Science.gov

Sample records for posteroventral cochlear nucleus

  1. Volumes of cochlear nucleus regions in rodents.

    PubMed

    Godfrey, Donald A; Lee, Augustine C; Hamilton, Walter D; Benjamin, Louis C; Vishwanath, Shilpa; Simo, Hermann; Godfrey, Lynn M; Mustapha, Abdurrahman I A A; Heffner, Rickye S

    2016-09-01

    The cochlear nucleus receives all the coded information about sound from the cochlea and is the source of auditory information for the rest of the central auditory system. As such, it is a critical auditory nucleus. The sizes of the cochlear nucleus as a whole and its three major subdivisions - anteroventral cochlear nucleus (AVCN), posteroventral cochlear nucleus (PVCN), and dorsal cochlear nucleus (DCN) - have been measured in a large number of mammals, but measurements of its subregions at a more detailed level for a variety of species have not previously been made. Size measurements are reported here for the summed granular regions, DCN layers, AVCN, PVCN, and interstitial nucleus in 15 different rodent species, as well as a lagomorph, carnivore, and small primate. This further refinement of measurements is important because the granular regions and superficial layers of the DCN appear to have some different functions than the other cochlear nucleus regions. Except for DCN layers in the mountain beaver, all regions were clearly identifiable in all the animals studied. Relative regional size differences among most of the rodents, and even the 3 non-rodents, were not large and did not show a consistent relation to their wide range of lifestyles and hearing parameters. However, the mountain beaver, and to a lesser extent the pocket gopher, two rodents that live in tunnel systems, had relative sizes of summed granular regions and DCN molecular layer distinctly larger than those of the other mammals. Among all the mammals studied, there was a high correlation between the size per body weight of summed granular regions and that of the DCN molecular layer, consistent with other evidence for a close relationship between granule cells and superficial DCN neurons. PMID:27435005

  2. Cochlear ablation effects on amino acid levels in the chinchilla cochlear nucleus.

    PubMed

    Godfrey, D A; Chen, K; Godfrey, M A; Lee, A C; Crass, S P; Shipp, D; Simo, H; Robinson, K T

    2015-06-25

    Inner ear damage can lead to hearing disorders, including tinnitus, hyperacusis, and hearing loss. We measured the effects of severe inner ear damage, produced by cochlear ablation, on the levels and distributions of amino acids in the first brain center of the auditory system, the cochlear nucleus. Measurements were also made for its projection pathways and the superior olivary nuclei. Cochlear ablation produces complete degeneration of the auditory nerve, which provides a baseline for interpreting the effects of partial damage to the inner ear, such as that from ototoxic drugs or intense sound. Amino acids play a critical role in neural function, including neurotransmission, neuromodulation, cellular metabolism, and protein construction. They include major neurotransmitters of the brain - glutamate, glycine, and γ-aminobutyrate (GABA) - as well as others closely related to their metabolism and/or functions - aspartate, glutamine, and taurine. Since the effects of inner ear damage develop over time, we measured the changes in amino acid levels at various survival times after cochlear ablation. Glutamate and aspartate levels decreased by 2weeks in the ipsilateral ventral cochlear nucleus and deep layer of the dorsal cochlear nucleus, with the largest decreases in the posteroventral cochlear nucleus (PVCN): 66% for glutamate and 63% for aspartate. Aspartate levels also decreased in the lateral part of the ipsilateral trapezoid body, by as much as 50%, suggesting a transneuronal effect. GABA and glycine levels showed some bilateral decreases, especially in the PVCN. These results may represent the state of amino acid metabolism in the cochlear nucleus of humans after removal of eighth nerve tumors, which may adversely result in destruction of the auditory nerve. Measurement of chemical changes following inner ear damage may increase understanding of the pathogenesis of hearing impairments and enable improvements in their diagnosis and treatment. PMID:25839146

  3. Accessing the tonotopic organization of the ventral cochlear nucleus by intranuclear microstimulation.

    PubMed

    McCreery, D B; Shannon, R V; Moore, J K; Chatterjee, M

    1998-12-01

    This study is part of a program to develop an auditory prosthesis for the profoundly deaf, based on multichannel microstimulation in the cochlear nucleus. The functionality of such a device is dependent on its ability to access the tonotopic axis of the human ventral cochlear nucleus in an orderly fashion. In these studies, we utilized the homologies between the human and feline ventral cochlear nuclei and the known tonotopic organization of the central nucleus of the inferior colliculus (IC). In anesthetized cats, stimuli were delivered to three or four locations along the dorsal-to-ventral axis of the posteroventral cochlear nucleus (PVCN), and for each stimulus location, we recorded the multiunit neuronal activity and the field potentials at 20 or more locations along the dorsolateral-ventromedial (tonotopic) axis of the IC. The current source-sink density (CSD), which delimits regions of neuronal activity, was computed from the sequence of field potentials recorded along this axis. The multiunit activity and the CSD analysis both showed that the tonotopic organization of the PVCN can be accessed in an orderly manner by intranuclear microstimulation in several regions of the PVCN, using the range of stimulus pulse amplitudes that have been shown in previous studies to be noninjurious during prolonged intranuclear microstimulation via chronically implanted microelectrodes. We discuss the applicability of these findings to the design of clinical auditory prostheses for implantation into the human cochlear nucleus. PMID:9865886

  4. Commissural axons of the mouse cochlear nucleus.

    PubMed

    Brown, M Christian; Drottar, Marie; Benson, Thane E; Darrow, Keith

    2013-05-01

    The axons of commissural neurons that project from one cochlear nucleus to the other were studied after labeling with anterograde tracer. Injections were made into the dorsal subdivision of the cochlear nucleus in order to restrict labeling only to the group of commissural neurons that gave off collaterals to, or were located in, this subdivision. The number of labeled commissural axons in each injection was correlated with the number of labeled radiate multipolar neurons, suggesting radiate neurons as the predominant origin of the axons. The radiate commissural axons are thick and myelinated, and they exit the dorsal acoustic stria of the injected cochlear nucleus to cross the brainstem in the dorsal half, near the crossing position of the olivocochlear bundle. They enter the opposite cochlear nucleus via the dorsal and ventral acoustic stria and at its medial border. Reconstructions of single axons demonstrate that terminations are mostly in the core and typically within a single subdivision of the cochlear nucleus. Extents of termination range from narrow to broad along both the dorsoventral (i.e., tonotopic) and the rostrocaudal dimensions. In the electron microscope, labeled swellings form synapses that are symmetric (in that there is little postsynaptic density), a characteristic of inhibitory synapses. Our labeled axons do not appear to include excitatory commissural axons that end in edge regions of the nucleus. Radiate commissural axons could mediate the broadband inhibition observed in responses to contralateral sound, and they may balance input from the two ears with a quick time course. PMID:23124982

  5. Centrifugal inhibitory processes affecting neurones in the cat cochlear nucleus

    PubMed Central

    Comis, S. D.

    1970-01-01

    1. Stimulation of the lateral part of the olivary S-segment in the cat inhibited neurones in the ipsilateral cochlear nucleus. A smaller number of neurones located in the ventral division of the cochlear nucleus were excited. 2. It is suggested that inhibition in the ipsilateral cochlear nucleus may be mediated directly by fibres making synaptic connexions on the cochlear nucleus neurones, or indirectly by inhibitory fibres acting at the cochlea. 3. The direct inhibitory process at the cochlear nucleus is unaffected by strychnine, whereas the inhibitory process at the cochlea is abolished by strychnine. 4. A cochlear nucleus neurone can be influenced simultaneously by excitatory and inhibitory processes. ImagesFig. 1 PMID:5499823

  6. Stimulus parameters affecting tissue injury during microstimulation in the cochlear nucleus of the cat.

    PubMed

    McCreery, D B; Yuen, T G; Agnew, W F; Bullara, L A

    1994-06-15

    We investigated the effects of continuous microstimulation in the cats' posteroventral cochlear nucleus, using chronically implanted activated iridium microelectrodes. We examined 51 electrode sites (39 pulsed sites, and 12 unpulsed sites). Seven hours of continuous stimulation at 500 Hz often produced tissue injury near the tips of the pulsed microelectrodes. The damage took the form of a region of vacuolated tissue extending 200 microns or more from the site of the electrode tip. Electron microscope studies showed the vacuoles to be severely edematous segments of myelinated axons. The statistical correlation between the amount of damaged tissue and the charge per phase was large and highly significant (P < 0.0001). When the electrodes were pulsed for 7 h at 500 Hz with charge-balanced biphasic pulse pairs, the threshold for the damage was approximately 3 nC/phase. The damage threshold was not appreciably lower than the stimulation protocol was extended to 35 h (7 h/day for 5 days). In contrast, the threshold for exciting neurons near the microelectrode is approximately 1 nC/phase, as determined by the evoked response recorded in the inferior colliculus. There was little correlation between the severity of the tissue damage and the geometric charge density at the surface of the electrodes, between the damage and amplitude of the cathodic phase of the voltage transient induced across the stimulating electrodes by the stimulus current pulses, or between the damage and the stimulus pulse duration. PMID:7928722

  7. Cochlear nucleus whole mount explants promote the differentiation of neuronal stem cells from the cochlear nucleus in co-culture experiments.

    PubMed

    Rak, Kristen; Völker, Johannes; Jürgens, Lukas; Völker, Christine; Frenz, Silke; Scherzad, Agmal; Schendzielorz, Philipp; Jablonka, Sibylle; Mlynski, Robert; Radeloff, Andreas; Hagen, Rudolf

    2015-08-01

    The cochlear nucleus is the first brainstem nucleus to receive sensory input from the cochlea. Depriving this nucleus of auditory input leads to cellular and molecular disorganization which may potentially be counteracted by the activation or application of stem cells. Neuronal stem cells (NSCs) have recently been identified in the neonatal cochlear nucleus and a persistent neurogenic niche was demonstrated in this brainstem nucleus until adulthood. The present work investigates whether the neurogenic environment of the cochlear nucleus can promote the survival of engrafted NSCs and whether cochlear nucleus-derived NSCs can differentiate into neurons and glia in brain tissue. Therefore, cochlear nucleus whole-mount explants were co-cultured with NSCs extracted from either the cochlear nucleus or the hippocampus and compared to a second environment using whole-mount explants from the hippocampus. Factors that are known to induce neuronal differentiation were also investigated in these NSC-explant experiments. NSCs derived from the cochlear nucleus engrafted in the brain tissue and differentiated into all cells of the neuronal lineage. Hippocampal NSCs also immigrated in cochlear nucleus explants and differentiated into neurons, astrocytes and oligodendrocytes. Laminin expression was up-regulated in the cochlear nucleus whole-mounts and regulated the in vitro differentiation of NSCs from the cochlear nucleus. These experiments confirm a neurogenic environment in the cochlear nucleus and the capacity of cochlear nucleus-derived NSCs to differentiate into neurons and glia. Consequently, the presented results provide a first step for the possible application of stem cells to repair the disorganization of the cochlear nucleus, which occurs after hearing loss. PMID:25960344

  8. The development of the Nucleus Freedom Cochlear implant system.

    PubMed

    Patrick, James F; Busby, Peter A; Gibson, Peter J

    2006-12-01

    Cochlear Limited (Cochlear) released the fourth-generation cochlear implant system, Nucleus Freedom, in 2005. Freedom is based on 25 years of experience in cochlear implant research and development and incorporates advances in medicine, implantable materials, electronic technology, and sound coding. This article presents the development of Cochlear's implant systems, with an overview of the first 3 generations, and details of the Freedom system: the CI24RE receiver-stimulator, the Contour Advance electrode, the modular Freedom processor, the available speech coding strategies, the input processing options of Smart Sound to improve the signal before coding as electrical signals, and the programming software. Preliminary results from multicenter studies with the Freedom system are reported, demonstrating better levels of performance compared with the previous systems. The final section presents the most recent implant reliability data, with the early findings at 18 months showing improved reliability of the Freedom implant compared with the earlier Nucleus 3 System. Also reported are some of the findings of Cochlear's collaborative research programs to improve recipient outcomes. Included are studies showing the benefits from bilateral implants, electroacoustic stimulation using an ipsilateral and/or contralateral hearing aid, advanced speech coding, and streamlined speech processor programming. PMID:17172547

  9. Growth behavior of cochlear nucleus neuronal cells on semiconductor substrates.

    PubMed

    Rak, Kristen; Wasielewski, Natalia; Radeloff, Andreas; Scherzed, Agmal; Jablonka, Sibylle; Hagen, Rudolf; Mlynski, Robert

    2011-05-01

    Auditory brainstem implants provide sound information by direct stimulation of the cochlear nucleus to patients with dysfunctional or absent cranial nerve VIII. In contrast to patients with cochlear implants, the use of the auditory brainstem implants is less successful. This cannot be fully explained by the difference location of stimulation but a rather unspecific neuronal stimulation. The aim of this study was to further examine neuronal cells of the cochlear nucleus and to test their interactions with semiconductor substrates as a potential electrode material for improved auditory brainstem implants. The cochlear nuclei of postnatal day 7 rats were microsurgically dissected. The tissue was dissociated enzymatically and plated on coverslips as control and on the semiconductor substrates silicon or silicon nitride. After 4 days in culture the morphology and growth of dissociated cells was determined by fluorescence and scanning electron microscopy. Dissociated cells of the cochlear nucleus showed reduced cell growth on semiconductor substrates compared with controls. SEM analysis demonstrated close contact of neurons with supporting cells in culture and good adherence of neuronal growth cones on the used materials. These findings present basic knowledge for the development of neuron-electrode interfaces for future auditory brainstem implants. PMID:21370446

  10. Heterogeneous calretinin expression in the avian cochlear nucleus angularis.

    PubMed

    Bloom, S; Williams, A; MacLeod, K M

    2014-08-01

    Multiple calcium-binding proteins (CaBPs) are expressed at high levels and in complementary patterns in the auditory pathways of birds, mammals, and other vertebrates, but whether specific members of the CaBP family can be used to identify neuronal subpopulations is unclear. We used double immunofluorescence labeling of calretinin (CR) in combination with neuronal markers to investigate the distribution of CR-expressing neurons in brainstem sections of the cochlear nucleus in the chicken (Gallus gallus domesticus). While CR was homogeneously expressed in cochlear nucleus magnocellularis, CR expression was highly heterogeneous in cochlear nucleus angularis (NA), a nucleus with diverse cell types analogous in function to neurons in the mammalian ventral cochlear nucleus. To quantify the distribution of CR in the total NA cell population, we used antibodies against neuronal nuclear protein (NeuN), a postmitotic neuron-specific nuclear marker. In NA neurons, NeuN label was variably localized to the cell nucleus and the cytoplasm, and the intensity of NeuN immunoreactivity was inversely correlated with the intensity of CR immunoreactivity. The percentage of CR + neurons in NA increased from 31 % in embryonic (E)17/18 chicks, to 44 % around hatching (E21), to 51 % in postnatal day (P) 8 chicks. By P8, the distribution of CR + neurons was uniform, both rostrocaudal and in the tonotopic (dorsoventral) axis. Immunoreactivity for the voltage-gated potassium ion channel Kv1.1, used as a marker for physiological type, showed broad and heterogeneous postsynaptic expression in NA, but did not correlate with CR expression. These results suggest that CR may define a subpopulation of neurons within nucleus angularis. PMID:24752525

  11. The identification of musical instruments through nucleus cochlear implants.

    PubMed

    Grasmeder, M L; Lutman, M E

    2006-09-01

    In this study, self-reported ability to recognize musical instruments was investigated by means of a questionnaire, which was sent to a group of adult Nucleus cochlear implant users and a group of normally hearing subjects. In addition, spectrograms and electrodograms were produced and analysed for samples of music played on 10 different musical instruments. Self-reported ability to recognize some instruments was poor in the group of implant users, particularly for the saxophone, tuba and clarinet. Electrodograms showed that these instruments could only be identified using distorted spectral information or reduced temporal information. Other instruments, such as the drum and piano, could be identified using temporal information. Limited spectral resolution makes the recognition of musical instruments difficult for Nucleus implant users. PMID:18792382

  12. The dolphin cochlear nucleus: topography, histology and functional implications.

    PubMed

    Malkemper, E P; Oelschläger, H H A; Huggenberger, S

    2012-02-01

    Despite the outstanding auditory capabilities of dolphins, there is only limited information available on the cytology of the auditory brain stem nuclei in these animals. Here, we investigated the cochlear nuclei (CN) of five brains of common dolphins (Delphinus delphis) and La Plata dolphins (Pontoporia blainvillei) using cell and fiber stain microslide series representing the three main anatomical planes. In general, the CN in dolphins comprise the same set of subnuclei as in other mammals. However, the volume ratio of the dorsal cochlear nucleus (DCN) in relation to the ventral cochlear nucleus (VCN) of dolphins represents a minimum among the mammals examined so far. Because, for example, in cats the DCN is necessary for reflexive orientation of the head and pinnae towards a sound source, the massive restrictions in head movability in dolphins and the absence of outer ears may be correlated with the reduction of the DCN. Moreover, the same set of main neuron types were found in the dolphin CN as in other mammals, including octopus and multipolar cells. Because the latter two types of neurons are thought to be involved in the recognition of complex sounds, including speech, we suggest that, in dolphins, they may be involved in the processing of their communication signals. Comparison of the toothed whale species studied here revealed that large spherical cells were present in the La Plata dolphin but absent in the common dolphin. These neurons are known to be engaged in the processing of low-frequency sounds in terrestrial mammals. Accordingly, in the common dolphin, the absence of large spherical cells seems to be correlated with a shift of its auditory spectrum into the high-frequency range above 20 kHz. The existence of large spherical cells in the VCN of the La Plata dolphin, however, is enigmatic asthis species uses frequencies around 130 kHz. PMID:21987441

  13. Enhancement of forward suppression begins in the ventral cochlear nucleus.

    PubMed

    Ingham, Neil J; Itatani, Naoya; Bleeck, Stefan; Winter, Ian M

    2016-05-15

    A neuron׳s response to a sound can be suppressed by the presentation of a preceding sound. It has been suggested that this suppression is a direct correlate of the psychophysical phenomenon of forward masking, however, forward suppression, as measured in the responses of the auditory nerve, was insufficient to account for behavioural performance. In contrast the neural suppression seen in the inferior colliculus and auditory cortex was much closer to psychophysical performance. In anaesthetised guinea-pigs, using a physiological two-interval forced-choice threshold tracking algorithm to estimate suppressed (masked) thresholds, we examine whether the enhancement of suppression can occur at an earlier stage of the auditory pathway, the ventral cochlear nucleus (VCN). We also compare these responses with the responses from the central nucleus of the inferior colliculus (ICc) using the same preparation. In both nuclei, onset-type neurons showed the greatest amounts of suppression (16.9-33.5dB) and, in the VCN, these recovered with the fastest time constants (14.1-19.9ms). Neurons with sustained discharge demonstrated reduced masking (8.9-12.1dB) and recovery time constants of 27.2-55.6ms. In the VCN the decrease in growth of suppression with increasing suppressor level was largest for chopper units and smallest for onset-type units. The threshold elevations recorded for most unit types are insufficient to account for the magnitude of forward masking as measured behaviourally, however, onset responders, in both the cochlear nucleus and inferior colliculus demonstrate a wide dynamic range of suppression, similar to that observed in human psychophysics. PMID:26944300

  14. Dynamic changes of the neurogenic potential in the rat cochlear nucleus during post-natal development.

    PubMed

    Rak, Kristen; Völker, Johannes; Frenz, Silke; Scherzed, Agmal; Radeloff, Andreas; Hagen, Rudolf; Mlynski, Robert

    2013-05-01

    Neuronal stem cells have been described in the post-natal cochlear nucleus recently. The aim of the study was to analyse the neurogenic potential in the cochlear nucleus from the early post-natal days until adulthood. Cochlear nuclei from Sprague-Dawley rats from post-natal day P3 up to P40 were examined. Neurosphere assays showed persistent neurosphere formation from the early post-natal days until adulthood. The numbers of generated neurospheres were fewer in older ages. Neurospheres were smaller, but displayed the same pattern of neuronal stem cell markers. The markers GFAP, MBP and ß-III Tubulin showed differentiation of dissociated cells from the neurospheres in all cells of the neuronal lineage. BrdU incorporation could be detected, in an age-dependent decrease, in whole-mount experiments of the cochlear nucleus on all examined days. BrdU co-labelled with Atoh1 and ß-III Tubulin. In addition, gene expression and cellular distribution studies of the neuronal stem cell markers displayed an age-dependent reduction in both quantity and numbers. The presented results display a possible neurogenic potential until adulthood in the cochlear nucleus by in vitro and in vivo experiments. The fact that this potential is highest at a critical period of development reveals possible functional importance for the development of the cochlear nucleus and the auditory function. The persistent neurogenic potential displayed until adulthood could be a neurogenic niche in the adult cochlear nucleus, which might be used for potential therapeutic strategies. PMID:23455726

  15. Isolation and characterization of neural stem cells from the neonatal rat cochlear nucleus.

    PubMed

    Rak, Kristen; Wasielewski, Natalia V; Radeloff, Andreas; Völkers, Johannes; Scherzed, Agmal; Jablonka, Sibylle; Hagen, Rudolf; Mlynski, Robert

    2011-03-01

    Neural stem cells have been identified in multiple parts of the postnatal mammalian brain, as well as in the inner ear. No investigation of potential neural stem cells in the cochlear nucleus has yet been performed. The aim of this study was to investigate potential neural stem cells from the cochlear nucleus by neurosphere assay and in histological sections to prove their capacity for self-renewal and for differentiation into progenitor cells and cells of the neuronal lineage. For this purpose, cells of the cochlear nucleus of postnatal day 6 rats were isolated and cultured for generation of primary neurospheres. Spheres were dissociated and cells analyzed for capacity for mitosis and differentiation. Cell division was detected by cell-counting assay and BrdU incorporation. Differentiated neural progenitor cells showed distinct labeling for Nestin and for Atoh1. Positive staining of ß-III Tubulin, glial fibrillary acid protein (GFAP) and myelin basic protein (MBP) showed differentiation into neurons, astrocytes and oligodendrocytes. Furthermore, Nestin- and BrdU-labeled cells could also be detected in histological sections. In conclusion, the isolated cells from the cochlear nucleus presented all the features of neural stem cells: cell division, presence of progenitor cells and differentiation into different cells of the neuronal lineage. The existence of neural stem cells may add to the understanding of developmental features in the cochlear nucleus. PMID:21258945

  16. Understanding tinnitus: the dorsal cochlear nucleus, organization and plasticity

    PubMed Central

    Baizer, Joan S.; Manohar, Senthilvelan; Paolone, Nicholas A.; Weinstock, Nadav; Salvi, Richard J.

    2012-01-01

    Tinnitus, the perception of a phantom sound, is a common consequence of damage to the auditory periphery. A major goal of tinnitus research is to find the loci of the neural changes that underlie the disorder. Crucial to this endeavor has been the development of an animal behavioral model of tinnitus, so that neural changes can be correlated with behavioral evidence of tinnitus. Three major lines of evidence implicate the dorsal cochlear nucleus (DCN) in tinnitus. First, elevated spontaneous activity in the DCN is correlated with peripheral damage and tinnitus. Second, there are somatosensory inputs to the DCN that can modulate spontaneous activity and might mediate the somatic-auditory interactions seen in tinnitus patients. Third, we have found a subpopulation of DCN neurons in the adult rat that express doublecortin, a plasticity-related protein. The expression of this protein may reflect a role of these neurons in the neural reorganization causing tinnitus. However, there is a problem in extending the findings in the rodent DCN to humans. Classic studies state that the structure of the primate DCN is quite different from that of rodents, with primates lacking granule cells, the recipients of somatosensory input. To address the possibility of major species differences in DCN organization, we compared Nissl-stained sections of the DCN in five different species. In contrast to earlier reports, our data suggest that the organization of the primate DCN is not dramatically different from that of the rodents, and validate the use of animal data in the study of tinnitus. PMID:22513100

  17. Plasticity of somatosensory inputs to the cochlear nucleus – implications for tinnitus

    PubMed Central

    Shore, S.E.

    2011-01-01

    This chapter reviews evidence for functional connections of the somatosensory and auditory systems at the very lowest levels of the nervous system. Neural inputs from the dosal root and trigeminal ganglia, as well as their brain stem nuclei, cuneate, gracillis and trigeminal, terminate in the cochlear nuclei. Terminations are primarily in the shell regions surrounding the cochlear nuclei but some terminals are found in the magnocellular regions of cochlear nucleus. The effects of stimulating these inputs on multisensory integration are shown as short and long-term, both suppressive and enhancing. Evidence that these projections are glutamatergic and are altered after cochlear damage is provided in the light of probable influences on the modulation and generation of tinnitus. PMID:21620940

  18. Selective Deletion of Cochlear Hair Cells Causes Rapid Age-Dependent Changes in Spiral Ganglion and Cochlear Nucleus Neurons

    PubMed Central

    Tong, Ling; Strong, Melissa K.; Kaur, Tejbeer; Juiz, Jose M.; Oesterle, Elizabeth C.; Hume, Clifford; Warchol, Mark E.; Palmiter, Richard D.

    2015-01-01

    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival. PMID:25995473

  19. Pallidotomy revisited. Analysis of posteroventral pallidotomy.

    PubMed

    Narabayashi, H

    1997-01-01

    Posteroventral pallidotomy (PVP) has been shown to alleviate motor symptoms in Parkinson's disease (PD), e.g., rigidity, secondary akinesia due to existence of muscle rigidity and slight tremor, but not the marked tremor. For the latter, additional lesion of the ventral intermediate nucleus of the thalamus is necessary. Akinesia was divided into three subtypes, and the influence of PVP on each type is described. Primary akinesia is not changed by either PVP or thalamotomy but responds well to L-dopa. Psychological symptoms, i.e., depressive mood, loss of initiation or abulia, and lowered emotional activity, which are generally termed as bradyphrenia, benefit well from PVP but less from thalamotomy. This effect is interpreted as due to the lesion extending into the ventral pallidum, where a small posterior part of the limbic-motor projections may possibly be involved. Such experience suggests that the third type of akinesia in PD, named the 'psychomotor or limbic-motor type' by the author, can be improved by the surgical procedure on the ventral globus pallidus. These observations offer an important chance to understand the psychological symptoms in PD as a result of dopamine deficiency of ventral tegmental area neurons projecting to the ventral striatum, which further influences the ventral pallidum. PMID:9711734

  20. Distribution of primary cochlear afferents in the bulbar nuclei of the rat: a horseradish peroxidase (HRP) study in parasagittal sections.

    PubMed Central

    Merchan, M A; Collia, F P; Merchan, J A; Ludeña, M D

    1986-01-01

    HRP was injected into the cochleae of 25 young albino rats in order to trace the primary afferents to the bulbar cochlear nuclei. Besides the classic V-shaped pattern and unconnected with it, HRP labelling revealed two plexuses stemming directly from the axons of the cochlear root. The plexuses cover the posterior area of the posteroventral cochlear nucleus (posterior plexus) and the anterolaterodorsal area of the anteroventral cochlear nucleus (anterior plexus). The fibres giving rise to these two plexuses were previously grouped in two bundles which have been called the posterior and anterior bundles, respectively. The origin of the anterior bundle is typically seen with the fibres stemming out at right angles; the origin and course of the posterior bundle, which characteristically cross over, is also a typical feature. Images Fig. 1 Figs. 2-3 (cont.) Figs. 2-3 Fig. 4 PMID:3319993

  1. Medial Auditory Thalamus Is Necessary for Acquisition and Retention of Eyeblink Conditioning to Cochlear Nucleus Stimulation

    ERIC Educational Resources Information Center

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2015-01-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning.…

  2. The Development of the Nucleus® Freedom™ Cochlear Implant System

    PubMed Central

    Patrick, James F.; Busby, Peter A.; Gibson, Peter J.

    2006-01-01

    Cochlear Limited (Cochlear™) released the fourth-generation cochlear implant system, Nucleus® Freedom™, in 2005. Freedom is based on 25 years of experience in cochlear implant research and development and incorporates advances in medicine, implantable materials, electronic technology, and sound coding. This article presents the development of Cochlear's implant systems, with an overview of the first 3 generations, and details of the Freedom system: the CI24RE receiver-stimulator, the Contour Advance™ electrode, the modular Freedom processor, the available speech coding strategies, the input processing options of SmartSound™ to improve the signal before coding as electrical signals, and the programming software. Preliminary results from multicenter studies with the Freedom system are reported, demonstrating better levels of performance compared with the previous systems. The final section presents the most recent implant reliability data, with the early findings at 18 months showing improved reliability of the Freedom implant compared with the earlier Nucleus 3 System. Also reported are some of the findings of Cochlear's collaborative research programs to improve recipient outcomes. Included are studies showing the benefits from bilateral implants, electroacoustic stimulation using an ipsilateral and/or contralateral hearing aid, advanced speech coding, and streamlined speech processor programming. PMID:17172547

  3. A Map of Functional Synaptic Connectivity in the Mouse Anteroventral Cochlear Nucleus

    PubMed Central

    Campagnola, Luke

    2014-01-01

    The cochlear nuclei are the first central processors of auditory information and provide inputs to all the major brainstem and midbrain auditory nuclei. Although the local circuits within the cochlear nuclei are understood at a cellular level, the spatial patterns of connectivity and the connection strengths in these circuits have been less well characterized. We have applied a novel, quantitative approach to mapping local circuits projecting to cells in the mouse anteroventral cochlear nucleus (AVCN) using laser-scanning photostimulation and glutamate uncaging. The amplitude and kinetics of individual evoked synaptic events were measured to reveal the patterns and strengths of synaptic connections. We found that the two major excitatory projection cell classes, the bushy and T-stellate cells, receive a spatially broad inhibition from D-stellate cells in the AVCN, and a spatially confined inhibition from the tuberculoventral cells of the dorsal cochlear nucleus. Furthermore, T-stellate cells integrate D-stellate inhibition from an area that spans twice the frequency range of that integrated by bushy cells. A subset of both bushy and T-stellate cells receives inhibition from an unidentified cell population at the dorsal–medial boundary of the AVCN. A smaller subset of cells receives local excitation from within the AVCN. Our results show that inhibitory circuits can have target-specific patterns of spatial convergence, synaptic strength, and receptor kinetics, resulting in different spectral and temporal processing capabilities. PMID:24501361

  4. Direct visualization of the murine dorsal cochlear nucleus for optogenetic stimulation of the auditory pathway.

    PubMed

    Kozin, Elliott D; Darrow, Keith N; Hight, Ariel E; Lehmann, Ashton E; Kaplan, Alyson B; Brown, M Christian; Lee, Daniel J

    2015-01-01

    Investigation into the use of virus-mediated gene transfer to arrest or reverse hearing loss has largely been relegated to the peripheral auditory system. Few studies have examined gene transfer to the central auditory system. The dorsal cochlear nucleus (DCN) of the brainstem, which contains second order neurons of the auditory pathway, is a potential site for gene transfer. In this protocol, a technique for direct and maximal exposure of the murine DCN via a posterior fossa approach is demonstrated. This approach allows for either acute or survival surgery. Following direct visualization of the DCN, a host of experiments are possible, including injection of opsins into the cochlear nucleus and subsequent stimulation by an optical fiber coupled to a blue light laser. Other neurophysiology experiments, such as electrical stimulation and neural injector tracings are also feasible. The level of visualization and the duration of stimulation achievable make this approach applicable to a wide range of experiments. PMID:25650555

  5. Direct Visualization of the Murine Dorsal Cochlear Nucleus for Optogenetic Stimulation of the Auditory Pathway

    PubMed Central

    Lehmann, Ashton E.; Kaplan, Alyson B.; Brown, M. Christian; Lee, Daniel J.

    2015-01-01

    Investigation into the use of virus-mediated gene transfer to arrest or reverse hearing loss has largely been relegated to the peripheral auditory system. Few studies have examined gene transfer to the central auditory system. The dorsal cochlear nucleus (DCN) of the brainstem, which contains second order neurons of the auditory pathway, is a potential site for gene transfer. In this protocol, a technique for direct and maximal exposure of the murine DCN via a posterior fossa approach is demonstrated. This approach allows for either acute or survival surgery. Following direct visualization of the DCN, a host of experiments are possible, including injection of opsins into the cochlear nucleus and subsequent stimulation by an optical fiber coupled to a blue light laser. Other neurophysiology experiments, such as electrical stimulation and neural injector tracings are also feasible. The level of visualization and the duration of stimulation achievable make this approach applicable to a wide range of experiments. PMID:25650555

  6. The Multiple Functions of T Stellate/Multipolar/Chopper Cells in the Ventral Cochlear Nucleus

    PubMed Central

    Oertel, Donata; Wright, Samantha; Cao, Xiao-Jie; Ferragamo, Michael; Bal, Ramazan

    2010-01-01

    Acoustic information is brought to the brain by auditory nerve fibers, all of which terminate in the cochlear nuclei, and is passed up the auditory pathway through the principal cells of the cochlear nuclei. A population of neurons variously known as T stellate, type I multipolar, planar multipolar, or chopper cells forms one of the major ascending auditory pathways through the brain stem. T Stellate cells are sharply tuned; as a population they encode the spectrum of sounds. In these neurons, phasic excitation from the auditory nerve is made more tonic by feed forward excitation, coactivation of inhibitory with excitatory inputs, relatively large excitatory currents through NMDA receptors, and relatively little synaptic depression. The mechanisms that make firing tonic also obscure the fine structure of sounds that is represented in the excitatory inputs from the auditory nerve and account for the characteristic chopping response patterns with which T stellate cells respond to tones. In contrast with other principal cells of the ventral cochlear nucleus (VCN), T stellate cells lack a low-voltage-activated potassium conductance and are therefore sensitive to small, steady, neuromodulating currents. The presence of cholinergic, serotonergic and noradrenergic receptors allows the excitability of these cells to be modulated by medial olivocochlear efferent neurons and by neuronal circuits associated with arousal. T Stellate cells deliver acoustic information to the ipsilateral dorsal cochlear nucleus (DCN), ventral nucleus of the trapezoid body (VNTB), periolivary regions around the lateral superior olivary nucleus (LSO), and to the contralateral ventral lemniscal nuclei (VNLL) and inferior colliculus (IC). It is likely that T stellate cells participate in feedback loops through both medial and lateral olivocochlear efferent neurons and they may be a source of ipsilateral excitation of the LSO. PMID:21056098

  7. Identification of a novel Vamp1 splice variant in the cochlear nucleus.

    PubMed

    Friedland, David R; Eernisse, Rebecca; Popper, Paul

    2008-09-01

    Cochlear nucleus neurons propagate auditory impulses to higher brain stem centers at rapid firing rates with high fidelity. Intrinsic to synaptic transmission are the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins engaged in vesicle fusion, release and recycling. Herein we report a novel splice variant of the SNARE protein Vamp1 (vesicle-associated membrane protein 1) within the cochlear nucleus. We previously demonstrated, through serial analysis of gene expression and microarray studies, that Vamp1 is differentially expressed among the subdivisions of the rat cochlear nucleus. The 3' end of this transcript, however, was poorly characterized and we could not initially confirm our findings. In this study, we designed RT-PCR primers using conserved 5' regions and the mouse 3' domain to validate the expression of Vamp1. Several species of Vamp1 were subsequently amplified from a rat brain cDNA library including a full length clone of Vamp1as and a novel splice variant we termed Vamp1nv. Using regional brain libraries Vamp1nv showed expression in the medulla and lack of expression in the cortex, cerebellum and thalamus. Expression of Vamp1nv was further confirmed and characterized by RT-PCR and real-time PCR in each of the cochlear nucleus subdivisions. The predicted protein sequence for Vamp1nv demonstrates a unique modification of the carboxy-terminal end of the protein as compared to known variants. This includes the appearance of two intra-vesicular serine residues with high predicted potential as kinase phosphorylation sites. Such splice variants of Vamp1 may alter the kinetics of SNARE complex formation and vesicle release and impart unique features to expressing neurons. This may be important for central auditory function and contribute to the distinct physiological properties observed in auditory neurons. PMID:18655825

  8. Clinical evaluation of the Nucleus® 6 cochlear implant system: Performance improvements with SmartSound iQ

    PubMed Central

    Mauger, Stefan J; Warren, Chris D; Knight, Michelle R; Goorevich, Michael

    2014-01-01

    Objective: This paper provides a detailed description of the Nucleus 6 system, and clinically evaluates user performance compared to the previous Nucleus 5 system in cochlear implant recipients. Additionally, it clinically evaluates a range of Nucleus 6 and Nucleus 5 programs to determine the performance benefits provided by new input processing technologies available in SmartSound iQ. Design Speech understanding tests were used to clinically validate the default Nucleus 6 program, by comparing performance outcomes against up to five custom Nucleus 5 or Nucleus 6 programs in a range of listening environments. Clinical comparisons between programs were conducted across the following listening environments; quiet, speech weighted noise (co-located and spatially separated noise), and 4-talker babble (co-located and spatially separated noise). Study sample Twenty-one adult cochlear implant recipients participated. Results Significant speech understanding benefits were found with the default Nucleus 6 program compared to the participants’ preferred program using their Nucleus 5 processor and compared to a range of custom Nucleus 6 programs. All participants successfully accepted and upgraded to the new default Nucleus 6 SmartSound iQ program. Conclusion This study demonstrates the acceptance and clinical benefits of the Nucleus 6 cochlear implant system and SmartSound iQ. PMID:25005776

  9. Activation of Metabotropic Glutamate Receptors Regulates Ribosomes of Cochlear Nucleus Neurons

    PubMed Central

    Carzoli, Kathryn L.; Hyson, Richard L.

    2014-01-01

    The brain stem auditory system of the chick is an advantageous model for examining changes that occur as a result of deafness. Elimination of acoustic input through cochlear ablation results in the eventual death of approximately 30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). One early change following deafness is an alteration in NM ribosomes, evidenced both by a decrease in protein synthesis and reduction in antigenicity for Y10B, a monoclonal antibody that recognizes a ribosomal epitope. Previous studies have shown that mGluR activation is necessary to maintain Y10B antigenicity and NM viability. What is still unclear, however, is whether or not mGluR activation is sufficient to prevent deafness-induced changes in these neurons, or if other activity-dependent factors are also necessary. The current study investigated the ability of mGluR activation to regulate cochlear nucleus ribosomes in the absence of auditory nerve input. In vitro methods were employed to periodically pressure eject glutamate or mGluR agonists over neurons on one side of a slice preparation leaving the opposite side of the same slice untreated. Immunohistochemistry was then performed using Y10B in order to assess ribosomal changes. Application of glutamate and both group I and II selective mGluR agonists effectively rescued ribosomal antigenicity on the treated side of the slice in comparison to ribosomes on the untreated side. These findings suggest that administration of mGluR agonists is sufficient to reduce the early interruption of normal ribosomal integrity that is typically seen following loss of auditory nerve activity. PMID:25334004

  10. Cochlear nucleus neurons redistribute synaptic AMPA and glycine receptors in response to monaural conductive hearing loss

    PubMed Central

    Whiting, Brittany; Moiseff, Andrew; Rubio, María E.

    2009-01-01

    Neurons restore their function in response to external or internal perturbations and maintain neuronal or network stability through a homeostatic scaling mechanism. Homeostatic responses at synapses along the auditory system would be important for adaptation to normal and abnormal fluctuations in the sensory environment. We investigated at the electron microscopic level and after postembedding immunogold labeling whether projection neurons in the cochlear nucleus responded to modifications of auditory nerve activity. After unilaterally reducing the level of auditory inputs by ~ 20 dB by monaural earplugging, auditory nerve synapses on bushy cells somata and basal dendrites of fusiform cells of the ventral and dorsal cochlear nucleus, respectively, upregulated GluR3 AMPA receptor subunit, while inhibitory synapses decreased the expression of GlyRα1 subunit. These changes in expression levels were fully reversible once the earplug was removed, indicating that activity affects the trafficking of receptors at synapses. Excitatory synapses on apical dendrites of fusiform cells (parallel fibers) with different synaptic AMPA receptor subunit composition, were not affected by sound attenuation, as the expression levels of AMPA receptor subunits were the same as in normal hearing littermates. GlyRα1 subunit expression at inhibitory synapses on apical dendrites of fusiform cells was also found unaffected. Furthermore, fusiform and bushy cells of the contralateral side to the earplugging upregulated the GluR3 subunit at auditory nerve synapses. These results show that cochlear nucleus neurons innervated by the auditory nerve, are able to respond to small changes in sound levels by redistributing specific AMPA and glycine receptor subunits. PMID:19646510

  11. Bilateral Cochlear Implants in Infants: A New Approach—Nucleus Hybrid S12 Project

    PubMed Central

    Gantz, Bruce J.; Dunn, Camille C.; Walker, Elizabeth A.; Kenworthy, Maura; Van Voorst, Tanya; Tomblin, Bruce; Turner, Chris

    2010-01-01

    Objective The purpose of this feasibility study was to evaluate whether the use of a shorter-length cochlear implant (10 mm) on one ear and a standard electrode (24 mm) on the contralateral ear is a viable bilateral option for children with profound bilateral sensorineural hearing loss. A secondary purpose of this study was to determine whether the ear with the shorter-length electrode performs similarly to the standard-length electrode. Our goal was to provide an option of electrical stimulation that theoretically might preserve the structures of the scala media and organ of Corti. Study Design The study is being conducted as a repeated-measure, single-subject experiment. Setting University of Iowa—Department of Otolaryngology. Patients Eight pediatric patients with profound bilateral sensorineural hearing loss between the ages of 12 and 24 months. Interventions Nucleus Hybrid S12 10-mm electrode and a Nucleus Freedom implant in the contralateral ear. Main Outcome Measures The Infant-Toddler Meaningful Auditory Integration Scale (IT-MAIS) parent questionnaire, Early Speech Perception, Glendonald Auditory Screening Procedure word test, and Children’s Vowel tests will be used to evaluate speech perception and the Minnesota Child Development Inventory and Preschool Language Scales 3 test will be used to evaluate language growth. Results Preliminary results for 8 children have been collected before and after the operation using the IT-MAIS. All 3 children showed incremental improvements in their IT-MAIS scores overtime. Early Speech Perception, Glendonald Auditory Screening Procedure word test, and Children’s Vowel word perception results indicated no difference between the individual ears for the 2 children tested. Performance compared with age-matched children implanted with standard bilateral cochlear implants showed similar results to the children implanted with Nucleus Hybrid S12 10-mm electrode and a Nucleus Freedom implant in contralateral ears

  12. A Psychophysics experimental software to evaluate electrical pitch discrimination in Nucleus cochlear implanted patients

    NASA Astrophysics Data System (ADS)

    Pérez Zaballos, M. T.; Ramos de Miguel, A.; Killian, M.; Ramos Macías, A.

    2016-02-01

    Multichannel electrode array design in cochlear implants has evolved into two major categories: straight and perimodiolar electrodes. When implanted, the former lies along the outer wall of the scala tympani, while the later are located closer to the modiolus, where the neural ends are. Therefore, a perimodiolar position of the electrode array could be expected to result in reduced stimulus thresholds and stimulating currents, increased dynamic range, and more localized stimulation of the neural elements. However, their advantage for pitch discrimination has not been conclusively stated. Therefore, in order to study electrode independence, a psychophysical software has been developed, making use of Nucleus Implant Communicator tools provided by Cochlear company under a research agreement. The application comprises a graphical interface to facilitate its use, since previous software has always required some type of computer language skills. It allows for customization of electrical pulse parameters, measurement of threshold and comfort levels, loudness balancing and alternative forced choice experiments to determine electrode discrimination in Nucleus© users.

  13. Transcutaneous induction of stimulus-timing-dependent plasticity in dorsal cochlear nucleus

    PubMed Central

    Wu, Calvin; Martel, David T.; Shore, Susan E.

    2015-01-01

    The cochlear nucleus (CN) is the first site of multisensory integration in the ascending auditory pathway. The principal output neurons of the dorsal cochlear nucleus (DCN), fusiform cells, receive somatosensory information relayed by the CN granule cells from the trigeminal and dorsal column pathways. Integration of somatosensory and auditory inputs results in long-term enhancement or suppression in a stimulus-timing-dependent manner. Here, we demonstrate that stimulus-timing-dependent plasticity (STDP) can be induced in DCN fusiform cells using paired auditory and transcutaneous electrical stimulation of the face and neck to activate trigeminal and dorsal column pathways to the CN, respectively. Long-lasting changes in fusiform cell firing rates persisted for up to 2 h after this bimodal stimulation, and followed Hebbian or anti-Hebbian rules, depending on tone duration, but not somatosensory stimulation location: 50 ms paired tones evoked predominantly Hebbian, while 10 ms paired tones evoked predominantly anti-Hebbian plasticity. The tone-duration-dependent STDP was strongly correlated with first inter-spike intervals, implicating intrinsic cellular properties as determinants of STDP. This study demonstrates that transcutaneous stimulation with precise auditory–somatosensory timing parameters can non-invasively induce fusiform cell long-term modulation, which could be harnessed in the future to moderate tinnitus-related hyperactivity in DCN. PMID:26321928

  14. Performance of multisite silicon microprobes implanted chronically in the ventral cochlear nucleus of the cat.

    PubMed

    McCreery, Douglas; Lossinsky, Albert; Pikov, Victor

    2007-06-01

    A central auditory prosthesis based on microstimulation within the ventral cochlear nucleus (VCN) offers a means of restoring hearing to persons whose auditory nerve has been destroyed bilaterally and cannot benefit from cochlear implants. Arrays of silicon probes with 16 stimulating sites were implanted into the VCN of adult cats, for up to 314 days. Compound neuronal responses evoked from the sites in the VCN were recorded periodically in the central nucleus of the contralateral inferior colliculus (ICC). The threshold and growth of most of the responses were stable for at least 250 days after implantation of the arrays. The responses evoked from the deepest and shallowest electrode sites did exhibit some changes over time but none of the thresholds exceeded 10 microA. The thresholds and growth of the compound responses from most of the stimulating sites were very stable over time, and comparable to those of chronically implanted single-site iridium microelectrodes. Multiunit neuronal activity evoked from the stimulating sites in the VCN was recorded along the dorsolateral-ventromedial (DLVM) axis of the ICC. The distribution, span and degree of overlap of the multiunit activity demonstrated the utility of the multisite, multishank array configuration as a means of accessing the neuronal populations in the VCN that encode various acoustic frequencies. These findings are encouraging for the prospects of developing an auditory prosthesis employing multi-site silicon microprobes. PMID:17554823

  15. Speech perception of young children using nucleus 22-channel or CLARION cochlear implants.

    PubMed

    Young, N M; Grohne, K M; Carrasco, V N; Brown, C

    1999-04-01

    This study compares the auditory perceptual skill development of 23 congenitally deaf children who received the Nucleus 22-channel cochlear implant with the SPEAK speech coding strategy, and 20 children who received the CLARION Multi-Strategy Cochlear Implant with the Continuous Interleaved Sampler (CIS) speech coding strategy. All were under 5 years old at implantation. Preimplantation, there were no significant differences between the groups in age, length of hearing aid use, or communication mode. Auditory skills were assessed at 6 months and 12 months after implantation. Postimplantation, the mean scores on all speech perception tests were higher for the Clarion group. These differences were statistically significant for the pattern perception and monosyllable subtests of the Early Speech Perception battery at 6 months, and for the Glendonald Auditory Screening Procedure at 12 months. Multiple regression analysis revealed that device type accounted for the greatest variance in performance after 12 months of implant use. We conclude that children using the CIS strategy implemented in the Clarion implant may develop better auditory perceptual skills during the first year postimplantation than children using the SPEAK strategy with the Nucleus device. PMID:10214811

  16. Selection criteria for unilateral posteroventral pallidotomy.

    PubMed

    Alterman, R L; Kelly, P; Sterio, D; Fazzini, E; Eidelberg, D; Perrine, K; Beric, A

    1997-01-01

    In an attempt to refine the indications for posteroventral pallidotomy (PVP) the authors instituted strict selection criteria which are based on the experience gained from the first 60 pallidotomy patients treated at their institution. In addition to clinical evaluation, all pallidotomy candidates undergo neuropsychological testing and 18F-fluoro-deoxyglucose utilization positron emission tomography (FDG/PET). The data from which these criteria were developed are presented as are early clinical results. The authors demonstrate that these criteria enhance the efficacy of the procedure by assuring therapeutic response and reducing the incidence of post-operative dementia. Their indications and contraindications for pallidotomy are discussed. PMID:9233408

  17. Effects of the neurotrophic factors BDNF, NT-3, and FGF2 on dissociated neurons of the cochlear nucleus.

    PubMed

    Rak, Kristen; Völker, Johannes; Frenz, Silke; Scherzad, Agmal; Schendzielorz, Philipp; Radeloff, Andreas; Jablonka, Sibylle; Hagen, Rudolf; Mlynski, Robert

    2014-08-20

    The cochlear nucleus is the first relay station for acoustic information in the auditory pathway and its cellular integrity is affected by hearing loss. Neurotrophic factors, which are known to regulate fundamental processes in the brain, are expressed in the cochlear nucleus and are regulated by the changes in the stimulation. The aim of this study was to evaluate the effect of the neurotrophins Brain derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) and the neurotrophic factor Fibroblast growth factor 2 (FGF2) on primary cultured cells of the mouse cochlear nucleus. No effect on overall cell growth was detected after 8 days in culture by the factors applied. NT-3 had a strong impact on enhancement of neuronal survival, whereas BDNF stimulated neuronal survival and axonal outgrowth. Axonal branching was negatively affected by the administration of BDNF. FGF2 did not show any effect. The results presented represent fundamental research on auditory neurons, but might be one step toward defining novel therapeutic strategies in the future to prevent cochlear nucleus degeneration induced by hearing loss. PMID:24978398

  18. Benefits from upgrade to the CP810 sound processor for Nucleus 24 cochlear implant recipients.

    PubMed

    Mosnier, Isabelle; Marx, Mathieu; Venail, Frederic; Loundon, Natalie; Roux-Vaillard, Samantha; Sterkers, Olivier

    2014-01-01

    The objective of this study was to measure performance benefits obtained by upgrading recipients of the Cochlear Nucleus CI24 cochlear implant to the new CP810 sound processor. Speech recognition in quiet and in spatially separated noise was measured in established users of the Cochlear ESPrit 3G (n = 22) and Freedom (n = 13) sound processors, using the "Everyday" listening program. Subjects were then upgraded to the CP810 processor and were re-assessed after a 3-month period, using both the "Everyday" program and the new "Noise" program, which incorporates several pre-processing features including a new directional microphone algorithm ("Zoom"). Subjective perceptions were also recorded using the abbreviated profile of hearing aid benefit (APHAB) questionnaire. Mean scores for monosyllables in quiet, presented at 50 and 60 dB SPL, increased by 11% (p < 0.0001) and 8% (p < 0.001), respectively, after upgrade, for all subjects combined. Significant increases were also recorded for both processor groups. In noise, the mean scores were 60.0 and 67.4% for the original and CP810 Everyday programs, respectively (difference not significant). With the CP810 Noise programs the mean score increased to 82.5% (p < 0.01), with significant increases in both processor groups. There was evidence of slightly greater upgrade benefit in users of the ESPrit 3G processor and in relatively poor performers. The APHAB questionnaire also indicated significant reduction in perceived difficulty in the background noise and reverberation sub-scales after upgrade. The findings of the study appear to support the expectation of increased benefit from the new CP810 sound processor. PMID:23408020

  19. Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus

    PubMed Central

    Volkenstein, Stefan; Oshima, Kazuo; Sinkkonen, Saku T.; Corrales, C. Eduardo; Most, Sam P.; Chai, Renjie; Jan, Taha A.; van Amerongen, Renée; Cheng, Alan G.; Heller, Stefan

    2013-01-01

    In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here we show that new neurons are born in the CN during the critical period of postnatal plasticity. Coincidently, we found a population of neural progenitor cells that are controlled by a complex interplay of Wnt, Notch, and TGFβ/BMP signaling, in which low levels of TGFβ/BMP signaling are permissive for progenitor proliferation that is promoted by Wnt and Notch activation. We further show that cells with activated Wnt signaling reside in the CN and that these cells have high propensity for neurosphere formation. Cochlear ablation resulted in diminishment of progenitors and Wnt/β-catenin-active cells, suggesting that the neonatal CN maintains an afferent innervation-dependent population of progenitor cells that display active canonical Wnt signaling. PMID:23940359

  20. NMDA Receptors Mediate Stimulus-Timing-Dependent Plasticity and Neural Synchrony in the Dorsal Cochlear Nucleus

    PubMed Central

    Stefanescu, Roxana A.; Shore, Susan E.

