms, cardiac output has the most rapid response and erythropoietin the slowest. As the pool of oxygen in the tissues is comparatively small, the transport and the demand of oxygen under normal conditions are approximately equal over a longer period of time. The tissue oxygen tension (Fig. 21) is thus directly a result of the flows (Fig. 21), solid lines) and indirectly a result of the regulation mechanisms (Fig. 21, broken lines). Hypermetabolism, weight loss, and severe protein wasting characterize the metabolic response to thermal injury. The increased adrenergic activity following severe burns signifies a shift of flow of body substrate from storage to utilization and an increase in energy requirements. The greater the stress, the greater the response. All systems operate at maximal or near maximal levels. The critically injured patients have an accelerated glucose turnover and increased nitrogen loss; the main source of catabolized protein seems to be from skeletal muscle. The metabolic wheel has a tremendous speed. It is thus essential to feed the patient. Energy support with heat supply and nutrition must equal energy demand to avoid weight loss. Most important is to avoid loss of "lean body tissue." No hypermetabolism was found in burned patients when the patients themselves controlled the heat supply from infrared heaters. The metabolic rate corrected for rectal temperature was independent of the total body surface burned. The energy expenditure of patients with burns was studied during the daily treatment routine and showed that it is important to avoid hypovolemia, underhydration, pain, fear, and anxiety, all of which increase the metabolic demands. To prevent hypermetabolism, infrared radiation is a practical way of distributing energy from the environment to the patient. Weight loss can be essentially prevented as energy support equals energy demand (Fig. 20). Furthermore, the method has the advantages that many patients can be treated individually, the method is inexpensive, and the ambient air temperature can be kept normal. From the results of the present investigation, it may be concluded that in patients with burns treated with infrared heaters the energy intake can be predicted in an appropriate way from the calculated basal metabolism, the rectal temperature, and the activity of the patient. The effect of storage of blood on oxygen, proton, and carbon dioxide transport is mainly mediated over the concentration of 2,3-DPG... PMID:850271

Arturson, G S

1977-03-01

79

Post-fire vegetation succession in Mediterranean gorse shrublands  

NASA Astrophysics Data System (ADS)

In Western Mediterranean areas, forest fires are frequent in forests established on old croplands where post-fire regeneration is limited to obligate-seeder species. This has resulted in the spread of Mediterranean gorse ( Ulex parviflorus) increasing the risk and severity of fires. The aim of this paper is to test the autosuccessional hypothesis on a Mediterranean gorse shrubland dominated by seeders species. Particular objectives are: a) to analyze the effect of fire on seedling emergence, survival and growth on the main species involved on plant regeneration process. b) to identify changes in the relative abundance of species as consequence of fire by using a before-after experiment. Then, after experimental fires, seedling emergence, survival and growth rates were analyzed for the main species present in the vegetation regeneration process. Our results show that Mediterranean gorse communities are dominated by Fabaceae species (64% of individuals, mainly of Ulex parviflorus). However, our study demonstrates that vegetation regeneration after fire does not display an autosuccessional pattern and is produced a change on dominance from Fabaceae (mainly U. parviflorus) to Cistaceae (mainly C. albidus) species. Cistaceae seedlings (mainly Cistus albidus and Helianthemum marifolium) were the most abundant post-fire (63% of total germination) while species of Fabaceae (including U. parviflorus and Ononis fruticosa) represented 25%, and Lamiaceae (restricted to Rosmarinus officinalis) comprised only 3% of total emergences. Seedling survival did not differ significantly from one species to another (25-30% of initial individuals over 3 years) but seedling growth rates were also higher for Cistaceae than for Fabaceae individuals. Then, after fire, in terms of biomass, Fabaceae presence decreased from 78.7% to 13.1% while Cistaceae increase from 8% to 83.4%. Given that fire frequency, intensity or severity is partially controlled by the composition and structure of the plant community population changes in the main species, could affect the future fire regime and in turn, affect the hydrological, ecological and economic role of a large stretch of forest and woodland areas in western Mediterranean ecosystems.

De Luis, Martin; Ravents, Jos; Gonzlez-Hidalgo, Jos Carlos

2006-07-01

80

Remote sensing and hydrological modeling of burn scars  

NASA Astrophysics Data System (ADS)

This study examined the potential usefulness of combining remote sensing data with hydrologic models and mapping tools available from Geographic Information Systems (GIS), to evaluate the effects of wildfire. Four subprojects addressed this issue: (1) validation of burn scar maps derived from the Advanced Very High Resolution Radiometer (AVHRR) with the National Fire Occurrence Database; (2) testing the potential of thermal MODIS (Moderate Resolution Imaging Spectroradiometer) data for near-real time burn scar and fire severity mapping; (3) evaluation of Landsat derived burn severity maps within WEPP through the Geo-spatial interface for the Water Erosion Prediction Project (GeoWEPP), and (4) predicting potential post-fire erosion for western U.S. forests utilizing existing datasets and models. Wildfire poses incredibly complex management problems in all of its stages. Today's land managers have the option of trying to mitigate the effects of a severe fire before it occurs by fuel management practices. This process is expensive especially considering the uncertainty of when and where the next fire in a given region will occur. When a wildfire does occur, deciding when to let it burn and when to suppress it may lead to controversial decisions. In addition to the threat to life and property from the fire itself, smoke emissions from large fires can cause air quality problems in distant airsheds. Even after the fire is extinguished, erosion and water quality problems may pose difficult management questions. Contributions stemming from these studies include improved burn scar maps for studying historical fire extent and demonstration of the feasibility of using thermal satellite data to predict burn scar extent when clouds and smoke obscure visible bands. The incorporation of Landsat derived burn severity maps was shown to improve post-fire erosion modeling results. Finally the potential post-fire burn severity and erosion risk maps generated for western US forests will be used for planning pre-fire fuel reduction treatments.

Miller, Mary Ellen

81

Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia  

NASA Astrophysics Data System (ADS)

Climate change and land-use activities are increasing fire activity across much of the Siberian boreal forest, yet the climate feedbacks from forest disturbances remain difficult to quantify due to limited information on forest biomass distribution, disturbance regimes, and post-disturbance ecosystem recovery. Our primary objective here was to analyze post-fire accumulation of Cajander larch (Larix cajanderi Mayr.) aboveground biomass for a 100 000 km2 area of open forest in far northeastern Siberia. In addition to examining effects of fire size and topography on post-fire larch aboveground biomass, we assessed regional fire rotation and density, as well as performance of burned area maps generated from MODIS satellite imagery. Using Landsat imagery, we mapped 116 fire scar perimeters that dated ca. 1969-2007. We then mapped larch aboveground biomass by linking field biomass measurements to tree shadows mapped synergistically from WorldView-1 and Landsat 5 satellite imagery. Larch aboveground biomass tended to be low during early succession (? 25 yr, 271 26 g m-2, n=66 [mean SE]) and decreased with increasing elevation and northwardly aspect. Larch aboveground biomass tended to be higher during mid-succession (33-38 yr, 746 100 g m-2, n=32), though was highly variable. The high variability was not associated with topography and potentially reflected differences in post-fire density of tree regrowth. Neither fire size nor latitude were significant predictors of post-fire larch aboveground biomass. Fire activity was considerably higher in the Kolyma Mountains (fire rotation = 110 yr, fire density = 1.0 1.0 fires yr-1 104 km-2 than along the forest-tundra border (fire rotation = 792 yr, fire density = 0.3 0.3 fires yr-1 104 km-2. The MODIS burned area maps underestimated the total area burned in this region from 2000-2007 by 40%. Tree shadows mapped jointly using high and medium resolution satellite imagery were strongly associated (r2?0.9) with field measurements of forest structure, which permitted spatial extrapolation of aboveground biomass to a regional extent. Better understanding of forest biomass distribution, disturbances, and post-disturbance recovery is needed to improve predictions of the net climatic feedbacks associated with landscape-scale forest disturbances in northern Eurasia.

Berner, L. T.; Beck, P. S. A.; Loranty, M. M.; Alexander, H. D.; Mack, M. C.; Goetz, S. J.

2012-06-01

82

Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia  

NASA Astrophysics Data System (ADS)

Climate change and land-use activities are increasing fire activity across much of the Siberian boreal forest, yet the climate feedbacks from forest disturbances remain difficult to quantify due to limited information on forest biomass distribution, disturbance regimes and post-disturbance ecosystem recovery. Our primary objective here was to analyse post-fire accumulation of Cajander larch (Larix cajanderi Mayr.) aboveground biomass for a 100 000 km2 area of open forest in far northeastern Siberia. In addition to examining effects of fire size and topography on post-fire larch aboveground biomass, we assessed regional fire rotation and density, as well as performance of burned area maps generated from MODIS satellite imagery. Using Landsat imagery, we mapped 116 fire scar perimeters that dated c. 1966-2007. We then mapped larch aboveground biomass by linking field biomass measurements to tree shadows mapped synergistically from WorldView-1 and Landsat 5 satellite imagery. Larch aboveground biomass tended to be low during early succession (? 25 yr, 271 26 g m-2, n = 66 [mean SE]) and decreased with increasing elevation and northwardly aspect. Larch aboveground biomass tended to be higher during mid-succession (33-38 yr, 746 100 g m-2, n = 32), though was highly variable. The high variability was not associated with topography and potentially reflected differences in post-fire density of tree regrowth. Neither fire size nor latitude were significant predictors of post-fire larch aboveground biomass. Fire activity was considerably higher in the Kolyma Mountains (fire rotation = 110 yr, fire density = 1.0 1.0 fires yr-1 104 km-2) than along the forest-tundra border (fire rotation = 792 yr, fire density = 0.3 0.3 fires yr-1 104 km-2). The MODIS burned area maps underestimated the total area burned in this region from 2000-2007 by 40%. Tree shadows mapped jointly using high and medium resolution satellite imagery were strongly associated (r2 ? 0.9) with field measurements of forest structure, which permitted spatial extrapolation of aboveground biomass to a regional extent. Better understanding of forest biomass distribution, disturbances and post-disturbance recovery is needed to improve predictions of the net climatic feedbacks associated with landscape-scale forest disturbances in northern Eurasia.

Berner, L. T.; Beck, P. S. A.; Loranty, M. M.; Alexander, H. D.; Mack, M. C.; Goetz, S. J.

2012-10-01

83

Effects of sowing native herbaceous species on the post-fire recovery in a heathland  

NASA Astrophysics Data System (ADS)

Erica australis heathlands in Len province (NW Spain) have high resilience to disturbances and their post-fire recovery is very fast. The risk of soil erosion is high in the first few months after fire. The aim of this study is to investigate the effects on post-fire succession of sowing grass ( Agrostis capillaris and Festuca rubra) and legume ( Lotus corniculatus) seeds in a heathland burned by a summer wildfire, and to determine the most suitable native herbaceous species combination for protecting the soil in the first few phases of recovery. Fifteen permanent 4 m 2 plots are established in the burned area; four treatments and a control (unsown) are applied, each with three replicates. Three similar unburned plots are also considered (unburned control). Total cover is significantly higher in the sown plots in relation to the control in the first few months after sowing, but there are no differences after 18 months. Lotus corniculatus appears only in the first year and has no effect on the total cover. F. rubra appears earlier than Agrostis capillaris, but decreases significantly in cover after 18 months. Shrub species have the highest cover in the control plots and the lowest in the Agrostis plots. The correspondence analysis shows that the trend for vegetation in all plots reaches similar species composition by the time of final sampling. The last sampling of sown plots shows greater similarity to the control plots than the sampling of these plots within the first year. The fast initial growth of F. rubra, together with its decrease and subsequent low cover from the second year, make it more preferable than Agrostis capillaris for purposes of soil protection. However, additional research, both species- and site-specific, is necessary, as different responses due to different post-fire conditions and pre-fire species composition can have important implications on community dynamics.

Fernndez-Abascal, I.; Trrega, R.; Luis-Calabuig, E.; Marcos, E.

2003-07-01

84

Post-fire water quality in forest catchments: a review with implications for potable water supply  

NASA Astrophysics Data System (ADS)

In many locations fire-prone forest catchments are utilised for the supply of potable water to small communities up to large cities. For example, in south-eastern Australia, wildfires have burned part or all of forest catchments supplying drinking water to Sydney (2001 wildfire), Canberra (2003), Adelaide (2007), Melbourne (2009), as well as various regional towns. Generally, undisturbed forest catchments are a source of high quality water. However, increases in erosion and sediment flux, runoff generation, and changes to the supply of key constituents after wildfire may result in contamination of water supplies. In this review, we present key physical and chemical constituents from a drinking water perspective that may be generated in burned forest catchments and examine post-fire changes to concentrations of these constituents in streams and reservoirs. The World Health Organisation (WHO) drinking water guideline values were used to assess reported post-fire constituent concentrations. Constituents examined include suspended sediment, ash, nutrients, trace metals, anions (Cl-, SO42-), cyanides, and polycyclic aromatic hydrocarbons (PAHs). Constituent concentrations in streams and reservoirs vary substantially following wildfire. In streams, maximum reported total suspended solid concentrations (SSC) in the first year after fire ranged from 11 to 143,000 mg L-1. SSC is often measured in studies of post-fire stream water quality, whereas turbidity is used in drinking water guidelines and more commonly monitored in water supply reservoirs. For burned catchment reservoirs in south-eastern Australia, peak turbidities increased over pre-fire conditions, as did the frequency of exceedance of the turbidity guideline. NO3-, NO2-, and NH4+ may increase after wildfire but maximum recorded concentrations have not exceeded WHO guideline values. Large post-fire increases in total N and total P concentrations in streams and reservoirs have been observed, although there are no guideline values for total N or P. Studies of post-fire concentrations of dissolved organic carbon are mostly from North America and report generally minor increases after fire, with elevated concentrations reflecting background conditions. The few observations of trace metal concentrations in streams after wildfire found high concentrations that exceeded guideline values for Fe, Mn, As, Cr, Al, Ba, and Pb, which were associated with highly elevated sediment concentrations. In contrast, Cu, Zn, and Hg were below or only slightly above (?1.2 times) guideline values. Reports of Cl- and SO42- concentrations after wildfire are mostly confined to coniferous forest areas, where maximum sampled values were well below WHO guidelines. Total cyanide concentrations have been observed to exceed guidelines values, although increases are likely to be short-lived. Post-fire stream concentrations of PAHs have been found to increase but were below levels of concern. In assessing the risk to water supply from wildfires, constituents of concern may be identified according to both the reason for concern (health or aesthetic) and treatability. Determining the risk to human health from short duration exposure to elevated concentrations of many contaminants (such as toxic metals, PAHs) is problematic, given that the guideline values are based on a life-time of exposure. Other constituents may have more rapid health effects from consumption of contaminated water (e.g. cyanides, Cu, NO2-) or aesthetic concerns (e.g. Fe, Mn, SO42-, Zn). The increased flux of suspended sediment and sediment-associated constituents (particularly metals, nutrients and organic carbon) that can occur after wildfire may necessitate water treatment by coagulation and filtration. At very high sediment concentrations treatment problems may be encountered that reduce or delay the rate of water processing, potentially causing disruptions in supply. For other constituents, such as NO3-, NO2-, Cl-, SO42-, amenable cyanides, and PAHs, it appears the likelihood that concentrations of concern will occur in water suppl

Smith, Hugh; Sheridan, Gary; Lane, Patrick; Nyman, Petter; Haydon, Shane

2010-05-01

85

POST-FIRE REVEGETATION AT HANFORD  

SciTech Connect

Range fires on the Hanford Site can have a long lasting effect on native plant communities. Wind erosion following removal of protective vegetation from fragile soils compound the damaging effect of fires. Dust storms caused by erosion create health and safety hazards to personnel, and damage facilities and equipment. The Integrated Biological Control Program (IBC) revegetates burned areas to control erosion and consequent dust. Use of native, perennial vegetation in revegetation moves the resulting plant community away from fire-prone annual weeds, and toward the native shrub-steppe that is much less likely to burn in the future. Over the past 10 years, IBC has revegetated major fire areas with good success. IBC staff is monitoring the success of these efforts, and using lessons learned to improve future efforts.

ROOS RC; JOHNSON AR; CAUDILL JG; RODRIGUEZ JM; WILDE JW

2010-01-05

86

Quantifying post-fire recovery of forest canopy structure and its environmental drivers using satellite image time-series  

NASA Astrophysics Data System (ADS)

Fire is a recurring disturbance in most of Australia's forests. Depending on fire severity, impacts on forest canopies vary from light scorching to complete defoliation, with related variation in the magnitude and duration of post-fire gas exchange by that canopy. Estimates of fire impacts on forest canopy structure and carbon uptake for south-eastern Australia's forests do not exist. Here, we use 8-day composite measurements of the fraction of Absorbed Photosynthetically Active radiation (FPAR) as recorded by the Moderate-resolution Imaging Spectroradiometer (MODIS) to characterise forest canopies before and after fire and to compare burnt and unburnt sites. FPAR is a key biophysical canopy variable and primary input for estimating Gross Primary Productivity (GPP). Post-fire FPAR loss was quantified for all forest areas burnt between 2001 and 2010, showing good agreement with independent assessments of fire severity patterns of 2009 Black Saturday fires. A new method was developed to determine the duration of post-fire recovery from MODIS-FPAR time-series. The method involves a spatial-mode principal component analysis on full FPAR time series followed by a K-means clustering to group pixels based on similarity in temporal patterns. Using fire history data, time series of FPAR for burnt and unburnt pixels in each cluster were then compared to quantify the duration of the post-fire recovery period, which ranged from less than 1 to 8 years. The results show that time series of MODIS FPAR are well suited to detect and quantify disturbances of forest canopy structure and function in large areas of highly variable climate and phenology. Finally, the role of post-fire climate conditions and previous fire history on the duration of the post-fire recovery of the forest canopy was examined using generalized additive models.

Khanal, Shiva; Duursma, Remko; Boer, Matthias

2014-05-01

87

Noninvasive assessment of burn wound severity using optical technology: A review of current and future modalities  

E-print Network

Review Noninvasive assessment of burn wound severity using optical technology: A review of current b a Department of Surgery, Division of Trauma, Burns, Critical Care and Acute Care Surgery to determine which burn wounds will heal spontaneously and which will require surgical intervention for optimal

Choi, Bernard

88

Uncoupled skeletal muscle mitochondria contribute to hypermetabolism in severely burned adults.  

PubMed

Elevated metabolic rate is a hallmark of the stress response to severe burn injury. This response is mediated in part by adrenergic stress and is responsive to changes in ambient temperature. We hypothesize that uncoupling of oxidative phosphorylation in skeletal muscle mitochondria contributes to increased metabolic rate in burn survivors. Here, we determined skeletal muscle mitochondrial function in healthy and severely burned adults. Indirect calorimetry was used to estimate metabolic rate in burn patients. Quadriceps muscle biopsies were collected on two separate occasions (11 5 and 21 8 days postinjury) from six severely burned adults (68 19% of total body surface area burned) and 12 healthy adults. Leak, coupled, and uncoupled mitochondrial respiration was determined in permeabilized myofiber bundles. Metabolic rate was significantly greater than predicted values for burn patients at both time points (P < 0.05). Skeletal muscle oxidative capacity, citrate synthase activity, a marker of mitochondrial abundance, and mitochondrial sensitivity to oligomycin were all lower in burn patients vs. controls at both time points (P < 0.05). A greater proportion of maximal mitochondrial respiration was linked to thermogenesis in burn patients compared with controls (P < 0.05). Increased metabolic rate in severely burned adults is accompanied by derangements in skeletal muscle mitochondrial function. Skeletal muscle mitochondria from burn victims are more uncoupled, indicating greater heat production within skeletal muscle. Our findings suggest that skeletal muscle mitochondrial dysfunction contributes to increased metabolic rate in burn victims. PMID:25074988

Porter, Craig; Herndon, David N; Brsheim, Elisabet; Chao, Tony; Reidy, Paul T; Borack, Michael S; Rasmussen, Blake B; Chondronikola, Maria; Saraf, Manish K; Sidossis, Labros S

2014-09-01

89

The effects of wildfire, salvage logging, and post-fire N-fixation on the nutrient budgets of a Sierran forest  

Microsoft Academic Search

The effects of fire, post-fire salvage logging, and revegetation on nutrient budgets were estimated for a site in the eastern Sierra Nevada Mountains that burned in a wildfire in 1981. Approximately two decades after the fire, the shrub (former fire) ecosystem contained less C and more N than the adjacent forest ecosystem. Reconstruction of pre-fire nutrient budgets suggested that most

D. W. Johnson; J. F. Murphy; R. B. Susfalk; T. G. Caldwell; W. W. Miller; R. F. Walker; R. F. Powers

2005-01-01

90

What factors influence rapid post-fire site re-occupancy? A case study of the endangered Eastern Bristlebird in eastern Australia  

Microsoft Academic Search

We quantified the post-fire recovery of the endangered Eastern Bristlebird (Dasyornis brachypterus )a t Booderee National Park, south-eastern Australia. Occurrence was recorded on 110 sites a year before, and for 3 years after a major unplanned fire in 2003. Although the Eastern Bristlebird is thought to be sensitive to wildfire, data indicated that the species either persisted continuously on burned

David B. LindenmayerA; Chris MacGregor; Jeff T. Wood; Ross B. Cunningham; Mason Crane; Damian Michael; Rebecca Montague-Drake; Darren Brown; Martin Fortescue; Nick Dexter; Matt Hudson; A. Malcolm Gill

2009-01-01

91

MILD OBESITY IS PROTECTIVE AFTER SEVERE BURN INJURY  

PubMed Central

Objective To assess the impact of obesity on morbidity and mortality in severely burned patients. Background Despite the increasing number of people with obesity, little is known about the impact of obesity on postburn outcomes. Methods A total of 405 patients were prospectively enrolled as part of the multicenter trial Inflammation and the Host Response to Injury Glue Grant with the following inclusion criteria: 0 to 89 years of age, admitted within 96 hours after injury, and more than 20% total body surface area burn requiring at least 1 surgical intervention. Body mass index was used in adult patients to stratify according to World Health Organization definitions: less than 18.5 (underweight), 18.5 to 29.9 (normal weight), 30 to 34.9 (obese I), 35 to 39.9 (obese II), and body mass index more than 40 (obese III). Pediatric patients (2 to ?18 years of age) were stratified by using the Centers for Disease Control and Prevention and World Health Organization body mass index-for-age growth charts to obtain a percentile ranking and then grouped as underweight (<5th percentile), normal weight (5th percentile to <95th percentile), and obese (?95th percentile). The primary outcome was mortality and secondary outcomes were clinical markers of patient recovery, for example, multiorgan function, infections, sepsis, and length of stay. Results A total of 273 patients had normal weight, 116 were obese, and 16 were underweight; underweight patients were excluded from the analyses because of insufficient patient numbers. There were no differences in primary and secondary outcomes when normal weight patients were compared with obese patients. Further stratification in pediatric and adult patients showed similar results. However, when adult patients were stratified in obesity categories, log-rank analysis showed improved survival in the obese I group and higher mortality in the obese III group compared with obese I group (P < 0.05). Conclusions Overall, obesity was not associated with increased morbidity and mortality. Subgroup analysis revealed that patients with mild obesity have the best survival, whereas morbidly obese patients have the highest mortality. PMID:23877367

Jeschke, Marc G.; Finnerty, Celeste C.; Emdad, Fatemeh; Rivero, Haidy G.; Kraft, Robert; Williams, Felicia N; Gamelli, Richard L.; Gibran, Nicole S.; Klein, Matthew B.; Arnoldo, Brett D.; Tompkins, Ronald G.; Herndon, David N.

2014-01-01

92

Predicting post-fire erosion and sedimentation risk on a landscape scale: A case study from Colorado  

USGS Publications Warehouse

Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado. Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area. When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.

MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, D.

2000-01-01

93

Persistent Effects of Fire Severity on Early Successional Forests in Interior Alaska  

NASA Technical Reports Server (NTRS)

There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession.Wefound that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40- fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence activities in interior Alaska.

Shenoy, Aditi; Johnstone, Jill F.; Kasischke, Eric S.; Kielland, Knut

2011-01-01

94

Influence of wildfires on atmospheric composition and carbon uptake of forest ecosystems in Central Siberia: the establishing of a long-term post-fire monitoring system  

NASA Astrophysics Data System (ADS)

Calculations of direct emissions of greenhouse gases from boreal wildfires remain uncertain due to problems with emission factors, available carbon, and imprecise estimates of burned areas. Even more varied and sparse are accurate in situ calculations of temporal changes in boreal forest carbon dynamics following fire. Linking simultaneous instrumental atmospheric observations, GIS-based estimates of burned areas, and ecosystem carbon uptake calculations is vital to fill this knowledge gap. Since 2006 the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a research platform for large-scale climatic observations is operational in Central Siberia (6048'N, 8921'E). The data of ongoing greenhouse gases measurements at the tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over central Northern Eurasia. We present our contribution to reducing uncertainties in estimates of fire influence on atmospheric composition and post-fire ecosystem carbon uptake deduced from the large-scale fires that happened in 2012 in the tall tower footprint area. The burned areas were estimated from Landsat ETM 5,8 satellite images, while fires were detected from Terra/Aqua MODIS satellite data. The magnitude of ecological change caused by fires ("burn severity") was measured and mapped with a Normalized Burn Ratio (NBR) index and further calibrated by a complementary field based Composite Burn Index (CBI). Measures of fire radiative power (FRP) index provided information on fire heat release intensity and on the amount and completeness of biomass combustion. Based on the analyzed GIS data, the system of study plots was established in the 5 dominating ecosystem types for a long-term post-fire monitoring. On the plots the comprehensive estimation of ecosystem parameters and carbon pools and their mapping was organized with a laser-based field instrumentation system. The work was supported financially by ISTC Project # 2757p, project of RFBR # 13-05-98053, and grant of president of RF for young scientists MK-1691.2014.5.

Panov, Alexey; Chi, Xuguang; Winderlich, Jan; Prokushkin, Anatoly; Bryukhanov, Alexander; Korets, Mikhail; Ponomarev, Evgenii; Timokhina, Anastasya; Andreae, Meinrat O.; Heimann, Martin

2014-05-01

95

Modeling hydrologic and geomorphic hazards across post-fire landscapes using a self-organizing map approach  

USGS Publications Warehouse

Few studies attempt to model the range of possible post-fire hydrologic and geomorphic hazards because of the sparseness of data and the coupled, nonlinear, spatial, and temporal relationships among landscape variables. In this study, a type of unsupervised artificial neural network, called a self-organized map (SOM), is trained using data from 540 burned basins in the western United States. The sparsely populated data set includes variables from independent numerical landscape categories (climate, land surface form, geologic texture, and post-fire condition), independent landscape classes (bedrock geology and state), and dependent initiation processes (runoff, landslide, and runoff and landslide combination) and responses (debris flows, floods, and no events). Pattern analysis of the SOM-based component planes is used to identify and interpret relations among the variables. Application of the Davies-Bouldin criteria following k-means clustering of the SOM neurons identified eight conceptual regional models for focusing future research and empirical model development. A split-sample validation on 60 independent basins (not included in the training) indicates that simultaneous predictions of initiation process and response types are at least 78% accurate. As climate shifts from wet to dry conditions, forecasts across the burned landscape reveal a decreasing trend in the total number of debris flow, flood, and runoff events with considerable variability among individual basins. These findings suggest the SOM may be useful in forecasting real-time post-fire hazards, and long-term post-recovery processes and effects of climate change scenarios. ?? 2011.

Friedel, M.J.

2011-01-01

96

[Acute upper limb embolism in a severely burned patient].  

PubMed

Thrombosis and pulmonary embolisms are the most common complications in the hospital. The need for anticoagulation during hospital stay is obligatory. Arterial embolisms are rare. They often take place in patients with a pre-existing peripheral artery occlusive disease or in patients with atrial fibrillation. The most common complications in burn patients are wound infection, pneumonia, catheter-associated infections and paralytic ileus. There are almost no data available regarding arterial embolism in burn patients. Therefore we would like to present the case of a 60-year-old woman who was injured by a fire at home and was transported to our special burn unit. She sustained partial thickness burns of both legs and buttocks. The TBSA was 15%. During the first days of clinical stay the patient suffered from a pain induced movement reduction of the left hand. There were no peripheral pulses palpable or by pulsed-wave Doppler detectable. An urgent selected angiography of the left arm was performed and a arterial embolism of the proximal part of the a. brachialis was detected. The patient was operated immediately. After debridement and split-skin graft of the burn wounds the patient was taken to rehabiliation after 35 days. PMID:25564950

Wiebringhaus, P; Pierson, T; Menke, H

2014-12-01

97

Effectiveness of Emergency Rehabilitation Treatments in Reducing Post-fire Erosion, Colorado Front Range  

NASA Astrophysics Data System (ADS)

Daniella T.M. Rough Department of Forest, Rangeland, and Watershed Stewardship, Colorado State University, Fort Collins, CO Lee H. MacDonald Department of Forest, Rangeland, and Watershed Stewardship, Colorado State University, Fort Collins, CO Burned area emergency rehabilitation (BAER) treatments are often applied to reduce post-fire flooding and erosion, but few studies have quantified their efficacy. The effectiveness of different BAER treatments in reducing post-fire erosion rates is being studied for three different wildfires in the Colorado Front Range. The treatments being monitored include seeding, contour felling, mulching, scarification with seeding, and a polyacrylamide (PAM). Sediment production rates are being measured at the hillslope scale using sediment fences installed immediately after the June 2000 Bobcat fire and the 2002 Hayman and Schoonover fires. Neither aerial- nor ground-based seeding significantly reduced erosion rates in the first three years after the Bobcat fire. In contrast, 4.5 t ha-1 of straw mulch consistently reduced sediment yields by more than 90%. Contour felling initially reduced erosion rates for small and moderate storms, but was less effective following the largest storms, presumably due to overwhelmed sediment storage capacity. A paired\\-swale design is being used for the 2002 Hayman and Schoonover fires, as this provides a more sensitive evaluation of BAER treatment effectiveness. The ground-based application of straw mulch and the aerial application of hydromulch each reduced sediment yields by more than 95% in both 2002 and 2003. However, the ground-based application of hydromulch in fall 2002 did not significantly reduce sediment yields in 2003. In 2002 the application of 11 kg ha-1 of PAM in an ammonium sulfate solution reduced sediment yields by 66%. In 2003 neither these sites nor three newly treated sites showed a significant reduction in sediment yields. A dry application of 5.6 kg ha-1 PAM had no detectable effect on sediment yields, nor did scarification and seeding in 2002 or 2003. These data suggest that treatment effectiveness varies with time since application, storm intensity, and amount of ground cover. Studies on these and other fires indicate that percent ground cover is the primary control on post-fire erosion rates because this reduces rainsplash, sheetwash, and rill erosion. Mulching has been the most effective BAER treatment because this immediately provides ground cover. Treatments that do not immediately increase ground cover (e.g., seeding, contour felling, and PAM) have shown more limited effectiveness in reducing post-fire erosion rates.

Rough, D. T.; MacDonald, L. H.

2003-12-01

98

Post-fire surface water quality: comparison of fire retardant versus wildfire-related effects.  

PubMed

An understanding of the environmental effects of the use of wildland fire retardant is needed to provide informed decision-making regarding forest management. We compiled data from all post-fire surface water monitoring programs where the fire retardant constituents ammonia, phosphorus, and cyanide were measured, and data were available in the public domain. For streams near four major wildfires, we evaluated whether these chemicals originated primarily from fire or from retardant use. We compared measured concentrations in streams where chemical wildland fire retardant was applied with concentrations in streams draining areas where retardant was not used. Correlations with calcium provided an additional line of evidence, because calcium concentrations in ash are much higher than in retardant. Ammonia, phosphorus, and total cyanide were found in streams in burned areas where retardant was not used, at concentrations similar to those found in areas where retardant was applied. Concentrations of weak acid dissociable cyanide were generally non-detected or very low, whether or not wildland fire retardant was used in the watershed. These results indicate that the application of wildland fire retardant had minimal effects on proximate surface water quality. Cyanide concentrations in post-fire stormwater runoff were not affected by the presence of ferrocyanide in the retardant formulas and were due to pyrogenic sources. PMID:16023176

Crouch, Robert L; Timmenga, Hubert J; Barber, Timothy R; Fuchsman, Phyllis C

2006-02-01

99

Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event.  

PubMed

Under a rapidly warming climate, a critical management issue in semiarid forests of western North America is how to increase forest resilience to wildfire. We evaluated relationships between fuel reduction treatments and burn severity in the 2006 Tripod Complex fires, which burned over 70,000 ha of mixed-conifer forests in the North Cascades range of Washington State and involved 387 past harvest and fuel treatment units. A secondary objective was to investigate other drivers of burn severity including landform, weather, vegetation characteristics, and a recent mountain pine beetle outbreak. We used sequential autoregression (SAR) to evaluate drivers of burn severity, represented by the relative differenced Normalized Burn Ratio index, in two study areas that are centered on early progressions of the wildfire complex. Significant predictor variables include treatment type, landform (elevation), fire weather (minimum relative humidity and maximum temperature), and vegetation characteristics, including canopy closure, cover type, and mountain pine beetle attack. Recent mountain pine beetle damage was a statistically significant predictor variable with red and mixed classes of beetle attack associated with higher burn severity. Treatment age and size were only weakly correlated with burn severity and may be partly explained by the lack of treatments older than 30 years and the low rates of fuel succession in these semiarid forests. Even during extreme weather, fuel conditions and landform strongly influenced patterns of burn severity. Fuel treatments that included recent prescribed burning of surface fuels were particularly effective at mitigating burn severity. Although surface and canopy fuel treatments are unlikely to substantially reduce the area burned in regional fire years, recent research, including this study, suggests that they can be an effective management strategy for increasing forest landscape resilience to wildfires. PMID:24834742

Prichard, Susan J; Kennedy, Maureen C

2014-04-01

100

Analysis and mapping of post-fire hydrologic hazards for the 2002 Hayman, Coal Seam, and Missionary Ridge wildfires, Colorado  

USGS Publications Warehouse

Wildfires caused extreme changes in the hydrologic, hydraulic, and geomorphologic characteristics of many Colorado drainage basins in the summer of 2002. Detailed assessments were made of the short-term effects of three wildfires on burned and adjacent unburned parts of drainage basins. These were the Hayman, Coal Seam, and Missionary Ridge wildfires. Longer term runoff characteristics that reflect post-fire drainage basin recovery expected to develop over a period of several years also were analyzed for two affected stream reaches: the South Platte River between Deckers and Trumbull, and Mitchell Creek in Glenwood Springs. The 10-, 50-, 100-, and 500-year flood-plain boundaries and water-surface profiles were computed in a detailed hydraulic study of the Deckers-to-Trumbull reach. The Hayman wildfire burned approximately 138,000 acres (216 square miles) in granitic terrain near Denver, and the predominant potential hazard in this area is flooding by sediment-laden water along the large tributaries to and the main stem of the South Platte River. The Coal Seam wildfire burned approximately 12,200 acres (19.1 square miles) near Glenwood Springs, and the Missionary Ridge wildfire burned approximately 70,500 acres (110 square miles) near Durango, both in areas underlain by marine shales where the predominant potential hazard is debris-flow inundation of low-lying areas. Hydrographs and peak discharges for pre-burn and post-burn scenarios were computed for each drainage basin and tributary subbasin by using rainfall-runoff models because streamflow data for most tributary subbasins were not available. An objective rainfall-runoff model calibration method based on nonlinear regression and referred to as the ?objective calibration method? was developed and applied to rainfall-runoff models for three burned areas. The HEC-1 rainfall-runoff model was used to simulate the pre-burn rainfall-runoff processes in response to the 100-year storm, and HEC-HMS was used for runoff hydrograph generation. Post-burn rainfall-runoff parameters were determined by adjusting the runoff-curve numbers on the basis of a weighting procedure derived from the U.S. Soil Conservation Service (now the National Resources Conservation Service) equation for precipitation excess and the effect of burn severity. This weighting procedure was determined to be more appropriate than simple area weighting because of the potentially marked effect of even small burned areas on the runoff hydrograph in individual drainage basins. Computed water-peak discharges from HEC-HMS models were increased volumetrically to account for increased sediment concentrations that are expected as a result of accelerated erosion after burning. Peak discharge estimates for potential floods in the South Platte River were increased by a factor that assumed a volumetric sediment concentration (Cv) of 20 percent. Flood hydrographs for the South Platte River and Mitchell Creek were routed down main-stem channels using watershed-routing algorithms included in the HEC-HMS rainfall-runoff model. In areas subject to debris flows in the Coal Seam and Missionary Ridge burned areas, debris-flow discharges were simulated by 100-year rainfall events, and the inflow hydrographs at tributary mouths were simulated by using the objective calibration method. Sediment concentrations (Cv) used in debris-flow simulations were varied through the event, and were initial Cv 20 percent, mean Cv approximately 31 percent, maximum Cv 48 percent, Cv 43 percent at the time of the water hydrograph peak, and Cv 20 percent for the duration of the event. The FLO-2D flood- and debris-flow routing model was used to delineate the area of unconfined debris-flow inundation on selected alluvial fan and valley floor areas. A method was developed to objectively determine the post-fire recovery period for the Hayman and Coal Seam burned areas using runoff-curve numbers (RCN) for all drainage basins for a 50-year period. A

Elliott, J.G.; Smith, M.E.; Friedel, M.J.; Stevens, M.R.; Bossong, C.R.; Litke, D.W.; Parker, R.S.; Costello, C.; Wagner, J.; Char, S.J.; Bauer, M.A.; Wilds, S.R.

2005-01-01

101

Burns  

MedlinePLUS Videos and Cool Tools

... the body's outer covering. It protects us against heat, light, injury, and infection. It also regulates body ... Burns A burn is damaged tissue caused by heat, chemicals, electricity, sunlight, or nuclear radiation. Burns caused ...

102

Burns  

MedlinePLUS

... control and nutritional support. What is on the horizon for burn research? Improving methods for wound healing ... hypothesis-driven testing. Where can I find more information about burns? The Alisa Ann Ruch Burn Foundation ...

103

Completeness of Combustion for Laminar Wall Fires Using Several Alcohols Burning in Air  

Microsoft Academic Search

Steady, fully-burning wall fires were studied for several alcohols burning in air. Methanol, 1-propanol. and 1-butanol were burned using a vertically-oriented porous ceramic wick. Completeness of combustion was evaluated and accounting for its effect in numerical modeling, on characteristics of laminar wall fires was examined. Measurements of the concentration profiles in the free-convection boundary layers formed revealed that for each

STEVEN F. MALARY; JEAN K. AWAD; RAJENDER THAPAR

1989-01-01

104

Post-fire seeding on Wyoming big sagebrush ecological sites: regression analyses of seeded nonnative and native species densities.  

PubMed

Since the mid-1980s, sagebrush rangelands in the Great Basin of the United States have experienced more frequent and larger wildfires. These fires affect livestock forage, the sagebrush/grasses/forbs mosaic that is important for many wildlife species (e.g., the greater sage grouse (Centrocercus urophasianus)), post-fire flammability and fire frequency. When a sagebrush, especially a Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis (Beetle & A. Young)), dominated area largely devoid of herbaceous perennials burns, it often transitions to an annual dominated and highly flammable plant community that thereafter excludes sagebrush and native perennials. Considerable effort is devoted to revegetating rangeland following fire, but to date there has been very little analysis of the factors that lead to the success of this revegetation. This paper utilizes a revegetation monitoring dataset to examine the densities of three key types of vegetation, specifically nonnative seeded grasses, nonnative seeded forbs, and native Wyoming big sagebrush, at several points in time following seeding. We find that unlike forbs, increasing the seeding rates for grasses does not appear to increase their density (at least for the sites and seeding rates we examined). Also, seeding Wyoming big sagebrush increases its density with time since fire. Seeding of grasses and forbs is less successful at locations that were dominated primarily by annual grasses (cheatgrass (Bromus tectorum L.)), and devoid of shrubs, prior to wildfire. This supports the hypothesis of a "closing window of opportunity" for seeding at locations that burned sagebrush for the first time in recent history. PMID:18790557

Eiswerth, Mark E; Krauter, Karl; Swanson, Sherman R; Zielinski, Mike

2009-02-01

105

Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M.) forest stands  

NASA Astrophysics Data System (ADS)

Wildfires affecting forest ecosystems and post-fire silvicultural treatments may cause considerable changes in soil properties. The capacity of different microbial groups to recolonize soil after disturbances is crucial for proper soil functioning. The aim of this work was to investigate some microbial soil properties and enzyme activities in semiarid and dry Aleppo pine (Pinus halepensis M.) forest stands. Different plots affected by a wildfire event 17 years ago without or with post-fire silvicultural treatments five years after the fire event were selected. A mature Aleppo pine stand unaffected by wildfire and not thinned was used as a control. Physicochemical soil properties (soil texture, pH, carbonates, organic matter, electrical conductivity, total N and P), soil enzymes (urease, phosphatase, ?-glucosidase and dehydrogenase activities), soil respiration and soil microbial biomass carbon were analysed in the selected forests areas and plots. The main finding was that long time after this fire event produces no differences in the microbiological soil properties and enzyme activities of soil after comparing burned and thinned, burned and not thinned, and mature plots. Thus, the long-term consequences and post-fire silvicultural management in the form of thinning have a significant effect on the site recovery after fire. Moreover, significant site variation was generally seen in soil enzyme activities and microbiological parameters. We conclude that total vegetation restoration normalises microbial parameters, and that wildfire and post-fire silvicultural treatments are not significant factors of soil properties after 17 years.