    2015-01-01

    Auditory information relayed by auditory nerve fibers and somatosensory information relayed by granule cell parallel fibers converge on the fusiform cells (FCs) of the dorsal cochlear nucleus, the first brain station of the auditory pathway. In vitro, parallel fiber synapses on FCs exhibit spike-timing-dependent plasticity with Hebbian learning rules, partially mediated by the NMDA receptor (NMDAr). Well-timed bimodal auditory-somatosensory stimulation, in vivo equivalent of spike-timing-dependent plasticity, can induce stimulus-timing-dependent plasticity (StTDP) of the FCs spontaneous and tone-evoked firing rates. In healthy guinea pigs, the resulting distribution of StTDP learning rules across a FC neural population is dominated by a Hebbian profile while anti-Hebbian, suppressive and enhancing LRs are less frequent. In this study, we investigate in vivo, the NMDAr contribution to FC baseline activity and long term plasticity. We find that blocking the NMDAr decreases the synchronization of FC- spontaneous activity and mediates differential modulation of FC rate-level functions such that low, and high threshold units are more likely to increase, and decrease, respectively, their maximum amplitudes. Three significant alterations in mean learning-rule profiles were identified: transitions from an initial Hebbian profile towards (1) an anti-Hebbian; (2) a suppressive profile; and (3) transitions from an anti-Hebbian to a Hebbian profile. FC units preserving their learning rules showed instead, NMDAr-dependent plasticity to unimodal acoustic stimulation, with persistent depression of tone-evoked responses changing to persistent enhancement following the NMDAr antagonist. These results reveal a crucial role of the NMDAr in mediating FC baseline activity and long-term plasticity which have important implications for signal processing and auditory pathologies related to maladaptive plasticity of dorsal cochlear nucleus circuitry. PMID:26622224

  1. Increased Synchrony and Bursting of Dorsal Cochlear Nucleus Fusiform Cells Correlate with Tinnitus

    PubMed Central

    Wu, Calvin; Martel, David T.

    2016-01-01

    Tinnitus, the perception of phantom sounds, is thought to arise from increased neural synchrony, which facilitates perceptual binding and creates salient sensory features in the absence of physical stimuli. In the auditory cortex, increased spontaneous cross-unit synchrony and single-unit bursting are de facto physiological correlates of tinnitus. However, it is unknown whether neurons in the dorsal cochlear nucleus (DCN), the putative tinnitus-induction site, exhibit increased synchrony. Using a temporary-threshold shift model and gap-prepulse inhibition of the acoustic startle to assess tinnitus, we recorded spontaneous activity from fusiform cells, the principle neurons of the DCN, in normal hearing, tinnitus, and non-tinnitus guinea pigs. Synchrony and bursting, as well as spontaneous firing rate (SFR), correlated with behavioral evidence of tinnitus, and increased synchrony and bursting were associated with SFR elevation. The presence of increased synchrony and bursting in DCN fusiform cells suggests that a neural code for phantom sounds emerges in this brainstem location and likely contributes to the formation of the tinnitus percept. SIGNIFICANCE STATEMENT Tinnitus, a phantom auditory percept, is encoded by pathological changes in the neural synchrony code of perceptual processing. Increased cross-unit synchrony and bursting have been linked to tinnitus in several higher auditory stations but not in fusiform cells of the dorsal cochlear nucleus (DCN), key brainstem neurons in tinnitus generation. Here, we demonstrate increased synchrony and bursting of fusiform cell spontaneous firing, which correlate with frequency-specific behavioral measures of tinnitus. Thus, the neural representation of tinnitus emerges early in auditory processing and likely drives its pathophysiology in higher structures. PMID:26865628

  2. Projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl.

    PubMed

    Takahashi, T T; Konishi, M

    1988-08-01

    The barn owl determines the directions from which sounds emanate by computing the interaural differences in the timing and intensity of sounds. These cues for sound localization are processed in independent channels originating at nucleus magnocellularis (NM) and nucleus angularis (NA), the cochlear nuclei. The cells of NM are specialized for encoding the phase of sounds in the ipsilateral ear. The cells of NA are specialized for encoding the intensity of sounds in the ipsilateral ear. NM projects solely, bilaterally, and tonotopically to nucleus laminaris (NL). NL and NA project to largely nonoverlapping zones in the central nucleus of the inferior colliculus (ICc), thus forming hodological subdivisions in which time and intensity information may be processed. The terminal field of NL occupies a discrete zone in the rostromedial portion of the contralateral ICc, which we have termed the "core" of ICc. The terminal field of NA surrounds the core of ICc and thus forms a "shell" around it. The projection from NL to the core conserves tonotopy. Low-frequency regions of NL project to the dorsal portions of the core whereas higher-frequency regions project to more ventral portions. This innervation pattern is consistent with earlier physiological studies of tonotopy. Physiological studies have also suggested that NL and the core of ICs contain a representation of the location of a sound source along the horizontal axis. Our data suggest that the projection from NL to the core preserves spatiotopy. Thus, the dorsal portion of NL on the left, which contains a representation of eccentric loci in the right hemifield, innervates the area of the right ICc core that represents eccentric right loci. The more ventral portion of the left NL, which represents loci close to the vertical meridian, innervates the more rostral portions of the right core, which also represents loci near the vertical meridian. PMID:2463286

  3. Topography of Auditory Nerve Projections to the Cochlear Nucleus in Cats after Neonatal Deafness and Electrical Stimulation by a Cochlear Implant

    PubMed Central

    Hradek, Gary T.; Bonham, Ben H.; Snyder, Russell L.

    2008-01-01

    We previously reported that auditory nerve projections from the cochlear spiral ganglion (SG) to the cochlear nucleus (CN) exhibit clear cochleotopic organization in adult cats deafened as neonates before hearing onset. However, the topographic specificity of these CN projections in deafened animals is proportionately broader than normal (less precise relative to the CN frequency gradient). This study examined SG-to-CN projections in adult cats that were deafened as neonates and received a unilateral cochlear implant at ∼7 weeks of age. Following several months of electrical stimulation, SG projections from the stimulated cochleae were compared to projections from contralateral, non-implanted ears. The fundamental organization of SG projections into frequency band laminae was clearly evident, and discrete projections were always observed following double SG injections in deafened cochleae, despite severe auditory deprivation and/or broad electrical activation of the SG. However, when normalized for the smaller CN size after deafness, AVCN, PVCN, and DCN projections on the stimulated side were broader by 32%, 34%, and 53%, respectively, than projections in normal animals (although absolute projection widths were comparable to normal). Further, there was no significant difference between projections from stimulated and contralateral non-implanted cochleae. These findings suggest that early normal auditory experience may be essential for normal development and/or maintenance of the topographic precision of SG-to-CN projections. After early deafness, the CN is smaller than normal, the topographic distribution of these neural projections that underlie frequency resolution in the central auditory system is proportionately broader, and projections from adjacent SG sectors are more overlapping. Several months of stimulation by a cochlear implant (beginning at ∼7 weeks of age) did not lessen or exacerbate these degenerative changes observed in adulthood. One clinical

  4. Medial auditory thalamus is necessary for acquisition and retention of eyeblink conditioning to cochlear nucleus stimulation

    PubMed Central

    Poremba, Amy; Freeman, John H.

    2015-01-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning. However, the medial auditory thalamic nuclei (MATN), consisting of the medial division of the medial geniculate, suprageniculate, and posterior interlaminar nucleus have also been implicated as a critical auditory relay to the pontine nuclei for cerebellum-dependent motor learning. The MATN also conveys auditory information to the amygdala necessary for avoidance and fear conditioning. The current study used CN stimulation to increase activity in the pontine nuclei, relative to a tone stimulus, and possibly provide sufficient input to the cerebellum for acquisition or retention of eyeblink conditioning during MATN inactivation. Primary and secondary effects of CN stimulation and MATN inactivation were examined using 2-deoxy-glucose autoradiography. Stimulation of CN increased activity in the pontine nuclei, however, this increase was not sufficient for cerebellar learning during MATN inactivation. Results of the current experiment provide additional evidence indicating the MATN may be the critical auditory relay for many associative learning tasks. PMID:25878138

  5. Responses to Social Vocalizations in the Dorsal Cochlear Nucleus of Mice

    PubMed Central

    Roberts, Patrick D.; Portfors, Christine V.

    2015-01-01

    Identifying sounds is critical for an animal to make appropriate behavioral responses to environmental stimuli, including vocalizations from conspecifics. Identification of vocalizations may be supported by neuronal selectivity in the auditory pathway. The first place in the ascending auditory pathway where neuronal selectivity to vocalizations has been found is in the inferior colliculus (IC), but very few brainstem nuclei have been evaluated. Here, we tested whether selectivity to vocalizations is present in the dorsal cochlear nucleus (DCN). We recorded extracellular neural responses in the DCN of mice and found that fusiform cells responded in a heterogeneous and selective manner to mouse ultrasonic vocalizations. Most fusiform cells responded to vocalizations that contained spectral energy at much higher frequencies than the characteristic frequencies of the cells. To understand this mismatch of stimulus properties and frequency tuning of the cells, we developed a dynamic, nonlinear model of the cochlea that simulates cochlear distortion products on the basilar membrane. We preprocessed the vocalization stimuli through this model and compared responses to these distorted vocalizations with responses to the original vocalizations. We found that fusiform cells in the DCN respond in a heterogeneous manner to vocalizations, and that these neurons can use distortion products as a mechanism for encoding ultrasonic vocalizations. In addition, the selective neuronal responses were dependent on the presence of inhibitory sidebands that modulated the response depending on the temporal structure of the distortion product. These findings suggest that important processing of complex sounds occurs at a very early stage of central auditory processing and is not strictly a function of the cortex. PMID:26733824

  6. Chronic microstimulation in the feline ventral cochlear nucleus: physiologic and histologic effects.

    PubMed

    McCreery, D B; Yuen, T G; Bullara, L A

    2000-11-01

    This study was conducted to help to establish the feasibility of a multi-channel auditory prosthesis based on microstimulation within the human ventral cochlear nucleus, and to define the range of stimulus parameters that can be used safely with such a device. We chronically implanted activated iridium microelectrodes into the feline ventral cochlear nucleus and, beginning 80-250 days after implantation, they were pulsed for 7 h/day, on up to 21 successive days. The stimulus was charge-balanced pulses whose amplitude was modulated by a simulated human voice. The pulse rate (250 Hz/electrode) and the maximum pulse amplitude were selected as those that are likely to provide a patient with useful auditory percepts. The changes in neuronal responses during the multi-day stimulation regimens were partitioned into long-lasting, stimulation-induced depression of neuronal excitability (SIDNE), and short-acting neuronal refractivity (SANR). Both SIDNE and SANR were quantified from the changes in the growth functions of the evoked potentials recorded in the inferior colliculus. All of the stimulation regimens that we tested induced measurable SIDNE and SANR. The combined effect of SIDNE and the superimposed SANR is to depress the neuronal response near threshold, and thereby, to depress the population response over the entire amplitude range of the stimulus pulses. SIDNE and SANR may cause the greatest degradation of the performance of a clinical device at the low end of the amplitude range, and this may represent an inherent limitation of this type of spatially localized, high-rate neuronal stimulation. We determined sets of stimulus parameters which preserved most of the dynamic range of the neuronal response, when using either long (150 micros/phase) or short (40 micros/phase) stimulus pulses. Increasing the amplitude of the stimulus was relatively ineffective as a means of increasing the dynamic range of neuronal response, since the greater stimulus amplitude induced

  7. Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus.

    PubMed

    Sayles, Mark; Füllgrabe, Christian; Winter, Ian M

    2013-07-01

    Amplitude modulation (AM) is a pervasive feature of natural sounds. Neural detection and processing of modulation cues is behaviourally important across species. Although most ecologically relevant sounds are not fully modulated, physiological studies have usually concentrated on fully modulated (100% modulation depth) signals. Psychoacoustic experiments mainly operate at low modulation depths, around detection threshold (∼5% AM). We presented sinusoidal amplitude-modulated tones, systematically varying modulation depth between zero and 100%, at a range of modulation frequencies, to anaesthetised guinea-pigs while recording spikes from neurons in the ventral cochlear nucleus (VCN). The cochlear nucleus is the site of the first synapse in the central auditory system. At this locus significant signal processing occurs with respect to representation of AM signals. Spike trains were analysed in terms of the vector strength of spike synchrony to the amplitude envelope. Neurons showed either low-pass or band-pass temporal modulation transfer functions, with the proportion of band-pass responses increasing with increasing sound level. The proportion of units showing a band-pass response varies with unit type: sustained chopper (CS) > transient chopper (CT) > primary-like (PL). Spike synchrony increased with increasing modulation depth. At the lowest modulation depth (6%), significant spike synchrony was only observed near to the unit's best modulation frequency for all unit types tested. Modulation tuning therefore became sharper with decreasing modulation depth. AM detection threshold was calculated for each individual unit as a function of modulation frequency. Chopper units have significantly better AM detection thresholds than do primary-like units. AM detection threshold is significantly worse at 40 dB vs. 10 dB above pure-tone spike rate threshold. Mean modulation detection thresholds for sounds 10 dB above pure-tone spike rate threshold at best modulation

  8. Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus

    PubMed Central

    Sayles, Mark; Füllgrabe, Christian; Winter, Ian M

    2013-01-01

    Amplitude modulation (AM) is a pervasive feature of natural sounds. Neural detection and processing of modulation cues is behaviourally important across species. Although most ecologically relevant sounds are not fully modulated, physiological studies have usually concentrated on fully modulated (100% modulation depth) signals. Psychoacoustic experiments mainly operate at low modulation depths, around detection threshold (∼5% AM). We presented sinusoidal amplitude-modulated tones, systematically varying modulation depth between zero and 100%, at a range of modulation frequencies, to anaesthetised guinea-pigs while recording spikes from neurons in the ventral cochlear nucleus (VCN). The cochlear nucleus is the site of the first synapse in the central auditory system. At this locus significant signal processing occurs with respect to representation of AM signals. Spike trains were analysed in terms of the vector strength of spike synchrony to the amplitude envelope. Neurons showed either low-pass or band-pass temporal modulation transfer functions, with the proportion of band-pass responses increasing with increasing sound level. The proportion of units showing a band-pass response varies with unit type: sustained chopper (CS) > transient chopper (CT) > primary-like (PL). Spike synchrony increased with increasing modulation depth. At the lowest modulation depth (6%), significant spike synchrony was only observed near to the unit's best modulation frequency for all unit types tested. Modulation tuning therefore became sharper with decreasing modulation depth. AM detection threshold was calculated for each individual unit as a function of modulation frequency. Chopper units have significantly better AM detection thresholds than do primary-like units. AM detection threshold is significantly worse at 40 dB vs. 10 dB above pure-tone spike rate threshold. Mean modulation detection thresholds for sounds 10 dB above pure-tone spike rate threshold at best modulation

  9. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathways.

    PubMed

    Darrow, Keith N; Slama, Michaël C C; Kozin, Elliott D; Owoc, Maryanna; Hancock, Kenneth; Kempfle, Judith; Edge, Albert; Lacour, Stephanie; Boyden, Edward; Polley, Daniel; Brown, M Christian; Lee, Daniel J

    2015-03-01

    Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway and whether it elicited an evoked response. Viral-mediated gene transfer was used to express channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed near the surface of the infected CN and recordings were made in higher-level centers. Optical stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of the central nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of IC activity elicited by optical stimulation was comparable to that obtained with a 50dB SPL acoustic click. This broad pattern of activity was consistent with histological confirmation of green fluorescent protein (GFP) label of cell bodies and axons throughout the CN. Increasing pulse rates up to 320Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher than 50Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory brainstem response, which had a simpler waveform than the response to acoustic stimulation. Control cases showed no responses to optical stimulation. These data suggest that optogenetic control of central auditory neurons is feasible, but opsins with faster channel kinetics may be necessary to convey information at rates typical of many auditory signals. PMID:25481416

  10. United States multicenter clinical trial of the cochlear nucleus hybrid implant system

    PubMed Central

    Gantz, Bruce J.; Waltzman, Susan B.; Parkinson, Aaron J.

    2015-01-01

    Objectives/Hypothesis To evaluate the safety and efficacy of acoustic and electric sound processing for individuals with significant residual low‐frequency hearing and severe‐to‐profound high‐frequency sensorineural hearing loss. Study Design Prospective, single‐arm repeated measures, single‐subject design. Methods Fifty individuals, ≥ 18 years old, with low‐frequency hearing and severe high‐frequency loss were implanted with the Cochlear Nucleus Hybrid L24 implant at 10 investigational sites. Preoperatively, subjects demonstrated consonant‐nucleus‐consonant word scores of 10% through 60% in the ear to be implanted. Subjects were assessed prospectively, preoperatively, and postoperatively on coprimary endpoints of consonant‐nucleus‐consonant words, AzBio sentences in noise, and self‐assessment measures. Results Significant mean improvements were observed for coprimary endpoints: consonant‐nucleus‐consonant words (35.8 percentage points) and AzBio sentences in noise (32.0 percentage points), both at P < 0.001. Ninety‐six percent of subjects performed equal or better on speech in quiet and 90% in noise. Eighty‐two percent of subjects showed improved performance on speech in quiet and 74% in noise. Self‐assessments were positive, corroborating speech perception results. Conclusion The Nucleus Hybrid System provides significant improvements in speech intelligibility in quiet and noise for individuals with severe high‐frequency loss and some low‐frequency hearing. This device expands indications to hearing‐impaired individuals who perform poorly with amplification due to bilateral high‐frequency hearing loss and who previously were not implant candidates. Level of Evidence 2b. Laryngoscope, 126:175–181, 2016 PMID:26152811

  11. Coding of amplitude-modulated signals in the cochlear nucleus of a grass frog

    NASA Astrophysics Data System (ADS)

    Bibikov, N. G.

    2002-07-01

    To study the mechanisms that govern the coding of temporal features of complex sound signals, responses of single neurons located in the dorsal nucleus of the medulla oblongata (the cochlear nucleus) of a curarized grass frog ( Rana temporaria) to pure tone bursts and amplitude modulated tone bursts with a modulation frequency of 20 Hz and modulation depths of 10 and 80% were recorded. The carrier frequency was equal to the characteristic frequency of a neuron, the average signal level was 20 30 dB above the threshold, and the signal duration was equal to ten full modulation periods. Of the 133 neurons studied, 129 neurons responded to 80% modulated tone bursts by discharges that were phase-locked with the envelope waveform. At this modulation depth, the best phase locking was observed for neurons with the phasic type of response to tone bursts. For tonic neurons with low characteristic frequencies, along with the reproduction of the modulation, phase locking with the carrier frequency of the signal was observed. At 10% amplitude modulation, phasic neurons usually responded to only the onset of a tone burst. Almost all tonic units showed a tendency to reproduce the envelope, although the efficiency of the reproduction was low, and for half of these neurons, it was below the reliability limit. Some neurons exhibited a more efficient reproduction of the weak modulation. For almost half of the neurons, a reliable improvement was observed in the phase locking of the response during the tone burst presentation (from the first to the tenth modulation period). The cooperative histogram of a set of neurons responding to 10% modulated tone bursts within narrow ranges of frequencies and intensities retains the information on the dynamics of the envelope variation. The data are compared with the results obtained from the study of the responses to similar signals in the acoustic midbrain center of the same object and also with the psychophysical effect of a differential

  12. Dorsal Cochlear Nucleus of the Rat: Representation of Complex Sounds in Ears Damaged by Acoustic Trauma.

    PubMed

    Li, Yang; Ropp, Tessa-Jonne F; May, Bradford J; Young, Eric D

    2015-08-01

    Acoustic trauma damages the cochlea but secondarily modifies circuits of the central auditory system. Changes include decreases in inhibitory neurotransmitter systems, degeneration and rewiring of synaptic circuits, and changes in neural activity. Little is known about the consequences of these changes for the representation of complex sounds. Here, we show data from the dorsal cochlear nucleus (DCN) of rats with a moderate high-frequency hearing loss following acoustic trauma. Single-neuron recording was used to estimate the organization of neurons' receptive fields, the balance of inhibition and excitation, and the representation of the spectra of complex broadband stimuli. The complex stimuli had random spectral shapes (RSSs), and the responses were fit with a model that allows the quality of the representation and its degree of linearity to be estimated. Tone response maps of DCN neurons in rat are like those in other species investigated previously, suggesting the same general organization of this nucleus. Following acoustic trauma, abnormal response types appeared. These can be interpreted as reflecting degraded tuning in auditory nerve fibers plus loss of inhibitory inputs in DCN. Abnormal types are somewhat more prevalent at later times (103-376 days) following the exposure, but not significantly so. Inhibition became weaker in post-trauma neurons that retained inhibitory responses but also disappeared in many neurons. The quality of the representation of spectral shape, measured by sensitivity to the spectral shapes of RSS stimuli, was decreased following trauma; in fact, neurons with abnormal response types responded mainly to overall stimulus level, and not spectral shape. PMID:25967754

  13. Optogenetic stimulation of the cochlear nucleus using channelrhodopsin-2 evokes activity in the central auditory pathway

    PubMed Central

    Darrow, Keith N.; Slama, Michaël C. C.; Owoc, Maryanna; Kozin, Elliott; Hancock, Kenneth; Kempfle, Judith; Edge, Albert; Lacour, Stephanie; Boyden, Edward; Polley, Daniel; Brown, M. Christian; Lee, Daniel J.

    2016-01-01

    Optogenetics has become an important research tool and is being considered as the basis for several neural prostheses. However, few studies have applied optogenetics to the auditory brainstem. This study explored whether optical activation of the cochlear nucleus (CN) elicited responses in neurons in higher centers of the auditory pathway, and it measured the evoked response to optical stimulation. Viral-mediated gene transfer was used to express channelrhodopsin-2 (ChR2) in the mouse CN. Blue light was delivered via an optical fiber placed near the surface of the infected CN and recordings were made in higher-level centers. Optical stimulation evoked excitatory multiunit spiking activity throughout the tonotopic axis of central nucleus of the inferior colliculus (IC) and the auditory cortex (Actx). The pattern and magnitude of IC activity elicited by optical stimulation was comparable to that obtained with a 50 dB SPL acoustic click stimulus. This broad pattern of activity was consistent with histological confirmation of GFP label of cell bodies and axons throughout the CN. Increasing pulse rates up to 320 Hz did not significantly affect threshold or bandwidth of the IC responses, but rates higher than 50 Hz resulted in desynchronized activity. Optical stimulation also evoked an auditory brainstem response, which had a simpler waveform than the response to acoustic stimulation. Control cases showed no responses to optical stimulation. These data suggest that optogenetic control of central auditory neurons is feasible, but opsins with faster channel kinetics will be necessary to convey information in rates typical of many auditory signals. PMID:25481416

  14. Increased BrdU incorporation reflecting DNA repair, neuronal de-differentiation or possible neurogenesis in the adult cochlear nucleus following bilateral cochlear lesions in the rat.

    PubMed

    Zheng, Yiwen; Begum, Shaeza; Zhang, Chu; Fleming, Kirk; Masumura, Chisako; Zhang, Ming; Smith, Paul; Darlington, Cynthia

    2011-05-01

    Neurogenesis is known to occur in response to injury in the brain, for example, as a result of neurodegenerative diseases. However, there have been few investigations into how the brain responds to damage to peripheral sensory nerves, in other areas such as the brainstem. Here, we report that bilateral surgical lesions of the cochlea result in increased incorporation of the DNA replication marker, bromodeoxyuridine (BrdU), in cells of the brainstem cochlear nucleus (CN) of the adult rat, suggesting either cell proliferation or DNA repair. Some of the BrdU-labelled cells colabelled for the mature neuron marker, NeuN and the GABAergic enzyme GAD-65, suggesting the possibility that neurogenesis might have occurred and resulted in the generation of new neurons with a GABAergic phenotype. However, some of the mature neurons also re-expressed immature neuronal intermediate filament and microtuble-associated proteins, without apoptotic neuronal death, which suggests that the colabelling of BrdU with NeuN and GAD-65 may not be a true reflection of neurogenesis, but injury-stimulated neuronal dedifferentiation. These results suggest the possibility that DNA repair, neuronal de-differentiation or possible neurogenesis occurs in the cochlear nucleus, in response to damage to the peripheral auditory system. PMID:21104237

  15. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus.

    PubMed

    Fontaine, Bertrand; MacLeod, Katrina M; Lubejko, Susan T; Steinberg, Louisa J; Köppl, Christine; Peña, Jose L

    2014-07-15

    In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170

  16. Emergence of band-pass filtering through adaptive spiking in the owl's cochlear nucleus

    PubMed Central

    MacLeod, Katrina M.; Lubejko, Susan T.; Steinberg, Louisa J.; Köppl, Christine; Peña, Jose L.

    2014-01-01

    In the visual, auditory, and electrosensory modalities, stimuli are defined by first- and second-order attributes. The fast time-pressure signal of a sound, a first-order attribute, is important, for instance, in sound localization and pitch perception, while its slow amplitude-modulated envelope, a second-order attribute, can be used for sound recognition. Ascending the auditory pathway from ear to midbrain, neurons increasingly show a preference for the envelope and are most sensitive to particular envelope modulation frequencies, a tuning considered important for encoding sound identity. The level at which this tuning property emerges along the pathway varies across species, and the mechanism of how this occurs is a matter of debate. In this paper, we target the transition between auditory nerve fibers and the cochlear nucleus angularis (NA). While the owl's auditory nerve fibers simultaneously encode the fast and slow attributes of a sound, one synapse further, NA neurons encode the envelope more efficiently than the auditory nerve. Using in vivo and in vitro electrophysiology and computational analysis, we show that a single-cell mechanism inducing spike threshold adaptation can explain the difference in neural filtering between the two areas. We show that spike threshold adaptation can explain the increased selectivity to modulation frequency, as input level increases in NA. These results demonstrate that a spike generation nonlinearity can modulate the tuning to second-order stimulus features, without invoking network or synaptic mechanisms. PMID:24790170

  17. Factors Influencing Short-term Synaptic Plasticity in the Avian Cochlear Nucleus Magnocellularis

    PubMed Central

    Sanchez, Jason Tait; Quinones, Karla; Otto-Meyer, Sebastian

    2015-01-01

    Defined as reduced neural responses during high rates of activity, synaptic depression is a form of short-term plasticity important for the temporal filtering of sound. In the avian cochlear nucleus magnocellularis (NM), an auditory brainstem structure, mechanisms regulating short-term synaptic depression include pre-, post-, and extrasynaptic factors. Using varied paired-pulse stimulus intervals, we found that the time course of synaptic depression lasts up to four seconds at late-developing NM synapses. Synaptic depression was largely reliant on exogenous Ca2+-dependent probability of presynaptic neurotransmitter release, and to a lesser extent, on the desensitization of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor (AMPA-R). Interestingly, although extrasynaptic glutamate clearance did not play a significant role in regulating synaptic depression, blocking glutamate clearance at early-developing synapses altered synaptic dynamics, changing responses from depression to facilitation. These results suggest a developmental shift in the relative reliance on pre-, post-, and extrasynaptic factors in regulating short-term synaptic plasticity in NM. PMID:26527054

  18. Stimulation with chronically implanted microelectrodes in the cochlear nucleus of the cat: histologic and physiologic effects.

    PubMed

    McCreery, D B; Yuen, T G; Agnew, W F; Bullara, L A

    1992-09-01

    The effects of several hours of continuous electrical stimulation in the cats' cochlear nucleus with chronically implanted activated iridium microelectrodes was investigated from the changes in the evoked response near the inferior colliculus and also by histologic evaluation of the stimulated tissue. The stimulating microelectrodes had geometric surface areas of 75-500 microns2. They were pulsed continuously for 4 h, at a pulse repetition rate of 200 Hz, using charge-balanced pulse pairs. The charge per phase was 1.8 or 3.6 nC/ph. The animals were sacrificed for histologic evaluation 2 h, or several days later. The only remarkable histologic change resulting from the 4 h of stimulation was some aggregation of lymphocytes at the site of stimulation. However, depression of the electrical excitability of neurons near the sites often persisted for several days after 4 h of stimulation at 3.6 nC/phase. The charge per phase of the stimulus pulse pair was correlated strongly with the depression of excitability, and there was a weaker correlation between the depression and the amplitude of the first phase of voltage transient induced across the electrode-tissue interface. The charge density, calculated from the geometric surface area of the stimulating electrodes, was poorly correlated with the severity of the depression. The findings suggest a means of detecting impending stimulation-induced neural damage while it is still reversible. PMID:1429250

  19. Single granule cells excite Golgi cells and evoke feedback inhibition in the cochlear nucleus.

    PubMed

    Yaeger, Daniel B; Trussell, Laurence O

    2015-03-18

    In cerebellum-like circuits, synapses from thousands of granule cells converge onto principal cells. This fact, combined with theoretical considerations, has led to the concept that granule cells encode afferent input as a population and that spiking in individual granule cells is relatively unimportant. However, granule cells also provide excitatory input to Golgi cells, each of which provide inhibition to hundreds of granule cells. We investigated whether spiking in individual granule cells could recruit Golgi cells and thereby trigger widespread inhibition in slices of mouse cochlear nucleus. Using paired whole-cell patch-clamp recordings, trains of action potentials at 100 Hz in single granule cells was sufficient to evoke spikes in Golgi cells in ∼40% of paired granule-to-Golgi cell recordings. High-frequency spiking in single granule cells evoked IPSCs in ∼5% of neighboring granule cells, indicating that bursts of activity in single granule cells can recruit feedback inhibition from Golgi cells. Moreover, IPSPs mediated by single Golgi cell action potentials paused granule cell firing, suggesting that inhibitory events recruited by activity in single granule cells were able to control granule cell firing. These results suggest a previously unappreciated relationship between population coding and bursting in single granule cells by which spiking in a small number of granule cells may have an impact on the activity of a much larger number of granule cells. PMID:25788690

  20. Spectral and temporal response patterns of single units in the chinchilla dorsal cochlear nucleus.

    PubMed

    Kaltenbach, J A; Saunders, J C

    1987-05-01

    Spectral and temporal response patterns to pure-tone stimuli were collected from single units in the dorsal cochlear nucleus of anesthetized chinchillas. The spectral response profiles were divisible into groups based on the balance of excitation and inhibition. Temporal responses were characterized in chloralose-anesthetized animals by collecting PST-histograms. There appeared to be no simple one-to-one relationship between a unit's spectral and its temporal response pattern. Excitatory spectral responses were generally sharply tuned areas resembling those of auditory nerve fibers. However, unlike the latter, the majority of these had chopper or pauser/buildup temporal responses. Inhibitory spectral responses were of two distinct types: one included lateral inhibitory areas flanking the tuned excitatory areas which occasionally invaded the latter creating a nonmonotonic excitatory response at the unit's characteristic frequency. The other included sharply tuned inhibitory areas. The characteristic frequencies of these units were found to be in close correspondence with those of sharply tuned excitatory units from the same penetration suggesting that these inhibitory units were tonotopically mapped in the same register as tuned excitatory units. The spectral response patterns were studied with three types of anesthesia: ketamine/xylazine, dial/urethane, and chloralose. In each of these groups the patterns were similar. However, the proportions of units showing inhibition was strongly dependent on the choice of anesthetic agent with chloralose yielding the highest proportions (59%) and ketamine/xylazine yielding the lowest (29%). PMID:3569464

  1. Effects of sodium salicylate on spontaneous and evoked spike rate in the dorsal cochlear nucleus

    PubMed Central

    Wei, Lei; Ding, Dalian; Sun, Wei; Xu-Friedman, Matthew A.; Salvi, Richard

    2010-01-01

    Spontaneous hyperactivity in the dorsal cochlear nucleus (DCN), particularly in fusiform cells, has been proposed as a neural generator of tinnitus. To determine if sodium salicylate, a reliable tinnitus inducer, could evoke hyperactivity in the DCN, we measured the spontaneous and depolarization-evoked spike rate in fusiform and cartwheel cells during salicylate superfusion. Five minute treatment with 1.4 mM salicylate suppressed spontaneous and evoked firing in fusiform cells; this decrease partially recovered after salicylate washout. Less suppression and greater recovery occurred with 3 minute treatment using 1.4 mM salicylate. In contrast, salicylate had no effect on the spontaneous or evoked firing of cartwheel cells indicating that salicylate’s suppressive effects are specific to fusiform cells. To determine if salicylate’s suppressive effects were a consequence of increased synaptic inhibition, spontaneous inhibitory post-synaptic currents (IPSC) were measured during salicylate treatment. Salicylate unexpectedly reduced IPSC thereby ruling out increased inhibition as a mechanism to explain the depressed firing rates in fusiform cells. The salicylate-induced suppression of fusiform spike rate apparently arises from unidentified changes in the cell’s intrinsic excitability. PMID:20430089

  2. Quantitative analyses of axonal endings in the central nucleus of the inferior colliculus and distribution of 3H-labeling after injections in the dorsal cochlear nucleus.

    PubMed

    Oliver, D L

    1985-07-15

    Quantitative analyses of electron microscopic (EM) autoradiographs were used to identify the afferents from the dorsal cochlear nucleus in the central nucleus of the inferior colliculus (IC) in the cat. In order to localize the sources of radioactivity, material from axonal transport experiments was analyzed by means of a hypothetical grain procedure which takes the cross-scatter of beta particles into account. Measurements of the synaptic vesicles in axonal endings and a cluster analysis were used to identify different groups of endings. In order to determine which types of endings arise in the dorsal cochlear nucleus, axonal endings labeled after axonal transport and unlabeled endings were characterized and compared to the groups defined by the cluster analysis. Axonal endings with round synaptic vesicles were labeled with more than 2 grains/micron2 which was about 30% of the radioactivity in the central nucleus of the IC. This was six to seven times greater than if the radioactivity had been randomly distributed. Other tissue compartments usually had less radioactivity. Some myelinated and unmyelinated axons were labeled, but, as a group they had lower amounts of radioactivity than predicted by random labeling. In most cases, only low levels of activity were found in glial and postsynaptic structures. Five groups of axonal endings in the medial part of the central nucleus were identified by an analysis which clustered similar types of endings. The variance of the longest axis, the mean diameter, the variance of area, and the mean area of the synaptic vesicles were the variables most useful in distinguishing these five groups. Axonal endings with round synaptic vesicles were classified as either small, or large, or very large, while endings with pleomorphic vesicles were either large or small. Using measurements of the cross-sectional diameter of dendritic microtubules, samples of digitized axonal endings from normal and experimental cases were normalized and

  3. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus

    PubMed Central

    Yang, Yang

    2015-01-01

    Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied “endbulb of Held” synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-d-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg2+) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate. PMID:25855696

  4. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus.

    PubMed

    Yang, Yang; Xu-Friedman, Matthew A

    2015-06-01

    Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied "endbulb of Held" synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg(2+)) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate. PMID:25855696

  5. Bilateral dorsal cochlear nucleus lesions prevent acoustic-trauma induced tinnitus in an animal model.

    PubMed

    Brozoski, Thomas Jeffrey; Wisner, Kurt W; Sybert, Lauren T; Bauer, Carol A

    2012-02-01

    Animal experiments suggest that chronic tinnitus ("ringing in the ears") may result from processes that overcompensate for lost afferent input. Abnormally elevated spontaneous neural activity has been found in the dorsal cochlear nucleus (DCN) of animals with psychophysical evidence of tinnitus. However, it has also been reported that DCN ablation fails to reduce established tinnitus. Since other auditory areas have been implicated in tinnitus, the role of the DCN is unresolved. The apparently conflicting electrophysiological and lesion data can be reconciled if the DCN serves as a necessary trigger zone rather than a chronic generator of tinnitus. The present experiment used lesion procedures identical to those that failed to decrease pre-existing tinnitus. The exception was that lesions were done prior to tinnitus induction. Young adult rats were trained and tested using a psychophysical procedure shown to detect tinnitus. Tinnitus was induced by a single unilateral high-level noise exposure. Consistent with the trigger hypothesis, bilateral dorsal DCN lesions made before high-level noise exposure prevented the development of tinnitus. A protective effect stemming from disruption of the afferent pathway could not explain the outcome because unilateral lesions ipsilateral to the noise exposure did not prevent tinnitus and unilateral lesions contralateral to the noise exposure actually exacerbated the tinnitus. The DCN trigger mechanism may involve plastic circuits that, through loss of inhibition, or upregulation of excitation, increase spontaneous neural output to rostral areas such as the inferior colliculus. The increased drive could produce persistent pathological changes in the rostral areas, such as high-frequency bursting and decreased interspike variance, that comprise the chronic tinnitus signal. PMID:21969021

  6. Mapping and morphometric analysis of synapses and spines on fusiform cells in the dorsal cochlear nucleus

    PubMed Central

    Salloum, Rony H.; Chen, Guoyou; Velet, Liliya; Manzoor, Nauman F.; Elkin, Rachel; Kidd, Grahame J.; Coughlin, John; Yurosko, Christopher; Bou-Anak, Stephanie; Azadi, Shirin; Gohlsch, Stephanie; Schneider, Harold; Kaltenbach, James A.

    2014-01-01

    Fusiform cells are the main integrative units of the mammalian dorsal cochlear nucleus (DCN), collecting and processing inputs from auditory and other sources before transmitting information to higher levels of the auditory system. Despite much previous work describing these cells and the sources and pharmacological identity of their synaptic inputs, information on the three-dimensional organization and utltrastructure of synapses on these cells is currently very limited. This information is essential since an understanding of synaptic plasticity and remodeling and pathologies underlying disease states and hearing disorders must begin with knowledge of the normal characteristics of synapses on these cells, particularly those features that determine the strength of their influence on the various compartments of the cell. Here, we employed serial block face scanning electron microscopy (SBFSEM) followed by 3D reconstructions to map and quantitatively characterize synaptic features on DCN fusiform cells. Our results reveal a relative sparseness of synapses on the somata of fusiform cells but a dense distribution of synapses on apical and basal dendrites. Synapses on apical dendrites were smaller and more numerous than on basal dendrites. The vast majority of axosomatic terminals were found to be linked to other terminals connected by the same axon or different branches of the same axon, suggesting a high degree of divergent input to fusiform cells. The size of terminals was correlated with the number of mitochondria and with the number of active zones, which was highly correlated with the number of postsynaptic densities, suggesting that larger terminals exert more powerful influence on the cell than smaller terminals. These size differences suggest that the input to basal dendrites, most likely those from the auditory nerve, provide the most powerful sources of input to fusiform cells, while those to apical dendrites (e.g., parallel fiber) are weaker but more

  7. Activity-dependent regulation of calcium and ribosomes in the chick cochlear nucleus.

    PubMed

    Call, C L; Hyson, R L

    2016-03-01

    Cochlea removal results in the death of 20-30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM). Two potentially cytotoxic events, a dramatic rise in intracellular calcium concentration ([Ca(2+)]i) and a decline in the integrity of ribosomes are observed within 1h of deafferentation. Glutamatergic input from the auditory nerve has been shown to preserve NM neuron health by activating metabotropic glutamate receptors (mGluRs), maintaining both normal [Ca(2+)]i and ribosomal integrity. One interpretation of these results is that a common mGluR-activated signaling cascade is required for the maintenance of both [Ca(2+)]i and ribosomal integrity. This could happen if both responses are influenced directly by a common messenger, or if the loss of mGluR activation causes changes in one component that secondarily causes changes in the other. The present studies tested this common-mediator hypothesis in slice preparations by examining activity-dependent regulation of [Ca(2+)]i and ribosomes in the same tissue after selectively blocking group I mGluRs (1-Aminoindan-1,5-dicarboxylic acid (AIDA)) or group II mGluRs (LY 341495) during unilateral auditory nerve stimulation. Changes in [Ca(2+)]i of NM neurons were measured using fura-2 ratiometric calcium imaging and the tissue was subsequently processed for Y10B immunoreactivity (Y10B-ir), an antibody that recognizes a ribosomal epitope. The group I mGluR antagonist blocked the activity-dependent regulation of both [Ca(2+)]i and Y10B-ir, but the group II antagonist blocked only the activity-dependent regulation of Y10B-ir. That is, even when group II receptors were blocked, stimulation continued to maintain low [Ca(2+)]i, but it did not maintain Y10B-ir. These results suggest a dissociation in how calcium and ribosomes are regulated in NM neurons and that ribosomes can be regulated through a mechanism that is independent of calcium regulation. PMID:26739326

  8. Speech perception performance in experienced cochlear-implant patients receiving the SPEAK processing strategy in the Nucleus Spectra-22 cochlear implant.

    PubMed

    Parkinson, A J; Parkinson, W S; Tyler, R S; Lowder, M W; Gantz, B J

    1998-10-01

    Sixteen experienced cochlear implant patients with a wide range of speech-perception abilities received the SPEAK processing strategy in the Nucleus Spectra-22 cochlear implant. Speech perception was assessed in quiet and in noise with SPEAK and with the patients' previous strategies (for most, Multipeak) at the study onset, as well as after using SPEAK for 6 months. Comparisons were made within and across the two test sessions to elucidate possible learning effects. Patients were also asked to rate the strategies on seven speech recognition and sound quality scales. After 6 months' experience with SPEAK, patients showed significantly improved mean performance on a range of speech recognition measures in quiet and noise. When mean subjective ratings were compared over time there were no significant differences noted between strategies. However, many individuals rated the SPEAK strategy better for two or more of the seven subjective measures. Ratings for "appreciation of music" and "quality of my own voice" in particular were generally higher for SPEAK. Improvements were realized by patients with a wide range of speech perception abilities, including those with little or no open-set speech recognition. PMID:9771630

  9. Purkinje-like cells in the cochlear nucleus of the Common Tree Shrew (Tupaia glis) identified by calbindin immunohistochemistry.

    PubMed

    Spatz, W B

    2003-09-01

    The dorsal cochlear nucleus (DCN) of Tree Shrews (Tupaia glis; n=2) was examined by calbindin (CB) immunohistochemistry for the presence of Purkinje-like cells (PLCs), detected previously in only four different mammals. We found up to eight CB-immunoreactive PLCs in the left and right DCN, and a few axons, likely of PLC origin, that appeared to leave the DCN. These findings suggest that PLCs may have a wider distribution through mammalian species, and may represent more than just misrouted cells. PMID:12914985

  10. Bhlhb5::flpo allele uncovers a requirement for Bhlhb5 for the development of the dorsal cochlear nucleus.

    PubMed

    Cai, Xiaoyun; Kardon, Adam P; Snyder, Lindsey M; Kuzirian, Marissa S; Minestro, Sam; de Souza, Luiza; Rubio, Maria E; Maricich, Stephen M; Ross, Sarah E

    2016-06-15

    Auditory information is initially processed in the cochlear nuclei before being relayed to the brain. The cochlear nuclei are subdivided into dorsal, anterior ventral, and posterior ventral domains, each containing several subtypes of neurons that are thought to play discrete roles in the processing of sound. However, the ontogeny of these neurons is poorly understood, and this gap in knowledge hampers efforts to understand the basic neural circuitry of this nucleus. Here, we reveal that Bhlhb5 is expressed in both excitatory (unipolar brush cells) and inhibitory neurons (cartwheel cells) of the DCN during development. To gain genetic access to Bhlhb5-expressing neurons in the DCN, we generated a Bhlhb5::flpo knockin allele. Using an intersectional genetic strategy, we labeled cartwheel cells, thereby providing proof of concept that subpopulations of Bhlhb5-expressing neurons can be genetically targeted. Moreover, fate-mapping experiments using this allele revealed that Bhlhb5 is required for the proper development of the DCN, since mice lacking Bhlhb5 showed a dramatically diminished number of neurons, including unipolar brush and cartwheel cells. Intriguingly, the Bhlhb5::flpo allele also genetically labels numerous other regions of the nervous system that process sensory input, including the dorsal horn, the retina, and the nucleus of the lateral olfactory tract, hinting at a more general role for Bhlhb5 in the development of neurons that mediate sensory integration. PMID:27151208

  11. Bhlhb5::flpo allele uncovers a requirement for Bhlhb5 for the development of the dorsal cochlear nucleus

    PubMed Central

    Cai, Xiaoyun; Kardon, Adam P.; Snyder, Lindsey M.; Kuzirian, Marissa S.; Minestro, Sam; de Souza, Luiza; Rubio, Maria E.; Maricich, Stephen M.; Ross, Sarah E.

    2016-01-01

    Auditory information is initially processed in the cochlear nuclei before being relayed to the brain. The cochlear nuclei are subdivided into dorsal, anterior ventral, and posterior ventral domains, each containing several subtypes of neurons that are thought to play discrete roles in the processing of sound. However, the ontogeny of these neurons is poorly understood, and this gap in knowledge hampers efforts to understand the basic neural circuitry of this nucleus. Here, we reveal that Bhlhb5 is expressed in both excitatory (unipolar brush cells) and inhibitory neurons (cartwheel cells) of the DCN during development. To gain genetic access to Bhlhb5-expressing neurons in the DCN, we generated a Bhlhb5::flpo knockin allele. Using an intersectional genetic strategy, we labeled cartwheel cells, thereby providing proof of concept that subpopulations of Bhlhb5-expressing neurons can be genetically targeted. Moreover, fate-mapping experiments using this allele revealed that Bhlhb5 is required for the proper development of the DCN, since mice lacking Bhlhb5 showed a dramatically diminished number of neurons, including unipolar brush and cartwheel cells. Intriguingly, the Bhlhb5::flpo allele also genetically labels numerous other regions of the nervous system that process sensory input, including the dorsal horn, the retina, and the nucleus of the lateral olfactory tract, hinting at a more general role for Bhlhb5 in the development of neurons that mediate sensory integration. PMID:27151208

  12. Auditory brain-stem evoked potentials in cat after kainic acid induced neuronal loss. II. Cochlear nucleus.

    PubMed

    Zaaroor, M; Starr, A

    1991-01-01

    Auditory brain-stem potentials (ABRs) were studied in cats for up to 6 weeks after kainic acid had been injected unilaterally into the cochlear nucleus (CN) producing extensive neuronal destruction. The ABR components were labeled by the polarity at the vertex (P, for positive) and their order of appearance (the arabic numerals 1, 2, etc.). Component P1 can be further subdivided into 2 subcomponents, P1a and P1b. The assumed correspondence between the ABR components in cat and man is indicated by providing human Roman numeral designations in parentheses following the feline notation, e.g., P2 (III). To stimulation of the ear ipsilateral to the injection, the ABR changes consisted of a loss of components P2 (III) and P3 (IV), and an attenuation and prolongation of latency of components P4 (V) and P5 (VI). The sustained potential shift from which the components arose was not affected. Wave P1a (I) was also slightly but significantly attenuated compatible with changes of excitability of nerve VIII in the cochlea secondary to cochlear nucleus destruction. Unexpectedly, to stimulation of the ear contralateral to the injection side, waves P2 (III), P3 (IV), and P4 (V) were also attenuated and delayed in latency but to a lesser degree than to stimulation of the ear ipsilateral to the injection. Changes in binaural interaction of the ABR following cochlear nucleus lesions were similar to those produced in normal animals by introducing a temporal delay of the input to one ear. The results of the present set of studies using kainic acid to induce neuronal loss in auditory pathway when combined with prior lesion and recording experiments suggest that each of the components of the ABR requires the integrity of an anatomically diffuse system comprising a set of neurons, their axons, and the neurons on which they terminate. Disruption of any portion of the system will alter the amplitude and/or the latency of that component. PMID:1716569

  13. Glutamate co-transmission from developing medial nucleus of the trapezoid body - Lateral superior olive synapses is cochlear dependent in kanamycin-treated rats

    SciTech Connect

    Lee, Jae Ho; Pradhan, Jonu; Maskey, Dhiraj; Park, Ki Sup; Hong, Sung Hwa; Suh, Myung-Whan; Kim, Myeung Ju; Ahn, Seung Cheol

    2011-02-11

    Research highlights: {yields} Glutamate co-transmission is enhanced in kanamycin-treated rats. {yields} VGLUT3 expression is increased in kanamycin-treated rats. {yields} GlyR expression is decreased in kanamycin-treated rats. {yields} GlyR, VGLUT3 expression patterns are asymmetric in unilaterally cochlear ablated rat. -- Abstract: Cochlear dependency of glutamate co-transmission at the medial nucleus of the trapezoid body (MNTB) - the lateral superior olive (LSO) synapses was investigated using developing rats treated with high dose kanamycin. Rats were treated with kanamycin from postnatal day (P) 3 to P8. A scanning electron microscopic study on P9 demonstrated partial cochlear hair cell damage. A whole cell voltage clamp experiment demonstrated the increased glutamatergic portion of postsynaptic currents (PSCs) elicited by MNTB stimulation in P9-P11 kanamycin-treated rats. The enhanced VGLUT3 immunoreactivities (IRs) in kanamycin-treated rats and asymmetric VGLUT3 IRs in the LSO of unilaterally cochlear ablated rats supported the electrophysiologic data. Taken together, it is concluded that glutamate co-transmission is cochlear-dependent and enhanced glutamate co-transmission in kanamycin-treated rats is induced by partial cochlear damage.

  14. Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus.

    PubMed

    Kurioka, Takaomi; Lee, Min Young; Heeringa, Amarins N; Beyer, Lisa A; Swiderski, Donald L; Kanicki, Ariane C; Kabara, Lisa L; Dolan, David F; Shore, Susan E; Raphael, Yehoash

    2016-09-22

    In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus (CN). However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and CN neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination. PMID:27403879

  15. Surgical treatment and rehabilitation of prelingually and perilingually deafened children and adults with the nucleus multichannel cochlear implant.

    PubMed

    García, J M; Barón de Otero, C; García, J; Peñaranda, A; Niño, C; Campos, S

    1994-03-01

    We began our program in September 1992, using the Nucleus 22 Channel Cochlear Implant. To date, we have operated on four patients, one child with congenital hearing loss, two prelinguistically deaf adults and one perilingually deaf adult. Our results have shown a significant increase in auditory and speech reception and perception skills in the child. The perilingually deaf adult is able to understand speech in open set speech discrimination testing and, although we do not expect open set speech discrimination in the prelinguistically deaf adults, to date their results have been satisfactory. The two prelingually deaf adults are in an audiological rehabilitation program. Their response in prosodic aspects of speech and lipreading ability with sound have improved significantly. The only surgical complication was an infection of the flap in the child, but it was treated satisfactorily with i.v. penicillin. PMID:8205978

  16. Response map properties of units in the dorsal cochlear nucleus of barbiturate-anesthetized gerbil (Meriones unguiculatus).

    PubMed

    Gdowski, G T; Voigt, H F

    1997-03-01

    The response map scheme introduced by Evans and Nelson (1973) and modified by others, including Davis et al. (1996) for use with gerbils, has been used primarily for classifying units recorded in the cochlear nucleus of unanesthetized decerebrate preparations. Units lacking spontaneous activity (SpAc) have been classified as either type I/III or type II units based on the relative strength of their responses to broad-band noise compared to their responses to best-frequency (BF) tones. The relative noise index (rho), a ratio of these responses after SpAc is subtracted out, provides a convenient measure of this relative strength. In this paper, responses of 320 units recorded in the dorsal cochlear nucleus (DCN) of barbiturate-anesthetized gerbils to short-duration BF tones and broad-band noise were recorded. Since 87.5% of these units lacked SpAc, their response maps resembled those of type II and type I/III units. Units were characterized by rho and the normalized slope (m) of a best line fit to the BF rate versus level plot starting from the sound level corresponding to the first inflection point of the rate curve (typically its maximum value or the start of its sloping saturation). The distributions of rho and m values do not form distinct clusters as they do for units in the decerebrate preparation. Thus, the criteria developed for classifying DCN units in the decerebrate preparation do not appear appropriate for units in the barbiturate-anesthetized preparation. Deposits of horseradish peroxidase were used to locate 52 units. Most of the low SpAc units, 56% with poor noise responses (5/9) and nearly 70% with strong noise responses (25/36), and nearly all of the high SpAc units (6/7), were located either within or below the fusiform cell layer. PMID:9083807

  17. An integrity test battery for the Nucleus Mini 22 Cochlear Implant System.

    PubMed

    Battmer, R D; Gnadeberg, D; Lehnhardt, E; Lenarz, T

    1994-01-01

    The probability of system failures increases as the number of cochlear implants increases throughout the world. Whether a malfunction is a technical or physiological problem remains to be defined, particularly in very young children, while a psychogenic hearing disorder after implantation must not be excluded in adults. The battery of objective measurements used clinically at the Medizinische Hochschule, Hannover has provided useful diagnostic information for distinguishing possible causes of failure. In a normally functioning device, an electrical signal equivalent to the biphasic rectangular stimulation pulse can be recorded by measuring skin potentials from surface electrodes placed on the mastoid of the implant side and the forehead. The signal from the stimulated implanted electrodes is derived by applying a constant pulse rate. Signal averaging is not necessary. If no signals are observed, a non-functioning device should be suspected. If the device works normally, function of the auditory pathways can be examined by recording the electrically elicited stapedius reflex or electrically evoked brain-stem responses. In our experience with more than 450 cochlear implant patients, eight internal device failures occurred, while an additional three patients had either reduced or no hearing sensations due to a disorder of the auditory pathways. PMID:7917252

  18. Distribution and phenotypes of unipolar brush cells in relation to the granule cell system of the rat cochlear nuclear nucleus

    PubMed Central

    Diño, Maria. R.; Mugnaini, Enrico

    2009-01-01

    In most mammals the cochlear nuclear complex (CN) contains a distributed system of granule cells (GCS), whose parallel fiber axons innervate the dorsal cochlear nucleus (DCN). Like their counterpart in cerebellum, CN granules are innervated by mossy fibers of various origins. The GCS is complemented by unipolar brush (UBCs) and Golgi cells, and by stellate and cartwheel cells of the DCN. This cerebellum-like microcircuit modulates the activity of the DCN’s main projection neurons, the pyramidal, giant and tuberculoventral neurons, and is thought to improve auditory performance by integrating acoustic and proprioceptive information. In this paper, we focus on the UBCs, a chemically heterogeneous neuronal population, using antibodies to calretinin, mGluR1α epidermal growth factor substrate 8 (Eps8) and the transcription factor Tbr2. Eps8 and Tbr2 labeled most of the CN’s UBCs, if not the entire population, while calretinin and mGluR1α distinguished two largely separate subsets with overlapping distributions. By double labeling with antibodies to Tbr2 and the α6 GABAA-receptor subunit, we found that UBCs populate all regions of the GCS and occur at remarkably high densities in the DCN and subpeduncular corner, but rarely in the lamina. Although GCS subregions likely share the same microcircuitry, their dissimilar UBC densities suggest they may be functionally distinct. UBCs and granules are also present in regions previously not included in the GCS, namely the rostrodorsal magnocellular portions of VCN, vestibular nerve root, trapezoid body, spinal tract and sensory and principal nuclei of the trigeminal nerve, and cerebellar peduncles. The UBC’s dendritic brush receives AMPA- and NMDA-mediated input from an individual mossy fiber, favoring singularity of input, and its axon most likely forms several mossy fiber-like endings that target numerous granule cells and other UBCs, as in the cerebellum. The UBCs therefore, may amplify afferent signals temporally and

  19. Target-specific regulation of presynaptic release properties at auditory nerve terminals in the avian cochlear nucleus.

    PubMed

    Ahn, J; MacLeod, K M

    2016-03-01

    Short-term synaptic plasticity (STP) acts as a time- and firing rate-dependent filter that mediates the transmission of information across synapses. In the auditory brain stem, the divergent pathways that encode acoustic timing and intensity information express differential STP. To investigate what factors determine the plasticity expressed at different terminals, we tested whether presynaptic release probability differed in the auditory nerve projections to the two divisions of the avian cochlear nucleus, nucleus angularis (NA) and nucleus magnocellularis (NM). Estimates of release probability were made with an open-channel blocker ofN-methyl-d-aspartate (NMDA) receptors. Activity-dependent blockade of NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) with application of 20 μM (+)-MK801 maleate was more rapid in NM than in NA, indicating that release probability was significantly higher at terminals in NM. Paired-pulse ratio (PPR) was tightly correlated with the blockade rate at terminals in NA, suggesting that PPR was a reasonable proxy for relative release probability at these synapses. To test whether release probability was similar across convergent inputs onto NA neurons, PPRs of different nerve inputs onto the same postsynaptic NA target neuron were measured. The PPRs, as well as the plasticity during short trains, were tightly correlated across multiple inputs, further suggesting that release probability is coordinated at auditory nerve terminals in a target-specific manner. This highly specific regulation of STP in the auditory brain stem provides evidence that the synaptic dynamics are tuned to differentially transmit the auditory information in nerve activity into parallel ascending pathways. PMID:26719087

  20. Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice

    PubMed Central

    Pardo-Bellver, Cecília; Cádiz-Moretti, Bernardita; Novejarque, Amparo; Martínez-García, Fernando; Lanuza, Enrique

    2012-01-01

    The medial amygdaloid nucleus (Me) is a key structure in the control of sociosexual behavior in mice. It receives direct projections from the main and accessory olfactory bulbs (AOB), as well as an important hormonal input. To better understand its behavioral role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA), posterodorsal (MePD) and posteroventral (MePV) subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines. The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the AOB, whereas the MePV projects to its granule cell layer. The Me (especially the MeA) has also moderate projections to different olfactory structures, including the piriform cortex (Pir). The densest outputs of the Me target the bed nucleus of the stria terminalis (BST) and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus), although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviors [medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus], although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized. PMID:22933993

  1. An Examination of Sources of Variability Across the Consonant-Nucleus-Consonant Test in Cochlear Implant Listeners

    PubMed Central

    Spindler, Eugene; Bierer, Steven M.; Wright, Richard

    2016-01-01

    The 10 consonant-nucleus-consonant (CNC) word lists are considered the gold standard in the testing of cochlear implant (CI) users. However, variance in scores across lists could degrade the sensitivity and reliability of them to identify deficits in speech perception. This study examined the relationship between variability in performance among lists and the lexical characteristics of the words. Data are from 28 adult CI users. Each subject was tested on all 10 CNC word lists. Data were analyzed in terms of lexical characteristics, lexical frequency, neighborhood density, bi-, and tri-phonemic probabilities. To determine whether individual performance variability across lists can be reduced, the standard set of 10 phonetically balanced 50-word lists was redistributed into a new set of lists using two sampling strategies: (a) balancing with respect to word lexical frequency or (b) selecting words with equal probability. The mean performance on the CNC lists varied from 53.1% to 62.4% correct. The average difference between the highest and lowest scores within individuals across the lists was 20.9% (from 12% to 28%). Lexical frequency and bi-phonemic probabilities were correlated with word recognition performance. The range of scores was not significantly reduced for all individuals when responses were simulated with 1,000 sets of redistributed lists, using both types of sampling methods. These results indicate that resampling of words does not affect the test–retest reliability and diagnostic value of the CNC word test. PMID:27194155

  2. Correlation of neural responses in the cochlear nucleus with low-frequency noise amplitude modulation of a tonal signal

    NASA Astrophysics Data System (ADS)

    Bibikov, N. G.

    2014-09-01

    The responses of single neurons of the cochlear nucleus of a grass frog to long tonal signals amplitude-modulated by repeat intervals of low-frequency noise have been studied. The carrier frequency always corresponded to the characteristic frequency of the studied cell (a range of 0.2 kHz-2 kHz); the modulated signal was noise in the ranges 0-15 Hz, 0-50 Hz, or 0-150 Hz. We obtained the correlation functions of the cyclic histogram reflecting the change in probability of a neuron pulse discharge (spike) during the modulation period with the shape of the signal envelope in the same period. The form of the obtained correlation functions usually does not change qualitatively with a change in carrier level or modulation depth; however, this could essentially depend of the frequency component of the modulating function. In the majority of cases, comparison of the cyclic histogram of the reaction with only the current amplitude value does not adequately reveal the signal's time features that determine the reaction of a neuron. The response is also determined by the other sound features, primarily by the rate of the change in amplitude. The studied neurons differed among themselves, both in preference toward a certain range of modulated frequencies and in the features of the envelope that caused the cell's response.

  3. Sustained firing of cartwheel cells in the dorsal cochlear nucleus evokes endocannabinoid release and retrograde suppression of parallel fiber synapses.

    PubMed

    Sedlacek, Miloslav; Tipton, Philip W; Brenowitz, Stephan D

    2011-11-01

    Neurons in many brain regions release endocannabinoids from their dendrites that act as retrograde signals to transiently suppress neurotransmitter release from presynaptic terminals. Little is known, however, about the physiological mechanisms of short-term endocannabinoid-mediated plasticity under physiological conditions. Here we investigate calcium-dependent endocannabinoid release from cartwheel cells (CWCs) of the mouse dorsal cochlear nucleus (DCN) in the auditory brainstem that provide feedforward inhibition onto DCN principal neurons. We report that sustained action potential firing by CWCs evokes endocannabinoid release in response to submicromolar elevation of dendritic calcium that transiently suppresses their parallel fiber (PF) inputs by >70%. Basal spontaneous CWC firing rates are insufficient to evoke tonic suppression of PF synapses. However, elevating CWC firing rates by stimulating PFs triggers the release of endocannabinoids and heterosynaptic suppression of PF inputs. Spike-evoked suppression by endocannabinoids selectively suppresses excitatory synapses, but glycinergic/GABAergic inputs onto CWCs are not affected. Our findings demonstrate a mechanism of transient plasticity mediated by endocannabinoids that heterosynaptically suppresses subsets of excitatory presynaptic inputs to CWCs that regulates feedforward inhibition of DCN principal neurons and may influence the output of the DCN. PMID:22049424

  4. Neural Segregation of Concurrent Speech: Effects of Background Noise and Reverberation on Auditory Scene Analysis in the Ventral Cochlear Nucleus.

    PubMed

    Sayles, Mark; Stasiak, Arkadiusz; Winter, Ian M

    2016-01-01

    Concurrent complex sounds (e.g., two voices speaking at once) are perceptually disentangled into separate "auditory objects". This neural processing often occurs in the presence of acoustic-signal distortions from noise and reverberation (e.g., in a busy restaurant). A difference in periodicity between sounds is a strong segregation cue under quiet, anechoic conditions. However, noise and reverberation exert differential effects on speech intelligibility under "cocktail-party" listening conditions. Previous neurophysiological studies have concentrated on understanding auditory scene analysis under ideal listening conditions. Here, we examine the effects of noise and reverberation on periodicity-based neural segregation of concurrent vowels /a/ and /i/, in the responses of single units in the guinea-pig ventral cochlear nucleus (VCN): the first processing station of the auditory brain stem. In line with human psychoacoustic data, we find reverberation significantly impairs segregation when vowels have an intonated pitch contour, but not when they are spoken on a monotone. In contrast, noise impairs segregation independent of intonation pattern. These results are informative for models of speech processing under ecologically valid listening conditions, where noise and reverberation abound. PMID:27080680

  5. An Examination of Sources of Variability Across the Consonant-Nucleus-Consonant Test in Cochlear Implant Listeners.

    PubMed

    Bierer, Julie Arenberg; Spindler, Eugene; Bierer, Steven M; Wright, Richard

    2016-01-01

    The 10 consonant-nucleus-consonant (CNC) word lists are considered the gold standard in the testing of cochlear implant (CI) users. However, variance in scores across lists could degrade the sensitivity and reliability of them to identify deficits in speech perception. This study examined the relationship between variability in performance among lists and the lexical characteristics of the words. Data are from 28 adult CI users. Each subject was tested on all 10 CNC word lists. Data were analyzed in terms of lexical characteristics, lexical frequency, neighborhood density, bi-, and tri-phonemic probabilities. To determine whether individual performance variability across lists can be reduced, the standard set of 10 phonetically balanced 50-word lists was redistributed into a new set of lists using two sampling strategies: (a) balancing with respect to word lexical frequency or (b) selecting words with equal probability. The mean performance on the CNC lists varied from 53.1% to 62.4% correct. The average difference between the highest and lowest scores within individuals across the lists was 20.9% (from 12% to 28%). Lexical frequency and bi-phonemic probabilities were correlated with word recognition performance. The range of scores was not significantly reduced for all individuals when responses were simulated with 1,000 sets of redistributed lists, using both types of sampling methods. These results indicate that resampling of words does not affect the test-retest reliability and diagnostic value of the CNC word test. PMID:27194155

  6. Antioxidants reduce cellular and functional changes induced by intense noise in the inner ear and cochlear nucleus.

    PubMed

    Lu, Jianzhong; Li, Wei; Du, Xiaoping; Ewert, Donald L; West, Matthew B; Stewart, Charles; Floyd, Robert A; Kopke, Richard D

    2014-06-01

    The present study marks the first evaluation of combined application of the antioxidant N-acetylcysteine (NAC) and the free radical spin trap reagent, disodium 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07), as a therapeutic approach for noise-induced hearing loss (NIHL). Pharmacokinetic studies and C-14 tracer experiments demonstrated that both compounds achieve high blood levels within 30 min after i.p injection, with sustained levels of radiolabeled cysteine (released from NAC) in the cochlea, brainstem, and auditory cortex for up to 48 h. Rats exposed to 115 dB octave-band noise (10-20 kHz) for 1 h were treated with combined NAC/HPN-07 beginning 1 h after noise exposure and for two consecutive days. Auditory brainstem responses (ABR) showed that treatment substantially reduced the degree of threshold shift across all test frequencies (2-16 kHz), beginning at 24 h after noise exposure and continuing for up to 21 days. Reduced distortion product otoacoustic emission (DPOAE) level shifts were also detected at 7 and 21 days following noise exposure in treated animals. Noise-induced hair cell (HC) loss, which was localized to the basal half of the cochlea, was reduced in treated animals by 85 and 64% in the outer and inner HC regions, respectively. Treatment also significantly reduced an increase in c-fos-positive neuronal cells in the cochlear nucleus following noise exposure. However, no detectable spiral ganglion neuron loss was observed after noise exposure. The results reported herein demonstrate that the NAC/HPN-07 combination is a promising pharmacological treatment of NIHL that reduces both temporary and permanent threshold shifts after intense noise exposure and acts to protect cochlear sensory cells, and potentially afferent neurites, from the damaging effects of acoustic trauma. In addition, the drugs were shown to reduce aberrant activation of neurons in the central auditory regions of the brain following noise exposure. It is likely that the protective

  7. Electrical stimulation of the globus pallidus preceding stereotactic posteroventral pallidotomy.

    PubMed

    Berić, A; Sterio, D; Dogali, M; Alterman, R; Kelly, P

    1996-01-01

    Physiological methods such as microelectrode recording of neuronal activity and electrical stimulation of target structures can improve the safety and efficacy of certain stereotactic surgeries. The globus pallidus (GP) was electrically stimulated in 136 patients with Parkinson's disease prior to unilateral posteroventral pallidotomy to identify functional areas and prevent deficits. We found that electrical stimulation of the GP elicited two principal responses: contractions of the contralateral hand and flashing lights. The mean voltage that evoked motor responses was 4.3 V (range 1.7-9.0 V), while higher intensity was necessary to elicit visual responses (mean 6.8 V; range 3.5-9.9 V). Contralateral tremor, speech impairment, paresthesias, and warm sensations were also elicited. PMID:9144871

  8. Mode-Locked Spike Trains in Responses of Ventral Cochlear Nucleus Chopper and Onset Neurons to Periodic Stimuli

    PubMed Central

    Laudanski, Jonathan; Coombes, Stephen; Palmer, Alan R.

    2010-01-01

    We report evidence of mode-locking to the envelope of a periodic stimulus in chopper units of the ventral cochlear nucleus (VCN). Mode-locking is a generalized description of how responses in periodically forced nonlinear systems can be closely linked to the input envelope, while showing temporal patterns of higher order than seen during pure phase-locking. Re-analyzing a previously unpublished dataset in response to amplitude modulated tones, we find that of 55% of cells (6/11) demonstrated stochastic mode-locking in response to sinusoidally amplitude modulated (SAM) pure tones at 50% modulation depth. At 100% modulation depth SAM, most units (3/4) showed mode-locking. We use interspike interval (ISI) scattergrams to unravel the temporal structure present in chopper mode-locked responses. These responses compared well to a leaky integrate-and-fire model (LIF) model of chopper units. Thus the timing of spikes in chopper unit responses to periodic stimuli can be understood in terms of the complex dynamics of periodically forced nonlinear systems. A larger set of onset (33) and chopper units (24) of the VCN also shows mode-locked responses to steady-state vowels and cosine-phase harmonic complexes. However, while 80% of chopper responses to complex stimuli meet our criterion for the presence of mode-locking, only 40% of onset cells show similar complex-modes of spike patterns. We found a correlation between a unit's regularity and its tendency to display mode-locked spike trains as well as a correlation in the number of spikes per cycle and the presence of complex-modes of spike patterns. These spiking patterns are sensitive to the envelope as well as the fundamental frequency of complex sounds, suggesting that complex cell dynamics may play a role in encoding periodic stimuli and envelopes in the VCN. PMID:20042702

  9. Alteration of CaBP Expression Pattern in the Nucleus Magnocellularis following Unilateral Cochlear Ablation in Adult Zebra Finches

    PubMed Central

    Li, Jie; Zhou, Xin; Huang, Li; Fu, Xin; Liu, Jin; Zhang, Xinwen; Sun, Yingyu; Zuo, Mingxue

    2013-01-01

    Songbirds have the rare ability of auditory-vocal learning and maintenance. Up to now, the organization and function of the nucleus magnocellularis (NM), the first relay of the avian ascending auditory pathway is largely based on studies in non-vocal learning species, such as chickens and owls. To investigate whether NM exhibits different histochemical properties associated with auditory processing in songbirds, we examined the expression patterns of three calcium-binding proteins (CaBPs), including calretinin (CR), parvalbumin (PV) and calbindin-D28k (CB), and their relations to auditory inputs in NM in adult zebra finches. We found enriched and co-localized immunostaining of CR, PV and CB in the majority of NM neurons, without neuronal population preference. Furthermore, they were sensitive to adult deafferentation with differential plasticity patterns. After unilateral cochlear removal, CR staining in the ipsilateral NM decreased appreciably at 3 days after surgery, and continued to decline thereafter. PV staining showed down-regulation first at 3 days, but subsequently recovered slightly. CB staining did not significantly decrease until 7 days after surgery. Our findings suggest that the three CaBPs might play distinct roles in association with auditory processing in zebra finches. These results are in contrast to the findings in the NM of chickens where CR is the predominant CaBP and deafferentation had no apparent effect on its expression. Further extended studies in other avian species are required to establish whether the difference in CaBP patterns in NM is functionally related to the different auditory-vocal behaviors. PMID:24244471

  10. Noise-induced hyperactivity in the inferior colliculus: its relationship with hyperactivity in the dorsal cochlear nucleus

    PubMed Central

    Manzoor, N. F.; Licari, F. G.; Klapchar, M.; Elkin, R. L.; Gao, Y.; Chen, G.

    2012-01-01

    Intense noise exposure causes hyperactivity to develop in the mammalian dorsal cochlear nucleus (DCN) and inferior colliculus (IC). It has not yet been established whether the IC hyperactivity is driven by hyperactivity from extrinsic sources that include the DCN or instead is maintained independently of this input. We have investigated the extent to which IC hyperactivity is dependent on input from the contralateral DCN by comparing recordings of spontaneous activity in the IC of noise-exposed and control hamsters before and after ablation of the contralateral DCN. One group of animals was binaurally exposed to intense sound (10 kHz, 115 dB SPL, 4 h), whereas the control group was not. Both groups were studied electrophysiologically 2–3 wk later by first mapping spontaneous activity along the tonotopic axis of the IC to confirm induction of hyperactivity. Spontaneous activity was then recorded at a hyperactive IC locus over two 30-min periods, one with DCNs intact and the other after ablation of the contralateral DCN. In a subset of animals, activity was again mapped along the tonotopic axis after the time course of the activity was recorded before and after DCN ablation. Following recordings, the brains were fixed, and histological evaluations were performed to assess the extent of DCN ablation. Ablation of the DCN resulted in major reductions of IC hyperactivity. Levels of postablation activity in exposed animals were similar to the levels of activity in the IC of control animals, indicating an almost complete loss of hyperactivity in exposed animals. The results suggest that hyperactivity in the IC is dependent on support from extrinsic sources that include and may even begin with the DCN. This finding does not rule out longer term compensatory or homeostatic adjustments that might restore hyperactivity in the IC over time. PMID:22552192

  11. Visual evoked potential guidance for posteroventral pallidotomy in Parkinson's disease.

    PubMed

    Yokoyama, T; Sugiyama, K; Nishizawa, S; Ryu, H; Hinokuma, K; Yamamoto, S; Endoh, M; Ohta, S; Yokota, N; Uemura, K

    1997-03-01

    Visual evoked potentials (VEPs) to photic stimulation of the eyes were used to identify the optic tract and thus determine the location of the globus pallidus internus (GPi) in eight patients with Parkinson's disease who then underwent posteroventral pallidotomy. Distinct waves appeared at 1 or 2 mm below the target (4 to 5 mm below the intercommissural line) and the amplitude significantly increased at 5 or 6 mm below, strongly suggesting that the electrode was in contact with the optic tract. In the medio-lateral direction, potentials were successively recorded in an area of 4 to 8 mm length, indicating the width of the optic tract. The trajectory at the mid point showed the most significant potentials which suggested the center of the optic tract. The site of the first lesion was placed 0 to 2 mm lateral to this trajectory and 5 mm above the point at which the amplitudes of responses increased. The actual lesion site significantly differed from the tentative target in a medio-lateral direction by 1 to 5 mm (mean 3.0 +/- 1.5 mm, n = 6). The Unified Parkinson's Disease Rating Scale score significantly improved and magnetic resonance imaging taken 2 or 3 weeks after the operation showed a lesion within the GPi in each patient. Recording of VEPs greatly facilitates accurate determination of the GPi. PMID:9095626

  12. [Medial posteroventral pallidotomy for the treatment of Parkinson's disease].

    PubMed

    Krauss, J K; Grossman, R G; Lai, E C; Schwartz, K; Jankovic, J

    1997-01-01

    Stereotactic medial posteroventral pallidotomy for treatment of Parkinson's disease attracts increasing attention. We report on the preliminary results of 12 patients at 1 year after microelectrode-guided unilateral pallidotomy. The primary indications were severe bradykinesia and levodopa-induced dyskinesias. After radiofrequency lesioning all patients had immediate improvement of contralateral parkinsonian signs. Postoperative magnetic resonance imaging confirmed the localization of the lesions. At the 1-year follow-up, all patients had sustained benefit. The global improvement was rated as moderate in six cases, and as marked in six other cases. The mean values of various subscores of the Unified Parkinson's Disease Rating Scale (UPDRS) showed highly significant changes in the "off" state (pre/postoperatively): UPDRS Motor score (60.3/31). UPDRS Activities of Daily Living (ADL) score (33.2/18.3), gait/postural stability score (13.8/7.0), and subscores for contralateral rigidity (4.9/2.1), tremor (7.1/1.4) and bradykinesia (11.6/5.3). There was also significant improvement of ipsilateral bradykinesia and rigidity. Furthermore, we found significant changes of the mean values of the UPDRS ADL and motor "on" scores, an increase of the percentage of "on" time with reduced on-off fluctuations, and a decrease of the percentage of levodopa-induced dyskinesias, with marked improvement or complete abolition of contralateral dyskinesias in particular. The preoperative levodopa regimen was maintained, in general, or only slightly modified, if necessary. Two patients had transient complications: one patient suffered postoperative pneumonia and altered mental status; another patient displayed mild Broca's aphasia secondary to a small stroke involving the dorsal thalamus and the adjacent white matter. There were no persistent side effects at the 1-year follow-up. Contemporary unilateral pallidotomy is an effective and promising therapeutical option for surgical treatment of

  13. Salicylate-Induced Hearing Loss Trigger Structural Synaptic Modifications in the Ventral Cochlear Nucleus of Rats via Medial Olivocochlear (MOC) Feedback Circuit.

    PubMed

    Fang, Lian; Fu, YaoYao; Zhang, Tian-Yu

    2016-06-01

    Lesion-induced cochlear damage can result in synaptic outgrowth in the ventral cochlear nucleus (VCN). Tinnitus may be associated with the synaptic outgrowth and hyperactivity in the VCN. However, it remains unclear how hearing loss triggers structural synaptic modifications in the VCN of rats subjected to salicylate-induced tinnitus. To address this issue, we evaluated tinnitus-like behavior in rats after salicylate treatment and compared the amplitude of the distortion product evoked otoacoustic emission (DPOAE) and auditory brainstem response (ABR) between control and treated rats. Moreover, we observed the changes in the synaptic ultrastructure and in the expression levels of growth-associated protein (GAP-43), brain-derived neurotrophic factor (BDNF), the microglial marker Iba-1 and glial fibrillary acidic protein (GFAP) in the VCN. After salicylate treatment (300 mg/kg/day for 4 and 8 days), analysis of the gap prepulse inhibition of the acoustic startle showed that the rats were experiencing tinnitus. The changes in the DPOAE and ABR amplitude indicated an improvement in cochlear sensitivity and a reduction in auditory input following salicylate treatment. The treated rats displayed more synaptic vesicles and longer postsynaptic density in the VCN than the control rats. We observed that the GAP-43 expression, predominantly from medial olivocochlear (MOC) neurons, was significantly up-regulated, and that BDNF- and Iba-1-immunoreactive cells were persistently decreased after salicylate administration. Furthermore, GFAP-immunoreactive astrocytes, which is associated with synaptic regrowth, was significantly increased in the treated groups. Our study revealed that reduced auditory nerve activity triggers synaptic outgrowth and hyperactivity in the VCN via a MOC neural feedback circuit. Structural synaptic modifications may be a reflexive process that compensates for the reduced auditory input after salicylate administration. However, massive increases in

  14. Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input.

    PubMed

    Kuhlmann, Levin; Burkitt, Anthony N; Paolini, Antonio; Clark, Graeme M

    2002-01-01

    The response of leaky integrate-and-fire neurons is analyzed for periodic inputs whose phases vary with their spatial location. The model gives the relationship between the spatial summation distance and the degree of phase locking of the output spikes (i.e., locking to the periodic stochastic inputs, measured by the synchronization index). The synaptic inputs are modeled as an inhomogeneous Poisson process, and the analysis is carried out in the Gaussian approximation. The model has been applied to globular bushy cells of the cochlear nucleus, which receive converging inputs from auditory nerve fibers that originate at neighboring sites in the cochlea. The model elucidates the roles played by spatial summation and coincidence detection, showing how synchronization decreases with an increase in both frequency and spatial spread of inputs. It also shows under what conditions an enhancement of synchronization of the output relative to the input takes place. PMID:11932560

  15. Comparison of electrically evoked whole-nerve action potential and electrically evoked auditory brainstem response thresholds in nucleus CI24R cochlear implant recipients.

    PubMed

    Hay-McCutcheon, Marcia J; Brown, Carolyn J; Clay, Kelly Schmidt; Seyle, Keely

    2002-09-01

    In this study, differences between electrically evoked whole-nerve action potential (EAP) and electrically evoked auditory brainstem response (EABR) measurements within Nucleus CI24R cochlear implant recipients were evaluated. Precurved modiolus-hugging internal electrode arrays, such as the CI24R, are designed to provide more direct stimulation of neural elements of the modiolus. If the electrode array is closer to the modiolus, electrically evoked and behavioral levels might be lower than were previously recorded for the straight electrode array, the CI24M. EAP and EABR growth functions and behavioral levels were obtained for 10 postlingually deafened adults. Results revealed no significant differences between EAP and EABR threshold levels, and these levels were not significantly lower than those obtained using the CI24M. PMID:12371659

  16. Noise-induced hearing loss is correlated with alterations in the expression of GABAB receptors and PKC gamma in the murine cochlear nucleus complex

    PubMed Central

    Kou, Zhen-Zhen; Qu, Juan; Zhang, Dong-Liang; Li, Hui; Li, Yun-Qing

    2013-01-01

    Noise overexposure may induce permanent noise-induced hearing loss (NIHL). The cochlear nucleus complex (CNC) is the entry point for sensory information in the central auditory system. Impairments in gamma-aminobutyric acid (GABA)—mediated synaptic transmission in the CNC have been implicated in the pathogenesis of auditory disorders. However, the role of protein kinase C (PKC) signaling pathway in GABAergic inhibition in the CNC in NIHL remains elusive. Thus, we investigated the alterations of glutamic acid decarboxylase 67 (GAD67, the chemical marker for GABA-containing neurons), PKC γ subunit (PKCγ) and GABAB receptor (GABABR) expression in the CNC using transgenic GAD67-green fluorescent protein (GFP) knock-in mice, BALB/c mice and C57 mice. Immunohistochemical results indicate that the GFP-labeled GABAergic neurons were distributed in the molecular layer (ML) and fusiform cell layer (FCL) of the dorsal cochlear nucleus (DCN). We found that 69.91% of the GFP-positive neurons in the DCN were immunopositive for both PKCγ and GABABR1. The GAD67-positive terminals made contacts with PKCγ/GABABR1 colocalized neurons. Then we measured the changes of auditory thresholds in mice after noise exposure for 2 weeks, and detected the GAD67, PKCγ, and GABABR expression at mRNA and protein levels in the CNC. With noise over-exposure, there was a reduction in GABABR accompanied by an increase in PKCγ expression, but no significant change in GAD67 expression. In summary, our results demonstrate that alterations in the expression of PKCγ and GABABRs may be involved in impairments in GABAergic inhibition within the CNC and the development of NIHL. PMID:23908607

  17. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall

    2013-10-01

    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of

  18. Neural synchrony in ventral cochlear nucleus neuron populations is not mediated by intrinsic processes but is stimulus induced: implications for auditory brainstem implants

    NASA Astrophysics Data System (ADS)

    Shivdasani, Mohit N.; Mauger, Stefan J.; Rathbone, Graeme D.; Paolini, Antonio G.

    2009-12-01

    The aim of this investigation was to elucidate if neural synchrony forms part of the spike time-based theory for coding of sound information in the ventral cochlear nucleus (VCN) of the auditory brainstem. Previous research attempts to quantify the degree of neural synchrony at higher levels of the central auditory system have indicated that synchronized firing of neurons during presentation of an acoustic stimulus could play an important role in coding complex sound features. However, it is unknown whether this synchrony could in fact arise from the VCN as it is the first station in the central auditory pathway. Cross-correlation analysis was conducted on 499 pairs of multiunit clusters recorded in the urethane-anesthetized rat VCN in response to pure tones and combinations of two tones to determine the presence of neural synchrony. The shift predictor correlogram was used as a measure for determining the synchrony owing to the effects of the stimulus. Without subtraction of the shift predictor, over 65% of the pairs of multiunit clusters exhibited significant correlation in neural firing when the frequencies of the tones presented matched their characteristic frequencies (CFs). In addition, this stimulus-evoked neural synchrony was dependent on the physical distance between electrode sites, and the CF difference between multiunit clusters as the number of correlated pairs dropped significantly for electrode sites greater than 800 µm apart and for multiunit cluster pairs with a CF difference greater than 0.5 octaves. However, subtraction of the shift predictor correlograms from the raw correlograms resulted in no remaining correlation between all VCN pairs. These results suggest that while neural synchrony may be a feature of sound coding in the VCN, it is stimulus induced and not due to intrinsic neural interactions within the nucleus. These data provide important implications for stimulation strategies for the auditory brainstem implant, which is used to

  19. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  20. Target- and input-dependent organization of AMPA and NMDA receptors in synaptic connections of the cochlear nucleus

    PubMed Central

    Rubio, María E.; Fukazawa, Yugo; Kamasawa, Naomi; Clarkson, Cheryl; Molnár, Elek; Shigemoto, Ryuichi

    2014-01-01

    We examined the synaptic structure, quantity and distribution of AMPA- and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively) in rat cochlear nuclei by a highly sensitive freeze-fracture replica labeling technique. Four excitatory synapses formed by two distinct inputs, auditory nerve (AN) and parallel fibers (PF), on different cell types were analyzed. These excitatory synapse types included AN synapses on bushy cells (AN-BC synapses) and fusiform cells (AN-FC synapses) and PF synapses on FC (PF-FC synapses) and cartwheel cell spines (PF-CwC synapses). Immunogold labeling revealed differences in synaptic structure as well as AMPAR and NMDAR number and/or density in both AN and PF synapses, indicating a target-dependent organization. The immunogold receptor labeling also identified differences in the synaptic organization of FCs based on AN or PF connections, indicating an input-dependent organization in FCs. Among the four excitatory synapse types, the AN-BC synapses were the smallest and had the most densely packed IMPs, whereas the PF-CwC synapses were the largest and had sparsely-packed IMPs. All four synapse types showed positive correlations between the IMP-cluster area and the AMPAR number, indicating a common intra-synapse-type relationship for glutamatergic synapses. Immunogold particles for AMPARs were distributed over the entire area of individual AN synapses, PF synapses often showed synaptic areas devoid of labeling. The gold-labeling for NMDARs occurred in a mosaic fashion, with less positive correlations between the IMP-cluster area and the NMDAR number. Our observations reveal target- and input-dependent features in the structure, number, and organization of AMPARs and NMDARs in AN and PF synapses. PMID:25041792

  1. Auditory nerve synapses persist in ventral cochlear nucleus long after loss of acoustic input in mice with early-onset progressive hearing loss

    PubMed Central

    McGuire, Brian; Fiorillo, Benjamin; Ryugo, David K.; Lauer, Amanda M.

    2015-01-01

    Perceptual performance in persons with hearing loss, especially those using devices to restore hearing, is not fully predicted by traditional audiometric measurements designed to evaluate the status of peripheral function. The integrity of auditory brainstem synapses may vary with different forms of hearing loss, and differential effects on the auditory nerve-brain interface may have particularly profound consequences for the transfer of sound from ear to brain. Loss of auditory nerve synapses in ventral cochlear nucleus (VCN) has been reported after acoustic trauma, ablation of the organ of Corti, and administration of ototoxic compounds. The effects of gradually acquired forms deafness on these synapses are less well understood. We investigated VCN gross morphology and auditory nerve synapse integrity in DBA/2J mice with early-onset progressive sensorineural hearing loss. Hearing status was confirmed using auditory brainstem response audiometry and acoustic startle responses. We found no change in VCN volume, number of macroneurons, or number of VGLUT1-positive auditory nerve terminals between young adult and older, deaf DBA/2J. Cell-type specific analysis revealed no difference in the number of VGLUT1 puncta contacting bushy and multipolar cell body profiles, but the terminals were smaller in deaf DBA/2J mice. Transmission electron microscopy confirmed the presence of numerous healthy, vesicle-filled auditory nerve synapses in older, deaf DBA/2J mice. The present results suggest that synapses can be preserved over a relatively long time-course in gradually acquired deafness. Elucidating the mechanisms supporting survival of central auditory nerve synapses in models of acquired deafness may reveal new opportunities for therapeutic intervention. PMID:25686750

  2. Auditory nerve synapses persist in ventral cochlear nucleus long after loss of acoustic input in mice with early-onset progressive hearing loss.

    PubMed

    McGuire, Brian; Fiorillo, Benjamin; Ryugo, David K; Lauer, Amanda M

    2015-04-24

    Perceptual performance in persons with hearing loss, especially those using devices to restore hearing, is not fully predicted by traditional audiometric measurements designed to evaluate the status of peripheral function. The integrity of auditory brainstem synapses may vary with different forms of hearing loss, and differential effects on the auditory nerve-brain interface may have particularly profound consequences for the transfer of sound from ear to brain. Loss of auditory nerve synapses in ventral cochlear nucleus (VCN) has been reported after acoustic trauma, ablation of the organ of Corti, and administration of ototoxic compounds. The effects of gradually acquired forms deafness on these synapses are less well understood. We investigated VCN gross morphology and auditory nerve synapse integrity in DBA/2J mice with early-onset progressive sensorineural hearing loss. Hearing status was confirmed using auditory brainstem response audiometry and acoustic startle responses. We found no change in VCN volume, number of macroneurons, or number of VGLUT1-positive auditory nerve terminals between young adult and older, deaf DBA/2J. Cell-type specific analysis revealed no difference in the number of VGLUT1 puncta contacting bushy and multipolar cell body profiles, but the terminals were smaller in deaf DBA/2J mice. Transmission electron microscopy confirmed the presence of numerous healthy, vesicle-filled auditory nerve synapses in older, deaf DBA/2J mice. The present results suggest that synapses can be preserved over a relatively long time-course in gradually acquired deafness. Elucidating the mechanisms supporting survival of central auditory nerve synapses in models of acquired deafness may reveal new opportunities for therapeutic intervention. PMID:25686750

  3. In Vivo Analysis of the Role of Metabotropic Glutamate Receptors in the Afferent Regulation of Chick Cochlear Nucleus Neurons

    PubMed Central

    Carzoli, Kathryn L.; Hyson, Richard L.

    2010-01-01

    Cochlea removal results in the death of approximately 20-30% of neurons in the chick nucleus magnocellularis (NM). One early event in NM neuronal degradation is the disruption of their ribosomes. This can be visualized in the first few hours following cochlea removal using Y10B, an antibody that recognizes ribosomal RNA. Previous studies using a brain slice preparation suggest that maintenance of ribosomal integrity in NM neurons requires metabotropic glutamate receptor (mGluR) activation. Isolating the brain slice in vitro, however, may eliminate other potential sources of trophic support and only allows for evaluation of the early changes that occur in NM neurons following deafferentation. Consequently, it is not known if mGluR activation is truly required for the maintenance of NM neurons in the intact system. The current experiments evaluated the importance of mGluRs in vivo. The effects of short-term receptor blockade were assessed through Y10B labeling and the effects of long-term blockade were assessed through stereological counting of NM neurons in Nissl-stained tissue. mGluR antagonists or vehicle were administered intracerebroventricularly following unilateral cochlea removal. Vehicle-treated subjects replicated the previously reported effects of cochlea removal, showing lighter Y10B-labeling and fewer Nissl-stained NM neurons on the deafened side of the brain. Blockade of mGluRs prevented the rapid activity-dependent difference in Y10B labeling, and in some cases, had the reverse effect, yielding lighter labeling of NM neurons on the intact side of the brain. Similarly, mGluR blockade over longer survival periods resulted in a reduction in number of cells on both intact and deafferented sides of the brain, and in some cases, yielded a reverse effect of fewer neurons on the intact side versus deafened side. These data are consistent with in vitro findings and suggest that mGluR activation plays a vital role in the afferent maintenance of NM neurons. PMID

  4. Reading Skills in Children with Multichannel Cochlear-Implant Experience.

    ERIC Educational Resources Information Center

    Spencer, Linda; Tomblin, J. Bruce; Gantz, Bruce J.

    1997-01-01

    A study compared reading-achievement level of 40 children with deafness who received the Nucleus multichannel cochlear implants between ages 2 and 13 with that of children with deafness without cochlear implants. Nearly one half of children with cochlear implants were reading at or within 8 months of grade level. (Author/CR)

  5. Comparison of speech recognition with different speech coding strategies (SPEAK, CIS, and ACE) and their relationship to telemetric measures of compound action potentials in the nucleus CI 24M cochlear implant system.

    PubMed

    Kiefer, J; Hohl, S; Stürzebecher, E; Pfennigdorff, T; Gstöettner, W

    2001-01-01

    Speech understanding and subjective preference for three different speech coding strategies (spectral peak coding [SPEAK], continuous interleaved sampling [CIS], and advanced combination encoders [ACE]) were investigated in 11 post-lingually deaf adult subjects, using the Nucleus CI 24M cochlear implant system. Subjects were randomly assigned to two groups in a balanced crossover study design. The first group was initially fitted with SPEAK and the second group with CIS. The remaining strategies were tested sequentially over 8 to 10 weeks with systematic variations of number of channels and rate of stimulation. Following a further interval of 3 months, during which subjects were allowed to listen with their preferred strategy, they were tested again with all three strategies. Compound action potentials (CAPs) were recorded using neural response telemetry. Input/output functions in relation to increasing stimulus levels and inter-stimulus intervals between masker and probe were established to assess the physiological status of the cochlear nerve. Objective results and subjective rating showed significant differences in favour of the ACE strategy. Ten of the 11 subjects preferred the ACE strategy at the end of the study. The estimate of the refractory period based on the inter-stimulus interval correlated significantly with the overall performance with all three strategies, but CAP measures could not be related to individual preference of strategy or differences in performance between strategies. Based on these results, the ACE strategy can be recommended as an initial choice specifically for the Nucleus CI 24M cochlear implant system. Nevertheless, access to the other strategies may help to increase performance in individual patients. PMID:11296939

  6. Speech perception performance as a function of stimulus pulse rate and processing strategy preference for the Cochlear Nucleus CI24RE device: relation to perceptual threshold and loudness comfort profiles.

    PubMed

    Battmer, Rolf-Dieter; Dillier, Norbert; Lai, Wai Kong; Begall, Klaus; Leypon, Elisabeth Estrada; González, Juan C Falcón; Manrique, Manuel; Morera, Constantino; Müller-Deile, Joachim; Wesarg, Thomas; Zarowski, Andrzej; Killian, Matthijs J; von Wallenberg, Ernst; Smoorenburg, Guido F

    2010-09-01

    Current cochlear implants can operate at high pulse rates. The effect of increasing pulse rate on speech performance is not yet clear. Habituation to low rates may affect the outcome. This paper presents the results of three subsequent studies using different experimental paradigms, applying the Nucleus CI24RE device, and conducted by ten European implant teams. Pulse rate per channel varied from 500 to 3500 pulses per second with ACE and from 1200 to 3500 pps with CIS strategy. The results showed that the first rate presented had little effect on the finally preferred rate. Lower rates were preferred. The effect of pulse rate on word scores of post-linguistic implantees was small; high rates tended to give lower scores. However, there were no significant differences between the word scores across subjects if collected at the individually preferred pulse rate. High pulse rates were preferred when the post-implantation threshold was low. PMID:20583945

  7. Cochlear Implants

    MedlinePlus

    ... electrodes are inserted. The electronic device at the base of the electrode array is then placed under ... FDA approval for implants The Food and Drug Administration (FDA) regulates cochlear implant devices for both adults ...

  8. Cochlear Implants

    MedlinePlus

    A cochlear implant is a small, complex electronic device that can help to provide a sense of sound. People who are ... of-hearing can get help from them. The implant consists of two parts. One part sits on ...

  9. Correlation between intra-operative high rate neural response telemetry measurements and behaviourally obtained threshold and comfort levels in patients using Nucleus 24 cochlear implants.

    PubMed

    Mittal, R; Panwar, S S

    2009-06-01

    The correlation between high rate 250 Hz intra-operative threshold neural response telemetry (t-NRT) with behaviourally obtained psychophysical threshold (T) and comfort (C) levels of the most recent and stable maps of 90 consecutive cochlear implantees using Cochlear Implant 24 Mini (CI 24 M) (M: F - 26:19), aged between two and 60 years with a mean age of 9.61 +/-12.07, was studied. The intra-operative t-NRT levels were seen to fall between the T and C levels and a good correlation was found between t-NRT and T and C levels (r = 0.327 at p < 0.005 for the T level and r = 0.648 at p < 0.001 for C level vs intra-operative t-NRT). The present study supports the view that 250 Hz NRT is not only a valuable clinical tool in evaluating the integrity of the implant and status of peripheral auditory nerves but can be used in programming the speech processor for young and difficult recipients, as has been previously shown using low rate NRT. PMID:19025887

  10. Redefining functional models of basal ganglia organization: role for the posteroventral pallidum in linguistic processing?

    PubMed

    Whelan, Brooke-Mai; Murdoch, Bruce E; Theodoros, Deborah G; Darnell, Ross; Silburn, Peter; Hall, Bruce

    2004-11-01

    Traditionally the basal ganglia have been implicated in motor behavior, as they are involved in both the execution of automatic actions and the modification of ongoing actions in novel contexts. Corresponding to cognition, the role of the basal ganglia has not been defined as explicitly. Relative to linguistic processes, contemporary theories of subcortical participation in language have endorsed a role for the globus pallidus internus (GPi) in the control of lexical-semantic operations. However, attempts to empirically validate these postulates have been largely limited to neuropsychological investigations of verbal fluency abilities subsequent to pallidotomy. We evaluated the impact of bilateral posteroventral pallidotomy (BPVP) on language function across a range of general and high-level linguistic abilities, and validated/extended working theories of pallidal participation in language. Comprehensive linguistic profiles were compiled up to 1 month before and 3 months after BPVP in 6 subjects with Parkinson's disease (PD). Commensurate linguistic profiles were also gathered over a 3-month period for a nonsurgical control cohort of 16 subjects with PD and a group of 16 non-neurologically impaired controls (NC). Nonparametric between-groups comparisons were conducted and reliable change indices calculated, relative to baseline/3-month follow-up difference scores. Group-wise statistical comparisons between the three groups failed to reveal significant postoperative changes in language performance. Case-by-case data analysis relative to clinically consequential change indices revealed reliable alterations in performance across several language variables as a consequence of BPVP. These findings lend support to models of subcortical participation in language, which promote a role for the GPi in lexical-semantic manipulation mechanisms. Concomitant improvements and decrements in postoperative performance were interpreted within the context of additive and subtractive

  11. Cochlear implant

    MedlinePlus

    ... are sent along the auditory nerve to the brain. A deaf person does not have a functioning inner ear. A cochlear implant tries to replace the function of the inner ear by ... signals to the brain. Sound is picked up by a microphone worn ...

  12. Cortical and medullary somatosensory projections to the cochlear nuclear complex in the hedgehog tenrec.

    PubMed

    Wolff, A; Künzle, H

    1997-01-17

    Various tracer substances were injected into the spinal cord, the dorsal column nuclei, the trigeminal nuclear complex and the somatosensory cortex in Madagascan hedgehog tenrecs. With the exception of the cases injected exclusively into the spinal cord all injections gave rise to sparse, but distinct anterograde projections to the cochlear nuclear complex, particularly the granular cell domain within and outside of the dorsal cochlear nucleus. Among these cochlear afferents the projection from the primary somatosensory cortex is the most remarkable because the hedgehog tenrec has one of the lowest encephalisation indices among mammals and a similar cortico-cochlear connection has not been demonstrated so far in other species. PMID:9121680

  13. Cochlear-Meningitis Vaccination

    MedlinePlus

    ... and otolaryngologists) and families should review the vaccination records of current and prospective cochlear implant recipients to ensure that all ... of Use Join Donate ENTConnect Contact Us ...

  14. In vivo Whole-Cell Recordings Combined with Electron Microscopy Reveal Unexpected Morphological and Physiological Properties in the Lateral Nucleus of the Trapezoid Body in the Auditory Brainstem

    PubMed Central

    Franken, Tom P.; Smith, Philip H.; Joris, Philip X.

    2016-01-01

    The lateral nucleus of the trapezoid body (LNTB) is a prominent nucleus in the superior olivary complex in mammals including humans. Its physiology in vivo is poorly understood due to a paucity of recordings. It is thought to provide a glycinergic projection to the medial superior olive (MSO) with an important role in binaural processing and sound localization. We combined in vivo patch clamp recordings with labeling of individual neurons in the Mongolian gerbil. Labeling of the recorded neurons allowed us to relate physiological properties to anatomy at the light and electron microscopic level. We identified a population of quite dorsally located neurons with surprisingly large dendritic trees on which most of the synaptic input impinges. In most neurons, one or more of these dendrites run through and are then medial to the MSO. These neurons were often binaural and could even show sensitivity to interaural time differences (ITDs) of stimulus fine structure or envelope. Moreover, a subpopulation showed enhanced phase-locking to tones delivered in the tuning curve tail. We propose that these neurons constitute the gerbil main LNTB (mLNTB). In contrast, a smaller sample of neurons was identified that was located more ventrally and that we designate to be in posteroventral LNTB (pvLNTB). These cells receive large somatic excitatory terminals from globular bushy cells. We also identified previously undescribed synaptic inputs from the lateral superior olive. pvLNTB neurons are usually monaural, display a primary-like-with-notch response to ipsilateral short tones at CF and can phase-lock to low frequency tones. We conclude that mLNTB contains a population of neurons with extended dendritic trees where most of the synaptic input is found, that can show enhanced phase-locking and sensitivity to ITD. pvLNTB cells, presumed to provide glycinergic input to the MSO, get large somatic globular bushy synaptic inputs and are typically monaural with short tone responses similar

  15. In vivo Whole-Cell Recordings Combined with Electron Microscopy Reveal Unexpected Morphological and Physiological Properties in the Lateral Nucleus of the Trapezoid Body in the Auditory Brainstem.

    PubMed

    Franken, Tom P; Smith, Philip H; Joris, Philip X

    2016-01-01

    The lateral nucleus of the trapezoid body (LNTB) is a prominent nucleus in the superior olivary complex in mammals including humans. Its physiology in vivo is poorly understood due to a paucity of recordings. It is thought to provide a glycinergic projection to the medial superior olive (MSO) with an important role in binaural processing and sound localization. We combined in vivo patch clamp recordings with labeling of individual neurons in the Mongolian gerbil. Labeling of the recorded neurons allowed us to relate physiological properties to anatomy at the light and electron microscopic level. We identified a population of quite dorsally located neurons with surprisingly large dendritic trees on which most of the synaptic input impinges. In most neurons, one or more of these dendrites run through and are then medial to the MSO. These neurons were often binaural and could even show sensitivity to interaural time differences (ITDs) of stimulus fine structure or envelope. Moreover, a subpopulation showed enhanced phase-locking to tones delivered in the tuning curve tail. We propose that these neurons constitute the gerbil main LNTB (mLNTB). In contrast, a smaller sample of neurons was identified that was located more ventrally and that we designate to be in posteroventral LNTB (pvLNTB). These cells receive large somatic excitatory terminals from globular bushy cells. We also identified previously undescribed synaptic inputs from the lateral superior olive. pvLNTB neurons are usually monaural, display a primary-like-with-notch response to ipsilateral short tones at CF and can phase-lock to low frequency tones. We conclude that mLNTB contains a population of neurons with extended dendritic trees where most of the synaptic input is found, that can show enhanced phase-locking and sensitivity to ITD. pvLNTB cells, presumed to provide glycinergic input to the MSO, get large somatic globular bushy synaptic inputs and are typically monaural with short tone responses similar

  16. Trends in Cochlear Implants

    PubMed Central

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management. PMID:15247993

  17. Cochlear Macromechanical Modelling

    NASA Astrophysics Data System (ADS)

    Wilson, Timothy Alan

    Contemporary research into the manifestations and origins of nonlinear, active cochlear processes often takes place in a context in which linear, passive cochlear mechanics are poorly understood and poorly communicated. The distinctions among models of one-, two-, and three-dimensional fluid motion in the cochlear scala--models popularized by (among others) Zwislocki, Ranke, and Steele, respectively --are confounded by fuzzy use of terms such as "long-wave model" or "short-wave model." Models are frequently evaluated by comparing their place responses with experimentally observed frequency responses; their global impedance parameters are sometimes chosen solely to secure fit to some local measurement. And Steele's WKB (phase-integral) approach is treated, more often than not, as just another technique for solving cochlear dynamical equations, rather than as a conceptual framework yielding significant insight into cochlear phenomena. In this thesis, I present cochlear dynamical equations for one-, two-, and three-dimensional fluid motion in a box-cochlea model, and I discuss the conditions under which such fluid motion is appropriately described as long wave, short wave, or as something in between. I describe the phase-integral approximate solution to these equations and discuss the utility of this framework for explaining cochlear phenomena. I develop generalized representations for both cochlear-partition impedance and cochlear-gain response that highlight the distinctions and similarities between the place response at a single frequency and the frequency response at a single place. The generalized representations clarify which aspects of partition impedance determine global phenomena, such as cochlear maps, and which aspects determine local features, such as magnitude -response peakiness and phase-response steepness. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  18. How the Cochlear Implant Helps Deaf Children Learn To Talk.

    ERIC Educational Resources Information Center

    Moog, Jean S.; Gustus, Christine

    This conference presentation discusses how the Nucleus 22 cochlear implant, with its ability to improve speech perception, can be capitalized upon to improve the speech production of very profoundly deaf children. The paper is designed to accompany a video presentation demonstrating the speech ability and theory of two young children (ages 3 and…

  19. Aural Rehabilitation of a Postlingually Deafened Child Fitted with a Partial-Insertion Cochlear Implant: A Case Study.