Hedo, J.; Lucas-Borja, M. E.; Wic, C.; Andrs Abelln, M.; de Las Heras, J.

2014-10-01

106

Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert spring ecosystems  

E-print Network

Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert burn ratio Spectral mixture analysis Desert spring ecosystems provide water resources essential for sustaining wildlife, plants, and humans inhabiting arid regions of the world. Disturbance processes in desert

Weisberg, Peter J.

107

Post-Fire Soil Respiration in Relation to the Burnt Wood Management  

NASA Astrophysics Data System (ADS)

Wildfires are the main cause of forests and understory destruction in Mediterranean areas. One of the most dramatic consequences is the perturbation of carbon fluxes. A high percentage of the CO2 emitted by the ecosystem after a wildfire is due to soil respiration, which represents the most important uncertainty in the global carbon cycle. In this study we have quantified the soil respiration and its seasonal variability in reforested pine forests in the National and Natural Park of Sierra Nevada which were burned in September of 2005. Measurement campaigns were carried out along two years in two experimental plots at different altitudinal levels (1500 and 2200 m a.s.l.), in which three post-fire silvicultural treatments of burned wood were established: 1) "Non-Intervention" (NI), leaving all of the burnt trees standing. 2) "Cut plus Lopping" (CL), a treatment where most of the trees were cut and felled, with the main branches also lopped off, but leaving all the cut biomass in situ covering partially the ground surface 3) "Salvage Logging" (SL), all trees were cut and the trunks and branches were removed. Soil respiration was highly determined by the effects derived of the altitudinal level, with the highest values at the lowest altitude. The seasonal precipitation regime had also a key role. Soil respiration kept a basal level during the summer drought, during this period the response to the altitudinal level and post-fire treatments were reduced. On the other hand, soil respiration boosted after rain events, when the differences between treatments became more pronounced. In general, especially under these conditions of absence of water limitation, the post-fire burnt wood treatment with the highest CO2 fluxes was that in which all the burnt wood biomass remained covering partially the soil surface ("Cut plus Lopping") while the lowest values were registered in the treatment in which the soil was bared ("Salvage Logging"). Results of this study are especially important for the management of forest areas affected by wildfires, now that they offer key information about the influence of the forest intervention related to the burnt wood after fires in the carbon cycle and about the soil capacity of CO2 sequestration.

Maran Jimnez, Sara; Castro, J.; Kowalski, A.; Serrano-Ortiz, P.; Ruiz, B.; Sancez-Canete, Ep; Zamora, R.

2010-05-01

108

Post-fire spatial patterns of soil nitrogen mineralization and microbial abundance.  

PubMed

Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21(st) Century. PMID:23226324

Smithwick, Erica A H; Naithani, Kusum J; Balser, Teri C; Romme, William H; Turner, Monica G

2012-01-01

109

Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance  

PubMed Central

Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R2<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21st Century. PMID:23226324

Smithwick, Erica A. H.; Naithani, Kusum J.; Balser, Teri C.; Romme, William H.; Turner, Monica G.

2012-01-01

110

An Experimental Study of the Effects of Litter and Duff Consumption and Ash Formation on Post-Fire Runoff.  

NASA Astrophysics Data System (ADS)

Consumption of the litter and duff layers in forest wildfires can lead to substantial increases in the frequency and magnitude of overland flow. These increases result from the loss of storage in the organic surface layer, reduced surface roughness, and from sealing of the exposed mineral soil surface. The presence of an ash layer may accentuate surface sealing by providing an additional source of fine material, or it may reduce runoff by storing rainfall and by protecting the soil surface from raindrop impacts. We used simulated rainfall experiments to assess the effects of litter and duff consumption and the presence of ash layers of varying thickness on post fire runoff at two forested sites in western Montana, one with sandy loam soils formed out of granodiorite and the other with gravelly silt loam soils formed out of argillite. At each site we measured the runoff from simulated rainfall in replicated 0.5 m2 plots before and after application of the following treatments: 1) burning with a fuel load of 90 Mg ha-1, 2) manual removal of the litter and duff layers, 3) addition of 0.5, 2.5 and 5 cm of ash to plots from which the litter and duff had previously been removed, and 4) addition of the same depths of ash to burned plots at the sandy loam site. In the burned plots the surface litter and duff layers were completely consumed and a <1cm layer of black and gray ash and char was formed, indicating a moderate severity burn. The mean soil temperature in the upper 1 cm of the mineral soil was 70 C, and there was no detectable increase in water repellency. The mean final infiltration capacity of the burned sandy loam plots was 35 mm hr-1 compared to a pre-fire mean of 87 mm hr-1, while in the gravelly silt loam plots the pre- and post burn infiltration capacities (27 and 31 mm hr- 1) were not significantly different. Manual removal of the litter and duff layers reduced the mean final infiltration capacity in the sandy loam plots from 64 mm hr-1 to 40 mm hr-1 and in the gravelly silt loam plots from 23 mm hr-1 to 16 mm hr-1. We attribute decreases in infiltration due to the burning and duff removal treatments primarily to surface sealing. In the sandy loam plots, burning may have had a greater effect on infiltration than duff removal because the thin ash layer in the burned plots provided an additional source of fine material. In the gravelly silt loam plots, macropores located around rock fragments helped to minimize sealing effects. The addition of 0.5 cm of ash to the burned granitic plots resulted in a 20 mm hr-1 decrease in the final infiltration rate, and this was also probably due to surface sealing. However, the overall effect of ash addition was to increase the cumulative infiltration in proportion to the ash thickness and to maintain a higher average infiltration rate, indicating that while thin (<1 cm) ash layers may promote sealing, thicker ash layers help to reduce the runoff rate by providing additional storage for rainfall and by protecting the soil surface from raindrop impacts.

Woods, S. W.; Balfour, V.

2007-12-01

111

Successful skin homografting from an identical twin in a severely burned patient.  

PubMed

Flame burns are a serious condition and usually have high morbidity and mortality because they affect large areas of the body surface as well as the lungs. In these patients, it is especially difficult to find healthy skin for grafting if they have more than 70% third-degree burns. Repeated autografting or synthetic wound care materials are the only treatment options to cover burned areas. Partial-thickness skin grafting from the patient's identical twin sibling may be an alternative treatment option, if possible. Here, we report a patient with severe flame injury treated with skin from his identical twin. The patient had third-degree burns covering 70% of his body surface. Initial treatment consisted of fluid and electrolyte replacement, daily wound care, and surgical debridements, as well as nutritional support. After initial treatment, we performed a successful skin grafting from his identical twin. Skin grafting between identical twins might be an alternate method for severely burned patients. PMID:23811789

Turk, Emin; Karagulle, Erdal; Turan, Hale; Oguz, Hakan; Abali, Ebru Sakallioglu; Ozcay, Necdet; Moray, Gokhan; Haberal, Mehmet

2014-01-01

112

Decreased lymphocyte apoptosis by anti-tumor necrosis factor antibody in Peyer's patches after severe burn.  

PubMed

Severe burn results in immunosuppression, with increased lymphocyte apoptosis in both the central and peripheral immune system. As atrophy of the small intestine has been described in mouse models and intestinal lymphocytes have been implicated in the burn inflammatory response, we examined the effects of burn and tumor necrosis factor (TNF)-alpha on lymphocytes in intestinal Peyer's patches. Anesthetized C57BL6 mice received a 30% full-thickness scald burn on the upper back. Sham-burned animals served as controls. Anti-TNF or control immunoglobulin (Ig) G antibody (200 microg) was given immediately after the burn. The animals were initially resuscitated with 2 mL of normal saline, and were then sacrificed 12 h postburn. Terminal deoxyuridine nick-end labeling (TUNEL) and proliferative cell nuclear antigen (PCNA) staining was performed. Apoptosis was quantified as apoptotic lymphocytes/high-powered field (hpf). Results, expressed as mean +/- SEM, were compared using analysis of variance (ANOVA) and the Student-Newman-Keuls test. All mice survived the burn. An initial time-course experiment demonstrated maximal Peyer's patch apoptosis 12 h after the burn. Sham mice had 25 +/- 7 TUNEL-stained cells/hpf in Peyer's patches, whereas burned mice had 93 +/- 18 cells/hpf (P < 0.05). In contrast, burned mice receiving anti-TNF antibody had 28 +/- 8 TUNEL-stained cells/hpf (P < 0.05 vs. burn), whereas sham mice receiving anti-TNF antibody had 20 +/- 4 cells/hpf. There were no significant differences in PCNA staining between the groups. Scald burn results in lymphocyte apoptosis in Peyer's patches. This apoptosis can be abrogated by the addition of anti-TNF antibody. Apoptotic changes may lead to the failure of the intestinal immunological barrier and increased risk of sepsis. PMID:12813372

Woodside, Kenneth J; Spies, Marcus; Wu, Xiao-wu; Song, Juquan; Quadeer, Shahnaz S; Daller, John A; Wolf, Steven E

2003-07-01

113

Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert spring ecosystems  

E-print Network

Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert ratio Spectral mixture analysis Desert spring ecosystems provide water resources essential for sustaining wildlife, plants, and humans inhabiting arid regions of the world. Disturbance processes in desert

Weisberg, Peter J.

114

Influence of patch size and shape on post-fire succession on the Yellowstone plateau  

SciTech Connect

The 1988 Yellowstone fires provided a unique opportunity to examine how the geometry of fire-created patches affects plant reestablishment. We initiated studies in 1990 in small (1 ha), moderated (74-200 ha), and large (480-3698 ha) crown-fire patches in each of 3 areas. Lodgepole pine forest is reestablishing in most burned areas, but seedling density varies by two orders of magnitude. At spatial scales <100 m, lodgepole seedling density declines with distance from the patch edge. Resprouting of herbaceous vegetation led to prompt revegetation in burned patches of all sizes, suggesting within-patch survival is a dominant recovery mechanism for grasses, forbs, and shrubs. Some annuals (e.g., Gayophytum diffusum) achieved greater densities in large vs. small crown-fire patches and colonized large patches more rapidly. Post-fire plant reestablishment in Yellowstone appears rapid and autogenic even in large burns, and the relative importance of factors controlling early postfire succession varies with spatial scale.

Turner, M.G.; Gardner, R.H.; Hargrove, W.W. (Oak Ridge National Laboratory, TN (United States)); Romme, W.H. (Fort Lewis College, Durango, CO (United States))

1994-06-01

115

Severe complications after negative pressure wound therapy in burned wounds: two case reports.  

PubMed

We present two typical cases of severe complications (sepsis and hemorrhage) after negative pressure wound therapy (NPWT) in burned patients. Necrotic tissues in some deep burn wounds are difficult to judge correctly and remove thoroughly. An electrically burned blood vessel looks "intact" but can easily break. Necrotic tissue or injured blood vessels when using NPWT are dangerous, both for causing sepsis and hemorrhage. This is the first article that reports the severe complications of NPWT in burned patients. It is imperative to heed indications and avoid contraindications. Proper preparation of wound beds, close observation, and sufficient irrigation are also crucial to avoid these severe complications, and there is an urgent need to substitute the central vacuum system with the low-pressure system. PMID:25061310

Ren, Haitao; Li, Yuan

2014-01-01

116

Fire frequency, area burned, and severity: A quantitative approach to defining a normal fire year  

USGS Publications Warehouse

Fire frequency, area burned, and fire severity are important attributes of a fire regime, but few studies have quantified the interrelationships among them in evaluating a fire year. Although area burned is often used to summarize a fire season, burned area may not be well correlated with either the number or ecological effect of fires. Using the Landsat data archive, we examined all 148 wildland fires (prescribed fires and wildfires) >40 ha from 1984 through 2009 for the portion of the Sierra Nevada centered on Yosemite National Park, California, USA. We calculated mean fire frequency and mean annual area burned from a combination of field- and satellite-derived data. We used the continuous probability distribution of the differenced Normalized Burn Ratio (dNBR) values to describe fire severity. For fires >40 ha, fire frequency, annual area burned, and cumulative severity were consistent in only 13 of 26 years (50 %), but all pair-wise comparisons among these fire regime attributes were significant. Borrowing from long-established practice in climate science, we defined "fire normals" to be the 26 year means of fire frequency, annual area burned, and the area under the cumulative probability distribution of dNBR. Fire severity normals were significantly lower when they were aggregated by year compared to aggregation by area. Cumulative severity distributions for each year were best modeled with Weibull functions (all 26 years, r2 ??? 0.99; P < 0.001). Explicit modeling of the cumulative severity distributions may allow more comprehensive modeling of climate-severity and area-severity relationships. Together, the three metrics of number of fires, size of fires, and severity of fires provide land managers with a more comprehensive summary of a given fire year than any single metric.

Lutz, J.A.; Key, C.H.; Kolden, C.A.; Kane, J.T.; van Wagtendonk, J.W.

2011-01-01

117

Management of severe burn injuries with topical heparin: the first evidence-based study in Ghana  

PubMed Central

Conventional therapy for burns has always produced a nightmarish illness for patients. The lack of the ability to prevent contractures often produces dysfunctional limbs and the ugly scars resulting from severe burns are an ongoing reminder of this lengthy painful illness. This study is to determine the effectiveness of topical heparin in burns management among some patients at the Burns Intensive Care Unit (BICU) of the Komfo Anokye Teaching Hospital (KATH), Kumasi, Ghana. Patients for this prospective study were burns victims who were transported to the Accident and Emergency Center of KATH. Complete clerking of the patients and related information were taken. Six patients with ages ranging from 5-35 years, TBSA 5-42% and a combination of 2 and 3 burns were enrolled in the case study. Anatomical locations of the burns included: face, neck, trunk and limbs. Using topical heparin produced smooth skin in two patients: Patients 3 and 5 who reported on Post-burn Day 85 and 116 at the BICU. Five out of the six patients assessed the degree of pain; before treatment with heparin, all five patients stated they were experiencing severe pains, however, three (60.0%) of the patients stated they experienced no pain at all while two (40.0%) were experiencing mild pain after topical heparin application. Heparin was observed to be very effective in the management of burn injuries in the patients studied. It was effective in reduction of pain and prevention of scars and contractures. However, due to the small number of patients and lack of control for the wound healing, a firm recommendation for the use of heparin therapy in burns cannot be made and further studies would be required to establish its use especially in the African population. PMID:23386983

Agbenorku, Pius; Fugar, Setri; Akpaloo, Joseph; Hoyte-Williams, Paa E; Alhassan, Zainab; Agyei, Fareeda

2013-01-01

118

Evaluation of post fire changes in soil properties and influence on the hydrological and erosive dynamics in a Mediterranean watershed  

NASA Astrophysics Data System (ADS)

In the last fifty years, forest fires and changes in land use and management practices have had a significant influenceon the evolution of soil loss processes in the Mediterranean area. Forest fires have immediate effects in hydrological processes mainly due to sudden changes in soil properties and vegetation cover. After a fire there is an increase in runoff processes and peak flows and thus in the amount and composition of the sediments produced. Silting in dams downstream is often reported so the description of the post-fire hydrological processes is crucial in order to optimize decision making. This study analyzes a micro-watershed of 25 ha in the south of Spain that suffered a fire in October 2010 burning around a 2 km2 area. As the erosive processes in this area are directly related to concentrated overland flow, an indirect assessment of soil loss is presented in this work based on evaluating changes in runoff in Mediterranean post-fire situations. For this, the study is divided into two main parts. Firstly, changes in soil properties and vegetation cover are evaluated. Secondly, the effects of these changes in the hydrological and erosive dynamics are assessed.The watershed had been monitored in previous studies so soil properties and the vegetation cover before the fire took place were already characterized. Besides, the hydrological response was also available through an already calibrated and validated physically-based distributed hydrological model. For the evaluation of soil properties, field measurement campaigns were designed. Philip Dunne's tests for the determination of saturated hydraulic conductivity, as well as moisture content and bulk density measurements were carried out in both unaltered and burned soil samples. Changes in the vegetation cover fraction were assessed through desktop analysis of Landsat-TM5 platform satellite images as well as through visual inspection in the field campaigns. The analysis of the hydraulic conductivity revealed a reduction in post-fire values of near 90 % over those previous to the fire. Regarding the vegetation cover, the recovery of the burned covers, mainly herbaceous with some bushes, turned out to quick due to the wet character of the year. Nevertheless, an apparent decrease in the cover fraction and thus in the vegetation storage capacity was reported. These changes were incorporated into a new hydrological model configuration and compared to the response previous to the fire. The results point out the rainfall pattern to be a determinant factor in post-fire situation with an increase in modeled runoff of up to 350% and even more in dry years. These results have direct implications in soil erodibility changes in hillslopes as well as a considerable increase in bedload processes in Mediterranean alluvial rivers.

Sanz, Ins; Aguilar, Cristina; Millares, Agustn

2013-04-01

119

Integrating satellite imagery with simulation modeling to improve burn severity mapping.  

PubMed

Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the Relative differenced Normalized Burn Ratio, a satellite image-based change detection procedure commonly used to map burn severity, with output from the Fire Hazard and Risk Model, a simulation model that estimates fire effects at a landscape scale. Using 285 Composite Burn Index (CBI) plots in Washington and Montana as ground reference, we found that an integrated model explained more variability in CBI (R (2)=0.47) and had lower mean squared error (MSE=0.28) than image (R (2)=0.42 and MSE=0.30) or simulation-based models (R (2)=0.07 and MSE=0.49) alone. Overall map accuracy was also highest for maps created with the Integrated Model (63%). We suspect that Simulation Model performance would greatly improve with higher quality and more accurate spatial input data. Results of this study indicate the potential benefit of combining satellite image-based methods with a fire effects simulation model to create improved burn severity maps. PMID:24817334

Karau, Eva C; Sikkink, Pamela G; Keane, Robert E; Dillon, Gregory K

2014-07-01

120

Integrating Satellite Imagery with Simulation Modeling to Improve Burn Severity Mapping  

NASA Astrophysics Data System (ADS)

Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the Relative differenced Normalized Burn Ratio, a satellite image-based change detection procedure commonly used to map burn severity, with output from the Fire Hazard and Risk Model, a simulation model that estimates fire effects at a landscape scale. Using 285 Composite Burn Index (CBI) plots in Washington and Montana as ground reference, we found that an integrated model explained more variability in CBI ( R 2 = 0.47) and had lower mean squared error (MSE = 0.28) than image ( R 2 = 0.42 and MSE = 0.30) or simulation-based models ( R 2 = 0.07 and MSE = 0.49) alone. Overall map accuracy was also highest for maps created with the Integrated Model (63 %). We suspect that Simulation Model performance would greatly improve with higher quality and more accurate spatial input data. Results of this study indicate the potential benefit of combining satellite image-based methods with a fire effects simulation model to create improved burn severity maps.

Karau, Eva C.; Sikkink, Pamela G.; Keane, Robert E.; Dillon, Gregory K.

2014-07-01

121

Noninvasive assessment of burn wound severity using optical technology: A review of current and future modalities  

PubMed Central

Clinical examination alone is not always sufficient to determine which burn wounds will heal spontaneously and which will require surgical intervention for optimal outcome. We present a review of optical modalities currently in clinical use and under development to assist burn surgeons in assessing burn wound severity, including conventional histology/ light microscopy, laser Doppler imaging, indocyanine green videoangiography, near-infrared spectroscopy and spectral imaging, in vivo capillary microscopy, orthogonal polarization spectral imaging, reflectance-mode confocal microscopy, laser speckle imaging, spatial frequency domain imaging, photoacoustic microscopy, and polarization-sensitive optical coherence tomography. PMID:21185123

Kaiser, Meghann; Yafi, Amr; Cinat, Marianne; Choi, Bernard; Durkin, Anthony J.

2011-01-01

122

Burn severity and non-native species in Yosemite National Park, California, USA  

USGS Publications Warehouse

We examined non-native species density three years after the Tuolumne Fire, which burned 1540 ha in upper montane forest in California, USA. We sampled 60 plots, stratified by burn severity (low, moderate, or high severity) and landscape position (lowland or upland). We detected non-native species in 8 of 11 (73 %) of high severity lowland sites and in 5 of 10 (50 %) of moderate severity lowland sites but, overall, richness and abundance was low. We detected only five non-native species, of which bull thistle (Cirsium vulgare [Savi] Ten.) was the most common. Although non-native abundance is currently low, we recommend continued low intensity monitoring, especially on high severity burned lowland sites.

Kaczynski, Kristen M.; Beatty, Susan W.; van Wagtendonk, Jan W.; Marshall, Kristin N.

2011-01-01

123

[Preclinical treatment of severe burn trauma due to an electric arc on an overhead railway cable].  

PubMed

Severe burns due to electrical accidents occur rarely in Germany but represent a challenge for emergency physicians and their team. Apart from extensive burns cardiac arrhythmia, neurological damage caused by electric current and osseous injury corresponding to the trauma mechanism are also common. It is important to perform a survey of the pattern of injuries and treat acute life-threatening conditions immediately in the field. Furthermore, specific conditions related to burns must be considered, e.g. fluid resuscitation, thermal management and analgesia. In addition, a correct strategy for further medical care in an appropriate hospital is essential. Exemplified by this case guidelines for the treatment of severe burns and typical pitfalls are presented. PMID:23149880

Spelten, O; Wetsch, W A; Hinkelbein, J

2013-09-01

124

Wildfire Impacts on Stream Sedimentation and Channel Morphology: Revisiting the Boulder Creek Burn in Little Granite Creek  

NASA Astrophysics Data System (ADS)

The magnitude of hydrologic and sedimentologic changes observed in watersheds following wildfire depend largely on the severity of the burn, landscape susceptibility to erosion, and the timing and magnitude of storms following the fire. In this study of a burned watershed in NW Wyoming (Boulder Creek burn in Little Granite Creek watershed), sedimentation impacts following a moderately sized fire (burned in 2000) were evaluated against known sediment loads measured prior to burning and against a comparable control watershed. Pre-burn data on rates of sediment transport provide useful information on the inherent variability of stream processes and were used to assess degree of departure due to disturbance from wildfire. Early observations of sediment yield showed substantially elevated rates (5x) the first year post-fire (2001), followed by less elevated rates in 2002 and 2003, signaling a return to baseline values by 3 years post-fire. More recent work, 8 years post-fire, has shown elevated suspended sediment concentrations relative to pre-burn values. We tentatively attribute this increase to destabilization of channels in the burned area due to the introduction of large wood (LW). Surveys indicated that the number of pieces of instream LW were doubled and tripled in some reaches as burned trees began to decay and fall in to the channel. Observed channel changes associated with the introduction of new wood include: 1) increase in the size and number of LW jams; 2) deposition of sediment within LW jams; 3) channel avulsions; 4) erosion of banks and terraces where wood re-directed flow into the bank; and 5) new sources of sediment due to channel instability. These results provide insight into longer-term geomorphic impacts of wildland fire that are associated with LW dynamics and changes to channel and bank stability in the burned riparian environment.

Ryan, S. E.; Dwire, K. A.; Air, Water,; Aquatic Ecosystems Program

2011-12-01

125

[Use of enterosgel in middle-aged and aged patients with medium-severity burns].  

PubMed

The comparative dynamics of intoxication and natural humoral organism resistance indexes in elderly and senile patients with burn disease of middle degree severity while application of generally used therapy and incorporating in treatment complex the enterosgel preparation prescribed since 24 hours after injury occurrence was studied. Under the enterosgel influence the intoxication syndrome intensity has been markedly decreased, what promoted the skin loss restoration, favourable burn disease course, mortality reduction, and the shortening of patients hospital stay. PMID:7799576

Na?da, I V

1994-01-01

126

Fat Injection for Cases of Severe Burn Outcomes: A New Perspective of Scar Remodeling and Reduction  

Microsoft Academic Search

BackgroundDespite civilization and progress, burns occur frequently in the world. Remarkable discoveries of wound healing mechanisms\\u000a have been reported. On the other hand, long-term outcomes from burn injuries represent a barrier to improvement of patients\\u000a social, functional, and psychological condition. Lipofilling, described since the 1980s, currently is used for several clinical\\u000a applications. This study aimed to verify whether lipofilling could

M. Klinger; M. Marazzi; D. Vigo; M. Torre

2008-01-01

127

Effect of IL-10 antisense gene therapy in severely burned mice intradermally infected with MRSA.  

PubMed

The effect of IL-10 antisense oligodeoxynucleotides (ODN) on the susceptibility of burned mice to intradermal (i.d.) infection of methicillin-resistant Staphylococcus aureus (MRSA) was studied. Abscesses formed and sepsis did not develop in normal mice infected i.d. with 10(8)CFU/mouse of MRSA. Similarly, sepsis caused by MRSA i.d. infection did not develop and abscesses formed in burned mice treated with IL-10 antisense ODN. However, all of the burned mice treated with scrambled ODN (control group) died by infectious complications stemming from MRSA i.d. infection, and an MRSA-abscess did not form in these mice. Macrophages (M?) isolated from the infection site tissue of burned mice that were treated with IL-10 antisense ODN were identified as M1M?, while M? isolated from burned mice that were treated with scrambled ODN were shown to be M2M?. MRSA-abscesses formed in burned mice inoculated with M1M?, and these mice resisted a lethal dose of MRSA i.d. infection. However, an abscess did not form, and sepsis caused by MRSA i.d. infection developed in burned mice that were inoculated with M2M?. These results indicate that severely burned mice treated with IL-10 antisense ODN are resistant against i.d. infection with MRSA. M1M? appeared in the infection site tissues of severely burned mice that were treated with IL-10 antisense ODN may play a role on the abscess formation and inhibiting sepsis caused by MRSA i.d. infection. PMID:22209112

Asai, Akira; Kogiso, Mari; Kobayashi, Makiko; Herndon, David N; Suzuki, Fujio

2012-07-01

128

Post-Fire Regeneration Assessment in Yosemite National Park  

NASA Astrophysics Data System (ADS)

Assessing ecological change is increasingly important to Yosemite National Park (YNP) managers. The park experienced some of its largest fires in recent history, fires that significantly changed its ecosystems and landscapes. Change detection techniques were utilized in assessing post-fire regeneration in YNP for fires that occurred in 1988, 1990, and 1996. Change patterns were detected with a time-series of Normalized Difference Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI) images derived from Landsat TM and ETM+ imagery. The commonly known change detection method of image differencing was applied to the transformed images to create two-year interval change maps categorized by classes of increasing and decreasing standard deviations to distinguish significant changes. In addition, a less commonly known method, the RGB-NDVI and RGB-NDMI unsupervised classifications were implemented to create composite change maps from seven image dates. Fieldwork was conducted at the three study areas to document present forest stand characteristics. Remote sensing techniques in conjunction with fieldwork identified distinct patterns of regeneration in the post-fire areas. Some of the most distinctive patterns are primarily linked with Ceanothus, an early successional shrub species. This study will provide natural resource managers at Yosemite National Park with data to aid in long-term fire management plans.

Syfert, M.; Rudy, J.; Anderson, L.; Cleve, C.; Jenkins, J.; Schmidt, C.; Skiles, J. W.

2005-12-01

129

Fire behavior, weather, and burn severity of the 2007 anaktuvuk river tundra fire, North Slope, Alaska  

USGS Publications Warehouse

In 2007, the Anaktuvuk River Fire (ARF) became the largest recorded tundra fire on the North Slope of Alaska. The ARF burned for nearly three months, consuming more than 100,000 ha. At its peak in early September, the ARF burned at a rate of 7000 ha d-1. The conditions potentially responsible for this large tundra fire include modeled record high summer temperature and record low summer precipitation, a late-season high-pressure system located over the Beaufort Sea, extremely dry soil conditions throughout the summer, and sustained southerly winds during the period of vegetation senescence. Burn severity mapping revealed that more than 80% of the ARF burned at moderate to extreme severity, while the nearby Kuparuk River Fire remained small and burned at predominantly (80%) low severity. While this study provides information that may aid in the prediction of future large tundra fires in northern Alaska, the fact that three other tundra fires that occurred in 2007 combined to burn less than 1000 ha suggests site specific complexities associated with tundra fires on the North Slope, which may hamper the development of tundra fire forecasting models.

Jones, B.; Kolden, C.; Jandt, R.; Abatzoglou, J.; Urban, F.; Arp, C.

2009-01-01

130

Use of a radiative transfer model to simulate the postfire spectral response to burn severity  

NASA Astrophysics Data System (ADS)

Burn severity is related to fire intensity and fire duration and provides a quantitative measure related to fire impact and biomass consumption. Traditional field-based methods to estimate burn severity are time consuming, labor intensive, and normally limited in spatial extent. Remotely sensed data may provide a means to estimate severity levels across large areas, but it is critical to understand the causes of variability in spectral response with variations in burn severity. To address this issue, a combined leaf (Prospect) and canopy (Kuusk) reflectance model was used to simulate the spectral response of a range of vegetation canopies with different burn severity levels. The key aspects examined in the simulations were change in soil color, change in foliage color from green to brown (burned), and change in leaf area index (LAI). For each simulation the composite burn index (CBI) was determined using the same rules used in the field to estimate burn severity levels. Statistical analyses examined the strength of the correlations between CBI and reflectance in individual wave bands in the 400-2500 nm range and CBI and a range of spectral indices combining pairs of wave bands. The results showed that wave bands in the near infrared (NIR) were most strongly related to the CBI of the simulated canopies because of their sensitivity to reduction in LAI. Spectral indices combining reflectance in wave bands in the NIR and shortwave infrared and red edge region showed stronger correlations with CBI. Forward stepwise regression with two to six terms selected wave bands in these regions and accounted for more than 90% of the variation in CBI.

Chuvieco, E.; RiaO, D.; Danson, F. M.; Martin, P.

2006-12-01

131

Hydrogen-rich saline resuscitation alleviates inflammation induced by severe burn with delayed resuscitation.  

PubMed

Severe burns with delayed resuscitation are associated with high morbidity which is attributed to ischemia-reperfusion injury. This study was undertaken to investigate the effect of hydrogen-rich saline known as a significant selective antioxidant on the inflammatory reaction induced by severe burns with delayed resuscitation. By establishing the model of severe burns with delayed resuscitation in rats, we recorded improvement on the mortality, secretion of cytokines and reaction of oxidative stress of rats treated with hydrogen-rich saline. We found that resuscitation by hydrogen-rich saline alleviated inflammation significantly. We further detected the change of the key nuclear factor NF-?B contributed to inflammation. The expression of both NF-?B and phosphorylated NF-?B in rats having severe burns with delayed resuscitation by hydrogen-rich saline was lower than that in rats with delayed resuscitation with Ringers' solution. Our data imply that hydrogen-rich saline significantly improves the inflammatory reaction in rats with severe burns with delayed resuscitation, possibly by inhibiting activation of NF-?B. PMID:25440852

Wang, Xiaojuan; Yu, Pan; YongYang; Liu, Xiaocong; Jiang, Jinheng; Liu, Degui; Xue, Gang

2015-03-01

132

Burns  

MedlinePLUS

... antibiotics is performed until the wounds are healed. Wound healing occurs within two to three weeks. Some 2nd degree burns may need excision of damaged skin followed by skin grafting. 3rd Degree (Full Thickness Burns): The dead skin will need to be ...

133

Modeling the effects of fire severity on soil organic horizons and forest composition in Interior Alaska  

NASA Astrophysics Data System (ADS)

The fire regime in the boreal region of interior Alaska has been intensifying in terms of both area burned and severity over the last three decades. Based on projections of climate change, this trend is expected to continue throughout the 21st century. Fire causes abrupt changes in energy, nutrient and water balances influencing habitat and vegetation composition. An important factor influencing these changes is the reduction of the soil organic horizon because of differential regeneration capabilities of conifer and evergreen shrubs vs. deciduous and herbaceous vegetation on organic vs. mineral soils. The goal of this study is to develop a prognostic model to simulate the effects of fire severity on soil organic horizons and to evaluate its long-term consequences on forest composition in interior Alaska. Existing field observations were analyzed to build a predictive model of the depth of burning of soil organic horizon after a fire. The model is driven by data sets of fire occurrence, climate, and topography. Post-fire vegetation succession was simulated as a function of post-fire organic horizon depth. The fire severity and post-fire vegetation succession models were then implemented within a biogeochemistry model, the process-based Terrestrial Ecosystem Model. Simulations for 21st century climate scenarios at a 1 by 1km resolution for the Alaska Yukon River Basin were conducted to evaluate the effects of considering vs. ignoring post-fire vegetation succession on carbon dynamics. The results of these simulations indicate that it is important for ecosystem models to represent the influence of fire severity on post-fire vegetation succession in order to fully understand the consequences of changes in climate and disturbance regimes on boreal ecosystems.

Genet, H.; Barrett, K. M.; Johnstone, J. F.; McGuire, A. D.; Yuan, F.; Euskirchen, E. S.; Kasischke, E. S.; Rupp, S. T.; Turetsky, M. R.

2012-12-01

134

Scale effects on post-fire runoff and soil erosion and their mitigation with forest residue mulching  

NASA Astrophysics Data System (ADS)

Wildfires can have striking direct and indirect impacts on soils, including extreme runoff-erosion responses with serious negative consequences for land-use sustainability and downstream values-at-risk. Arguably, the best manner to reduce post-fire soil erosion consists of rapid application of a protective layer of "mulch", comprising straw, needles or wood-based materials. In this study, we assessed the efficacy of forest residue mulching for reducing runoff and soil erosion across two spatial scales, i.e. micro-plots of approximately 0.25 m2 vs. slope-scale plots of roughly 100 m2. We did so for a eucalypt plantation in north-central Portugal during the first two years following a moderate severity fire. We also tried to analyse which were the key factors underlying the erosive observed at untreated plots, with a special focus on soil moisture content and soil water repellencyf requency. . Forest residue mulch reduced post-fire runoff by around 50% and post-fire soil losses by about 90% at both plot scales. However, runoff was 10 times higher at the scale of the micro- than slope-scale plots. By contrast, soil erosion was "only" two times higher at the micro- than slope-scale plots. The main factor explaining runoff was rainfall intensity, while the main factor accounting for soil erosion was ground cover. Both soil moisture and soil water repellency played a secondary role in explaining the post-fire hydrologic response. This reflected the fact that neither of both factors differed markedly between the mulched and control conditions. Our results indicated that forest residue mulch was first and foremost an effective method due to the fact that it substantially increased ground cover.

Prats, Sergio A.; Wagenbrenner, Joseph W.; Martins, Martinho M. A.; Keizer, Jan Jacob

2014-05-01

135

Effect of post-fire resprouting on leaf fluctuating asymmetry, extrafloral nectar quality, and ant-plant-herbivore interactions.  

PubMed

Fires in the Cerrado savanna are a severe form of disturbance, but some species are capable of resprouting afterwards. It is unknown, however, how and whether post-fire resprouting represents a stressful condition to plants and how their rapid re-growth influences both the production of biochemical compounds, and interactions with mutualistic ants. In this study, we examined the influence of post-fire resprouting on biotic interactions (ant-plant-herbivore relationships) and on plant stress. The study was performed on two groups of the extrafloral nectaried shrub Banisteriopsis campestris (Malpighiaceae); one group was recovering from fire while the other acted as control. With respect to biotic interactions, we examined whether resprouting influenced extrafloral nectar concentration (milligrams per microliter), the abundance of the ant Camponotus crassus and leaf herbivory rates. Plant stress was assessed via fluctuating asymmetry (FA) analysis, which refers to deviations from perfect symmetry in bilaterally symmetrical traits (e.g., leaves) and indicates whether species are under stress. Results revealed that FA, sugar concentration, and ant abundance were 51.7%, 35.7% and 21.7% higher in resprouting plants. Furthermore, C. crassus was significantly associated with low herbivory rates, but only in resprouting plants. This study showed that post-fire resprouting induced high levels of plant stress and influenced extrafloral nectar quality and ant-herbivore relationships in B. campestris. Therefore, despite being a stressful condition to the plant, post-fire resprouting individuals had concentrated extrafloral nectar and sustained more ants, thus strengthening the outcomes of ant-plant mutualism. PMID:23625518

Alves-Silva, Estevo; Del-Claro, Kleber

2013-06-01

136

Bloodstream infection as a predictor for mortality in severe burn patients: an 11-year study.  

PubMed

In this study we collected and analysed data of the severe burn patients at our institution over an 11-year period in order to shed light on the controversial role of bloodstream infection (BSI) as a predictive factor for mortality in this burn population. The factors examined were age, total body surface area, smoke inhalation, presence of BSI, and BSI with resistant bacteria. In total 1081 burn patients were hospitalized from 2001 to 2011, of whom 4% died. We focused here on 158 severe burn patients, 74 of whom developed BSI, and 35 who died. Using univariate analysis, it appeared that the BSI group had a threefold greater chance of mortality compared to the non-BSI group. Patients with a Ryan score 3 had a 100% chance of mortality and those with a score 0 had 0%. Thus, focusing only on Ryan score 1 and score 2 patients, BSI did not contribute to mortality, nor was it shown to contribute to mortality in a multivariate analysis in which the score and BSI were included together. When BSI did occur, it predicted longer hospitalization periods. We conclude that BSI predicts longer length of hospitalization stay but does not contribute to the prediction of mortality beyond that offered by the Ryan score in a severe burn population. PMID:24093600

Egozi, D; Hussein, K; Filson, S; Mashiach, T; Ullmann, Y; Raz-Pasteur, A

2014-10-01

137

FIRST-YEAR EFFECTS OF SUMMER FIRE AND POST-FIRE GRAZING  

Technology Transfer Automated Retrieval System (TEKTRAN)

Summer wildfires occur naturally throughout the Northern Great Plains. However, research supporting post-fire grazing management decisions is limited. We evaluated summer fire and post-fire grazing effects on plant diversity, density, and frequency. Fire may affect fringed sage, cactus, and some ...

138

Environmental and climatic variables as potential drivers of post-fire cover of cheatgrass (Bromus tectorum) in seeded and unseeded semiarid ecosystems  

USGS Publications Warehouse

Cheatgrass, a non-native annual grass, dominates millions of hectares in semiarid ecosystems of the Intermountain West (USA). Post-fire invasions can reduce native species diversity and alter ecological processes. To curb cheatgrass invasion, land managers often seed recently burned areas with perennial competitor species. We sampled vegetation within burned (19 years post-fire) and nearby unburned (representing pre-fire) pionjuniper (Pinus edulisJuniperus osteosperma) woodland and sagebrush (Artemisia sp.) in western Colorado to analyze variables that might explain cheatgrass cover after fire. A multiple regression model suggests higher cheatgrass cover after fire with: (1) sagebrush v. pionjuniper; (2) higher pre-fire cover of annual forbs; (3) increased time since fire; (4) lower pre-fire cover of biological soil crust; and (5) lower precipitation the year before fire. Time since fire, which coincided with higher precipitation, accounts for most of the variability in cheatgrass cover. No significant difference was found in mean cheatgrass cover between seeded and unseeded plots over time. However, negative relationships with pre-fire biological soil crust cover and native species richness suggest livestock-degraded areas are more susceptible to post-fire invasion. Proactive strategies for combating cheatgrass should include finding effective native competitors and restoring livestock-degraded areas. ?? 2009 IAWF.

Shinneman, D.J.; Baker, W.L.

2009-01-01

139

Burns  

MedlinePLUS

A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight or radiation. Scalds from hot liquids and steam, building fires and flammable liquids and gases are the most common causes of ...

140

Burns  

MedlinePLUS

... is. The burn is caused by chemicals or electricity. The person shows signs of shock . The person ... smoke alarms in your home. Check and change batteries regularly. Teach children about fire safety and the ...

141

[Severe burns of lower limb due to association of hot water and citrullus colocynthis].  