    ERIC Educational Resources Information Center

    Clarke, Maureen

    1998-01-01

    Discusses partial-insertion cochlear implants and examines the aural rehabilitation of a 13-year-old girl who was postlingually deafened in 1991 and subsequently fitted with a Nucleus 22-Channel cochlear implant. The case study traces her progress and the decision making process in changing from aural communication to sign language communication.…

  20. Auditory rehabilitation of patients with neurofibromatosis Type 2 by using cochlear implants

    PubMed Central

    Roehm, Pamela C.; St. Clair, Jon Mallen; Jethanamest, Daniel; Golfinos, John G.; Shapiro, William; Waltzman, Susan; Roland, J. Thomas

    2013-01-01

    Object The aim of this study was to determine whether patients with neurofibromatosis Type 2 (NF2) who have intact ipsilateral cochlear nerves can have open-set speech discrimination following cochlear implantation. Methods Records of 7 patients with documented NF2 were reviewed to determine speech discrimination outcomes following cochlear implantation. Outcomes were measured using consonant-nucleus-consonant words and phonemes; Hearing in Noise Test sentences in quiet; and City University of New York sentences in quiet and in noise. Results Preoperatively, none of the patients had open-set speech discrimination. Five of the 7 patients had previously undergone excision of ipsilateral vestibular schwannoma (VS). One of the patients who received a cochlear implant had received radiation therapy for ipsilateral VS, and another was undergoing observation for a small ipsilateral VS. Following cochlear implantation, 4 of 7 patients with NF2 had open-set speech discrimination following cochlear implantation during extended follow-up (15–120 months). Two of the 3 patients without open-set speech understanding had a prolonged period between ipsilateral VS resection and cochlear implantation (120 and 132 months), and had cochlear ossification at the time of implantation. The other patient without open-set speech understanding had good contralateral hearing at the time of cochlear implantation. Despite these findings, 6 of the 7 patients were daily users of their cochlear implants, and the seventh is an occasional user, indicating that all of the patients subjectively gained some benefit from their implants. Conclusions Cochlear implantation can provide long-term auditory rehabilitation, with open-set speech discrimination for patients with NF2 who have intact ipsilateral cochlear nerves. Factors that can affect implant performance include the following: 1) a prolonged time between VS resection and implantation; and 2) cochlear ossification. PMID:21761973

  1. The olivocochlear reflex strength and cochlear sensitivity are independently modulated by auditory cortex microstimulation.

    PubMed

    Dragicevic, Constantino D; Aedo, Cristian; León, Alex; Bowen, Macarena; Jara, Natalia; Terreros, Gonzalo; Robles, Luis; Delano, Paul H

    2015-04-01

    In mammals, efferent projections to the cochlear receptor are constituted by olivocochlear (OC) fibers that originate in the superior olivary complex. Medial and lateral OC neurons make synapses with outer hair cells and with auditory nerve fibers, respectively. In addition to the OC system, there are also descending projections from the auditory cortex that are directed towards the thalamus, inferior colliculus, cochlear nucleus, and superior olivary complex. Olivocochlear function can be assessed by measuring a brainstem reflex mediated by auditory nerve fibers, cochlear nucleus neurons, and OC fibers. Although it is known that the OC reflex is activated by contralateral acoustic stimulation and produces a suppression of cochlear responses, the influence of cortical descending pathways in the OC reflex is largely unknown. Here, we used auditory cortex electrical microstimulation in chinchillas to study a possible cortical modulation of cochlear and auditory nerve responses to tones in the absence and presence of contralateral noise. We found that cortical microstimulation produces two different peripheral modulations: (i) changes in cochlear sensitivity evidenced by amplitude modulation of cochlear microphonics and auditory nerve compound action potentials and (ii) enhancement or suppression of the OC reflex strength as measured by auditory nerve responses, which depended on the intersubject variability of the OC reflex. Moreover, both corticofugal effects were not correlated, suggesting the presence of two functionally different efferent pathways. These results demonstrate that auditory cortex electrical microstimulation independently modulates the OC reflex strength and cochlear sensitivity. PMID:25663383

  2. Cochlear implants in children.

    PubMed

    Young, N M

    1994-04-01

    Children with such profound deafness that they are not helped by hearing aids are now candidates for cochlear implantation. This technology permits us to provide these children with a significant degree of useful hearing. The degree of improvement in speech perception and spoken language in pediatric cochlear implant recipients varies. However, the younger the children and the less time they have been completely deprived of auditory stimuli, the more likely they are to make significant progress. The evaluation of the deaf child for implantation is best done by a multidisciplinary team who understands the needs of hearing-impaired children and who can work with the family, the child, and classroom teachers, as well as other school professionals. The decision to proceed with cochlear implantation in a child is one that requires long-term commitment on the part of the family and the cochlear implant team. PMID:8039409

  3. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  4. An Analysis of Phonological Process Use in Young Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Buhler, Helen C.; DeThomasis, Betty; Chute, Pat; DeCora, Anne

    2007-01-01

    Phonological process use was investigated in five children who used Nucleus 24 cochlear implants (CIs). All participants were less than 3 years of age at the time of cochlear implantation and ranged from 4;2 to 4;7 years of age at onset of study. Speech samples obtained from the GFTA-2 were analyzed using the KLPA-2 to evaluate participants'…

  5. Cochlear implantation in pontine tegmental cap dysplasia.

    PubMed

    Bacciu, Andrea; Ormitti, Francesca; Pasanisi, Enrico; Vincenti, Vincenzo; Zanetti, Diego; Bacciu, Salvatore

    2010-08-01

    Pontine tegmental cap dysplasia (PTCD) is an exceptionally rare brain stem and cerebellar malformation characterized by ventral pontine hypoplasia, vaulted pontine tegmentum, hypoplasia of the vermis, subtotal absence of middle cerebellar peduncles, lateralized course of the superior cerebellar peduncles, and absence or alteration of the inferior olivary nucleus. The main clinical features are multiple cranial neurophaties and ataxia. Sensorineural hearing loss of varying severity is almost always present. To date, 14 cases of PTCD have been reported in the literature. We present a child with PTCD and profound bilateral sensorineural hearing loss who underwent cochlear implantation. To the best of our knowledge, cochlear implantation in PTCD has not been previously reported. Functional outcome was assessed using the Speech Perception Categories and the Speech Intelligibility Rating scale. At 22 months' postoperative evaluation, the patient who was placed into speech perception category 0 (no detection of speech) preoperatively progressed to category 3 (beginning word identification). Before implantation, the child had connected speech unintelligible. At the last follow-up, she had connected speech intelligible to a listener who has little experience of a deaf person's speech. Cochlear implantation allowed this child to improve her quality of life, increasing her self-confidence, independence, and social integration. PMID:20627414

  6. Managing cochlear implant patients with suspected insulation damage.

    PubMed

    Cullington, Helen E

    2013-01-01

    Six Nucleus® 24 Contour™ and five Nucleus® Freedom™ with Contour Advance™ cochlear implants examined at the South of England Cochlear Implant Centre have failed and were explanted because of insulation damage. Insulation damage occurs when the silicone elastomer coating surrounding the electrode array wires and electronics capsule fails, allowing fluid entry to the electrode lead bundle. In addition, four Nucleus® 24 Contour™, one Nucleus® Freedom™ with Contour Advance™, and one Nucleus® 24 devices have failed as a result of suspected insulation damage; two have been explanted but explant reports not yet been received from the device manufacturer, four have not been explanted. Sixteen other Nucleus® devices are suspected to have insulation damage but the patients have retained clinical benefit, with remapping to exclude some or all affected electrodes in 14 cases. Insulation damage does not cause a sudden loss of sound; instead, a progressive deterioration can occur, which can make management and detection challenging, particularly in young children or those with additional needs. Monitoring of both impedances and clinical benefit is recommended. PMID:23411657

  7. Projections from the cochlear nuclei in the mustache bat, Pteronotus parnellii

    SciTech Connect

    Zook, J.M.; Casseday, J.H.

    1985-07-15

    Ascending projections of the cochlear nuclei in the mustache bat were analyzed by anterograde transport of (TH)-leucine and by retrograde transport of HRP. The authors were particularly interested in pathways to two parts of the system: (1) to the medial superior olive, because this nucleus is missing in most echolocating bats, but appears to be present in the mustache bat, and (2) to the intermediate and ventral nuclei of the lateral lemniscus, because these nuclei are hypertrophied and highly differentiated in all echolocating bats that we have examined. The results show a highly systematic projection from the anteroventral cochlear nucleus to all of the auditory nuclei in the brain stem. After an injection of (TH)-leucine in the anterior and dorsal part of the anteroventral cochlear nucleus, presumably in a region sensitive to low frequencies, label is seen in the following locations: ipsilateral to the injection in the lateral part of the lateral superior olive; bilaterally in the dorsal part of the medial superior olive; contralateral to the injection in the dorsal parts of the intermediate and ventral nuclei of the lateral lemniscus; and in the anterolateral part of the central nucleus of the inferior colliculus. After an injection of (TH)-leucine in a posterior part of the anteroventral cochlear nucleus, presumably in a region sensitive to high frequencies, labeling is in the same set of nuclei, but within each nucleus the label is now in a different location. Projections from the entire anteroventral cochlear nucleus to the inferior colliculus are confined to the ventral two-thirds of the central nucleus.

  8. Cochlear Implantation in Neurobrucellosis

    PubMed Central

    Bajin, Münir Demir; Savaş, Özden; Aslan, Filiz; Sennaroğlu, Levent

    2016-01-01

    Background: Neurobrucellosis is a disease consisting of a wide spectrum of complications such as peripheral neuropathy, cranial nerve involvement, ataxia, meningeal irritation, paraplegia, seizures, coma, and even death. The vestibulocochlear nerve seems to be the most commonly affected cranial nerve (10%). We present a patient with neurobrucellosis whose auditory perception and speech intelligibility skill performances improved after cochlear implantation. Case Report: A 35 year-old woman was admitted to another hospital 2 years ago with the symptoms of headache, nausea, and altered consciousness, who was finally diagnosed with neurobrucellosis. She developed bilateral profound sensorineural hearing loss during the following 6 months. There was no benefit of using hearing aids. After successful treatment of her illness, she was found to be suitable for cochlear implantation. After the operation, her auditory perception skills improved significantly with a Categories of Auditory Performance (CAP) score of 5. According to clinical observations and her family members’ statements, her Speech Intelligibility Rating (SIR) score was 3. Her speech intelligibility skills are still improving. Conclusion: Our case report represents the second case of hearing rehabilitation with cochlear implantation after neurobrucellosis. Cochlear implantation is a cost-effective and time-proven successful intervention in post-lingual adult patients with sensorineural hearing loss. Early timing of the surgery after appropriate treatment of meningitis helps the patient to achieve better postoperative results. PMID:26966626

  9. Questioning cochlear amplification

    NASA Astrophysics Data System (ADS)

    van der Heijden, Marcel; Versteegh, Corstiaen P. C.

    2015-12-01

    Thirty years ago it was hypothesized that motile processes inject mechanical energy into cochlear traveling waves. This mechanical amplification, alternatively described as negative damping, is invoked to explain both the sensitivity and the nonlinear compression of cochlear responses. There is a recent trend to present cochlear amplification as an established fact, even though the evidence is at most circumstantial and several thorny problems have remained unresolved. We analyze several of these issues, and present new basilar membrane recordings that allowed us to quantify cochlear energy flow. Specifically, we address the following questions: (1) Does auditory sensitivity require narrowband amplification? (2) Has the "RC problem" (lowpass filtering of outer hair cell receptor potential) been resolved? (3) Can OHC motility improve auditory sensitivity? (4) Is there a net power gain between neighboring locations on the basilar membrane? The analyses indicate that mechanical amplification in the cochlea is neither necessary nor useful, and that realizing it by known forms of motility would reduce sensitivity rather than enhance it. Finally, our experimental data show that the peaking of the traveling wave is realized by focusing the acoustic energy rather than amplifying it. (Abbreviations. BM: basilar membrane; CF: characteristic frequency; IHC: inner hair cell; ME: middle ear; MT; mechanotransducer; OHC: outer hair cell; SPL: sound pressure level.)

  10. Physiopathology of the Cochlear Microcirculation

    PubMed Central

    Shi, Xiaorui

    2011-01-01

    Normal blood supply to the cochlea is critically important for establishing the endocochlear potential and sustaining production of endolymph. Abnormal cochlear microcirculation has long been considered an etiologic factor in noise-induced hearing loss, age-related hearing loss (presbycusis), sudden hearing loss or vestibular function, and Meniere's disease. Knowledge of the mechanisms underlying the pathophysiology of cochlear microcirculation is of fundamental clinical importance. A better understanding of cochlear blood flow (CoBF) will enable more effective management of hearing disorders resulting from aberrant blood flow. This review focuses on recent discoveries and findings related to the physiopathology of the cochlear microvasculature. PMID:21875658

  11. Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas

    PubMed Central

    León, Alex; Elgueda, Diego; Silva, María A.; Hamamé, Carlos M.; Delano, Paul H.

    2012-01-01

    Background The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. Methodology/Principal Findings Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. Conclusions/Significance These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects

  12. RFcap: a software analysis tool for multichannel cochlear implant signals.

    PubMed

    Lai, Wai Kong; Dillier, Norbert

    2013-03-01

    Being able to display and analyse the output of a speech processor that encodes the parameters of complex stimuli to be presented by a cochlear implant (CI) is useful for software and hardware development as well as for diagnostic purposes. This firstly requires appropriate hardware that is able to receive and decode the radio frequency (RF)-coded signals, and then processing the decoded data using suitable software. The PCI-IF6 clinical hardware for the Nucleus CI system, together with the Nucleus Implant Communicator and Nucleus Matlab Toolbox research software libraries, provide the necessary functionality. RFcap is a standalone Matlab application that encapsulates the relevant functions to capture, display, and analyse the RF-coded signals intended for the Nucleus CI24M/R, CI24RE, and CI500 multichannel CIs. PMID:21762546

  13. Modelling Cochlear Mechanics

    PubMed Central

    Elliott, Stephen J.; Teal, Paul D.

    2014-01-01

    The cochlea plays a crucial role in mammal hearing. The basic function of the cochlea is to map sounds of different frequencies onto corresponding characteristic positions on the basilar membrane (BM). Sounds enter the fluid-filled cochlea and cause deflection of the BM due to pressure differences between the cochlear fluid chambers. These deflections travel along the cochlea, increasing in amplitude, until a frequency-dependent characteristic position and then decay away rapidly. The hair cells can detect these deflections and encode them as neural signals. Modelling the mechanics of the cochlea is of help in interpreting experimental observations and also can provide predictions of the results of experiments that cannot currently be performed due to technical limitations. This paper focuses on reviewing the numerical modelling of the mechanical and electrical processes in the cochlea, which include fluid coupling, micromechanics, the cochlear amplifier, nonlinearity, and electrical coupling. PMID:25136555

  14. Hearing Preservation Among Patients Undergoing Cochlear Implantation

    PubMed Central

    Van Abel, Kathryn M.; Dunn, Camille C.; Sladen, Douglas P.; Oleson, Jacob J.; Beatty, Charles W.; Neff, Brian A.; Hansen, Marlan; Gantz, Bruce J.; Driscoll, Colin L. W.

    2015-01-01

    Introduction Despite successful preservation of low-frequency hearing in patients undergoing cochlear implantation (CI) with shorter electrode lengths, there is still controversy regarding which electrodes maximize hearing preservation (HP). The thin straight electrode array (TSEA) has been suggested as a full cochlear coverage option for HP. However, very little is known regarding its HP potential. Methods A retrospective review was performed at two tertiary academic medical centers, reviewing the electronic records for 52 patients (mean, 58.2 yr; range, 11–85 yr) implanted with the Cochlear Nucleus CI422 Slim Straight (Centennial, CO, USA) electrode array, referred to herein as the thin straight electrode array or TSEA. All patients had a preoperative low-frequency pure-tone average (LFPTA) of 85 dB HL or less. Hearing thresholds were measured at initial activation (t1) and 6 months after activation (t2). HP was assessed by evaluating functional HP using a cutoff level of 85 dB HL PTA. Results At t1, 54% of the subjects had functional hearing; 33% of these subjects had an LFPTA between 71 and 85 dB HL, and 17% had an LFPTA between 56 and 70 dB HL. At t2, 47% of the patients had functional hearing, with 31% having an LFPTA between 71 and 85 dB HL. Discussion Preliminary research suggests that the TSEA has the potential to preserve functional hearing in 54% of patients at t1. However, 22% (n = 6) of the patients who had functional hearing at t1 (n = 28) lost their hearing between t1 and t2. Further studies are needed to evaluate factors that influence HP with the TSEA electrode and determine the speech perception benefits using electric and acoustic hearing over electric alone. PMID:25575373

  15. Cochlear labyrinth volume in Krapina Neandertals.

    PubMed

    Beals, Michaela E; Frayer, David W; Radovčić, Jakov; Hill, Cheryl A

    2016-01-01

    Research with extant primate taxa suggests that cochlear labyrinth volume is functionally related to the range of audible frequencies. Specifically, cochlear volume is negatively correlated with both the high and low frequency limits of hearing so that the smaller the cochlea, the higher the normal range of audible frequencies. The close anatomical relationship between the membranous cochlea and the bony cochlear labyrinth allows for the determination of cochlear size from fossil specimens. This study compares Krapina Neandertal cochlear volumes to extant taxa cochlear volumes. Cochlear volumes were acquired from high-resolution computed tomography scans of temporal bones of Krapina Neandertals, chimpanzees, gorillas, and modern humans. We find that Krapina Neandertals' cochlear volumes are similar to modern Homo sapiens and are significantly larger than chimpanzee and gorilla cochlear volumes. The measured cochlear volume in Krapina Neandertals suggests they had a range of audible frequencies similar to the modern human range. PMID:26603101

  16. A software tool for analyzing multichannel cochlear implant signals.

    PubMed

    Lai, Wai Kong; Bögli, Hans; Dillier, Norbert

    2003-10-01

    A useful and convenient means to analyze the radio frequency (RF) signals being sent by a speech processor to a cochlear implant would be to actually capture and display them with appropriate software. This is particularly useful for development or diagnostic purposes. sCILab (Swiss Cochlear Implant Laboratory) is such a PC-based software tool intended for the Nucleus family of Multichannel Cochlear Implants. Its graphical user interface provides a convenient and intuitive means for visualizing and analyzing the signals encoding speech information. Both numerical and graphic displays are available for detailed examination of the captured CI signals, as well as an acoustic simulation of these CI signals. sCILab has been used in the design and verification of new speech coding strategies, and has also been applied as an analytical tool in studies of how different parameter settings of existing speech coding strategies affect speech perception. As a diagnostic tool, it is also useful for troubleshooting problems with the external equipment of the cochlear implant systems. PMID:14534409

  17. Reactive Neurogenesis and Down-Regulation of the Potassium-Chloride Cotransporter KCC2 in the Cochlear Nuclei after Cochlear Deafferentation

    PubMed Central

    Tighilet, Brahim; Dutheil, Sophie; Siponen, Marina I.; Noreña, Arnaud J.

    2016-01-01

    While many studies have been devoted to investigating the homeostatic plasticity triggered by cochlear hearing loss, the cellular and molecular mechanisms involved in these central changes remain elusive. In the present study, we investigated the possibility of reactive neurogenesis after unilateral cochlear nerve section in the cochlear nucleus (CN) of cats. We found a strong cell proliferation in all the CN sub-divisions ipsilateral to the lesion. Most of the newly generated cells survive up to 1 month after cochlear deafferentation in all cochlear nuclei (except the dorsal CN) and give rise to a variety of cell types, i.e., microglial cells, astrocytes, and neurons. Interestingly, many of the newborn neurons had an inhibitory (GABAergic) phenotype. This result is intriguing since sensory deafferentation is usually accompanied by enhanced excitation, consistent with a reduction in central inhibition. The membrane potential effect of GABA depends, however, on the intra-cellular chloride concentration, which is maintained at low levels in adults by the potassium chloride co-transporter KCC2. The KCC2 density on the plasma membrane of neurons was then assessed after cochlear deafferentation in the cochlear nuclei ipsilateral and contralateral to the lesion. Cochlear deafferentation is accompanied by a strong down-regulation of KCC2 ipsilateral to the lesion at 3 and 30 days post-lesion. This study suggests that reactive neurogenesis and down-regulation of KCC2 is part of the vast repertoire involved in homeostatic plasticity triggered by hearing loss. These central changes may also play a role in the generation of tinnitus and hyperacusis.

  18. Cochlear implantation in a child with osteogenesis imperfecta.

    PubMed

    Migirov, Lela; Henkin, Yael; Hildesheimer, Minka; Kronenberg, Jona

    2003-06-01

    Osteogenesis imperfecta (OI) is a hereditary disease of connective tissue and affects bone, dentine, sclera, joint, tendon, blood vessels, heart valves, and skin. Approximately 50% of the adult patients with OI have associated hearing impairment. To date, only three cases of cochlear implantation in adults with OI have been reported, but none in children. We present a case of cochlear implantation in a congenitally deaf 6-year-old boy with OI. The Nucleus 24 Contour device was successfully implanted using the suprameatal approach (SMA). At 6 months post-initial stimulation there was no evidence of non-acoustic nerve excitation (i.e. facial twitching) or discomfort, and significant progress in auditory abilities was manifested by open set word identification. PMID:12745164

  19. Implications of Minimizing Trauma During Conventional Cochlear Implantation

    PubMed Central

    Carlson, Matthew L.; Driscoll, Colin L. W.; Gifford, René H.; Service, Geoffrey J.; Tombers, Nicole M.; Hughes-Borst, Becky J.; Neff, Brian A.; Beatty, Charles W.

    2014-01-01

    Objective To describe the relationship between implantation-associated trauma and postoperative speech perception scores among adult and pediatric patients undergoing cochlear implantation using conventional length electrodes and minimally traumatic surgical techniques. Study Design Retrospective chart review (2002–2010). Setting Tertiary academic referral center. Patients All subjects with significant preoperative low-frequency hearing (≤70 dB HL at 250 Hz) who underwent cochlear implantation with a newer generation implant electrode (Nucleus Contour Advance, Advanced Bionics HR90K [1J and Helix], and Med El Sonata standard H array) were reviewed. Intervention(s) Preimplant and postimplant audiometric thresholds and speech recognition scores were recorded using the electronic medical record. Main Outcome Measure(s) Postimplantation pure tone threshold shifts were used as a surrogate measure for extent of intracochlear injury and correlated with postoperative speech perception scores. Results Between 2002 and 2010, 703 cochlear implant (CI) operations were performed. Data from 126 implants were included in the analysis. The mean preoperative low-frequency pure-tone average was 55.4 dB HL. Hearing preservation was observed in 55% of patients. Patients with hearing preservation were found to have significantly higher postoperative speech perception performance in the cochlear implantation-only condition than those who lost all residual hearing. Conclusion Conservation of acoustic hearing after conventional length cochlear implantation is unpredictable but remains a realistic goal. The combination of improved technology and refined surgical technique may allow for conservation of some residual hearing in more than 50% of patients. Germane to the conventional length CI recipient with substantial hearing loss, minimizing trauma allows for improved speech perception in the electric condition. These findings support the use of minimally traumatic techniques in all CI

  20. Audiological outcomes of cochlear implantation in Waardenburg Syndrome

    PubMed Central

    Magalhães, Ana Tereza de Matos; Samuel, Paola Angélica; Goffi-Gomez, Maria Valeria Schimdt; Tsuji, Robinson Koji; Brito, Rubens; Bento, Ricardo Ferreira

    2013-01-01

    Summary Introduction: The most relevant clinical symptom in Waardenburg syndrome is profound bilateral sensorioneural hearing loss. Aim: To characterize and describe hearing outcomes after cochlear implantation in patients with Waardenburg syndrome to improve preoperative expectations. Method: This was an observational and retrospective study of a series of cases. Children who were diagnosed with Waardenburg syndrome and who received a multichannel cochlear implant between March 1999 and July 2012 were included in the study. Intraoperative neural response telemetry, hearing evaluation, speech perception, and speech production data before and after surgery were assessed. Results: During this period, 806 patients received a cochlear implant and 10 of these (1.2%) were diagnosed with Waardenburg syndrome. Eight of the children received a Nucleus 24® implant and 1 child and 1 adult received a DigiSonic SP implant. The mean age at implantation was 44 months among the children. The average duration of use of a cochlear implant at the time of the study was 43 months. Intraoperative neural responses were present in all cases. Patients who could use the speech processor effectively had a pure tone average of 31 dB in free-field conditions. In addition, the MUSS and MAIS questionnaires revealed improvements in speech perception and production. Four patients did not have a good outcome, which might have been associated with ineffective use of the speech processor. Conclusion: Despite the heterogeneity of the group, patients with Waardenburg syndrome who received cochlear implants were found to have hearing thresholds that allowed access to speech sounds. However, patients who received early intervention and rehabilitation showed better evolution of auditory perception. PMID:25992025

  1. Cochlear gain control

    NASA Astrophysics Data System (ADS)

    van der Heijden, Marcel

    2005-03-01

    The nonlinear auditory phenomena of compression, suppression, and distortion are known to have a cochlear-mechanical origin. An instantaneous nonlinear transfer function is often assumed to underlie these phenomena, but there are experimental indications that auditory nonlinearity is sluggish rather than instantaneous. This study analyzes the consequences of such sluggishness, using automatic gain control (AGC) as a model noninstantaneous nonlinearity. The distinctive characteristic of AGC, its delayed action, is shown to produce a number of observable and measurable effects that distinguish AGC from instantaneous nonlinearities. A major class of such AGC-specific effects concerns the phase of aural distortion products. For example, the phase of the cancellation tone in the classical psychoacoustic cancellation paradigm is linearly related to the frequency spacing of the primary tones in an AGC, as opposed to the square-law relationship produced by an instantaneous nonlinearity. These and other predictions are confronted with experimental data from the literature. The impact of putative AGC-related delays on the interpretation of distortion product otoacoustic emissions (DPOAEs) is discussed. Detailed suggestions are made for experiments specifically aimed at determining whether cochlear nonlinearity is instantaneous or delayed. .

  2. [Neurotology and cochlear implants].

    PubMed

    Merchán, Miguel A

    2015-05-01

    In this review we analyse cochlear implantation in terms of the fundamental aspects of the functioning of the auditory system. Concepts concerning neuronal plasticity applied to electrical stimulation in perinatal and adult deep hypoacusis are reviewed, and the latest scientific bases that justify early implantation following screening for congenital deafness are discussed. Finally, this review aims to serve as an example of the importance of fostering the sub-specialty of neurotology in our milieu, with the aim of bridging some of the gaps between specialties and thus improving both the knowledge in the field of research on auditory pathologies and in the screening of patients. The objectives of this review, targeted above all towards specialists in the field of otorhinolaryngology, are to analyse some significant neurological foundations in order to reach a better understanding of the clinical events that condition the indications and the rehabilitation of patients with cochlear implants, as well as to use this means to foster the growth of the sub-specialty of neurotology. PMID:25912703

  3. Dynamics of Cochlear Nonlinearity.

    PubMed

    Cooper, Nigel P; van der Heijden, Marcel

    2016-01-01

    Dynamic aspects of cochlear mechanical compression were studied by recording basilar membrane (BM) vibrations evoked by tone pairs ("beat stimuli") in the 11-19 kHz region of the gerbil cochlea. The frequencies of the stimulus components were varied to produce a range of "beat rates" at or near the characteristic frequency (CF) of the BM site under study, and the amplitudes of the components were balanced to produce near perfect periodic cancellations, visible as sharp notches in the envelope of the BM response. We found a compressive relation between instantaneous stimulus intensity and BM response magnitude that was strongest at low beat rates (e.g., 10-100 Hz). At higher beat rates, the amount of compression reduced progressively (i.e. the responses became linearized), and the rising and falling flanks of the response envelope showed increasing amounts of hysteresis; the rising flank becoming steeper than the falling flank. This hysteresis indicates that cochlear mechanical compression is not instantaneous, and is suggestive of a gain control mechanism having finite attack and release times. In gain control terms, the linearization that occurs at higher beat rates occurs because the instantaneous gain becomes smoothened, or low-pass filtered, with respect to the magnitude fluctuations in the stimulus. In terms of peripheral processing, the linearization corresponds to an enhanced coding, or decompression, of rapid amplitude modulations. These findings are relevant both to those who wish to understand the underlying mechanisms and those who need a realistic model of nonlinear processing by the auditory periphery. PMID:27080667

  4. Speech recognition for 40 patients receiving multichannel cochlear implants.

    PubMed

    Dowell, R C; Mecklenburg, D J; Clark, G M

    1986-10-01

    We collected data on 40 patients who received the Nucleus multichannel cochlear implant. Results were reviewed to determine if the coding strategy is effective in transmitting the intended speech features and to assess patient benefit in terms of communication skills. All patients demonstrated significant improvement over preoperative results with a hearing aid for both lipreading enhancement and speech recognition without lipreading. Of the patients, 50% demonstrated ability to understand connected discourse with auditory input only. For the 23 patients who were tested 12 months postoperatively, there was substantial improvement in open-set speech recognition. PMID:3755975

  5. Outcome of cochlear implantation in children with cochlear malformations.

    PubMed

    Bille, Jesper; Fink-Jensen, Vibeke; Ovesen, Therese

    2015-03-01

    The objective of the study was the evaluation of outcomes of cochlear implantation (CI) in children with cochlear malformations. A retrospective case-control study was conducted in a tertiary referral centre. The patients were children with inner ear malformation judged by high-resolution computed tomography and magnetic resonance imaging treated with uni- or bilateral CI and a follow-up period of at least 3 years. They were matched with a control group of children operated for other reasons. The patients were operated by one of two surgeons using similar techniques including a standard perimodiolar electrode in all cases. The intervention was therapeutic and rehabilitative. The main outcome measures were category of auditory performance (CAP) and speech intelligibility rating (SIR). Eighteen children were diagnosed with cochlear malformations (12 % of children receiving CI). No statistical differences regarding CAP and SIR scores were found between the two groups. Only one child was diagnosed with a common cavity and performed below average. Children with auditory neuropathy performed beyond average. Children with cochlear malformations performed equally to children without malformation in the long term. Standard perimodiolar electrodes can be used despite cochlear malformations. The most important factors determining the outcome is the age of the child at the time of implantation and duration of hearing loss before CI. Awareness towards an increased risk of complications in case of inner ear malformations is recommended. PMID:24407715

  6. Cochlear microphonic broad tuning curves

    NASA Astrophysics Data System (ADS)

    Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani

    2015-12-01

    It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the

  7. Efferent feedback slows cochlear aging.

    PubMed

    Liberman, M Charles; Liberman, Leslie D; Maison, Stéphane F

    2014-03-26

    The inner ear receives two types of efferent feedback from the brainstem: one pathway provides gain control on outer hair cells' contribution to cochlear amplification, and the other modulates the excitability of the cochlear nerve. Although efferent feedback can protect hair cells from acoustic injury and thereby minimize noise-induced permanent threshold shifts, most prior studies focused on high-intensity exposures (>100 dB SPL). Here, we show that efferents are essential for long-term maintenance of cochlear function in mice aged 1 year post-de-efferentation without purposeful acoustic overexposure. Cochlear de-efferentation was achieved by surgical lesion of efferent pathways in the brainstem and was assessed by quantitative analysis of immunostained efferent terminals in outer and inner hair cell areas. The resultant loss of efferent feedback accelerated the age-related amplitude reduction in cochlear neural responses, as seen in auditory brainstem responses, and increased the loss of synapses between hair cells and the terminals of cochlear nerve fibers, as seen in confocal analysis of the organ of Corti immunostained for presynaptic and postsynaptic markers. This type of neuropathy, also seen after moderate noise exposure, has been termed "hidden hearing loss", because it does not affect thresholds, but can be seen in the suprathreshold amplitudes of cochlear neural responses, and likely causes problems with hearing in a noisy environment, a classic symptom of age-related hearing loss in humans. Since efferent reflex strength varies among individuals and can be measured noninvasively, a weak reflex may be an important risk factor, and prognostic indicator, for age-related hearing impairment. PMID:24672005

  8. Bilateral contemporaneous posteroventral pallidotomy for the treatment of Parkinson's disease: neuropsychological and neurological side effects. Report of four cases and review of the literature.

    PubMed

    Ghika, J; Ghika-Schmid, F; Fankhauser, H; Assal, G; Vingerhoets, F; Albanese, A; Bogousslavsky, J; Favre, J

    1999-08-01

    The authors report the underestimated cognitive, mood, and behavioral complications in patients who have undergone bilateral contemporaneous pallidotomy, as seen in their early experience with functional neurosurgery for Parkinson's disease (PD) that is accompanied by severe motor fluctuations before pallidal stimulation. Four patients, not suffering from dementia, with advanced (Hoehn and Yahr Stages III-IV), medically untreatable PD featuring severe "on-off" fluctuations underwent bilateral contemporaneous posteroventral pallidotomy (PVP). All patients were evaluated according to the Core Assessment Program for Intracerebral Transplantations (CAPIT) protocol without positron emission tomography scans but with additional neuropsychological cognitive, mood, and behavior testing. For the first 3 to 6 months postoperatively, all patients showed a mean improvement of motor scores on the Unified Parkinson's Disease Rating Scale (UPDRS), in the best "on" (21%) and worst "off" (40%) UPDRS III motor subscale, a mean 30% improvement in the UPDRS II activities of daily living (ADL) subscore, and 60% on the UPDRS IV complications of treatment subscale. Dyskinesia disappeared almost completely, and the mean daily duration of the off time was reduced by an average of 60%. Despite these good results in the CAPIT scores, one patient experienced a partially regressive corticobulbar syndrome with dysphagia, dysarthria, and increased drooling. No emotional lability was found in this patient, but he did demonstrate severe bilateral postoperative pretarsal blepharospasm (apraxia of eyelid opening), which interfered with walking and which required treatment with high-dose subcutaneous injections of botulinum toxin. No patient showed visual field defects or hemiparesis, but postoperative depression, changes in personality, behavior, and executive functions were seen in two individuals. Postoperative abulia was reported by the family of one patient, who lost his preoperative

  9. Cochlear implantation in a patient with osteogenesis imperfecta.

    PubMed

    Makizumi, Yoshimi; Kashio, Akinori; Sakamoto, Takashi; Karino, Shotaro; Kakigi, Akinobu; Iwasaki, Shinichi; Yamasoba, Tatsuya

    2013-10-01

    Osteogenesis imperfecta (OI) is a connective tissue disorder characterized by a deficit in the synthesis of type I collagen. Hearing loss affects 42-58% of OI patients and progresses to deafness in 35-60% of these patients. For OI patients, cochlear implantation (CI) is the only promising treatment option. However, literature on CI in patients with OI is relatively rare. After CI, speech perception is generally good. However, among patients with severe demineralization of the cochlea, most patients are reported to have complications of facial nerve stimulation (FNS), preventing some patients from using the cochlear implant on a daily basis. Here we report a successful CI using a Nucleus CI24 Contour Advance cochlear implant in a patient with OI. Although high-resolution computed tomography (HRCT) showed extensive demineralization of the cochlea, intracochlear electrodes were inserted properly. The use of a modiolus-hugging device and the advance off-stylet technique contributed to the successful implantation, with no complications such as FNS or misplacement of electrodes. Therefore, CI can be used for treating deaf patients with OI. PMID:23219154

  10. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants.

    PubMed

    Venail, Frederic; Mura, Thibault; Akkari, Mohamed; Mathiolon, Caroline; Menjot de Champfleur, Sophie; Piron, Jean Pierre; Sicard, Marielle; Sterkers-Artieres, Françoise; Mondain, Michel; Uziel, Alain

    2015-01-01

    The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement), electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device). The electrical response, measured using auto-NRT (neural responses telemetry) algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = -0.11 ± 0.02, P < 0.01), the scalar placement of the electrodes (β = -8.50 ± 1.97, P < 0.01), and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF). Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas. PMID:26236725

  11. Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl.

    PubMed

    Takahashi, T T; Konishi, M

    1988-08-01

    Interaural phase and intensity are cues by which the barn owl determines, respectively, the azimuth and elevation of a sound source. Physiological studies indicate that phase and intensity are processed independently in the auditory brainstem of the barn owl. The phases of spectral components of a sound are encoded in nucleus magnocellularis (NM), one of the two cochlear nuclei. NM projects solely and bilaterally to nucleus laminaris (NL), wherein interaural phase difference is computed. The other cochlear nucleus, nucleus angularis (NA), encodes the amplitudes of spectral components of sounds. We report here the projections of NA and NL to the lateral lemniscal nuclei of the barn owl. The lateral lemniscal complex comprises nucleus olivaris superior (SO); nucleus lemnisci lateralis, pars ventralis (LLv); and nucleus ventralis lemnisci lateralis (VLV). At caudal levels, VLV may be divided into a posterior (VLVp) and an anterior (VLVa) subdivision on cytoarchitectonic grounds. At rostral levels, the cytoarchitectural differences diminish and the boundaries between the two subdivisions become obscured. Likewise, our data from anterograde tracing studies suggest that at caudal levels the terminal fields of NA and NL remain confined to VLVp and VLVa, respectively. They merge, however, at rostral levels. The data also suggest that NL projects to the medial portion of the ipsilateral SO and that NA projects bilaterally to all parts of SO and LLv. Studies with the retrograde transport of horseradish peroxidase confirm these projections. PMID:2463287

  12. IMPORTANCE OF COCHLEAR HEALTH FOR IMPLANT FUNCTION

    PubMed Central

    Pfingst, Bryan E.; Zhou, Ning; Colesa, Deborah J.; Watts, Melissa M.; Strahl, Stefan B.; Garadat, Soha N.; Schvartz-Leyzac, Kara C.; Budenz, Cameron L.; Raphael, Yehoash; Zwolan, Teresa A.

    2014-01-01

    Amazing progress has been made in providing useful hearing to hearing-impaired individuals using cochlear implants, but challenges remain. One such challenge is understanding the effects of partial degeneration of the auditory nerve, the target of cochlear implant stimulation. Here we review studies from our human and animal laboratories aimed at characterizing the health of the implanted cochlea and the auditory nerve. We use the data on cochlear and neural health to guide rehabilitation strategies. The data also motivate the development of tissue-engineering procedures to preserve or build a healthy cochlea and improve performance obtained by cochlear implant recipients or eventually replace the need for a cochlear implant. PMID:25261772

  13. Experimental cochlear hydrops in cats.

    PubMed

    Eby, T L

    1986-11-01

    An experimental model of cochlear hydrops was created in cats. Ten cats underwent surgical procedures to obliterate the saccule, and their temporal bones were studied by light microscopy after sacrifice at 10 weeks. In one group the saccules were destroyed by maceration and aspiration. However, in these ears the saccular lumens were not obliterated and endolymphatic hydrops did not develop. Obliteration of the saccules was achieved in the second group after fascia was introduced into the area of the injured saccules. Cochlear endolymphatic hydrops was a consistent finding in these ears except when a fistula of the membranous labyrinth was present. However, in addition to fibrosis and new bone formation in the vestibules there were also degenerative changes in the hair cells, tectorial membranes, and striae vasculares of these cochleae. The results supported the longitudinal flow theory of endolymph and are consistent with the reported examples of cochlear endolymphatic hydrops in man. PMID:3812642

  14. Developmental neuroplasticity after cochlear implantation.

    PubMed

    Kral, Andrej; Sharma, Anu

    2012-02-01

    Cortical development is dependent on stimulus-driven learning. The absence of sensory input from birth, as occurs in congenital deafness, affects normal growth and connectivity needed to form a functional sensory system, resulting in deficits in oral language learning. Cochlear implants bypass cochlear damage by directly stimulating the auditory nerve and brain, making it possible to avoid many of the deleterious effects of sensory deprivation. Congenitally deaf animals and children who receive implants provide a platform to examine the characteristics of cortical plasticity in the auditory system. In this review, we discuss the existence of time limits for, and mechanistic constraints on, sensitive periods for cochlear implantation and describe the effects of multimodal and cognitive reorganization that result from long-term auditory deprivation. PMID:22104561

  15. Biomaterials in cochlear implants

    PubMed Central

    Stöver, Timo; Lenarz, Thomas

    2011-01-01

    The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development. PMID:22073103

  16. Nonlinear cochlear mechanics.

    PubMed

    Zweig, George

    2016-05-01

    An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis. PMID:27250151

  17. Auditory behaviour and brainstem histochemistry in adult rats with characterized ear damage after neonatal ossicle ablation or cochlear disruption.

    PubMed

    Paterson, J A; Hosea, E W

    1993-02-26

    Binaural and monaural ossicle ablation in neonate rats before the time of onset of auditory input resulted in hearing deficits as detected by behavioural responses to sound stimuli in these rats as young adults. Cochlear disruption at the same neonatal age similarly resulted in the absence of startle reflexes in many of the rats. When the middle and inner ears of the rats were analysed postmortem in serial sections, it was observed that most ears after neonatal ossicle ablation contained only small remnants of the malleus-incus unit, separated from the stapes; in other ears an apparent continuity of ossicles had been restored. The rats with blind-ending ear canals and ossicle atrophy were those that had shown little response to sound stimuli. In the cochlear-disrupted rats, those with modiolar damage and loss of most spiral ganglion cells had shown substantial impairment of sound perception, even in some rats with only monaural modiolar loss. The chronic conduction deficit caused by neonatal ossicle removal did not result in detectable differences in relative cytochrome oxidase activity in the dorsal cochlear nuclei and central nucleus of the inferior colliculus. For monaurally ossicle-ablated rats, quantitation of the average intensity of enzyme reaction product in sections of dorsal or ventral cochlear nuclei, or central nucleus, did not reveal a difference between operated and non-operated sides. However, in binaurally ossicle-ablated rats, the relative enzyme activity in the anteroventral cochlear nuclei was reduced in comparison to this nucleus in control rats. The volume of the anteroventral cochlear nucleus in rats that had had neonatal binaural cochlear disruption was reduced relative to the volume in control rats or in rats that had had binaural ossicle ablation (P < 0.001); the latter procedure did not result in a statistically significant difference from controls in AVCN volume. In cochlear-operated rats with monaural modiolar damage, the AVCN

  18. Pediatric cochlear implantation: an update.

    PubMed

    Vincenti, Vincenzo; Bacciu, Andrea; Guida, Maurizio; Marra, Francesca; Bertoldi, Barbara; Bacciu, Salvatore; Pasanisi, Enrico

    2014-01-01

    Deafness in pediatric age can adversely impact language acquisition as well as educational and social-emotional development. Once diagnosed, hearing loss should be rehabilitated early; the goal is to provide the child with maximum access to the acoustic features of speech within a listening range that is safe and comfortable. In presence of severe to profound deafness, benefit from auditory amplification cannot be enough to allow a proper language development. Cochlear implants are partially implantable electronic devices designed to provide profoundly deafened patients with hearing sensitivity within the speech range. Since their introduction more than 30 years ago, cochlear implants have improved their performance to the extent that are now considered to be standard of care in the treatment of children with severe to profound deafness. Over the years patient candidacy has been expanded and the criteria for implantation continue to evolve within the paediatric population. The minimum age for implantation has progressively reduced; it has been recognized that implantation at a very early age (12-18 months) provides children with the best outcomes, taking advantage of sensitive periods of auditory development. Bilateral implantation offers a better sound localization, as well as a superior ability to understand speech in noisy environments than unilateral cochlear implant. Deafened children with special clinical situations, including inner ear malformation, cochlear nerve deficiency, cochlear ossification, and additional disabilities can be successfully treated, even thogh they require an individualized candidacy evaluation and a complex post-implantation rehabilitation. Benefits from cochlear implantation include not only better abilities to hear and to develop speech and language skills, but also improved academic attainment, improved quality of life, and better employment status. Cochlear implants permit deaf people to hear, but they have a long way to go before

  19. Advancing Binaural Cochlear Implant Technology

    PubMed Central

    McAlpine, David

    2015-01-01

    This special issue contains a collection of 13 papers highlighting the collaborative research and engineering project entitled Advancing Binaural Cochlear Implant Technology—ABCIT—as well as research spin-offs from the project. In this introductory editorial, a brief history of the project is provided, alongside an overview of the studies. PMID:26721929

  20. Multichannel cochlear implants in partially ossified cochleas.

    PubMed

    Balkany, T; Gantz, B; Nadol, J B

    1988-01-01

    Deposition of bone within the fluid spaces of the cochlea is encountered commonly in cochlear implant candidates and previously has been considered a relative contraindication to the use of multichannel intracochlear electrodes. This contraindication has been based on possible mechanical difficulty with electrode insertion as well as uncertainty about the potential benefit of the multichannel device in the patient. Fifteen profoundly deaf patients with partial ossification of the basal turn of the cochlea received implants with long intracochlear electrodes (11, Nucleus; 1, University of California at San Francisco/Storz; and 3, Symbion/Inneraid). In 11 cases, ossification had been predicted preoperatively by computed tomographic scan. Electrodes were completely inserted in 14 patients, and partial insertion was accomplished in one patient. All patients currently are using their devices and nine of 12 postlingually deaf patients have achieved some degree of open-set speech discrimination. This series demonstrates that in experienced hands, insertion of long multichannel electrodes into partially ossified cochleas is possible and that results are similar to those achieved in patients who have nonossified cochleas. PMID:3140705

  1. Environmental Sound Training in Cochlear Implant Users

    PubMed Central

    Sheft, Stanley; Kuvadia, Sejal; Gygi, Brian

    2015-01-01

    Purpose The study investigated the effect of a short computer-based environmental sound training regimen on the perception of environmental sounds and speech in experienced cochlear implant (CI) patients. Method Fourteen CI patients with the average of 5 years of CI experience participated. The protocol consisted of 2 pretests, 1 week apart, followed by 4 environmental sound training sessions conducted on separate days in 1 week, and concluded with 2 posttest sessions, separated by another week without training. Each testing session included an environmental sound test, which consisted of 40 familiar everyday sounds, each represented by 4 different tokens, as well as the Consonant Nucleus Consonant (CNC) word test, and Revised Speech Perception in Noise (SPIN-R) sentence test. Results Environmental sounds scores were lower than for either of the speech tests. Following training, there was a significant average improvement of 15.8 points in environmental sound perception, which persisted 1 week later after training was discontinued. No significant improvements were observed for either speech test. Conclusions The findings demonstrate that environmental sound perception, which remains problematic even for experienced CI patients, can be improved with a home-based computer training regimen. Such computer-based training may thus provide an effective low-cost approach to rehabilitation for CI users, and potentially, other hearing impaired populations. PMID:25633579

  2. Retrograde transport of (/sup 3/H)-D-aspartate label by cochlear and vestibular efferent neurons

    SciTech Connect

    Schwarz, D.W.; Schwarz, I.E.

    1988-01-01

    (/sup 3/H)-D-aspartic acid was injected into the inner ear of rats. After a six hour survival time, labeled cells were found at all locations known to contain efferent cochlear or vestibular neurons. Most labeled neurons were found in the ipsilateral lateral superior olivary nucleus (LSO), although both ventral nuclei of the trapezoid body (VTB), group E, and the caudal pontine reticular nucleus (CPR) just adjacent to the ascending limb of the facial nerve also contained labeled cells. Because not all efferent neurons in the rat could be previously shown to be cholinergic, aspartate and glutamate are efferent transmitter candidates.

  3. The inferior cochlear vein: surgical aspects in cochlear implantation.

    PubMed

    Guo, Rui; Zhang, HongLei; Chen, Wei; Zhu, XiaoQuan; Liu, Wei; Rask-Andersen, Helge

    2016-02-01

    The patency of the inferior cochlear vein (ICV) may be challenged in cochlear implantation (CI) due to its location near the round window (RW). This may be essential to consider during selection of different trajectories for electrode insertion aiming at preserving residual hearing. Venous blood from the human cochlea is drained through the ICV. The vein also drains blood from the modiolus containing the spiral ganglion neurons. Surgical interference with this vein could cause neural damage influencing CI outcome. We analyzed the topographical relationship between the RW and ICV bony channel and cochlear aqueduct (CA) from a surgical standpoint. Archival human temporal bones were further microdissected to visualize the CA and its accessory canals (AC1 and AC2). This was combined with examinations of plastic and silicone molds of the human labyrinth. Metric analyses were made using photo stereomicroscopy documenting the proximal portion of the AC1, the internal aperture of the CA and the RW. The mean distance between the AC1 and the anterior rim of the RW was 0.81 mm in bone specimens and 0.67 mm assessed in corrosion casts. The AC1 runs from the floor of the scala tympani through the otic capsule passing parallel to the CA to the posterior cranial fossa. The mean distance between the CA and AC1 canal was 0.31 and 0.25 mm, respectively. PMID:25700831

  4. Cochlear Implants: The Young People's Perspective

    ERIC Educational Resources Information Center

    Wheeler, Alexandra; Archbold, Sue; Gregory, Susan; Skipp, Amy

    2007-01-01

    Cochlear implantation is a relatively new procedure, which has already had significant impact on the lives of many profoundly deaf children and adults, in providing useful hearing to those unable to benefit significantly from hearing aids. After 16 years of cochlear implantation in the United Kingdom, there is now a body of evidence covering a…

  5. Deafblind People's Experiences of Cochlear Implantation

    ERIC Educational Resources Information Center

    Soper, Janet

    2006-01-01

    Cochlear implants are electronic devices that create the sensation of hearing in those who cannot obtain any benefit from conventional hearing aids. This article examines the experience of cochlear implantation in a select group of individuals with acquired deafblindness, focusing on three key themes: access to communication, information and…

  6. The Spatial Pattern of Cochlear Amplification

    PubMed Central

    Fisher, Jonathan A.N.; Nin, Fumiaki; Reichenbach, Tobias; Uthaiah, Revathy C.; Hudspeth, A.J.

    2012-01-01

    SUMMARY Sensorineural hearing loss, which stems primarily from the failure of mechanosensory hair cells, changes the traveling waves that transmit acoustic signals along the cochlea. However, the connection between cochlear mechanics and the amplificatory function of hair cells remains unclear. Using an optical technique that permits the targeted inactivation of prestin, a protein of outer hair cells that generates forces on the basilar membrane, we demonstrate that these forces interact locally with cochlear traveling waves to achieve enormous mechanical amplification. By perturbing amplification in narrow segments of the basilar membrane, we further show that a cochlear traveling wave accumulates gain as it approaches its peak. Analysis of these results indicates that cochlear amplification produces negative damping that counters the viscous drag impeding traveling waves; targeted photoinactivation locally interrupts this compensation. These results reveal the locus of amplification in cochlear traveling waves and connect the characteristics of normal hearing to molecular forces. PMID:23217746

  7. Forward-masked spatial tuning curves in cochlear implant users

    PubMed Central

    Nelson, David A.; Donaldson, Gail S.; Kreft, Heather

    2008-01-01

    Forward-masked psychophysical spatial tuning curves (fmSTCs) were measured in twelve cochlear-implant subjects, six using bipolar stimulation (Nucleus devices)and six using monopolar stimulation (Clarion devices). fmSTCs were measured at several probe levels on a middle electrode using a fixed-level probe stimulus and variable-level maskers. The average fmSTC slopes obtained in subjects using bipolar stimulation (3.7 dB/mm) were approximately three times steeper than average slopes obtained in subjects using monopolar stimulation (1.2 dB/mm). Average spatial bandwidths were about half as wide for subjects with bipolar stimulation (2.6 mm) than for subjects with monopolar stimulation (4.6 mm). None of the tuning curve characteristics changed significantly with probe level. fmSTCs replotted in terms of acoustic frequency, using Greenwood’s [J. Acoust. Soc. Am. 33, 1344–1356 (1961)] frequency-to-place equation, were compared with forward-masked psychophysical tuning curves obtained previously from normal-hearing and hearing-impaired acoustic listeners. The average tuning characteristics of fmSTCs in electric hearing were similar to the broad tuning observed in normal-hearing and hearing-impaired acoustic listeners at high stimulus levels. This suggests that spatial tuning is not the primary factor limiting speech perception in many cochlear implant users. PMID:18345841

  8. A phonological system at 2 years after cochlear implantation

    PubMed Central

    CHIN, STEVEN B.; PISONI, DAVID B.

    2011-01-01

    This report is a description of a developing phonological system as manifested in the productions of a prelingually deafened child approximately 2 years after fitting with a Nucleus 22-Channel Multi-Electrode Cochlear Implant. A probe list consisting of 23 proper nouns familiar to the child was used to elicit samples of her speech; stimulus materials consisted of photographs of those persons (friends and family members) whose names were included in the probe list. Analysis of the child's productions addressed the composition of the phonetic inventory of consonants and vowels and the presence of syllable structure and other phonotactic constraints. Results indicated a rich inventory of speech sound segments (among both consonants and vowels) and a lack of stringent constraints on syllable structure and consonants permitted in specified word positions. A further comparative analysis of correspondences with the ambient language showed a number of patterns that are also common in the speech of children with normal hearing. PMID:22091697

  9. Sharp temporal tuning in the bat auditory midbrain overcomes spectral-temporal trade-off imposed by cochlear mechanics.

    PubMed

    Macías, Silvio; Hechavarría, Julio C; Kössl, Manfred

    2016-01-01

    In the cochlea of the mustached bat, cochlear resonance produces extremely sharp frequency tuning to the dominant frequency of the echolocation calls, around 61 kHz. Such high frequency resolution in the cochlea is accomplished at the expense of losing temporal resolution because of cochlear ringing, an effect that is observable not only in the cochlea but also in the cochlear nucleus. In the midbrain, the duration of sounds is thought to be analyzed by duration-tuned neurons, which are selective to both stimulus duration and frequency. We recorded from 57 DTNs in the auditory midbrain of the mustached bat to assess if a spectral-temporal trade-off is present. Such spectral-temporal trade-off is known to occur as sharp tuning in the frequency domain which results in poorer resolution in the time domain, and vice versa. We found that a specialized sub-population of midbrain DTNs tuned to the bat's mechanical cochlear resonance frequency escape the cochlear spectral-temporal trade-off. We also show evidence that points towards an underlying neuronal inhibition that appears to be specific only at the resonance frequency. PMID:27374258

  10. Sharp temporal tuning in the bat auditory midbrain overcomes spectral-temporal trade-off imposed by cochlear mechanics

    PubMed Central

    Macías, Silvio; Hechavarría, Julio C.; Kössl, Manfred

    2016-01-01

    In the cochlea of the mustached bat, cochlear resonance produces extremely sharp frequency tuning to the dominant frequency of the echolocation calls, around 61 kHz. Such high frequency resolution in the cochlea is accomplished at the expense of losing temporal resolution because of cochlear ringing, an effect that is observable not only in the cochlea but also in the cochlear nucleus. In the midbrain, the duration of sounds is thought to be analyzed by duration-tuned neurons, which are selective to both stimulus duration and frequency. We recorded from 57 DTNs in the auditory midbrain of the mustached bat to assess if a spectral-temporal trade-off is present. Such spectral-temporal trade-off is known to occur as sharp tuning in the frequency domain which results in poorer resolution in the time domain, and vice versa. We found that a specialized sub-population of midbrain DTNs tuned to the bat’s mechanical cochlear resonance frequency escape the cochlear spectral-temporal trade-off. We also show evidence that points towards an underlying neuronal inhibition that appears to be specific only at the resonance frequency. PMID:27374258

  11. Ouabain-induced cochlear nerve degeneration: synaptic loss and plasticity in a mouse model of auditory neuropathy.

    PubMed

    Yuan, Yasheng; Shi, Fuxin; Yin, Yanbo; Tong, Mingjie; Lang, Hainan; Polley, Daniel B; Liberman, M Charles; Edge, Albert S B

    2014-02-01

    Ouabain application to the round window can selectively destroy type-I spiral ganglion cells, producing an animal model of auditory neuropathy. To assess the long-term effects of this deafferentation on synaptic organization in the organ of Corti and cochlear nucleus, and to ask whether surviving cochlear neurons show any post-injury plasticity in the adult, we quantified the peripheral and central synapses of type-I neurons at posttreatment times ranging from 1 to 3 months. Measures of normal DPOAEs and greatly reduced auditory brainstem responses (ABRs) confirmed the neuropathy phenotype. Counts of presynaptic ribbons and postsynaptic glutamate receptor patches in the inner hair cell area decreased with post-exposure time, as did counts of cochlear nerve terminals in the cochlear nucleus. Although these counts provided no evidence of new synapse formation via branching from surviving neurons, the regular appearance of ectopic neurons in the inner hair cell area suggested that neurite extension is not uncommon. Correlations between pathophysiology and histopathology showed that ABR thresholds are very insensitive to even massive neural degeneration, whereas the amplitude of ABR wave 1 is a better metric of synaptic degeneration. PMID:24113829

  12. Effect of embedded optical fibres on the mechanical properties of cochlear electrode arrays.

    PubMed

    Carland, Emma M; Stoddart, Paul R; Cadusch, Peter J; Fallon, James B; Wade, Scott A

    2016-02-01

    Incorporating optical fibres in cochlear electrode arrays has been proposed to provide sensors to help minimise insertion trauma and also for the delivery of light in optical nerve stimulation applications. However, embedding an optical fibre into an electrode array may change its stiffness properties, which can affect the level of trauma during insertion. This report uses measurements of buckling and deflection force to compare the stiffness properties of a range of cochlear electrode arrays (Nucleus straight array, rat array, cat array and guinea pig array) with custom arrays containing an embedded optical fibre. The cladding diameters of the optical fibres tested were 125 µm, 80 µm and 50 µm. The results show that the stiffness of the optical-fibre-embedded arrays is related to the diameter of the optical fibre. Comparison with wired arrays suggests optical fibres with a diameter of 50 µm could be embedded into an electrode array without significantly changing the stiffness properties of the array. PMID:26776375

  13. Cochlear Implant Using Neural Prosthetics

    NASA Astrophysics Data System (ADS)

    Gupta, Shweta; Singh, Shashi kumar; Dubey, Pratik Kumar

    2012-10-01

    This research is based on neural prosthetic device. The oldest and most widely used of these electrical, and often computerized, devices is the cochlear implant, which has provided hearing to thousands of congenitally deaf people in this country. Recently, the use of the cochlear implant is expanding to the elderly, who frequently suffer major hearing loss. More cutting edge are artificial retinas, which are helping dozens of blind people see, and ìsmartî artificial arms and legs that amputees can maneuver by thoughts alone, and that feel more like real limbs.Research, which curiosity led to explore frog legs dancing during thunderstorms, a snail shapedorgan in the inner ear, and how various eye cells react to light, have fostered an understanding of how to ìtalkî to the nervous system. That understanding combined with the miniaturization of electronics and enhanced computer processing has enabled prosthetic devices that often can bridge the gap in nerve signaling that is caused by disease or injury.

  14. Cortical Plasticity after Cochlear Implantation

    PubMed Central

    Petersen, B.; Gjedde, A.; Wallentin, M.; Vuust, P.

    2013-01-01

    The most dramatic progress in the restoration of hearing takes place in the first months after cochlear implantation. To map the brain activity underlying this process, we used positron emission tomography at three time points: within 14 days, three months, and six months after switch-on. Fifteen recently implanted adult implant recipients listened to running speech or speech-like noise in four sequential PET sessions at each milestone. CI listeners with postlingual hearing loss showed differential activation of left superior temporal gyrus during speech and speech-like stimuli, unlike CI listeners with prelingual hearing loss. Furthermore, Broca's area was activated as an effect of time, but only in CI listeners with postlingual hearing loss. The study demonstrates that adaptation to the cochlear implant is highly related to the history of hearing loss. Speech processing in patients whose hearing loss occurred after the acquisition of language involves brain areas associated with speech comprehension, which is not the case for patients whose hearing loss occurred before the acquisition of language. Finally, the findings confirm the key role of Broca's area in restoration of speech perception, but only in individuals in whom Broca's area has been active prior to the loss of hearing. PMID:24377050

  15. Cochlear implants and bacterial meningitis: A speech recognition study in paired samples

    PubMed Central

    de Brito, Rubens; Bittencourt, Aline Gomes; Goffi-Gomez, Maria Valéria; Magalhães, Ana Tereza; Samuel, Paola; Tsuji, Robinson Koji; Bento, Ricardo Ferreira

    2013-01-01

    Summary Introduction: Cochlear implants may guarantee sound perception and the ability to detect speech at a close-to-normal hearing intensity; however, differences have been observed among implantees in terms of performance on discrimination tests and speech recognition. Objective: To identify whether patients with post-meningitis deafness perform similarly to patients with hearing loss due to other causes. Method: A retrospective clinical study involving post-lingual patients who had been using Nucleus-22 or Nucleus-24 cochlear implants for at least 1 year. These patients were matched with respect to age (± 2 years), time since the onset of deafness (± 1 year), and the duration of implant use with implant users who had hearing loss due to other causes. Speech perception was assessed using the Portuguese version of the Latin-American Protocol for the Evaluation of Cochlear Implants. Results: The sample consisted of 52 individuals (26 in each of the 2 groups). The post-meningitic group had a median of 18.5 active electrodes. The group with hearing loss due to other causes had a median of 21, but no significant statistical difference was observed (p = 0.07). The results of closed- and open-set speech recognition tests showed great variability in speech recognition between the studied groups. These differences were more pronounced for the most difficult listening tasks, such as the medial consonant task (in the vowel-consonant-vowel format). Conclusion: Cochlear implant recipients with hearing loss due to bacterial meningitis, who had been using the device for 1 year performed more poorly on closed- and open-set speech recognition tests than did implant recipients with hearing loss due to other causes. PMID:25991995

  16. Cochlear implantation: a biomechanical prosthesis for hearing loss

    PubMed Central

    Yawn, Robert; Hunter, Jacob B.; Sweeney, Alex D.

    2015-01-01

    Cochlear implants are a medical prosthesis used to treat sensorineural deafness, and one of the greatest advances in modern medicine. The following article is an overview of cochlear implant technology. The history of cochlear implantation and the development of modern implant technology will be discussed, as well as current surgical techniques. Research regarding expansion of candidacy, hearing preservation cochlear implantation, and implantation for unilateral deafness are described. Lastly, innovative technology is discussed, including the hybrid cochlear implant and the totally implantable cochlear implant. PMID:26097718

  17. Benefits and Risks of Cochlear Implants

    MedlinePlus

    ... in aircraft interact in unpredictable ways with other computer systems Will have to be careful of static electricity. Static electricity may temporarily or permanently damage a cochlear implant. It ... computer monitors, or synthetic fabric. For more details regarding ...

  18. Educational Challenges for Children with Cochlear Implants.

    ERIC Educational Resources Information Center

    Chute, Patricia M.; Nevins, Mary Ellen

    2003-01-01

    This article addresses educational challenges for children with severe to profound hearing loss who receive cochlear implants. Despite the implants, these children face acoustic challenges, academic challenges, attention challenges, associative challenges, and adjustment challenges. (Contains references.) (Author/DB)

  19. Melodic Contour Identification by Cochlear Implant Listeners

    PubMed Central

    Galvin, John J.; Fu, Qian-Jie; Nogaki, Geraldine

    2013-01-01

    Objective While the cochlear implant provides many deaf patients with good speech understanding in quiet, music perception and appreciation with the cochlear implant remains a major challenge for most cochlear implant users. The present study investigated whether a closed-set melodic contour identification (MCI) task could be used to quantify cochlear implant users’ ability to recognize musical melodies and whether MCI performance could be improved with moderate auditory training. The present study also compared MCI performance with familiar melody identification (FMI) performance, with and without MCI training. Methods For the MCI task, test stimuli were melodic contours composed of 5 notes of equal duration whose frequencies corresponded to musical intervals. The interval between successive notes in each contour was varied between 1 and 5 semitones; the “root note” of the contours was also varied (A3, A4, and A5). Nine distinct musical patterns were generated for each interval and root note condition, resulting in a total of 135 musical contours. The identification of these melodic contours was measured in 11 cochlear implant users. FMI was also evaluated in the same subjects; recognition of 12 familiar melodies was tested with and without rhythm cues. MCI was also trained in 6 subjects, using custom software and melodic contours presented in a different frequency range from that used for testing. Results Results showed that MCI recognition performance was highly variable among cochlear implant users, ranging from 14% to 91% correct. For most subjects, MCI performance improved as the number of semitones between successive notes was increased; performance was slightly lower for the A3 root note condition. Mean FMI performance was 58% correct when rhythm cues were preserved and 29% correct when rhythm cues were removed. Statistical analyses revealed no significant correlation between MCI performance and FMI performance (with or without rhythmic cues). However

  20. Cochlear otosclerosis: does bone formation affect cochlear implant surgery?

    PubMed

    Fayad, J; Moloy, P; Linthicum, F H

    1990-05-01

    This study aimed to demonstrate that new bone formation in the scala tympani of patients deaf from otosclerosis does not preclude cochlear implant surgery. In seven temporal bones from patients with otosclerosis, we measured the extent of new bone from the round window to the distal part of the new growth. We compared results to surgical data on the extent of drilling and depth and ease of placement of the electrode in 20 patients deaf from otosclerosis. We also examined clinical performance and voltage requirements for long-term implant use in patients with and patients without ossification of the scala tympani. Findings in our limited sample of patients and bones show that obstruction of the basal turn, which occurs in some otosclerotic patients, does not preclude implant surgery. The dynamic range in the studied sample was relatively stable long-term and clinical performance did not differ between groups with and without an ossified scala tympani. PMID:2188511

  1. [Cochlear implantation through the middle fossa approach].

    PubMed

    Szyfter, W; Colletti, V; Pruszewicz, A; Kopeć, T; Szymiec, E; Kawczyński, M; Karlik, M

    2001-01-01

    The inner part of cochlear implant is inserted into inner ear during surgery through mastoid and middle ear. It is a classical method, used in the majority cochlear centers in the world. This is not a suitable method in case of chronic otitis media and middle ear malformation. In these cases Colletti proposed the middle fossa approach and cochlear implant insertion omitting middle ear structures. In patient with bilateral chronic otitis media underwent a few ears operations without obtaining dry postoperative cavity. Cochlear implantation through the middle fossa approach was performed in this patient. The bone fenster was cut, temporal lobe was bent and petrosus pyramid upper surface was exposed. When the superficial petrosal greater nerve, facial nerve and arcuate eminence were localised, the cochlear was open in the basal turn and electrode were inserted. The patient achieves good results in the postoperative speech rehabilitation. It confirmed Colletti tesis that deeper electrode insertion in the cochlear implantation through the middle fossa approach enable use of low and middle frequencies, which are very important in speech understanding. PMID:11766315

  2. High energy nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Wosiek, B.

    1986-01-01

    Experimental results on high energy nucleus-nucleus interactions are presented. The data are discussed within the framework of standard super-position models and from the point-of-view of the possible formation of new states of matter in heavy ion collisions.

  3. Parents' narratives on cochlear implantation: reconstructing the experience of having a child with cochlear implant.

    PubMed

    Peñaranda, Augusto; Suárez, Roberto M; Niño, Natalia M; Aparicio, Maria Leonor; García, Juan Manuel; Barón, Clemencia

    2011-08-01

    This paper discusses parents' narratives on cochlear implantation in Bogotá, Colombia using a qualitative approach. The main research objective was to identify how parents perceived the processes of diagnosis of their child's hearing loss, making the decision for cochlear implantation and the post-surgery period. All participants were hearing couples (n = 13) with similar socio-cultural backgrounds whose children had undergone cochlear implant surgery. Results show why cochlear implants are a very highly valued technological device with great symbolic power for parents. The study also deals with how perceptions about oral/sign language and disability, as well as social expectations for their children's lifetime opportunities, determine how the parents themselves have experienced their journey through the process of their children's cochlear implantation. PMID:21917202

  4. Cochlear Implants Keep Twin Sisters Learning, Discovering Together

    MedlinePlus

    ... Past Issues Special Section: Focus on Communication Cochlear Implants Past Issues / Fall 2008 Table of Contents For ... right, and Isabelle Jeppsen meet with Mia's cochlear implant surgeon, John Niparko, M.D., of Johns Hopkins ...

  5. Risk of Bacterial Meningitis in Children with Cochlear Implants

    MedlinePlus

    ... Information For... Media Policy Makers Risk of Bacterial Meningitis in Children with Cochlear Implants Language: English Español ( ... Compartir 2002 Study of the Risk of Bacterial Meningitis in Children with Cochlear Implants Many people have ...

  6. Electrically Evoked Auditory Steady State Responses in Cochlear Implant Users

    PubMed Central

    Wouters, Jan

    2009-01-01

    Auditory steady state responses are neural potentials in response to repeated auditory stimuli. This study shows that electrically evoked auditory steady state responses (EASSRs) to low-rate pulse trains can be reliably recorded by electrodes placed on the scalp of a cochlear implant (CI) user and separated from the artifacts generated by the electrical stimulation. Response properties are described, and the predictive value of EASSRs for behaviorally hearing thresholds is analyzed. For six users of a Cochlear Nucleus CI, EASSRs to symmetric biphasic pulse trains with rates between 35 and 47 Hz were recorded with seven scalp electrodes. The influence of various stimulus parameters was assessed: pulse rate, stimulus intensity, monopolar or bipolar stimulation mode, and presentation of either one pulse train on one electrode or interleaved pulse trains with different pulse rates on multiple electrodes. To compensate for the electrical artifacts caused by the stimulus pulses and radio frequency transmission, different methods of artifact reduction were employed. The validity of the recorded responses was confirmed by recording on–off responses, determination of response latency across the measured pulse rates, and comparison of amplitude growth of stimulus artifact and response amplitude. For stimulation in the 40 Hz range, response latencies of 35.6 ms (SD = 5.3 ms) were obtained. Responses to multiple simultaneous stimuli on different electrodes can be evoked, and the electrophysiological thresholds determined from EASSR amplitude growth in the 40 Hz range correlate well with behaviorally determined threshold levels for pulse rates of 41 Hz. PMID:20033246

  7. Longitudinal variations in fitting parameters for adult cochlear implant recipients.

    PubMed

    Mosca, F; Grassia, R; Leone, C A

    2014-04-01

    In patients with a cochlear implant (CI), the first critical point in processing auditory information from sound stimuli that leads to comprehension is the interface between the electrode and the cochlear nerve, which is dependent on providing appropriate current input. The purpose of this work was to evaluate the longitudinal differences in psychoacoustic fitting parameters in CI users. We studied 26 profoundly deaf adults, aged between 18 and 58 years, who had been implanted in our department between 2009 and 2011. The lowest current levels that evoked an auditory sensation (T-level) and the highest current levels that did not elicit an uncomfortable loud sensation (C-level) were recorded at the time of activation, approximately 30 days after implantation (mean 28.5 days) (T0), after one month (T1), 3 months (T3), 6 months (T6) and one year (T12). Impedance values were calculated for electrode groups: basal, middle and apical. In all cases, the same model of perimodiolar implant (Cochlear™ Nucleus(®) CI24RE) and the same surgical technique (cochleostomy) were used. The values of T-level and C-level showed significant incremental changes between T0 and T1 and between T1 and T3. T-levels in the basal regions of the cochlea were higher than in other sites. T-levels in the basal turn exhibited higher values consistent with a greater amount of fibrosis, as reported in other studies. Our findings suggest that fitting sessions should be scheduled more frequently during the first three months as indicated by the greater slope of T- and C- level variations during that time frame. PMID:24843221

  8. Spread of cochlear excitation during stimulation with pulsed infrared radiation: inferior colliculus measurements

    NASA Astrophysics Data System (ADS)

    Richter, C.-P.; Rajguru, S. M.; Matic, A. I.; Moreno, E. L.; Fishman, A. J.; Robinson, A. M.; Suh, E.; Walsh, J. T., Jr.

    2011-10-01

    Infrared neural stimulation (INS) has received considerable attention over the last few years. It provides an alternative method to artificially stimulate neurons without electrical current or the introduction of exogenous chromophores. One of the primary benefits of INS could be the improved spatial selectivity when compared with electrical stimulation. In the present study, we have evaluated the spatial selectivity of INS in the acutely damaged cochlea of guinea pigs and compared it to stimulation with acoustic tone pips in normal-hearing animals. The radiation was delivered via a 200 µm diameter optical fiber, which was inserted through a cochleostomy into the scala tympani of the basal cochlear turn. The stimulated section along the cochlear spiral ganglion was estimated from the neural responses recorded from the central nucleus of the inferior colliculus (ICC). ICC responses were recorded in response to cochlear INS using a multichannel penetrating electrode array. Spatial tuning curves (STCs) were constructed from the responses. For INS, approximately 55% of the activation profiles showed a single maximum, ~22% had two maxima and ~13% had multiple maxima. The remaining 10% of the profiles occurred at the limits of the electrode array and could not be classified. The majority of ICC STCs indicated that the spread of activation evoked by optical stimuli is comparable to that produced by acoustic tone pips.

  9. Polybrene: Observations on cochlear hair cell necrosis and minimal lentiviral transduction of cochlear hair cells.

    PubMed

    Han, Miaomiao; Yu, Dongzhen; Song, Qiang; Wang, Jiping; Dong, Pin; He, Jingchun

    2015-07-23

    Polybrene is widely used to enhance viral transduction; however, little is known about the utility thereof, in enhancing lentiviral transduction of cochlear cells. In the present study, we examined the cytotoxic effects of polybrene, and the further effects thereof, on lentiviral transduction of cochlear cells, especially sensory hair cells. Cochlear basilar membranes of newborn rats were cultured and treated with 0.1-10 μg/mL polybrene for 24h to explore the potential development of ototoxicity. PI staining and TUNEL detection were used to evaluate necrosis or apoptosis of hair cell. Various doses of lentivirus-GFP were added to cochlear organotypic cultures with safe concentrations of polybrene, incubated for 24h, and cultured (in the absence of the virus and polybrene) for a further 48 h. Transduction efficiencies were evaluated. The results showed that polybrene at 0.1 μg/mL was safe to cochlear cells, and 0.5-10 μg/mL concentration induced hair cell necrosis in a dose-dependent manner. However, supporting cells were not damaged. Lentiviral vectors transduced into cochlear cells and 0.1 μg/mL polybrene enhanced transduction efficiency. However, hair cells were hardly transduced with lentiviral vectors either alone or in the presence of 0.1 μg/mL polybrene. The use of polybrene to aid lentiviral transduction of cochlear hair cells requires further attention. PMID:26071903

  10. Retrolabyrinthine approach for cochlear nerve preservation in neurofibromatosis type 2 and simultaneous cochlear implantation

    PubMed Central

    Bento, Ricardo Ferreira; Monteiro, Tatiana Alves; Bittencourt, Aline Gomes; Goffi-Gomez, Maria Valeria Schmidt; de Brito, Rubens

    2013-01-01

    Summary Introduction: Few cases of cochlear implantation (CI) in neurofibromatosis type 2 (NF2) patients had been reported in the literature. The approaches described were translabyrinthine, retrosigmoid or middle cranial fossa. Objectives: To describe a case of a NF2- deafened-patient who underwent to vestibular schwannoma resection via RLA with cochlear nerve preservation and CI through the round window, at the same surgical time. Resumed Report: A 36-year-old woman with severe bilateral hearing loss due to NF2 was submitted to vestibular schwannoma resection and simultaneous CI. Functional assessment of cochlear nerve was performed by electrical promontory stimulation. Complete tumor removal was accomplishment via RLA with anatomic and functional cochlear and facial nerve preservation. Cochlear electrode array was partially inserted via round window. Sound field hearing threshold improvement was achieved. Mean tonal threshold was 46.2 dB HL. The patient could only detect environmental sounds and human voice but cannot discriminate vowels, words nor do sentences at 2 years of follow-up. Conclusion: Cochlear implantation is a feasible auditory restoration option in NF2 when cochlear anatomic and functional nerve preservation is achieved. The RLA is adequate for this purpose and features as an option for hearing preservation in NF2 patients. PMID:25992034

  11. Nucleus-nucleus scattering at high energies

    NASA Technical Reports Server (NTRS)

    Franco, V.; Varma, G. K.

    1977-01-01

    Nucleus-nucleus scattering is treated in the Glauber approximation. The usual optical limit result, generally thought to improve as the number of nucleons in the colliding nuclei increases, is found to be the first term of a series which diverges for large nuclei. Corrections to the optical limit are obtained which provide a means of performing realistic calculations for collisions involving light nuclei. Total cross section predictions agree well with recent measurements.

  12. Considering optogenetic stimulation for cochlear implants.

    PubMed

    Jeschke, Marcus; Moser, Tobias

    2015-04-01

    Electrical cochlear implants are by far the most successful neuroprostheses and have been implanted in over 300,000 people worldwide. Cochlear implants enable open speech comprehension in most patients but are limited in providing music appreciation and speech understanding in noisy environments. This is generally considered to be due to low frequency resolution as a consequence of wide current spread from stimulation contacts. Accordingly, the number of independently usable stimulation channels is limited to less than a dozen. As light can be conveniently focused, optical stimulation might provide an alternative approach to cochlear implants with increased number of independent stimulation channels. Here, we focus on summarizing recent work on optogenetic stimulation as one way to develop optical cochlear implants. We conclude that proof of principle has been presented for optogenetic stimulation of the cochlea and central auditory neurons in rodents as well as for the technical realization of flexible μLED-based multichannel cochlear implants. Still, much remains to be done in order to advance the technique for auditory research and even more for eventual clinical translation. This article is part of a Special Issue entitled . PMID:25601298

  13. Detection of Cochlear Amplification and Its Activation

    PubMed Central

    Dong, Wei; Olson, Elizabeth S.

    2013-01-01

    The operation of the mammalian cochlea relies on a mechanical traveling wave that is actively boosted by electromechanical forces in sensory outer hair cells (OHCs). This active cochlear amplifier produces the impressive sensitivity and frequency resolution of mammalian hearing. The cochlear amplifier has inspired scientists since its discovery in the 1970s, and is still not well understood. To explore cochlear electromechanics at the sensory cell/tissue interface, sound-evoked intracochlear pressure and extracellular voltage were measured using a recently developed dual-sensor with a microelectrode attached to a micro-pressure sensor. The resulting coincident in vivo observations of OHC electrical activity, pressure at the basilar membrane and basilar membrane displacement gave direct evidence for power amplification in the cochlea. Moreover, the results showed a phase shift of voltage relative to mechanical responses at frequencies slightly below the peak, near the onset of amplification. Based on the voltage-force relationship of isolated OHCs, the shift would give rise to effective OHC pumping forces within the traveling wave peak. Thus, the shift activates the cochlear amplifier, serving to localize and thus sharpen the frequency region of amplification. These results are the most concrete evidence for cochlear power amplification to date and support OHC somatic forces as its source. PMID:23972858

  14. [Cochlear implants in children and adolescents].

    PubMed

    Mlynski, R; Plontke, S

    2013-05-01

    Cochlear implants (CI) have become standard in the treatment of prelingual, postlingual and perilingual deafness and hearing loss in children. Bilateral implants are considered standard for bilaterally affected children. The benefits for speech and language development, as well as speech intelligibility brought by CI-enabled hearing are greatest if these are received as soon after diagnosis as possible. Continued improvements in preoperative diagnostics, electrode design, speech coding strategies and surgical techniques, have broadened the CI applications spectrum. Nowadays--with the exception of cochlear- and cochlear nerve aplasia--almost all malformations are manageable with CIs. New indications concern partial and unilateral deafness. Treatment with CIs requires exceptional team work. In addition to ongoing medical care of the children, the involvement of parents and relatives in the cooperation between surgeons, audiologists, teachers and specialist centers is important for successful rehabilitation. PMID:23649525

  15. Medial Cochlear Efferent Function: A Theoretical Analysis

    NASA Astrophysics Data System (ADS)

    Mountain, David C.

    2011-11-01

    Since the discovery of the cochlear efferent system, many hypotheses have been put forth for its function. These hypotheses for its function range from protecting the cochlea from over stimulation to improving the detection of sounds in noise. It is known that the medial efferent system innervates the outer hair cells and that stimulation of this system reduces basilar membrane and auditory nerve sensitivity which suggests that this system acts to decrease the gain of the cochlear amplifier. Here I present modeling results as well as analysis of published experimental data that suggest that the function of the medial efferent reflex is to decrease the cochlear amplifier gain by just the right amount so that the nonlinearity in the basilar membrane response lines up perfectly with the inner hair cell nonlinear transduction process to produce a hair cell receptor potential that is proportional to the logarithm of the sound pressure level.

  16. Longitudinal Analysis of the Absence of Intraoperative Neural Response Telemetry in Children using Cochlear Implants.

    PubMed

    Moura, Amanda Christina Gomes de; Goffi-Gomez, Maria Valéria Schmidt; Couto, Maria Ines Vieira; Brito, Rubens; Tsuji, Robinson Koji; Befi-Lopes, Debora Maria; Matas, Carla Gentile; Bento, Ricardo Ferreira

    2014-10-01

    Introduction Currently the cochlear implant allows access to sounds in individuals with profound hearing loss. The objective methods used to verify the integrity of the cochlear device and the electrophysiologic response of users have noted these improvements. Objective To establish whether the evoked compound action potential of the auditory nerve can appear after electrical stimulation when it is absent intraoperatively. Methods The clinical records of children implanted with the Nucleus Freedom (Cochlear Ltd., Australia) (CI24RE) cochlear implant between January 2009 and January 2010 with at least 6 months of use were evaluated. The neural response telemetry (NRT) thresholds of electrodes 1, 6, 11, 16, and 22 during surgery and after at least 3 months of implant use were analyzed and correlated with etiology, length of auditory deprivation, and chronological age. These data were compared between a group of children exhibiting responses in all of the tested electrodes and a group of children who had at least one absent response. Results The sample was composed of clinical records of 51 children. From these, 21% (11) showed no NRT in at least one of the tested electrodes. After an average of 4.9 months of stimulation, the number of individuals exhibiting absent responses decreased from 21 to 11% (n = 6). Conclusion It is feasible that absent responses present after a period of electrical stimulation. In our sample, 45% (n = 5) of the patients with intraoperative absence exhibited a positive response after an average of 4.9 months of continued electrical stimulation. PMID:25992123

  17. Understanding music with cochlear implants.

    PubMed

    Bruns, Lisa; Mürbe, Dirk; Hahne, Anja

    2016-01-01

    Direct stimulation of the auditory nerve via a Cochlear Implant (CI) enables profoundly hearing-impaired people to perceive sounds. Many CI users find language comprehension satisfactory, but music perception is generally considered difficult. However, music contains different dimensions which might be accessible in different ways. We aimed to highlight three main dimensions of music processing in CI users which rely on different processing mechanisms: (1) musical discrimination abilities, (2) access to meaning in music, and (3) subjective music appreciation. All three dimensions were investigated in two CI user groups (post- and prelingually deafened CI users, all implanted as adults) and a matched normal hearing control group. The meaning of music was studied by using event-related potentials (with the N400 component as marker) during a music-word priming task while music appreciation was gathered by a questionnaire. The results reveal a double dissociation between the three dimensions of music processing. Despite impaired discrimination abilities of both CI user groups compared to the control group, appreciation was reduced only in postlingual CI users. While musical meaning processing was restorable in postlingual CI users, as shown by a N400 effect, data of prelingual CI users lack the N400 effect and indicate previous dysfunctional concept building. PMID:27558546

  18. Localization model for cochlear implants

    NASA Astrophysics Data System (ADS)

    Miller, Douglas A.; Matin, Mohammad A.

    2011-09-01

    Normal hearing persons are able to localize the direction of sounds better using both ears than when listening with only one ear. Localization ability is dependent on auditory system perception of interaural differences in time, intensity, and phase. Interaural timing differences (ITDs) provide information for locating direction of low and mid frequency sounds, while interaural level differences (ILDs), which occur because of the horizontal plane shadowing effect of the head, provide information for locating direction of higher frequency sounds. The head related transfer function (HRTF) contains characteristic information important for acoustic localization. Models based on HRTFs take into account head shadow, torso, and pinna effects, and their impact on interaural frequency, level, and timing differences. Cochlear implants (CIs) have proven a successful treatment for persons with bilateral severe to profound hearing loss. A problem is that only some ITD and ILD cues are maintained with CI sound processing, and the microphone position alters the acoustic cues. The relative impact of differences in physical cues received by the auditory system with bilateral CIs versus differences in the ability of the damaged auditory nervous system to process bilateral inputs is not yet clear. The model presented in this paper was constructed as a step toward answering this question, and is intended to serve as a tool for future development of more optimal signal processing algorithms that may provide better localization ability for persons with bilateral CIs.

  19. Understanding music with cochlear implants

    PubMed Central

    Bruns, Lisa; Mürbe, Dirk; Hahne, Anja

    2016-01-01

    Direct stimulation of the auditory nerve via a Cochlear Implant (CI) enables profoundly hearing-impaired people to perceive sounds. Many CI users find language comprehension satisfactory, but music perception is generally considered difficult. However, music contains different dimensions which might be accessible in different ways. We aimed to highlight three main dimensions of music processing in CI users which rely on different processing mechanisms: (1) musical discrimination abilities, (2) access to meaning in music, and (3) subjective music appreciation. All three dimensions were investigated in two CI user groups (post- and prelingually deafened CI users, all implanted as adults) and a matched normal hearing control group. The meaning of music was studied by using event-related potentials (with the N400 component as marker) during a music-word priming task while music appreciation was gathered by a questionnaire. The results reveal a double dissociation between the three dimensions of music processing. Despite impaired discrimination abilities of both CI user groups compared to the control group, appreciation was reduced only in postlingual CI users. While musical meaning processing was restorable in postlingual CI users, as shown by a N400 effect, data of prelingual CI users lack the N400 effect and indicate previous dysfunctional concept building. PMID:27558546

  20. Musical experience sharpens human cochlear tuning.

    PubMed

    Bidelman, Gavin M; Nelms, Caitlin; Bhagat, Shaum P

    2016-05-01

    The mammalian cochlea functions as a filter bank that performs a spectral, Fourier-like decomposition on the acoustic signal. While tuning can be compromised (e.g., broadened with hearing impairment), whether or not human cochlear frequency resolution can be sharpened through experiential factors (e.g., training or learning) has not yet been established. Previous studies have demonstrated sharper psychophysical tuning curves in trained musicians compared to nonmusicians, implying superior peripheral tuning. However, these findings are based on perceptual masking paradigms, and reflect engagement of the entire auditory system rather than cochlear tuning, per se. Here, by directly mapping physiological tuning curves from stimulus frequency otoacoustic emissions (SFOAEs)-cochlear emitted sounds-we show that estimates of human cochlear tuning in a high-frequency cochlear region (4 kHz) is further sharpened (by a factor of 1.5×) in musicians and improves with the number of years of their auditory training. These findings were corroborated by measurements of psychophysical tuning curves (PTCs) derived via simultaneous masking, which similarly showed sharper tuning in musicians. Comparisons between SFOAE and PTCs revealed closer correspondence between physiological and behavioral curves in musicians, indicating that tuning is also more consistent between different levels of auditory processing in trained ears. Our findings demonstrate an experience-dependent enhancement in the resolving power of the cochlear sensory epithelium and the spectral resolution of human hearing and provide a peripheral account for the auditory perceptual benefits observed in musicians. Both local and feedback (e.g., medial olivocochlear efferent) mechanisms are discussed as potential mechanisms for experience-dependent tuning. PMID:26900073

  1. On the Horizon: Cochlear Implant Technology.

    PubMed

    Roche, Joseph P; Hansen, Marlan R

    2015-12-01

    Cochlear implantation and cochlear implants (CIs) have a long history filled with innovations that have resulted in the high-performing device's currently available. Several promising technologies have been reviewed in this article, which hold the promise to drive performance even higher. Remote CI programming, totally implanted devices, improved neural health and survival through targeted drug therapy and delivery, intraneural electrode placement, electroacoustical stimulation and hybrid CIs, and methods to enhance the neural-prosthesis interface are evolving areas of innovation reviewed in this article. PMID:26443490

  2. Imaging plasticity in cochlear implant patients.

    PubMed

    Giraud, A L; Truy, E; Frackowiak, R

    2001-01-01

    Auditory re-afferentation by cochlear implants (CI) offers a unique opportunity to study directly from within the auditory modality plastic changes taking place at organisational levels up to the supra- or polymodal level. These plastic changes resulting from deafness and chronic electrical stimulation can be studied using modern neuroimaging techniques. In this paper, we review the available techniques and the experimental approaches to human studies of plasticity, we discuss the different forms of plasticity that are associated with cochlear implantation and we point to the interest of imaging studies for providing a prognosis of functional outcome after implantation. PMID:11847465

  3. Cochlear implantation: current and future device options.

    PubMed

    Carlson, Matthew L; Driscoll, Colin L W; Gifford, René H; McMenomey, Sean O

    2012-02-01

    Today most cochlear implant users achieve above 80% on standard speech recognition in quiet testing, and enjoy excellent device reliability. Despite such success, conventional designs often fail to provide the frequency resolution required for complex listening tasks. Furthermore, performance variability remains a vexing problem, with a select group of patients performing poorly despite using the most recent technologies and processing strategies. This article provides a brief history of the development of cochlear implant technologies, reviews current implant systems from all 3 major manufacturers, examines recently devised strategies aimed at improving device performance, and discusses potential future developments. PMID:22115692

  4. Music Therapy for Preschool Cochlear Implant Recipients

    PubMed Central

    Gfeller, Kate; Driscoll, Virginia; Kenworthy, Maura; Van Voorst, Tanya

    2010-01-01

    This paper provides research and clinical information relevant to music therapy for preschool children who use cochlear implants (CI). It consolidates information from various disciplinary sources regarding (a) cochlear implantation of young prelingually-deaf children (~age 2-5), (b) patterns of auditory and speech-language development, and (c) research regarding music perception of children with CIs. This information serves as a foundation for the final portion of the article, which describes typical music therapy goals and examples of interventions suitable for preschool children. PMID:23904691

  5. Pediatric cochlear implant candidacy issues.

    PubMed

    Osberger, M J; Chute, P M; Pope, M L; Kessler, K S; Carotta, C C; Firszt, J B; Zimmerman-Phillips, S

    1991-01-01

    Children with progressive sensorineural hearing impairment represent a special challenge to the audiologist and the otologist. These are patients with some residual auditory abilities that deteriorate with time as the hearing loss progresses. No doubt, the unnecessary implantation of an ear that significantly benefits from amplification needs to be avoided at all costs. By the same token however, there appears to be no advantage to waiting an inordinate amount of time after the loss of functional auditory abilities before recommending implantation. At times when a complete loss is predictable, implantation may be advantageous before the onset of complete auditory deprivation. Steps the clinicians should take to manage these patients effectively are briefly summarized below: Implementation of rigorous and frequent audiologic monitoring. If, for instance, a significant progressive loss of hearing has occurred over a 6-month period, resulting in a complete absence of open-set speech recognition abilities in the auditory-alone mode with appropriate hearing aids, it is probably counterproductive to wait to the point of a complete absence of aided speech detection. Implantation at a critical point in time will prevent complete auditory deprivation. Parental counseling concerning various management strategies, such as use of vibrotactile devices, changing communication skills, and issues involving cochlear implants need to be undertaken early. Parents need to be involved in every phase of the evaluation process because they are the ones who make the final decision concerning the implantation of their child. Relatively early implantation should be considered in light of what is known concerning the effects of disruption in a child's linguistic, cognitive, and emotional development resulting from complete auditory deprivation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2069195

  6. Physical and mathematical cochlear models

    NASA Astrophysics Data System (ADS)

    Lim, Kian-Meng

    2000-10-01

    The cochlea is an intricate organ in the inner ear responsible for our hearing. Besides acting as a transducer to convert mechanical sound vibrations to electrical neural signals, the cochlea also amplifies and separates the sound signal into its spectral components for further processing in the brain. It operates over a broad-band of frequency and a huge dynamic range of input while maintaining a low power consumption. The present research takes the approach of building cochlear models to study and understand the underlying mechanics involved in the functioning of the cochlea. Both physical and mathematical models of the cochlea are constructed. The physical model is a first attempt to build a life- sized replica of the human cochlea using advanced micro- machining techniques. The model takes a modular design, with a removable silicon-wafer based partition membrane encapsulated in a plastic fluid chamber. Preliminary measurements in the model are obtained and they compare roughly with simulation results. Parametric studies on the design parameters of the model leads to an improved design of the model. The studies also revealed that the width and orthotropy of the basilar membrane in the cochlea have significant effects on the sharply tuned responses observed in the biological cochlea. The mathematical model is a physiologically based model that includes three-dimensional viscous fluid flow and a tapered partition with variable properties along its length. A hybrid asymptotic and numerical method provides a uniformly valid and efficient solution to the short and long wave regions in the model. Both linear and non- linear activity are included in the model to simulate the active cochlea. The mathematical model has successfully reproduced many features of the response in the biological cochlea, as observed in experiment measurements performed on animals. These features include sharply tuned frequency responses, significant amplification with inclusion of activity

  7. Progress in cochlear physiology after Békésy.

    PubMed

    Guinan, John J; Salt, Alec; Cheatham, Mary Ann

    2012-11-01

    In the fifty years since Békésy was awarded the Nobel Prize, cochlear physiology has blossomed. Many topics that are now current are things Békésy could not have imagined. In this review we start by describing progress in understanding the origin of cochlear gross potentials, particularly the cochlear microphonic, an area in which Békésy had extensive experience. We then review progress in areas of cochlear physiology that were mostly unknown to Békésy, including: (1) stereocilia mechano-electrical transduction, force production, and response amplification, (2) outer hair cell (OHC) somatic motility and its molecular basis in prestin, (3) cochlear amplification and related micromechanics, including the evidence that prestin is the main motor for cochlear amplification, (4) the influence of the tectorial membrane, (5) cochlear micromechanics and the mechanical drives to inner hair cell stereocilia, (6) otoacoustic emissions, and (7) olivocochlear efferents and their influence on cochlear physiology. We then return to a subject that Békésy knew well: cochlear fluids and standing currents, as well as our present understanding of energy dependence on the lateral wall of the cochlea. Finally, we touch on cochlear pathologies including noise damage and aging, with an emphasis on where the field might go in the future. PMID:22633944

  8. Pharmacokinetics of Drug Entry into Cochlear Fluids

    ERIC Educational Resources Information Center

    Salt, Alec N.

    2005-01-01

    The inner ear is exposed to aminoglycosides or other drugs either intentionally or as a side effect of clinical treatments directed at other regions of the body. An understanding of the effects of drugs on the inner ear requires knowledge of the pharmacokinetics of the drug once it reaches the cochlear fluids, specifically how much of it reaches…

  9. Impairment of Caloric Function after Cochlear Implantation

    ERIC Educational Resources Information Center

    Kuang, Heide; Haversat, Heather H.; Michaelides, Elias M.

    2015-01-01

    Purpose: This article seeks to review current literature on caloric function following cochlear implantation while analyzing any correlations of caloric function changes with vestibular symptoms. Method: This article is a systematic review of evidence-based literature. English language articles published between 1980 and 2014 that presented some…

  10. Auditory Learning in Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Mishra, Srikanta K.; Boddupally, Shiva P.; Rayapati, Deeksha

    2015-01-01

    Purpose: The purpose of this study was to examine and characterize the training-induced changes in speech-in-noise perception in children with congenital deafness who have cochlear implants (CIs). Method: Twenty-seven children with congenital deafness who have CIs were studied. Eleven children with CIs were trained on a speech-in-noise task,…

  11. Environmental Sound Training in Cochlear Implant Users

    ERIC Educational Resources Information Center

    Shafiro, Valeriy; Sheft, Stanley; Kuvadia, Sejal; Gygi, Brian

    2015-01-01

    Purpose: The study investigated the effect of a short computer-based environmental sound training regimen on the perception of environmental sounds and speech in experienced cochlear implant (CI) patients. Method: Fourteen CI patients with the average of 5 years of CI experience participated. The protocol consisted of 2 pretests, 1 week apart,…

  12. "Does God Have a Cochlear Implant?".

    ERIC Educational Resources Information Center

    Harvey, Michael A.

    2001-01-01

    This article discusses psychological and ethical considerations when providing family therapy for parents considering cochlear implantation for the deaf/hard-of-hearing child. Family dynamics, multilevel criteria of informed consent, therapist bias, and intervention strategies are illustrated by a case study of an 8-year-old boy. (Contains seven…

  13. Listening Effort with Cochlear Implant Simulations

    ERIC Educational Resources Information Center

    Pals, Carina; Sarampalis, Anastasios; Baskent, Deniz

    2013-01-01

    Purpose: Fitting a cochlear implant (CI) for optimal speech perception does not necessarily optimize listening effort. This study aimed to show that listening effort may change between CI processing conditions for which speech intelligibility remains constant. Method: Nineteen normal-hearing participants listened to CI simulations with varying…

  14. Gender Categorization in Cochlear Implant Users

    ERIC Educational Resources Information Center

    Massida, Zoe; Marx, Mathieu; Belin, Pascal; James, Christopher; Fraysse, Bernard; Barone, Pascal; Deguine, Olivier

    2013-01-01

    Purpose: In this study, the authors examined the ability of subjects with cochlear implants (CIs) to discriminate voice gender and how this ability evolved as a function of CI experience. Method: The authors presented a continuum of voice samples created by voice morphing, with 9 intermediate acoustic parameter steps between a typical male and a…

  15. Educational Progress Profiles of Cochlear Implant Children.

    ERIC Educational Resources Information Center

    Dawson, Sarah A.

    This study examined the educational development of 22 children (ages 2 to 10), under the supervision of the Cochlear Implant Team of the Medical College of Virginia, who had received implants as a result of deafness (in most cases prelingual and congenital) from 6 months to 3 years prior to the study. Data included a review of the children's case…

  16. Deaf Education: The Impact of Cochlear Implantation?

    ERIC Educational Resources Information Center

    Archbold, Sue; Mayer, Connie

    2012-01-01

    This paper reviews the impact that cochlear implantation has had on the practice of deaf education in terms of educational placement, communication choices, and educational attainments. Although there is variation in outcome, more children with implants are going to mainstream schools, and using spoken language as their primary means of…

  17. The management of cochlear nerve deficiency.

    PubMed

    Freeman, S R; Stivaros, S M; Ramsden, R T; O'Driscoll, M P; Nichani, J R; Bruce, I A; Green, K M; Henderson, L A; Rutherford, S A; King, A T; Lloyd, S K

    2013-11-01

    The assessment process is critical in deciding whether a profoundly deaf child with cochlear nerve deficiency (CND) will be suitable for a cochlear or auditory brainstem implant (ABI). Magnetic resonance imaging (MRI) using submillimetric T2 weighted gradient echo or turbo spin echo sequences is mandatory for all profoundly deaf children to diagnose CND. Evidence of audition on behavioural or electrophysiological tests following both auditory and electrical stimulation sometimes allows identification of significant auditory tissue not visible on MRI. In particular electric auditory brainstem response (EABR) testing may allow some quantification of auditory tissue and help decide whether a cochlear implant will be beneficial. Age and cognitive development are the most critical factors in determining ABI benefit. Hearing outcomes from both cochlear implants and ABIs are variable and likely to be limited in children with CND. A proportion of children will get no benefit. Usually the implants would be expected to provide recognition of environmental sounds and understanding of simple phonetics. Most children will not develop normal speech and they will often need to learn to communicate with sign language. The ABI involves a major neurosurgical procedure and at present the long term outcomes are unknown. It is therefore essential that parents who are considering this intervention have plenty of time to consider all aspects and the opportunity for in depth discussion. PMID:24533760

  18. Word Learning in Children following Cochlear Implantation

    ERIC Educational Resources Information Center

    Houston, Derek M.; Carter, Allyson K.; Pisoni, David B.; Kirk, Karen Iler; Ying, Elizabeth A.

    2005-01-01

    An experimental procedure was developed to investigate word-learning skills of children who use cochlear implants (CIs). Using interactive play scenarios, 2- to 5-year olds were presented with sets of objects (Beanie Baby stuffed animals) and words for their names that corresponded to salient perceptual attributes (e.g., "horns" for a goat). Their…

  19. Cochlear implant and delayed facial palsy.

    PubMed

    Joseph, Shawn Thadathil; Vishwakarma, Rajesh; Ramani, Mukesh Kumar; Aurora, Rupa

    2009-12-01

    Delayed facial nerve palsy following cochlear implant surgery is less documented though it poses diagnostic and therapeutic challenges. Apart from the functional, aesthetic and emotional concerns, it can raise important medico legal issues. The objectives of this study were: to report a case of delayed facial palsy following cochlear implant surgery in a patient who had positive viral antibody markers pre operatively; and to review the literature on delayed onset facial paralysis following viral reactivation and its relation to cochlear implant surgery. An extensive literature review was done using internet and medical search engines and library facilities. Important articles on the topic were identified and summarised. Data on delayed facial palsy following cochlear implant surgery were collected, constructed in a coherent way and details discussed. Postulated mechanisms of delayed facial palsy include neural oedema, vasospasm and viral reactivation. Of these, reactivation of previous herpes simplex virus infection has special significance, as many of these patients are positive for viral antibody markers. Manipulation of sensory branches of the facial nerve and chorda tympani can be a mechanism in such cases. Correlation of clinical presentation and pre operative positive viral antibody markers with positive polymerase chain reaction can be strongly suggestive of viral reactivation. It is concluded that patients with positive viral antibody markers are more susceptible to facial palsy from viral reactivation. Corticosteroids, antiviral agents and physiotherapy can be useful in producing a quicker and complete recovery. An experienced cochlear implant surgery team and pre operative radiological evaluations are mandatory to decrease the chances of direct facial nerve trauma. Proper irrigation lowers the risk of neural oedema. PMID:19194876

  20. Improving cochlear implant properties through conductive hydrogel coatings.

    PubMed

    Hassarati, Rachelle T; Dueck, Wolfram F; Tasche, Claudia; Carter, Paul M; Poole-Warren, Laura A; Green, Rylie A

    2014-03-01

    Conductive hydrogel (CH) coatings for biomedical electrodes have shown considerable promise in improving electrode mechanical and charge transfer properties. While they have desirable properties as a bulk material, there is limited understanding of how these properties translate to a microelectrode array. This study evaluated the performance of CH coatings applied to Nucleus Contour Advance cochlear electrode arrays. Cyclic voltammetry and biphasic stimulation were carried out to determine electrical properties of the coated arrays. Electrical testing demonstrated that CH coatings supported up to 24 times increase in charge injection limit. Reduced impedance was also maintained for over 1 billion stimulations without evidence of delamination or degradation. Mechanical studies performed showed negligible effect of the coating on the pre-curl structure of the Contour Advance arrays. Testing the coating in a model human scala tympani confirmed that adequate contact was maintained across the lateral wall. CH coatings are a viable, stable coating for improving electrical properties of the platinum arrays while imparting a softer material interface to reduce mechanical mismatch. Ultimately, these coatings may act to minimize scar tissue formation and fluid accumulation around electrodes and thus improve the electrical performance of neural implants. PMID:24608692

  1. Successful cochlear implantation in a patient with MNGIE syndrome.

    PubMed

    Li, Jia-Nan; Han, Dong-Yi; Ji, Fei; Chen, Ai-Ting; Wu, Nan; Xi, Xin; Shen, Wei-Dong; Yang, Shi-Ming

    2011-09-01

    Abstract A 28-year-old woman with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE syndrome) undergoing evaluation for multichannel cochlear implantation is described. The case history, diagnosis of mitochondrial disease, and assessment of the benefits of cochlear implantation are documented. The hearing level with cochlear implant and speech recognition were improved significantly for this patient. MNGIE syndrome is a rare congenital disorder of mitochondrial DNA (mt-DNA). It is crucial for the otolaryngologist to have awareness of MNGIE syndrome and other mitochondrial encephalomyopathies when patients present with sensorineural hearing loss (SNHL). Cochlear implantation can be recommended to patients with MNGIE syndrome and satisfactory results can be achieved. PMID:21563873

  2. The Nucleus Introduced

    PubMed Central

    Pederson, Thoru

    2011-01-01

    Now is an opportune moment to address the confluence of cell biological form and function that is the nucleus. Its arrival is especially timely because the recognition that the nucleus is extremely dynamic has now been solidly established as a paradigm shift over the past two decades, and also because we now see on the horizon numerous ways in which organization itself, including gene location and possibly self-organizing bodies, underlies nuclear functions. PMID:20660024

  3. Forward masking in the medial nucleus of the trapezoid body of the rat.

    PubMed

    Gao, Fei; Berrebi, Albert S

    2016-05-01

    Perception of acoustic stimuli is modulated by the temporal and spectral relationship between sound components. Forward masking experiments show that the perception threshold for a probe tone is significantly impaired by a preceding masker stimulus. Forward masking has been systematically studied at the level of the auditory nerve, cochlear nucleus, inferior colliculus and auditory cortex, but not yet in the superior olivary complex. The medial nucleus of the trapezoid body (MNTB), a principal cell group of the superior olive, plays an essential role in sound localization. The MNTB receives excitatory input from the contralateral cochlear nucleus via the calyces of Held and innervates the ipsilateral lateral and medial superior olives, as well as the superior paraolivary nucleus. Here, we performed single-unit extracellular recordings in the MNTB of rats. Using a forward masking paradigm previously employed in studies of the inferior colliculus and auditory nerve, we determined response thresholds for a 20-ms characteristic frequency pure tone (the probe), and then presented it in conjunction with another tone (the masker) that was varied in intensity, duration, and frequency; we also systematically varied the masker-to-probe delay. Probe response thresholds increased and response magnitudes decreased when a masker was presented. The forward suppression effects were greater when masker level and masker duration were increased, when the masker frequency approached the MNTB unit's characteristic frequency, and as the masker-to-probe delay was shortened. Probe threshold shifts showed an exponential decay as the masker-to-probe delay increased. PMID:25921974

  4. [Improving speech comprehension using a new cochlear implant speech processor].