PubMed

The case is reported of a patient suffering from severe burns through having used Citrullus colocynthis as a medicinal plant together with hot water. This led to carbonization of the foot and to its amputation. A description of the plant and its toxicity is given. PMID:22262968

Fejjal, N; Gharib, N E; El Mazouz, S; Abbassi, A; Belmahi, A

2011-06-30

142

Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients  

Microsoft Academic Search

Glutamine is an important energy source in intestinal mucosa, the small intestine is the major organ of glutamine uptake and metabolism and plays an important role in the maintenance of whole body glutamine homeostasis. The purpose of this clinical study is to observe the protection effects of enteral supplement with glutamine granules on intestinal mucosal barrier function in severe burned

Xi Peng; Hong Yan; Zhongyi You; Pei Wang; Shiliang Wang

2004-01-01

143

Human Umbilical Cord Mesenchymal Stem Cells Transplantation Promotes Cutaneous Wound Healing of Severe Burned Rats  

PubMed Central

Background Severe burns are a common and highly lethal trauma. The key step for severe burn therapy is to promote the wound healing as early as possible, and reports indicate that mesenchymal stem cell (MSC) therapy contributes to facilitate wound healing. In this study, we investigated effect of human umbilical cord MSCs (hUC-MSCs) could on wound healing in a rat model of severe burn and its potential mechanism. Methods Adult male Wistar rats were randomly divided into sham, burn, and burn transplanted hUC-MSCs. GFP labeled hUC-MSCs or PBS was intravenous injected into respective groups. The rate of wound closure was evaluated by Image Pro Plus. GFP-labeled hUC-MSCs were tracked by in vivo bioluminescence imaging (BLI), and human-specific DNA expression in wounds was detected by PCR. Inflammatory cells, neutrophils, macrophages, capillaries and collagen types I/III in wounds were evaluated by histochemical staining. Wound blood flow was evaluated by laser Doppler blood flow meter. The levels of proinflammatory and anti-inflammatory factors, VEGF, collagen types I/III in wounds were analyzed using an ELISA. Results We found that wound healing was significantly accelerated in the hUC-MSC therapy group. The hUC-MSCs migrated into wound and remarkably decreased the quantity of infiltrated inflammatory cells and levels of IL-1, IL-6, TNF-? and increased levels of IL-10 and TSG-6 in wounds. Additionally, the neovascularization and levels of VEGF in wounds in the hUC-MSC therapy group were markedly higher than those in other control groups. The ratio of collagen types I and III in the hUC-MSC therapy group were markedly higher than that in the burn group at indicated time after transplantation. Conclusion The study suggests that hUC-MSCs transplantation can effectively improve wound healing in severe burned rat model. Moreover, these data might provide the theoretical foundation for the further clinical application of hUC-MSC in burn areas. PMID:24586314

Chai, Jiake; Duan, Hongjie; Chu, Wanli; Zhang, Haijun; Hu, Quan; Du, Jundong

2014-01-01

144

Aqueous and Gas Phase Sorption Properties of Mercury in Burned Soils  

NASA Astrophysics Data System (ADS)

Wildfires are a common occurrence in the Mediterranean climate of Southern California. Many studies have focused on the post-fire physical impacts however; there is a lack of studies on the potential for post-fire metal transport, in particular mercury (Hg). Inorganic Hg contamination is present even in pristine areas due to atmospheric deposition, which can be microbially transformed to methylmercury (a bioaccumulative neurotoxin) in aquatic systems. In order to model the transport of mercury in burned soils, we need to understand the sorption properties of mercury in soils exposed to fire. To test the hypothesis that burned soils have different sorption properties than unburned ones, we have collected samples of unburned soils, and burned them in a controlled setting at different temperatures to simulate several fire intensities. Then, we applied traditional aqueous sorption techniques to determine the binding properties of mercury to each burned soil. Experimental data were fitted with FITEQL to derive constants for sorption reactions, which were in agreement with values observed in literature. Since Southern California does not receive much rain, most of the atmospheric mercury deposition is in form of dry deposition. Thus, we have designed and applied a novel sorption technique to determine the binding of mercury in the gas phase to the burned soils. Trends in sorption affinity and capacity with burning temperature are discussed, as well as a comparison between aqueous and gas phase sorption properties is made.

Jay, J.; Ferreira, M.; Burke, M.; Hogue, T.

2008-12-01

145

Constraining Diffusivity and Critical Slope from Post-Fire Sediment Flux of the Day, Canyon, and Corral Fires, California  

NASA Astrophysics Data System (ADS)

One of the primary effects of wildfire on steep hillslope processes is a dramatic acceleration of sediment transport rates by dry ravel, grainflow and overland flow. These processes deliver sediment to valley bottoms where they become source material for debris flows initiated during subsequent intense rainfall. We used sediment traps to study the variation in post-fire transport rates in steeplands burned by the 2006 Day fire in the western Transverse Ranges and the 2007 Canyon and Corral fires of the Santa Monica Mountains of southern California. Within 2 to 4 weeks following fire containment, we installed 15 sediment traps on relatively planar hillslopes with gradients of 0.30 to 0.91. Mesozoic plutonic rocks and Miocene sediments produced a range of material with a median grain size of 40 to 60% sand. We observed active dry ravel and grain flows of cohesionless granular material occurring in response to localized turbulent wind bursts and solar-driven thermal variations. We visited these sites following storms that generated overland flow transport during high-intensity precipitation. Tipping-bucket rain gages provided precipitation data and nearby anemometers provided wind direction and speed.To estimate unit sediment flux, we air dried the samples and divided the total mass accumulated per time interval by the trap width. Flux ranged over 3 orders of magnitude, from 0.001 to 1.3 m3m-1yr-1, lower on gentle slopes and higher on steeper slopes, independent of parent material. Flux rates decline monotonically with time since fire. A plot of flux versus hillslope gradient can be fit with a non-linear exponential relation used by other researchers to model steep hillslope transport rates. At Day fire sites, values of critical hillslope gradient (Sc), where the flux becomes infinite in a non-linear transport law, remained constant at 0.77 throughout the 18-month observation period. The diffusivity (K) declined from 0.03 (2 months post-installation) to 0.008 (18 months post-installation) m2day-1. Five traps in the Canyon and Corral fire sites were fit with a 0.72 critical slope and a 0.03 m2day-1 diffusivity for the time-frame of 2 months post installation, values similar to the Day fire sites. Three sites at the Canyon and Corral fires showed signs of sediment supply or process effects on their flux rates. These steepest sites (0.79-0.91 slope) were located several meters downslope from rock outcrops and had flux rates characteristic of lower slope sites in less supply-limited reaches. These low rates may represent reduced flux rates from small source lengths and close proximity to bedrock outcrops where rockfall, not grain flow, is the dominant transport process.At all sites, the largest amount of hillslope transport occurred prior to the arrival of the greatest amount of precipitation. Reductions in post-fire sediment flux and diffusivity values are consistent with field observations documenting that initially soil- mantled hillslopes were gradually stripped to bedrock and converted from transport-limited to supply-limited conditions. Furthermore, a time-series of terrestrial LiDAR surveys documented the gradual infilling of low- order valleys by as much as 1 m of sediment and that small frictional dams formed by the regrowth of vegetation provided effective traps and a mechanism to rapidly decrease diffusivity. Hence, high rates of transport in landscapes disturbed by fire can be quickly modulated through decreased sediment availability and the progressive trapping efficiency of densely spaced chaparral vegetation regrowth.

Schmidt, K. M.; Stock, J. D.; Hanshaw, M. N.; Bawden, G. W.

2008-12-01

146

Monitoring post-fire erosion from plot- to catchment scale using a nested scale approach  

NASA Astrophysics Data System (ADS)

Fire-induced erosion has been observed in many regions, in both wildfire and controlled fire settings. Erosion rates have in many cases been found to be scale-dependent, with erosion rates decreasing with increasing plot size. Most studies, however, have investigated fire-induced erosion at plot and hillslope scales, leaving the catchment scale largely ignored. Moreover, many studies lack pre-fire control data. Here, we present a unique study that combines the multi-scale approach of previous wildfire research with the experimental advantages of controlled fire studies. This study focuses on the 9-ha Valtorto catchment in north-central Portugal, monitored for 1.5 year and then burned by experimental fire in February 2009. During the fire, above- and belowground temperatures were monitored. Rainfall, interception, runoff and soil water repellency were monitored throughout the study period, and soils were characterized. In addition, vegetation regeneration and soil surface evolution were monitored using repeat-picture plots. Runoff and erosion were monitored by various methodologies from the small plot to the catchment scale in the years before and after the fire. At the small plot scale, sediment and organic matter losses were determined from rainfall simulations performed under dry and wet antecedent conditions. At the hillslope scale, sediment losses were determined using sediment fences with known contributing areas. Sediment trapped behind these fences was collected after major rainfall events. At the catchment scale, bedload and suspended sediment sampled in a flume installed at the catchment outlet indicated the character of sediment and nutrient losses. Post-fire runoff and erosion were compared with a 1 to 10-year pre-fire record, and with values determined from a nearby comparable unburned catchment that was used as a control. The nested-scale approach adopted in this study facilitates assessment of the effect of scale on runoff and erosion, while the use of both pre- and post-fire measurements together with a control catchment ensures reliability in the evaluation of the effect of fire on these two variables. It is hoped that this integrated approach will help understanding of the effect of fire on short- and long-term land degradation processes.

Shakesby, Rick A.; Stoof, Cathelijne R.; Ferreira, Carla S. S.; P. D Walsh, Rory; Urbanek, Emilia; Ferreira, Antnio J. D.

2010-05-01

147

Progressive fluid removal can avoid electrolyte disorders in severely burned patients  

PubMed Central

Introduction: Extensive burn injury has systemic consequences due to capillary leak. After restoration of cellular integrity, infused fluid volume has to be removed partially. This can provoke electrolyte disorders. Purpose: We investigated the effect of progressive fluid removal on serum sodium level. Method: Retrospective study. Patients admitted to a burn unit were analyzed and separated in two groups without (Group A) or with (Group B) prolonged hypernatremia. Daily infusion-diuresis-ratio (IDR) was analyzed. Results: Fourty (12 female; 28 male) patients with a mean age of 4719 years, a total burn surface area (TBSA) of 2612%, and a mean abbreviated burned severity index (ABSI) score of 7.32 were included. In Group A 25 patients with a mean age of 4718 years, a mean TBSA of 2311%, and a mean ABSI score of 6.92.1 were summarized. In Group B 15 patients with a mean age of 4722 years, a mean TBSA of 3013%, and a mean ABSI score of 8.11.7 were included. Hypernatremia occurred on day 51.4. There was no significant difference between both groups for fluid resuscitation amount within the first 24 hours. Statistical analysis of the first 7 days after burn injury showed a significantly higher percentage of removed fluid in Group B for day 3, day 4, day 5, day 6 and day 7. Conclusions: Amount and velocity of fluid removal regimen after burn injury can provoke electrolyte disorders. Serum sodium concentration can be used to calculate need of fluid resuscitation for fluid maintenance. There is a need of an established fluid removal strategy. PMID:21698085

Namdar, Thomas; Stollwerck, Peter Leonard; Stang, Felix Hagen; Kolios, Georgios; Lange, Thomas; Mailnder, Peter; Siemers, Frank

2011-01-01

148

RECOVER: An Automated, Cloud-Based Decision Support System for Post-Fire Rehabilitation Planning  

NASA Astrophysics Data System (ADS)

RECOVER is a site-specific decision support system that automatically brings together in a single analysis environment the information necessary for post-fire rehabilitation decision-making. After a major wildfire, law requires that the federal land management agencies certify a comprehensive plan for public safety, burned area stabilization, resource protection, and site recovery. These burned area emergency response (BAER) plans are a crucial part of our national response to wildfire disasters and depend heavily on data acquired from a variety of sources. Final plans are due within 21 days of control of a major wildfire and become the guiding document for managing the activities and budgets for all subsequent remediation efforts. There are few instances in the federal government where plans of such wide-ranging scope and importance are assembled on such short notice and translated into action more quickly. RECOVER has been designed in close collaboration with our agency partners and directly addresses their high-priority decision-making requirements. In response to a fire detection event, RECOVER uses the rapid resource allocation capabilities of cloud computing to automatically collect Earth observational data, derived decision products, and historic biophysical data so that when the fire is contained, BAER teams will have a complete and ready-to-use RECOVER dataset and GIS analysis environment customized for the target wildfire. Initial studies suggest that RECOVER can transform this information-intensive process by reducing from days to a matter of minutes the time required to assemble and deliver crucial wildfire-related data.

Schnase, J. L.; Carroll, M. L.; Weber, K. T.; Brown, M. E.; Gill, R. L.; Wooten, M.; May, J.; Serr, K.; Smith, E.; Goldsby, R.; Newtoff, K.; Bradford, K.; Doyle, C.; Volker, E.; Weber, S.

2014-11-01

149

RECOVER: An Automated Cloud-Based Decision Support System for Post-fire Rehabilitation Planning  

NASA Technical Reports Server (NTRS)

RECOVER is a site-specific decision support system that automatically brings together in a single analysis environment the information necessary for post-fire rehabilitation decision-making. After a major wildfire, law requires that the federal land management agencies certify a comprehensive plan for public safety, burned area stabilization, resource protection, and site recovery. These burned area emergency response (BAER) plans are a crucial part of our national response to wildfire disasters and depend heavily on data acquired from a variety of sources. Final plans are due within 21 days of control of a major wildfire and become the guiding document for managing the activities and budgets for all subsequent remediation efforts. There are few instances in the federal government where plans of such wide-ranging scope and importance are assembled on such short notice and translated into action more quickly. RECOVER has been designed in close collaboration with our agency partners and directly addresses their high-priority decision-making requirements. In response to a fire detection event, RECOVER uses the rapid resource allocation capabilities of cloud computing to automatically collect Earth observational data, derived decision products, and historic biophysical data so that when the fire is contained, BAER teams will have a complete and ready-to-use RECOVER dataset and GIS analysis environment customized for the target wildfire. Initial studies suggest that RECOVER can transform this information-intensive process by reducing from days to a matter of minutes the time required to assemble and deliver crucial wildfire-related data.

Schnase, John L.; Carroll, Mark; Weber, K. T.; Brown, Molly E.; Gill, Roger L.; Wooten, Margaret; May J.; Serr, K.; Smith, E.; Goldsby, R.; Newtoff, Kiersten; Bradford, Kathryn; Doyle Colin S.; Volker, Emily; Weber, Samuel J.

2014-01-01

150

THE USE OF REMOTE SENSING IMAGERY TO DETERMINE WILDLAND BURN SEVERITY IN SEMIARID SAGEBRUSH-STEPPE RANGELANDS  

Technology Transfer Automated Retrieval System (TEKTRAN)

The Normalized Burn Ratio (NBR) is a remote sensing-based index used to calculate the extent and severity of a fire. NBR functions well in forested ecosystems due to a high contrast of vegetation change before and after fire. Preliminary results indicate that an alternate burn severity algorithm is ...

151

Effects of enteral supplementation with glutamine granules on intestinal mucosal barrier function in severe burned patients.  

PubMed

Glutamine is an important energy source in intestinal mucosa, the small intestine is the major organ of glutamine uptake and metabolism and plays an important role in the maintenance of whole body glutamine homeostasis. The purpose of this clinical study is to observe the protection effects of enteral supplement with glutamine granules on intestinal mucosal barrier function in severe burned patients. Forty-eight severe burn patients (total burn surface area 30-75%, full thickness burn area 20-85%) were randomly divided into two groups: burn control group (B group, 23 patients) and glutamine treated group (Gln group, 25 patients). Glutamine granules 0.5 g/kg were supplied orally for 14 days in Gln group, and the same dosage of placebo were given for 14 days in B group. The plasma level of glutamine, endotoxin and the activity of diamine oxidase (DAO), as well as intestinal mucosal permeability were determined. The results showed that the levels of plasma endotoxin, activity and urinary lactulose and mannitol (L/M) ratio in all patients were significant higher than that of normal control. After taking glutamine granules for 14 days, plasma glutamine concentration was significantly higher in Gln group than that in B group (607.86+/-147.25 microM/l versus 447.63 +/- 132.28 microM/l, P < 0.01). On the other hand, the levels of plasma DAO activity and urinary L/M ratio in Gln group were lower than those in B group. In addition, the wound healing was better and hospital stay days were reduced in the Gln group (46.59 +/- 12.98 days versus 55.68 +/- 17.36 days, P < 0.05). These results indicated that glutamine granules taken orally could abate the degree of intestine injury, lessen intestinal mucosal permeability, ameliorate wound healing and reduce hospital stay. PMID:15019120

Peng, Xi; Yan, Hong; You, Zhongyi; Wang, Pei; Wang, Shiliang

2004-03-01

152

A soil burn severity index for understanding soil-fire relations in tropical forests  

USGS Publications Warehouse

Methods for evaluating the impact of fires within tropical forests are needed as fires become more frequent and human populations and demands on forests increase. Short- and long-term fire effects on soils are determined by the prefire, fire, and postfire environments. We placed these components within a fire-disturbance continuum to guide our literature synthesis and develop an integrated soil burn severity index. The soil burn severity index provides a set of indicators that reflect the range of conditions present after a fire. The index consists of seven levels, an unburned level and six other levels that describe a range of postfire soil conditions. We view this index as a tool for understanding the effects of fires on the forest floor, with the realization that as new information is gained, the index may be modified as warranted. ?? Royal Swedish Academy of Sciences 2008.

Jain, T.B.; Gould, W.A.; Graham, R.T.; Pilliod, D.S.; Lentile, L.B.; Gonzalez, G.

2008-01-01

153

Pregabalin in severe burn injury pain: a double-blind, randomised placebo-controlled trial.  

PubMed

This randomised, double-blind, placebo-controlled trial assessed the efficacy and tolerability of pregabalin to alleviate the neuropathic component of moderate to severe burn pain. Patients aged 18 to 65 years admitted to a burns unit with a 5% or greater total body surface area burn injury were screened to participate in the trial. Using the Neuropathic Pain Scale (NPS), patients scoring 4 or higher on 'hot' pain or 'sharp' pain were invited to participate. Consenting patients were randomly assigned to receive pregabalin or placebo for 28 days with individual dose titration commencing at 75 mg twice daily to a maximum pregabalin dose of 300 mg twice daily. The primary outcome measure was the patients' daily response to the sharp and hot pain of the NPS. Secondary outcome measures included the remaining elements of the NPS, daily opioid requirement, length of hospital stay, pain at 6 months, and side effects of nausea, vomiting, drowsiness and giddiness. For patients administered pregabalin, the primary outcome measures hot (P = .01) and sharp (P = .04) pain were significantly reduced compared with those in patients administered placebo. Secondary outcome measures of itch, unpleasantness, surface pain, and procedural pain were significantly lower (P < .05) in the pregabalin group. Adverse effects were uncommon, with no difference between the treatment groups. There was no significant difference between the pregabalin and placebo treatment groups with respect to opioid consumption, duration of hospital stay, or pain at 6 months. Pregabalin was efficacious and well tolerated in patients after severe burn injury and whose pain was characterised by features of acute neuropathic pain. In this study, pregabalin was well tolerated and significantly reduced several elements of the neuropathic pain scale including hot pain, unpleasantness of the pain, surface pain, and itch, and also significantly reduced procedural pain. PMID:21398038

Gray, Paul; Kirby, Julie; Smith, Maree T; Cabot, Peter J; Williams, Bronwyn; Doecke, James; Cramond, Tess

2011-06-01

154

Impacts of Boreal Forest Fires and Post-Fire Succession on Energy Budgets and Climate in the Community Earth System Model  

NASA Astrophysics Data System (ADS)

Vegetation compositions of boreal forests are determined largely by recovery patterns after large-scale disturbances, the most notable of which is wildfire. Forest compositions exert large controls on regional energy and greenhouse gas budgets by affecting surface albedo, net radiation, turbulent energy fluxes, and carbon stocks. Impacts of boreal forest fires on climate are therefore products of direct fire effects, including charred surfaces and emitted aerosols and greenhouse gasses, and post-fire vegetation succession, which affects carbon and energy exchange for many decades after the initial disturbance. Climate changes are expected to be greatest at high latitudes, leading many to project increases in boreal forest fires. While numerous studies have documented the effects of post-fire landscape on energy and gas budgets in boreal forests, to date no continental analysis using a coupled model has been performed. In this study we quantified the effects of boreal forest fires and post-fire succession on regional and global climate using model experiments in the Community Earth System Model. We used 20th century climate data and MODIS vegetation continuous fields and land cover classes to identify boreal forests across North America and Eurasia. Historical fire return intervals were derived from a regression approach utilizing the Canadian and Alaskan Large Fire Databases, the Global Fire Emissions Database v3, and land cover and climate data. Succession trajectories were derived from the literature and MODIS land cover over known fire scars. Major improvements in model-data comparisons of long-term energy budgets were observed by prescribing post-fire vegetation succession. Global simulations using historical and future burn area scenarios highlight the potential impacts on climate from changing fire regimes and provide motivation for including vegetation succession in coupled simulations.

Rogers, B. M.; Randerson, J. T.; Bonan, G. B.

2011-12-01

155

Quantifying Post-Fire Forest Biomass Recovery in Northeastern Siberia using Hierarchical Multi-Sensor Satellite Imagery and Field Measurements  

NASA Astrophysics Data System (ADS)

Russian forests are the largest vegetation carbon pool outside of the tropics, with larch dominating northeastern Siberia where extreme temperatures, permafrost and wildfire currently limit persistence of other tree species. These ecosystems have experienced rapid climate warming over the past century and model simulations suggest that they will undergo profound changes by the end of the century if warming continues. Understanding the responses of these unique deciduous-conifer ecosystems to current and future climate is important given the potential changes in disturbance regimes and other climate feedbacks. The climate implications of changes in fire severity and return interval, as predicted under a warmer and drier climate, are not well understood given the trade-off between storage of C in forest biomass and post-fire surface albedo. We examined forest biomass recovery across a burn chronosequence near Cherskii, Sakha Republic, in far northeastern Siberia. We used high-quality Landsat imagery to date and map fires that occurred between 1972 and 2009, then complemented this data set using tree ring measurements to map older fires. A three stage approach was taken to map current biomass distribution. First, tree shadows were mapped from 50 cm panchromatic WorldView 1 imagery covering a portion of the region. Secondly, the tree shadow map was aggregated to 30 m resolution and used to train a regression-tree model that ingested mosaiced Landsat data. The model output correlated with allometry-based field estimates of biomass, allowing us to transform the model output to a map of regional aboveground biomass using a regression model. When combined with the fire history data, the new biomass map revealed a chronosequence of forest regrowth and carbon sequestration in aboveground biomass after fire. We discuss the potential for future carbon emissions from fires in northeastern Siberia, as well as carbon sequestration during recovery based on the observed biomass distribution and regrowth patterns. These results provide a basis for assessing regrowth trajectories in the region using a combination of field measurements and multi-sensor imagery, with the ultimate objective of better capturing forest carbon sequestration under changing fire disturbance regime.

Berner, L.; Beck, P. S.; Loranty, M. M.; Alexander, H. D.; Mack, M. C.; Goetz, S. J.

2011-12-01

156

Influence of topography and forest structure on patterns of mixed severity fire in ponderosa pine forests of the South Dakota Black Hills, USA  

Microsoft Academic Search

We examined the influence of topography and stand structure on fire effects within the perimeter of the ?34 000 ha Jasper fire of 2000 in ponderosa pine (Pinus ponderosa Laws.) forests of the South Dakota Black Hills, USA. We used a remotely sensed and field-verified map of post-fire burn severity (accuracy 69%, kappa statistic 0.54), the Digital Elevation Model, and

Leigh B. LentileA; Frederick W. SmithA; Wayne D. ShepperdB

157

Development of Metabolic Indicators of Burn Injury: Very Low Density Lipoprotein (VLDL) and Acetoacetate Are Highly Correlated to Severity of Burn Injury in Rats  

PubMed Central

Hypermetabolism is a significant sequela to severe trauma such as burns, as well as critical illnesses such as cancer. It persists in parallel to, or beyond, the original pathology for many months as an often-fatal comorbidity. Currently, diagnosis is based solely on clinical observations of increased energy expenditure, severe muscle wasting and progressive organ dysfunction. In order to identify the minimum number of necessary variables, and to develop a rat model of burn injury-induced hypermetabolism, we utilized data mining approaches to identify the metabolic variables that strongly correlate to the severity of injury. A clustering-based algorithm was introduced into a regression model of the extent of burn injury. As a result, a neural network model which employs VLDL and acetoacetate levels was demonstrated to predict the extent of burn injury with 88% accuracy in the rat model. The physiological importance of the identified variables in the context of hypermetabolism, and necessary steps in extension of this preliminary model to a clinically utilizable index of severity of burn injury are outlined. PMID:24957642

Izamis, Maria-Louisa; Uygun, Korkut; Sharma, Nripen S.; Uygun, Basak; Yarmush, Martin L.; Berthiaume, Francois

2012-01-01

158

Modeling Fire Severity in Black Spruce Stands in the Alaskan Boreal Forest Using Spectral and Non-Spectral Geospatial Data  

NASA Technical Reports Server (NTRS)

Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface organic layer fire depth. Because quantitative differences in post-fire surface characteristics do not directly influence spectral properties, these modeling techniques provide better information than the use of remote sensing data alone.

Barrett, K.; Kasischke, E. S.; McGuire, A. D.; Turetsky, M. R.; Kane, E. S.

2010-01-01

159

Modeling fire severity in black spruce stands in the Alaskan boreal forest using spectral and non-spectral geospatial data  

USGS Publications Warehouse

Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (p < 0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (p < 0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (> 200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface organic layer fire depth. Because quantitative differences in post-fire surface characteristics do not directly influence spectral properties, these modeling techniques provide better information than the use of remote sensing data alone.

Barrett, K.; Kasischke, E.S.; McGuire, A.D.; Turetsky, M.R.; Kane, E.S.

2010-01-01

160

Early fluid resuscitation with hyperoncotic hydroxyethyl starch 200/0.5 (10%) in severe burn injury  

PubMed Central

Introduction Despite large experience in the management of severe burn injury, there are still controversies regarding the best type of fluid resuscitation, especially during the first 24 hours after the trauma. Therefore, our study addressed the question whether hyperoncotic hydroxyethyl starch (HES) 200/0.5 (10%) administered in combination with crystalloids within the first 24 hours after injury is as effective as 'crystalloids only' in severe burn injury patients. Methods 30 consecutive patients were enrolled to this prospective interventional open label study and assigned either to a traditional 'crystalloids only' or to a 'HES 200/0.5 (10%)' volume resuscitation protocol. Total amount of fluid administration, complications such as pulmonary failure, abdominal compartment syndrome, sepsis, renal failure and overall mortality were assessed. Cox proportional hazard regression analysis was performed for binary outcomes and adjustment for potential confounders was done in the multivariate regression models. For continuous outcome parameters multiple linear regression analysis was used. Results Group differences between patients receiving crystalloids only or HES 200/0.5 (10%) were not statistically significant. However, a large effect towards increased overall mortality (adjusted hazard ratio 7.12; P = 0.16) in the HES 200/0.5 (10%) group as compared to the crystalloids only group (43.8% versus 14.3%) was present. Similarly, the incidence of renal failure was 25.0% in the HES 200/0.5 (10%) group versus 7.1% in the crystalloid only group (adjusted hazard ratio 6.16; P = 0.42). Conclusions This small study indicates that the application of hyperoncotic HES 200/0.5 (10%) within the first 24 hours after severe burn injury may be associated with fatal outcome and should therefore be used with caution. Trial registration NCT01120730. PMID:20584291

2010-01-01

161

Contrasting long-term survival of two outplanted Mojave Desert perennials for post-fire revegetation  

USGS Publications Warehouse

Post-fire recovery of arid shrublands is typically slow, and planting greenhouse-raised seedlings may be a means of jump-starting this process. Recovery can be further accelerated by understanding the factors controlling post-planting survival. In fall 2007 and 2009, we outplanted seedlings of two contrasting native evergreen shrubsfast-growing Nevada jointfir and slow-growing blackbrushacross five burned sites in the Mojave Desert. To increase soil moisture and optimize seedling survival, we experimentally applied and evaluated soil amendments and supplemental watering. We also evaluated two herbicides that reduce competitive invasive annual grasses and two types of herbivore protection. Survival of jointfir outplanted in 2007 was 61% after 43 months, and site largely influenced survival, while herbicide containing imazapic applied more than one year after outplanting reduced survival. Reduced survival of jointfir outplanted in 2009 coincided with delayed seasonal precipitation that intensified foliar damage by small mammals. In contrast, blackbrush survival was 4% after 43 months, and was influenced by site, type of herbivore protection, and greenhouse during the 2007 outplanting, and soil amendment during 2009. Counter to expectations, we found that supplemental watering and soil amendments did not influence long-term survival of either blackbrush or jointfir. Shrub species with rapid growth rates and broad environmental tolerances, such as jointfir, make ideal candidates for outplanting, provided that seedlings are protected from herbivores. Re-introduction of species with slow growth rates and narrow environmental tolerances, such as blackbrush, requires careful consideration to optimize pre- and post-planting conditions.

Scoles-Sciulla, Sara J.; Defalco, Lesley A.; Esque, Todd C.

2015-01-01

162

Intensive insulin therapy improves insulin sensitivity and mitochondrial function in severely burned children  

PubMed Central

Objective To institute intensive insulin therapy protocol in an acute pediatric burn unit and study the mechanisms underlying its benefits. Design Prospective, randomized study. Setting An acute pediatric burn unit in a tertiary teaching hospital. Patients Children, 418 yrs old, with total body surface area burned ?40% and who arrived within 1 wk after injury were enrolled in the study. Interventions Patients were randomized to one of two groups. Intensive insulin therapy maintained blood glucose levels between 80 and 110 mg/dL. Conventional insulin therapy maintained blood glucose ?215 mg/dL. Measurements and Main Results Twenty patients were included in the data analysis consisting of resting energy expenditure, whole body and liver insulin sensitivity, and skeletal muscle mitochondrial function. Studies were performed at 7 days post-burn (pretreatment) and at 21 days postburn (posttreatment). Resting energy expenditure significantly increased posttreatment (1476 124 to 1925 291 kcal/m2day; p = .02) in conventional insulin therapy as compared with a decline in intensive insulin therapy. Glucose infusion rate was identical between groups before treatment (6.0 0.8 conventional insulin therapy vs. 6.8 0.9 mg/kgmin intensive insulin therapy; p = .5). Intensive insulin therapy displayed a significantly higher glucose clamp infusion rate posttreatment (9.1 1.3 intensive insulin therapy versus 4.8 0.6 mg/kgmin conventional insulin therapy, p = .005). Suppression of hepatic glucose release was significantly greater in the intensive insulin therapy after treatment compared with conventional insulin therapy (5.0 0.9 vs. 2.5 0.6 mg/kgmin; intensive insulin therapy vs. conventional insulin therapy; p = .03). States 3 and 4 mitochondrial oxidation of palmitate significantly improved in intensive insulin therapy (0.9 0.1 to 1.7 0.1 ?m O2/CS/mg protein/min for state 3, p = .004; and 0.7 0.1 to 1.3 0.1 ?m O2/CS/mg protein/min for state 4, p < .002), whereas conventional insulin therapy remained at the same level of activity (0.9 0.1 to 0.8 0.1.?m O2/CS/mg protein/min for state 3, p = .4; 0.6 0.03 to 0.7 0.1 ?m O2/CS/mg protein/min, p = .6). Conclusion Controlling blood glucose levels ?120 mg/dL using an intensive insulin therapy protocol improves insulin sensitivity and mitochondrial oxidative capacity while decreasing resting energy expenditure in severely burned children. PMID:20400899

Fram, Ricki Y.; Cree, Melanie G.; Wolfe, Robert R.; Mlcak, Ronald P.; Qian, Ting; Chinkes, David L.; Herndon, David N.

2013-01-01

163

Heterogeneity in fire severity within early season and late season prescribed burns in a mixed-conifer forest  

USGS Publications Warehouse

Structural heterogeneity in forests of the Sierra Nevada was historically produced through variation in fire regimes and local environmental factors. The amount of heterogeneity that prescription burning can achieve might now be more limited owing to high fuel loads and increased fuel continuity. Topography, woody fuel loading, and vegetative composition were quantified in plots within replicated early and late season burn units. Two indices of fire severity were evaluated in the same plots after the burns. Scorch height ranged from 2.8 to 25.4 m in early season plots and 3.1 to 38.5 m in late season plots, whereas percentage of ground surface burned ranged from 24 to 96% in early season plots and from 47 to 100% in late season plots. Scorch height was greatest in areas with steeper slopes, higher basal area of live trees, high percentage of basal area composed of pine, and more small woody fuel. Percentage of area burned was greatest in areas with less bare ground and rock cover (more fuel continuity), steeper slopes, and units burned in the fall (lower fuel moisture). Thus topographic and biotic factors still contribute to the abundant heterogeneity in fire severity with prescribed burning, even under the current high fuel loading conditions. Burning areas with high fuel loads in early season when fuels are moister may lead to patterns of heterogeneity in fire effects that more closely approximate the expected patchiness of historical fires.

Knapp, E.E.; Keeley, J.E.

2006-01-01

164

SHRUB MICROSITE INFLUENCE POST-FIRE PERENNIAL GRASS ESTABLISHMENT  

Technology Transfer Automated Retrieval System (TEKTRAN)

Many arid and semi-arid systems benefit from restoration of perennial grasses following wildfire. Woody plants can cause localized increases in resources (i.e. resource islands) that can persist after fire and create a heterogeneous environment for restoration. We tested the hypothesis that burned...

165

Polyacrylamide application versus forest residue mulching for reducing post-fire runoff and soil erosion.  

PubMed

For several years now, forest fires have been known to increase overland flow and soil erosion. However, mitigation of these effects has been little studied, especially outside the USA. This study aimed to quantify the effectiveness of two so-called emergency treatments to reduce post-fire runoff and soil losses at the microplot scale in a eucalyptus plantation in north-central Portugal. The treatments involved the application of chopped eucalyptus bark mulch at a rate of 10-12 Mg ha(-1), and surface application of a dry, granular, anionic polyacrylamide (PAM) at a rate of 50 kg ha(-1). During the first year after a wildfire in 2010, 1419 mm of rainfall produced, on average, 785 mm of overland flow in the untreated plots and 8.4 Mg ha(-1) of soil losses. Mulching reduced these two figures significantly, by an average 52 and 93%, respectively. In contrast, the PAM-treated plots did not differ from the control plots, despite slightly lower runoff but higher soil erosion figures. When compared to the control plots, mean key factors for runoff and soil erosion were different in the case of the mulched but not the PAM plots. Notably, the plots on the lower half of the slope registered bigger runoff and erosion figures than those on the upper half of the slope. This could be explained by differences in fire intensity and, ultimately, in pre-fire standing biomass. PMID:24055663

Prats, Sergio Alegre; Martins, Martinho Antnio Dos Santos; Malvar, Maruxa Cortizo; Ben-Hur, Meni; Keizer, Jan Jacob

2014-01-15

166

Simulating Local and Intercontinental Pollutant Effects of Biomass Burning: Integration of Several Remotely Sensed Datasets  

NASA Technical Reports Server (NTRS)

Burning to clear land for crops and to destroy pests is an integral and largely unavoidable part of tropical agriculture. It is easy to note but difficult to quantify using remote sensing. This report describes our efforts to integrate remotely sensed data into our computer model of tropical chemical trace-gas emissions, weather, and reaction chemistry (using the MM5 mesoscale model and our own Global-Regional Atmospheric Chemistry Simulator). The effects of burning over the continents of Africa and South America have been noticed in observations from several satellites. Smoke plumes hundreds of kilometers long may be seen individually, or may merge into a large smoke pall over thousands of kilometers of these continents. These features are related to intense pollution in the much more confined regions with heavy burning. These emissions also translocate nitrogen thousands of kilometers in the tropical ecosystems, with large fixed-nitrogen losses balanced partially by locally intense fertilization downwind, where nitric acid is rained out. At a much larger scale, various satellite measurements have indicated the escape of carbon monoxide and ozone into large filaments which extend across the Tropical and Southern Atlantic Ocean. Our work relates the source emissions, estimated in part from remote sensing, in part from conventional surface reports, to the concentrations of these gases over these intercontinental regions. We will mention work in progress to use meteorological satellite data (AVHRR, GOES, and Meteosat) to estimate the surface temperature and extent and height of clouds, and explain why these uses are so important in our computer simulations of global biogeochemistry. We will compare our simulations and interpretation of remote observations to the international cooperation involving Brazil, South Africa, and the USA in the TRACE-A (Transport and Atmospheric Chemistry near the Equator - Atlantic) and SAFARI (Southern Africa Fire Atmosphere Research Initiative) and remote-sensing /aircraft/ecosystem observational campaigns.

Chatfield, Robert B.; Vastano, John A.; Guild, Liane; Hlavka, Christine; Brass, James A.; Russell, Philip B. (Technical Monitor)

1994-01-01

167

Stimulation of muscle protein synthesis by long-term insulin infusion in severely burned patients.  

PubMed Central

OBJECTIVE: To determine if long-term (7 days) infusion of insulin can ameliorate altered protein kinetics in skeletal muscle of severely burned patients and to investigate the hypothesis that changes in protein kinetics during insulin infusion are associated with an increased rate of transmembrane amino acid transport from plasma into the intracellular free amino acid pool. SUMMARY BACKGROUND DATA: In critically ill patients, vigorous nutritional support alone may often fail to entirely curtail muscle catabolism; insulin stimulates muscle protein synthesis in normal volunteers. METHODS: Nine patients with severe burns were studied once during enteral feeding alone (control period), and once after 7 days of high-dose insulin. The order of treatment with insulin was randomized. Data were derived from a model based on a primed-continuous infusion of L-[15N]phenylalanine, sampling of blood from the femoral artery and vein, and biopsies of the vastus lateralis muscle. RESULTS: Net leg muscle protein balance was significantly (p < 0.05) negative during the control period. Exogenous insulin eliminated this negative balance by stimulating protein synthesis approximately 350% (p < 0.01). This was made possible in part by a sixfold increase in the inward transport of amino acids from blood (p < 0.01). There was also a significant increase in leg muscle protein breakdown. The new rates of synthesis, breakdown, and inward transport during insulin were in balance, such that there was no difference in the intracellular phenylalanine concentration from the control period. The fractional synthetic rate of protein in the wound was also stimulated by insulin by approximately 50%, but the response was variable and did not reach significance. CONCLUSIONS: Exogenous insulin may be useful in promoting muscle protein synthesis in severely catabolic patients. PMID:7677459

Sakurai, Y; Aarsland, A; Herndon, D N; Chinkes, D L; Pierre, E; Nguyen, T T; Patterson, B W; Wolfe, R R

1995-01-01

168

Post-fire mulching for runoff and erosion mitigation Part I: Effectiveness at reducing hillslope erosion rates  

E-print Network

Post-fire mulching for runoff and erosion mitigation Part I: Effectiveness at reducing hillslope erosion rates Peter R. Robichaud , Sarah A. Lewis, Joseph W. Wagenbrenner, Louise E. Ashmun, Robert E to mitigate post-fire increases in runoff and erosion rates but the comparative effectiveness of various

Flury, Markus

169

(Submitted: International Journal of Wildland Fire)1 Predicting post-fire forest erosion in the Western US2  

E-print Network

1 (Submitted: International Journal of Wildland Fire)1 Predicting post-fire forest erosion erosion rates and21 adversely affect aquatic resources. Extensive fuels treatments are being proposed)23 predict potential post-fire erosion rates for forests and shrublands in the Western US; and24 (2) assess

MacDonald, Lee

170

A low-cost method to measure the timing of post-fire flash floods and debris flows relative to rainfall  

USGS Publications Warehouse

Data on the specific timing of post-fire flash floods and debris flows are very limited. We describe a method to measure the response times of small burned watersheds to rainfall using a low-cost pressure transducer, which can be installed quickly after a fire. Although the pressure transducer is not designed for sustained sampling at the fast rates ({less than or equal to}2 sec) used at more advanced debris-flow monitoring sites, comparisons with high-data rate stage data show that measured spikes in pressure sampled at 1-min intervals are sufficient to detect the passage of most debris flows and floods. Post-event site visits are used to measure the peak stage and identify flow type based on deposit characteristics. The basin response timescale (tb) to generate flow at each site was determined from an analysis of the cross correlation between time series of flow pressure and 5-min rainfall intensity. This timescale was found to be less than 30 minutes for 40 post-fire floods and 11 post-fire debris flows recorded in 15 southern California watersheds ({less than or equal to} 1.4 km2). Including data from 24 other debris flows recorded at 5 more instrumentally advanced monitoring stations, we find there is not a substantial difference in the median tb for floods and debris flows (11 and 9 minutes, respectively); however, there are slight, statistically significant differences in the trends of flood and debris-flow tb with basin area, which are presumably related to differences in flow speed between floods and debris flows.

Kean, Jason W.; Staley, Dennis M.; Leeper, Robert J.; Schmidt, Kevin Michael; Gartner, Joseph E.

2012-01-01

171

Soil surfactant products for improving hydrologic function in post-fire water repellent soil  

Technology Transfer Automated Retrieval System (TEKTRAN)

There are a wide range of soil surfactant chemistries on the market today that are primarily designed for the treatment of water repellent soils in cropping and turfgrass systems. These chemicals may also have potential in treating the deleterious effects associated with post-fire water repellent so...

172

Post-fire Erosion in the Colorado Front Range Lee H. MacDonald  

E-print Network

Post-fire Erosion in the Colorado Front Range Lee H. MacDonald Department of Forest, Rangland and erosion rates, and how these changes then affect downstream water resources and domestic water supplies and erosion rates in the Colorado Front Range at different spatial scales, and our primary objectives have

MacDonald, Lee

173

Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA  

E-print Network

Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA Molly Jackson, Joshua J. Roering* Department of Geological Sciences, University of Oregon, Eugene, OR 97403-1272, USA Accepted 7 May 2008 a b s t r a c t The role of fire in shaping steep, forested landscapes depends

Roering, Joshua J.