    PubMed

    Müller-Deile, J; Kortmann, T; Hoppe, U; Hessel, H; Morsnowski, A

    2009-06-01

    The aim of this multicenter clinical field study was to assess the benefits of the new Freedom 24 sound processor for cochlear implant (CI) users implanted with the Nucleus 24 cochlear implant system. The study included 48 postlingually profoundly deaf experienced CI users who demonstrated speech comprehension performance with their current speech processor on the Oldenburg sentence test (OLSA) in quiet conditions of at least 80% correct scores and who were able to perform adaptive speech threshold testing using the OLSA in noisy conditions. Following baseline measures of speech comprehension performance with their current speech processor, subjects were upgraded to the Freedom 24 speech processor. After a take-home trial period of at least 2 weeks, subject performance was evaluated by measuring the speech reception threshold with the Freiburg multisyllabic word test and speech intelligibility with the Freiburg monosyllabic word test at 50 dB and 70 dB in the sound field. The results demonstrated highly significant benefits for speech comprehension with the new speech processor. Significant benefits for speech comprehension were also demonstrated with the new speech processor when tested in competing background noise.In contrast, use of the Abbreviated Profile of Hearing Aid Benefit (APHAB) did not prove to be a suitably sensitive assessment tool for comparative subjective self-assessment of hearing benefits with each processor. Use of the preprocessing algorithm known as adaptive dynamic range optimization (ADRO) in the Freedom 24 led to additional improvements over the standard upgrade map for speech comprehension in quiet and showed equivalent performance in noise. Through use of the preprocessing beam-forming algorithm BEAM, subjects demonstrated a highly significant improved signal-to-noise ratio for speech comprehension thresholds (i.e., signal-to-noise ratio for 50% speech comprehension scores) when tested with an adaptive procedure using the Oldenburg

  5. Meningitis after cochlear implantation in Mondini malformation.

    PubMed

    Page, E L; Eby, T L

    1997-01-01

    Although the potential for CSF leakage and subsequent meningitis after cochlear implantation in the malformed cochlea has been recognized, this complication has not been previously reported. We report a case of CSF otorhinorrhea and meningitis after minor head trauma developing 2 years after cochlear implantation in a child with Mondini malformation. Leakage of CSF was identified from the cochleostomy around the electrode of the implant, and this leak was sealed with a temporalis fascia and muscle plug. Although this complication appears to be rare, care must be taken to seal the cochleostomy in children with inner ear malformations at the initial surgery, and any episode of meningitis after surgery must be thoroughly investigated to rule out CSF leakage from the labyrinth. PMID:9018266

  6. Audiological results with the cochlear implant.

    PubMed

    Thielemeir, M A; Brimacombe, J A; Eisenberg, L S

    1982-01-01

    Audiological test results from 135 adult, profoundly deaf, single-electrode cochlear implant subjects are presented. Unaided, aided, and cochlear implant warble-tone and speech detection thresholds have been analyzed, as well as word, word stress, and environmental sound discrimination scores. Results indicate that implant thresholds are significantly better than aided thresholds at all frequencies tested and for speech detection. Also, word, word stress, and environmental sound discrimination scores are all significantly better with the implant than with a hearing aid. Although the implant does not provide speech discrimination, subjects report that it does provide valuable speech and sound awareness, which aids in speechreading and voice monitoring. A small group of subjects has shown that an an implant in the poorer ear can also be successfully combined with a hearing aid in the better ear. The audiological test results clearly show that the implant is a viable alternative for the profoundly deaf. PMID:6805394

  7. Ouabain-induced cochlear degeneration in rat

    PubMed Central

    Fu, Yong; Ding, Dalian; Jiang, Haiyan; Salvi, Richard

    2012-01-01

    Ouabain, an potent inhibitor of the Na+/K+-ATPase pump, selectively destroys spiral ganglion neurons (SGNs) in gerbils and mice whereas in guinea pigs it preferentially damages cochlear hair cells. To elucidate the effects of ouabain on the rat inner ear, a species widely used in research, 5 µl of 1 mM or 10 mM ouabain was applied to the round window membrane. Distortion product otoacoustic emissions (DPOAE) and auditory brainstem responses (ABR) were used identify functional deficits in hair cells and neurons respectively and histological techniques were used to characterize cochlear pathologies. High-frequency ABR thresholds were elevated after treatment with 1 mM ouabain whereas DPOAEs remained normal. In contrast, 10 mM ouabain increased ABR thresholds and reduced DPOAE amplitudes. Consistent with the physiological changes, 1 mM ouabain only damaged the SGNs and auditory nerve fibers in the basal turn of the cochlea whereas 10 mM ouabain destroyed both SGNs and cochlear hair cells; damage was greatest near the base and decreased toward the apex. The nuclei of degenerating SGNs and hair cells were condensed and fragmented and many cells were TUNEL-positive, morphological features of apoptotic cell death. Thus, ouabain-induced cochlear degeneration in rats is apoptotic and concentration dependent; low concentrations preferentially damage SGNs in the base of the cochlea, producing an animal model of partial auditory neuropathy, whereas high concentrations damage both hair cells and SGNs with damage decreasing from the base towards the apex. PMID:22476946

  8. Ouabain-induced cochlear degeneration in rat.

    PubMed

    Fu, Yong; Ding, Dalian; Jiang, Haiyan; Salvi, Richard

    2012-08-01

    Ouabain, a potent inhibitor of the Na+/K+-ATPase pump, selectively destroys spiral ganglion neurons (SGNs) in gerbils and mice, whereas in guinea pigs it preferentially damages cochlear hair cells. To elucidate the effects of ouabain on the rat inner ear, a species widely used in research, 5 μl of 1 or 10 mM ouabain was applied to the round window membrane. Distortion product otoacoustic emissions (DPOAE) and auditory brainstem responses (ABR) were used to identify functional deficits in hair cells and neurons, respectively, and histological techniques were used to characterize cochlear pathologies. High-frequency ABR thresholds were elevated after treatment with 1 mM ouabain, whereas DPOAEs remained normal. In contrast, 10 mM ouabain increased ABR thresholds and reduced DPOAE amplitudes. Consistent with the physiological changes, 1 mM ouabain only damaged the SGNs and auditory nerve fibers in the basal turn of the cochlea whereas 10 mM ouabain destroyed both SGNs and cochlear hair cells; damage was greatest near the base and decreased toward the apex. The nuclei of degenerating SGNs and hair cells were condensed and fragmented and many cells were TUNEL-positive, morphological features of apoptotic cell death. Thus, ouabain-induced cochlear degeneration in rats is apoptotic and concentration dependent; low concentrations preferentially damage SGNs in the base of the cochlea, producing an animal model of partial auditory neuropathy, whereas high concentrations damage both hair cells and SGNs with damage decreasing from the base toward the apex. PMID:22476946

  9. Markers of Cochlear Inflammation Using MRI

    PubMed Central

    Floc’h, Johann Le; Tan, Winston; Telang, Ravindra S.; Vlajkovic, Srdjan M.; Nuttall, Alfred; Rooney, William D.; Pontré, Beau; Thorne, Peter R.

    2014-01-01

    Purpose: To quantify spatial and temporal inflammation-induced changes in vascular permeability and macrophage infiltration in guinea-pig (GP) cochlea using MRI. Materials and Methods: GPs were injected with lipopolysaccharide (LPS) to induce cochlear inflammation. One group was injected with a gadolinium based contrast agent (GBCA) and dynamic contrast enhanced (DCE)-MRI was performed at 4, 7, and 10 days after LPS treatment. A two-compartment pharmacokinetic model was used to determine the apparent rate constant of GBCA extravasation (Ktrans). A second group was injected with ultrasmall superparamagnetic iron oxide particles (USPIOs) and studied at 2, 3, and 7 days after LPS treatment to detect tissue USPIO uptake and correlate with histology. For both groups, control GPs were scanned similarly. Results: The signal enhancement increased substantially and more rapidly at day 4 in LPS-treated than in control cochlea shortly following GBCA injection. Ktrans of LPS-treated cochlea was maximum on day 4 at 0.0218±0.0032 min−1 and then decreased to control level at 0.0036±0.0004 min−1 by day 10. In the second group, the relative signal intensity and T2 in cochlear perilymphatic spaces on day 2 decreased, on average, by 54% and 45%, respectively, compared with baseline and then remained under control levels by day 7. This suggests the infiltration of inflammatory cells, although unconfirmed by histology. Conclusion: This provides the first measurement of cochlear vascular permeability using MRI and a quantitative evaluation of the development of cochlear inflammation. MRI holds considerable potential for the assessment of disease processes such as clinical diagnosis of conditions such as labyrinthitis. PMID:23589173

  10. Local Cochlear Correlations of Perceived Pitch

    NASA Astrophysics Data System (ADS)

    Martignoli, Stefan; Stoop, Ruedi

    2010-07-01

    Pitch is one of the most salient attributes of the human perception of sound, but is still not well understood. This difficulty originates in the entwined nature of the phenomenon, in which a physical stimulus as well as a psychophysiological signal receiver are involved. In an electronic realization of a biophysically detailed nonlinear model of the cochlea, we find local cochlear correlates of the perceived pitch that explain all essential pitch-shifting phenomena from physical grounds.

  11. An Electromechanical Model for the Cochlear Microphonic

    NASA Astrophysics Data System (ADS)

    Teal, Paul D.; Lineton, Ben; Elliott, Stephen J.

    2011-11-01

    The first of the many electrical signals generated in the ear, nerves and brain as a response to a sound incident on the ear is the cochlear microphonic (CM). The CM is generated by the hair cells of the cochlea, primarily the outer hairs cells. The potentials of this signal are a nonlinear filtered version of the acoustic pressure at the tympanic membrane. The CM signal has been used very little in recent years for clinical audiology and audiological research. This is because of uncertainty in interpreting the CM signal as a diagnostic measure, and also because of the difficulty of obtaining the signal, which has usually required the use of a transtympanic electrode. There are however, several potential clinical and research applications for acquisition of the CM. To promote understanding of the CM, and potential clinical application, a model is presented which can account for the generation of the cochlear microphonic signal. The model incorporates micro-mechanical and macro-mechanical aspects of previously published models of the basilar membrane and reticular lamina, as well as cochlear fluid mechanics, piezoelectric activity and capacitance of the outer hair cells. It also models the electrical coupling of signals along the scalae.

  12. Hearing preservation in cochlear implant surgery.

    PubMed

    Miranda, Priscila Carvalho; Sampaio, André Luiz Lopes; Lopes, Rafaela Aquino Fernandes; Ramos Venosa, Alessandra; de Oliveira, Carlos Augusto Costa Pires

    2014-01-01

    In the past, it was thought that hearing loss patients with residual low-frequency hearing would not be good candidates for cochlear implantation since insertion was expected to induce inner ear trauma. Recent advances in electrode design and surgical techniques have made the preservation of residual low-frequency hearing achievable and desirable. The importance of preserving residual low-frequency hearing cannot be underestimated in light of the added benefit of hearing in noisy atmospheres and in music quality. The concept of electrical and acoustic stimulation involves electrically stimulating the nonfunctional, high-frequency region of the cochlea with a cochlear implant and applying a hearing aid in the low-frequency range. The principle of preserving low-frequency hearing by a "soft surgery" cochlear implantation could also be useful to the population of children who might profit from regenerative hair cell therapy in the future. Main aspects of low-frequency hearing preservation surgery are discussed in this review: its brief history, electrode design, principles and advantages of electric-acoustic stimulation, surgical technique, and further implications of this new treatment possibility for hearing impaired patients. PMID:25276136

  13. Surgical evaluation of candidates for cochlear implants

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Lilly, D. J.; Fowler, L. P.; Stypulkowski, P. H.

    1987-01-01

    The customary presentation of surgical procedures to patients in the United States consists of discussions on alternative treatment methods, risks of the procedure(s) under consideration, and potential benefits for the patient. Because the contents of the normal speech signal have not been defined in a way that permits a surgeon systematically to provide alternative auditory signals to a deaf patient, the burden is placed on the surgeon to make an arbitrary selection of candidates and available devices for cochlear prosthetic implantation. In an attempt to obtain some information regarding the ability of a deaf patient to use electrical signals to detect and understand speech, the Good Samaritan Hospital and Neurological Sciences Institute cochlear implant team has routinely performed tympanotomies using local anesthesia and has positioned temporary electrodes onto the round windows of implant candidates. The purpose of this paper is to review our experience with this procedure and to provide some observations that may be useful in a comprehensive preoperative evaluation for totally deaf patients who are being considered for cochlear implantation.

  14. Hearing Preservation in Cochlear Implant Surgery

    PubMed Central

    Sampaio, André Luiz Lopes; Lopes, Rafaela Aquino Fernandes; Ramos Venosa, Alessandra; de Oliveira, Carlos Augusto Costa Pires

    2014-01-01

    In the past, it was thought that hearing loss patients with residual low-frequency hearing would not be good candidates for cochlear implantation since insertion was expected to induce inner ear trauma. Recent advances in electrode design and surgical techniques have made the preservation of residual low-frequency hearing achievable and desirable. The importance of preserving residual low-frequency hearing cannot be underestimated in light of the added benefit of hearing in noisy atmospheres and in music quality. The concept of electrical and acoustic stimulation involves electrically stimulating the nonfunctional, high-frequency region of the cochlea with a cochlear implant and applying a hearing aid in the low-frequency range. The principle of preserving low-frequency hearing by a “soft surgery” cochlear implantation could also be useful to the population of children who might profit from regenerative hair cell therapy in the future. Main aspects of low-frequency hearing preservation surgery are discussed in this review: its brief history, electrode design, principles and advantages of electric-acoustic stimulation, surgical technique, and further implications of this new treatment possibility for hearing impaired patients. PMID:25276136

  15. Exploring Perspectives on Cochlear Implants and Language Acquisition within the Deaf Community

    ERIC Educational Resources Information Center

    Gale, Elaine

    2011-01-01

    Cochlear implants generated intense debate almost immediately following their introduction in the 1980s. Today, with a vast number of deaf individuals with cochlear implants, the debate about the cochlear implant device and mode of communication continues. Q-methodology was used in this study to explore cochlear implants and language acquisition…

  16. An evaluation of retrograde tracing methods for the identification of chemically distinct cochlear efferent neurons.

    PubMed

    Vetter, D E; Mugnaini, E

    1990-07-01

    We have compared retrograde labelling of rat olivocochlear neurons after unilateral cochlear injections of wheatgerm agglutinin conjugated horseradish peroxidase (WGA-HRP) and free HRP. After cochlear injection of WGA-HRP, labelling of nerve cell bodies in the brainstem can be explained not only as conventional retrograde labelling resulting from uptake by efferent nerve terminals synapsing on or near hair cells, but also as spurious labelling originating from tracer leakage, through the periotic duct and over the eighth nerve sheaths, into the cerebral-spinal fluid. Depending on the length of survival time, spurious labelling can involve small portions of the nucleus of the trapezoid body or the entire auditory brainstem and other non-auditory centers. On the contrary, moderate amounts of free HRP delivered to the cochlea do not lead to spurious labelling. With free HRP as the tracer of choice, we found that cochlear efferent cells were located not only in the ipsilateral LSO body and bilaterally within MVPO and RPO as already described by White and Warr, but also surrounding the ipsilateral LSO and in the ipsilateral LVPO. The allocation of these newly described olivocochlear neurons to the medial large cell or lateral small cell system is uncertain because they are located laterally in the brainstem and project ipsilaterally but are large spherical to fusiform or multipolar cells. A zinc salicylate-formol fixative and a metal intensified DAB reaction were found to be effective in visualizing retrogradely transported HRP in neurons and allowed immunocytochemical staining of the same sections with antisera to glutamic acid decarboxylase and choline acetyltransferase. This double label protocol can be used to produce a neurochemical map of the OC systems. PMID:1702612

  17. Spontaneous Discharge Patterns in Cochlear Spiral Ganglion Cells Prior to the Onset of Hearing in Cats

    PubMed Central

    Jones, Timothy A.; Leake, Patricia A.; Snyder, Russell L.; Stakhovskaya, Olga; Bonham, Ben

    2008-01-01

    Spontaneous neural activity has been recorded in the auditory nerve of cats as early as 2 days postnatal (P2 ), yet individual auditory neurons do not respond to ambient sound levels below 90–100 dB SPL until about P10. Significant refinement of the central projections from the spiral ganglion to the cochlear nucleus occurs during this neonatal period. This refinement may be dependent on peripheral spontaneous discharge activity. We recorded from single spiral ganglion cells in kittens aged P3 to P9. The spiral ganglion was accessed via the round window through the spiral lamina. A total of 112 ganglion cells were isolated for study in 9 animals. Spike rates in neonates were very low, ranging from 0.06 to 56 sp/s with a mean of 3.09 +/− 8.24 sp/s. Ganglion cells in neonatal kittens exhibited remarkable repetitive spontaneous bursting discharge patterns. The unusual patterns were evident in the large mean interval coefficient of variation (CVi = 2.9 +/−1.6) and burst index of 5.2 +/− 3.5 across ganglion cells. Spontaneous bursting patterns in these neonatal mammals were similar to those reported for cochlear ganglion cells of the embryonic chicken suggesting this may be a general phenomenon that is common across animal classes. Rhythmic spontaneous discharge of retinal ganglion cells has been shown to be important in the development of central retinotopic projections and normal binocular vision (Shatz, 1996, Proc Natl Acad Sci 93). Bursting rhythms in cochlear ganglion cells may play a similar role in the auditory system during pre-hearing periods. PMID:17686914

  18. Cochlear Implants:System Design, Integration and Evaluation

    PubMed Central

    Rebscher, Stephen; Harrison, William V.; Sun, Xiaoan; Feng, Haihong

    2009-01-01

    As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120,000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues from design and specifications to integration and evaluation. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants. PMID:19946565

  19. Serving Deaf Students Who Have Cochlear Implants. PEPNet Tipsheet

    ERIC Educational Resources Information Center

    Searls, J. Matt, Comp.

    2010-01-01

    Cochlear implants (CIs) are complex electronic devices surgically implanted under the skin behind the ear. These devices utilize electrodes placed in the inner ear (the cochlea) to stimulate the auditory nerve of individuals with significant permanent hearing loss. Cochlear implants may not be suitable for everyone. They are designed to provide…

  20. Congenitally Deafblind Children and Cochlear Implants: Effects on Communication

    ERIC Educational Resources Information Center

    Dammeyer, Jesper

    2009-01-01

    There has been much research conducted demonstrating the positive benefits of cochlear implantation (CI) in children who are deaf. Research on CI in children who are both deaf and blind, however, is lacking. The purpose of this article is to present a study of five congenitally deafblind children who received cochlear implants between 2.2 and 4.2…

  1. Interviews with Deaf Children about Their Experiences Using Cochlear Implants

    ERIC Educational Resources Information Center

    Preisler, G.; Tvingstedt, A. -L.

    2005-01-01

    Within the framework of a longitudinal study of deaf children with cochlear implants, 11 children with implants were interviewed. The objective was to shed light on what it is like for a child to use a cochlear implant, based on these children's own experience with implants, which ranged from 5.0 to 7.5 years. Six of the children were in schools…

  2. Evaluation of Evoked Potentials to Dyadic Tones after Cochlear Implantation

    ERIC Educational Resources Information Center

    Sandmann, Pascale; Eichele, Tom; Buechler, Michael; Debener, Stefan; Jancke, Lutz; Dillier, Norbert; Hugdahl, Kenneth; Meyer, Martin

    2009-01-01

    Auditory evoked potentials are tools widely used to assess auditory cortex functions in clinical context. However, in cochlear implant users, electrophysiological measures are challenging due to implant-created artefacts in the EEG. Here, we used independent component analysis to reduce cochlear implant-related artefacts in event-related EEGs of…

  3. Including Children with Cochlear Implants in General Education Elementary Classrooms

    ERIC Educational Resources Information Center

    Stith, Joanna L.; Drasgow, Erik

    2005-01-01

    Cochlear implants can provide partial hearing to individuals with substantial hearing loss. Because of improvements in early identification and intervention, more children with cochlear implants will be included in elementary school general education classrooms. Thus, general education teachers should be prepared for teaching children with…

  4. Multidisciplinary Training for Rural Outreach to Children with Cochlear Implants.

    ERIC Educational Resources Information Center

    Schery, Teris K.; Tharpe, Anne Marie

    The number of deaf children with surgically implanted cochlear devices has been increasing since the device was approved in 1989. In rural communities, there may be no one who is knowledgeable about the care of cochlear implants, what to expect of the child's communication abilities, and how to maximize the child's progress. A federally funded…

  5. Evaluating the Feasibility of Using Remote Technology for Cochlear Implants

    ERIC Educational Resources Information Center

    Goehring, Jenny L.; Hughes, Michelle L.; Baudhuin, Jacquelyn L.

    2012-01-01

    The use of remote technology to provide cochlear implant services has gained popularity in recent years. This article contains a review of research evaluating the feasibility of remote service delivery for recipients of cochlear implants. To date, published studies have determined that speech-processor programming levels and other objective tests…

  6. Realization of Complex Onsets by Pediatric Users of Cochlear Implants

    ERIC Educational Resources Information Center

    Chin, Steven B.

    2006-01-01

    This study examined variations in English complex onset realizations by children who use cochlear implants. Data consisted of 227 productions of two-segment onset clusters from 12 children. In general, onset cluster realizations of children with cochlear implants did not differ markedly from those reported for children with normal hearing: null…

  7. Speech Intelligibility and Prosody Production in Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Chin, Steven B.; Bergeson, Tonya R.; Phan, Jennifer

    2012-01-01

    Objectives: The purpose of the current study was to examine the relation between speech intelligibility and prosody production in children who use cochlear implants. Methods: The Beginner's Intelligibility Test (BIT) and Prosodic Utterance Production (PUP) task were administered to 15 children who use cochlear implants and 10 children with normal…

  8. An Introduction to Cochlear Implant Technology, Activation, and Programming.

    ERIC Educational Resources Information Center

    Moore, Jan A.; Teagle, Holly F. B.

    2002-01-01

    This article provides information about the hardware components and speech-processing strategies of cochlear implant systems. The use of assistive listening devices with cochlear implants is also discussed. A brief description of surgical procedures and the initial activation of the device are also presented, along with programming considerations.…

  9. Parents' Views on Changing Communication after Cochlear Implantation

    ERIC Educational Resources Information Center

    Watson, Linda M.; Hardie, Tim; Archbold, Sue M.; Wheeler, Alexandra

    2008-01-01

    We sent questionnaires to families of all 288 children who had received cochlear implants at one center in the United Kingdom at least 5 years previously. Thus, it was a large, unselected group. We received 142 replies and 119 indicated that the child and family had changed their communication approach following cochlear implantation. In 113 cases…

  10. Relationships among Professionals' Knowledge, Experience, and Expectations Regarding Cochlear Implants

    ERIC Educational Resources Information Center

    Ben-Itzhak, D.; Most, T.; Weisel, A.

    2005-01-01

    The present study examined the relationships between teachers' and communication clinicians' self-reported knowledge on cochlear implants and their expectations of CIs. The authors also explored these professionals' views regarding the child's communication mode, educational setting, and social options following cochlear implantation. The…

  11. Emotion Understanding in Deaf Children with a Cochlear Implant

    ERIC Educational Resources Information Center

    Wiefferink, Carin H.; Rieffe, Carolien; Ketelaar, Lizet; De Raeve, Leo; Frijns, Johan H. M.

    2013-01-01

    It is still largely unknown how receiving a cochlear implant affects the emotion understanding in deaf children. We examined indices for emotion understanding and their associations with communication skills in children aged 2.5-5 years, both hearing children (n = 52) and deaf children with a cochlear implant (n = 57). 2 aspects of emotion…

  12. Surgical Management of the Pediatric Cochlear Implant Patient.

    ERIC Educational Resources Information Center

    Cohen, Seth M.; Haynes, David S.

    2003-01-01

    This article discusses the surgical management of children receiving cochlear implants. It identifies preoperative considerations to select patients likely to benefit, contraindications, some new surgical techniques, complications, special considerations (otitis media, meningitis, head growth, inner ear malformations, and cochlear obstruction).…

  13. Cochlear perfusion with a viscous fluid.

    PubMed

    Wang, Yi; Olson, Elizabeth S

    2016-07-01

    The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and

  14. The Hearing Outcomes of Cochlear Implantation in Waardenburg Syndrome.

    PubMed

    Koyama, Hajime; Kashio, Akinori; Sakata, Aki; Tsutsumiuchi, Katsuhiro; Matsumoto, Yu; Karino, Shotaro; Kakigi, Akinobu; Iwasaki, Shinichi; Yamasoba, Tatsuya

    2016-01-01

    Objectives. This study aimed to determine the feasibility of cochlear implantation for sensorineural hearing loss in patients with Waardenburg syndrome. Method. A retrospective chart review was performed on patients who underwent cochlear implantation at the University of Tokyo Hospital. Clinical classification, genetic mutation, clinical course, preoperative hearing threshold, high-resolution computed tomography of the temporal bone, and postoperative hearing outcome were assessed. Result. Five children with Waardenburg syndrome underwent cochlear implantation. The average age at implantation was 2 years 11 months (ranging from 1 year 9 months to 6 years 3 months). Four patients had congenital profound hearing loss and one patient had progressive hearing loss. Two patients had an inner ear malformation of cochlear incomplete partition type 2. No surgical complication or difficulty was seen in any patient. All patients showed good hearing outcome postoperatively. Conclusion. Cochlear implantation could be a good treatment option for Waardenburg syndrome. PMID:27376080

  15. The influence of cochlear shape on low-frequency hearing

    PubMed Central

    Manoussaki, Daphne; Chadwick, Richard S.; Ketten, Darlene R.; Arruda, Julie; Dimitriadis, Emilios K.; O'Malley, Jen T.

    2008-01-01

    The conventional theory about the snail shell shape of the mammalian cochlea is that it evolved essentially and perhaps solely to conserve space inside the skull. Recently, a theory proposed that the spiral's graded curvature enhances the cochlea's mechanical response to low frequencies. This article provides a multispecies analysis of cochlear shape to test this theory and demonstrates that the ratio of the radii of curvature from the outermost and innermost turns of the cochlear spiral is a significant cochlear feature that correlates strongly with low-frequency hearing limits. The ratio, which is a measure of curvature gradient, is a reflection of the ability of cochlear curvature to focus acoustic energy at the outer wall of the cochlear canal as the wave propagates toward the apex of the cochlea. PMID:18413615

  16. The Hearing Outcomes of Cochlear Implantation in Waardenburg Syndrome

    PubMed Central

    Koyama, Hajime; Kashio, Akinori; Sakata, Aki; Tsutsumiuchi, Katsuhiro; Matsumoto, Yu; Karino, Shotaro; Kakigi, Akinobu; Iwasaki, Shinichi; Yamasoba, Tatsuya

    2016-01-01

    Objectives. This study aimed to determine the feasibility of cochlear implantation for sensorineural hearing loss in patients with Waardenburg syndrome. Method. A retrospective chart review was performed on patients who underwent cochlear implantation at the University of Tokyo Hospital. Clinical classification, genetic mutation, clinical course, preoperative hearing threshold, high-resolution computed tomography of the temporal bone, and postoperative hearing outcome were assessed. Result. Five children with Waardenburg syndrome underwent cochlear implantation. The average age at implantation was 2 years 11 months (ranging from 1 year 9 months to 6 years 3 months). Four patients had congenital profound hearing loss and one patient had progressive hearing loss. Two patients had an inner ear malformation of cochlear incomplete partition type 2. No surgical complication or difficulty was seen in any patient. All patients showed good hearing outcome postoperatively. Conclusion. Cochlear implantation could be a good treatment option for Waardenburg syndrome. PMID:27376080

  17. Gain and frequency tuning within the mouse cochlear apex

    NASA Astrophysics Data System (ADS)

    Oghalai, John S.; Gao, Simon; Lee, Hee Yoon; Raphael, Patrick D.; Groves, Andrew K.; Zuo, Jian; Applegate, Brian E.

    2015-12-01

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided by basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering.

  18. Gain and frequency tuning within the mouse cochlear apex

    SciTech Connect

    Oghalai, John S.; Raphael, Patrick D.; Gao, Simon; Lee, Hee Yoon; Groves, Andrew K.; Zuo, Jian; Applegate, Brian E.

    2015-12-31

    Normal mammalian hearing requires cochlear outer hair cell active processes that amplify the traveling wave with high gain and sharp tuning, termed cochlear amplification. We have used optical coherence tomography to study cochlear amplification within the apical turn of the mouse cochlea. We measured not only classical basilar membrane vibratory tuning curves but also vibratory responses from the rest of the tissues that compose the organ of Corti. Basilar membrane tuning was sharp in live mice and broad in dead mice, whereas other regions of the organ of Corti demonstrated phase shifts consistent with additional filtering beyond that provided by basilar membrane mechanics. We use these experimental data to support a conceptual framework of how cochlear amplification is tuned within the mouse cochlear apex. We will also study transgenic mice with targeted mutations that affect different biomechanical aspects of the organ of Corti in an effort to localize the underlying processes that produce this additional filtering.

  19. Speech intelligibility of children with cochlear implants, tactile aids, or hearing aids.

    PubMed

    Osberger, M J; Maso, M; Sam, L K

    1993-02-01

    Speech intelligibility was measured in 31 children who used the 3M/House single-channel implant (n = 12), the Nucleus 22-Channel Cochlear Implant System (n = 15), or the Tactaid II + two-channel vibrotactile aid (n = 4). The subjects were divided into subgroups based on age at onset of deafness (early or late). The speech intelligibility of the experimental subjects was compared to that of children who were profoundly hearing impaired who used conventional hearing aids (n = 12) or no sensory aid (n = 2). The subjects with early onset of deafness who received their single- or multichannel cochlear implant before age 10 demonstrated the highest speech intelligibility, whereas subjects who did not receive their device until after age 10 had the poorest speech intelligibility. There was no obvious difference in the speech intelligibility scores of these subjects as a function of type of device (implant or tactile aid). On the average, the postimplant or tactile aid speech intelligibility of the subjects with early onset of deafness was similar to that of hearing aid users with hearing levels between 100 and 110 dB HL and limited hearing in the high frequencies. The speech intelligibility of subjects with late onset of deafness showed marked deterioration after the onset of deafness with relatively large improvements by most subjects after they received a single- or multichannel implant. The one subject with late onset of deafness who used a tactile aid showed no improvement in speech intelligibility. PMID:8450658

  20. Growth of interleaved masking patterns for cochlear implant listeners at different stimulation rates

    NASA Astrophysics Data System (ADS)

    Kwon, Bom Jun; van den Honert, Chris; Parkinson, Wendy

    2003-04-01

    This study investigates the pattern of growth of masking (GOM) for interleaved masking with Nucleus cochlear implant users. For an interleaved masking paradigm, where the masker and probe overlap in a same time window, the masker may have contrasting effects: it may increase the threshold (as a masker normally does) or decrease it due to a neural summation effect, facilitating detection of the probe. Several stimulation rates and masker levels were tested to examine under what conditions what phenomenon would occur. The results indicated that, in most of the conditions, the amount of masking was positive, i.e., the facilitating effect was not consistently observed. However, the slope of the GOM appears to be dependent upon the stimulation rate: the higher the stimulation rate, the lower the slope, implying that the facilitating effect might be always present and make a bigger impact on overall masking as the stimulation rate becomes high. The amount of masking was also often nonzero (positive) even when the masker was below the threshold level. Overall, the present findings indicate that interleaved masking should be handled with care to understand cochlear implant users speech perception and improve speech coding, as it contains some nontraditional aspects of masking.

  1. Emphasis of short-duration acoustic speech cues for cochlear implant users.

    PubMed

    Vandali, A E

    2001-05-01

    A new speech-coding strategy for cochlear implant users, called the transient emphasis spectral maxima (TESM), was developed to aid perception of short-duration transient cues in speech. Speech-perception scores using the TESM strategy were compared to scores using the spectral maxima sound processor (SMSP) strategy in a group of eight adult users of the Nucleus 22 cochlear implant system. Significant improvements in mean speech-perception scores for the group were obtained on CNC open-set monosyllabic word tests in quiet (SMSP: 53.6% TESM: 61.3%, p<0.001), and on MUSL open-set sentence tests in multitalker noise (SMSP: 64.9% TESM: 70.6%, p<0.001). Significant increases were also shown for consonant scores in the word test (SMSP: 75.1% TESM: 80.6%, p<0.001) and for vowel scores in the word test (SMSP: 83.1% TESM: 85.7%, p<0.05). Analysis of consonant perception results from the CNC word tests showed that perception of nasal, stop, and fricative consonant discrimination was most improved. Information transmission analysis indicated that place of articulation was most improved, although improvements were also evident for manner of articulation. The increases in discrimination were shown to be related to improved coding of short-duration acoustic cues, particularly those of low intensity. PMID:11386557

  2. Kaon-nucleus scattering

    NASA Technical Reports Server (NTRS)

    Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.

    1989-01-01

    The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.

  3. Convergence of the nucleus-nucleus Glauber multiple scattering series

    SciTech Connect

    Usmani, A.A.; Ahmad, I. )

    1991-05-01

    The Glauber {ital S}-matrix operator for nucleus-nucleus scattering is expressed as a finite series of matrix elements involving Bell's polynomials. Analyzing {alpha}{sup 4}He elastic-scattering data at the incident momentum of 4.32 GeV/{ital c}, we infer that our expansion is appreciably converging. Further, by applying closure over target and projectile states and neglecting a certain class of terms involving intermediate excitations, we arrive at a recurrence relation for nucleus-nucleus multiple scattering series terms, which invites further study as it seems to provide a simple method for calculating the nucleus-nucleus elastic-scattering cross section.

  4. Direct input from cochlear root neurons to pontine reticulospinal neurons in albino rat.

    PubMed

    Nodal, Fernando R; López, Dolores E

    2003-05-19

    The cochlear root neurons (CRNs) are thought to mediate the auditory startle reflex (ASR) in the rat, which is widely used as a behavioral model for the investigation of the sensorimotor integration. CRNs project, among other targets, to the nucleus reticularis pontis caudalis (PnC), a major component of the ASR circuit, but little is known about the organization of this projection. Thus, we injected biotinylated dextran amine (BDA) in CRNs to study their projections with light and electron microscopy. Also, we performed double-labeling experiments, injecting BDA in the CRNs and subunit B of the cholera toxin or Fluorogold in the spinal cord to verify that CRNs project onto reticulospinal neurons. Electron microscopy of the labeled CRNs axons and terminals showed that even their most central and thinnest processes are myelinated. Most of the terminals are axodendritic, with multiple asymmetric synapses, and contain round vesicles (50 nm diameter). Double-labeling experiments demonstrated that CRN terminals are apposed to retrogradely labeled reticulospinal neurons in the contralateral nucleus reticularis PnC and bilaterally in the lateral paragigantocellular nucleus. Analyses of serial sections revealed that multiple CRNs synapse on single reticulospinal neurons in PnC, suggesting a convergence of auditory information. The morphometric features of these neurons classify them as giant neurons. This study confirms that CRNs project directly onto reticulospinal neurons and presents other anatomical features of the CRNs that contribute to a better understanding of the circuitry of the ASR in the rat. PMID:12687698

  5. Delayed loss of hearing after hearing preservation cochlear implantation: Human temporal bone pathology and implications for etiology.

    PubMed

    Quesnel, Alicia M; Nakajima, Hideko Heidi; Rosowski, John J; Hansen, Marlan R; Gantz, Bruce J; Nadol, Joseph B

    2016-03-01

    After initially successful preservation of residual hearing with cochlear implantation, some patients experience subsequent delayed hearing loss. The etiology of such delayed hearing loss is unknown. Human temporal bone pathology is critically important in investigating the etiology, and directing future efforts to maximize long term hearing preservation in cochlear implant patients. Here we present the temporal bone pathology from a patient implanted during life with an Iowa/Nucleus Hybrid S8 implant, with initially preserved residual hearing and subsequent hearing loss. Both temporal bones were removed for histologic processing and evaluated. Complete clinical and audiologic records were available. He had bilateral symmetric high frequency severe to profound hearing loss prior to implantation. Since he was implanted unilaterally, the unimplanted ear was presumed to be representative of the pre-implantation pathology related to his hearing loss. The implanted and contralateral unimplanted temporal bones both showed complete degeneration of inner hair cells and outer hair cells in the basal half of the cochleae, and only mild patchy loss of inner hair cells and outer hair cells in the apical half. The total spiral ganglion neuron counts were similar in both ears: 15,138 (56% of normal for age) in the unimplanted right ear and 13,722 (51% of normal for age) in the implanted left ear. In the basal turn of the implanted left cochlea, loose fibrous tissue and new bone formation filled the scala tympani, and part of the scala vestibuli. Delayed loss of initially preserved hearing after cochlear implantation was not explained by additional post-implantation degeneration of hair cells or spiral ganglion neurons in this patient. Decreased compliance at the round window and increased damping in the scala tympani due to intracochlear fibrosis and new bone formation might explain part of the post-implantation hearing loss. Reduction of the inflammatory and immune response to

  6. Effects of training on timbre recognition and appraisal by postlingually deafened cochlear implant recipients.

    PubMed

    Gfeller, Kate; Witt, Shelley; Adamek, Mary; Mehr, Maureen; Rogers, Jenny; Stordahl, Julie; Ringgenberg, Shelly

    2002-03-01

    The purpose of this study was to compare the effect of structured training on recognition and appraisal of the timbre (tone quality) of musical instruments by postlingually deafened cochlear implant recipients. Twenty-four implant users (Nucleus CI24M) were randomly assigned to a control or a training group. The control group experienced only incidental exposure to music in their usual daily routine. The training group participated in 12 weeks of training delivered via a laptop computer in which they were introduced to excerpts of musical instruments representing three frequency ranges and four instrumental families. Those implant recipients assigned to the training group showed significant improvement in timbre recognition (p < .0001) and timbre appraisal (p < .02) compared to the control group. Correlations between timbre measures and speech perception measures are discussed. PMID:11936169

  7. Pediatric Cochlear Implantation: Why Do Children Receive Implants Late?

    PubMed Central

    Ham, Julia; Whittingham, JoAnne

    2015-01-01

    Objectives: Early cochlear implantation has been widely promoted for children who derive inadequate benefit from conventional acoustic amplification. Universal newborn hearing screening has led to earlier identification and intervention, including cochlear implantation in much of the world. The purpose of this study was to examine age and time to cochlear implantation and to understand the factors that affected late cochlear implantation in children who received cochlear implants. Design: In this population-based study, data were examined for all children who underwent cochlear implant surgery in one region of Canada from 2002 to 2013. Clinical characteristics were collected prospectively as part of a larger project examining outcomes from newborn hearing screening. For this study, audiologic details including age and severity of hearing loss at diagnosis, age at cochlear implant candidacy, and age at cochlear implantation were documented. Additional detailed medical chart information was extracted to identify the factors associated with late implantation for children who received cochlear implants more than 12 months after confirmation of hearing loss. Results: The median age of diagnosis of permanent hearing loss for 187 children was 12.6 (interquartile range: 5.5, 21.7) months, and the age of cochlear implantation over the 12-year period was highly variable with a median age of 36.2 (interquartile range: 21.4, 71.3) months. A total of 118 (63.1%) received their first implant more than 12 months after confirmation of hearing loss. Detailed analysis of clinical profiles for these 118 children revealed that late implantation could be accounted for primarily by progressive hearing loss (52.5%), complex medical conditions (16.9%), family indecision (9.3%), geographical location (5.9%), and other miscellaneous known (6.8%) and unknown factors (8.5%). Conclusions: This study confirms that despite the trend toward earlier implantation, a substantial number of children

  8. Nucleus Course in Japanese.

    ERIC Educational Resources Information Center

    Akiyama, Nobuo; Flamm, Carol S.

    The "Nucleus Course in Japanese," based on the Institute of Modern Languages'"Situational Reinforcement" approach, is designed for 80 to 100 hours of instruction. Each lesson has several sections--Response drills, Appropriate Response Sequence, and Reading. Most of the lessons also include optional sections with Sentences for Repetition or a…

  9. Cell nucleus in context

    SciTech Connect

    Lelievre, Sophie A.; Bissell, Mina J.; Pujuguet, Philippe

    1999-11-11

    The molecular pathways that participate in regulation of gene expression are being progressively unraveled. Extracellular signals, including the binding of extracellular matrix and soluble molecules to cell membrane receptors, activate specific signal transducers that convey information inside the cell and can alter gene products. Some of these transducers when translocated to the cell nucleus may bind to transcription complexes and thereby modify the transcriptional activity of specific genes. However, the basic molecules involved in the regulation of gene expression are found in many different cell and tissue types; thus the mechanisms underlying tissue-specific gene expression are still obscure. In this review, we focus on the study of signals that are conveyed to the nucleus. We propose that the way in which extracellular signals are integrated may account for tissue-specific gene expression. We argue that the integration of signals depends on the structural organization of cells ( i.e., extracellular matrix, cell membrane, cytoskeleton, nucleus) which a particular cell type within a tissue. Putting the nuclei in context allows us to envision gene expression as being regulated not only by the communication between the extracellular environment and the nucleus, but also by the influence of organized assemblies of cells on extracellular-nuclear communications.

  10. Spiral CT image deblurring for cochlear implantation.

    PubMed

    Wang, G; Vannier, M W; Skinner, M W; Cavalcanti, M G; Harding, G W

    1998-04-01

    Cochlear implantation is the standard treatment for profound hearing loss. Preimplantation and postimplantation spiral computed tomography (CT) is essential in several key clinical and research aspects. The maximum image resolution with commercial spiral CT scanners is insufficient to define clearly anatomical features and implant electrode positions in the inner ear. In this paper, we develop an expectation-maximization (EM)-like iterative deblurring algorithm to achieve spiral CT image super-resolution for cochlear implantation, assuming a spatially invariant linear spiral CT system with a three-dimensional (3-D) separable Gaussian point spread function (PSF). We experimentally validate the 3-D Gaussian blurring model via phantom measurement and profile fitting. The imaging process is further expressed as convolution of an isotropic 3-D Gaussian PSF and a blurred underlying volumetric image. Under practical conditions, an oblique reconstructed section is approximated as convolution of an isotropic two-dimensional (2-D) Gaussian PSF and the corresponding actual cross section. The spiral CT image deblurring algorithm is formulated with sieve and resolution kernels for suppressing noise and edge artifacts. A typical cochlear cross section is used for evaluation, demonstrating a resolution gain up to 30%40% according to the correlation criterion. Physical phantoms, preimplantation and postimplantation patients are reconstructed into volumes of 0.1-mm cubic voxels. The patient images are digitally unwrapped along the central axis of the cochlea and the implanted electrode array respectively, then oblique sections orthogonal to the central axis formed. After deblurring, representation of structural features is substantially improved in all the cases. PMID:9688157

  11. Cochlear Function Monitoring After Spinal Anesthesia

    PubMed Central

    Janecka-Placek, Agata; Lisowska, Grażyna; Paradysz, Andrzej; Misiołek, Hanna

    2015-01-01

    Background The aim of the study was to examine the effect of spinal anesthesia on the function of cochlear outer hair cells (OHCs), determined by means of objective distortion product otoacoustic emissions (DPOAE) testing. To the best of our knowledge, our study was the second OAE-based analysis of cochlear function during spinal anesthesia, and the only experiment including such a large group of patients. Material/Methods The study included 20 patients (18 men and 2 women) subjected to a scheduled uretherorenoscopic lithotripsy with routine spinal anesthesia with 10 mg (2 ml) of 0.5% hyperbaric bupivacaine and 50 μg (1 ml) of fentanyl. The levels of DPOAEs and background noise at 1000–6000 Hz were recorded prior to and immediately after the anesthesia, and on the postoperative day 2. Results We did not find significant differences between DPOAEs values recorded prior to and immediately after the anesthesia. The only exception pertained to 5652 Hz, at which a significantly higher level of DPOAEs was observed immediately after the anesthesia. The levels of DPOAEs at 2002 Hz and 2380 Hz collected on the postoperative day 2 were significantly higher than the respective baseline values. Irrespective of the frequency and time of testing, we did not find any significant differences between the recorded levels of background noise. Conclusions Our findings point to the lack of a detrimental effect of spinal anesthesia on objectively evaluated cochlear function, and thus suggest that this method is safe, even for OHCs, which are extremely susceptible to exogenous and endogenous injuries. PMID:26377393

  12. Onset of deconfinement in nucleus-nucleus collisions

    SciTech Connect

    Gazdzicki, M.; Gorenstein, M. I.; Seyboth, P.

    2012-05-15

    The energy dependence of hadron production in relativistic nucleus-nucleus collisions reveals anomalies-the kink, horn, and step. They were predicted as signals of the deconfinement phase transition and observed by the NA49 Collaboration in central PbPb collisions at the CERN SPS. This indicates the onset of the deconfinement in nucleus-nucleus collisions at about 30 A GeV.

  13. Spatial Channel Interactions in Cochlear Implants

    PubMed Central

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-01-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis for its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same 5 modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured voltage distribution as a function of electrode position in the cochlea in response to stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of electrode position in response to stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or lower in all measures. Several quantitative channel interaction indexes were developed to define and compare the width, slope, and symmetry of the spatial excitation patterns derived from these physical, physiological, and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing wider half-width and shallower slope than the basal side. On the contrary, the evoked

  14. Microminiature molding techniques for cochlear electrode arrays.

    PubMed

    Loeb, G E; Peck, R A; Smith, D W

    1995-12-01

    We provide a general method for producing a variety of small, complex electrode arrays based on injection molds produced using computer-aided drafting and machining (CAD-CAM) procedures and a novel method for connecting to the very fine electrical leads associated with the individual contacts of such arrays. Cat-sized cochlear electrode arrays with up to eight contacts were built according to these methods and their electrical contacts were characterized in vitro by impedance spectroscopy and in vivo by monitoring impedance for over 1 year of intermittent stimulation in chronically instrumented animals. PMID:8788052

  15. Spatial channel interactions in cochlear implants.

    PubMed

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-08-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal

  16. Cerebrospinal fluid otorhinorrhea due to cochlear dysplasias.

    PubMed

    Syal, Rajan; Tyagi, Isha; Goyal, Amit

    2005-07-01

    Cochlear dysplasia associated with defect in stapes footplate can be a cause of cerebrospinal fluid leak. Repair of cerebrospinal fluid leak in these cases is usually done by packing the vestibule with muscle or fascia. This traditional method of repair has 30-60% failure rate. Cerebrospinal fluid leak in four such patients was successfully repaired using multiple layer packing of vestibule, reinforced by pedicle temporalis muscle graft. Intraoperatively continuous lumbar drain was done. Magnetic resonance imaging of inner ear using 3D FSE T2WI and 3D FIESTA sequences was found helpful noninvasive investigation to localize site and route of cerebrospinal fluid leak. PMID:15911019

  17. Access to cochlear implants: Time to reflect.

    PubMed

    Raine, Christopher; Atkinson, Helen; Strachan, David R; Martin, Jane M

    2016-04-01

    Cochlear implant (CI) intervention is expensive and accessed mainly by developed countries. The introduction of Universal Newborn Hearing Screening and funding via a public health service give children better access to CIs. However for adults large disparities exist between utilization and estimated prevalence. In the UK CI selection criteria are restrictive compared with many other countries. Improved audiological awareness and screening programmes for adults would improve access to hearing technologies that would improve health and quality of life. Hearing loss itself has significant medical and financial burdens on society and by investing in early intervention and using best technology this would mitigate some of the rising associated medical costs. PMID:27099110

  18. Spatial channel interactions in cochlear implants

    NASA Astrophysics Data System (ADS)

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-08-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal

  19. Cochlear amplification, outer hair cells and prestin

    PubMed Central

    Dallos, Peter

    2008-01-01

    Mechanical amplification of acoustic signals is apparently a common feature of vertebrate auditory organs. In non-mammalian vertebrates amplification is produced by stereociliary processes, related to the mechanotransducer channel complex and probably to the phenomenon of fast adaptation. The extended frequency range of the mammalian cochlea has likely co-evolved with a novel hair cell type, the outer hair cell and its constituent membrane protein, prestin. Cylindrical outer hair cells are motile and their somatic length changes are voltage driven and powered by prestin. One of the central outstanding problems in mammalian cochlear neurobiology is the relation between the two amplification processes. PMID:18809494

  20. Cochlear implant candidates: assessment with CT and MR imaging.

    PubMed

    Harnsberger, H R; Dart, D J; Parkin, J L; Smoker, W R; Osborn, A G

    1987-07-01

    Eighty-seven patients with severe to profound hearing loss were evaluated for possible placement of a multichannel cochlear implant hearing device. After initial clinical screening, 42 patients underwent computed tomographic (CT) examination. Five of these patients were also examined with magnetic resonance (MR) imaging. Twenty-two patients received implants. CT of the middle and inner ear was normal in 24 patients (57.1%) and showed labyrinthine ossification in 12 (28.6%), cochlear or fenestral otosclerosis (or both) in four (9.5%), and congenital cochlear malformation in two (4.8%). The information provided by CT was used to (a) exclude patients in whom multichannel cochlear implantation would most likely be unsuccessful (owing to obliterative labyrinthine ossification, or congenital cochlear malformation, severe cochlear, or fenestral otosclerosis), (b) help select the best ear for implantation, and (c) provide a preoperative picture of normal variants and avoidable surgical pitfalls. MR experience is limited but assessment of the size of the cochlear nerve and the membranous labyrinth is possible with this modality and may provide additional information in the evaluation of these patients. PMID:3108956

  1. Chronic Conductive Hearing Loss Leads to Cochlear Degeneration

    PubMed Central

    Liberman, M. Charles; Liberman, Leslie D.; Maison, Stéphane F.

    2015-01-01

    Synapses between cochlear nerve terminals and hair cells are the most vulnerable elements in the inner ear in both noise-induced and age-related hearing loss, and this neuropathy is exacerbated in the absence of efferent feedback from the olivocochlear bundle. If age-related loss is dominated by a lifetime of exposure to environmental sounds, reduction of acoustic drive to the inner ear might improve cochlear preservation throughout life. To test this, we removed the tympanic membrane unilaterally in one group of young adult mice, removed the olivocochlear bundle in another group and compared their cochlear function and innervation to age-matched controls one year later. Results showed that tympanic membrane removal, and the associated threshold elevation, was counterproductive: cochlear efferent innervation was dramatically reduced, especially the lateral olivocochlear terminals to the inner hair cell area, and there was a corresponding reduction in the number of cochlear nerve synapses. This loss led to a decrease in the amplitude of the suprathreshold cochlear neural responses. Similar results were seen in two cases with conductive hearing loss due to chronic otitis media. Outer hair cell death was increased only in ears lacking medial olivocochlear innervation following olivocochlear bundle cuts. Results suggest the novel ideas that 1) the olivocochlear efferent pathway has a dramatic use-dependent plasticity even in the adult ear and 2) a component of the lingering auditory processing disorder seen in humans after persistent middle-ear infections is cochlear in origin. PMID:26580411

  2. Proton Nucleus Elastic Scattering Data.

    Energy Science and Technology Software Center (ESTSC)

    1993-08-18

    Version 00 The Proton Nucleus Elastic Scattering Data file PNESD contains the numerical data and the related bibliography for the differential elastic cross sections, polarization and integral nonelastic cross sections for elastic proton-nucleus scattering.

  3. Performance of deaf children with cochlear implants and vibrotactile aids.

    PubMed

    Osberger, M J; Miyamoto, R T; Robbins, A M; Renshaw, J J; Berry, S W; Myres, W A; Kessler, K; Pope, M L

    1990-01-01

    A longitudinal study is under way to examine the speech perception and production skills of deaf children who use a single- or multi-channel cochlear implant, or a two-channel tactile aid. The speech perception data showed that the majority of subjects who achieved the highest scores on a range of measures used the multi-channel cochlear implant. The production data showed that all three types of sensory aids were effective in promoting production skills, with the cochlear implant users showing the greatest gains in this area. PMID:2132583

  4. Audio-vocal responses elicited in adult cochlear implant users

    PubMed Central

    Loucks, Torrey M.; Suneel, Deepa; Aronoff, Justin M.

    2015-01-01

    Auditory deprivation experienced prior to receiving a cochlear implant could compromise neural connections that allow for modulation of vocalization using auditory feedback. In this report, pitch-shift stimuli were presented to adult cochlear implant users to test whether compensatory motor changes in vocal F0 could be elicited. In five of six participants, rapid adjustments in vocal F0 were detected following the stimuli, which resemble the cortically mediated pitch-shift responses observed in typical hearing individuals. These findings suggest that cochlear implants can convey vocal F0 shifts to the auditory pathway that might benefit audio-vocal monitoring. PMID:26520350

  5. Von Békésy and cochlear mechanics

    PubMed Central

    Duifhuis, Hendrikus; Steele, Charles R.