174

Rapid Post Fire Hydrologic Watershed Assessment using the AGWA GIS -based Hydrologic Modeling Tool  

Microsoft Academic Search

Rapid post -fire watershed assessment to identify potential trouble spots for erosion and flooding can potentially aid land managers and Bu rned Area Emergency Rehabilitation (BAER) teams in deploying mitigation and rehabilitation resources. These decisions are inherently complex and spatial in nature and require a distributed hydrological modeling approach. The extensive data requirements an d the task of building input

D. C. Goodrich; H. Evan Canfield; I. Shea Burns; D. J. Semmens; S. N. Miller; M. Hernandez; L. R. Levick; D. P. Guertin; W. G. Kepner

175

Early post-fire regeneration in Pinus hrutia forest ecosystems of Samos island ( Greece)  

Microsoft Academic Search

The recovery of the burnt pine (Pinus brutia) forests of Samos island was followed during the first three post-fire years. Samos is characterised by a Mediterranean-type climate with a mild, subhumid winter and a long xerothermic period. The natural regeneration of P. brutia is realised exclusively by seeds and is enhanced by a number of adaptations to fire: (i) the

A. Thanos; S. Marcou; D. Christodoulakis; A. Yannitsaros

176

Early post-fire succession in California chaparral: changes in diversity, density, cover, and biomass  

USGS Publications Warehouse

For four consecutive years, following the fires in November 1993, temporal variations in species richness, cover and biomass of component plant groups in early post-fire chaparral succession were monitored on different aspects at the Stunt Ranch Santa Monica Mountains Reserve, southern California. Plant groups were categorized based on growth form, life form, ability to fix nitrogen, geographic origin and regeneration strategies. North-facing slopes exhibited higher species richness, higher species turnover rate over time and faster vegetation recovery in terms of biomass accumulation and return to pre-fire species composition. This was probably due to higher species richness and biomass of nitrogen-fixing species found on north-facing slopes in comparison to south-facing slopes. On both north- and south-facing slopes, annuals had the highest species turnover rate, followed by herbaceous perennials and shrubs. In the first four post-fire years, annual species were the largest floristic group, but herbaceous perennials and shrubs were the major contributors to community biomass. Nitrogen-fixing species and exotics contributed significantly to early post-fire community structure. Although the general trends in post-fire succession are clear in terms of temporal changes in the relative proportions of different plant groups, environmental variation and the nature of plant life histories of component species, especially dominant species, could alter such trends significantly.

Guo, Q.

2001-01-01

177

Post-fire vegetation of the Montane natural subregion of Jasper National Park  

Microsoft Academic Search

Ecological Land Classification information gathered in the mid to late 1970s was used to predict post-fire vegetation for the Montane natural subregion of Jasper National Park. Percentage similarity indices (SI) between vegetation types based on understory species composition and cover, calculated distances (D) generated from altitude, nutrient and moisture, broad patterns of vegetation canopy based on moisture regimes, canonical correspondence

L. B. Nadeau; I. G. W. Corns

2002-01-01

178

Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results  

Microsoft Academic Search

There has been considerable interest in the recent literature regarding the assessment of post-fire effects on forested areas within the North American boreal forest. Assessing the physical and ecological effects of fire in boreal forests has far-reaching implications for a variety of ecosystem processes - such as post-fire forest succession - and land management decisions. The present paper reviews past

Nancy H. F. FrenchA; Eric S. KasischkeB; Ronald J. HallC; Karen A. MurphyD; David L. VerbylaE; Jennifer L. AllenF

179

Protective effect of glucose-insulin-potassium (GIK) on intestinal tissues after severe burn in experimental rats.  

PubMed

Intestinal barrier damage after scald and burns, other trauma or major operations result in severe intestinal infections that cause serious consequences. Therefore, it is important to develop methods to protect intestinal barrier after severe burns. This study used rats that had full-thickness burn of approximately 30% of the total body surface area to investigate the effect and mechanism of glucose-insulin-potassium (GIK) and provide experimental evidence for application of GIK in protecting the intestine after burns or other trauma and major surgeries. The results show that the degree of intestinal damage and plasma diamine oxidase (DAO) levels in GIK (the concentrations of glucose, insulin, sodium chloride and potassium chloride were 100 g l(-1), 70 U l(-1), 9 g l(-1) and 5 g l(-1), respectively) and insulin (30 IU l(-1)) treatment groups were significantly lower than that in control group; the status of anti-inflammatory and pro-inflammatory cytokines and the ratio between them in GIK and insulin groups also significantly improved compared to those in control group; intestinal tumour necrosis factor-alpha (TNF?), nuclear factor-kappaB (NF-?B) and interleukin-10 (IL-10) messenger RNA (mRNA) expression and IL10/TNF? in GIK and insulin groups 2 days after the injury were also improved significantly compared to those in control group. All the indices including body weight detected in GIK group were improved to those in insulin group. Taken together, these results show that GIK and insulin show protective effect on intestine after severe burn, which may relate to controlling hyperglycaemia and regulating intestinal expression of NF?B and pro-inflammatory and anti-inflammatory cytokine genes by GIK and insulin; the protective effect of GIK on intestinal tissue after severe burn is superior to that of using insulin alone, which may attribute to improving the nutritional status by glucose supplement and the relatively higher dose of insulin in the GIK group. PMID:22341647

Wang, Zhanke; Liu, Longyan; Hu, Tian; Lei, Wansheng; Wan, Fusheng; Zhang, Ping; Wang, Zhen; Xu, Jinsong; Zhu, Haohao; Zhu, Zhongzhen; Yang, Yang; Hu, Xiaolu; Xu, Linshui; Wang, Shiliang

2012-09-01

180

Clinical study of cultured epithelial autografts in liquid suspension in severe burn patients.  

PubMed

We address the clinical application of the suspension type cultured epithelial autografts (CEAs), Keraheal (MCTT, Seoul, Korea), along with the effects, application method, merits and demerits thereof. From February 2007 to June 2010, 29 burn patients with extensive burns, participated in the suspension type of CEA clinical test. A widely meshed autograft (1:4-6 ratio) was applied to the wound bed and the suspension type CEA was sprayed with a Tissomat cell sprayer, followed by a Tissucol spray, a fibrin sealant. The patients' (men/women=26/3) median (interquartile ranges) age was 42 (30-49) years old, the burned TBSA was 55 (44-60) %, and the full thickness burn area was 40 (30-46.5) %. The area of Keraheal applied was 800 (400-1200) cm(2). The take rate was 96 (90.5-99) % and 100 (98.5-100) % at 2 and 4 weeks after treatment with Keraheal, respectively. The Vancouver burn scar scale was 5 (4-6.5), 4 (3-6), and 3 (2-4) at 8, 12 and 24 weeks after the Keraheal application. Widely meshed autograft must be applied in massive burns but it's take rate is greatly reduced. The CEAs enhance the take rate of a wide meshed autograft in massive burns and allow for grafting wide meshed autograft together with acellular dermal matrix in some cases. PMID:21531079

Yim, Haejun; Yang, Hyeong Tae; Cho, Yong Suk; Seo, Cheong Hoon; Lee, Boung Chul; Ko, Jang Hyu; Kwak, In Suk; Kim, Dohern; Hur, Jun; Kim, Jong Hyun; Chun, Wook

2011-09-01

181

The Establishment of Several Range Grasses Seeded in Burned and Unburned Slash of Ashe Junipe: (Juniperus Ashei Buchholz)  

E-print Network

requirements fox' thi dejxee ef = ' MASTER OP SCXENCE Vmy, 1960 FJa)ox SubJect: RANGE MANAGRMINY THE ESTABLISHMENT OP SEVERAL RANGE GRASSES SEEDED XN BURNED AND UNBURNED SLASH OP ASHE JUNXPER (JUNIPERUS ASHEI BUCHHOLZ) NORMAN NEAL BONNETT Ajpproved aa...

Bonnett, Norman Neal

2012-06-07

182

Soluble CD163: A novel biomarker for the susceptibility to sepsis in severe burn injuries  

PubMed Central

Objective: Soluble CD163 (sCD163) has been previously shown to play a role in inflammatory and infectious diseases. This study, for the first time, investigates the characteristics and potential values of sCD163 in burn patients. A first look is taken on the changes of sCD163 levels in burn patients by comparing predefined subgroups at single time points. Materials and Methods: Serum samples of 18 patients with burn injuries were collected for biochemical analysis at the time of admission and in a chronological sequence of 12, 24, 48 and 120 h after the injury and were matched to clinical parameters. Statistical analysis was performed using the Mann-Whitney test, Wilcoxon signed rank and Pearson bivariate correlation. Results: Patients with sepsis showed a significant increase of sCD163 levels. sCD163 was correlated with leukocytes (P=0.035) over the time course of 120 h. Patients characterized by a burn size exceeding 25% of the total body surface area (TBSA) showed a significant increase of sCD163 between 12 and 48 h after burn injury (P=0.038). Conclusions: The first view on the characteristics of sCD163 in the serum of burn patients points out that sCD163 seems to be an early indicator for the susceptibility to sepsis. Furthermore, the changes in sCD163 serum levels within the first hours after burn trauma have great potential for early prediction of organ failure after burn injury. PMID:21713197

Piatkowski, Andrzej; Grieb, Gerrit; Das, Rittuparna; Bozkurt, Ahmet; Ulrich, Dietmar; Pallua, Norbert

2011-01-01

183

Effects of glycyl-glutamine dipeptide supplementation on myocardial damage and cardiac function in rats after severe burn injury.  

PubMed

Glutamine decreases myocardial damage in ischemia/reperfusion injury. However, the cardioprotective effect of glutamine after burn injury remains unclear. Present study was to explore the protective effect of glycyl-glutamine dipeptide on myocardial damage in severe burn rats. Seventy-two Wistar rats were randomly divided into three groups: normal control (C), burned control (B) and glycyl-glutamine dipeptide-treated (GG) groups. B and GG groups were inflicted with 30% total body surface area of full thickness burn. The GG group was given 1.5 g/kg glycyl-glutamine dipeptide per day and the B group was given the same dose of alanine via intraperitoneal injection for 3 days. The serum CK, LDH, AST, and, blood lactic acid levels, as well as the myocardium ATP and GSH contents, were measured. The indices of cardiac contractile function and histopathological change were analyzed at 12, 24, 48, and 72 post-burn hours (PBH). The serum CK, LDH, AST and blood lactic acid levels increased, and the myocardium ATP and GSH content decreased in both burned groups. Compared with B group, the CK, LDH, AST and blood lactic acid levels reduced, myocardium ATP and GSH content increased in GG group. Moreover, the inhibition of cardiac contractile function and myocardial histopathological damage were reduced significantly in GG group. We conclude that myocardial histological structure and function were damaged significantly after burn injury, glycyl-glutamine dipeptide supplementation is beneficial to myocardial preservation by improving cardiocyte energy metabolism, increasing ATP and glutathione synthesis. PMID:23638213

Zhang, Yong; Yan, Hong; Lv, Shang-Gun; Wang, Lin; Liang, Guang-Ping; Wan, Qian-Xue; Peng, Xi

2013-01-01

184

Snapshot assessment of RNA-expression in severely burned patients using the PAXgene Blood RNA system: a pilot study.  

PubMed

Severe burn induces destabilization of the immune system and the likelihood of multiple organ dysfunction syndrome. Current studies focus on RNA-expression analyses of immune system cells, however, the present methods of analysis are complex, potentially altered by artefacts and therefore not feasible for routine analyses. The new PAXgene Blood RNA System provides "snapshot" analysis of RNA by immediate cell lysis and prevention of RNA-degradation. Using this system the aim of this study was to analyse intracellular cytokine RNA-expression under clinical conditions. Whole blood samples (PAXgene tubes) of nine severely burned patients were drawn at admission and 6, 12, 24, 48 and 72h after trauma during routine treatment. Four healthy individuals served as control. Analysis of RNA-expression of TNF-alpha as pro-inflammatory and IL-10 as anti-inflammatory mediator was performed by RT-PCR. The RNA-expression of TNF-alpha was increased at 72h after burn. The increase occurred mainly in surviving patients. In contrast, RNA-expression of IL-10 was elevated already at 24h and the difference between surviving and deceased patients occurred earlier. We demonstrate for the first time a "snapshot" analysis of cytokine RNA-expression in severely burned patients under routine conditions. The results correspond well to current hypothesis of posttraumatic MODS development. PMID:17644265

Landes, J; Langer, S; Kirchhoff, C; Schuetz, C; Joneidi-Jafari, H; Stegmaier, J; Mutschler, W; Biberthaler, P

2008-03-01

185

Modelling threats to water quality from fire suppression chemicals and post-fire erosion  

NASA Astrophysics Data System (ADS)

Misapplication of fire retardant chemicals into streams and rivers may threaten aquatic life. The possible threat depends on the contaminant concentration that, in part, is controlled by dispersion within flowing water. In the event of a misapplication, methods are needed to rapidly estimate the chemical mass entering the waterway and the dispersion and transport within the system. Here we demonstrate a new tool that calculates the chemical mass based on aircraft delivery system, fire chemical type, and stream and intersect geometry. The estimated mass is intended to be transferred into a GIS module that uses real-time stream data to map and simulate the dispersion and transport downstream. This system currently accounts only for aqueous transport. We envision that the GIS module can be modified to incorporate sediment transport, specifically to model movement of sediments from post-fire erosion. This modification could support assessment of threats of post-fire erosion to water quality and water supply systems.

Hyde, Kevin; Ziemniak, Chris; Elliot, William; Samuels, William

2014-05-01

186

Long-term post-fire effects on spatial ecology and reproductive output of female Agassizs desert tortoises (Gopherus agassizii) at a wind energy facility near Palm Springs, California, USA  

USGS Publications Warehouse

We studied the long-term response of a cohort of eight female Agassizs desert tortoises (Gopherus agassizii) during the first 15 years following a large fire at a wind energy generation facility near Palm Springs, California, USA. The fire burned a significant portion of the study site in 1995. Tortoise activity areas were mapped using minimum convex polygons for a proximate post-fire interval from 1997 to 2000, and a long-term post-fire interval from 2009 to 2010. In addition, we measured the annual reproductive output of eggs each year and monitored the body condition of tortoises over time. One adult female tortoise was killed by the fire and five tortoises bore exposure scars that were not fatal. Despite predictions that tortoises would make the short-distance movements from burned to nearby unburned habitats, most activity areas and their centroids remained in burned areas for the duration of the study. The percentage of activity area burned did not differ significantly between the two monitoring periods. Annual reproductive output and measures of body condition remained statistically similar throughout the monitoring period. Despite changes in plant composition, conditions at this site appeared to be suitable for survival of tortoises following a major fire. High productivity at the site may have buffered tortoises from the adverse impacts of fire if they were not killed outright. Tortoise populations at less productive desert sites may not have adequate resources to sustain normal activity areas, reproductive output, and body conditions following fire.

Lovich, Jeffrey E.; Ennen, Joshua R.; Madrak, Sheila V.; Loughran, Caleb L.; Meyer, Katherin P.; Arundel, Terence R.; Bjurlin, Curtis D.

2011-01-01

187

Small mammal abundance in Mediterranean post-fire habitats: a role for predators?  

Microsoft Academic Search

We studied patterns of small mammal abundance and species richness in post-fire habitats by sampling 33plots (225m2 each) representing different stages of vegetation recovery after fire. Small mammal abundance was estimated by live trapping during early spring 1999 and vegetation structure was sampled by visual estimation at the same plots. Recentlyburnt areas were characterised by shrubby and herbaceous vegetation with

I. Torre; M. Diaz

2004-01-01

188

Soils Data Related to the 1999 FROSTFIRE Burn  

USGS Publications Warehouse

This report describes the sample collection and processing for U.S. Geological Survey efforts at FROSTFIRE, an experimental burn that occurred in Alaska in 1999. Data regarding carbon, water, and energy dynamics pre-fire, during, and post-fire were obtained in this landscape-scale prescribed burn. U.S. Geological Survey investigators measured changes in the stocks of carbon (C), nitrogen (N), mercury (Hg), and other components in pre- and post-burn soils of this watershed.

Manies, K.L.; Harden, J.W.; Ottmar, R.

2011-01-01

189

Taxonomic and functional responses to fire and post-fire management of a Mediterranean hymenoptera community.  

PubMed

Fire is one of the commonest disturbances worldwide, transforming habitat structure and affecting ecosystem functioning. Understanding how species respond to such environmental disturbances is a major conservation goal that should be monitored using functionally and taxonomically diverse groups such as Hymenoptera. In this respect, we have analyzed the taxonomic and functional response to fire and post-fire management of a Hymenoptera community from a Mediterranean protected area. Thus, Hymenoptera were sampled at fifteen sites located in three burnt areas submitted to different post-fire practices, as well as at five sites located in peripheral unburnt pine forest. A total of 4882 specimens belonging to 33 families, which were classified into six feeding groups according to their dietary preferences, were collected. ANOVA and Redundancy Analyses showed a taxonomic and functional response to fire as all burnt areas had more Hymenoptera families, different community composition and higher numbers of parasitoids than the unburnt area. Taxonomic differences were also found between burnt areas in terms of the response of Hymenoptera to post-fire management. In general the number of parasitoids was positively correlated to the number of potential host arthropods. Parasitoids are recognized to be sensitive to habitat changes, thus highlighting their value for monitoring the functional responses of organisms to habitat disturbance. The taxonomic and functional responses of Hymenoptera suggest that some pine-forest fires can enhance habitat heterogeneity and arthropod diversity, hence increasing interspecific interactions such as those established by parasitoids and their hosts. PMID:21947367

Mateos, Eduardo; Santos, Xavier; Pujade-Villar, Juli

2011-11-01

190

Self-perceptions of young adults who survived severe childhood burn injury.  

PubMed

The transition of pediatric burn survivors into adulthood is accompanied by a reformulation of their self-concept. To anticipate the need for and guide development of appropriate psychosocial interventions, this study examines how young adults who were burned as children perceive themselves and how this perception might affect their self-esteem. Eighty-two young adult burn survivors (45 male, 37 female) were assessed using the Tennessee Self-Concept Scale, 2nd edition (TSCS2) to determine how the participants perceive themselves and their interaction with society. To gain insight into the possible effects of these self-concept scores, relationships were analyzed between self-concept, a behavioral assessment (Young Adult Self-Report [YASR]), and a psychiatric symptom assessment (Structured Clinical Interview for DSM-IV Axis I Disorders [SCID I]). This group of burn survivors scored significantly lower in self-concepts, reflected in TSCS2 subscale scores of physical function, appearance, and sexuality, moral conduct, personal values, academics and work, and identity, than did the reference population. Pearson correlation coefficients showed that as moral, personal, family, and social aspects of self-concept decreased, clinical problems endorsed on the YASR subscales increased, including anxiety, somatic, attention, intrusive, and aggressive. Persons with lower self-concept scores on the TSCS2 personal, family, and social scales were more withdrawn on the YASR. Similarly, those with lower TSCS2 scores on the personal and family scales endorsed significantly more thought problems on the YASR. TSCS2 total self-concept, personal, and all of the supplementary scale scores were significantly lower for the group with an affective disorder. Those whose SCID I scores were consistent with a current anxiety disorder had significantly lower scores for the TSCS2 total self-concept and personal. Lower self-concept was associated with endorsement of SCID symptoms. In summary, the significantly lower self-concept scores on the TSCS2 physical scale are consistent with the physical disfigurement and handicaps common with major burn injuries, and a strong indication of this group's perception of the first impression made when interacting with others. The survivors seem to feel worthwhile within the contexts of family and friends. Although the major limitation of this study using the TSCS2 is the lack of a matched reference population to compare the burn survivors, the TSCS2 does help in gaining insight into the self-esteem issues of the burn survivor population. PMID:23202876

Russell, William; Robert, Rhonda S; Thomas, Christopher R; Holzer, Charles E; Blakeney, Patricia; Meyer, Walter J

2013-01-01

191

Using Landsat data to assess fire and burn severity in the North American boreal forest region: an overview and summary of results  

Microsoft Academic Search

Abstract. There has been considerable interest in the recent literature regarding the assessment,of post-fire effects on forested areas within the North American,boreal forest. Assessing the physical and ecological effects of fire in boreal forests has far-reaching implications for a variety of ecosystem,processes such as post-fire forest succession and land management,decisions. The present paper reviews past assessments,and the studies

Nancy H. F. French; Eric S. Kasischke; Ronald J. Hall; Karen A. Murphy; David L. Verbyla; Elizabeth E. Hoy; Jennifer L. Allen

2008-01-01

192

Experience with severe extensive blistering skin disease in a paediatric burns unit.  

PubMed

Vesiculobullous disorders are thankfully uncommon. A brief overview of the literature is presented together with our experience of managing these cases on a paediatric burns unit in the six years 1992 1998. The advantages of management on such a unit are outlined and include a facility for major dressings and frequent changes and a familiarity with fluid resuscitation in the child with major skin loss. The financial cost of treatment and rehabilitation of these children is high. PMID:10630323

Greenwood, J E; Dunn, K W; Davenport, P J

2000-02-01

193

Seedling establishment along post-fire succession in Mediterranean shrublands dominated by obligate seeders  

NASA Astrophysics Data System (ADS)

Seedlings are expected to be particularly sensitive to the environmental conditions at the time of establishment. Within succession, environmental conditions vary over time and a species will have a better chance to regenerate on a particular place depending on the intrinsic traits that determine its regeneration niche. We examined the regeneration niche and the pattern of seedling establishment along succession of the main species present in a Mediterranean shrubland. The establishment of Cistus albidus, Rosmarinus officinalis and Ulex parviflorus was monitored for three years using seasonal cohorts in three different stages along a successional gradient (post-fire, building and mature). There was a flush of establishment immediately after fire in all species. After this event, there was a decline in establishment as succession progressed, until practically no seedling establishment was found at mature stages. The presence of a thick litter layer probably precluded seedling establishment at this stage. The establishment of Cistus was very closely tied to the post-fire environment, while recruitment of Rosmarinus and Ulex also occurred in the building stage. In contrast to what has been reported in other Mediterranean shrublands, recruitment in our study area was not restricted solely to post-fire stages, and shrubs also recruited opportunistically when open gaps in the canopy were available along succession. The differences in preferred micro-sites for the establishment suggest a differentiation in regeneration niches and a particular set of environmental conditions where the different species would be particularly competitive through succession. Thus, Cistus regenerates mostly in highly perturbed environments, whereas Ulex and Rosmarinus benefit from environments with longer inter-fire periods.

Santana, Victor M.; Baeza, M. Jaime; Maestre, Fernando T.

2012-02-01

194

Emergency percutaneous tracheostomy in a severely burned patient with upper airway obstruction and circulatory arrest.  

PubMed

We report the life-saving use of Griggs percutaneous tracheostomy in an arrested patient with complex upper airway obstruction, as a result of burns, smoke injuries and iterative tracheal intubation attempts. The technique was performed blindly at bedside to treat an acute episode of failed ventilation and intubation and cardiac arrest in a patient with altered neck anatomy. The intervention salvaged the situation, leaving a definitive airway. The feasibility of using an emergency Griggs percutaneous tracheostomy versus cricothyroidotomy is suggested in selected cases. PMID:16325326

Schlossmacher, Pascal; Martinet, Olivier; Testud, Richard; Agesilas, Fabrice; Benhamou, Lon; Gauzre, Bernard Alex

2006-02-01

195

A New Application to Facilitate Post-Fire Recovery and Rehabilitation in Savanna Ecosystems  

NASA Technical Reports Server (NTRS)

The U.S. government spends an estimated $3billion per year to fight forest fires in the United States. Post-fire rehabilitation activities represent a small but essential portion of that total. The Rehabilitation Capability Convergence for Ecosystem Recovery (RECOVER) system is currently under development for Savanna ecosystems in the western U.S. The prototype of this system has been built and will have realworld testing during the summer 2013 fire season. When fully deployed, the RECOVER system will provide the emergency rehabilitation teams with critical and timely information for management decisions regarding stabilization and rehabilitation strategies.

Carroll, Mark L.; Schnase, John L.; Weber, Keith T.; Brown, Molly E.; Gill, Roger L.; Haskett, George W.; Gardner, Tess A.

2013-01-01

196

[Enhancement of gut absorptive function by early enteral feeding enriched with L-glutamine in severe burned miniswines].  

PubMed

14 miniswines (with multiple catheterization and 30% TBSA full thickness burns) were randomly and equally divided into N-Gln group and GLN group. Animals of GLN group were supplied with L-glutamine by 0.64%/kg.d and N-GLN group received equal amount of non-glutamine amino acids. Portal venous blood flow and gut absorptions of glucose, amino acids as well as fat were determined on PBD (post burn day) 1, 4, 7 and 10. The results indicated that the gut absorption obviously decreased in both group on PBD1, but the absorption of glucose and amino acids were much higher in Gln group than that of N-Gln group (P < 0.01). The absorptions of glucose, fat amino acids quickly increased in Gln group from PBD4, and tended to reach the preburn level on PBD7 and PBD10, meanwhile N-Gln group exhibited a slow increase of gut absorption. The absorptions of glucose, fat and amino acids were obviously lower than those of preburn on PBD7 and PBD10 (P < 0.01). This result suggests that oral feeding of glutamine improves efficiently the gut absorptive function after severe burns. PMID:8762553

Yu, B; Wang, S; You, Z

1995-12-01

197

Can post-fire erosion rates be estimated using a novel plastic optical fibre turbidity sensor?  

NASA Astrophysics Data System (ADS)

It is well-established that wildfires can play an important role in the hydrological and erosion response of forested catchments, substantially increasing overland as well as stream flow and associated sediment yield during the earlier stages of the window-of-disturbance. Even so, it continues a major challenge to quantify post-fire erosion rates and their evolution with time-since-fire, both for plot and catchment outlets. This constraint could to some extent be overcome by low-cost turbidity sensors, placed in runoff collection tanks and at multiple points across stream flow sections. Plastic optical fibre turbidity sensors (POF) have, in that respect, much potential, due to their reduced costs, suitability for multiplexing and robustness under adverse monitoring conditions. The present study explores this potential for recently burnt areas, where the characteristics of the transported sediments can be expected to change markedly over time due to exhaustion of ashes. To this end, a large number of plot- and catchment-scale runoff samples were studied that had been collected in the course of 1- to 2-weekly field monitoring of a recently burnt study area in north-central Portugal. Comparison of the sediment and organic matter contents of these samples with turbidity readings obtained with a novel POF sensor suggested that the POF sensor would greatly facilitate obtaining rough estimates of post-fire erosion rates but would not dispense of regular calibration under changing sediment load characteristics.

Keizer, Jan Jacob; Bilro, Lcia; Martins, Martinho M. A.; Machado, Ana Isabel; Karine Boulet, Anne; Vieira, Diana C. S.; Sequeira, Filipa; Prats, Sergio A.; Nogueira, Rogrio

2014-05-01

198

Biomass burning in boreal forests and peatlands: Effects on ecosystem carbon losses and soil carbon stabilization as black carbon  

NASA Astrophysics Data System (ADS)

Climate change has increased both annual area burned and the severity of biomass combustion in some boreal regions. For example, there has been a four-fold increase in late season fires in boreal Alaska over the last decade relative to the previous 50 years. Such changes in the fire regime are expected to stimulate ecosystem carbon losses through fuel combustion, reduced primary production, and increased decomposition. However, biomass burning also will influence the accumulation of black carbon in soils, which could promote long-term soil carbon sequestration. Variations in slope and aspect regulate soil temperatures and drainage conditions, and affect the development of permafrost and thick peat layers. Wet soil conditions in peatlands and permafrost forests often inhibit combustion during wildfires, leading to strong positive correlations between pre- and post- fire organic soil thickness that persist through multiple fire cycles. However, burning can occur in poorly drained ecosystems through smouldering combustion, which has implications for emission ratios of CO2:CH4:CO as well as black carbon formation. Our studies of combustion severity and black carbon concentrations in boreal soils show a negative relationship between concentrations of black carbon and organic carbon in soils post-fire. Relative to well drained stands, poorly drained sites with thick peat layers (such as north-facing stands) had less severe burning and low concentrations of black carbon in mineral soils post-fire. Conversely, drier forests lost a greater proportion of their organic soils during combustion but retained larger black carbon stocks following burning. Overall, we have quantified greater black carbon concentrations in surface mineral soil horizons than in organic soil horizons. This is surprising given that wildfires typically do not consume the entire organic soil layer in boreal forests, and could be indicative of the vulnerability of black carbon formed in organic horizons to burning during subsequent fire events. We also observed no correlations between black carbon stocks in soils and fire frequency, again suggesting that pyrogenic C is susceptible to re-burning, or decay in the post-burn environment. The majority of pyrogenic carbon in boreal soils appears to be derived from recent wildfire activity, as the age of the black carbon pool often is equivalent to stand age. Together these results show that landscape characteristics that control decomposition and the accumulation of peat also have strong controls on combustion processes and post-fire soil chemistry. Warmer temperatures and drier or more variable precipitation patterns are likely to result in more intense burning of organic soils in the future. Research linking the conditions of char formation with its stabilization mechanisms (either consumption in wildfire or microbial attack) will shed light on spatial patterns of black carbon formation and preservation in high latitude soils.

Turetsky, M. R.; Kane, E. S.; Benscoter, B.

2011-12-01

199

Microsite and herbaceous vegetation heterogeneity after burning Artemisia tridentata steppe.  

PubMed

Woody vegetation can create distinct subcanopy and interspace microsites, which often result in resource islands in subcanopies compared to interspaces. This heterogeneity in soil resources contributes to herbaceous vegetation heterogeneity in plant communities. However, information detailing the impact of disturbance, such as fire, that removes the woody vegetation on microsites and herbaceous vegetation heterogeneity is limited. The purpose of this study was to determine the influence of burning on microsites and herbaceous vegetation in subcanopies and interspaces. Six study sites (blocks) were located at the Northern Great Basin Experimental Range in shrub (Artemisia tridentata ssp. wyomingensis (Beetle & A. Young) S.L. Welsh)-bunchgrass plant communities and one half of each block was burned to remove A. tridentata. Herbaceous vegetation and microsite characteristics were measured 2 years post-fire in intact and burned subcanopies and interspaces. Burning resulted in microsite and herbaceous vegetation differences between intact and burned subcanopies and intact and burned interspaces. However, burned subcanopies and burned interspaces appeared to be relatively similar. The similarity in microsite characteristics probably explains the lack of differences in herbaceous vegetation cover and biomass production between burned subcanopies and burned interspaces (P > 0.05). However, some microsite and herbaceous vegetation characteristics differed between burned subcanopies and burned interspaces. Our results suggest that disturbances that remove woody vegetation reduced microsite and herbaceous vegetation heterogeneity within plant communities, but do not completely remove the resource island effect. This suggests soil resource heterogeneity may influence post-fire community assembly and contribute to diversity maintenance. PMID:19066972

Davies, Kirk W; Bates, Jonathan D; James, Jeremy J

2009-03-01

200

Diversity and persistence of ectomycorrhizal fungi and their effect on nursery-inoculated Pinus pinaster in a post-fire plantation in Northern Portugal.  

PubMed

Ectomycorrhizal fungi (ECMF) play an important role in forest ecosystems, often mitigating stress factors and increasing seedling performance. The aim of this study was to investigate the effects of a nursery inoculation on Pinus pinaster growth and on the fungal communities established when reforesting burned areas. Inoculated P. pinaster saplings showed 1.5-fold higher stem height than the non-inoculated controls after a 5 year growth period, suggesting that fungal inoculation could potentiate tree growth in the field. Ordination analysis revealed the presence of different ECMF communities on both plots. Among the nursery-inoculated fungi, Laccaria sp., Rhizopogon sp., Suillus bovinus and Pisolithus sp. were detected on inoculated Pinus saplings on both sampling periods, indicating that they persisted after field establishment. Other fungi were also detected in the inoculated plants. Phialocephala sp. was found on the first assessment, while Terfezia sp. was detected on both sampling periods. Laccaria sp. and Rhizopogon sp. were identified in the control saplings, belonging however to different species than those found in the inoculated plot. Inocybe sp., Thelephora sp. and Paxillus involutus were present on both sampling periods in the non-inoculated plots. The results suggest that ECMF inoculation at nursery stage can benefit plant growth after transplantation to a post-fire site and that the inoculated fungi can persist in the field. This approach has great potential as a biotechnological tool to aid in the reforestation of burned areas. PMID:25004993

Franco, Albina R; Sousa, Nadine R; Ramos, Miguel A; Oliveira, Rui S; Castro, Paula M L

2014-11-01

201

[Subcellular distribution of trace elements in wound granulation tissue of severe burn patients by inductively coupled plasma mass spectrometry].  

PubMed

A method for simultaneous and quantitative determination of Cr, Mn, Fe, Co, Cu, Zn, Se and Cd elements in the subcellular fractions of nuclei, mitochondria, lysosome, microsome and cytosol of wound granulation tissue of severe burn patients by octopole reaction system (ORS) inductively coupled plasma mass spectrometry (ICP-MS) was established. Using differential centrifugation, the sample is separated into different subcellular fractions. The subcellular fraction was digested by HNO3 + H2O2 with microwave digestion followed by dilution with ultrapure water then the above 8 trace elements in the solution were analyzed directly by ICP-MS. In the presented method, using ORS eliminates the polyatomic interferences caused by the matrixes. Rh as internal standard element was used to compensate matrix effect and signal drift. The detection limits of the 8 elements are in the range of 0.72-33.05 ng x L(-1), and the RSD is less than 8.4%. The results showed that the levels of some elements in subcellular fractions of wound granulation tissues were significantly different from those of normal skin tissues. ORS-ICP-MS is a useful tool for simultaneous determination of multi-elements in wound granulation tissue of severe burn patients, and could be widely used in other biological samples analysis. PMID:25358187

Xu, Xiang-rong; Xie, Hua-lin; Fu, Liang; Yang, Hua-juan; Huang, Jian-hua

2014-06-01

202

Sources of debris flow material in burned areas Paul M. Santi a,, Victor G. deWolfe a  

E-print Network

Sources of debris flow material in burned areas Paul M. Santi a,, Victor G. deWolfe a , Jerry D The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through

203

Effect of thinning and prescribed burning on crown fire severity in ponderosa pine forests  

Microsoft Academic Search

Fire exclusion policies have affected stand structure and wildfire hazard in north American ponderosa pine forests. Wildfires are becoming more severe in stands where trees are densely stocked with shade-tolerant understory trees. Although forest managers have been employing fuel treatment techniques to reduce wildfire hazard for decades, little scientific evidence documents the success of treatments in reducing fire severity. Our

Jolie PolletA; Philip N. OmiB

2002-01-01

204

Carbon and water vapour exchange in a recently burned east boreal jack pine stand, Quebec, Canada  

NASA Astrophysics Data System (ADS)

The circumpolar boreal forest is an extensive carbon (C) reservoir, storing an estimated 88 petagrams (Pg) of C in vegetation biomass with an additional 471 PgC residing within the soil itself. In the North American boreal, fire disturbance acts as the main stand-renewing agent along an approximate 100-year return interval. However, recent studies suggest that fire intensity and severity are increasing, driven by disproportionate climate warming of the northern latitudes. While estimates of direct C emissions from combustion are becoming more accurate, indirect loss due to post-fire effects on decomposition and regeneration has only recently become a focus of research. Paradoxically, it has been estimated that post-fire C releases are in the order of three times the amount directly released during initial combustion. In this study, we examine carbon and water exchange in a 6-year old, post-burn, jack pine stand located in the eastern James Bay region of the Canadian boreal; an area currently under-represented in fire studies. Over 1.5 years, covering two growing seasons and the spring and fall transitions, we measured net CO2 and energy exchange at the ecosystem level using an eddy covariance tower, and supplemented this with chamber measurements of soil respiration. At this stage of recovery, while demonstrating diurnal and seasonal patterns of exchange, overall the site was a net source of C and water to the atmosphere with brief periods of C sink.

Nugent, K.; Strachan, I. B.

2013-12-01

205

Randomized Controlled Trial to Determine the Efficacy of Long-Term Growth Hormone Treatment in Severely Burned Children  

PubMed Central

Background Recovery from a massive burn is characterized by catabolic and hypermetabolic responses that persist up to 2 years and impair rehabilitation and reintegration. The objective of this study was to determine the effects of long-term treatment with recombinant human growth hormone (rhGH) on growth, hypermetabolism, body composition, bone metabolism, cardiac work, and scarring in a large prospective randomized single-center controlled clinical trial in pediatric patients with massive burns. Patients and Methods A total of 205 pediatric patients with massive burns over 40% total body surface area were prospectively enrolled between 1998 and 2007 (clinicaltrials.gov ID NCT00675714). Patients were randomized to receive either placebo (n = 94) or long-term rhGH at 0.05, 0.1, or 0.2 mg/kg/d (n = 101). Changes in weight, body composition, bone metabolism, cardiac output, resting energy expenditure, hormones, and scar development were measured at patient discharge and at 6, 9, 12, 18, and 24 months postburn. Statistical analysis used Tukey t test or ANOVA followed by Bonferroni correction. Significance was accepted at P < 0.05. Results RhGH administration markedly improved growth and lean body mass, whereas hypermetabolism was significantly attenuated. Serum growth hormone, insulin-like growth factor-I, and IGFBP-3 was significantly increased, whereas percent body fat content significantly decreased when compared with placebo, P < 0.05. A subset analysis revealed most lean body mass gain in the 0.2 mg/kg group, P < 0.05. Bone mineral content showed an unexpected decrease in the 0.2 mg/kg group, along with a decrease in PTH and increase in osteocalcin levels, P < 0.05. Resting energy expenditure improved with rhGH administration, most markedly in the 0.1 mg/kg/d rhGH group, P < 0.05. Cardiac output was decreased at 12 and 18 months postburn in the rhGH group. Long-term administration of 0.1 and 0.2 mg/kg/d rhGH significantly improved scarring at 12 months postburn, P < 0.05. Conclusion This large prospective clinical trial showed that long-term treatment with rhGH effectively enhances recovery of severely burned pediatric patients. PMID:19734776

Branski, Ludwik K.; Herndon, David N.; Barrow, Robert E.; Kulp, Gabriela A.; Klein, Gordon L.; Suman, Oscar E.; Przkora, Rene; Meyer, Walter; Huang, Ted; Lee, Jong O.; Chinkes, David L.; Mlcak, Ronald P.; Jeschke, Marc G.

2014-01-01

206

Regional constraints to biological nitrogen fixation in post-fire forest communities  

USGS Publications Warehouse

Biological nitrogen fixation (BNF) is a key ecological process that can restore nitrogen (N) lost in wildfire and shape the pace and pattern of post-fire forest recovery. To date, there is limited information on how climate and soil fertility interact to influence different pathways of BNF in early forest succession. We studied asymbiotic (forest floor and soil) and symbiotic (the shrub Ceanothus integerrimus) BNF rates across six sites in the Klamath National Forest, California, USA. We used combined gradient and experimental phosphorus (P) fertilization studies to explore cross-site variation in BNF rates and then related these rates to abiotic and biotic variables. We estimate that our measured BNF rates 22 years after wildfire (6.112.1 kg Nha-1yr-1) are unlikely to fully replace wildfire N losses. We found that asymbiotic BNF is P limited, although this is not the case for symbiotic BNF in Ceanothus. In contrast, Ceanothus BNF is largely driven by competition from other vegetation: in high-productivity sites with high potential evapotranspiration (Et), shrub biomass is suppressed as tree biomass increases. Because shrub biomass governed cross-site variation in Ceanothus BNF, this competitive interaction led to lower BNF in sites with high productivity and Et. Overall, these results suggest that the effects of nutrients play a larger role in driving asymbiotic than symbiotic fixation across our post-fire sites. However, because symbiotic BNF is 890x greater than asymbiotic BNF, it is interspecific plant competition that governs overall BNF inputs in these forests.

Yelenik, Stephanie; Perakis, Steven; Hibbs, David

2013-01-01

207

Use of 1H-nuclear magnetic resonance to screen a set of biomarkers for monitoring metabolic disturbances in severe burn patients  

PubMed Central

Introduction To establish a plasma metabolomics fingerprint spectrum for severe burn patients and to use it to identify a set of biomarkers that could be used for clinical monitoring. Methods Twenty-one severe burn patients and three healthy control individuals were enrolled in this study, and the plasma samples from patients and healthy individuals were collected for nuclear magnetic resonance (NMR) measurements. The NMR spectra were analyzed using principal component analysis (PCA) and partial least squares (PLS) in order to establish the metabolomics fingerprint representing the changes in metabolism and to select the major biomarkers. Results NMR spectra of the plasma samples showed significant differences between burn patients and healthy individuals. Using metabolomics techniques, we found an Eigen-metabolome that consists of 12 metabolites, which are regulated by 103 enzymes in a global metabolic network. Among these metabolites, ?-ketoisovaleric acid, 3-methylhistidine, and ?-hydroxybutyric acid were the most important biomarkers that were significantly increased during the early stage of burn injury. These results suggest that the mitochondrial damage and carbohydrate, protein and fatty acid metabolism disturbances occur after burn injury. Our analysis also show that histone deacetylases, which are protein transcription suppressors, were remarkably increased and indicate that protein transcription was inhibited and anabolism was restrained during the early stage of burn injury. Conclusions Metabolomics techniques based on NMR can be used to monitor metabolism in severe burn patients. Our study demonstrates that integrated 1H-NMR metabolome and global metabolic network analysis is useful for visualizing complex metabolic disturbances after severe burn injury and may provide a new quantitative injury severity evaluation for future clinical use. Trial registration Chinese Clinical Trial Registry ChiCTR-OCC-12002145. Registered 25 April 2012. PMID:25059459

2014-01-01

208

Interactive effects of burn severity and canopy cover on ecophysiology of tree seedlings in boreal forests  

Technology Transfer Automated Retrieval System (TEKTRAN)

Wildfires are an important disturbance because they improve habitat conditions for establishing plants. Fires of differing severity can have dramatically different impacts on habitat, particularly when coupled with canopy-level disturbances. In a boreal forest, we outplanted seedlings of four specie...