    2012-01-01

    Georg Békésy laid the foundation for cochlear mechanics, foremost by demonstrating the traveling wave that is the substrate for mammalian cochlear mechanical processing. He made mechanical measurements and physical models in order to understand that fundamental cochlear response. In this tribute to Békésy we make a bridge between modern traveling wave observations and those of Békésy, discuss the mechanical properties and measurements that he considered to be so important, and touch on the range of computational traveling wave models. PMID:22633943

  6. Better speech recognition with cochlear implants

    NASA Astrophysics Data System (ADS)

    Wilson, Blake S.; Finley, Charles C.; Lawson, Dewey T.; Wolford, Robert D.; Eddington, Donald K.; Rabinowitz, William M.

    1991-07-01

    HIGH levels of speech recognition have been achieved with a new sound processing strategy for multielectrode cochlear implants. A cochlear implant system consists of one or more implanted elec-trodes for direct electrical activation of the auditory nerve, an external speech processor that transforms a microphone input into stimuli for each electrode, and a transcutaneous (rf-link) or per-cutaneous (direct) connection between the processor and the elec-trodes. We report here the comparison of the new strategy and a standard clinical processor. The standard compressed analogue (CA) processor1,2 presented analogue waveforms simultaneously to all electrodes, whereas the new continuous interleaved sampling (CIS) strategy presented brief pulses to each electrode in a nonover-lapping sequence. Seven experienced implant users, selected for their excellent performance with the CA processor, participated as subjects. The new strategy produced large improvements in the scores of speech reception tests for all subjects. These results have important implications for the treatment of deafness and for minimal representations of speech at the auditory periphery.

  7. Hearing Preservation after Cochlear Implantation: UNICAMP Outcomes

    PubMed Central

    de Carvalho, Guilherme Machado; Guimaraes, Alexandre C.; Duarte, Alexandre S. M.; Muranaka, Eder B.; Soki, Marcelo N.; Martins, Renata S. Zanotello; Bianchini, Walter A.; Paschoal, Jorge R.; Castilho, Arthur M.

    2013-01-01

    Background. Electric-acoustic stimulation (EAS) is an excellent choice for people with residual hearing in low frequencies but not high frequencies and who derive insufficient benefit from hearing aids. For EAS to be effective, subjects' residual hearing must be preserved during cochlear implant (CI) surgery. Methods. We implanted 6 subjects with a CI. We used a special surgical technique and an electrode designed to be atraumatic. Subjects' rates of residual hearing preservation were measured 3 times postoperatively, lastly after at least a year of implant experience. Subjects' aided speech perception was tested pre- and postoperatively with a sentence test in quiet. Subjects' subjective responses assessed after a year of EAS or CI experience. Results. 4 subjects had total or partial residual hearing preservation; 2 subjects had total residual hearing loss. All subjects' hearing and speech perception benefited from cochlear implantation. CI diminished or eliminated tinnitus in all 4 subjects who had it preoperatively. 5 subjects reported great satisfaction with their new device. Conclusions. When we have more experience with our surgical technique we are confident we will be able to report increased rates of residual hearing preservation. Hopefully, our study will raise the profile of EAS in Brazil and Latin/South America. PMID:23573094

  8. Diagnosis and management of cochlear hydrops.

    PubMed

    Glasscock, M E; Miller, G W

    1977-02-01

    In an early case of cochlear hydrops, the symptoms of a mild pressure sensation or fullness in the involved ear may be mistaken for a blocked eustachian tube. More severe cases demonstrate a true sensori-neutral hearing loss that fluctuates. Tinnitis is usually present during the attack and will often subside when the hearing returns to normal. The neurotologic evaluation is negative and attempts to establish an etiology are seldom fruitful. The treatment is usually medical, and empirically, these individuals are treated with diuretics, low salt diet, and vasodilators. It is felt by most investigators that cochlear hydrops is an early form of Ménière's disease, and over a long period of time these individuals may develop vertigo as a complaint. The purpose of this paper is to discuss this interesting form of Ménière's disease in detail concerning etiology, physiology, diagnosis, and treatment. A small series of patients who have undergone the subarachnoid endolymphatic sac procedure will be reported according to the guidelines set forth by the Committee on Hearing and Equilibrium of the American Academy of Ophthalmology and Otolaryngology. Based on the result in these patients, it would appear that this procedure should be considered in those individuals who are refractory to medical management. There is convincing evidence that the shunt does stabilize the hearing in many instances. PMID:839917

  9. Better speech recognition with cochlear implants.

    PubMed

    Wilson, B S; Finley, C C; Lawson, D T; Wolford, R D; Eddington, D K; Rabinowitz, W M

    1991-07-18

    HIGH levels of speech recognition have been achieved with a new sound processing strategy for multielectrode cochlear implants. A cochlear implant system consists of one or more implanted electrodes for direct electrical activation of the auditory nerve, an external speech processor that transforms a microphone input into stimuli for each electrode, and a transcutaneous (rf-link) or percutaneous (direct) connection between the processor and the electrodes. We report here the comparison of the new strategy and a standard clinical processor. The standard compressed analogue (CA) processor presented analogue waveforms simultaneously to all electrodes, whereas the new continuous interleaved sampling (CIS) strategy presented brief pulses to each electrode in a nonoverlapping sequence. Seven experienced implant users, selected for their excellent performance with the CA processor, participated as subjects. The new strategy produced large improvements in the scores of speech reception tests for all subjects. These results have important implications for the treatment of deafness and for minimal representations of speech at the auditory periphery. PMID:1857418

  10. Word Learning in Children Following Cochlear Implantation

    PubMed Central

    Houston, Derek M.; Carter, Allyson K.; Pisoni, David B.; Kirk, Karen Iler; Ying, Elizabeth A

    2011-01-01

    An experimental procedure was developed to investigate word-learning skills of children who use cochlear implants (CIs). Using interactive play scenarios, 2- to 5-year olds were presented with sets of objects (Beanie Baby stuffed animals) and words for their names that corresponded to salient perceptual attributes (e.g., “horns” for a goat). Their knowledge of the word-object associations was measured immediately after exposure and then following a 2-hour delay. Children who use cochlear implants performed more poorly than age-matched children with typical hearing both receptively and expressively. Both groups of children showed retention of the word-object associations in the delayed testing conditions for words that were previously known. Our findings suggest that although pediatric CI users may have impaired phonological processing skills, their long-term memory for familiar words may be similar to children with typical hearing. Further, the methods that developed in this study should be useful for investigating other aspects of word learning in children who use CIs. PMID:21528108

  11. Cochlear implant simulator for surgical technique analysis

    NASA Astrophysics Data System (ADS)

    Turok, Rebecca L.; Labadie, Robert F.; Wanna, George B.; Dawant, Benoit M.; Noble, Jack H.

    2014-03-01

    Cochlear Implant (CI) surgery is a procedure in which an electrode array is inserted into the cochlea. The electrode array is used to stimulate auditory nerve fibers and restore hearing for people with severe to profound hearing loss. The primary goals when placing the electrode array are to fully insert the array into the cochlea while minimizing trauma to the cochlea. Studying the relationship between surgical outcome and various surgical techniques has been difficult since trauma and electrode placement are generally unknown without histology. Our group has created a CI placement simulator that combines an interactive 3D visualization environment with a haptic-feedback-enabled controller. Surgical techniques and patient anatomy can be varied between simulations so that outcomes can be studied under varied conditions. With this system, we envision that through numerous trials we will be able to statistically analyze how outcomes relate to surgical techniques. As a first test of this system, in this work, we have designed an experiment in which we compare the spatial distribution of forces imparted to the cochlea in the array insertion procedure when using two different but commonly used surgical techniques for cochlear access, called round window and cochleostomy access. Our results suggest that CIs implanted using round window access may cause less trauma to deeper intracochlear structures than cochleostomy techniques. This result is of interest because it challenges traditional thinking in the otological community but might offer an explanation for recent anecdotal evidence that suggests that round window access techniques lead to better outcomes.

  12. Programming, Care, and Troubleshooting of Cochlear Implants for Children.

    ERIC Educational Resources Information Center

    Hedley-Williams, Andrea J.; Sladen, Douglas P.; Tharpe, Anne Marie

    2003-01-01

    This article provides an overview of current cochlear implant technology, programming strategies, troubleshooting, and care techniques. It considers: device components, initial stimulation, speech coding strategies, use and care, troubleshooting, and the classroom environment. (Contains references.) (DB)

  13. Vibrational modes and damping in the cochlear partition

    NASA Astrophysics Data System (ADS)

    O'Maoiléidigh, Dáibhid; Hudspeth, A. J.

    2015-12-01

    It has been assumed in models of cochlear mechanics that the primary role of the cochlear active process is to counteract the damping of the basilar membrane, the vibration of which is much larger in a living animal than post mortem. Recent measurements of the relative motion between the reticular lamina and basilar membrane imply that this assumption is incorrect. We propose that damping is distributed throughout the cochlear partition rather than being concentrated in the basilar membrane. In the absence of significant damping, the cochlear partition possesses three modes of vibration, each associated with its own locus of Hopf bifurcations. Hair-cell activity can amplify any of these modes if the system's operating point lies near the corresponding bifurcation. The distribution of damping determines which mode of vibration predominates. For physiological levels of damping, only one mode produces a vibration pattern consistent with experimental measurements of relative motion and basilar-membrane motion.

  14. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential

    PubMed Central

    Wangemann, Philine

    2006-01-01

    The exquisite sensitivity of the cochlea, which mediates the transduction of sound waves into nerve impulses, depends on the endocochlear potential and requires a highly specialized environment that enables and sustains sensory function. Disturbance of cochlear homeostasis is the cause of many forms of hearing loss including the most frequently occurring syndromic and non-syndromic forms of hereditary hearing loss, Pendred syndrome and Cx26-related deafness. The occurrence of these and other monogenetic disorders illustrates that cochlear fluid homeostasis and the generation of the endocochlear potential are poorly secured by functional redundancy. This review summarizes the most prominent aspects of cochlear fluid homeostasis. It covers cochlear fluid composition, the generation of the endocochlear potential, K+ secretion and cycling and its regulation, the role of gap junctions, mechanisms of acid–base homeostasis, and Ca2+ transport. PMID:16857713

  15. Otoacoustic Estimation of Cochlear Tuning: Validation in the Chinchilla

    PubMed Central

    Guinan, John J.; Oxenham, Andrew J.

    2010-01-01

    We analyze published auditory-nerve and otoacoustic measurements in chinchilla to test a network of hypothesized relationships between cochlear tuning, cochlear traveling-wave delay, and stimulus-frequency otoacoustic emissions (SFOAEs). We find that the physiological data generally corroborate the network of relationships, including predictions from filter theory and the coherent-reflection model of OAE generation, at locations throughout the cochlea. The results support the use of otoacoustic emissions as noninvasive probes of cochlear tuning. Developing this application, we find that tuning ratios—defined as the ratio of tuning sharpness to SFOAE phase-gradient delay in periods—have a nearly species-invariant form in cat, guinea pig, and chinchilla. Analysis of the tuning ratios identifies a species-dependent parameter that locates a transition between “apical-like” and “basal-like” behavior involving multiple aspects of cochlear physiology. Approximate invariance of the tuning ratio allows determination of cochlear tuning from SFOAE delays. We quantify the procedure and show that otoacoustic estimates of chinchilla cochlear tuning match direct measures obtained from the auditory nerve. By assuming that invariance of the tuning ratio extends to humans, we derive new otoacoustic estimates of human cochlear tuning that remain mutually consistent with independent behavioral measurements obtained using different rationales, methodologies, and analysis procedures. The results confirm that at any given characteristic frequency (CF) human cochlear tuning appears sharper than that in the other animals studied, but varies similarly with CF. We show, however, that the exceptionality of human tuning can be exaggerated by the ways in which species are conventionally compared, which take no account of evident differences between the base and apex of the cochlea. Finally, our estimates of human tuning suggest that the spatial spread of excitation of a pure tone

  16. Cochlear implantation in a patient with Perisylvian syndrome.

    PubMed

    Smith, Wendy; Axon, Patrick

    2007-06-01

    Perisylvian syndrome is a rare neurological disorder characterised by the partial paralysis of muscles, epilepsy and mild to severe mental retardation. It is associated with hearing loss and delay in language and speech development. This presents additional challenges in the assessment of whether a child is suitable for cochlea implantation. The method to determine whether the hearing loss is of cochlear or central origin and the progress of a child with Perisylvian syndrome who received a cochlear implant is discussed. PMID:17549806

  17. Abnormal Pitch Perception Produced by Cochlear Implant Stimulation

    PubMed Central

    Zeng, Fan-Gang; Tang, Qing; Lu, Thomas

    2014-01-01

    Contemporary cochlear implants with multiple electrode stimulation can produce good speech perception but poor music perception. Hindered by the lack of a gold standard to quantify electric pitch, relatively little is known about the nature and extent of the electric pitch abnormalities and their impact on cochlear implant performance. Here we overcame this obstacle by comparing acoustic and electric pitch perception in 3 unilateral cochlear-implant subjects who had functionally usable acoustic hearing throughout the audiometric frequency range in the non-implant ear. First, to establish a baseline, we measured and found slightly impaired pure tone frequency discrimination and nearly perfect melody recognition in all 3 subjects’ acoustic ear. Second, using pure tones in the acoustic ear to match electric pitch induced by an intra-cochlear electrode, we found that the frequency-electrode function was not only 1–2 octaves lower, but also 2 times more compressed in frequency range than the normal cochlear frequency-place function. Third, we derived frequency difference limens in electric pitch and found that the equivalent electric frequency discrimination was 24 times worse than normal-hearing controls. These 3 abnormalities are likely a result of a combination of broad electric field, distant intra-cochlear electrode placement, and non-uniform spiral ganglion cell distribution and survival, all of which are inherent to the electrode-nerve interface in contemporary cochlear implants. Previous studies emphasized on the “mean” shape of the frequency-electrode function, but the present study indicates that the large “variance” of this function, reflecting poor electric pitch discriminability, is the main factor limiting contemporary cochlear implant performance. PMID:24551131

  18. Current research on music perception in cochlear implant users.

    PubMed

    Limb, Charles J; Rubinstein, Jay T

    2012-02-01

    The authors present a comprehensive review of the state of music perception with cochlear implant (CI) users. They discuss methods of assessment and results of studies of the aspects of music perception, melody, timbre, rhythm, and so forth in individuals with cochlear implants. They discuss neural mechanisms of music perception and the anticipation of broader acceptance of standardized tests for music perception in CI users. PMID:22115686

  19. Parallel mechanisms suppress cochlear bone remodeling to protect hearing.

    PubMed

    Jáuregui, Emmanuel J; Akil, Omar; Acevedo, Claire; Hall-Glenn, Faith; Tsai, Betty S; Bale, Hrishikesh A; Liebenberg, Ellen; Humphrey, Mary Beth; Ritchie, Robert O; Lustig, Lawrence R; Alliston, Tamara

    2016-08-01

    Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provides unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13(-/-)). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13(-/-) long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAEs), between wild type and MMP13(-/-) mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest that cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by

  20. Abnormal pitch perception produced by cochlear implant stimulation.

    PubMed

    Zeng, Fan-Gang; Tang, Qing; Lu, Thomas

    2014-01-01

    Contemporary cochlear implants with multiple electrode stimulation can produce good speech perception but poor music perception. Hindered by the lack of a gold standard to quantify electric pitch, relatively little is known about the nature and extent of the electric pitch abnormalities and their impact on cochlear implant performance. Here we overcame this obstacle by comparing acoustic and electric pitch perception in 3 unilateral cochlear-implant subjects who had functionally usable acoustic hearing throughout the audiometric frequency range in the non-implant ear. First, to establish a baseline, we measured and found slightly impaired pure tone frequency discrimination and nearly perfect melody recognition in all 3 subjects' acoustic ear. Second, using pure tones in the acoustic ear to match electric pitch induced by an intra-cochlear electrode, we found that the frequency-electrode function was not only 1-2 octaves lower, but also 2 times more compressed in frequency range than the normal cochlear frequency-place function. Third, we derived frequency difference limens in electric pitch and found that the equivalent electric frequency discrimination was 24 times worse than normal-hearing controls. These 3 abnormalities are likely a result of a combination of broad electric field, distant intra-cochlear electrode placement, and non-uniform spiral ganglion cell distribution and survival, all of which are inherent to the electrode-nerve interface in contemporary cochlear implants. Previous studies emphasized on the "mean" shape of the frequency-electrode function, but the present study indicates that the large "variance" of this function, reflecting poor electric pitch discriminability, is the main factor limiting contemporary cochlear implant performance. PMID:24551131

  1. Quantitative polarized light microscopy of unstained mammalian cochlear sections.

    PubMed

    Kalwani, Neil M; Ong, Cheng Ai; Lysaght, Andrew C; Haward, Simon J; McKinley, Gareth H; Stankovic, Konstantina M

    2013-02-01

    Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo. PMID:23407909

  2. Quantitative polarized light microscopy of unstained mammalian cochlear sections

    NASA Astrophysics Data System (ADS)

    Kalwani, Neil M.; Ong, Cheng Ai; Lysaght, Andrew C.; Haward, Simon J.; McKinley, Gareth H.; Stankovic, Konstantina M.

    2013-02-01

    Hearing loss is the most common sensory deficit in the world, and most frequently it originates in the inner ear. Yet, the inner ear has been difficult to access for diagnosis because of its small size, delicate nature, complex three-dimensional anatomy, and encasement in the densest bone in the body. Evolving optical methods are promising to afford cellular diagnosis of pathologic changes in the inner ear. To appropriately interpret results from these emerging technologies, it is important to characterize optical properties of cochlear tissues. Here, we focus on that characterization using quantitative polarized light microscopy (qPLM) applied to unstained cochlear sections of the mouse, a common animal model of human hearing loss. We find that the most birefringent cochlear materials are collagen fibrils and myelin. Retardance of the otic capsule, the spiral ligament, and the basilar membrane are substantially higher than that of other cochlear structures. Retardance of the spiral ligament and the basilar membrane decrease from the cochlear base to the apex, compared with the more uniform retardance of other structures. The intricate structural details revealed by qPLM of unstained cochlear sections ex vivo strongly motivate future application of polarization-sensitive optical coherence tomography to human cochlea in vivo.

  3. Evaluation of evoked potentials to dyadic tones after cochlear implantation.

    PubMed

    Sandmann, Pascale; Eichele, Tom; Buechler, Michael; Debener, Stefan; Jäncke, Lutz; Dillier, Norbert; Hugdahl, Kenneth; Meyer, Martin

    2009-07-01

    Auditory evoked potentials are tools widely used to assess auditory cortex functions in clinical context. However, in cochlear implant users, electrophysiological measures are challenging due to implant-created artefacts in the EEG. Here, we used independent component analysis to reduce cochlear implant-related artefacts in event-related EEGs of cochlear implant users (n = 12), which allowed detailed spatio-temporal evaluation of auditory evoked potentials by means of dipole source analysis. The present study examined hemispheric asymmetries of auditory evoked potentials to musical sounds in cochlear implant users to evaluate the effect of this type of implantation on neuronal activity. In particular, implant users were presented with two dyadic tonal intervals in an active oddball design and in a passive listening condition. Principally, the results show that independent component analysis is an efficient approach that enables the study of neurophysiological mechanisms of restored auditory function in cochlear implant users. Moreover, our data indicate altered hemispheric asymmetries for dyadic tone processing in implant users compared with listeners with normal hearing (n = 12). We conclude that the evaluation of auditory evoked potentials are of major relevance to understanding auditory cortex function after cochlear implantation and could be of substantial clinical value by indicating the maturation/reorganization of the auditory system after implantation. PMID:19293240

  4. Cochlear re-implantation: lessons learnt and the way ahead.

    PubMed

    Patnaik, Uma; Sikka, Kapil; Agarwal, Shivani; Kumar, Rakesh; Thakar, Alok; Sharma, Suresh C

    2016-06-01

    Conclusion A cochlear re-implantation procedure is undesirable; however, the cochlear implant surgeon may have to perform a re-implantation procedure occasionally for various reasons. Following standard techniques, implant performance comparable with primary implantation may be achieved. Objective To study the causes and outcomes of cochlear re-implantation in an Asian Indian population. Study design Retrospective analysis of clinical charts over an 18-year period with prospective follow-up of patients. Methods The charts of 534 patients, who underwent cochlear implant, at an Otorhinolaryngology institutional Centre, from January 1997 to January 2015 were studied. Of these, the charts of 18 patients who underwent cochlear re-implantation were studied. The causes and audiological and speech outcomes were analysed. Results Eighteen patients (3.4%) underwent cochlear re-implantation for various reasons. The commonest indication was device failure in seven patients (39%), followed by electrode extrusion in five (28%), trauma in three (11%), electrode migration in two (11%) and improper electrode placement in one (6%) patient. The audiological performance tests and speech tests either remained the same or improved from those achieved for patients undergoing primary implantation, in 87% patients. PMID:26898701

  5. Cochlear precursors of neural pitch and loudness codes.

    PubMed

    Zwislocki, J J

    1995-09-01

    It has been believed by most auditory scientists for over a century that the place of maximum vibration in the cochlea provides the main pitch code. Recently, we have obtained experimental evidence showing that this is quite unlikely, because the maximum of cochlear excitation changes its location with sound intensity, moving over the useful sound intensity range toward the cochlear base by a distance equivalent to more than one octave, whereas the pitch remains almost constant. In the presence of outer hair cell damage, the maximum is shifted toward the base by a similar distance, whereas the pitch is hardly affected. Of interest, the location of the apical cutoff of excitation is practically unaffected by sound intensity or cochlear damage. For any given sound frequency, the shift of the maximum with sound intensity precludes any single cochlear location from coding for loudness over the entire useful intensity range. The code is very likely provided by the maximum, which changes its location with the intensity, or by the whole cochlear excitation area. Of significance in this respect is our determination that the growth of the output of the whole auditory nerve parallels the growth of the excitation area. These findings may be useful for the coding of sound in cochlear implants, as well as for hearing aid dynamics. PMID:7668600

  6. Analytic optical potentials for nucleon-nucleus nucleus-nucleus collisions involving light and medium nuclei

    NASA Technical Reports Server (NTRS)

    Bidasaria, H. B.; Townsend, L. W.

    1982-01-01

    Utilizing an optical model potential approximation to the exact nucleus-nucleus multiple-scattering series, optical potentials for nucleon-nucleus and nucleus-nucleus collisions are analytically derived. These expressions are applicable to light and medium cosmic ray nuclei as their single-particle density distributions are analytically determined, without approximation, from their actual harmonic well charge density distributions. Pauli correlation effects are included through the use of a simple Gaussian function to replace the usual expression obtained in the infinite nuclear matter approximation.

  7. Music perception with cochlear implants: a review.

    PubMed

    McDermott, Hugh J

    2004-01-01

    The acceptance of cochlear implantation as an effective and safe treatment for deafness has increased steadily over the past quarter century. The earliest devices were the first implanted prostheses found to be successful in compensating partially for lost sensory function by direct electrical stimulation of nerves. Initially, the main intention was to provide limited auditory sensations to people with profound or total sensorineural hearing impairment in both ears. Although the first cochlear implants aimed to provide patients with little more than awareness of environmental sounds and some cues to assist visual speech-reading, the technology has advanced rapidly. Currently, most people with modern cochlear implant systems can understand speech using the device alone, at least in favorable listening conditions. In recent years, an increasing research effort has been directed towards implant users' perception of nonspeech sounds, especially music. This paper reviews that research, discusses the published experimental results in terms of both psychophysical observations and device function, and concludes with some practical suggestions about how perception of music might be enhanced for implant recipients in the future. The most significant findings of past research are: (1) On average, implant users perceive rhythm about as well as listeners with normal hearing; (2) Even with technically sophisticated multiple-channel sound processors, recognition of melodies, especially without rhythmic or verbal cues, is poor, with performance at little better than chance levels for many implant users; (3) Perception of timbre, which is usually evaluated by experimental procedures that require subjects to identify musical instrument sounds, is generally unsatisfactory; (4) Implant users tend to rate the quality of musical sounds as less pleasant than listeners with normal hearing; (5) Auditory training programs that have been devised specifically to provide implant users with

  8. Music Perception with Cochlear Implants: A Review

    PubMed Central

    McDermott, Hugh J.

    2004-01-01

    The acceptance of cochlear implantation as an effective and safe treatment for deafness has increased steadily over the past quarter century. The earliest devices were the first implanted prostheses found to be successful in compensating partially for lost sensory function by direct electrical stimulation of nerves. Initially, the main intention was to provide limited auditory sensations to people with profound or total sensorineural hearing impairment in both ears. Although the first cochlear implants aimed to provide patients with little more than awareness of environmental sounds and some cues to assist visual speech-reading, the technology has advanced rapidly. Currently, most people with modern cochlear implant systems can understand speech using the device alone, at least in favorable listening conditions. In recent years, an increasing research effort has been directed towards implant users’ perception of nonspeech sounds, especially music. This paper reviews that research, discusses the published experimental results in terms of both psychophysical observations and device function, and concludes with some practical suggestions about how perception of music might be enhanced for implant recipients in the future. The most significant findings of past research are: (1) On average, implant users perceive rhythm about as well as listeners with normal hearing; (2) Even with technically sophisticated multiple-channel sound processors, recognition of melodies, especially without rhythmic or verbal cues, is poor, with performance at little better than chance levels for many implant users; (3) Perception of timbre, which is usually evaluated by experimental procedures that require subjects to identify musical instrument sounds, is generally unsatisfactory; (4) Implant users tend to rate the quality of musical sounds as less pleasant than listeners with normal hearing; (5) Auditory training programs that have been devised specifically to provide implant users with

  9. Nucleus from string theory

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Morita, Takeshi

    2011-08-01

    In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.

  10. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  11. Deafness in cochlear and auditory nerve disorders.

    PubMed

    Hopkins, Kathryn

    2015-01-01

    Sensorineural hearing loss is the most common type of hearing impairment worldwide. It arises as a consequence of damage to the cochlea or auditory nerve, and several structures are often affected simultaneously. There are many causes, including genetic mutations affecting the structures of the inner ear, and environmental insults such as noise, ototoxic substances, and hypoxia. The prevalence increases dramatically with age. Clinical diagnosis is most commonly accomplished by measuring detection thresholds and comparing these to normative values to determine the degree of hearing loss. In addition to causing insensitivity to weak sounds, sensorineural hearing loss has a number of adverse perceptual consequences, including loudness recruitment, poor perception of pitch and auditory space, and difficulty understanding speech, particularly in the presence of background noise. The condition is usually incurable; treatment focuses on restoring the audibility of sounds made inaudible by hearing loss using either hearing aids or cochlear implants. PMID:25726286

  12. Accurate guitar tuning by cochlear implant musicians.

    PubMed

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  13. Cortical reorganization in children with cochlear implants.

    PubMed

    Gilley, Phillip M; Sharma, Anu; Dorman, Michael F

    2008-11-01

    Congenital deafness leads to atypical organization of the auditory nervous system. However, the extent to which auditory pathways reorganize during deafness is not well understood. We recorded cortical auditory evoked potentials in normal hearing children and in congenitally deaf children fitted with cochlear implants. High-density EEG and source modeling revealed principal activity from auditory cortex in normal hearing and early implanted children. However, children implanted after a critical period of seven years revealed activity from parietotemporal cortex in response to auditory stimulation, demonstrating reorganized cortical pathways. Reorganization of central auditory pathways is limited by the age at which implantation occurs, and may help explain the benefits and limitations of implantation in congenitally deaf children. PMID:18775684

  14. Dynamic Aspects of Cochlear Microphonic Potentials

    NASA Astrophysics Data System (ADS)

    Meenderink, Sebastiaan W. F.; van der Heijden, Marcel

    2011-11-01

    Cochlear microphonic potentials were recorded from the Mongolian gerbil in response to low-frequency auditory stimuli. Provided that contamination of the potentials by the phase-locked neurophonic is avoided, these recordings can be interpreted "as if recorded from a single outer hair cell". It is found that the instantaneous I/O-curves resemble the well-known Boltzmann activation curve. The dynamic aspect of the I/O-curves does reveal hysteresis and a level-dependent gain that is not observed in static measures of these curves. We explore a model that simulates CM generation from hair cell populations, but find it inadequate to reproduce the data. Rather, there seem to be fast, adaptive mechanisms probably at the level of the transduction channels themselves.

  15. Accurate Guitar Tuning by Cochlear Implant Musicians

    PubMed Central

    Lu, Thomas; Huang, Juan; Zeng, Fan-Gang

    2014-01-01

    Modern cochlear implant (CI) users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task. PMID:24651081

  16. Phase contrast imaging of cochlear soft tissue.

    SciTech Connect

    Smith, S.; Hwang, M.; Rau, C.; Fishman, A.; Lee, W.; Richter, C.

    2011-01-01

    A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imaging and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.

  17. Use of Vaccines to Prevent Meningitis in Persons with Cochlear Implants

    MedlinePlus

    ... vaccine=MPSV4 Meningococcal conjugate vaccine=MenACWY Use of Vaccines to Prevent Meningitis in Persons with Cochlear Implants ... References FACT SHEET What You Should Know Pneumococcal Vaccine Recommendations Pneumococcal Vaccination for Cochlear Implant Candidates and ...

  18. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  19. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  20. Influence of cochlear implantation on vestibular function.

    PubMed

    Chen, Xiulan; Chen, Xiaohua; Zhang, Fan; Qin, Zhaobing

    2016-07-01

    Conclusion Vestibular function in patients can be damaged following cochlear implantation. Therefore, assessing the pre-operative vestibular status, carefully choosing the side of implantation, and preserving function by using minimally invasive surgical techniques are important. Objectives The aim of this study was to assess the influence of cochlear implantation on vestibular function in patients with severe and profound sensorineural hearing loss, and to analyze a possible correlation between the changes in vestibular testing and post-operative vestibular symptoms. Methods Thirty-four patients were evaluated for vestibular function using the cervical and ocular vestibular-evoked myogenic potentials (cVEMP and oVEMP, respectively), and 29 patients underwent caloric tests pre-operatively and 4 weeks post-operatively. Results Before surgery, the cVEMPs were recorded bilaterally in 22 patients, unilaterally in eight patients, and absent bilaterally in four patients. The oVEMPs were recorded bilaterally in 19 patients, unilaterally in six patients, and absent bilaterally in nine patients. After implantation, the cVEMPs were absent in 10 patients and the oVEMPs were absent in seven patients on the implanted side. Caloric tests demonstrated canal paresis in 17 patients, and normal responses were recorded in 12 of the 29 patients pre-operatively. There was a significant decrease post-implantation in the ear implanted, with the exception of two patients. Two patients presented with vertigo and another two patients reported slight unsteadiness post-operatively, but all symptoms resolved within 7 days. The impaired vestibular function did not correlate with vestibular symptoms, age, or gender. Function on the contralateral side remained unaffected. PMID:27008103

  1. Emergent literacy in kindergartners with cochlear implants

    PubMed Central

    Nittrouer, Susan; Caldwell, Amanda; Lowenstein, Joanna H; Tarr, Eric; Holloman, Christopher

    2012-01-01

    Problem A key ingredient to academic success is being able to read. Deaf individuals have historically failed to develop literacy skills comparable to those of their normal-hearing peers, but early identification and cochlear implants have improved prospects that these children can learn to read at the levels of their peers. The goal of this study was to examine early, or emergent, literacy in these children. Method 27 deaf children with cochlear implants (CIs) who had just completed kindergarten were tested on emergent literacy, as well as on cognitive and linguistic skills that support emergent literacy, specifically ones involving phonological awareness, executive functioning, and oral language. 17 kindergartners with normal hearing (NH) and 8 with hearing loss, but who used hearing aids (HAs) served as controls. Outcomes were compared for these three groups of children, regression analyses were performed to see if predictor variables for emergent literacy differed for children with NH and those with CIs, and factors related to the early treatment of hearing loss and prosthesis configuration were examined for children with CIs. Results Performance of children with CIs was roughly one or more standard deviations below the mean performance of children with NH on all tasks, except for syllable counting, reading fluency, and rapid serial naming. Oral language skills explained more variance in emergent literacy for children with CIs than for children with NH. Age of first implant explained moderate amounts of variance for several measures. Having one or two CIs had no effect, but children who had some amount of bimodal experience outperformed children who had none on several measures. Conclusions Even deaf children who have benefitted from early identification, intervention, and implantation are still at risk for problems with emergent literacy that could affect their academic success. This finding means that intensive language support needs to continue through at

  2. A Resonance Approach to Cochlear Mechanics

    PubMed Central

    Bell, Andrew

    2012-01-01

    Background How does the cochlea analyse sound into its component frequencies? In the 1850s Helmholtz thought it occurred by resonance, whereas a century later Békésy's work indicated a travelling wave. The latter answer seemed to settle the question, but with the discovery in 1978 that the cochlea emits sound, the mechanics of the cochlea was back on the drawing board. Recent studies have raised questions about whether the travelling wave, as currently understood, is adequate to explain observations. Approach Applying basic resonance principles, this paper revisits the question. A graded bank of harmonic oscillators with cochlear-like frequencies and quality factors is simultaneously excited, and it is found that resonance gives rise to similar frequency responses, group delays, and travelling wave velocities as observed by experiment. The overall effect of the group delay gradient is to produce a decelerating wave of peak displacement moving from base to apex at characteristic travelling wave speeds. The extensive literature on chains of coupled oscillators is considered, and the occurrence of travelling waves, pseudowaves, phase plateaus, and forced resonance in such systems is noted. Conclusion and significance This alternative approach to cochlear mechanics shows that a travelling wave can simply arise as an apparently moving amplitude peak which passes along a bank of resonators without carrying energy. This highlights the possible role of the fast pressure wave and indicates how phase delays and group delays of a set of driven harmonic oscillators can generate an apparent travelling wave. It is possible to view the cochlea as a chain of globally forced coupled oscillators, and this model incorporates fundamental aspects of both the resonance and travelling wave theories. PMID:23144835

  3. Networking the nucleus

    PubMed Central

    Rajapakse, Indika; Scalzo, David; Tapscott, Stephen J; Kosak, Steven T; Groudine, Mark

    2010-01-01

    The nuclei of differentiating cells exhibit several fundamental principles of self-organization. They are composed of many dynamical units connected physically and functionally to each other—a complex network—and the different parts of the system are mutually adapted and produce a characteristic end state. A unique cell-specific signature emerges over time from complex interactions among constituent elements that delineate coordinate gene expression and chromosome topology. Each element itself consists of many interacting components, all dynamical in nature. Self-organizing systems can be simplified while retaining complex information using approaches that examine the relationship between elements, such as spatial relationships and transcriptional information. These relationships can be represented using well-defined networks. We hypothesize that during the process of differentiation, networks within the cell nucleus rewire according to simple rules, from which a higher level of order emerges. Studying the interaction within and among networks provides a useful framework for investigating the complex organization and dynamic function of the nucleus. PMID:20664641

  4. Persistent Thalamic Sound Processing Despite Profound Cochlear Denervation

    PubMed Central

    Chambers, Anna R.; Salazar, Juan J.; Polley, Daniel B.

    2016-01-01

    Neurons at higher stages of sensory processing can partially compensate for a sudden drop in peripheral input through a homeostatic plasticity process that increases the gain on weak afferent inputs. Even after a profound unilateral auditory neuropathy where >95% of afferent synapses between auditory nerve fibers and inner hair cells have been eliminated with ouabain, central gain can restore cortical processing and perceptual detection of basic sounds delivered to the denervated ear. In this model of profound auditory neuropathy, auditory cortex (ACtx) processing and perception recover despite the absence of an auditory brainstem response (ABR) or brainstem acoustic reflexes, and only a partial recovery of sound processing at the level of the inferior colliculus (IC), an auditory midbrain nucleus. In this study, we induced a profound cochlear neuropathy with ouabain and asked whether central gain enabled a compensatory plasticity in the auditory thalamus comparable to the full recovery of function previously observed in the ACtx, the partial recovery observed in the IC, or something different entirely. Unilateral ouabain treatment in adult mice effectively eliminated the ABR, yet robust sound-evoked activity persisted in a minority of units recorded from the contralateral medial geniculate body (MGB) of awake mice. Sound driven MGB units could decode moderate and high-intensity sounds with accuracies comparable to sham-treated control mice, but low-intensity classification was near chance. Pure tone receptive fields and synchronization to broadband pulse trains also persisted, albeit with significantly reduced quality and precision, respectively. MGB decoding of temporally modulated pulse trains and speech tokens were both greatly impaired in ouabain-treated mice. Taken together, the absence of an ABR belied a persistent auditory processing at the level of the MGB that was likely enabled through increased central gain. Compensatory plasticity at the level of the

  5. Preserved Acoustic Hearing in Cochlear Implantation Improves Speech Perception

    PubMed Central

    Sheffield, Sterling W.; Jahn, Kelly; Gifford, René H.

    2015-01-01

    Background With improved surgical techniques and electrode design, an increasing number of cochlear implant (CI) recipients have preserved acoustic hearing in the implanted ear, thereby resulting in bilateral acoustic hearing. There are currently no guidelines, however, for clinicians with respect to audio-metric criteria and the recommendation of amplification in the implanted ear. The acoustic bandwidth necessary to obtain speech perception benefit from acoustic hearing in the implanted ear is unknown. Additionally, it is important to determine if, and in which listening environments, acoustic hearing in both ears provides more benefit than hearing in just one ear, even with limited residual hearing. Purpose The purposes of this study were to (1) determine whether acoustic hearing in an ear with a CI provides as much speech perception benefit as an equivalent bandwidth of acoustic hearing in the non-implanted ear, and (2) determine whether acoustic hearing in both ears provides more benefit than hearing in just one ear. Research Design A repeated-measures, within-participant design was used to compare performance across listening conditions. Study Sample Seven adults with CIs and bilateral residual acoustic hearing (hearing preservation) were recruited for the study. Data Collection and Analysis Consonant-nucleus-consonant word recognition was tested in four conditions: CI alone, CI + acoustic hearing in the nonimplanted ear, CI + acoustic hearing in the implanted ear, and CI + bilateral acoustic hearing. A series of low-pass filters were used to examine the effects of acoustic bandwidth through an insert earphone with amplification. Benefit was defined as the difference among conditions. The benefit of bilateral acoustic hearing was tested in both diffuse and single-source background noise. Results were analyzed using repeated-measures analysis of variance. Results Similar benefit was obtained for equivalent acoustic frequency bandwidth in either ear. Acoustic

  6. Hearing Experience and Receptive Vocabulary Development in Deaf Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Fagan, Mary K.; Pisoni, David B.

    2010-01-01

    This study investigated receptive vocabulary delay in deaf children with cochlear implants. Participants were 23 children with profound hearing loss, ages 6-14 years, who received a cochlear implant between ages 1.4 and 6 years. Duration of cochlear implant use ranged from 3.7 to 11.8 years. "Peabody Picture Vocabulary Test, Third Edition"…

  7. International Classification of Reliability for Implanted Cochlear Implant Receiver Stimulators

    PubMed Central

    Battmer, Rolf-Dieter; Backous, Douglas D.; Balkany, Thomas J.; Briggs, Robert J. S.; Gantz, Bruce J.; van Hasselt, Andrew; Kim, Chong Sun; Kubo, Takeshi; Lenarz, Thomas; Pillsbury, Harold C.; O’Donoghue, Gerard M.

    2016-01-01

    Objective To design an international standard to be used when reporting reliability of the implanted components of cochlear implant systems to appropriate governmental authorities, cochlear implant (CI) centers, and for journal editors in evaluating manuscripts involving cochlear implant reliability. Study Design The International Consensus Group for Cochlear Implant Reliability Reporting was assembled to unify ongoing efforts in the United States, Europe, Asia, and Australia to create a consistent and comprehensive classification system for the implanted components of CI systems across manufacturers. Setting All members of the consensus group are from tertiary referral cochlear implant centers. Interventions None. Main Outcome Measure A clinically relevant classification scheme adapted from principles of ISO standard 5841-2:2000 (1) originally designed for reporting reliability of cardiac pacemakers, pulse generators, or leads. Results Standard definitions for device failure, survival time, clinical benefit, reduced clinical benefit, and specification were generated. Time intervals for reporting back to implant centers for devices tested to be “out of specification,” categorization of explanted devices, the method of cumulative survival reporting, and content of reliability reports to be issued by manufacturers was agreed upon by all members. The methodology for calculating Cumulative survival was adapted from ISO standard 5841-2:2000 (1). Conclusion The International Consensus Group on Cochlear Implant Device Reliability Reporting recommends compliance to this new standard in reporting reliability of implanted CI components by all manufacturers of CIs and the adoption of this standard as a minimal reporting guideline for editors of journals publishing cochlear implant research results. PMID:20864879

  8. Electrode migration after cochlear implant surgery: more common than expected?

    PubMed

    Dietz, Aarno; Wennström, Minna; Lehtimäki, Antti; Löppönen, Heikki; Valtonen, Hannu

    2016-06-01

    The overall complication rate of cochlear implant surgery is low and so-called electrode failures (electrode migration, misplacement, etc.,) account for only a minority of all complications. The aim of this study was to explore the prevalence of electrode migration as the cause for increased impedance values and non-auditory stimulation in the basal channels. Within the scope of a quality control process, the cochlear implant database of the Kuopio University Hospital (Finland) was reviewed. Patients with gradual elevation of impedance values and/or non-auditory stimulation of the basal electrode channels were re-examined and cone-beam computed tomography was administered. There were 162 cochlear implant recipients and 201 implanted devices registered in the database. A total of 18 patients (18 devices) were identified having significantly increased impedance values or non-auditory stimulation of the basal electrodes. Cone-beam computed tomography revealed extra-cochlear electrodes in 12 of these patients due to the migration of the electrode array. All extruded electrodes were lateral wall electrodes, i.e., straight electrode arrays (Cochlear CI422 and Med-El devices). The most common feature of electrode migration was the gradual increase of the impedance values in the basal electrodes, even though telemetry could also be unsuspicious. Electrode migration after cochlear implant surgery may be more common than previously reported. At surgery, special attention should be paid to the reliable fixation of the electrode array. This study underlines the importance of postoperative imaging after cochlear implant surgery. PMID:26164294

  9. Electric quadrupole excitations in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Calculations are presented for electric quadrupole excitations in relativistic nucleus-nucleus collisions. The theoretical results are compared to an extensive data set and it is found that electric quadrupole effects provide substantial corrections to cross sections, especially for heavier nuclei.

  10. Meson multiplicity versus energy in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Atwater, T. W.; Freier, P. S.

    1986-01-01

    A systematic study of meson multiplicity as a function of energy at energies up to 100 GeV/u in nucleus-nucleus collisions has been made, using cosmic-ray data in nuclear emulsion. The data are consistent with simple nucleon-nucleon superposition models. Multiplicity per interacting nucleon in AA collisions does not appear to differ significantly from pp collisions.

  11. Scaling phenomenon in relativistic nucleus-nucleus collisions

    SciTech Connect

    Wong, C. Y.; Blankenbecler, R.

    1980-01-01

    New scaling variables for proton and pion production in relativistic nucleus-nucleus collisions are introduced which are the generalizations of the Feynmann scaling variable. They allow a simple description of the cross sections at forward and backward angles. 2 figures.

  12. Momentum loss in proton-nucleus and nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Khan, Ferdous; Townsend, Lawrence W.

    1993-01-01

    An optical model description, based on multiple scattering theory, of longitudinal momentum loss in proton-nucleus and nucleus-nucleus collisions is presented. The crucial role of the imaginary component of the nucleon-nucleon transition matrix in accounting for longitudinal momentum transfer is demonstrated. Results obtained with this model are compared with Intranuclear Cascade (INC) calculations, as well as with predictions from Vlasov-Uehling-Uhlenbeck (VUU) and quantum molecular dynamics (QMD) simulations. Comparisons are also made with experimental data where available. These indicate that the present model is adequate to account for longitudinal momentum transfer in both proton-nucleus and nucleus-nucleus collisions over a wide range of energies.

  13. The Galactic Nucleus

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio

    Exciting new broadband observations of the galactic nucleus have placed the heart of the Milky Way under intense scrutiny in recent years. This has been due in part to the growing interest from theorists motivated to study the physics of black hole accretion, magnetized gas dynamics, and unusual star formation. The center of our Galaxy is now known to harbor the most compelling supermassive black hole candidate, weighing in at 3-4 million solar masses. Its nearby environment is comprised of a molecular dusty ring, clusters of evolved and young stars, diffuse hot gas, ionized gas streamers, and several supernova remnants. This chapter will focus on the physical makeup of this dynamic region and the feasibility of actually imaging the black hole's shadow in the coming decade with mm interferometry.

  14. The Effect of Automatic Gain Control Structure and Release Time on Cochlear Implant Speech Intelligibility

    PubMed Central

    Khing, Phyu P.; Swanson, Brett A.; Ambikairajah, Eliathamby

    2013-01-01

    Nucleus cochlear implant systems incorporate a fast-acting front-end automatic gain control (AGC), sometimes called a compression limiter. The objective of the present study was to determine the effect of replacing the front-end compression limiter with a newly proposed envelope profile limiter. A secondary objective was to investigate the effect of AGC speed on cochlear implant speech intelligibility. The envelope profile limiter was located after the filter bank and reduced the gain when the largest of the filter bank envelopes exceeded the compression threshold. The compression threshold was set equal to the saturation level of the loudness growth function (i.e. the envelope level that mapped to the maximum comfortable current level), ensuring that no envelope clipping occurred. To preserve the spectral profile, the same gain was applied to all channels. Experiment 1 compared sentence recognition with the front-end limiter and with the envelope profile limiter, each with two release times (75 and 625 ms). Six implant recipients were tested in quiet and in four-talker babble noise, at a high presentation level of 89 dB SPL. Overall, release time had a larger effect than the AGC type. With both AGC types, speech intelligibility was lower for the 75 ms release time than for the 625 ms release time. With the shorter release time, the envelope profile limiter provided higher group mean scores than the front-end limiter in quiet, but there was no significant difference in noise. Experiment 2 measured sentence recognition in noise as a function of presentation level, from 55 to 89 dB SPL. The envelope profile limiter with 625 ms release time yielded better scores than the front-end limiter with 75 ms release time. A take-home study showed no clear pattern of preferences. It is concluded that the envelope profile limiter is a feasible alternative to a front-end compression limiter. PMID:24312408

  15. Reliability Measure of a Clinical Test: Appreciation of Music in Cochlear Implantees (AMICI)

    PubMed Central

    Cheng, Min-Yu; Spitzer, Jaclyn B.; Shafiro, Valeriy; Sheft, Stanley; Mancuso, Dean

    2014-01-01

    Purpose The goals of this study were (1) to investigate the reliability of a clinical music perception test, Appreciation of Music in Cochlear Implantees (AMICI), and (2) examine associations between the perception of music and speech. AMICI was developed as a clinical instrument for assessing music perception in persons with cochlear implants (CIs). The test consists of four subtests: (1) music versus environmental noise discrimination, (2) musical instrument identification (closed-set), (3) musical style identification (closed-set), and (4) identification of musical pieces (open-set). To be clinically useful, it is crucial for AMICI to demonstrate high test-retest reliability, so that CI users can be assessed and retested after changes in maps or programming strategies. Research Design Thirteen CI subjects were tested with AMICI for the initial visit and retested again 10–14 days later. Two speech perception tests (consonant-nucleus-consonant [CNC] and Bamford-Kowal-Bench Speech-in-Noise [BKB-SIN]) were also administered. Data Analysis Test-retest reliability and equivalence of the test’s three forms were analyzed using paired t-tests and correlation coefficients, respectively. Correlation analysis was also conducted between results from the music and speech perception tests. Results Results showed no significant difference between test and retest (p > 0.05) with adequate power (0.9) as well as high correlations between the three forms (Forms A and B, r = 0.91; Forms A and C, r = 0.91; Forms B and C, r = 0.95). Correlation analysis showed high correlation between AMICI and BKB-SIN (r = −0.71), and moderate correlation between AMICI and CNC (r = 0.4). Conclusions The study showed AMICI is highly reliable for assessing musical perception in CI users. PMID:24384082

  16. Neural Adaptation and Behavioral Measures of Temporal Processing and Speech Perception in Cochlear Implant Recipients

    PubMed Central

    Zhang, Fawen; Benson, Chelsea; Murphy, Dora; Boian, Melissa; Scott, Michael; Keith, Robert; Xiang, Jing; Abbas, Paul

    2013-01-01

    The objective was to determine if one of the neural temporal features, neural adaptation, can account for the across-subject variability in behavioral measures of temporal processing and speech perception performance in cochlear implant (CI) recipients. Neural adaptation is the phenomenon in which neural responses are the strongest at the beginning of the stimulus and decline following stimulus repetition (e.g., stimulus trains). It is unclear how this temporal property of neural responses relates to psychophysical measures of temporal processing (e.g., gap detection) or speech perception. The adaptation of the electrical compound action potential (ECAP) was obtained using 1000 pulses per second (pps) biphasic pulse trains presented directly to the electrode. The adaptation of the late auditory evoked potential (LAEP) was obtained using a sequence of 1-kHz tone bursts presented acoustically, through the cochlear implant. Behavioral temporal processing was measured using the Random Gap Detection Test at the most comfortable listening level. Consonant nucleus consonant (CNC) word and AzBio sentences were also tested. The results showed that both ECAP and LAEP display adaptive patterns, with a substantial across-subject variability in the amount of adaptation. No correlations between the amount of neural adaptation and gap detection thresholds (GDTs) or speech perception scores were found. The correlations between the degree of neural adaptation and demographic factors showed that CI users having more LAEP adaptation were likely to be those implanted at a younger age than CI users with less LAEP adaptation. The results suggested that neural adaptation, at least this feature alone, cannot account for the across-subject variability in temporal processing ability in the CI users. However, the finding that the LAEP adaptive pattern was less prominent in the CI group compared to the normal hearing group may suggest the important role of normal adaptation pattern at the

  17. Variability of the mental representation of the cochlear anatomy during cochlear implantation.

    PubMed

    Torres, Renato; Kazmitcheff, Guillaume; Bernardeschi, Daniele; De Seta, Daniele; Bensimon, Jean Loup; Ferrary, Evelyne; Sterkers, Olivier; Nguyen, Yann

    2016-08-01

    The aim of this study was to assess the mental representation of the insertion axis of surgeons with different degrees of experience, and reproducibility of the insertion axis in repeated measures. A mastoidectomy and a posterior tympanotomy were prepared in five different artificial temporal bones. A cone-beam CT was performed for each temporal bone and the data were registered on a magnetic navigation system. In these five temporal bones, 16 surgeons (3 experts; >50 cochlear implant surgery/year; 7 fellows with few cochlear implant experience, and 6 residents) were asked to determine the optimal insertion axis according to their mental representation. Compared to a planned ideal axis, the insertion axis was better determined by the experts with higher accuracy (axial: 7° ± 1.5°, coronal: 6° ± 1.5°) than fellows (axial: 14° ± 1.7°, coronal: 13° ± 1.7°; p < 0.05), or residents (axial: 15° ± 1.5°; p < 0.001, coronal: 17° ± 1.9°; p < 0.001). This study suggests that mental representation of the cochlea is experience-dependent. A high variation of the insertion axis to the scala tympani can be observed due to the complexity of the temporal bone anatomy and lack of landmarks to determine scala tympani orientation. Navigation systems can be used to evaluate and improve mental representation of the insertion axis to the scala tympani for cochlear implant surgery. PMID:26324880

  18. Dopamine in the auditory brainstem and midbrain: co-localization with amino acid neurotransmitters and gene expression following cochlear trauma

    PubMed Central

    Fyk-Kolodziej, Bozena E.; Shimano, Takashi; Gafoor, Dana; Mirza, Najab; Griffith, Ronald D.; Gong, Tzy-Wen; Holt, Avril Genene

    2015-01-01

    Dopamine (DA) modulates the effects of amino acid neurotransmitters (AANs), including GABA and glutamate, in motor, visual, olfactory, and reward systems (Hnasko et al., 2010; Stuber et al., 2010; Hnasko and Edwards, 2012). The results suggest that DA may play a similar modulatory role in the auditory pathways. Previous studies have shown that deafness results in decreased GABA release, changes in excitatory neurotransmitter levels, and increased spontaneous neuronal activity within brainstem regions related to auditory function. Modulation of the expression and localization of tyrosine hydroxylase (TH; the rate limiting enzyme in the production of DA) in the IC following cochlear trauma has been previously reported (Tong et al., 2005). In the current study the possibility of co-localization of TH with AANs was examined. Changes in the gene expression of TH were compared with changes in the gene expression of markers for AANs in the cochlear nucleus (CN) and inferior colliculus (IC) to determine whether those deafness related changes occur concurrently. The results indicate that bilateral cochlear ablation significantly reduced TH gene expression in the CN after 2 months while in the IC the reduction in TH was observed at both 3 days and 2 months following ablation. Furthermore, in the CN, glycine transporter 2 (GLYT2) and the GABA transporter (GABAtp) were also significantly reduced only after 2 months. However, in the IC, DA receptor 1 (DRDA1), vesicular glutamate transporters 2 and 3 (VGLUT2, VGLUT3), GABAtp and GAD67 were reduced in expression both at the 3 days and 2 months time points. A close relationship between the distribution of TH and several of the AANs was determined in both the CN and the IC. In addition, GLYT2 and VGLUT3 each co-localized with TH within IC somata and dendrites. Therefore, the results of the current study suggest that DA is spatially well positioned to influence the effects of AANs on auditory neurons. PMID:26257610

  19. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway

    PubMed Central

    XUE, TAO; WEI, LI; ZHA, DING-JUN; QIAO, LI; LU, LIAN-JUN; CHEN, FU-QUAN; QIU, JIAN-HUA

    2015-01-01

    Stem cell therapy has attracted widespread attention for a number of diseases. Recently, neural stem cells (NSCs) from the cochlear nuclei have been identified, indicating a potential direction for the treatment of sensorineural hearing loss. Acoustic stimuli play an important role in the development of the auditory system. In this study, we aimed to determine whether acoustic stimuli induce NSC development and differentiation through the upregulation of clusterin (CLU) in NSCs isolated from the cochlear nuclei. To further clarify the underlying mechanisms involved in the development and differentiation of NSCs exposed to acoustic stimuli, we successfully constructed animal models in which was CLU silenced by an intraperitoneal injection of shRNA targeting CLI. As expected, the NSCs from rats treated with LV-CLU shRNA exhibited a lower proliferation ratio when exposed to an augmented acoustic environment (AAE). Furthermore, the inhibition of cell apoptosis induced by exposure to AAE was abrogated after silencing the expression of the CLU gene. During the differentiation of acoustic stimuli-exposed stem cells into neurons, the number of astrocytes was significantly reduced, as evidenced by the expression of the cell markers, microtubule associated protein-2 (MAP-2) and glial fibrillary acidic protein (GFAP), which was markedly inhibited when the CLU gene was silenced. Our results indicate that acoustic stimuli may induce the development and differentiation of NSCs from the cochlear nucleus mainly through the CLU pathway. Our study suggests that CLU may be a novel target for the treatment of sensorineural hearing loss. PMID:25605314

  20. IL-10/HMOX1 signaling modulates cochlear inflammation via negative regulation of MCP-1/CCL2 expression in cochlear fibrocytes.