209

Moderate drop in water table increases peatland vulnerability to post-fire regime shift.  

PubMed

Northern and tropical peatlands represent a globally significant carbon reserve accumulated over thousands of years of waterlogged conditions. It is unclear whether moderate drying predicted for northern peatlands will stimulate burning and carbon losses as has occurred in their smaller tropical counterparts where the carbon legacy has been destabilized due to severe drainage and deep peat fires. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland subjected to decadal drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition previously observed within only severely disturbed tropical peatlands. The combined impact of moderate drainage followed by wildfire converted the low productivity, moss-dominated peatland to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy of stored peat carbon. PMID:25623290

Kettridge, N; Turetsky, M R; Sherwood, J H; Thompson, D K; Miller, C A; Benscoter, B W; Flannigan, M D; Wotton, B M; Waddington, J M

2015-01-01

210

Moderate drop in water table increases peatland vulnerability to post-fire regime shift  

PubMed Central

Northern and tropical peatlands represent a globally significant carbon reserve accumulated over thousands of years of waterlogged conditions. It is unclear whether moderate drying predicted for northern peatlands will stimulate burning and carbon losses as has occurred in their smaller tropical counterparts where the carbon legacy has been destabilized due to severe drainage and deep peat fires. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland subjected to decadal drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition previously observed within only severely disturbed tropical peatlands. The combined impact of moderate drainage followed by wildfire converted the low productivity, moss-dominated peatland to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy of stored peat carbon. PMID:25623290

Kettridge, N.; Turetsky, M. R.; Sherwood, J. H.; Thompson, D. K.; Miller, C. A.; Benscoter, B. W.; Flannigan, M. D.; Wotton, B. M.; Waddington, J. M.

2015-01-01

211

University of Nevada, Reno Fire patterns and post-fire vegetation response in a Mojave Desert spring ecosystem  

E-print Network

University of Nevada, Reno Fire patterns and post-fire vegetation response in a Mojave Desert-Fire Vegetation Response In A Mojave Desert Spring Ecosystem be accepted in partial fulfillment School December, 2009 THE GRADUATE SCHOOL #12;i Abstract Desert spring ecosystems provide critical

Weisberg, Peter J.

212

Post-fire recovery of sagebrush communities: Assessment using SPOT5 and very large-scale aerial imagery  

Technology Transfer Automated Retrieval System (TEKTRAN)

Much interest lies in the long-term recovery rates of sagebrush communities after fire in the western USA as sagebrush communities comprise millions of hectares of rangelands and important wildlife habitat. Little is known about post-fire changes in sagebrush canopy cover over time, especially at a...

213

Influence of vegetation spatial heterogeneity on soil enzyme activity in burned Mediterranean areas  

NASA Astrophysics Data System (ADS)

Mediterranean ecosystems are commonly considered resilient to wildfires. However, depending on fire severity and recurrence, post-fire climatic conditions and plant community type, the recovery rate of the vegetation can greatly vary. Often, the post-fire vegetation cover remains low and sparsely distributed many years after the wildfire, which could have profound impacts on ecosystem functioning. In this work, we studied the influence of vegetation patchiness on soil enzyme activity (acid phosphatase, ?-glucosidase and urease), at the patch and landscape scales, in degraded dry Mediterranean shrublands affected by wildfires. At the patch scale, we assessed the variation in soil enzyme between bare soils and vegetation patches. At the landscape scale, we studied the relationships between soil enzyme activity and various landscape metrics (total patch cover, average interpatch length, average patch width, and patch density). The study was conducted in 19 sites in the Valencia Region (eastern Spain), which had been affected by large wildfires in 1991. Site selection aimed at capturing a wide range of the variability of post-fire plant recovery rates in Mediterranean areas. The activities of the three enzymes were significantly higher in soils under the vegetation canopies than in adjacent bare areas, which we attributed to the effect of plants on the soil amount of both enzyme substrates and enzymes. The differences between bare and plant microsites were larger in the case of the acid phosphatase and less marked for urease. The activity of acid phosphatase was also higher under patches of resprouter species than under patches of seeder species, probably due to the faster post-fire recovery and older age of resprouter patches in fire-prone ecosystems. Soil enzyme activities of ?-glucosidase and urease in both bare soils and vegetation patches showed no relationships with any of the landscape metrics analysed. However, the activity of acid phosphatase increased linearly with the total cover of vegetation patches, which is consistent with the strong effect of plant patches on the activity of this enzyme. According to our results, variations in the cover and composition of vegetation patches may have profound impacts on the soil enzyme activity and associated nutrient cycling processes in burned Mediterranean areas, particularly in the case of phosphorus. Keywords: wildfires, landscape metrics, Mediterranean shrublands, soil enzyme activity, resprouter species.

Mayor, . G.; Goirn, S.; Bautista, S.

2009-04-01

214

Burned and unburned peat water repellency: Implications for peatland evaporation following wildfire  

NASA Astrophysics Data System (ADS)

Water repellency alters soil hydrology after periods of wildfire, potentially modifying the ecosystem recovery to such disturbance. Despite this potential importance, the extent and severity of water repellency within burned peatlands and its importance in regulating peatland recovery to wildfire disturbance remains poorly understood. We characterised the water repellency of peat in a burned (one year post-fire) and unburned peatland in the Western Boreal Plain utilising the water drop penetration time and ethanol droplet molarity tests. Burned Sphagnum moss and feather moss sites had a more severe degree of water repellency than unburned sites, with differences being more pronounced between burned and unburned feather moss sites. Burned feather moss exhibited the most extreme water repellency, followed by unburned feather moss, and burned Sphagnum. The severity of water repellency varied with depth through the near surface of the moss/peat profile. This was most evident within the burned feathermoss where more extreme water repellency was observed at the near-surface compared to the surface, with the most extreme water repellency found at 1 and 5 cm depths. Unburned Sphagnum was completely hydrophilic at all depths. We suggest that the extreme water repellency in near-surface feather moss peat acts as a barrier that impedes the supply of water to the surface that replaces that lost via evaporation. This leads to drying of the near-surface vadose zone within feather moss areas and a concomitantly large decrease in peatland evaporation within feather moss dominated peatlands. This negative feedback mechanism likely enhances the resilience of such peatland to wildfire disturbance, maintaining a high water table position, thereby limiting peat decomposition. In comparison, such a feedback is not observed strongly within Sphagnum, leaving Sphagnum dominated peatlands potentially vulnerable to low water table positions post disturbance.

Kettridge, N.; Humphrey, R. E.; Smith, J. E.; Lukenbach, M. C.; Devito, K. J.; Petrone, R. M.; Waddington, J. M.

2014-05-01

215

Restoration of facial form and function after severe disfigurement from burn injury by a composite facial allograft.  

PubMed

Composite facial allotransplantation is emerging as a treatment option for severe facial disfigurements. The technical feasibility of facial transplantation has been demonstrated, and the initial clinical outcomes have been encouraging. We report an excellent functional and anatomical restoration 1 year after face transplantation. A 59-year-old male with severe disfigurement from electrical burn injury was treated with a facial allograft composed of bone and soft tissues to restore midfacial form and function. An initial potent antirejection treatment was tapered to minimal dose of immunosuppression. There were no surgical complications. The patient demonstrated facial redness during the initial postoperative months. One acute rejection episode was reversed with a brief methylprednisolone bolus treatment. Pathological analysis and the donor's medical history suggested that rosacea transferred from the donor caused the erythema, successfully treated with topical metronidazol. Significant restoration of nasal breathing, speech, feeding, sensation and animation was achieved. The patient was highly satisfied with the esthetic result, and regained much of his capacity for normal social life. Composite facial allotransplantation, along with minimal and well-tolerated immunosuppression, was successfully utilized to restore facial form and function in a patient with severe disfigurement of the midface. PMID:21214855

Pomahac, B; Pribaz, J; Eriksson, E; Annino, D; Caterson, S; Sampson, C; Chun, Y; Orgill, D; Nowinski, D; Tullius, S G

2011-02-01

216

Impacts of the post-fire erosion processes compared with the agricultural erosion rates for a mountain catchment in NW Iberia  

NASA Astrophysics Data System (ADS)

Mediterranean ecosystems are very vulnerable to soil erosion by water due to particular characteristics of climate, lithology and land use history. Moreover, the foreseen climate changes might worsen land degradation and desertification, in which soil erosion has been classified as one of the most important driving forces. In this context, the frequent forest fires seen in some Mediterranean regions can case disturbances to vegetation cover and enhance soil erosion processes. This work addresses this issue for the Caramulo mountain range, NW Iberia. In the past century, large land use changes occurred due to massive afforestation. Changes from mixed natural forest cover and shrublands to Pine, the introduction of Eucalyptus plantations and, more recently, a trend for the substitution of pines by eucalypts, are the evidence of a large and rapid land use change in the last decades. Forest fires started to occur as afforestation proceeded, as a consequence of the disappearance of pasturage and accumulation of highly inflammable material; they became more frequent after the 1960's and became a determinant factor for land use changes in this region. Data collection focused on the Macieira de Alcoba catchment, a headwater agro-forested catchment (94 ha) located in this region. It has a wet Mediterranean climate, with an average annual rainfall of about 1300 mm (2002-2012), concentrated in autumn and winter, while spring and summer are dryer seasons. The mean annual temperature is 14C and in summer it can reach 35C. The land use is mixed, with forest and agriculture lands covering respectively 60 and 35% of the catchment area, 5% being built-up areas in the village of Macieira de Alcoba. In the last decades, this catchment suffered several forest fires (in 1969, 1986, 1991, and 2011). Erosion processes are related with periods of low vegetation cover in autumn in fields with a pasture-corn rotation, but also with forest plantations after clear-cutting and especially after forest fires. The last forest fire in August 2011 burned 10% of the total area in the north-west part of the catchment. Post-fire management operations 9 month after the fire (clear-cutting and deep plowing operations) and after plantation of "Quercus robur" left the soil exposed, and relatively mild rainstorms led to large amounts of soil loss, including a large amount of rills and other erosion features. This constituted an opportunity to compare these erosion rates with the ones observed in agricultural fields for similar edapho-climatic conditions, and also observe distinct timing of erosion occurrence which was linked with different periods when soils are exposed. This communication presents the assessment of the impact of this fire on soil erosion rates, where results indicate that soil losses after soil preparation for forest replanting might be equivalent, in long-term, to soil losses in agricultural fields.

Marisa Santos, Juliana; Nunes, Joo Pedro; Bernard-Jannin, Lonard; Gonzalez Pelayo, Oscar; Keizer, Jan Jacob

2014-05-01

217

Estimation of Crown Biomass of Pinus spp. From Landsat TM and Its Effect on Burn Severity in a Spanish Fire Scar  

Microsoft Academic Search

Remote sensing has been shown to be an efficient tool in the study of forest-fire processes. However, a lack of information on the amount of biomass burnt reduces the accuracy of fire severity and emission models. In this study, we use imagery from the Landsat Thematic Mapper to map crown biomass and burn severity for a large Mediterranean area. Considering

Alberto Garcia-Martin; Fernando Perez-Cabello; Juan de la Riva Fernandez; Raquel Montorio Lloveria

2008-01-01

218

Effect of gamma-hydroxybutyrate on keratinocytes proliferation: A preliminary prospective controlled study in severe burn patients  

PubMed Central

Background: Hypermetabolism and hyposomatotropism related to severe burns lead to impaired wound healing. Growth hormone (GH) boosts wound healing notably following stimulation of the production of insulin-like growth factor-1 (IGF1), a mitogen factor for keratinocytes. Gamma-hydroxybutyrate (GHB) stimulates endogenous GH secretion. Aim: To assess effects of GHB sedation on keratinocytes proliferation (based on immunohistochemical techniques). Design: Monocentric, prospective, controlled trial. Materials and Methods: Patients (aging 18-65 years, burn surface area >30%, expected to be sedated for at least one month) were alternately allocated, at the 5th day following injury, in three groups according to the intravenous GHB dose administered for 21 days: Evening bolus of 50 mg/kg (Group B), continuous infusion at the rate of 10 mg/kg/h (Group C), or absence of GHB (Group P). They all received local standard cares. Immunohistochemistry (Ki67/MIB-1, Ulex europaeus agglutinin-1 and Mac 387 antibodies) was performed at D21 on adjacent unburned skin sample for assessing any keratinocyte activation. Serum IGF1 levels were measured at initiation and completion of the protocol. Statistical Analysis: Categorical variables were compared with Chi-square test. Comparisons of medians were made using Kruskal-Wallis test. Post hoc analyses were performed using Mann-Whitney test with Bonferroni correction for multiple comparisons. A P < 0.05 was considered to be statistically significant. Results: A total of 14 patients completed the study (Group B: n = 5, Group C: n = 5, Group P: n = 4). Continuous administration of GHB was associated with a significant higher Ki67 immunolabeling at D21 (P = 0.049) and with a significant higher increase in the IGF1 concentrations at D21 (P = 0.024). No adverse effects were disclosed. Conclusions: Our preliminary data support a positive effect of GHB on keratinocyte proliferation and are encouraging enough to warrant large prospective studies. PMID:25024938

Rousseau, Anne-Franoise; Bargues, Laurent; Bever, Herv Le; Vest, Philippe; Cavalier, Etienne; Ledoux, Didier; Pirard, Grald E.; Damas, Pierre

2014-01-01

219

Analysis of Post-Fire Vegetation Recovery in the Mediterranean Basin using MODIS Derived Vegetation Indices  

NASA Astrophysics Data System (ADS)

The Mediterranean basin region is highly susceptible to wildfire, with approximately 60,000 individual fires and half a million ha of natural vegetation burnt per year. Of particular concern in this region is the impact of repeated wildfires on the ability of natural lands to return to a pre-fire state, and of the possibility of desertification of semi-arid areas. Given these concerns, understanding the temporal patterns of vegetation recovery is important for the management of environmental resources in the region. A valuable tool for evaluating these recovery patterns are vegetation indices derived from remote sensing data. Previous research on post-fire vegetation recovery conducted in this region has found significant variability in recovery times across different study sites. It is unclear what the primary variables are affecting the differences in the rates of recovery, and if any geographic patterns of behavior exist across the Mediterranean basin. This research has primarily been conducted using indices derived from Landsat imagery. However, no extensive analysis of vegetation regeneration for large regions has been published, and assessment of vegetation recovery on the basis of medium-spatial resolution imagery such as that of MODIS has not yet been analyzed. This study examines the temporal pattern of vegetation recovery in a number of fire sites in the Mediterranean basin, using data derived from MODIS 16 -day composite vegetation indices. The intent is to develop a more complete picture of the temporal sequence of vegetation recovery, and to evaluate what additional factors impact variations in the recovery sequence. In addition, this study evaluates the utility of using MODIS derived vegetation indices for regeneration studies, and compares the findings to earlier studies which rely on Landsat data. Wildfires occurring between the years 2000 and 2004 were considered as potential study sites for this research. Using the EFFIS dataset, all wildfires covering an area of at least 1,000 ha were identified. The land-cover / land-use of these large fires sites were then evaluated using the CORINE land-cover data set, and the sites dominated primarily by natural vegetation were identified. Once these candidate sites were identified, a subset was selected across a range of locations and site characteristics for post-fire recovery analysis. To evaluate the post-fire recovery sequence in these locations, time-series of NDVI, EVI, and LAI were derived using 250 meter resolution MODIS data (MOD13Q). The vegetation index values were then compared to pre-fire values to determine recovery relative to the pre-fire vegetative state. The variability in rates of recovery are then considered with respect to moisture availability, vegetation type, and local site conditions to evaluate if any patterns of recovery can be determined.

Hawtree, Daniel; San Miguel, Jesus; Sedano, Fernando; Kempeneers, Pieter

2010-05-01

220

Differential response of bird functional traits to post-fire salvage logging in a boreal forest ecosystem  

NASA Astrophysics Data System (ADS)

The concept of functional trait-environment relationship posits that species in a local community should possess similar traits that match the selective environment. The present study examines species trait-habitat (using Fourth-corner and RLQ analyses) and habitat occupancy patterns (logistic regression models) of bird assemblages in boreal forest stands following disturbances by forest fire and salvage logging. The stands differed in the amount and composition of residual tree retention, salvage- and aquatic-edges, degree of burn severity (all measured at 100 and 500 m buffers), as well as landscape-level variables such as distance to previously burned forests. Tests of trait-habitat relationships showed that canopy-nesters and bark- and foliage- insectivores required high levels of residual trees of low burn severity, with the feeding guilds showing affinity for different stand composition. In contrast, ground-nesters and omnivores thrived in salvaged areas and associated edges. In addition, cavity-nesting and ground-foragers were associated with severely burned stands. The species' habitat occupancy patterns were commensurate with trait requirements, which also appeared to be scale-dependent. For example, some fire-associated species had high occupancy probability in severely burned stands at small-scale (100 m buffer), which was consistent with their cavity-nesting trait. This pattern, however, was not evident at large-scale, where their feeding requirement (bark-insectivores) for low-severity burns dominated. Our study suggests that trait-habitat relationships can provide critical information to the complex ways species' relate to key habitat factors following natural and anthropogenic disturbances.

Azeria, Ermias T.; Ibarzabal, Jacques; Hbert, Christian; Boucher, Jonathan; Imbeau, Louis; Savard, Jean-Pierre L.

2011-05-01

221

Serial experimental and clinical studies on the pathogenesis of multiple organ dysfunction syndrome (MODS) in severe burns  

Microsoft Academic Search

These serial clinical and experimental studies were designed to clarify the pathogenesis of postburn MODS. Both animal and clinical studies were performed. In animal experiments, 46 male cross-bred dogs were cannulated with Swan-Ganz catheters and 39 of them were inflicted with 50% TBSA third degree burns (7 were used as controls). The burned dogs were randomly divided into 4 groups:

Y.-S. Huang; Z.-C. Yang; X.-S. Liu; F.-M. Chen; B.-B. He; A. Li; R. S. Crowther

1998-01-01

222

Adult root structure of mediterranean shrubs: relationship with post-fire regenerative syndrome.  

PubMed

Life-history attributes can impose differences on root system structures and properties related to nutrient and water uptake. Here, we assess whether plants with different post-fire regenerative strategies (resprouters, seeders and seeder-resprouters) differ in the topological and morphological properties of their root systems (external path, altitude, magnitude, topological index, specific root length, root length, root-to-shoot biomass ratio, length of the main axis of the root system and link length). To achieve these objectives, we sampled individuals from eight woody species in a shrubland located in the western Mediterranean Basin. We sampled the adult root systems using manual field excavation with the aid of an air compressor. The results indicate that resprouters have a higher root-to-shoot ratio, confirming their higher ability to store water, starch and nutrients and to invest in the belowground biomass. Moreover, this pattern would allow them to explore deeper parts of the soil layers. Seeder species would benefit from a higher specific root length, pointing to increased relative root growth and water uptake rates. This study confirms that seeders and resprouters may differ in nutrient and water uptake ability according to the characteristics of their root system. Species that can both resprout and establish seedlings after fire had different patterns of root system structure; in particular, root:shoot ratio was more similar to resprouters and specific root length was closer to seeders, supporting the distinct functional performance of this type of species. PMID:23870010

Saura-Mas, S; Lloret, F

2013-07-22

223

Pre- and Post-fire analysis using GIS and satellite data  

NASA Astrophysics Data System (ADS)

Surveillance of our forests has greatly been improved during the last decades with the use of satellite data Remote Sensing techniques have demonstrated its usefulness to generate fire risk maps as well as giving fire early alerts even more making easier an estimation of areas affected by them A brief description of the current methodologies for fire risk indexes and burnt area mapping using AVHRR and MODIS data is shown in this paper These methods have been validated for previous and post fire conditions in a specific area with the proposal of some improvements to them For the fire risk modelling factors like the elevation proximity to main roads ground data and fire events in addition to satellite data are considered in a Geographical Information System in order to define a map of risk over a Digital Elevation Model As a test site the Canary Islands SPAIN have been considered in order to prove the suitability of these tools for a regional scale application in an area were multiple microclimates are present mainly due to its steep orography and the trade winds A comparison between the final products using these two types of satellite data is also made

Hernandez-Leal, P. A.; Gonzalez-Calvo, A.; Arbelo, M.; Barreto, A.

224

Development of a Test Protocol for Spacecraft Post-Fire Atmospheric Cleanup and Monitoring  

NASA Technical Reports Server (NTRS)

Detecting and extinguishing fires, along with post-fire atmospheric cleaning and monitoring, are vital components of a spacecraft fire response system. Preliminary efforts focused on the technology evaluation of these systems under realistic conditions are described in this paper. While the primary objective of testing is to determine a smoke mitigation filter s performance, supplemental evaluations measuring the smoke-filled chamber handheld commercial off-the-shelf (COTS) atmospheric monitoring devices (combustion product monitors) are also conducted. The test chamber consists of a 1.4 cubic meter (50 cu. ft.) volume containing a smoke generator. The fuel used to generate the smoke is a mixture of polymers in quantities representative of materials involved in a circuit board fire as a typical spacecraft fire. Two fire conditions were examined: no flame and flame. No flame events are produced by pyrolyzing the fuel mixture in a quartz tube furnace with forced ventilation to produce a white, lingering-type smoke. Flame events ignite the smoke at the outlet of the tube furnace producing combustion characterized by a less opaque smoke with black soot. Electrochemical sensor measurements showed carbon monoxide is a major indicator of each fire. Acid gas measurements were recorded, but cross interferents are currently uncharacterized. Electrochemical sensor measurements and sample acquisition techniques from photoacoustic sensors are being improved. Overall, this research shows fire characterization using traditional analytical chemistry techniques is required to verify measurements recorded using COTS atmospheric monitoring devices.

Zuniga, David; Hornung, Steven D.; Haas, Jon P.; Graf, John C.

2009-01-01

225

Post-fire seeding on Wyoming big sagebrush ecological sites: Regression analyses of seeded nonnative and native species densities  

Microsoft Academic Search

Since the mid-1980s, sagebrush rangelands in the Great Basin of the United States have experienced more frequent and larger wildfires. These fires affect livestock forage, the sagebrush\\/grasses\\/forbs mosaic that is important for many wildlife species (e.g., the greater sage grouse (Centrocercus urophasianus)), post-fire flammability and fire frequency. When a sagebrush, especially a Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis (Beetle

Mark E. Eiswerth; Karl Krauter; Sherman R. Swanson; Mike Zielinski

2009-01-01

226

Biomass burning emissions estimates in the boreal forests of Siberia  

NASA Astrophysics Data System (ADS)

Wildfire is the main boreal forest disturbance and can burn 10-30 million hectares annually, thus modifying the global carbon budget through direct fire emissions, postfire biogenic emissions, and by maintaining or altering ecosystems through establishing the beginning and end of successional processes. Fires in the Russian boreal forest range from low-severity surface fires to high-severity crown fires. Estimates of carbon emissions from fires in Russian boreal forests vary substantially due to differences in ecosystems types, burned area calculations, and the amount of fuel consumed. There is an urgent need to obtain more accurate and impartial fire carbon loss estimates in the boreal forests of Siberia due to their considerable contribution to the regional and global carbon balance. We examined uncertainties in estimates of carbon emissions. Area burned in the Siberian region was analyzed and compared using distinct methodologies. Differences between mapped ecosystems were also compared and contrasted to evaluate the potential for error resulting from disparate vegetation structure and fuel consumption estimates. Accurate fuel consumption estimates are obtained in the course of fire experiments with pre- and post-fire biomass measuring. Our large-scale experiments carried out in the course of the FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project provided quantitative and qualitative data on ecosystem state and carbon emissions due to fires of known behavior in major forest types of Siberia that could be used to verify large-scale carbon emissions estimates. Carbon emissions from fires vary annually and interannually and can increase several times in extreme fire years in comparison to normal fire years. Climate change and increasing drought length have increased the probability of high-severity fire occurrences. This would result in greater carbon losses and efflux to the atmosphere. This research was supported by NASA LCLUC Program, Fulbright Program, and Russian Academy of Sciences.

Kukavskaya, E. A.; Ivanova, G. A.; Soja, A. J.; Conard, S. G.

2012-04-01

227

Predicting severity of pathological scarring due to burn injuries: a clinical decision making tool using Bayesian networks.  

PubMed

It is important for clinicians to understand which are the clinical signs, the patient characteristics and the procedures that are related with the occurrence of hypertrophic burn scars in order to carry out a possible prognostic assessment. Providing clinicians with an easy-to- use tool for predicting the risk of pathological scars. A total of 703 patients with 2440 anatomical burn sites who were admitted to the Department of Plastic and Reconstructive Surgery, Burn Center of the Traumatological Hospital in Torino between January 1994 and May 2006 were included in the analysis. A Bayesian network (BN) model was implemented. The probability of developing a hypertrophic scar was evaluated on a number of scenarios. The error rate of the BN model was assessed internally and it was equal to 2483%. While classical statistical method as logistic models can infer only which variables are related to the final outcome, the BN approach displays a set of relationships between the final outcome (scar type) and the explanatory covariates (patient's age and gender, burn surface area, full-thickness burn surface area, burn anatomical area and wound-healing time; burn treatment options such as advanced dressings, type of surgical approach, number of surgical procedures, type of skin graft, excision and coverage timing). A web-based interface to handle the BN model was developed on the website www.pubchild.org (burns header). Clinicians who registered at the website could submit their data in order to get from the BN model the predicted probability of observing a pathological scar type. PMID:22958613

Berchialla, Paola; Gangemi, Ezio Nicola; Foltran, Francesca; Haxhiaj, Arber; Buja, Alessandra; Lazzarato, Fulvio; Stella, Maurizio; Gregori, Dario

2014-06-01

228

Using Rare Earth Element (REE) tracers to identify preferential micro-sites of post-fire aeolian erosion  

NASA Astrophysics Data System (ADS)

Plant communities in desert environments are spatially anisotropic. Nutrient islands develop below shrub canopies and in the bases of bunch grasses that enhance plant growth and reinforce the spatial anisotropy. Catastrophic disturbance that removes the vegetation such as fire or drought can result in the release of the trapped sediment which becomes redistributed over the landscape by wind and water. We applied Rare Earth Element (REE) tracers to different landscape positions of an anisotropic Northern Chihuahua Desert ecosystem at the Sevilleta National Wildlife Refuge in central New Mexico in an effort to study this process. We delineated three 0.5 m by 6 m plots of desert grassland and three plots of desert grassland-shrubland ecotone. Nitric acid was used to dissolve the REE oxides (Eu2O3, Dy2O3, and Pr6O11) which were then diluted in distilled water to a target concentration of 1 g REE l-1 and applied to the surface at a rate of 4 l m-2. From laboratory column studies using soil collected at the site, we estimated that this would penetrate the surface to a depth of 2.5 cm resulting in a sediment REE concentration of approximately 100 mg kg-1. Eu was applied to bare surfaces between vegetation characterized as sand with a surface covering of gravel, Pr was applied under grass clumps, and Dy was applied under Creosote Bush (Larrea tridentata (DC.). Two replicate 0.25 m2 areas of each surface type were also tagged to obtain a sample of tagged surface sediment for analysis. The area containing the plots was burned by U.S. Fish and Wildlife personnel on April 14, 2010. During the next two days, two grassland plots and two grassland-shrubland ecotone plots were tested by placing a portable boundary layer field wind tunnel over the plots and blowing them with 12 m s-1 wind for 10 minutes during which time a paired set of entrained sediment samples were captured at the outlet of the wind tunnel. This period was followed by a 30 minute test in which clean quartz sand abrader was added to the wind tunnel flow and a second test of 10 minutes with abrader added to the flow. At the end of the first four tests, the wind tunnel cooling system broke and due to the extent of necessary repairs, the last two plots were tested two weeks later. Three paired aeolian sediment samples were collected for each plot tested. The results indicated that in desert grassland, a disproportionate amount of the post-fire sediment is entrained from areas under grass clumps and in grassland-shrubland ecotones, the soil under shrubs is the primary source of entrained sediment followed by areas under grass clumps. The bare surfaces between vegetation produced the least sediment. REEs appear to be a powerful tool for investigating spatial patterns of aeolian processes.

Van Pelt, R.; Zobeck, T. M.; Barnes, M. A.; Baddock, M.; D'Odorico, P.

2011-12-01

229

An open study comparing topical silver sulfadiazine and topical silver sulfadiazinecerium nitrate in the treatment of moderate and severe burns  

Microsoft Academic Search

Sixty patients with moderate and severe burns were randomly assigned to receive topical silver sulfadiazine (SSD) alone (n=30) or SSD combined with cerium nitrate (SSDCN) (n=30). There were four deaths in the SSD group and one in the SSDCN group; more patients with higher risk severity survived in the SSDCN group. Wound infection did not differ significantly between the groups.

C. G de Gracia

2001-01-01

230

Post-fire runoff and soil (fertility) losses in long-unburnt vs. repeatedly-burnt Maritime Pine stands, north-central Portugal  

NASA Astrophysics Data System (ADS)

Whilst wildfires are a natural phenomenon in Mediterranean climate regions and a key evolutionary and ecological factor in several of its ecosystems, there are widespread concerns about the resilience of even these fire-adapted ecosystems under present-day fire regimes. The role of repeated wildfires in land degradation, however, has not been extensively studied. The EU-funded CASCADE project addresses this research gap in the study case in Portugal, assessing whether repeated wildfires in Maritime Pine stands lead to land degradation through a gradual process or, instead, through tipping-points in plant-water-soil relationships. In the present study, focus is on the indirect effects of (repeated) wildfires, due to fire-enhanced overland flow generation and the associated losses of sediments, organic matter and nutrients (N and P). Following a large wildfire in early September 2013, affecting roughly 3000 ha in the municipality of Viseu, six Maritime Pine stands were selected within the burnt area. According to the available burnt-area maps, covering the period 1975-2011, three of these sites were unburnt for over 35 years, whereas the other three sites had burnt three more times before 2012. At each of these sites, two pairs of micro-plots of approximately 0.25 m2 were installed as soon as possible after the wildfire, albeit not before the first two post-fire rainfall events, whilst a third pair was installed several weeks later. The first two plot pairs were installed halfway the upper and lower halves of the slope, the third pair in between. The paired-plot design was chosen to compare the hydrological and erosion response for two adjacent patches with contrasting post-fire vegetation recovery processes, i.e. through re-sprouting (by the shrub Pterospartum tridentatum) and by germination. Since the installation of the plots, runoff has been measured at 1- to 2-weekly intervals, depending on rainfall, and samples taken for laboratory analysis of sediment and organic matter loads as well as total N and P concentrations. The field and laboratory results are still being analyzed but personal observations suggest that overland flow generation is markedly higher at the repeatedly burnt than long-unburnt sites.

Hosseini, Mohammad; Gonzalz-Pelayo, Oscar; Buchspies, Ben; Maia, Paula; Martins, Martinho; Varandas, Daniela; Geissen, Violette; Coelho, Celeste; Ritsem, Coen; Keizer, Jan Jacob

2013-04-01

231

Structural adjustments in resprouting trees drive differences in post-fire transpiration.  

PubMed

Following disturbance many woody species are capable of resprouting new foliage, resulting in a reduced leaf-to-sapwood area ratio and altered canopy structure. We hypothesized that such changes would promote adjustments in leaf physiology, resulting in higher rates of transpiration per unit leaf area, consistent with the mechanistic framework proposed by Whitehead et al. (Whitehead D, Jarvis PG, Waring RH (1984) Stomatal conductance, transpiration and resistance to water uptake in a Pinus sylvestris spacing experiment. Can J For Res 14:692-700). We tested this in Eucalyptus obliqua L'Hr following a wildfire by comparing trees with unburnt canopies with trees that had been subject to 100% canopy scorch and were recovering their leaf area via resprouting. In resprouting trees, foliage was distributed along the trunk and on lateral branches, resulting in shorter hydraulic path lengths. We evaluated measurements of whole-tree transpiration and structural and physiological traits expected to drive any changes in transpiration. We used these structural and physiological measurements to parameterize the Whitehead et al. equation, and found that the expected ratio of transpiration per unit leaf area between resprouting and unburnt trees was 3.41. This is similar to the observed ratio of transpiration per unit leaf area, measured from sapflow observations, which was 2.89 (i.e., resprouting trees had 188% higher transpiration per unit leaf area). Foliage at low heights (<2 m) was found to be significantly different to foliage in the tree crown (14-18 m) in a number of traits, including higher specific leaf area, midday leaf water potential and higher rates of stomatal conductance and photosynthesis. We conclude that these post-fire adjustments in resprouting trees help to drive increased stomatal conductance and hydraulic efficiency, promoting the rapid return of tree-scale transpiration towards pre-disturbance levels. These transient patterns in canopy transpiration have important implications for modelling stand-level water fluxes in forests capable of resprouting, which is frequently done on the basis of the leaf area index. PMID:24536069

Nolan, Rachael H; Mitchell, Patrick J; Bradstock, Ross A; Lane, Patrick N J

2014-02-01

232

ISSR and AFLP analysis of the temporal and spatial population structure of the post-fire annual, Nicotiana attenuata, in SW Utah  

PubMed Central

Background The native annual tobacco, Nicotiana attenuata, is found primarily in large ephemeral populations (typically for less than 3 growing seasons) after fires in sagebrush and pinyon-juniper ecosystems and in small persistent populations (for many growing seasons) in isolated washes typically along roadsides throughout the Great Basin Desert of the SW USA. This distribution pattern is due to its unusual germination behavior. Ephemeral populations are produced by the germination of dormant seeds from long-lived seed banks which are stimulated to germinate by a combination of unidentified positive cues found in wood smoke and the removal of inhibitors leached from the unburned litter of the dominant vegetation. Persistent populations may result where these inhibitors do not exist, as in washes or along disturbed roadsides. To determine if this germination behavior has influenced population structure, we conducted an AFLP (244 individuals), ISSR (175 individuals) and ISSR+ AFLP (175 individuals) analysis on plants originating from seed collected from populations growing in 11 wash and burns over 11 years from the SW USA. Results Genetic variance as measured by both ISSR and AFLP markers was low among sites and comparatively higher within populations. Cluster analysis of the Utah samples with samples collected from Arizona, California, and Oregon as out-groups also did not reveal patterns. AMOVA analysis of the combined AFLP and ISSR data sets yielded significantly low genetic differentiation among sites (?ct), moderate among populations within sites (?sc) and higher genetic differentiation within populations (?st). Conclusions We conclude that the seed dormancy of this post-fire annual and its resulting age structure in conjunction with natural selection processes are responsible for significantly low among sites and comparatively high within-population genetic variation observed in this species. PMID:15350209

Bahulikar, Rahul A; Stanculescu, Dominic; Preston, Catherine A; Baldwin, Ian T

2004-01-01

233

Frequency-magnitude distribution of debris flows compiled from global data, and comparison with post-fire debris flows in the western U.S.  

NASA Astrophysics Data System (ADS)

Forecasting debris flow hazard is challenging due to the episodic occurrence of debris flows in response to stochastic precipitation and, in some areas, wildfires. In order to facilitate hazard assessment, we have gathered available records of debris flow volumes into the first comprehensive global catalog of debris flows (n = 988). We also present results of field collection of recent debris flows (n = 77) in the northern Rocky Mountains, where debris flow frequency increases following wildfire. As a first step in parameterizing hazard models, we use frequency-magnitude distributions and empirical cumulative distribution functions (ECDFs) to compare volumes of post-fire debris flows to non-fire-related debris flows. The ECDF of post-fire debris flow volumes is significantly different (at 95% confidence) from that of non-fire-related debris flows, suggesting that the post-fire distribution is composed of a higher proportion of small events than that of non-fire-related debris flows. The slope of the frequency-magnitude distribution of post-fire debris flows is steeper than that of non-fire-related debris flows, corroborating evidence that small post-fire debris flows occur with a higher relative frequency than non-fire-related debris flows. Taken together, the statistical analyses suggest that post-fire debris flows come from a different population than non-fire-related debris flows, and their hazard must be modeled separately. We propose two possible non-exclusive explanations for the fact that the post-fire environment produces a higher proportion of small debris flows: 1) following fires, smaller storms or effective drainage areas can trigger debris flows due to increased runoff and/or decreases in root strength, resulting in smaller volumes and increased probability of failure, and 2) fire increases the probability and frequency of debris flows, causing their distribution to shift toward smaller events due to limitations in sediment supply.

Riley, Karin L.; Bendick, Rebecca; Hyde, Kevin D.; Gabet, Emmanuel J.

2013-06-01

234

The effects of log erosion barriers on post-fire hydrologic response and sediment yield in small forested watersheds, southern California  

Microsoft Academic Search

Wildfire usually promotes flooding and accelerated erosion in upland watersheds. In the summer of 1999, a high-severity wildfire burned a series of mixed pine\\/oak headwater catchments in the San Jacinto Mountains of southern California. Log erosion barriers (LEBs) were constructed across much of the burned area as an erosion control measure. We built debris basins in two watersheds, each about

Peter M. Wohlgemuth; Ken R. Hubbert; Peter R. Robichaud

2001-01-01

235

Spectral mixture analysis to assess post-fire vegetation regeneration using Landsat Thematic Mapper imagery: Accounting for soil brightness variation  

NASA Astrophysics Data System (ADS)

Post-fire vegetation cover is a crucial parameter in rangeland management. This study aims to assess the post-fire vegetation recovery 3 years after the large 2007 Peloponnese (Greece) wildfires. Post-fire recovery landscapes typically are mixed vegetation-substrate environments which makes spectral mixture analysis (SMA) a very effective tool to derive fractional vegetation cover maps. Using a combination of field and simulation techniques this study aimed to account for the impact of background brightness variability on SMA model performance. The field data consisted out of a spectral library of in situ measured reflectance signals of vegetation and substrate and 78 line transect plots. In addition, a Landsat Thematic Mapper (TM) scene was employed in the study. A simple SMA, in which each constituting terrain feature is represented by its mean spectral signature, a multiple endmember SMA (MESMA) and a segmented SMA, which accounts for soil brightness variations by forcing the substrate endmember choice based on ancillary data (lithological map), were applied. In the study area two main spectrally different lithological units were present: relatively bright limestone and relatively dark flysch (sand-siltstone). Although the simple SMA model resulted in reasonable regression fits for the flysch and limestones subsets separately (coefficient of determination R2 of respectively 0.67 and 0.72 between field and TM data), the performance of the regression model on the pooled dataset was considerably weaker ( R2 = 0.65). Moreover, the regression lines significantly diverged among the different subsets leading to systematic over-or underestimations of the vegetative fraction depending on the substrate type. MESMA did not solve the endmember variability issue. The MESMA model did not manage to select the proper substrate spectrum on a reliable basis due to the lack of shape differences between the flysch and limestone spectra,. The segmented SMA model which accounts for soil brightness variations minimized the variability problems. Compared to the simple SMA and MESMA models, the segmented SMA resulted in a higher overall correlation ( R2 = 0.70), its regression slope and intercept were more similar among the different substrate types and its resulting regression lines more closely resembled the expected one-one line. This paper demonstrates the improvement of a segmented approach in accounting for soil brightness variations in estimating vegetative cover using SMA. However, further research is required to evaluate the model's performance for other soil types, with other image data and at different post-fire timings.

Veraverbeke, S.; Somers, B.; Gitas, I.; Katagis, T.; Polychronaki, A.; Goossens, R.

2012-02-01

236

Burn Institute  

MedlinePLUS

... do each year a burn injury. Learn more Fire and Burn Prevention Each year, the Burn Institute ... thousands of children and adults each year through fire and burn prevention education, burn survivor support programs ...

237

Effects of a 12-week Rehabilitation Program with Music & Exercise Groups on Range of Motion in Young Children with Severe Burns  

PubMed Central

Previous studies indicate that rehabilitation programs supplemented with a strength and endurance-based exercise program improve lean body mass, pulmonary function, endurance, strength, and functional outcomes in severely burned children over the age of 7-years when compared to standard of care. To date, supplemental exercise programming for severely burned children under the age of 7-years has not yet been explored. The purpose of this study was to determine if a 12-week rehabilitation program supplemented with music & exercise, was more effective in improving functional outcomes than the standard of care alone. METHODS This is a descriptive study that measured elbow and knee range of motion (ROM) in 24 severely burned children between ages two and six years. Groups were compared for demographics as well as active and passive ROM to bilateral elbows and knees. A total of 15 patients completed the rehabilitation with supplemental music and exercise, and data was compared to 9 patients who received standard of care. RESULTS Patients receiving the 12-week program significantly improved ROM in all joints assessed except for one. Patients receiving standard of care showed a significant improvement in only one of the joints assessed. CONCLUSION Providing a structured supplemental music and exercise program in conjunction with occupational and physical therapy seems to improve both passive and active ROM to a greater extent than the standard of care alone. PMID:18849852

Neugebauer, Christine Tuden; Serghiou, Michael; Herndon, David N.; Suman, Oscar E.

2013-01-01

238

Five-Lumen Antibiotic-Impregnated Femoral Central Venous Catheters in Severely Burned Patients: An Investigation of Device Utility and Catheter-Related Bloodstream Infection Rates.  

PubMed

The objective of this study is to determine the catheter-related bloodstream infection (CRBSI) rate in a severely burned patient population, many of whom required prolonged use of central venous catheters (CVCs). Between January 2008 and June 2012, 151 patients underwent placement of 455 five-lumen minocycline/rifampin-impregnated CVCs. CRBSI was defined as at least one blood culture (>100,000 colonies) and one simultaneous roll-plate CVC tip culture (>15 colony forming units) positive for the same organism. Most patients had accidental burns (81.5%) with a mean TBSA of 50%. A mean of three catheters were inserted per patient (range, 1-25). CVCs were inserted in the femoral vein (91.2%), subclavian vein (5.3%), and internal jugular vein (3.3%). Mean overall catheter indwell time was 8 days (range, 0-39 days). The overall rate of CRBSI per 1000 catheter days was 11.2; patients with a TBSA >60% experienced significantly higher rates of CRBSI than patients with a TBSA ?60% (16.2 vs 7.3, P = .01). CVCs placed through burned skin were four times more likely to be associated with CRBSI than CVCs placed through intact skin. The most common infectious organism was Acinetobacter baumannii. Deep venous thrombosis developed in eleven patients (7%). The overall rate of CRBSI was 11.2, consistent with published rates of CRBSI in burn patients. Thus, femoral placement of 5-lumen CVCs did not result in increased CRBSI rates. These data support the safety of femoral CVC placement in burn patients, contrary to the Centers for Disease Control recommendation to avoid femoral CVC insertion. PMID:25407386

Friedman, Bruce C; Mian, Mohammad A H; Mullins, Robert F; Hassan, Zaheed; Shaver, Joseph R; Johnston, Krystal K

2014-12-01

239

Post-fire salvage logging alters species composition and reduces cover, richness, and diversity in Mediterranean plant communities.  

PubMed

An intense debate exists on the effects of post-fire salvage logging on plant community regeneration, but scant data are available derived from experimental studies. We analyzed the effects of salvage logging on plant community regeneration in terms of species richness, diversity, cover, and composition by experimentally managing a burnt forest on a Mediterranean mountain (Sierra Nevada, S Spain). In each of three plots located at different elevations, three replicates of three treatments were implemented seven months after the fire, differing in the degree of intervention: "Non-Intervention" (all trees left standing), "Partial Cut plus Lopping" (felling 90% of the trees, cutting the main branches, and leaving all the biomass in situ), and "Salvage Logging" (felling and piling the logs, and masticating the woody debris). Plant composition in each treatment was monitored two years after the fire in linear point transects. Post-fire salvage logging was associated with reduced species richness, Shannon diversity, and total plant cover. Moreover, salvaged sites hosted different species assemblages and 25% lower cover of seeder species (but equal cover of resprouters) compared to the other treatments. Cover of trees and shrubs was also lowest in Salvage Logging, which could suggest a potential slow-down of forest regeneration. Most of these results were consistent among the three plots despite plots hosting different plant communities. Concluding, our study suggests that salvage logging may reduce species richness and diversity, as well as the recruitment of woody species, which could delay the natural regeneration of the ecosystem. PMID:24412981

Leverkus, Alexandro B; Lorite, Juan; Navarro, Francisco B; Snchez-Caete, Enrique P; Castro, Jorge

2014-01-15

240

Calibration and validation of the relative differenced Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra Nevada and Klamath Mountains, California, USA  

USGS Publications Warehouse

Multispectral satellite data have become a common tool used in the mapping of wildland fire effects. Fire severity, defined as the degree to which a site has been altered, is often the variable mapped. The Normalized Burn Ratio (NBR) used in an absolute difference change detection protocol (dNBR), has become the remote sensing method of choice for US Federal land management agencies to map fire severity due to wildland fire. However, absolute differenced vegetation indices are correlated to the pre-fire chlorophyll content of the vegetation occurring within the fire perimeter. Normalizing dNBR to produce a relativized dNBR (RdNBR) removes the biasing effect of the pre-fire condition. Employing RdNBR hypothetically allows creating categorical classifications using the same thresholds for fires occurring in similar vegetation types without acquiring additional calibration field data on each fire. In this paper we tested this hypothesis by developing thresholds on random training datasets, and then comparing accuracies for (1) fires that occurred within the same geographic region as the training dataset and in similar vegetation, and (2) fires from a different geographic region that is climatically and floristically similar to the training dataset region but supports more complex vegetation structure. We additionally compared map accuracies for three measures of fire severity: the composite burn index (CBI), percent change in tree canopy cover, and percent change in tree basal area. User's and producer's accuracies were highest for the most severe categories, ranging from 70.7% to 89.1%. Accuracies of the moderate fire severity category for measures describing effects only to trees (percent change in canopy cover and basal area) indicated that the classifications were generally not much better than random. Accuracies of the moderate category for the CBI classifications were somewhat better, averaging in the 50%-60% range. These results underscore the difficulty in isolating fire effects to individual vegetation strata when fire effects are mixed. We conclude that the models presented here and in Miller and Thode ([Miller, J.D. & Thode, A.E., (2007). Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment, 109, 66-80.]) can produce fire severity classifications (using either CBI, or percent change in canopy cover or basal area) that are of similar accuracy in fires not used in the original calibration process, at least in conifer dominated vegetation types in Mediterranean-climate California.

Miller, J.D.; Knapp, E.E.; Key, C.H.; Skinner, C.N.; Isbell, C.J.; Creasy, R.M.; Sherlock, J.W.

2009-01-01

241

Influence of patch size and shape on post-fire succession on the Yellowstone plateau  

Microsoft Academic Search

The 1988 Yellowstone fires provided a unique opportunity to examine how the geometry of fire-created patches affects plant reestablishment. We initiated studies in 1990 in small (1 ha), moderated (74-200 ha), and large (480-3698 ha) crown-fire patches in each of 3 areas. Lodgepole pine forest is reestablishing in most burned areas, but seedling density varies by two orders of magnitude.

M. G. Turner; R. H. Gardner; W. W. Hargrove; W. H. Romme

1994-01-01

242

Bat Response to Differing Fire Severity in Mixed-Conifer Forest California, USA  

PubMed Central

Wildlife response to natural disturbances such as fire is of conservation concern to managers, policy makers, and scientists, yet information is scant beyond a few well-studied groups (e.g., birds, small mammals). We examined the effects of wildfire severity on bats, a taxon of high conservation concern, at both the stand (<1 ha) and landscape scale in response to the 2002 McNally fire in the Sierra Nevada region of California, USA. One year after fire, we conducted surveys of echolocation activity at 14 survey locations, stratified in riparian and upland habitat, in mixed-conifer forest habitats spanning three levels of burn severity: unburned, moderate, and high. Bat activity in burned areas was either equivalent or higher than in unburned stands for all six phonic groups measured, with four groups having significantly greater activity in at least one burn severity level. Evidence of differentiation between fire severities was observed with some Myotis species having higher levels of activity in stands of high-severity burn. Larger-bodied bats, typically adapted to more open habitat, showed no response to fire. We found differential use of riparian and upland habitats among the phonic groups, yet no interaction of habitat type by fire severity was found. Extent of high-severity fire damage in the landscape had no effect on activity of bats in unburned sites suggesting no landscape effect of fire on foraging site selection and emphasizing stand-scale conditions driving bat activity. Results from this fire in mixed-conifer forests of California suggest that bats are resilient to landscape-scale fire and that some species are preferentially selecting burned areas for foraging, perhaps facilitated by reduced clutter and increased post-fire availability of prey and roosts. PMID:23483936

Heady, Paul A.; Hayes, John P.; Frick, Winifred F.

2013-01-01

243

Burning Issue: Handling Household Burns  

MedlinePLUS

... hot objects or liquid, fire, friction, the sun, electricity, or certain chemicals. Each year, about a half- ... infant or elderly. the burn was caused by electricity, which can lead to invisible burns. Burns Burns ...

244

Salvage Logging Versus the Use of Burnt Wood as a Nurse Object to Promote Post-Fire Tree Seedling Establishment  

USGS Publications Warehouse

Intense debate surrounds the effects of post-fire salvage logging (SL) versus nonintervention policies on forest regeneration, but scant support is available from experimental studies. We analyze the effect of three post-fire management treatments on the recruitment of a serotinous pine (Pinus pinaster) at a Mediterranean mountain. Treatments were applied 7 months after the fire and differ in the degree of intervention, ranging from "no intervention" (NI, all trees left standing) to "partial cut plus lopping" (PCL, felling most of the trees, cutting the main branches, and leaving all the biomass in situ without mastication), and "SL" (felling and piling the logs, and masticating the woody debris). Seedling survival after 3 years was the highest in PCL (47.3% versus 38.7% in SL). This was associated with the amelioration of microclimatic conditions under the scattered branches, which reduced radiation and soil temperature while increasing soil moisture. Seedling density after 2 years was approximately 5.5 times higher in PCL than in SL, as in SL a large fraction of seedlings was lost as a consequence of mechanized mastication. The NI treatment showed the lowest seedling survival (17.3%). Nevertheless, seedling density was similar to SL. Seedling growth scarcely differed among treatments. Our results show that branches left onsite acted as nurse objects that improved key microclimatic conditions for seedling recruitment. This creates a facilitative interaction ideal for seedling establishment in moisture-deficient ecosystems, as it provides the benefit of a shading overstory but without underground competition. ?? 2010 Society for Ecological Restoration International.

Castro, J.; Allen, C.D.; Molina-Morales, M.; Maranon-Jimenez, S.; Sanchez-Miranda, A.; Zamora, R.

2011-01-01

245

High Park burn in South Fork Cache la Poudre Basin: Preliminary findings from spring and summer 2013 hydrologic and sedimentation monitoring  

NASA Astrophysics Data System (ADS)

The High Park fire burned over 35,000 ha within the Cache la Poudre basin in early summer 2012, including an eastern portion of the Little South Fork Cache la Poudre (SFCLP) watershed. Given the proximity of the burn and the implications for water quality supplied to Fort Collins and Greeley, CO, there is an expressed interest on the part of the cities for improved understanding of sediment loads in SFCLP and main stem Cache la Poudre River over the next few years. Prior to burning, data on sediment transport (suspended sediment and bedload) were collected by researchers from the US Forest Service, providing baseline information on sedimentation comparable to similar measurements taken after the High Park fire. In 2013, bedload was measured during snowmelt runoff using standard pressure-difference samplers identical to those used previously in 1989 and 1997. Turbidity sensors were deployed as a surrogate measure of suspended sediment concentration. This signal was calibrated using both grab samples (from a DH-48) and samples obtained from an automated water sampler triggered to collect during substantial increases in turbidity. Additional sampling stations were later established downstream of this site in conjunction with assessments of channel extension and sedimentation from severely burned hillslopes and gulches, one of which was mulched for erosion control in spring 2013. The primary source of post-fire sediment to the most upstream site is from Monument Gulch, located about 1 km upstream of the sampling location. Debris flows emanated from this gulch within a few weeks post-fire and delivered charcoal, ash, burned trees and inorganic sediment to the main stem SFCLP. Although snowmelt runoff was less than bankfull in 2013, there was a substantial amount of burned organic matter transported and collected in the bedload and suspended sediment samplers. Low intensity storms during summer caused a few sediment rich flows, though not to the extent of those in 2012. In this presentation, we present initial findings on differences in sediment loads attributed to the fire.

Ryan, S. E.; Dixon, M.; Rathburn, S. L.; Shahverdian, S.

2013-12-01

246

Influence of Plant Communities on Active Layer Depth in Unburned and Post-fire Forest  

NASA Astrophysics Data System (ADS)

Vegetation plays a crucial role in determining active layer depth and is thought to be an important control for permafrost persistence in areas where the mean annual air temperature is as high as +2C. However this critical component of the interface between the soil and atmosphere is often poorly represented in models, and the relative importance of contrasting vegetation communities is not understood. In particular the role of certain vegetation types such as mosses is completely neglected, in spite of their potential to exhibit contrasting thermal properties depending on their moisture content. Furthermore, most models assume steady states and so ignore important dynamic disturbance events such as fires. Given that the frequency of forest fires is predicted to increase due to climate change in boreal regions, the influence of these ecologically important events on active layer thickness must be established. Contrasting rates of vegetation recovery within and between burn sites may strongly impact on the rate of increase of active layer thickness. Using a combination of targeted and cyclic sampling in boreal forests within a discontinuous permafrost zone in Southern Yukon, Canada we have aimed to further our understanding of how key characteristics of the understory and canopy vegetation influence soil physical conditions including soil moisture, temperature and thaw depth throughout the growing season. By undertaking these surveys in sites with contrasting hydrological conditions in both burned and unburned areas we have been able to determine which features of the vegetation control frost table thawing and how this relationship changes after a fire event and on different soil types.

Fisher, J. P.; Estop-Aragones, C.; Xenakis, G.; Hartley, I. P.; Murton, J.; Charman, D.; Williams, M.; Phoenix, G. K.

2013-12-01

247

Influence of Plant Communities on Active Layer Depth in Unburned and Post-fire Forest  

NASA Astrophysics Data System (ADS)

Vegetation plays a crucial role in determining active layer depth and is thought to be an important control for permafrost persistence in areas where the mean annual air temperature is as high as +2oC. However this critical component of the interface between the soil and atmosphere is often poorly represented in models, and the relative importance of contrasting vegetation communities is not understood. In particular the role of certain vegetation types such as mosses is completely neglected, in spite of their potential to exhibit contrasting thermal properties depending on their moisture content. Furthermore, most models assume steady states and so ignore important dynamic disturbance events such as fires. Given that the frequency of forest fires is predicted to increase due to climate change in boreal regions, the influence of these ecologically important events on active layer thickness must be established. Contrasting rates of vegetation recovery within and between burn sites may strongly impact on the rate of increase of active layer thickness. Using a combination of targeted and cyclic sampling in boreal forests within a discontinuous permafrost zone in Southern Yukon, Canada we have aimed to further our understanding of how key characteristics of the understory and canopy vegetation influence soil physical conditions including soil moisture, temperature and thaw depth throughout the growing season. By undertaking these surveys in sites with contrasting hydrological conditions in both burned and unburned areas we have been able to determine which features of the vegetation control frost table thawing and how this relationship changes after a fire event and on different soil types.

Fisher, James; Estop Aragones, Cristian; Xenakis, Geogrios; Hartley, Iain; Murton, Julian; Charman, Daniel; Williams, Mathew; Phoenix, Gareth

2014-05-01

248

Leaf and Shoot Water Content and Leaf Dry Matter Content of Mediterranean Woody Species with Different Post-fire Regenerative Strategies  

PubMed Central

Background and Aims Post-fire regeneration is a key process in Mediterranean shrubland dynamics, strongly determining the functional properties of the community. In this study, a test is carried out to deteremine whether there is co-variation between species regenerative types and functional attributes related to water use. Methods An analysis was made of the seasonal variations in leaf relative water content (RWC), leaf dry matter content (LDMC), leaf moisture (LM) and live fine fuel moisture (LFFM) in 30 woody species of a coastal shrubland, with different post-fire regenerative strategies (seeding, resprouting or both). Key Results RWC results suggest that the studied resprouters have more efficient mechanisms to reduce water losses and maintain water supply between seasons. In contrast, seeders are more drought tolerant. LDMC is higher in resprouters over the course of the year, suggesting a more efficient conservation of nutrients. The weight of the phylogenetic constraint to understand differences between regenerative strategies tends to be important for LDMC, while it is not the case for variables such as RWC. Conclusions Groups of species with different post-fire regenerative strategies (seeders and resprouters) have different functional traits related to water use. In addition to the role of phylogenetical constraints, these differences are also likely to be related to the respective life history characteristics. Therefore, the presence and abundance of species with different post-fire regenerative responses influence the functional properties of the communities. PMID:17237213

Saura-Mas, S.; Lloret, F.

2007-01-01

249

Frequencymagnitude distribution of debris flows compiled from global data, and comparison with post-fire debris flows in the western U.S.  

E-print Network

Frequency­magnitude distribution of debris flows compiled from global data, and comparison with post-fire debris flows in the western U.S. Karin L. Riley a, , Rebecca Bendick a , Kevin D. Hyde b March 2013 Keywords: Debris flow Frequency Magnitude Fire Forecasting debris flow hazard is challenging

Montana, University of

250

Post-fire mulching for runoff and erosion mitigation Part II: Effectiveness in reducing runoff and sediment yields from small catchments  

E-print Network

Post-fire mulching for runoff and erosion mitigation Part II: Effectiveness in reducing runoff at least double the sediment yields measured on hillslope plots. The longer periods of greater erosion rates in the catchments likely reflect the addition of channel erosion processes and a difference

Flury, Markus

251

[The stabilizing effect of enterosgel on the structural bases of membrane digestion and absorption in the small intestine in severe thermal skin burns].  

PubMed

Enterosgel effect on morphofunctional indices of the small intestine has been ascertained in experiments on animals, histochemical, electron-microscopic and morphometric methods being used. Enterosorbent in the dose of 0.3 g/kg body weight was injected orally to the guinea-pigs for 14 days. The results of the investigations prove the severe burn traumas to result in sufficient structural changes in the small intestine wall which causes impairment of membranous digestion processes and absorption of nutrients. It is to be noted that the developing burn disease results in the increase of changes severity and reaches the highest values at the stage of septicotoxemia. The enterosorbent assessed positively affects morphofunctional values of the small intestine. The enterosorbent does not enhance conventional development of the pathologic process but considerably decreases its manifestation. The enterosgel promotes the improvement of membranous digestion and absorption in the small intestine, increasing alkaline phosphatase action and rising the number of endocellular vesicles in epitheliocytes having brush margins. PMID:9044818

Pasechka, N V

1996-01-01

252

Burn epidemiology: a basis for burn prevention.  

PubMed

An appreciation of the causes of burn injury is essential in order to direct burn prevention programs. Toward this goal, 1,564 patients treated at the UCI Burn Center were studied. There were 699 patients admitted acutely and 865 outpatients. The most common cause of thermal injury in both adults and children was scalding. In children scald burns accounted for 42% of the total number of children treated. In children under 4 years old scalds caused 75% of all burn injuries, most in the kitchen. Flammable liquids were responsible for the majority of the severe burns in the adult group (19% of acute admissions). Housefires, while accounting for only 5% of the adults treated, were responsible for 44% of the adult deaths. Continued public education in safety practices at home especially in the kitchen and bath, and with automobiles and outdoor stoves and fires is recommended, as well as planned escapes from homes and use of smoke detectors. PMID:592443

Jay, K M; Bartlett, R H; Danet, R; Allyn, P A

1977-12-01

253

Reduced predation risk for melanistic pygmy grasshoppers in post-fire environments  

PubMed Central

The existence of melanistic (black) color forms in many species represents interesting model systems that have played important roles for our understanding of selective processes, evolution of adaptations, and the maintenance of variation. A recent study reported on rapid evolutionary shifts in frequencies of the melanistic forms in replicated populations of Tetrix subulata pygmy grasshoppers; the incidence of the melanistic form was higher in recently burned areas with backgrounds blackened by fire than in nonburned areas, and it declined over time in postfire environments. Here, we tested the hypothesis that the frequency shifts of the black color variant were driven, at least in part, by changes in the selective regime imposed by visual predators. To study detectability of the melanistic form, we presented human predators with images of black grasshoppers and samples of the natural habitat on computer screens. We demonstrate that the protective value of black coloration differs between burnt and nonburnt environments and gradually increases in habitats that have been more blackened by fire. These findings support the notion that a black color pattern provides improved protection from visually oriented predators against blackened backgrounds and implicate camouflage and predation as important drivers of fire melanism in pygmy grasshoppers. PMID:23139879

Karpestam, Einat; Merilaita, Sami; Forsman, Anders

2012-01-01

254

[Determination of silver and cerium in the liver and the kidney from a severely burned infant treated with silver sulfadiazine and cerium nitrate].  

PubMed

Silver and cerium in the liver and the kidney from severely burned infant were analyzed by neutron activation method. The patient was treated topically with cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for 3 months. Then, the treatment with these drugs was stopped because of abdominal distention. The patient died 1 month after the cessation of the treatment with these drugs. The tissue specimens, blank liver sample and reference standards were irradiated with TRIGA MARK II Reactor of Rikkyo University. About 1 month after the irradiation, the activities were measured with a Ge(Li) detector coupled to a 4096 channel pulse height analyzer. A large amount of silver was detected both in the liver and in the kidney and a trace of cerium only in the liver. A considerable amount of silver was detected in the liver and its quantity was about 1600 times more than that of normal livers reported by Hamilton, Minski and Cleary (1972-73). Neither silver nor cerium were detected in the blank liver. These results suggest that prolonged topical chemotherapy of cerium nitrate/silver sulfadiazine cream and cerium nitrate solution for the extensive burn injuries causes considerable absorption of silver and cerium into the liver and the kidney. PMID:6867381

Hirakawa, K

1983-02-01

255

Patch to landscape patterns in post fire recruitment of a serotinous conifer  

USGS Publications Warehouse

Obligate seeding species are highly specialized to fire disturbance and many conifers such as cypress, which are adapted to high intensity stand-replacing fires, have canopy seed banks stored in serotinous cones. Resilience of these trees to fire disturbance is a function of disturbance frequency and one focus of this study was to determine the effect of patch age on postfire recruitment. A second focus was to determine the extent to which fire induced a landscape level change in the location of the forest boundary. Prior to a fire in 1994, a large Cupressus sargentii forest was a mosaic landscape of different aged patches of nearly pure cypress bordered by chaparral. Patches less than 60 years of age were relatively dense with roughly one tree every 1-2 m2 but older patches had thinned to one tree every 3-15 m2. Older trees had substantially greater canopy cone crops but the stand level seed bank size was not significantly correlated with stand age. Fire-dependent obligate seeding species are sensitive to fire return interval because of potential changes in the size of seed banks - facing both a potential 'immaturity risk' and a 'senescence risk'. At our site, C. sargentii regeneration was substantial in stands as young as 20 years, suggesting that fire return interval would need to be shorter than this to pose any significant risk. Reduced seedling recruitment in stands nearly 100 years of age may indicate risk from senescence is greater, however, even the lowest density seedling recruitment was many times greater than the density of mature forests - thus this cypress would appear to be resilient to a wide range of fire return intervals. Changes in landscape patterning of forest and chaparral are unlikely except after fire. Factors that inhibit tree establishment within the shrubland, as well as factors that affect shrub establishment within the forest border likely affect the 'permeability' of this ecotone. After the 1994 fire this boundary appeared to be stable in that cypress recruited best within the shadow of burned canopies and cypress were weak invaders of adjacent shrublands.

Ne'eman, G.; Fotheringham, C.J.; Keeley, J.E.

1999-01-01

256

Post-fire, seasonal and annual dynamics of the ectomycorrhizal community in a Quercus ilex L. forest over a 3-year period.  

PubMed

Two study plots, burned and control, were established in autumn 1998 in a Quercus ilex forest located in northern Spain, part of which had been affected by a low intensity fire in 1994. Soil samples for ectomycorrhizae (ECM) were taken over a 3-year period in each study plot in spring, summer, autumn and winter. ECM morphotypes were identified and the relative abundance of each morphotype in each soil sample calculated, along with species richness, Shannon diversity index and percentage of mycorrhization in each soil sample. The relative abundance of certain ECM morphotypes differed between burned and control plots, and the percentage of mycorrhizal tips was significantly lower in the burned than in the control plot. Nevertheless, there were no significant differences in the diversity, species richness or species composition of the ECM community in the burned and control plots. The dominant ECM morphotypes in both stands were Cenococcum geophilum and several thelephoroid fungi. Sphaerosporella brunnea and Pisolithus tinctorius thrived especially in the burned plot, whereas three ectomycorrhizal morphotypes assigned to the genus Hebeloma were especially abundant in the control plot. There was no significant variation in the relative abundance of the ECM morphotypes between seasons, but ECM community species richness was highest in autumn and lowest in summer. The percentage of mycorrhizal tips reached a maximum in winter, with its minimum in autumn. Collection of samples over the 3-year period also enabled us to detect a significant increase in percentage of ECM colonisation in the burned stand over time. PMID:15889285

de Romn, Miriam; de Miguel, Ana Mara

2005-09-01

257

Lessons learned from an emergency release of a post-fire debris-flow hazard assessment for the 2009 Station fire, San Gabriel Mountains, southern California  

NASA Astrophysics Data System (ADS)

The 2009 Station fire burned through portions of the steep, rugged terrain of the San Gabriel Mountains in southern California with a known history of producing large magnitude debris flows following fires. In response to the emergency, the U.S. Geological Survey released an assessment of debris-flow hazards as maps showing estimates of the probability and volume of debris-flow production from 678 burned drainage basins, and the areas that may be inundated by debris flows. The assessment was based on statistical-empirical models developed from post-fire hydrologic-response monitoring data throughout southern California steeplands. The intent of the assessment was to provide state-of-the-art information about potential debris-flow impacts to the public, and quantitative data critical for mitigation, resource-deployment and evacuation decisions by land-management, city and county public-works and flood-control, and emergency-response agencies. Here, we describe a research scientist perspective of the hits and misses associated with the release of this information. Release of the assessment was accompanied by an extensive multi-agency public information campaign. Hazards information was provided to the media and presented at numerous well-attended public meetings organized by local politicians, homeowner and religious associations, city councils, and a multi-agency response team. Meetings targeted to specific ethnic and religious groups resulted in increased attendance by members of these groups. Even with the extensive information campaign, the public response to both mandatory and voluntary evacuation orders was low, and decreased with each sequential winter storm. Interviews with local residents indicated that the low compliance could be attributed to: 1) a lack of a personal understanding of just how dangerous and destructive debris flows can be, 2) inconsistent messaging from different agencies regarding potential magnitudes of a debris-flow response, 3) a poor understanding of the uncertainties inherent to both weather and debris-flow predictions, and 4) a desire to protect personal property. Communication on a one-to-one basis throughout the storm season was necessary to avoid this last, all-too-human tendency. These observations also indicate that effective evacuations in response to debris-flow hazards require an increased awareness of the potential magnitudes and impacts by all parties involved, and this awareness must be established well in advance of any emergency. Most public-response agencies were receptive and appreciative of the information provided, although some were not. The information included in the hazard assessment was used as intended by numerous agencies, and many requested the GIS shapefiles so they would have the capability to generate maps for specific areas of responsibility. However, not every agency had the flexibility to adopt new information during the crisis. A state of emergency is not a good time to advocate for acceptance of new approaches or techniques.

Cannon, S. H.; Perry, S. C.; Staley, D. M.

2010-12-01

258

Burns in Nigeria: a Review  

PubMed Central

Summary Burn injuries continue to be a major source of mortality and morbidity in low- and middle-income countries of the world, of which Nigeria is a part. Overview data on burn care in Nigeria are sparse but the available literature on burns and burn care in Nigeria was retrieved through Internet-based search engines, collated, and reviewed. Peculiarities of epidemiology, types of burn, pattern of injuries, complications, and outcome of burn care were reviewed. There were no broad-based overview statistical data on burns in Nigeria in all the articles reviewed. There was no documentation on the regionalization of care and there were no national databases. All reports on epidemiology were hospital-based. Flame is emerging as the predominant cause of burns, and burn injury is occurring increasingly away from the domestic setting. The severity of the injuries is also increasing. Deliberate burn injury remains a practice and a wide range of complications occur as burns sequelae in Nigeria. Several challenges militate against optimal care for burn victims. Burn injuries continue to contribute significantly to the burden of disease in Nigeria. There is a need for broad-based data collection systems. Avoidable complications are common and mortality remains high. Pooling of resources by regionalization of care could increase focus on burn prevention and improve the care of burn victims. Nongovernmental and governmental support to reduce the burden of burns is advocated. PMID:21991210

Oladele, A.O.; Olabanji, J.K.

2010-01-01

259

Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA  

Microsoft Academic Search

The role of fire in shaping steep, forested landscapes depends on a suite of hydrologic, biologic, and geological characteristics, including the propensity for hydrophobic soil layers to promote runoff erosion during subsequent rainfall events. In the Oregon Coast Range, several studies postulate that fire primarily modulates sediment production via root reinforcement and shallow landslide susceptibility, although few studies have documented

Molly Jackson; Joshua J. Roering

2009-01-01

260

Drivers of post-fire successional trajectories in arctic tundra: the importance of physical and biophysical interactions  

NASA Astrophysics Data System (ADS)

Fires in arctic tundra are rare with return intervals in the hundreds to thousands of years, but these events have large implications for carbon and energy fluxes in an environmentally changing and sensitive ecosystem. Permafrost degradation, species composition shifts, and ecosystem function alterations are just a few of the potential consequences of fire that could feedback on future climate change. Here we describe remote sensing, eddy covariance, thaw depth, and biomass measurements along an arctic tundra chronosequence to understand long-term post-fire carbon and energy budgets. Historical remote sensing and fire perimeter data were used to choose sites that were representative of a 0-6, 18, and 36 year old fire scar, which were paired with a representative nearby unburned control. Fires caused successional changes to carbon and energy budgets through changes to the soil thermal regime, caused by decreased organic layer from combustion, and shifts from tussock to grass and shrub dominated systems. Measurements and modeling with the Multiple Element Limitation (MEL) model indicate that nutrients played a key role in these shifts and that these dynamics change are controlled by biophysical conditions immediately after fire (i.e. residual organic layer depth) and climate during early succession. Results highlight the importance of initial conditions in determining the successional trajectory of arctic tundra and yield important insights on how these systems will respond to future climate change.

Rocha, A. V.; Jiang, Y.; Rastetter, E. B.; Drysdale, J.; Kremers, K.; Shaver, G. R.

2013-12-01

261

Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia)  

NASA Astrophysics Data System (ADS)

Polycyclic aromatic hydrocarbons (PAHs) are priority pollutants that arrive in the environment from numerous anthropogenic and natural sources, but the data on their natural sources including wildfires remain insufficient. The level of contamination and the composition of PAHs in soils of the areas affected by wildfires were studied in this work. The study was conducted in the Moscow region (Russia) in areas occupied by drained peatland and strongly damaged by fires in 2002, 2010 and 2012. The features of PAH accumulation and the profile distributions in histosols and histic podzols after the fires of different times were analyzed. It was shown that new soil horizons formed after the fires - Cpir, Hpir and incipient O horizons - and that these horizons differ in PAH accumulation rate. Maximal total concentrations of 14 PAHs were detected in charred peat horizons Hpir (up to 330 ng g-1) and in post-fire incipient O horizons (up to 180 ng g-1), but the high-molecular-weight PAHs (benz(ghi)perylene, benz(a)pyrene, benz(k)fluoranthene) were revealed only in charry peat horizons. The trends of higher PAH concentrations were found in cases when smoldering combustion resulted in rather thick residual peat horizons. In cases of almost complete pyrogenic destruction of He horizons, total PAH concentrations were no more than 50 ng g-1. Also, PAH accumulation in upper horizons of soils near the sites of the latest fires was observed.

Tsibart, A.; Gennadiev, A.; Koshovskii, T.; Watts, A.

2014-12-01

262

Anatomical and physiological regulation of post-fire carbon and water exchange in canopies of two resprouting Eucalyptus species.  

PubMed

The great majority of Eucalyptus spp. are facultative resprouters, and they dominate the eucalypt forests of Australia. Despite this numeric and geographic dominance, there is a general lack of knowledge of their capacity for carbon capture and water loss during canopy reinstation. After a crown-removing fire, we measured leaf-level determinants of carbon and water flux in resprouting canopies of Eucalyptus dives and E. radiata over the 3 years that followed. Leaf anatomy and physiology changed markedly during canopy reinstation, and leaves produced in the second year (2010) were distinct from those produced later. Leaves produced in 2010 were thicker (all measures of leaf anatomy), yet more porous (increased intercellular airspace), causing specific leaf area also to be greater. Indicators of heterotrophic activity, leaf respiration rate and light compensation point, were twofold greater in 2010, whereas all measures of photosynthetic capacity were greatest in leaves produced in 2011 and 2012. Whilst stomatal density, vein density and leaf hydraulic conductance all progressively decreased with time, neither leaf water status nor carbon isotope discrimination were affected. We conclude that canopy reinstation is primarily limited by pre-fire carbon stores, rather than by post-fire edaphic conditions (e.g., water availability), and thus argue that capacity for recovery is directly linked to pre-fire forest health. PMID:25108550

Turnbull, Tarryn L; Buckley, Thomas N; Barlow, Alexandra M; Adams, Mark A

2014-10-01

263

Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: cavitation and deformation of xylem in forest fires.  

PubMed

It is widely assumed that post-fire tree mortality results from necrosis of phloem and vascular cambium in stems, despite strong evidence that reduced xylem conductivity also plays an important role. In this study, experiments with Populus balsamifera were used to demonstrate two mechanisms by which heat reduces the hydraulic conductivity of xylem: air seed cavitation and conduit wall deformation. Heat effects on air seed cavitation were quantified using air injection experiments that isolate potential temperature-dependent changes in sap surface tension and pit membrane pore diameters. Heat effects on conduit wall structure were demonstrated using air conductivity measurements and light microscopy. Heating increased vulnerability to cavitation because sap surface tension varies inversely with temperature. Heating did not affect cavitation via changes in pit membrane pore diameters, but did cause significant reductions in xylem air conductivity that were associated with deformation of conduit walls (probably resulting from thermal softening of viscoelastic cell wall polymers). Additional work is required to understand the relative roles of cavitation and deformation in the reduction of xylem conductivity, and how reduced xylem conductivity in roots, stems, and branches correlates and interacts with foliage and root necroses to cause tree mortality. Future research should also examine how heat necrosis of ray parenchyma cells affects refilling of embolisms that occur during and after the fire event. PMID:22276783

Michaletz, S T; Johnson, E A; Tyree, M T

2012-04-01

264

Increasing tendency in caustic esophageal burns and long-term polytetrafluorethylene stenting in severe cases: 10 years experience.  

PubMed

In recent years, lye products have come into common household use in Turkey. Unfortunately, we have noted more cases of serious corrosive esophagitis owing to accidental caustic agent ingestion. The aims of this study were to (1) evaluate our experience with these cases and (2) investigate the effects of long-term intraesophageal polytetrafluorethylene stenting on esophageal remodeling and its impact upon the need for esophageal replacement. Between 1997 and 2006, 68 patients (44 males and 22 females) with accidental caustic agent ingestion were admitted to our department, the only tertiary care referral center for the Turkish Army. Once stabilized, esophagoscopy was performed for injury grading (grades 0, 1, 2a, 3b, 3a, or 3b) as described by Millar and Cywes (Pediatric Surgery. 1998;969-979). Esophagogram was performed 3 weeks after injury to assess healing. At presentation, the injury grade for 24, 31, 11, and 1 cases were 0 or 1, 2a, 2b, and 3a, respectively. One case had gastric outlet obstruction. All cases of grade 0 or 1 injuries had a normal esophagogram at 3 weeks postinjury. For the remaining 44 patients, several treatment modalities have been applied, including antegrade and retrograde dilatations in 31 grade 2a patients, intraluminal stenting in 11 grade 2b patients, esophageal reconstruction in 1 grade 3a patient, and gastroenterostomy in 1. Of the 11 patients with esophageal stenting, 8 patients have resumed a normal diet after 9 to 14 months of stenting. Mean follow up duration is 3.5 years (1-6 years) after stent removal. In the remaining 3 cases, treatment is still ongoing. Esophagitis and esophageal structuring because of caustic agent ingestion is a major public health problem in Turkey. Our small uncontrolled pilot series suggests that intraluminal polytetrafluorethylene stenting may be an effective treatment method to reduce the need for major surgical reconstruction of recalcitrant esophageal strictures. PMID:17448758

Atabek, Cuneyt; Surer, Ilhami; Demirbag, Suzi; Caliskan, Bahadir; Ozturk, Haluk; Cetinkursun, Salih

2007-04-01

265

A comparison of burn season effects on nesting birds in North Dakota mixed-grass prairie  

USGS Publications Warehouse

During 1982-1985, the effects of single spring and fall burn treatments on ground nesting birds and residual cover were studied on five paired areas of native mixed-grass prairie in northwestern Stutsman County, ND. Annually, visual obstruction readings to index the height-density of residual cover were taken once and nest searches were made four times on each area. Residual nesting cover on fall burn plots averaged taller and denser than on spring burn plots during post-fire growing years 2-4. A total of 259 duck nests and 63 nests of non-passerine birds were found during the four years. Duck nesting success was significantly greater (P < 0.05) in fall burn plots than in spring burn plots for all species and years combined. Too few nests of other bird species were found for valid comparisons. Results suggest that vegetation structure and duck nesting response to spring and fall burns became similar again by the third post-fire growing season.

Higgins, K.F.

1986-01-01

266

Evaluating post-fire forest resilience using GIS and multi-criteria analysis: an example from Cape Sounion National Park, Greece.  

PubMed

Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority. PMID:21298266

Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios

2011-03-01

267

Evaluating Post-Fire Forest Resilience Using GIS and Multi-Criteria Analysis: An Example from Cape Sounion National Park, Greece  

NASA Astrophysics Data System (ADS)

Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.

Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios

2011-03-01

268

PRESCRIBED BURNING IMPACTS ON SAGE GROUSE DIETARY RESOURCES IN EASTERN OREGON  

Technology Transfer Automated Retrieval System (TEKTRAN)

Fire in sagebrush steppe can enhance composition and/or productivity of forage species and invertebrates important to sage grouse. Response to fire is, however, highly variable and dependent on site potential, species composition, pre and post fire weather, fire severity, and time since fire. We eva...

269

Increased dry season water yield in burned watersheds in Southern California  

NASA Astrophysics Data System (ADS)

The current work evaluates the effects of the 2003 Old Fire on semi-arid systems in the San Bernardino Mountains, California. Pre- and post-fire daily streamflow are used to analyze flow regimes in two burned watersheds. The average pre-fire runoff ratios in Devil Canyon and City Creek are 0.14 and 0.26, respectively, and both increase to 0.34 post-fire. Annual flow duration curves are developed for each watershed and the low flow is characterized by a 90% exceedance probability threshold. Post-fire low flow is statistically different from the pre-fire values (? = 0.05). In Devil Canyon the annual volume of pre-fire low flow increases on average from 2.6E + 02 to 3.1E + 03 m3 (1090% increase) and in City Creek the annual low flow volume increases from 2.3E + 03 to 5.0E + 03 m3 (118% increase). Predicting burn system resilience to disturbance (anthropogenic and natural) has significant implications for water sustainability and ultimately may provide an opportunity to utilize extended and increased water yield.

Kinoshita, Alicia M.; Hogue, Terri S.

2015-01-01

270

By Air and Land: Estimating Post-Fire Debris-Flow Susceptibility through High-Resolution Radar Reflectivity and Tipping-Bucket Gage Rainfall  

NASA Astrophysics Data System (ADS)

Wildfires often increase the occurrence of post-fire hazardous flash floods and debris flows from steeplands during intense rainfall. Rainfall intensity-duration thresholds have been used to forecast when this hazard increases rapidly; one threshold for Southern California is 15 mm/hr. However, such thresholds are usually developed with point measurements that only capture a small portion of the landscape. In an attempt to limit potential loss of life, the USGS is collaborating with NOAA on a demonstration early-warning system. To address the lack of spatial rainfall coverage, NOAA deployed a small mobile radar truck (SMART-R) to the Day fire in the western Transverse Range during the 2006-07 winter, and to the Canyon and Corral fires in the Santa Monica Mountains near Malibu during the 2007-08 winter. The SMART-R's C-band Doppler radar can be used to estimate rainfall rates over entire burned areas. On topography susceptible to debris flows within these 3 fires, the USGS installed a dense array of ground-based instruments, including 8 tipping- bucket rain gages in the Day fire, and 3 each in the Canyon and Corral fires. After converting hourly time- step grids of SMART-R reflectivity (150 m node spacing) into precipitation estimates, we compared the gage data to its spatially coincident SMART-R cell.Results from the Day fire indicate that SMART-R derived seasonal and event-based rainfall totals were typically greater than gage totals during the 2006-07 winter of record-low rainfall. Both data sets, however, reflected similar spatial patterns of rainfall intensity. In contrast, for the Malibu fires there is no systematic agreement in spatial pattern or rainfall mismatch; the difference between the two data sets. Of the 9 storms recorded during this 2007-08 winter, SMART-R estimates of rainfall totals exceeded the gage totals for only 3, underestimating totals for the remaining 6. The mismatch magnitudes also exceed that of the previous winter recorded at the Day fire, and, for the largest storm of the season, was 129 mm less than a rain gage total.These discrepancies reduce the reliability of a potential SMART-R-advised warning system, assuming truth from ground-based gages. During the 2007-08 winter near Malibu the rain gages recorded that the 15 mm/hr warning threshold was exceeded during only one storm, and only at one gage in the Corral fire. This event transported large amounts of sediment that resulted in road closures, and it produced at least one "firehose" debris flow generated by runoff from steep, exposed bedrock. In contrast, SMART-R derived rainfall intensities exceeded this threshold at all gage locations for 2 of the 3 storms with overestimated rainfall intensities. It underestimated rainfall intensities for the 6 remaining storms; such underestimates could have led to potential false negatives, which are of concern for preserving human life.It is not yet clear which storms are amenable to the use of SMART-R technology for capturing spatial estimates of rainfall intensity, but results from the Day fire showing topographically forced rainfall patterns support validity of the system. Future work needs to address discrepancies arising from comparing spatially continuous atmospheric radar measurements with terrestrial point measurements. One effort to mitigate some interpretation complexities could include the installation of a disdrometer along with the rain gages, to measure rain drop-size distributions to calibrate in near real-time the relation between measured reflectivity and inferred rainfall.

Hanshaw, M. N.; Schmidt, K. M.; Jorgensen, D. P.; Stock, J. D.

2008-12-01

271

Tracking sources of severe haze episodes and their physicochemical and hygroscopic properties under Asian continental outflow: Long-range transport pollution, postharvest biomass burning, and Asian dust  

NASA Astrophysics Data System (ADS)

Aerosol physicochemical and hygroscopic properties were measured from 12 October to 21 November 2005 at a downwind area of the Asian continental outflow (Gwangju, Korea) to characterize severe haze episodes. Using optically measured elemental carbon (EC) at 660 nm (Opt.EC) and 880 nm (BC) wavelengths and Mie theory, it was estimated that the higher BC/Opt.EC ratio during the cloudy day of the long-range transport (LTP) period was mainly due to EC particle growth from in-cloud processing with secondary aerosols such as sulfate and organic aerosols. Single scattering albedo (SSA) of biomass burning (BB) aerosol increased sharply from 0.89 to 0.94 under a relative humidity >70%, suggesting that organic aerosols emitted from rice straw burning contained high amounts of hydrophilic compounds. The contribution of aerosol water content to the total light extinction coefficient (bext) was determined as 51.4% and 68.4% during the BB and BB + LTP periods, respectively, indicating that the haze episodes were highly enhanced by an increase in aerosol water content. The Asian dust event was characterized by the highest SSA (0.92 0.02), the lowest mass scattering efficiency of fine particles (2.5 1.0 m2 g-1), and the lowest hygroscopic nature (humidity-dependent light scattering enhancement factor, f(80%), which is defined by the ratio of light scattering coefficient at 80% relative humidity to that at dry condition, = 1.37). Based on the ngstrm exponent (?) values observed at the source region of the Asian continent and the downwind area of South Korea during the BB + LTP period, it was found that the ? value of urban aerosols decreased 11% for 1-2 days of the transport, probably due to the increase in particle size through water uptake. Increasing rates of surface PM10 mass concentrations at western coastal areas of the South Korean peninsula were in the range 2.4-14.4 ?gm-3 h-1 at the beginning of the BB + LTP period (24 October 2005, 0700-2300 LT). Based on in situ and remote measurement techniques, Asian aerosol outflow over the South Korean peninsula is of the order of 388-3789 tons h-1 at the beginning of the LTP event.

Jung, Jinsang; Kim, Young J.

2011-01-01

272

Post-Fire Rehabilitation  

NSDL National Science Digital Library

This Colorado State Forest Service (CSFS) web page provides a collection of fact sheets to assist landowners in rehabilitating their property after wildfire. These include information on vegetative recovery, and soil erosion prevention strategies.

273

Controlled Burn  

USGS Multimedia Gallery

GULF OF MEXICO Dark clouds of smoke and fire emerge as oil burns during a controlled burn in the Gulf of Mexico. The U.S. Coast Guard working in partnership with BP PLC, local residents, and other Federal agencies conducted the controlled burn to aid in preventing the spread of oil following...

274

Improving post-fire rainfall-runoff modelling: The applicability of remotely sensed Leaf Area Index data as input for modelling catchment scale post-wildfire hydrological response.  

NASA Astrophysics Data System (ADS)

Wildfires are a frequent phenomenon in European Mediterranean ecosystems. Fire-induced changes in the physical, chemical, and biological characteristics of the soils and the damaging or even complete removal of vegetation influence the post fire hydrology of catchments. Especially the first few years after a wildfire are marked by increased runoff and erosion and related risks such as floods. The subsequent decrease in runoff and erosion is generally held to be mainly related to post-fire vegetation recovery, emphasizing the importance of vegetation re-growth in restoring the pre-fire hydrological conditions of a burnt catchment. The often fast pace of vegetation recovery in the Mediterranean region limits the time available for research during this so-called window-of-disturbance. This study proposes the use of remote sensing (RS) images for quantifying post-fire vegetation recovery and its integration in post-fire rainfall-runoff modelling in order to facilitate estimating vegetation abundance and improve runoff predictions. To this end, the Leaf Area Index (LAI) - a commonly used parameter to represent interception in process-based rainfall-runoff models - was derived from the Normalized Difference Vegetation Index (NDVI) as calculated from Landsat-5 TM and Landsat-7 ETM+ imagery. This was done for five rainfall events that occurred during contrasting seasons of the first 2 years after a wildfire in a micro-catchment in Serra de Lous, central Portugal. A process-based rainfall-runoff model (LISEM) was applied to each of the five rainfall events using LAI data obtained not only from RS imagery but also from field measurements. For both methods of estimating LAI, model performance was assessed by means of the Nash-Sutcliffe coefficient (NSE) as well as the coefficient of determination (r2). Overall, the results showed a better model performance for events that occurred during winter than during summer, independent of the LAI input maps. Furthermore, model performance was very similar for the RS-based and the ground-based LAI maps, reflecting the similarity in LAI estimates obtained with the methods. Thus, the present results suggest that especially during the early stages of the window-of-disturbance remote sensing can be a suitable alternative for ground-based measurements, even though it does not necessarily improve runoff predictions.

van Eck, Christel Melissa; Keesstra, Saskia; Catarina Simes Vieira, Diana; Nunes, Joo Pedro; Keizer, Jan Jacob

2014-05-01

275

[Comparative evaluation of therapeutic efficacy of early amnion covering the cornea, temporary blepharorrhaphy and its combination in severe alkali burns of the eye in the experiment].  

PubMed

In four groups of rabbits on model of a heavy alkaline burn of a cornea and a limbus of various extent character and outcomes of healing of an eye surface as a result of early (it is direct after a burn) applications is investigated: only conservative treatment - group I, conservative treatment + time blepharorrhaphy - group II, conservative treatment + covering of a cornea and a limbus of amnionic membrane - group III, and also combinations of conservative treatment, temporary of blepharorrhaphy and coverings of a cornea and a limbus amnionic membrane - group IV. In all groups conservative treatment included: an instillation of maxitrol within 14 days with transition to a mortgaging of Unguentum Tetracyclini of 1% 3 times a day. Depending on width of sector of the burn measured in circular degrees, each group included 4 subgroups: 60 - a subgroup "A", 120 " " - 180 - "B", 270 "?" - (on 4 eyes in a subgroup). Results estimated daily within the first 10 days, and further every 5 days (during 3 months) after a burn with photoregistration at colouring of an eye surface of 1% a solution fluorescein-natrium. On the basis of the received results it is established that the early fortnight time blepharorrhaphy (as addition to conservative treatment) is the most effective and accessible method (from considered) optimisation of healing of an eye surface at heavy burns of eyes with capture to 75% of the area of a cornea and a limbus. PMID:22712247

Bo?ko, V; Churashov, S V; Chernysh, V F; Rud'ko, A S

2012-04-01

276

Chemical burns  

PubMed Central

Objectives To report a burn units experience with chemical burns and to discuss the fundamental principles in managing chemical burns. Design A chart review. Setting A burn centre at a major university-affiliated hospital. Patients Twenty-four patients with chemical burns, representing 2.6% of all burn admissions over an 8-year period at the Ross Tilley Regional Adult Burn Centre. Seventy-five percent of the burn injuries were work-related accidents. Chemicals involved included hydrofluoric acid, sulfuric acid, black liquor, various lyes, potassium permanganate and phenol. Results Fourteen patients required excision and skin grafting. Complications were frequent and included ocular chemical contacts, wound infections, tendon exposures, toe amputation and systemic reactions from absorption of chemical. One patient died from a chemical scald burn to 98% of the body surface area. Conclusions The key principles in the management of chemical burns include removal of the chemical, copious irrigation, limited use of antidotes, correct estimation of the extent of injury, identification of systemic toxicity, treatment of ocular contacts and management of chemical inhalation injury. Individualized treatment is emphasized. PMID:8640619

Cartotto, Robert C.; Peters, Walter J.; Neligan, Peter C.; Douglas, Leith G.; Beeston, Jeff

1996-01-01

277

Fire severity analysis using LANDSAT data in an heterogeneus landscape of semiarid NW Patagonia  

NASA Astrophysics Data System (ADS)

Fires at landscape level are result from complex interactions among ignitions, weather and vegetation. Factors related to fire, such as fuel moisture, vegetation structure and topography, can exhibit substantial spatial and temporal variability. Arrangements of patches with different degree of burn severity are found after to fire and this heterogeneity could have major implications for ecosystem processes. For instance, severely burned patches may be more affected by fire returning to pre-fire conditions in a large time period while areas with low burn severity may be seed sources accelerating the plant recovery process. Interactions between fire severity, type vegetation and others environmental factors are poorly known, in particular in large fires. For overcome this lack, the first step is rely on accurate data regarding fire severity at landscape scale. Remote sensing tools are particularly suitable assessment fire effects at landscape scale, where monitoring the entire surface affected by large fires is laborious. In addition, the integration into a GIS of data obtained by remote sensing facilitates to explore causal relationships involved in fire severity and the influence of them in the recovery process. In this context, spectral indices can be used to relate burn severity observed in the surface to values measured by the satellite sensor. One of the most widely used indices is the "Normalized Burn Ratio" (NBR) which enables to infer the degree of post-fire ecological change. Nevertheless, in heterogeneous landscapes, to map fire effects may be required pre-disturbance data in addition to post-disturbance image, because precisely to non-homogeneity conditions. Thus, two NBR derivatives, delta-NBR (dNBR) and Relative delta-NBR (RdNBR), have been developed to remove biasing of the pre-fire vegetation present in the uni-temporal approach. To difference of dNBR, in which it is obtained an absolute change value, RdNBR is a relative measure that allows independence from the pre-fire condition of vegetation. Considering that: 1) the dNBRand RdNBR indexes are proposed to evaluate fire severity by remote sensing in different environments and 2) exist few information about its behavior in communities with low biomass load as the semiarid grasslands. Then, the general objective of work was to analyze and compare the behavior of dNBR and RdNBR in their ability to discriminate the degrees of fire severity in semiarid environments dominated by herbaceous vegetation.

Lanorte, Antonio; Lasaponara, Rosa; Ghermandi, Luciana; Oddi, Facundo

2014-05-01

278

Lightning burns.  

PubMed

We present the case of a lightning-strike victim. This case illustrates the importance of in-field care, appropriate referral to a burn center, and the tendency of lightning burns to progress to full-thickness injury. PMID:23799482

Russell, Katie W; Cochran, Amalia L; Mehta, Sagar T; Morris, Stephen E; McDevitt, Marion C

2014-01-01

279

Does wildfire ash block soil pores? A micromorphological analysis of burned soils.  

NASA Astrophysics Data System (ADS)

Increases in runoff and erosion after forest wildfires are often attributed to the removal of surface cover, the formation of water repellent soils, and sealing of the soil surface by ash. The latter process involves clogging of pores by ash as well as rainsplash induced compaction of the ash layer. However, few studies have directly addressed the hydrologic role of ash and no studies have documented ash sealing in a forest fire environment. In an attempt to determine whether ash contributes to reduced infiltration after fire we conducted a micromorphological analysis of soils collected before and after three controlled pile burns at the Lubrecht Experimental Forest in western Montana. The burns were conducted with a fuel load of 90 Mg ha-1 on sites dominated by Lodgepole pine ( Pinus contorta) with scattered Douglas fir ( Pseudotoga menziesii), sandy loam soils and a mean of 99% ground cover (litter, duff and live vegetation). Soil cores were collected before burning, immediately after burning and after the burned areas had been subjected to simulated rainfall at an intensity of 80 mm hr-1 for 1 hour. The cores were impregnated with resin from which thin sections were made and microscopically analyzed to determine the vertical distribution of organic material, ash, mineral soil and porosity. Burning consumed all of the surface litter and duff and formed a <1cm layer of black and gray ash above the mineral soil, indicating a moderate severity burn. The mean soil temperature in the upper 1 cm of the mineral soil was 70 C, and there was no detectable increase in water repellency. Rainfall simulations conducted before and after the fires indicated that burning reduced the infiltration capacity from a pre-fire mean of 87 mm hr-1 to a post-fire mean of 35 mm hr-1. Prior to burning the upper 1 cm of the soil was comprised of 41% non- ash organic material, 4% clastic material and 55% pore space. After burning the porosity in the upper 1 cm decreased to 36% and the solid component consisted primarily of black and white ash (34% and 7% respectively). The biggest decrease in porosity was in the upper 2 mm of the soil where porosity decreased from 62 to 22% with a corresponding increase in the proportion of ash. Following the rainfall simulations the black ash content of the upper 1 cm decreased to 21%, suggesting that ash particles were removed in the runoff. However the remaining ash particles became noticeably more aligned parallel to the soil surface. Our observations indicate that ash may contribute to reduced infiltration after fire in two ways: 1) by filling pore space, and 2) by orienting parallel to the soil surface, so creating a thin water repellent organic layer in the upper few millimeters of the soil.

Balfour, V.; Woods, S. W.

2007-12-01

280

A protocol for resuscitation of severe burn patients guided by transpulmonary thermodilution and lactate levels: a 3-year prospective cohort study  

PubMed Central

Introduction The use of urinary output and vital signs to guide initial burn resuscitation may lead to suboptimal resuscitation. Invasive hemodynamic monitoring may result in over-resuscitation. This study aimed to evaluate the results of a goal-directed burn resuscitation protocol that used standard measures of mean arterial pressure (MAP) and urine output, plus transpulmonary thermodilution (TPTD) and lactate levels to adjust fluid therapy to achieve a minimum level of preload to allow for sufficient vital organ perfusion. Methods We conducted a three-year prospective cohort study of 132 consecutive critically burned patients. These patients underwent resuscitation guided by MAP (>65 mmHg), urinary output (0.5 to 1 ml/kg), TPTD and lactate levels. Fluid therapy was adjusted to achieve a cardiac index (CI) >2.5 L/minute/m2 and an intrathoracic blood volume index (ITBVI) >600 ml/m2, and to optimize lactate levels. Statistical analysis was performed using mixed models. We also used Pearson or Spearman methods and the Mann-Whitney U-test. Results A total of 98 men and 34 women (mean age, 48 18 years) was studied. The mean total body surface area (TBSA) burned was 35% 22%. During the early resuscitation phase, lactate levels were elevated (2.58 2.05 mmol/L) and TPTD showed initial hypovolemia by the CI (2.68 1.06 L/minute/m2) and the ITBVI (709 254 mL/m2). At 24 to 32 hours, the CI and lactic levels were normalized, although the ITBVI remained below the normal range (744 276 ml/m2). The mean fluid rate required to achieve protocol targets in the first 8 hours was 4.05 ml/kg/TBSA burned, which slightly increased in the next 16 hours. Patients with a urine output greater than or less than 0.5 ml/kg/hour did not show differences in heart rate, mean arterial pressure, CI, ITBVI or lactate levels. Conclusions Initial hypovolemia may be detected by TPTD monitoring during the early resuscitation phase. This hypovolemia might not be reflected by blood pressure and hourly urine output. An adequate CI and tissue perfusion can be achieved with below-normal levels of preload. Early resuscitation guided by lactate levels and below-normal preload volume targets appears safe and avoids unnecessary fluid input. PMID:23947945

2013-01-01

281

Effects of Post-fire Succession and Edaphic Conditions on Tree Transpiration in a Boreal Black Spruce Forest  

NASA Astrophysics Data System (ADS)

Boreal forest ecosystems play an integral role in global climate change because of their large land area and ability to store large quantities of carbon. Quantifying and explaining tree water use in both well- and poorly- drained soils and across successional development is critical in understanding the influence of physiological processes on carbon, water, and energy cycling. Four black spruce stands burned in 1850, 1930, 1964, and 1989 were chosen for this research because they had been shown in previous studies to represent critical stages of forest development that capture the successional impacts of both leaf area and species composition change. We hypothesized that tree transpiration will differ between well- and poorly-drained areas and with age due to 1) tree size and age and edaphic-related hydraulic adjustments and 2) tree size will be explained by species specific growth differences from edaphic conditions. Sap flux, leaf water potential (\\PsiL), site specific allometric relationships between sapwood area and leaf area and soil properties such as texture and organic matter depth in each of the four burn ages were utilized to test these hypotheses. Results show that sap flux for Picea mariana at the 1964 burn age differed between well- and poorly-drained soils when scaled per unit xylem area with trees located on poorly-drained soils experiencing higher sap flux rates than trees in well- drained areas (101.79 & 83.02 g cm-2 day-1 respectively). However, when scaled to transpiration on a per tree basis, taking tree size into account, trees on well-drained soils had higher rates than those in poorly- drained locations (366.96 & 216.82 g tree-1 day-1 respectively). The presence of Pinus banksiana and Populus tremuloides in the well-drained areas increased stand transpiration rates for these areas considerably as compared to the poorly-drained areas. Midday \\PsiL for all four burns show no significant difference between well- and poorly-drained (average midday \\PsiL = -1.23 & -1.29 MPa respectively) sites for Picea mariana (t-value = -0.591, df = 6, p-value = 0.576). This indicates that tree size, which is constrained by growth and anaerobic conditions, drives differences in tree transpiration for well- and poorly-drained soils.

Angstmann, J. L.; Ewers, B. E.; Kwon, H.; Bond-Lamberty, B.; Amiro, B.; Gower, S. T.

2007-12-01

282

High-severity wildfires can increase runoff and erosion rates by one or  

E-print Network

High-severity wildfires can increase runoff and erosion rates by one or more orders of magnitude flood runoff and soil erosion. Few data have been available to systematically evaluate the effectiveness. There also is an urgent need to develop and test models for predicting post-fire erosion and the likely

MacDonald, Lee

283

Development of life prediction capabilities for liquid propellant rocket engines. Post-fire diagnostic system for the SSME system architecture study  

NASA Technical Reports Server (NTRS)

This system architecture task (1) analyzed the current process used to make an assessment of engine and component health after each test or flight firing of an SSME, (2) developed an approach and a specific set of objectives and requirements for automated diagnostics during post fire health assessment, and (3) listed and described the software applications required to implement this system. The diagnostic system described is a distributed system with a database management system to store diagnostic information and test data, a CAE package for visual data analysis and preparation of plots of hot-fire data, a set of procedural applications for routine anomaly detection, and an expert system for the advanced anomaly detection and evaluation.

Gage, Mark; Dehoff, Ronald

1991-01-01

284

Emerging Infections in Burns  

PubMed Central

Abstract Background Patients who suffer severe burns are at higher risk for local and systemic infections. In recent years, emerging resistant pathogens have forced burn care providers world wide to search for alternative forms of treatment. Multidrug-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter spp., and various fungal strains have been the major contributors to the increase in morbidity and mortality rates. Multi-drug-resistant S. aureus remains the major cause of gram-positive burn wound infections world wide. Treatment strategies include rigorous isolation protocols and new types of antibiotics where necessary. Methods We reviewed 398 severely burned patients (burns >40% total body surface area [TBSA]) admitted to our hospital between 2000 and 2006. Patients who did not contract multi-drug-resistant gram-negative organisms during their hospital course and received our standard antibiotic regimenvancomycin and piperacillin/tazobactamserved as controls (piperacillin/tazobactam; n?=?280). The treatment group consisted of patients who, during their acute hospital stay, developed infections with multi-drug-resistant gram-negative pathogens and were treated with vancomycin and colistin for at least three days (colistin; n?=?118). Results Gram-negative organisms continue to cause the most severe infections in burn patients. Colistin has re-emerged as a highly effective antibiotic against multiresistant Pseudomonas and Acinetobacter infections of burns. Patients who required colistin therapy had a significantly larger average total and full-thickness burn than patients treated with piperacillin/tazobactam and vancomycin, and the mortality rate was significantly higher in the colistin group (p?burn patients are Candida spp., Aspergillus spp., and Fusarium spp. A definitive diagnosis is more difficult to obtain than in bacterial infections. Amphotericin B and voriconazole remain the two most important anti-fungal substances in our practice. Conclusions Innovations in fluid management, ventilatory support, surgical care, and antimicrobial therapy have contributed to a significant reduction in morbidity and mortality rates in burn patients. Vancomycin and clindamycin are the two most important reserve antibiotics for methicillin-resistant Staphylococcus aureus infection. Oxazolidinones and streptogramins have showed high effectiveness against gram-positive infections. Colistin has re-emerged as a highly effective antibiotic against multiresistant Pseudomonas and Acinetobacter infections. Current challenges include Candida, Aspergillus, and molds. The development of new agents, prudent and appropriate use of antibiotics, and better infection control protocols are paramount in the ongoing battle against multi-resistant organisms. PMID:19810827

Branski, Ludwik K.; Al-Mousawi, Ahmed; Rivero, Haidy; Jeschke, Marc G.; Sanford, Arthur P.

2009-01-01

285

First Aid: Burns  

MedlinePLUS

... burn may peel off after 1 or 2 days. Second-degree burns are thicker burns, are very painful and ... degree burns usually heal in 3 to 6 days. Second-degree burns usually heal in 2 to 3 weeks. ...

286

Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery  

NASA Astrophysics Data System (ADS)

Careful evaluation of forest regeneration and vegetation recovery after a fire event provides vital information useful in land management. The use of remotely sensed data is considered to be especially suitable for monitoring ecosystem dynamics after fire. The aim of this work was to map post-fire forest regeneration and vegetation recovery on the Mediterranean island of Thasos by using a combination of very high spatial (VHS) resolution (QuickBird) and hyperspectral (EO-1 Hyperion) imagery and by employing object-based image analysis. More specifically, the work focused on (1) the separation and mapping of three major post-fire classes (forest regeneration, other vegetation recovery, unburned vegetation) existing within the fire perimeter, and (2) the differentiation and mapping of the two main forest regeneration classes, namely, Pinus brutia regeneration, and Pinus nigra regeneration. The data used in this study consisted of satellite images and field observations of homogeneous regenerated and revegetated areas. The methodology followed two main steps: a three-level image segmentation, and, a classification of the segmented images. The process resulted in the separation of classes related to the aforementioned objectives. The overall accuracy assessment revealed very promising results (approximately 83.7% overall accuracy, with a Kappa Index of Agreement of 0.79). The achieved accuracy was 8% higher when compared to the results reported in a previous work in which only the EO-1 Hyperion image was employed in order to map the same classes. Some classification confusions involving the classes of P. brutia regeneration and P. nigra regeneration were observed. This could be attributed to the absence of large and dense homogeneous areas of regenerated pine trees in the study area.

Mitri, George H.; Gitas, Ioannis Z.

2013-02-01

287

Ball lightning burn.  

PubMed

Ball lightning is a rare physical phenomenon, which is not yet completely explained. It is similar to lightning but with different, peculiar characteristics. It can be considered a mix of fire and electricity, concentrated in a fireball with a diameter of 20-cm that most commonly appears suddenly, even in indoor conditions, during a thunderstorm. It moves quickly for several meters, can change direction, and ultimately disappears. During a great storm, a 28-year-old man and his 5-year-old daughter sustained burn wounds after ball lightning came from the outdoors through a chimney. These two patients demonstrated signs of fire and electrical injuries. The father, who lost consciousness, sustained superficial second-degree burn wounds bilaterally on the zygomatic area and deep second-degree burn wounds on his right hand (total body surface area, 4%). His daughter demonstrated superficial second-degree burn wounds on the left part of the face and deep second-degree and third-degree burn wounds (total body surface area, 30%) on the left neck, both upper arms, and the back. In this article, the authors report the first two cases of burn injuries resulting from ball lightning contact indoors. The literature on this rare phenomenon is reviewed to elucidate the nature of ball lightning. Emphasis is placed on the nature of injuries after ball lightning contact, the therapy used, and the long-term complications. PMID:12792547

Selvaggi, Gennaro; Monstrey, Stan; von Heimburg, Dennis; Hamdi, Mustapha; Van Landuyt, Koen; Blondeel, Phillip

2003-05-01

288

Getting wood to burn clean  

SciTech Connect

In an effort to decrease their dependence on expensive foreign and domestic oil supplies, an increasing number of U.S. citizens are using wood stoves to heat their residences. Air pollution resulting from this new heating trend in several U.S. locations is discussed. Steps that individual wood stove users can take to make their stoves pollute less include burning seasoned hardwood, allowing each new load of burn to burn briskly for at least 15 minutes before changing the draft control, burning small loads of wood, installing a stack thermometer to determine peak stove efficiencies, and keeping chimneys clean.

Lafavore, M.

1980-11-01

289

Hillslope Erosion Processes after High Severity Wildfires, Colorado Front Range Joseph H. Pietraszek1 and Lee H. MacDonald2  

E-print Network

Hillslope Erosion Processes after High Severity Wildfires, Colorado Front Range Joseph H-severity forest fires can increase soil erosion rates by two or more orders of magnitude with potentially severe post-fire erosion is driven by high-intensity summer convective thunderstorms in the first 2-3 years

MacDonald, Lee

290

Burning rubber  

SciTech Connect

Mario Andretti, look out You are about to be surpassed in the burning rubber category by a joint venture between Oxford Energy Company and General Electric. The two companies are building the first whole tire-to-energy facility in the US in Modesto, California. This $41 million facility does not require tires to be shredded prior to incineration; it has the capacity to burn 700 tires per minute. The electricity generated will be provided to a utility company. Oxford says there are two billion waste tires on the ground and this number is increasing by 220 million a year. Of that amount, only 18 million a year are recycled.

Not Available

1987-09-01

291

A morphometric analysis of gullies scoured by post-fire progressively bulked debris flows in southwest Montana, USA  

NASA Astrophysics Data System (ADS)

In the fall of 2001, an intense thunderstorm in southwest Montana triggered many debris flows in the burned area of Sleeping Child Creek. In most instances, the debris flows cut deep gullies into previously unchannelized colluvial hollows and deposited large volumes of sediment onto the valley floor. The presence of rill networks above the gullies as well as the absence of landslide features indicate that the gullies were scoured by progressively bulked debris flows, a process in which dilute surface runoff becomes increasingly more laden with sediment until it transforms into a debris flow. In this contribution, we present a morphometric analysis of six of the gullies to better understand this relatively understudied process. We find that the locations of the rill heads and gully heads conform to slope-area thresholds that are characteristic of erosion by overland flow. Our data also suggest that the volumes of the debris flows increase exponentially with normalized drainage area, thus lending support to an assumption used in a recently proposed debris flow incision law. Finally, the debris flow fans have been relatively unaltered since deposition, suggesting that the valley may be currently aggrading while the hillslopes are being denuded.

Gabet, Emmanuel J.; Bookter, Andy

2008-04-01

292

Science at Burning Man  

NSDL National Science Digital Library

Recently, the Exploratorium Museum in San Francisco sent a dedicated crew to check out the activities at the Burning Man festival in Nevada. The results of their journey and explorations can be seen here, and interested parties can learn about pyrotechnics, flight, dust devils, and rainbows. The site contains several dozen short films that feature Exploratorium scientists like Paul Doherty investigating the properties of alkali and a rare double rainbow sighting. One of the most impressive videos is a bird's eye view from an 88-NV plane over the Burning Man site. Finally, visitors are also encouraged to share these resources with others via social media sites, including Twitter and Facebook.

293

Fire severity, residuals and soil legacies affect regeneration of Scots pine in the Southern Alps.  

PubMed

Regeneration of non fire-adapted conifers following crown fires on the European Alps is often delayed or unsuccessful. Fire may limit establishment by eliminating seed trees, altering soil properties, or modifying microsite and soil conditions via disturbance legacies. However, the effect of soil legacies on post-fire establishment has rarely been discussed. We analyzed the abundance of Scots pine regeneration in a 257 ha wildfire in an inner-alpine forest. Our aims were (1) to model fire intensity at the soil surface and topsoil heating along a gradient of increasing fire severities; (2) to assess the differences in soil properties along the fire severity gradient; (3) to model the effect of disturbance and soil legacies on the density of pine seedlings. We reconstructed fire behavior and soil heating with the First Order Fire Effects Model (FOFEM), tested the effect of fire severity on soils by nonparametric distributional tests, and modeled seedling density as a function of site, disturbance and soil legacies by fitting a GLM following a variable selection procedure. Topsoil heating differed markedly between the moderate and high severity fires, reaching temperatures high enough to strongly and permanently alter soil properties only in the latter. High fire severity resulted in decreased soil consistency and wet aggregate stability. Burned soils had lower organic matter and cations than those unburned. Pine seedlings favored low-fertility, eroded, and chemically poor sites. Establishment was facilitated by the presence of coarse woody debris, but hampered by increasing distance from the seed source. These results suggest that in dry, inner-alpine valleys, fire residuals and soil legacies interact in determining the success of Scots pine re-establishment. High severity fire can promote favorable soil conditions, but distance from the seed source and high evaporation rates of bare soils must be mitigated in order to ensure a successful restoration. PMID:24334000

Vacchiano, Giorgio; Stanchi, Silvia; Marinari, Giulia; Ascoli, Davide; Zanini, Ermanno; Motta, Renzo

2014-02-15

294

Phenology-based, remote sensing of post-burn disturbance windows in rangelands  

USGS Publications Warehouse

Wildland fire activity has increased in many parts of the world in recent decades. Ecological disturbance by fire can accelerate ecosystem degradation processes such as erosion due to combustion of vegetation that otherwise provides protective cover to the soil surface. This study employed a novel ecological indicator based on remote sensing of vegetation greenness dynamics (phenology) to estimate variability in the window of time between fire and the reemergence of green vegetation. The indicator was applied as a proxy for short-term, post-fire disturbance windows in rangelands; where a disturbance window is defined as the time required for an ecological or geomorphic process that is altered to return to pre-disturbance levels. We examined variability in the indicator determined for time series of MODIS and AVHRR NDVI remote sensing data for a database of ?100 historical wildland fires, with associated post-fire reseeding treatments, that burned 19902003 in cold desert shrub steppe of the Great Basin and Columbia Plateau of the western USA. The indicator-based estimates of disturbance window length were examined relative to the day of the year that fires burned and seeding treatments to consider effects of contemporary variability in fire regime and management activities in this environment. A key finding was that contemporary changes of increased length of the annual fire season could have indirect effects on ecosystem degradation, as early season fires appeared to result in longer time that soils remained relatively bare of the protective cover of vegetation after fires. Also important was that reemergence of vegetation did not occur more quickly after fire in sites treated with post-fire seeding, which is a strategy commonly employed to accelerate post-fire vegetation recovery and stabilize soil. Future work with the indicator could examine other ecological factors that are dynamic in space and time following disturbance such as nutrient cycling, carbon storage, microbial community composition, or soil hydrology as a function of disturbance windows, possibly using simulation modeling and historical wildfire information.

Sankeya, Joel B.; Wallace, Cynthia S.A.; Ravi, Sujith

2013-01-01

295

Global Burned Area and Biomass Burning Emissions from Small Fires  

NASA Technical Reports Server (NTRS)

In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia-regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes.

Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

2012-01-01

296

Animal models in burn research.  

PubMed

Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

Abdullahi, A; Amini-Nik, S; Jeschke, M G

2014-09-01

297

Epidemiology of U.K. military burns.  

PubMed

The authors review the etiology of U.K. military burns in light of increasing hybrid warfare. Analysis of the nature of these injured personnel will provide commanders with the evidence to plan for on-going and future operations. Case notes of all U.K. Armed Forces burn injured patients who were evacuated to the Royal Centre for Defence Medicine were reviewed. Demographics, burn severity, pattern, and mortality details were included. There were 134 U.K. military personnel with burns requiring return to the United Kingdom during 2001-2007. The median age was 27 (20-62) years. Overall, 60% of burns seen were "accidental." Burning waste, misuse or disrespect of fuel, and scalds were the most prevalent noncombat burns. Areas commonly burned were the face, legs, and hands. During 2006-2007 in the two major conflicts, more than 59% (n = 36) of the burned patients evacuated to the United Kingdom were injured during combat. Burns sustained in combat represent 5.8% of all combat casualties and were commonly associated with other injuries. Improvised explosive device, minestrike, and rocket-propelled grenade were common causes. The mean TBSA affected for both groups was 5% (1-70). The majority of combat burn injuries have been small in size. Greater provision of flame retardant equipment and clothing may reduce the extent and number of combat burns in the future. The numbers of noncombat burns are being reduced by good military discipline. PMID:21422938

Foster, Mark Anthony; Moledina, Jamil; Jeffery, Steve L A

2011-01-01

298

Characterizing the primary material sources and dominant erosional processes for post-fire debris-flow initiation in a headwater basin using multi-temporal terrestrial laser scanning data  

NASA Astrophysics Data System (ADS)

Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce hazardous debris flows. Relative to shallow landslides, the primary sources of material and dominant erosional processes that contribute to post-fire debris-flow initiation are poorly constrained. Improving our understanding of how and where material is eroded from a watershed during a post-fire debris-flow requires (1) precise measurements of topographic change to calculate volumetric measurements of erosion and deposition, and (2) the identification of relevant morphometrically defined process domains to spatially constrain these measurements of erosion and deposition. In this study, we combine the morphometric analysis of a steep, small (0.01 km2) headwater drainage basin with measurements of topographic change using high-resolution (2.5 cm) multi-temporal terrestrial laser scanning data made before and after a post-fire debris flow. The results of the morphometric analysis are used to define four process domains: hillslope-divergent, hillslope-convergent, transitional, and channelized incision. We determine that hillslope-divergent and hillslope-convergent process domains represent the primary sources of material over the period of analysis in the study basin. From these results we conclude that raindrop-impact induced erosion, ravel, surface wash, and rilling are the primary erosional processes contributing to post-fire debris-flow initiation in the small, steep headwater basin. Further work is needed to determine (1) how these results vary with increasing drainage basin size, (2) how these data might scale upward for use with coarser resolution measurements of topography, and (3) how these results change with evolving sediment supply conditions and vegetation recovery.

Staley, Dennis M.; Wasklewicz, Thad A.; Kean, Jason W.

2014-06-01

299

Ken Burns  

NSDL National Science Digital Library

Ken Burns is a popular documentarian and, as it turns out, he is now a popular app, in a manner of speaking. This particular app gives interested parties the ability to view scenes from his documentaries (such as "Baseball" and "Jazz") in a variety of settings. The latest version allows visitors to access the Innovation playlist absolutely free while other playlists containing clips from his other programs are available for a small fee. This version is compatible with iPads running iOS 7.0 and newer.

2014-02-10

300

Work status and burn specific health after work-related burn injury  

Microsoft Academic Search

Work status is a valid indicator of post burn health. There is limited information on this issue after work-related burn injury. Aim: To investigate long-term health- and work status after work-related burns. Method: Eighty-six former patients treated for severe work-related burn injuries an average of 9.0 years previous to follow-up were questioned about their present work status. They were also

Johan Dyster-Aas; Morten Kildal; Mimmie Willebrand; Bengt Gerdin; Lisa Ekselius

301

Rehabilitation of the burn patient  

PubMed Central

Rehabilitation is an essential and integral part of burn treatment. It is not something which takes place following healing of skin grafts or discharge from hospital; instead it is a process that starts from day one of admission and continues for months and sometimes years after the initial event. Burns rehabilitation is not something which is completed by one or two individuals but should be a team approach, incorporating the patient and when appropriate, their family. The term Burns Rehabilitation incorporates the physical, psychological and social aspects of care and it is common for burn patients to experience difficulties in one or all of these areas following a burn injury. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. The aims of burn rehabilitation are to minimise the adverse effects caused by the injury in terms of maintaining range of movement, minimising contracture development and impact of scarring, maximising functional ability, maximising psychological wellbeing, maximising social integration PMID:21321643

Procter, Fiona

2010-01-01

302

Direct and indirect responses of tallgrass prairie butterflies to prescribed burning  

USGS Publications Warehouse

Fire is an important tool in the conservation and restoration of tallgrass prairie ecosystems. We investigated how both the vegetation composition and butterfly community of tallgrass prairie remnants changed in relation to the elapsed time (in months) since prescribed fire. Butterfly richness and butterfly abundance were positively correlated with the time since burn. Habitat-specialist butterfly richness recovery time was greater than 70 months post-fire and habitat-specialist butterfly abundance recovery time was approximately 50 months post-fire. Thus, recovery times for butterfly populations after prescribed fires in our study were potentially longer than those previously reported. We used Path Analysis to evaluate the relative contributions of the direct effect of time since fire and the indirect effects of time since fire through changes in vegetation composition on butterfly abundance. Path models highlighted the importance of the indirect effects of fire on habitat features, such as increases in the cover of bare ground. Because fire return intervals on managed prairie remnants are often less than 5 years, information on recovery times for habitat-specialist insect species are of great importance. ?? 2010 Springer Science+Business Media B.V.

Vogel, J.A.; Koford, R.R.; Debinski, D.M.

2010-01-01

303

Can salvage logging affect seed dispersal by birds into burned forests?  

NASA Astrophysics Data System (ADS)

The recovery of vegetation in Mediterranean ecosystems after wildfire is mostly a result of direct regeneration, since the same species existing before the fire regenerate on-site by seeding or resprouting. However, the possibility of plant colonization by dispersal of seeds from unburned areas remains poorly studied. We addressed the role of the frugivorous, bird-dependent seed dispersal (seed rain) of fleshy-fruited plants in a burned and managed forest in the second winter after a fire, before on-site fruit production had begun. We also assessed the effect on seed rain of different microhabitats resulting from salvage logging (erosion barriers, standing snags, open areas), as well as the microhabitats of unlogged patches and an unburned control forest, taking account of the importance of perches as seed rain sites. We found considerable seed rain by birds in the burned area. Seeds, mostly from Olive trees Olea europaea and Evergreen pistaches Pistacia lentiscus, belonged to plants fruiting only in surrounding unburned areas. Seed rain was heterogeneous, and depended on microhabitat, with the highest seed density in the unburned control forest but closely followed by the wood piles of erosion barriers. In contrast, very low densities were found under perches of standing snags. Furthermore, frugivorous bird richness seemed to be higher in the erosion barriers than elsewhere. Our results highlight the importance of this specific post-fire management in bird-dependent seed rain and also may suggest a consequent heterogeneous distribution of fleshy-fruited plants in burned and managed areas. However, there needs to be more study of the establishment success of dispersed seeds before an accurate assessment can be made of the role of bird-mediated seed dispersal in post-fire regeneration.

Rost, J.; Pons, P.; Bas, J. M.

2009-09-01

304

Spatial Interactions among Fuels, Wildfire, and Invasive Plants Project title  

E-print Network

conditions, burn severity, vegetation (native and exotic species), and post-fire flammability based). Data is being analyzed to provide estimates for species richness and cover of native and non-native of native and non-native vegetation, and post-fire flammability (based on inputs for custom fuel models

305

Burns: an update on current pharmacotherapy  

PubMed Central

Introduction The world-wide occurrence of burn injuries remains high despite efforts to reduce injury incidence through public awareness campaigns and improvements in living conditions. In 2004, almost 11 million people experienced burns severe enough to warrant medical treatment. Advances over the past several decades in aggressive resuscitation, nutrition, excision, and grafting have reduced morbidity and mortality. Incorporation of pharmacotherapeutics into treatment regimens may further reduce complications of severe burn injuries. Areas covered Severe burn injuries, as well as other forms of stress and trauma, trigger a hypermetabolic response that, if left untreated, impedes recovery. In the past two decades, use of anabolic agents, beta adrenergic receptor antagonists, and anti-hyperglycemic agents has successfully counteracted post-burn morbidities including catabolism, the catecholamine-mediated response, and insulin resistance. Here we review the most up-to-date information on currently used pharmacotherapies in the treatment of these sequelae of severe burns and the insights that have expanded our understanding of the pathophysiology of severe burns. Expert opinion Existing drugs offer promising advances in the care of burn injuries. Continued gains in our understanding of the molecular mechanisms driving the hypermetabolic response will enable the application of additional existing drugs to be broadened to further attenuate the hypermetabolic response. PMID:23121414

Rojas, Yesinia; Finnerty, Celeste C.; Radhakrishnan, Ravi S.; Herndon, David N.

2013-01-01

306

Relationship of Serum Paraoxonase Enzyme Activity and Thermal Burn Injury  

PubMed Central

Objective: This study investigated changes in serum oxidative stress parameters in burn cases compared to healthy controls. Materials and Methods: This study was performed in 41 burn patients with mild to severe thermal burn injuries and 38 healthy volunteers. The burn cases were selected from patients who were hospitalized in the burn unit for the treatment of second- and third-degree burns. Malondialdehyde (MDA) levels and PON-1 paraoxonase and arylesterase activities were measured in patient serum samples. Results: PON-1 paraoxonase activity and MDA levels in patients with major thermal burn injury were significantly higher than healthy controls, but PON-1 arylesterase activities were lower. A significant negative correlation was observed between the burn percentage of the total body surface area and the PON-1 arylesterase activities in patients. Conclusion: Human thermal burn injury was associated with an increase in MDA production and a decrease in PON-1 arylesterase activity, which was proportional to the percentage of total burned surface area.

Yildirim, Serap; Doganay, Songul; Yildirim, Abdulkadir; Aydin, Osman Enver; Karakoc, Akar; Laloglu, Esra

2012-01-01

307

Burns (For Parents)  

MedlinePLUS

... burn. Deep second- and third-degree burns (called full-thickness burns) will likely need to be treated with skin grafts, in which healthy skin is taken from another part of the body and surgically placed over the burn wound to help the area heal. Back Continue What ...

308

Bone disease in burn patients.  

PubMed

Burn patients are at risk for bone disease due to aluminum (Al) exposure from use of antacids and albumin, partial immobilization, and increased production of endogenous glucocorticoids. Moreover, severely burned children are growth impaired up to 3 years after the burn. To determine the extent of bone disease, we studied nine men and three women, ages 18-41 years, with greater than 50% body surface area burn. Seven patients underwent iliac crest bone biopsy following double tetracycline labeling, one additional patient expired after a single label, and three others had postmortem specimens obtained for quantitative Al only. Serial serum and urine samples were obtained weekly until biopsy or death. All biopsied patients had reduced bone formation and osteoid area, surface, and width, with mineral apposition rate, osteoblast surface, and osteoclast number with normal eroded surfaces compared to age- and sex-matched normal ambulatory volunteers. Burn patients also had reduced bone formation, mineral apposition rate, osteoid area, and surface compared to age-matched volunteers at short-term bed rest. Serum levels of osteocalcin were low. Most patients had mild hypercalcemia but only a third had hypercalciuria. All patients had elevated Al in blood or urine; urine Al correlated inversely with serum osteocalcin. In 60% significant bone Al was detectable by stain or quantitation. Our data are compatible with burn patients having markedly reduced bone turnover. Al loading, partial immobilization, endogenous corticosteroids, and cytokine production may be among the etiologic factors. PMID:8456588

Klein, G L; Herndon, D N; Rutan, T C; Sherrard, D J; Coburn, J W; Langman, C B; Thomas, M L; Haddad, J G; Cooper, C W; Miller, N L

1993-03-01

309

Gram-Negative Bacterial Infection in Thigh Abscess Can Migrate to Distant Burn Depending on Burn Depth  

E-print Network

Sepsis remains the major cause of death in patients with major burn injuries. In the present investigation we evaluated the interaction between burn injuries of varying severity and preexisting distant infection. We used ...

Hamrahi, Victoria

310

Measuring burn injury outcomes.  

PubMed

Burn injury affects all facets of life. Burn care has improved over time. Improved survival after burn injury has resulted in a shift in outcome measurement from inpatient morbidity and mortality to long-term functional and health-related quality-of-life measures. Integration of professionals from different disciplines has enabled burn centers to develop collaborative methods of assessing the quality of care delivered to patients with burns based on their ability to reintegrate into their normal physical, social, psychological, and functional activities. Burn outcomes will continue to develop on the foundation that has been built and will generate evidence-based best practices in the future. PMID:25085096

Palmieri, Tina L; Przkora, Rene; Meyer, Walter J; Carrougher, Gretchen J

2014-08-01

311

Burns and epilepsy - review and case report.  

PubMed

Decompensation of epilepsy in burned patients may be caused by several factors. Burn is a classic etiology of systemic inflammatory response syndrome, and evolves into two physiological phases. The first 48h after injury corresponds to the first phase involving severe hypovolemic shock. The second phase corresponds to the hypermetabolic response to burns. Altered pharmacokinetics of anticonvulsant drugs is observed. Albumin and other plasma proteins are reduced, leading to increased free fraction of phenytoin, resulting in greater clearance and a lower total drug concentration. Associated with metabolic changes of burned patient, this fact predisposes to seizures in epileptic burned patients. The authors present the case of an epileptic 36-year-old-woman who developed recurrent seizures after a thermal injury, despite using the same medications and doses of anticonvulsant drugs of last 12 years, with controlled epilepsy. PMID:25440855

Gragnani, Alfredo; Mller, Bruno Rafael; Oliveira, Andrea Fernandes; Ferreira, Lydia Masako

2015-03-01

312

Effects of partial post-fire salvage harvesting on vegetation communities in the boreal mixedwood forest region of northeastern Alberta, Canada  

Microsoft Academic Search

We examined forest structure and understory vascular plant communities of aspen (Populus tremuloides)-dominated mixedwood boreal forest in Alberta, Canada that had been burned by wildfire and then subjected to one of three treatments (salvage harvested with single-tree retention, salvage harvested with patch-retention, unsalvaged control). Both salvage harvesting treatments resulted in greater cover of regenerating aspen saplings, as compared to unsalvaged

S. Ellen Macdonald

2007-01-01

313

40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.  

Code of Federal Regulations, 2013 CFR

...open burning, agricultural burning, and forestry and silvicultural burning. 49.10411...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under 49.134 Rule for forestry and silvicultural burning...

2013-07-01

314

40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.  

Code of Federal Regulations, 2014 CFR

...open burning, agricultural burning, and forestry and silvicultural burning. 49.10411...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under 49.134 Rule for forestry and silvicultural burning...

2014-07-01

315

40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.  

Code of Federal Regulations, 2011 CFR

...open burning, agricultural burning, and forestry and silvicultural burning. 49.11021...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under 49.134 Rule for forestry and silvicultural burning...

2011-07-01

316

40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.  

Code of Federal Regulations, 2010 CFR

...open burning, agricultural burning, and forestry and silvicultural burning. 49.10411...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under 49.134 Rule for forestry and silvicultural burning...

2010-07-01

317

40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.  

Code of Federal Regulations, 2010 CFR

...open burning, agricultural burning, and forestry and silvicultural burning. 49.11021...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under 49.134 Rule for forestry and silvicultural burning...

2010-07-01

318

40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.  

Code of Federal Regulations, 2012 CFR

...open burning, agricultural burning, and forestry and silvicultural burning. 49.10411...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under 49.134 Rule for forestry and silvicultural burning...

2012-07-01

319

40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.  

Code of Federal Regulations, 2014 CFR

...open burning, agricultural burning, and forestry and silvicultural burning. 49.11021...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under 49.134 Rule for forestry and silvicultural burning...

2014-07-01

320

40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.  

Code of Federal Regulations, 2013 CFR

...open burning, agricultural burning, and forestry and silvicultural burning. 49.11021...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under 49.134 Rule for forestry and silvicultural burning...

2013-07-01

321

40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.  

Code of Federal Regulations, 2011 CFR

...open burning, agricultural burning, and forestry and silvicultural burning. 49.10411...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under 49.134 Rule for forestry and silvicultural burning...

2011-07-01

322

40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.  

Code of Federal Regulations, 2012 CFR

...open burning, agricultural burning, and forestry and silvicultural burning. 49.11021...open burning, agricultural burning, and forestry and silvicultural burning. (a...of a permit under 49.134 Rule for forestry and silvicultural burning...

2012-07-01

323

Pellet burning system  

SciTech Connect

An apparatus is described for burning pelletized fuel, comprising: a furnace housing means having a heat exchanger means, an exhaust gas flue means and an ash collecting bin therein; a burn chamber in the housing above the ash collecting bin, the heat exchanger means being oriented in heat exchanging relation to the burn chamber and intermediate the burn chamber and the flue means; a conduit extending through a wall of the housing means and terminating at an end in the burn chamber, the conduit being inclined to the horizontal; shaft means and means for supporting the shaft means for rotation; and a burn basket in the burn chamber and having a bottom wall, a perforate side wall and an open top, the end of the conduit in the burn chamber terminating adjacent the open top and spaced from the bottom wall.

Resh, D.R.

1987-06-02

324

Epidemiology of adults hospitalized with burns in Karachi, Pakistan  

Microsoft Academic Search

Burns are a leading cause of adult death in Karachi slums, therefore we reviewed 1 year's logged experience (November 1992 to October 1993) at Karachi's two adult burn units for patient age, sex, burn severity and outcome. Also 47 inpatients were interviewed regarding their circumstances of injury. We grouped these using Haddon's Matrix. The log identified 832 patients. Females (57

D. Marsh; A. Sheikh; A. Khalil; S. Kamil; Jaffer-uz-Zaman; I. Qureshi; Y. Siraj; S. Luby; S. Effendi

1996-01-01

325

Burned Area Emergency Response Report July 8, 2010  

E-print Network

of prehistoric and historic archaeological sites. Post- #12;Coconino National Forest, Arizona Page 2 fire soilBurned Area Emergency Response Report July 8, 2010 Schultz Fire Coconino National Forest #12;Executive Summary Burned Area Report Cost Benefit Analysis Soil Burn Severity Map Treatment Map Values

326

Epidemiology of paediatric burns in Iran  

PubMed Central

Summary We surveyed the epidemiology of the patients in a tertiary burn care centre (the Motahari Burn Hospital) in Tehran in the 4-yr period 2005-2009. Scalding was the major cause of burn injury for patients under the age of 6, while there were many more flame and electrical burns in late childhood. Males were mainly affected (male to female ratio, 1.7:1). Most burns occurred in the summer, probably due to older childrens increased outdoor activities during school vacations. Most of the injuries took place in the kitchen. Age was directly related to the higher total body surface area and mortality rate. Explosion of propane gas at home had a high incidence. Length of hospital stay increased in relation to the burn surface area. Infants were found to be at greatest risk for burn injuries, while older children were at higher risk for severe burns. Before arriving at the hospital, 22 patients had received traditional therapy in the home which was not effective and caused some problems. Pre-hospital care by emergency medicine service personnel was complete and effective. 374 patients had positive results for wound culture (42.9%). The most frequent bacteria found in burn wound cultures was coagulase-negative Staphylococcus (66.8%). Blood culture was positive in 12% of the patients with positive burn wound culture and the most frequent bacteria in blood culture was Pseudomonas aeruginosa. The overall mortality rate was 10.6%. Treatment and prevention programmes should target high risk groups. Important criteria include older age, flame burn, presence of inhalation injury, total body surface area burned above 40%, and sepsis. PMID:23466950

Karimi, H.; Montevalian, A.; Motabar, A.R.; Safari, R.; Parvas, M.S.; Vasigh, M.

2012-01-01

327

Burns and Fire Safety  

MedlinePLUS

1 Burns and Fire Safety Fact Sheet (2014) Fatalities ? 325 children ages 19 and under died from fires or burns in 2011. 85% ( ... 55% from 1999 to 2011. 1 1999?2011 Fire/Burn Fatalities and Death Rate Among Children Ages ...

328

Workplace-related burns  

PubMed Central

Summary Introduction. The key element of a safe workplace for employees is the maintenance of fire safety. Thermal, chemical, and electrical burns are common types of burns at the workplace. This study assessed the epidemiology of work-related burn injuries on the basis of the workers treated in a regional burn centre. Methods. Two years retrospective data (2005-2006) from the Trauma Registry of the American College of Surgeons of the Joseph M. Still Burn Center at Doctors Hospital in Augusta, Georgia, were collected and analysed. Results. During the time period studied, 2510 adult patients with acute burns were admitted; 384 cases (15%) were work-related. The average age of the patients was 37 yr (range, 15-72 yr). Males constituted the majority (90%) of workrelated burn injury admissions. The racial distribution was in accordance with the Centres admission census. Industrial plant explosions accounted for the highest number of work-related burns and, relatively, a significant number of patients had chemical burns. The average length of hospital stay was 5.54 days. Only three patients did not have health insurance and four patients (1%) died. Conclusion. Burn injuries at the workplace predominantly occur among young male workers, and the study has shown that chemical burns are relatively frequent. This study functions as the basis for the evaluation of work-related burns and identification of the causes of these injuries to formulate adequate safety measures, especially for young, male employees working with chemicals. PMID:22262966

Mian, M.A.H.; Mullins, R.F.; Alam, B.; Brandigi, C.; Friedman, B.C.; Shaver, J.R.; Hassan, Z.

2011-01-01

329

Sexual Function Following Burn Injuries: Literature Review.  

PubMed

Sexual function is a profound facet of the human personality. Burns due their sudden and devastating nature can have longstanding effects on intimate function by virtue of physical sequelae as well as alterations in body image and perceived desirability. A considerable number of patients encounter problems with intimate function in burns rehabilitation; nevertheless, the topic appears to be poorly addressed in specialist centers worldwide. Review of the literature suggests that a number of parameters can affect the quality of sexual life following burn injuries including age at the time of injury, location, and severity of the burn as well as coping mechanisms employed by the individual survivor. Addressing issues of intimacy relies on awareness, education, and a holistic approach on behalf of the multidisciplinary team members and, to this effect, recommendations are made on managing sexual function concerns in burns rehabilitation. PMID:25423439

Pandya, Atisha A; Corkill, Helen A; Goutos, Ioannis

2014-11-24

330

An autopsy case of chemical burns by hydrochloric acid.  

PubMed

A 34-year-old man was discovered by his coworkers in a tank filled with 35% (w/w) hydrochloric acid. Despite undergoing intensive treatment, he died one and a half days later. An autopsy revealed generalized high tensity, overall grayish brown skin color, heavy gastric submucosal hemorrhage and heavy pulmonary edema. We concluded that death was caused by burn shock due to wide, generalized chemical burn. Microscopic investigation of the burn in the area with grayish brown skin considered coagulation necrosis of full-thickness of the skin (third-degree or deep burn), revealed that the burn was judged to cover the partial thickness of the skin (second-degree or dermal burn). These findings suggest that chemical burn by hydrochloric acid results in a change of skin color due to chemical reaction so that the appearance of the chemical burn is more severe than the degree assigned by histological examination. PMID:19269213

Kozawa, Shuji; Kakizaki, Eiji; Muraoka, Eri; Koketsu, Hideki; Setoyama, Mitsuru; Yukawa, Nobuhiro

2009-04-01

331

Acute and Perioperative Care of the Burn-injured Patient.  

PubMed

Care of burn-injured patients requires knowledge of the pathophysiologic changes affecting virtually all organs from the onset of injury until wounds are healed. Massive airway and/or lung edema can occur rapidly and unpredictably after burn and/or inhalation injury. Hemodynamics in the early phase of severe burn injury is characterized by a reduction in cardiac output and increased systemic and pulmonary vascular resistance. Approximately 2 to 5 days after major burn injury, a hyperdynamic and hypermetabolic state develops. Electrical burns result in morbidity much higher than expected based on burn size alone. Formulae for fluid resuscitation should serve only as guideline; fluids should be titrated to physiologic endpoints. Burn injury is associated basal and procedural pain requiring higher than normal opioid and sedative doses. Operating room concerns for the burn-injured patient include airway abnormalities, impaired lung function, vascular access, deceptively large and rapid blood loss, hypothermia, and altered pharmacology. PMID:25485468

Bittner, Edward A; Shank, Erik; Woodson, Lee; Martyn, J A Jeevendra

2015-02-01

332

[Evaluation and first aid of burned patients].  

PubMed

First cares of burned patients depend of an accurate evaluation of the injury severity. Total body surface area burned can be estimated taking into account the fact that the area of one hand face is equivalent to 1% of the total body surface (TBS) of the individual. Second-degree burns are characterized by the occurrence of phlyctena, third-degree burns appear like adhering necrosis without any sensibility. Smoke inhalation injuries are frequent and can be recognized on the presence of tare deposits inside the mouse and on the respiratory conducts. Taking care of the patient begins with making the victim safe from the thermal aggression. Then, cooling the burn is to be performed. The emergency medical care consists in securing respiratory function, and, as early as possible, in beginning perfusions of Ringer Lactate Lavoisier exceeding 20 mL/kg during the first post-burn hours for patient suffering of burns exceeding 10% of the total body area. Pain must be controlled using preferentially morphine or related products. Transport to the specialized unit, in case of severe injury, will be performed assuring thermal comfort, wound protection and vital function monitoring. PMID:12621940

Wassermann, Daniel

2002-12-15

333

Iatrogenic ocular silver nitrate burn.  

PubMed

Two cases of silver nitrate burn occurred after treatment of superior limbic keratoconjunctivitis with a solid silver nitrate applicator. After medical treatment and several months of observation, visual acuity eventually returned to acceptable levels with minimal corneal scarring. These cases emphasize the fact that silver nitrate should be used very cautiously around the eye and only in a fresh 0.5-1% solution. The use of solid silver nitrate should be prohibited around the eye. PMID:4092479

Laughrea, P A; Arentsen, J J; Laibson, P R

334

Planning a Prescribed Burn  

E-print Network

up. And the belly-high broomweeds should burn hot enough to kill most of the mesquite, whitebrush, and prickly pear.? Wait a minute?this thinking contains at least eight misconceptions, including those dealing with timing, wind, help, fuel... large area are attracted to a burn, the excessive grazing pressure can considerably slow the recovery of desirable grasses, forbs, and browse. Conversely, if prickly pear is abundant in the burned pasture, you may turn in cattle for 2 weeks...

Hanselka, C. Wayne

2009-04-01

335

Quantitative assessment of graded burn wounds in a porcine model using spatial frequency  

E-print Network

model to evaluate burn wound therapies," J. Burn Care Rehabil. 17(6), 558­561 (1996). 7. M. Eski, FQuantitative assessment of graded burn wounds in a porcine model using spatial frequency domain co-first authors *adurkin@uci.edu Abstract: Accurate and timely assessment of burn wound severity

Choi, Bernard

336

Burns and military clothing.  

PubMed

Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under high heat loads in the laboratory, combat clothing can ignite, but there is little evidence that clothing ignition is a common occurrence in military burn casualties. Thermoplastic materials have many benefits in civil and military clothing. There is little objective evidence that they exacerbate burns, or complicate burn management. Their use in military clothing must be based on objective evidence, not hearsay. PMID:11307683

McLean, A D

2001-02-01

337

Solid fuel burning stove  

SciTech Connect

A solid fuel burning stove includes a firebox having an insulated bottom chamber in which fuel is burned. The bottom chamber includes an insulated bottom surface and walls which provides for heat retention when fuel is burn therein thereby creating high temperatures. The bottom chamber of the firebox is divided from a top chamber by a horizontally extending baffle which directs flow of exhaust gases from the bottom to the top of the firebox. The exhaust gases are burned in the top portion of the firebox by means of the heat generated within the lower chamber and the introduction of fresh combustion air. This fresh combustion air is drawn in through an orificed pipe extending along the length of the firebox. After the gases are burned in the top portion of the stove, they are communicated to a heat saver including an inverted v-shaped flow diverter which reduces the velocity of the exiting gases and provides for greater recovery of heat therefrom. The stove in accordance with the invention provides for a two-stage burning process wherein solid fuel is burned in the first stage and the volatile gases released by the fuel are burned in the second stage. In this way, the fuel is consumed in a most efficient manner.

Good, L.D.

1982-07-13

338

Wood burning stove  

Microsoft Academic Search

A wood burning stove is disclosed which includes a stove housing that defines an upper zone comprising storage and exhaust chambers, and a lower zone for accommodating a wood burning fire. The exhaust and storage chambers are separated by a divider, both chambers having bottom openings that communicate directly with the top of the lower fire zone. Covering one opening

1982-01-01

339

Wood burning stove  

Microsoft Academic Search

A wood burning stove is formed with double front and rear side walls of heat conductive metal interconnected by heat conductive spacer fins and providing air passageways by which room air is heated by conduction from the walls which are heated by the burning of wood deposited on a firebox grate made up of spaced bricks supported by metal holders

Willson

1981-01-01

340

Wood burning stove  

Microsoft Academic Search

A wood burning stove is formed with double front and rear side walls of heat conductive metal interconnected by heat conductive spacer fins and providing air passageways by which room air is heated by conduction from the walls which are heated by the burning of wood deposited on a firebox grate made up of spaced bricks supported by metal holders

Willson

1979-01-01

341

Wood burning stove  

Microsoft Academic Search

This is a stove primarily for the burning of wood, but also capable of burning other combustible materials. The stove is characterized by a unique combustion chamber, together with a recirculating combustion chamber and baffle for more perfect combustion and characterized by a heat radiating chamber which may be closed so as to be used as an oven, and by

R. F. Bruce; W. W. Byrd

1980-01-01

342

Burns due to exposure to steam.  

PubMed

Injuries due to accidental contact with steam are occasionally encountered. They can be quite severe, especially when associated respiratory problems are present. Thirteen patients with burns resulting from exposure to steam were admitted to the Joseph M. Still Burn Center during a 2-year period. All injuries were employment related. Twelve burns resulted from the rupture of pipes carrying steam. One additional case was due to a cooking accident. There were 12 males and one female. Burn size ranged from 1 to 57% (mean 26.2%). Age ranged from 26 to 53 years (mean 33). Seven had inhalation injuries with blistering and slough of bronchial mucosa. The hospital stay ranged from 2 to 41 days. One patient died of respiratory problems. From one to five operations were required by the survivors; two required later reconstructive surgery. Closer supervision of industrial plants in which pipes carrying steam are present may have prevented some of these accidents. PMID:11348748

Still, J; Friedman, B; Law, E; Orlet, H; Craft-Coffman, B

2001-06-01

343

Burning coal's waste  

SciTech Connect

In an old Pennsylvania coal valley, growing fresh produce and eliminating ancient waste piles both depend on a fluidized bed boiler cogeneration plant. The builders of a complex now nearing completion at Archbald, however, will soon begin to turn two of the waste piles, called culm banks, into economic assets. Culm will burn although it has a low, variable heat content. The project combines several recently developed technologies to use culm as fuel for a fluidized bed boiler cogeneration plant that will heat a hydroponic greenhouse. What makes the venture economically viable are the products that will be sold: 23 mw of electricity to the local utility and fresh produce to meet burgeoning demands in East Coast supermarkets. For instance, if the ''salad plant'' were completely devoted to growing lettuce, 3 million heads could be harvested in 11 hydroponic seasons a year. The owners, Archbald Power Corp., chose a 271 acre stie that had been mined for anthracite by both open pit and deep shaft methods.

Daly, J.M.; Duffy, T.J.

1988-07-01

344

Lava Flow Burning Vegetation  

USGS Multimedia Gallery

Lava flow activity continues to burn vegetation in the kipuka adjacent to the trail, causing the viewing trail to be closed beyond the trailhead. The new viewing area is still very close to the active flows. ...

2010-06-18

345

Prediction of patient satisfaction with care one year after burn  

Microsoft Academic Search

The aim of this prospective study was to find predictors of patient satisfaction with burn care. Sixty-nine consecutive adult patients undergoing acute treatment in a Burn Unit completed the following questionnaires: the Swedish universities Scales of Personality, the Impact of Event Scale-Revised, and the Hospital Anxiety and Depression Scale. Socio-demographic data and burn severity were registered. One year later they

B. Wikehult; L. Ekselius; B. Gerdin; M. Willebrand

2009-01-01

346

Burning Mouth Syndrome  

PubMed Central

Most clinicians dread seeing the patient presenting with a primary complaint of a burning pain on one or more oral mucosal surfaces. Unlike most other clinical conditions presenting in a dental office, burning mouth syndrome is poorly understood with few evidence based remedies. More recently, advances have been made towards clarifying the possible etiology of the disorder and testing the possible therapeutic modalities available. This article attempts to summarize the state of the art today. PMID:20690412

Mock, David; Chugh, Deepika

2010-01-01

347

Burn Depth Monitor  

NASA Technical Reports Server (NTRS)

Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the companyused technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

1993-01-01

348

Burn Depth Monitor  

NASA Technical Reports Server (NTRS)

Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications

1993-01-01

349

Burn Depth Monitor  

NASA Technical Reports Server (NTRS)

Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

1993-01-01

350

Wood burning related injuries.  

PubMed

During the past two years, 80 patients were seen in the emergency department of The Mary Imogene Bassett Hospital (Cooperstown, NY) for injuries related to the use of wood burning stoves. The types of injuries included 25 lacerations, 19 crush injuries, 10 fractures, 7 eye injuries and 7 burns. Seven of these patients required hospitalization, and five required operative procedures. There was no mortality. Physician and patient education about the potential dangers of wood stove use may help prevent these injuries. PMID:2733888

Nicholson, J J; Dietz, P A

1989-05-01

351

Books2burn  

NSDL National Science Digital Library

Developed by Professor Matthew Weinstein of Kent State University, Books2burn translates text files into a series of audio files, which may then subsequently be converted to mp3's or other formats. This program will be a great boon to scholars and the general public alike, as the application allows for the easy transfer and replication of potentially large and problematic files into a number of audio formats. Books2burn is compatible with all systems running Mac OS X.

Weinstein, Matthew

352

Wood and coal burning stove  

Microsoft Academic Search

A stove for burning wood, coal and other fuels comprised of flammable solids that among other things produce one or more flammable gases when heating or burning. The preferred form of the stove has three modes of operation-a rapid burning mode, a normal or medium burning mode and a banked mode. The user makes a preliminary decision as to whether

G. H. Barsness; R. A. Kleine

1985-01-01

353

Ethnicity and etiology in burn trauma.  

PubMed

The purpose of this study was to retrieve data from the British Columbia Professional Firefighters Burn Unit registry, with a focus on ethnicity and how it is involved in burn trauma. It is hypothesized that mechanism, severity, and other patient characteristics are significantly different among different ethnic groups. Furthermore, it is believed that these data can be used to augment burn prevention strategies. Data for burn patients admitted from 1979 to 2009 were reviewed from the burn registry. The main focus was with differences seen among the four main ethnicities throughout the analysis, Caucasian, Aboriginal, Asian, and Indoasian, reflecting the population distribution of the region. Age and sex were also considered when looking at burn mechanism, severity, contributing and copresenting factors. Caucasians were the largest group (79.1%) and included the largest male:female ratio (3.3:1), with high numbers of flame injury (53.9%). Caucasians presented with the highest mortality (6.6% compared with 4.1% for all other ethnicities; P < .006). Asian patients (8.1%) showed significantly higher occurrences of urban (64%) and workplace (28.9%) injuries with a larger proportion of scald injury (38.9%). Indoasian patients included larger numbers of women (36.4%) and household scald injuries (33.9%) whereas Aboriginals suffered the most flame injuries (60.1%) in rural areas with more frequent contributing factors such as alcohol. The study found multiple significant differences in the burn injury population when segmented by ethnicity. Though the exact reasons for these differences are difficult to say with certainty, it allows a unique opportunity to focus communication and prevention efforts to specific communities. PMID:24503965

Papp, Anthony; Haythornthwaite, Jordan

2014-01-01

354

Increased mortality in hypernatremic burned patients  

PubMed Central

Introduction: In-hospital hypernatremia develops usually iatrogenically from inadequate or inappropriate fluid prescription. In severely burned patient an extensive initial fluid resuscitation is necessary for burn shock survival. After recovering of cellular integrity the circulating volume has to be normalized. Hereby extensive water and electrolyte shifts can provoke hypernatremia. Purpose: Is a hypernatremic state associated with increased mortality? Method: Retrospective study for the incidence of hypernatremia and survival in 40 patients with a totally burned surface area (TBSA) >10%. Age, sex, TBSA, ABSI-Score and fluid resuscitation within the first 24 hours were analyzed. Patients were separated in two groups without (Group A) or with (Group B) hypernatremia. Results: Hypernatremia occurred on day 51.4. No significant difference for age, sex, TBSA, ABSI-Score and fluid resuscitation within the first 24 hours were calculated. In Group A all patients survived, while 3 of the hypernatremic patient in Group B died during ICU-stay (Odds-ratio = 1.25; 95% CI 0.9711.61; p=0.046). Conclusion: Burned patients with an in-hospital acquired hypernatremia have an increased mortality risk. In case of a hypernatremic state early intervention is obligatory. There is a need of a fluid removal strategy in severely burned patient to avoid water imbalance. PMID:20577644

Namdar, Thomas; Siemers, Frank; Stollwerck, Peter L.; Stang, Felix H.; Mailnder, Peter; Lange, Thomas

2010-01-01

355

Epidemiology of adults hospitalized with burns in Karachi, Pakistan.  

PubMed

Burns are a leading cause of adult death in Karachi slums, therefore we reviewed 1 year's logged experience (November 1992 to October 1993) at Karachi's two adult burn units for patient age, sex, burn severity and outcome. Also 47 inpatients were interviewed regarding their circumstances of injury. We grouped these using Haddon's Matrix. The log identified 832 patients. Females (57 per cent) outnumbered males and were younger on average (25.1 vs 27.6 years, P = 0.002). Females had more severe burns than males (57 per cent vs 50 per cent total body surface area (TBSA) burn, P = 0.002). At the unit with outcome data (n = 556), the case fatality was 56 per cent. The estimated adult mortality due to burns in Karachi was 10.2/100 000, 6.8/100 000 and 14.1/100 000 for men and women, respectively. Burns of interviewed patients were most often associated with flames (33/47), but stove bursts caused the most severe injury (52 per cent TBSA). These patients were predominantly young uneducated female houseworkers, clothed in loose attire who were injured during daylight at home around a floor-level stove, unaware of fire safety, and who received no first aid. It was concluded that the high burn severity and case fatality rates demand: (1) preventive measures, such as kitchen sand buckets, safer stove design and placement and education on fire safety and first aid, and (2) risk factor analysis to refine interventions. PMID:8726263

Marsh, D; Sheikh, A; Khalil, A; Kamil, S; Jaffer-uz-Zaman; Qureshi, I; Siraj, Y; Luby, S; Effendi, S

1996-05-01

356

Combining Landsat TM multispectral satellite imagery and different modelling approaches for mapping post-fire erosion changes in a Mediterranean site  

NASA Astrophysics Data System (ADS)

South European countries are naturally vulnerable to wildfires. Their natural resources such as soil, vegetation and water may be severely affected by wildfires, causing an imminent environmental deterioration due to the complex interdependence among biophysical components. Soil surface water erosion is a natural process essential for soil formation that is affected by such interdependences. Accelerated erosion due to wildfires, constitutes a major restrictive factor for ecosystem sustainability. In 2007, South European countries were severely affected by wildfires, with more than 500,000 hectares of land burnt in that year alone, well above the average of the last 30 years. The present work examines the changes in spatial variability of soil erosion rates as a result of a wildfire event that took place in Greece in 2007, one of the most devastating years in terms of wildfire hazards. Regional estimates of soil erosion rates before and after the fire outbreak were derived from the Revised Universal Soil Loss Equation (RUSLE, Renard et al. 1991) and the Pan-European Soil Erosion Risk Assessment model (PESERA, Kirkby, 1999; Kirkby et al., 2000). Inputs for both models included climatic, land-use, soil type, topography and land use management data. Where appropriate, both models were also fed with input data derived from the analysis of LANDSAT TM satellite imagery available in our study area, acquired before and shortly after the fire suppression. Our study was compiled and performed in a GIS environment. In overall, the loss of vegetation from the fire outbreak caused a substantial increase of soil erosion rates in the affected area, particularly towards the steep slopes. Both tested models were compared to each other and noticeable differences were observed in the soil erosion predictions before and after the fire event. These are attributed to the different parameterization requirements of the 2 models. This quantification of sediment supply through the river network provides also important insights regarding both the present-day sedimentation processes in the study area as well as the potential flooding hazard. Our work underpins that valuable contribution of remote sensing technology, combined with modeling approaches for depicting the spatial distribution of changes in erosion rates after the wildfire. KEYWORDS: erosion risk, RUSLE, PESERA, wildland fires, LANDSAT TM, remote sensing, Geographical Information Systems, Greece.

Petropoulos, George P.; Kairis, Orestis; Karamesouti, Mina; Papanikolaou, Ioannis D.; Kosmas, Constantinos

2013-04-01

357

Acute pavement burns: a unique subset of burn injuries: a five-year review of resource use and cost impact.  

PubMed

This study focuses on the hospital care of a rare subset of burn injuries caused by contact with environmentally heated pavement, to further understand the required use of resources. This article aims to show that pavement burns are typically more severe than their flame/scald counterparts. A retrospective review of patients admitted to the burn center with injuries suffered from contact with hot pavement was performed. Patients were stratified on the presence or absence of altered mental status (AMS) and additional inciting factors. A representative sample of similarly sized flame and scald wounds treated in the same time period was compiled for comparison. Those with pavement burns had a significantly greater requirement for operative intervention, repetitive debridements, overall cost/percent burned, and lengthier hospital stays than those with flame/scald burns. Pavement burn victims with AMS were significantly more likely to require an operation, a greater cost/percent burned, and longer hospital stays than those without AMS. Pavement burns are significantly worse than similarly sized scald/flame burns with regards to length of stay and total hospital costs, and the necessity of initial and repetitive operative intervention. These discrepancies are even greater in patients with AMS as a concomitant inciting factor. It is apparent that these wounds often continue to deepen during a patient's stay, likely because of continued pressure on the wounds while recumbent. As such, this article highly recommends pressure off-loading beds and more aggressive debridement in the treatment of these unique injuries. PMID:25207798

Silver, Andrew G; Dunford, Gerrit M; Zamboni, William A; Baynosa, Richard C

2015-01-01

358

Burning trees and bridges  

NASA Technical Reports Server (NTRS)

Most burning of biomass is the result of human activity, and on a global scale it is increasing. Tropospheric concentrations of CO2, CO, CH4, non-methane hydrocarbons, and ozone are all increasing with time; global biomass burning may make an important contribution to this increase and thus to potential global climate change. The nitrogen cycle also can have important climatic effects. Nitrous oxide put into the atmosphere by biomass burning is a greenhouse gas 250 times more powerful (molecule for molecule) than carbon dioxide. Nitric oxide, as well as being a photochemical precursor of ozone, a major pollutant in the troposphere, produces nitric acid, the fastest-growing component of acid rain. Hence, the new bridge in the nitrogen cycle is of more than mere technical interest.

Levine, Joel S.

1990-01-01

359

Fast burning propellants  

SciTech Connect

A solid or semisolid propellant is described comprising grains of propellant or propellant components bonded together to create voids within the propellant volume. The grains are of near-uniform size and have less than about a 20% size variation between the largest and smallest grains, the voids comprising from about 10% to about 50% of the propellant volume. The grains are bonded together with sufficient strength to substantially delay the fluidization of the propellant by the onset of Taylor unstable burning. The propellant has a rapid burn rate of from about 10 cm sec/sup -1/ to about 10/sup 4/cm sec/sup -1/.

Colgate, S.A.; Roos, G.E.

1987-07-21

360

Burning Down the House  

NSDL National Science Digital Library

In this demonstration, the teacher will use a potato and hydrogen peroxide to generate oxygen in a closed environment. Students can then observe its effects on a burning wooden splint and on burning steel wool. They will understand that a large amount of energy can be released by the process of oxidation. As an extension, the teacher can discuss how the appearance of oxygen (produced by cyanobacteria) in Earth's early atmosphere initially resulted in the formation of large deposits of iron oxide (Banded Iron Formations) and then aided in the evolution of more complex life forms.

Dolphin, Glenn

361

Wood burning stove  

SciTech Connect

This is a stove primarily for the burning of wood, but also capable of burning other combustible materials. The stove is characterized by a unique combustion chamber, together with a recirculating combustion chamber and baffle for more perfect combustion and characterized by a heat radiating chamber which may be closed so as to be used as an oven, and by a unique damper placement in combination with the exhaust flue pipe so adapted as to automatically activate in order to cool the flue pipe in the event it should exceed safe heat limits.

Bruce, R.F.; Byrd, W.W.

1980-01-08

362

FIRE IMPACTS ON AN ENGINEERED BARRIERS PERFORMANCE: THE HANFORD BARRIER ONE YEAR AFTER A CONTROLLED BURN  

SciTech Connect

A critical unknown for long-term engineered barrier performance is the effect of wild fire during a post-institutional control environment where routine maintenance may be limited or non-existent. In September 2008, a controlled burn was conducted on one half of a vegetated, multilayered capillary barrier emplaced over a Hanford waste site. The effects on barrier performance have been monitored and documented over the past year. Soil physical, chemical, and hydrologic properties; plant floristics and density; and animal-use were characterized before and after the fire with the unburned half of the barrier serving as a control. Temperatures during the controlled burn ranged from 250 oC at 1.5 cm below the surface to over 700 oC at 1 m above the surface. Significant decreases in hydraulic conductivity and surface-soil wettability were observed immediately after the fire due primarily to hydrophobic conditions created by the fire. Major soil nutrients, pH, and electrical conductivity remain elevated post-fire. Up until June 2009, post-burn soil moisture content in the 0-1 m depth interval was significantly lower on the burned section than the unburned section and is attributed to differences in surface evaporation. Higher soil moisture contents in the 1-2 m interval on the burned section are attributed to insignificant water uptake owing to the absence of deep-rooted shrubs. Moisture profiles reversed after June to show lower water contents throughout the profile on the unburned section. Dense stands of sagebrush were destroyed from the fire allowing many more species to emerge thereby increasing species diversity. Seed sources contributing to this species diversification were from either the existing seedbank and/or wind-blown sources. Measurements are ongoing and the results are expected to help close a knowledge gap about barrier recovery after major disturbances.

Ward, Anderson L.; Link, Steven O.; Leary, Kevin D.; Berlin, Gregory T.

2010-03-31

363

On medications for burns in classical antiquity.  

PubMed

Egyptian, Greek, Roman, and early Byzantine medical pharmaceutical works show a fairly sophisticated array of simple and compound remedies for burns and scalds. Chief among ancient writings that provide specific botany, minerals, and similar substances used in burn treatment are several Egyptian papyri, the Hippocratic On Wounds, and writings by Celsus, Dioscorides, Pliny the Elder, and Paul of Aegina. Over 70 plants and minerals are identified according to modern nomenclatures. The ancients sought especially those ingredients that would promote rapid healing with a minimum of scarring. PMID:6360476

Scarborough, J

1983-10-01

364

Noninvasive determination of burn depth in children by digital infrared thermal imaging  

NASA Astrophysics Data System (ADS)

Digital infrared thermal imaging is used to assess noninvasively the severity of burn wounds in 13 pediatric patients. A delta-T (?T) parameter obtained by subtracting the temperature of a healthy contralateral region from the temperature of the burn wound is compared with the burn depth measured histopathologically. Thermal imaging results show that superficial dermal burns (IIa) show increased temperature compared with their contralateral healthy region, while deep dermal burns (IIb) show a lower temperature than their contralateral healthy region. This difference in temperature is statistically significant (p<0.0001) and provides a way of distinguishing deep dermal from superficial dermal burns. These results show that digital infrared thermal imaging could be used as a noninvasive procedure to assess burn wounds. An additional advantage of using thermal imaging, which can image a large skin surface area, is that it can be used to identify regions with different burn depths and estimate the size of the grafts needed for deep dermal burns.

Medina-Preciado, Jose David; Kolosovas-Machuca, Eleazar Samuel; Velez-Gomez, Ezequiel; Miranda-Altamirano, Ariel; Gonzlez, Francisco Javier

2013-06-01

365

Burn a Peanut  

NSDL National Science Digital Library

In this activity, learners burn a peanut, which produces a flame that can be used to boil away water and count the calories contained in the peanut. Learners use a formula to calculate the calories in a peanut and then differentiate between food calories and physicist calories as well as calories and joules.

2012-06-26

366

TIRES, OPEN BURNING  

EPA Science Inventory

The chapter describes available information on the health effects from open burning of rubber tires. It concentrates on the three known sources of detailed measurements: (1) a small-scale emissions characterization study performed by the U.S. EPA in a facility designed to simulat...

367

Gas Hydrates Burning  

USGS Multimedia Gallery

An image of gas hydrates burning. Gas hydrates are naturally-occurring ice-like combinations of natural gas and water that have the potential to provide an immense resource of natural gas from the worlds oceans and polar regions....

368

Correlating Aluminum Burning Times  

Microsoft Academic Search

Characteristics of aluminum combustion are summarized in an overview of the subject, focusing on the burning time of individual particles. Combustion data from over ten different sources with almost 400 datum points have been cataloged and correlated. Available models have also been used to evaluate combustion trends with key environmental parameters. The fundamental concepts that control aluminum combustion are discussed,

M. W. Beckstead

2005-01-01

369

Wood burning stove  

Microsoft Academic Search

A wood burning heating unit has walls defining a combustion chamber, the walls having wall cavities therein for heating a liquid; baffle means within the walls dividing the wall cavities to provide directional liquid flow paths; a heat absorption unit formed of spaced tubes communicating with the wall cavities positioned above the combustion chamber; and inlet outlet water conduit means