    PubMed

    Woo, Jeong-Im; Kil, Sung-Hee; Oh, Sejo; Lee, Yoo-Jin; Park, Raekil; Lim, David J; Moon, Sung K

    2015-04-15

    Cochlear inflammatory diseases, such as tympanogenic labyrinthitis, are associated with acquired sensorineural hearing loss. Although otitis media is extremely frequent in children, tympanogenic labyrinthitis is not commonly observed, which suggests the existence of a potent anti-inflammatory mechanism modulating cochlear inflammation. In this study, we aimed to determine the molecular mechanism involved in cochlear protection from inflammation-mediated tissue damage, focusing on IL-10 and hemoxygenase-1 (HMOX1) signaling. We demonstrated that IL-10Rs are expressed in the cochlear lateral wall of mice and rats, particularly in the spiral ligament fibrocytes (SLFs). The rat SLF cell line was found to inhibit nontypeable Haemophilus influenzae (NTHi)-induced upregulation of monocyte chemotactic protein-1 (MCP-1; CCL2) in response to IL-10. This inhibition was suppressed by silencing IL-10R1 and was mimicked by cobalt Protoporphyrin IX and CO-releasing molecule-2. In addition, IL-10 appeared to suppress monocyte recruitment through reduction of NTHi-induced rat SLF cell line-derived chemoattractants. Silencing of HMOX1 was found to attenuate the inhibitory effect of IL-10 on NTHi-induced MCP-1/CCL2 upregulation. Chromatin immunoprecipitation assays showed that IL-10 inhibits NTHi-induced binding of p65 NF-κB to the distal motif in the promoter region of MCP-1/CCL2, resulting in suppression of NTHi-induced NF-κB activation. Furthermore, IL-10 deficiency appeared to significantly affect cochlear inflammation induced by intratympanic injections of NTHi. Taken together, our results suggest that IL-10/HMOX1 signaling is involved in modulation of cochlear inflammation through inhibition of MCP-1/CCL2 regulation in SLFs, implying a therapeutic potential for a CO-based approach for inflammation-associated cochlear diseases. PMID:25780042

  1. IL-10/HMOX1 signaling modulates cochlear inflammation via negative regulation of MCP-1/CCL2 expression in cochlear fibrocytes

    PubMed Central

    Woo, Jeong-Im; Kil, Sung-Hee; Oh, Sejo; Lee, Yoo-Jin; Park, Raekil; Lim, David J.; Moon, Sung K.

    2015-01-01

    Cochlear inflammatory diseases such as tympanogenic labyrinthitis are associated with acquired sensorineural hearing loss. Although otitis media is extremely frequent in children, tympanogenic labyrinthitis is not commonly observed, which suggests the existence of a potent anti-inflammatory mechanism modulating cochlear inflammation. In this study, we aim to determine the molecular mechanism involved in cochlear protection from inflammation-mediated tissue damage, focusing on interleukin-10 (IL-10) and hemoxygenase-1 (HMOX1) signaling. We demonstrated that IL-10 receptors (IL-10Rs) are expressed in the cochlear lateral wall of mice and rats, particularly in the spiral ligament fibrocytes (SLFs). The rat SLF cell line (RSL) was found to inhibit nontypeable H. influenzae (NTHi)-induced up-regulation of monocyte chemotactic protein-1 (MCP-1/CCL2) in response to IL-10. This inhibition was suppressed by silencing IL-10R1 and was mimicked by cobalt protoporphyrin IX (CoPP) and carbon monoxide-releasing molecule-2 (CORM-2). In addition, IL-10 appeared to suppress monocyte recruitment through reduction of NTHi-induced RSL-derived chemoattractants. Silencing of HMOX1 was found to attenuate the inhibitory effect of IL-10 on NTHi-induced MCP-1/CCL2 up-regulation. Chromatin immunoprecipitation (ChIP) assays showed that IL-10 inhibits NTHi-induced binding of p65 NF-κB to the distal motif in the promoter region of MCP-1/CCL2, resulting in suppression of NTHi-induced NF-κB activation. Furthermore, IL-10 deficiency appeared to significantly affect cochlear inflammation induced by intratympanic injections of NTHi. Taken together, our results suggest that IL-10/HMOX1 signaling is involved in modulation of cochlear inflammation through inhibition of MCP-1/CCL2 regulation in SLFs, implying therapeutic potential of a carbon monoxide (CO)-based approach for inflammation-associated cochlear diseases. PMID:25780042

  2. Automatic segmentation of intra-cochlear anatomy in post-implantation CT of unilateral cochlear implant recipients.

    PubMed

    Reda, Fitsum A; McRackan, Theodore R; Labadie, Robert F; Dawant, Benoit M; Noble, Jack H

    2014-04-01

    A cochlear implant (CI) is a neural prosthetic device that restores hearing by directly stimulating the auditory nerve using an electrode array that is implanted in the cochlea. In CI surgery, the surgeon accesses the cochlea and makes an opening where he/she inserts the electrode array blind to internal structures of the cochlea. Because of this, the final position of the electrode array relative to intra-cochlear anatomy is generally unknown. We have recently developed an approach for determining electrode array position relative to intra-cochlear anatomy using a pre- and a post-implantation CT. The approach is to segment the intra-cochlear anatomy in the pre-implantation CT, localize the electrodes in the post-implantation CT, and register the two CTs to determine relative electrode array position information. Currently, we are using this approach to develop a CI programming technique that uses patient-specific spatial information to create patient-customized sound processing strategies. However, this technique cannot be used for many CI users because it requires a pre-implantation CT that is not always acquired prior to implantation. In this study, we propose a method for automatic segmentation of intra-cochlear anatomy in post-implantation CT of unilateral recipients, thus eliminating the need for pre-implantation CTs in this population. The method is to segment the intra-cochlear anatomy in the implanted ear using information extracted from the normal contralateral ear and to exploit the intra-subject symmetry in cochlear anatomy across ears. To validate our method, we performed experiments on 30 ears for which both a pre- and a post-implantation CT are available. The mean and the maximum segmentation errors are 0.224 and 0.734mm, respectively. These results indicate that our automatic segmentation method is accurate enough for developing patient-customized CI sound processing strategies for unilateral CI recipients using a post-implantation CT alone. PMID

  3. Cochlear Injury and Adaptive Plasticity of the Auditory Cortex

    PubMed Central

    Fetoni, Anna Rita; Troiani, Diana; Petrosini, Laura; Paludetti, Gaetano

    2015-01-01

    Growing evidence suggests that cochlear stressors as noise exposure and aging can induce homeostatic/maladaptive changes in the central auditory system from the brainstem to the cortex. Studies centered on such changes have revealed several mechanisms that operate in the context of sensory disruption after insult (noise trauma, drug-, or age-related injury). The oxidative stress is central to current theories of induced sensory-neural hearing loss and aging, and interventions to attenuate the hearing loss are based on antioxidant agent. The present review addresses the recent literature on the alterations in hair cells and spiral ganglion neurons due to noise-induced oxidative stress in the cochlea, as well on the impact of cochlear damage on the auditory cortex neurons. The emerging image emphasizes that noise-induced deafferentation and upward spread of cochlear damage is associated with the altered dendritic architecture of auditory pyramidal neurons. The cortical modifications may be reversed by treatment with antioxidants counteracting the cochlear redox imbalance. These findings open new therapeutic approaches to treat the functional consequences of the cortical reorganization following cochlear damage. PMID:25698966

  4. Cochlear Implantation, Enhancements, Transhumanism and Posthumanism: Some Human Questions.

    PubMed

    Lee, Joseph

    2016-02-01

    Biomedical engineering technologies such as brain-machine interfaces and neuroprosthetics are advancements which assist human beings in varied ways. There are exciting yet speculative visions of how the neurosciences and bioengineering may influence human nature. However, these could be preparing a possible pathway towards an enhanced and even posthuman future. This article seeks to investigate several ethical themes and wider questions of enhancement, transhumanism and posthumanism. Four themes of interest are: autonomy, identity, futures, and community. Three larger questions can be asked: will everyone be enhanced? Will we be "human" if we are not, one day, transhuman? Should we be enhanced or not? The article proceeds by concentrating on a widespread and sometimes controversial application: the cochlear implant, an auditory prosthesis implanted into Deaf patients. Cochlear implantation and its reception in both the deaf and hearing communities have a distinctive moral discourse, which can offer surprising insights. The paper begins with several points about the enhancement of human beings, transhumanism's reach beyond the human, and posthuman aspirations. Next it focuses on cochlear implants on two sides. Firstly, a shorter consideration of what technologies may do to humans in a transhumanist world. Secondly, a deeper analysis of cochlear implantation's unique socio-political movement, its ethical explanations and cultural experiences linked with pediatric cochlear implantation-and how those wary of being thrust towards posthumanism could marshal such ideas by analogy. As transhumanism approaches, the issues and questions merit continuing intense analysis. PMID:25962718

  5. Maximizing cochlear implant patients' performance with advanced speech training procedures.

    PubMed

    Fu, Qian-Jie; Galvin, John J

    2008-08-01

    Advances in implant technology and speech processing have provided great benefit to many cochlear implant patients. However, some patients receive little benefit from the latest technology, even after many years' experience with the device. Moreover, even the best cochlear implant performers have great difficulty understanding speech in background noise, and music perception and appreciation remain major challenges. Recent studies have shown that targeted auditory training can significantly improve cochlear implant patients' speech recognition performance. Such benefits are not only observed in poorly performing patients, but also in good performers under difficult listening conditions (e.g., speech noise, telephone speech, music, etc.). Targeted auditory training has also been shown to enhance performance gains provided by new implant devices and/or speech processing strategies. These studies suggest that cochlear implantation alone may not fully meet the needs of many patients, and that additional auditory rehabilitation may be needed to maximize the benefits of the implant device. Continuing research will aid in the development of efficient and effective training protocols and materials, thereby minimizing the costs (in terms of time, effort and resources) associated with auditory rehabilitation while maximizing the benefits of cochlear implantation for all recipients. PMID:18295992

  6. Single and Multiple Microphone Noise Reduction Strategies in Cochlear Implants

    PubMed Central

    Azimi, Behnam; Hu, Yi; Friedland, David R.

    2012-01-01

    To restore hearing sensation, cochlear implants deliver electrical pulses to the auditory nerve by relying on sophisticated signal processing algorithms that convert acoustic inputs to electrical stimuli. Although individuals fitted with cochlear implants perform well in quiet, in the presence of background noise, the speech intelligibility of cochlear implant listeners is more susceptible to background noise than that of normal hearing listeners. Traditionally, to increase performance in noise, single-microphone noise reduction strategies have been used. More recently, a number of approaches have suggested that speech intelligibility in noise can be improved further by making use of two or more microphones, instead. Processing strategies based on multiple microphones can better exploit the spatial diversity of speech and noise because such strategies rely mostly on spatial information about the relative position of competing sound sources. In this article, we identify and elucidate the most significant theoretical aspects that underpin single- and multi-microphone noise reduction strategies for cochlear implants. More analytically, we focus on strategies of both types that have been shown to be promising for use in current-generation implant devices. We present data from past and more recent studies, and furthermore we outline the direction that future research in the area of noise reduction for cochlear implants could follow. PMID:22923425

  7. Speech Intelligibility and Prosody Production in Children with Cochlear Implants

    PubMed Central

    Chin, Steven B.; Bergeson, Tonya R.; Phan, Jennifer

    2012-01-01

    Objectives The purpose of the current study was to examine the relation between speech intelligibility and prosody production in children who use cochlear implants. Methods The Beginner's Intelligibility Test (BIT) and Prosodic Utterance Production (PUP) task were administered to 15 children who use cochlear implants and 10 children with normal hearing. Adult listeners with normal hearing judged the intelligibility of the words in the BIT sentences, identified the PUP sentences as one of four grammatical or emotional moods (i.e., declarative, interrogative, happy, or sad), and rated the PUP sentences according to how well they thought the child conveyed the designated mood. Results Percent correct scores were higher for intelligibility than for prosody and higher for children with normal hearing than for children with cochlear implants. Declarative sentences were most readily identified and received the highest ratings by adult listeners; interrogative sentences were least readily identified and received the lowest ratings. Correlations between intelligibility and all mood identification and rating scores except declarative were not significant. Discussion The findings suggest that the development of speech intelligibility progresses ahead of prosody in both children with cochlear implants and children with normal hearing; however, children with normal hearing still perform better than children with cochlear implants on measures of intelligibility and prosody even after accounting for hearing age. Problems with interrogative intonation may be related to more general restrictions on rising intonation, and the correlation results indicate that intelligibility and sentence intonation may be relatively dissociated at these ages. PMID:22717120

  8. Surgical findings and auditory performance after cochlear implant revision surgery.

    PubMed

    Manrique-Huarte, R; Huarte, A; Manrique, M J

    2016-03-01

    The objective of this study was to review cochlear reimplantation outcomes in the tertiary hospital and analyze whether facts such as type of failure, surgical findings, or etiology of deafness have an influence. A retrospective study including 38 patients who underwent cochlear implant revision surgery in a tertiary center is performed. Auditory outcomes (pure tone audiometry, % disyllabic words) along with etiology of deafness, type of complication, issues with insertion, and cochlear findings are included. Complication rate is 2.7 %. Technical failure rate is 57.9 % (50 % hard failure and 50 % soft failure), and medical failure (device infection or extrusion, migration, wound, or flap complication) is seen in 42.1 % of the cases. Management of cochlear implant complications and revision surgery is increasing due to a growing number of implantees. Cases that require explantation and reimplantation of the cochlear implant are safe procedures, where the depth of insertion and speech perception results are equal or higher in most cases. Nevertheless, there must be an increasing effort on using minimally traumatic electrode arrays and surgical techniques to improve currently obtained results. PMID:25814389

  9. Cochlear implantation and management of chronic suppurative otitis media: single stage procedure?

    PubMed

    Basavaraj, S; Shanks, M; Sivaji, N; Allen, Agnes A

    2005-10-01

    In a series of 360 patients who underwent cochlear implantation at our center, four patients (five procedures) had cochlear implantation with obliteration of the mastoid cavity and management of cholesteatoma as a single-staged procedure. Three patients were bilaterally deaf secondary to CSOM and had bilateral mastoid cavities, and in one patient congenital cholesteatoma was identified during cochlear implantation. A mastoidectomy or revision mastoidectomy with obliteration of the mastoid cavity and cochlear implantation was performed as a single stage procedure. Cholesteatoma reoccurred in one patient 9 years after cochlear implantation. Surgical procedures, complications, follow-up and outcomes are discussed. PMID:15756568

  10. Antiproton-nucleus interaction

    NASA Astrophysics Data System (ADS)

    Cugnon, J.; Vandermeulen, J.

    The antiproton-nucleus physics is reviewed. On the experimental side, the recent results obtained at the LEAR, BNL and KEK facilities are analyzed. A brief summary of the main pp and pn experimental data is also given. The antiproton-nucleus interaction can lead to elasic, inelastic and charge exchange scattering and to annihilation. The latter is very dominant. The scattering cross-sections are usually analyzed in terms of complex potential models. The relationship between potentials, charge conjugation and Dirac phenomenology is discussed. Much emphasis is put on the dynamics of the antiproton annihilation on nuclei. The energy transfer, pion absorption and target response are analyzed within the intranuclear cascade model. Special interest is devoted to strangeness production, hypernucleus formation and possible annihilation on two nucleons. Signatures for this new process are searched in experimental data. Finally, the highly debated question of quark-gluon formation is analyzed. Cet article constitue une revue de la physique antiproton-noyau. Du point de vue expérimental, cette revue porte particulièrement sur les récents résultats obtenus à LEAR, BNL et KEK. On y a aussi inclus une mise à jour des faits expérimentaux principaux pour pp et pn. L'interaction antiproton-noyau conduit à la diffusion élastique, inélastique et d'xA9change de charge et à des processus d'annihilation. Habituellement, les expériences de diffusion sont analysées en termes de potentiels complexes. La relation entre ces potentiels, la conjugaison de charge et la phénoménologie de Dirac est discutée. On s'est particulièrement intéressé à la dynamique de l'annihilation d'antiprotons sur des noyaux. Le transfert d'énergie, l'absorption de pions et la réponse de la cible sont analysés dans le cadre du modèle de cascade intranucléaire. Certains autres points sont discutés plus en détail: la production d'étrangeté, la formation d'hypernoyaux et l'annihilation sur

  11. Development and Characterization of Piezoelectric Artificial Cochlear with micro Actuator mimicking Human Cochlear

    NASA Astrophysics Data System (ADS)

    Jung, Y.; Kim, S.; Kwak, J.; Kang, H.; Lee, Y. H.; Park, S.; Kim, W.; Hur, S.

    2013-12-01

    This paper presents the development of piezoelectric artificial cochlear (P-AC) capable of analyzing incoming acoustic or mechanical signals without external power source. The P-AC consists of membrane part and package part. The package part provides liquid environment through which the incoming signal is transmitted to membrane part. The membrane part responds to the transmitted signal and local area of the membrane part vibrates differently depending on its local resonant frequency. Previously in our group, we have demonstrated the feasibility of the P-AC with trapezoidal membrane part as sound analyzer by using mouth simulator as a sound input. In this research, we modified the P-AC to have the membrane part of logarithmically varying width. Also by incorporating mico-actuator into the package part that mimic the function of stapes bone in middle ear, we created similar environment to cochlear where human basilar membrane vibrates. The fabricated P-AC successfully demonstrates frequency separation of incoming mechanical signal from micro-actuator into several frequency bands within human hearing range.

  12. Finite element cochlear models and their steady state response

    NASA Astrophysics Data System (ADS)

    Kagawa, Y.; Yamabuchi, T.; Watanabe, N.; Mizoguchi, T.

    1987-12-01

    Numerical cochlear models are constructed by means of a finite element approach and their frequency and spatial responses are calculated. The cochlea is modelled as a coupled fluid-membrane system, for which both two- and three-dimensional models are considered. The fluid in the scala canals is assumed to be incompressible and the basilar membrane is assumed to be a locally reactive impedance wall or a lossy elastic membrane. With the three-dimensional models, the effects are examined of the spiral configuration of the cochlea, of the presence of the lamina and the ligament that narrows the coupling area between the two fluid canals (scala vestibuli and scala tympani), and of the extended reaction of the basilar membrane which cannot be included in case of the two-dimensional models. The conclusion is that these effects on the cochlear response and the inherent mechanism governing the cochlear behaviour are found to be rather secondary.

  13. Imaging cochlear soft tissue displacement with coherent x-rays

    NASA Astrophysics Data System (ADS)

    Rau, Christoph; Richter, Claus-Peter

    2015-10-01

    At present, imaging of cochlear mechanics at mid-cochlear turns has not been accomplished. Although challenging, this appears possible with partially coherent hard x-rays. The present study shows results from stroboscopic x-ray imaging of a test object at audio frequencies. The vibration amplitudes were quantified. In a different set of experiments, an intact and calcified gerbil temporal bone was used to determine displacements of the reticular lamina, tectorial membrane, and Reissner’s membrane with the Lucas and Kanade video flow algorithm. The experiments validated high frequency x-ray imaging and imaging in a calcified cochlea. The present work is key for future imaging of cochlear micromechanics at a high spatial resolution.

  14. Pre-, Intra- and Post-Operative Imaging of Cochlear Implants.

    PubMed

    Vogl, T J; Tawfik, A; Emam, A; Naguib, N N N; Nour-Eldin, A; Burck, I; Stöver, T

    2015-11-01

    The purpose of this review is to present essential imaging aspects in patients who are candidates for a possible cochlear implant as well as in postsurgical follow-up. Imaging plays a major role in providing information on preinterventional topography, variations and possible infections. Preoperative imaging using DVT, CT, MRI or CT and MRI together is essential for candidate selection, planning of surgical approach and exclusion of contraindications like the complete absence of the cochlea or cochlear nerve, or infection. Relative contraindications are variations of the cochlea and vestibulum. Intraoperative imaging can be performed by fluoroscopy, mobile radiography or DVT. Postoperative imaging is regularly performed by conventional X-ray, DVT, or CT. In summary, radiological imaging has its essential role in the pre- and post-interventional period for patients who are candidates for cochlear implants. PMID:26327670

  15. Estimation of risks associated with paediatric cochlear implantation.

    PubMed

    Johnston, J Cyne; Smith, Andrée Durieux; Fitzpatrick, Elizabeth; O'Connor, Annette; Angus, Douglas; Benzies, Karen; Schramm, David

    2010-09-01

    The objectives of this study were to estimate the rates of complications associated with paediatric cochlear implantation use: a) at one Canadian cochlear implant (CI) centre, and b) in the published literature. It comprised a retrospective hospital-based chart review and a concurrent review of complications in the published literature. There were 224 children who had undergone surgery from 1994 to June 2007. Results indicate that the rates of complications at the local Canadian paediatric CI centre are not significantly different from the literature rates for all examined complication types. This hospital-based retrospective chart review and review of the literature provide readers with an estimation of the risks to aid in evidence-based decision-making surrounding paediatric cochlear implantation. PMID:19655302

  16. Cochlear Implantation in a Patient with Kabuki Syndrome.

    PubMed

    Vesseur, Annemarie; Cillessen, Eva; Mylanus, Emmanuel

    2016-04-01

    Criteria for cochlear implants are expanding and now include children with disabilities in addition to hearing loss, such as those with Kabuki syndrome (KS). This case report describes language outcomes and changes in the quality of life of a female child with KS after cochlear implantation. The subject had a profound progressive sensorineural hearing loss, cognitive impairments, and other disabilities and communicated using vocalized sounds and the Dutch Sign Language. After cochlear implantation at an age of nine years and three months, the patient displayed no progress in speech production and minimal progress in receptive language development, but she had an increased awareness of the world and an increase in the quality of life. PMID:27341000

  17. The Spiral Staircase: Tonotopic Microstructure and Cochlear Tuning

    PubMed Central

    2015-01-01

    Although usually assumed to be smooth and continuous, mammalian cochlear frequency-position maps are predicted to manifest a staircase-like structure comprising plateaus of nearly constant characteristic frequency separated by abrupt discontinuities. The height and width of the stair steps are determined by parameters of cochlear frequency tuning and vary with location in the cochlea. The step height is approximately equal to the bandwidth of the auditory filter (critical band), and the step width matches that of the spatial excitation pattern produced by a low-level pure tone. Stepwise tonotopy is an emergent property arising from wave reflection and interference within the cochlea, the same mechanisms responsible for the microstructure of the hearing threshold. Possible relationships between the microstructure of the cochlear map and the tiered tonotopy observed in the inferior colliculus are explored. PMID:25788685

  18. [How does a cochlear implant speech processor work?].

    PubMed

    Adunka, O; Kiefer, J

    2005-11-01

    Cochlear implants have become a standard treatment modality for sensorineural hearing loss. In this review article, assembly and function of a cochlear implant are described. Cochlear implants replace the normal inner ear by transforming acoustic sound signals into electric stimuli and deliver these to the auditory nerve. Speech processors translate the acoustic signal of the microphone into one that fits electrostimulation of the auditory system. In multiple steps, the signal has to be analyzed and processed to fit the demands of electrical stimulation. The speech processor then sends commands and the energy for stimulation to the implanted parts via a transcutaneous high frequency radio link. The implant refers the information as electrical stimuli to each electrode contact. PMID:16358193

  19. Mechanics of the Nucleus

    PubMed Central

    Lammerding, Jan

    2015-01-01

    The nucleus is the distinguishing feature of eukaryotic cells. Until recently, it was often considered simply as a unique compartment containing the genetic information of the cell and associated machinery, without much attention to its structure and mechanical properties. This article provides compelling examples that illustrate how specific nuclear structures are associated with important cellular functions, and how defects in nuclear mechanics can cause a multitude of human diseases. During differentiation, embryonic stem cells modify their nuclear envelope composition and chromatin structure, resulting in stiffer nuclei that reflect decreased transcriptional plasticity. In contrast, neutrophils have evolved characteristic lobulated nuclei that increase their physical plasticity, enabling passage through narrow tissue spaces in their response to inflammation. Research on diverse cell types further demonstrates how induced nuclear deformations during cellular compression or stretch can modulate cellular function. Pathological examples of disturbed nuclear mechanics include the many diseases caused by mutations in the nuclear envelope proteins lamin A/C and associated proteins, as well as cancer cells that are often characterized by abnormal nuclear morphology. In this article, we will focus on determining the functional relationship between nuclear mechanics and cellular (dys-)function, describing the molecular changes associated with physiological and pathological examples, the resulting defects in nuclear mechanics, and the effects on cellular function. New insights into the close relationship between nuclear mechanics and cellular organization and function will yield a better understanding of normal biology and will offer new clues into therapeutic approaches to the various diseases associated with defective nuclear mechanics. PMID:23737203

  20. Aminoglycoside-induced cochlear pathology in man.

    PubMed

    Johnsson, L G; Hawkins, J E; Kingsley, T C; Black, F O; Matz, G J

    1981-01-01

    Temporal bones from five patients with hearing loss as a result of aminoglycoside treatment were examined by the method of microdissection and surface preparations, followed by celloidin embedding and serial sectioning of the modiolus. Three patients had received the newer antibiotics, gentamicin, tobramycin, and amikacin; the other two neomycin. In the cochleas from two patients of the first group there was only a small loss of hair cells, restricted to the lower end of the basal turn. The third, who had been treated with several antibiotics over a longer period of time, showed more extensive but strikingly asymmetrical patterns of degeneration in the two ears. This patient, as well as the fourth, who had received neomycin during peritoneal lavage, had numerous patchy areas of complete disappearance of Corti's organ in the basal turn, with incipient degeneration of the distal ends of the nerve fibers in adjacent portions of the osseous spiral lamina. The fifth patient, who had become deaf after prolonged treatment with neomycin by mouth, showed a complete loss of cochlear hair cells. Nerve fibers were present only in the middle and upper turns, where supporting cells remained. Midmodiolar sections showed a proportionately much greater loss of the distal than of the proximal processes of the cells of the spiral ganglion. These findings underscore once again the special hazard for the inner ear that is associated with the clinical use of neomycin, regardless of the route of administration. PMID:6282040

  1. Design for a simplified cochlear implant system.

    PubMed

    An, Soon Kwan; Park, Se-Ik; Jun, Sang Beom; Lee, Choong Jae; Byun, Kyung Min; Sung, Jung Hyun; Wilson, Blake S; Rebscher, Stephen J; Oh, Seung Ha; Kim, Sung June

    2007-06-01

    A simplified cochlear implant (CI) system would be appropriate for widespread use in developing countries. Here, we describe a CI that we have designed to realize such a concept. The system implements 8 channels of processing and stimulation using the continuous interleaved sampling (CIS) strategy. A generic digital signal processing (DSP) chip is used for the processing, and the filtering functions are performed with a fast Fourier transform (FFT) of a microphone or other input. Data derived from the processing are transmitted through an inductive link using pulse width modulation (PWM) encoding and amplitude shift keying (ASK) modulation. The same link is used in the reverse direction for backward telemetry of electrode and system information. A custom receiver-stimulator chip has been developed that demodulates incoming data using pulse counting and produces charge balanced biphasic pulses at 1000 pulses/s/electrode. This chip is encased in a titanium package that is hermetically sealed using a simple but effective method. A low cost metal-silicon hybrid mold has been developed for fabricating an intracochlear electrode array with 16 ball-shaped stimulating contacts. PMID:17554817

  2. Temporal feature perception in cochlear implant users.

    PubMed

    Timm, Lydia; Agrawal, Deepashri; C Viola, Filipa; Sandmann, Pascale; Debener, Stefan; Büchner, Andreas; Dengler, Reinhard; Wittfoth, Matthias

    2012-01-01

    For the perception of timbre of a musical instrument, the attack time is known to hold crucial information. The first 50 to 150 ms of sound onset reflect the excitation mechanism, which generates the sound. Since auditory processing and music perception in particular are known to be hampered in cochlear implant (CI) users, we conducted an electroencephalography (EEG) study with an oddball paradigm to evaluate the processing of small differences in musical sound onset. The first 60 ms of a cornet sound were manipulated in order to examine whether these differences are detected by CI users and normal-hearing controls (NH controls), as revealed by auditory evoked potentials (AEPs). Our analysis focused on the N1 as an exogenous component known to reflect physical stimuli properties as well as on the P2 and the Mismatch Negativity (MMN). Our results revealed different N1 latencies as well as P2 amplitudes and latencies for the onset manipulations in both groups. An MMN could be elicited only in the NH control group. Together with additional findings that suggest an impact of musical training on CI users' AEPs, our findings support the view that impaired timbre perception in CI users is at partly due to altered sound onset feature detection. PMID:23028971

  3. Temporal Feature Perception in Cochlear Implant Users

    PubMed Central

    Timm, Lydia; Agrawal, Deepashri; C. Viola, Filipa; Sandmann, Pascale; Debener, Stefan; Büchner, Andreas; Dengler, Reinhard; Wittfoth, Matthias

    2012-01-01

    For the perception of timbre of a musical instrument, the attack time is known to hold crucial information. The first 50 to 150 ms of sound onset reflect the excitation mechanism, which generates the sound. Since auditory processing and music perception in particular are known to be hampered in cochlear implant (CI) users, we conducted an electroencephalography (EEG) study with an oddball paradigm to evaluate the processing of small differences in musical sound onset. The first 60 ms of a cornet sound were manipulated in order to examine whether these differences are detected by CI users and normal-hearing controls (NH controls), as revealed by auditory evoked potentials (AEPs). Our analysis focused on the N1 as an exogenous component known to reflect physical stimuli properties as well as on the P2 and the Mismatch Negativity (MMN). Our results revealed different N1 latencies as well as P2 amplitudes and latencies for the onset manipulations in both groups. An MMN could be elicited only in the NH control group. Together with additional findings that suggest an impact of musical training on CI users’ AEPs, our findings support the view that impaired timbre perception in CI users is at partly due to altered sound onset feature detection. PMID:23028971

  4. Development of Cochlear Mechanics in the Gerbil

    NASA Astrophysics Data System (ADS)

    Overstreet, E. H., III; Temchin, A. N.; Ruggero, M. A.

    2003-02-01

    Using a laser velocimeter, basilar-membrane vibrations were measured in adult and neonatal gerbils at a site with characteristic frequency of 34-37 kHz located 1.2 mm from the round window of the cochlea. Stapes vibrations and compound action potential thresholds were also measured up to frequencies exceeding the site's characteristic frequency. In adult gerbils, basilar-membrane responses at this site exhibited a compressive nonlinearity. Post-mortem, basilar-membrane responses in adults became "passive", i.e., linear and insensitive, and the best frequency shifted downward by about 0.5 octave. At 14 and 16 days after birth, basilar-membrane responses in neonatal gerbils were passive but otherwise very different from post-mortem responses in adult gerbils: best frequency was more than an octave lower, the steep slopes of the phase-vs.-frequency curves were shifted downward in frequency by nearly one octave, and the maximum phase lags amounted to only 180 degrees re. stapes. Best frequencies and phase lags increased systematically between 14 and 20 days after birth, implying drastic alterations of the passive material properties of cochlear tissues and accounting for a large part of the shift in best frequency that characterizes maturation of auditory-nerve responses during the same period.

  5. Cochlear implantations in visually impaired patients.

    PubMed

    Takasaki, Kenji; Kanda, Yokihiko; Kumagami, Hidetaka; Yashida, Haruo; Yamamoto-Fukuda, Tomomi; Miyamoto, Ikue; Takahashi, Haruo

    2007-04-01

    We retrospectively review the cases to evaluate the outcome of cochlear implantation (CI) in patients with severe-to-profound hearing loss and visual impairment (VI). Six adults with severe or profound hearing loss and significant VI underwent multichannel CI. Follow-up period ranged from 17 months to 7 years. Case history, etiology of visual and hearing loss, and benefit from CI were evaluated. To measure the outcomes, we selected the pure-tone thresholds with CI, the speech discrimination scores (SDS) using the Japanese video SDS system, the speech perception rates using the Japanese CD SDS system by monosyllable and word, and the open-set and closed sentence score using live voice. All the patients live happily after CI. There was no significant difference between the present six patients and the patients with profound hearing loss without VI in evaluations of hearing and quality of life. CI can play a significant rehabilitative role in patients with severe hearing loss and VI. PMID:17082944

  6. Localization ability with bimodal hearing aids and bilateral cochlear implants

    NASA Astrophysics Data System (ADS)

    Seeber, Bernhard U.; Baumann, Uwe; Fastl, Hugo

    2004-09-01

    After successful cochlear implantation in one ear, some patients continue to use a hearing aid at the contralateral ear. They report an improved reception of speech, especially in noise, as well as a better perception of music when the hearing aid and cochlear implant are used in this bimodal combination. Some individuals in this bimodal patient group also report the impression of an improved localization ability. Similar experiences are reported by the group of bilateral cochlear implantees. In this study, a survey of 11 bimodally and 4 bilaterally equipped cochlear implant users was carried out to assess localization ability. Individuals in the bimodal implant group were all provided with the same type of hearing aid in the opposite ear, and subjects in the bilateral implant group used cochlear implants of the same manufacturer on each ear. Subjects adjusted the spot of a computer-controlled laser-pointer to the perceived direction of sound incidence in the frontal horizontal plane by rotating a trackball. Two subjects of the bimodal group who had substantial residual hearing showed localization ability in the bimodal configuration, whereas using each single device only the subject with better residual hearing was able to discriminate the side of sound origin. Five other subjects with more pronounced hearing loss displayed an ability for side discrimination through the use of bimodal aids, while four of them were already able to discriminate the side with a single device. Of the bilateral cochlear implant group one subject showed localization accuracy close to that of normal hearing subjects. This subject was also able to discriminate the side of sound origin using the first implanted device alone. The other three bilaterally equipped subjects showed limited localization ability using both devices. Among them one subject demonstrated a side-discrimination ability using only the first implanted device.

  7. A case report: the first successful cochlear implant in Uganda.

    PubMed

    Byaruhanga, Richard; Roland, J Thomas; Buname, Gustav; Kakande, Emily; Awubwa, Michael; Ndorelire, Chris; Namwagala, Justine

    2015-12-01

    Hearing impairment is a significant disability. According to the World Health Organization (WHO), more than 80% of the world's approximately 120 million people with hearing impairment live in developing countries. Cochlear implant is the only therapeutic intervention for those with severe-profound sensorineural hearing loss. We are reporting an interesting case of the very first cochlear implant operation carried out in Uganda. The patient was a 23 year old male whose presenting complaint was inability to hear in the left ear for three and a half years and in the right ear for one year. He had been treated for TB(Tuberculosis) mastoiditis. After the 8 months of treatment, the otorrhea persisted and he underwent a tympanomastoidectomy on the same ear. He reported no familial history of hearing loss. On examination, ENT examination revealed a small pars flaccida retration pocket of the right tympanic membrane with cholesteatoma. The left ear had an intact tympanic membrane. Pure tone audiometry revealed profound sensorineural hearing loss in both ears (see attached PTA results), CT scan of the temporal bone showed normal inner ear anatomy bilaterally and mild sclerotic changes in both mastoid bones. He then had surgery on his right ear which included cochlear implantation. The cochlear implant (CI) was activated on the first postoperative day remotely via internet with the help of the cochlear implant team at New York University Cochlear Implant Center and the patient was immediately able to appreciate some sounds. He received a pneumococcal vaccine on the first postoperative day and was discharged the following day. PMID:26958040

  8. Noise alters hair-bundle mechanics at the cochlear apex

    NASA Astrophysics Data System (ADS)

    Strimbu, C. Elliott; Fridberger, Anders

    2015-12-01

    Exposure to loud sounds can lead to both permanent and short term changes in auditory sensitivity. Permanent hearing loss is often associated with gross changes in cochlear morphology including the loss of hair cells and auditory nerve fibers while the mechanisms of short term threshold shifts are much less well understood and may vary at different locations across the cochlea. Previous reports suggest that exposure to loud sounds leads to a decrease in the cochlear microphonic potential and in the stiffness of the organ of Corti. Because the cochlear microphonic reflects changes in the membrane potential of the hair cells, this suggests that hair-bundle motion should be reversibly altered following exposure to loud sounds. Using an in vitro preparation of the guinea pig temporal bone we investigate changes in the micro-mechanical response near the cochlear apex following a brief (up to 10 - 20 minutes) exposure to loud (˜ 120 dB) tones near the best frequency at this location. We use time-resolved confocal imaging to record the motion of outer hair cell bundles before and after acoustic overstimulation. We have also recorded larger-scale structural views of the organ of Corti before and after exposure to the loud sound. Conventional electrophysiological techniques are used measure the cochlear microphonic potential. As has been previously reported, following acoustic overexposure the cochlear microphonic declines in value and typically recovers on the order of 30 - 60 minutes. Hair-bundle trajectories are affected following the loud sound and typically recover on a somewhat faster time scale than the microphonic potential, although the results vary considerably across preparations. Preliminary results also suggest reversible changes in the hair cell's resting potential following the loud sound.

  9. The cochlear implant. A technology for the profoundly deaf.

    PubMed

    Lea, A R; Hailey, D M

    1995-01-01

    The cochlear implant is a device that enables the profoundly deaf to hear. This article considers the nature of the technology, the need for rehabilitation programs for those who are implanted and the evidence of benefits from this approach. A preliminary economic assessment suggests that costs per QALY for this technology would be of the order of $ 14,000 for children and $ 22,000 for adults. Cochlear implantation appears to be superior to vibrotactile devices, and is an effective technology for appropriately selected persons. PMID:7791692

  10. Cochlear implantation after resection of an intralabyrinthine schwannoma.

    PubMed

    Schutt, Christopher A; Kveton, John F

    2014-01-01

    Intralabyrinthine schwannomas are rare tumors of the distal ends of the cochlear and vestibular nerve. Their presence can be debilitating secondary to symptoms of hearing loss, vertigo, tinnitus, and imbalance. Currently, treatment to restore hearing in those who have become profoundly deaf is not attempted. Additionally, resection in patients with functioning hearing is rare, as the surgery assures deafness. We report the first case demonstrating the feasibility of resection of an intralabyrinthine schwannoma with immediate cochlear implantation. This technique addresses the patients hearing status by taking into account advancing technology, allowing for an improved quality of life. PMID:24321750

  11. Success of children with cochlear implants in mainstream educational settings.

    PubMed

    Nevins, M E; Chute, P M

    1995-09-01

    The availability of cochlear implant technology has made mainstreaming a more reachable social and academic goal for profoundly deaf children. Traditionally, the profoundly deaf child has required more self-contained education. It has been the hard-of-hearing child who reached the mainstream education classroom during the elementary years. Cochlear implant recipients, implanted early and receiving appropriate educational services that maximize learning across all domains, have shown a significant trend toward moving from a more self-contained to a less restrictive educational environment. Children with implants are making these transitions earlier than the larger majority of profoundly deaf children using traditional amplification. PMID:7668592

  12. Chinese tonal language rehabilitation following cochlear implantation in children.

    PubMed

    Wei, W I; Wong, R; Hui, Y; Au, D K; Wong, B Y; Ho, W K; Tsang, A; Kung, P; Chung, E

    2000-03-01

    Cantonese language rehabilitation in 28 prelingually deaf children who underwent cochlear implantation was evaluated. All patients were implanted with multichannel devices and the operations went smoothly. They all had improved scores on audiological assessments and speech perception tests. The speech evaluation tests included the recognition of sounds, vowels, consonants and tone. Sentence recognition and story comprehension were both improved after training for 2 years. Cochlear implantation is a useful measure for the speech rehabilitation of prelingually profound deaf children when hearing aids are of no benefit. The multichannel implant device is of clinical significance in the rehabilitation of those patients using tonal language. PMID:11603776

  13. Two Neutron Removal in Relativistic Nucleus-Nucleus Reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for double neutron removal via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work examines the cause of these discrepancies and systematically investigates whether the problem might be due to electromagnetic theory, nuclear contributions, or an underestimate of experimental error. Using cross section systematics from other reactions it is found that the discrepancies can be resolved in a plausible manner.

  14. Unexpected doubly-magic nucleus.

    SciTech Connect

    Janssens, R. V. F.; Physics

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope {sup 24}O has been found to be one such nucleus - yet it lies just at the limit of stability.

  15. Effects of site-specific level adjustments on speech recognition with cochlear implants

    PubMed Central

    Zhou, Ning; Pfingst, Bryan E.

    2013-01-01

    Objectives Modulation detection thresholds (MDTs) vary across stimulation sites in a cochlear implant electrode array in a manner that is subject and ear specific. Previous studies have demonstrated that speech recognition with a cochlear implant can be improved by site-selection strategies, where selected stimulation sites with poor modulation sensitivity are removed from a subject’s processor MAP1. Limitations of site-selection strategies are that they can compromise spectral resolution and distort frequency-place mapping since the frequencies assigned to the removed sites are usually reallocated to other sites and site bandwidths are broadened. The objective of the current study was to test an alternative approach for rehabilitation that aimed at improving the across-site mean (ASM) MDTs by adjusting stimulation parameters at the poorly-performing sites. Based on previous findings that modulation detection contributes to speech recognition and improves significantly with stimulus level, we hypothesized that modulation sensitivity at the poor sites can be improved by artificially increasing stimulation levels at those sites in the speech processor, which then leads to improved speech recognition. Design Nine postlingually deafened ears implanted with Nucleus cochlear implants were evaluated for MDTs, absolute-detection threshold levels (T levels) and the maximum loudness levels (C levels) on each of the available stimulation sites. For each ear, the minimum stimulation level settings in the speech processor MAP were raised by 5%, and alternatively by 10%, of the dynamic range (DR) from true thresholds on 5 stimulation sites with the poorest MDTs. For comparison, a 5% level raise was globally applied to all stimulation sites. The C levels were fixed during these level manipulations. MDTs at the 5 poorest stimulation sites were compared at 20% DR before and after the level adjustments. Speech reception thresholds (SRTs), i.e., signal to noise ratios (SNRs

  16. [Experiences in Kiel with the cochlear implant].

    PubMed

    Müller-Deile, J; Schmidt, B J; Rudert, H

    1994-06-01

    Since 1988 22 deaf patients were provided with a 22-channel cochlear implant at the Kiel University Hospital. No surgical or postoperative complications were seen in any of the patients. Side effects like facial stimulation and pain sensation during electrode activation do not reduce the utility. Tinnitus may initially be severe but usually subsides to preop levels after a few days. A tinnitus masking effect is pronounced during stimulation but hardly lasts long after switch off. Besides an individually arranged hearing training the accurate speech processor fitting to the needs of the patient remains the cornerstone of successful rehabilitation. Objective intraoperative measurements such as the electrically evoked brain stem potentials and the middle ear reflexes yield estimates of the threshold values relevant for initial processor programming. Further information needed for the following extensive fine adjustment is obtained by subjective evaluation of loudness growth during electrical stimulation with variable parameters, by loudness scaling of narrow band noises with different middle frequencies and intensities presented under free field conditions and by speech audiometric procedures. The latter include a monosyllabic rhyme test and a logatom test developed at this institution. More speech testing is applied to document the degree of auditive rehabilitation. The results of speech tracking and the Freiburg tests as well as a new sentence test in silence and noise are discussed. In the multisyllable Freiburg test all but two of the adults understand the complete presented material, in the open set monosyllable test an average of 55% correct is achieved. Speech discrimination-oriented ranking showed 95% of all postlingually deaf patients in the highest performance category. PMID:8060448

  17. Assessment of a direct acoustic cochlear stimulator.

    PubMed

    Chatzimichalis, Michail; Sim, Jae Hoon; Huber, Alexander M

    2012-01-01

    This study aimed to assess the functional results of a new, active, acoustic-mechanical hearing implant, the Direct Acoustic Cochlear Stimulation Partial Implant (DACS PI), in a preclinical study. The DACS PI is an electromagnetic device fixed to the mastoid by screws and coupled to a standard stapes prosthesis by an artificial incus (AI). The function of the DACS PI-aided reconstruction was assessed by determining: (1) the maximum equivalent sound pressure level (SPL) of the implant, which was obtained from measurements of the volume displacement at the round window in normal and implanted ears, and (2) the quality at the coupling interface between the AI of the DACS and the stapes prosthesis, which was quantified from measurements of relative motions between the AI and the prosthesis. Both measurements were performed with fresh temporal bones using a scanning laser Doppler interferometry system. The expected maximum equivalent SPL with a typical driving voltage of 0.3 V was about 115-125 dB SPL up to 1.5 kHz in reconstruction with the DACS PI, and decreased with a roll-off slope of about 65 dB/decade, reaching 90 dB SPL at 8 kHz. The large roll-off relative to a normal ear was presumed to be a relatively high inductive impedance of the coil of the DACS PI actuator at higher frequencies. Good coupling quality between the AI and the prosthesis was achieved below the resonance (∼1.5 kHz) of the DACS PI for all tested stapes prostheses. Above the resonance, the SMart Piston, which is composed of a shape-memory alloy, had the best coupling quality. PMID:22739432

  18. Effects of Talker Variability on Vowel Recognition in Cochlear Implants

    ERIC Educational Resources Information Center

    Chang, Yi-ping; Fu, Qian-Jie

    2006-01-01

    Purpose: To investigate the effects of talker variability on vowel recognition by cochlear implant (CI) users and by normal-hearing (NH) participants listening to 4-channel acoustic CI simulations. Method: CI users were tested with their clinically assigned speech processors. For NH participants, 3 CI processors were simulated, using different…

  19. Prosody and Voice Characteristics of Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Lenden, Jessica M.; Flipsen, Peter, Jr.

    2007-01-01

    This descriptive, longitudinal study involved the analysis of the prosody and voice characteristics of conversational speech produced by six young children with severe to profound hearing impairments who had been fitted with cochlear implants. A total of 40 samples were analyzed using the Prosody-Voice Screening Profile (PVSP; Shriberg, L. D.,…

  20. Strategies for Working with Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Schraer-Joiner, Lyn; Prause-Weber, Manuela

    2009-01-01

    According to the National Institute on Deafness and Other Communication Disorders, 23,000 individuals in the United States, including 10,000 children, have a cochlear implant. This biomedical electronic device has been a breakthrough in the auditory rehabilitation of individuals diagnosed with severe or profound sensorineural hearing losses who…

  1. Sensitive Periods and Language in Cochlear Implant Users

    ERIC Educational Resources Information Center

    Moreno-Torres, Ignacio; Madrid-Canovas, Sonia; Blanco-Montanez, Gema

    2016-01-01

    This study explores the hypothesis that the existence of a short sensitive period for lower-level speech perception/articulation skills, and a long one for higher-level language skills, may partly explain the language outcomes of children with cochlear implants (CIs). The participants were fourteen children fitted with a CI before their second…

  2. Phoneme Recognition and Confusions with Multichannel Cochlear Implants: Vowels.

    ERIC Educational Resources Information Center

    Valimaa, Taina T.; Maatta, Taisto K.; Lopponen, Heikki J.; Sorri, Martti J.

    2002-01-01

    A study investigated how 19 Finnish adults who were postlingually severely or profoundly hearing impaired would relearn to recognize vowels after receiving multi-channel cochlear implants. Average vowel recognition was 68% 6 months after switch-on, and 80% 24 months after switch-on. Vowels y, e, and o were most difficult. (Contains references.)…

  3. Phoneme Recognition and Confusions with Multichannel Cochlear Implants: Consonants.

    ERIC Educational Resources Information Center

    Valimaa, Taina T.; Maatta, Taisto K.; Lopponen, Heikki J.; Sorri, Martti J.

    2002-01-01

    A study investigated how 19 Finnish adults who were postlingually severely or profoundly hearing impaired would relearn to recognize consonants after receiving multi-channel cochlear implants. Two years after the switch-on, the mean recognition for consonants was 71%. Consonants with alveolar, palatal, or velar transitions were better recognized.…

  4. Multichannel Cochlear Implantation and the Organization of Early Speech.

    ERIC Educational Resources Information Center

    McCaffrey, Helen A.; Davis, Barbara L.; MacNeilage, Peter F.; von Hapsburg, Deborah

    1999-01-01

    A case study of a child who was stimulated with a cochlear implant at age 25 months is reported. Postimplantation, nasals decreased and other consonant types increased, particularly alveolars. The vowel space expanded, including increased production of diphthongs. Serial organization of speech postimplantation mirrored basic motor propensities in…

  5. Acoustic and Semantic Enhancements for Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Smiljanic, Rajka; Sladen, Douglas

    2013-01-01

    Purpose: In this study, the authors examined how signal clarity interacts with the use of sentence context information in determining speech-in-noise recognition for children with cochlear implants and children with normal hearing. Method: One hundred and twenty sentences in which the final word varied in predictability (high vs. low semantic…

  6. Implants and Ethnocide: Learning from the Cochlear Implant Controversy

    ERIC Educational Resources Information Center

    Sparrow, Robert

    2010-01-01

    This paper uses the fictional case of the "Babel fish" to explore and illustrate the issues involved in the controversy about the use of cochlear implants in prelinguistically deaf children. Analysis of this controversy suggests that the development of genetic tests for deafness poses a serious threat to the continued flourishing of Deaf culture.…

  7. PET-imaging of brain plasticity after cochlear implantation.

    PubMed

    Strelnikov, K; Marx, M; Lagleyre, S; Fraysse, B; Deguine, O; Barone, P

    2015-04-01

    In this article, we review the PET neuroimaging literature, which indicates peculiarities of brain networks involved in speech restoration after cochlear implantation. We consider data on implanted patients during stimulation as well as during resting state, which indicates basic long-term reorganisation of brain functional architecture. On the basis of our analysis of neuroimaging literature and considering our own studies, we indicate that auditory recovery in deaf patients after cochlear implantation partly relies on visual cues. The brain develops mechanisms of audio-visual integration as a strategy to achieve high levels of speech recognition. It turns out that this neuroimaging evidence is in line with behavioural findings of better audiovisual integration in these patients. Thus, strong visually and audio-visually based rehabilitation during the first months after cochlear implantation would significantly improve and fasten the functional recovery of speech intelligibility and other auditory functions in these patients. We provide perspectives for further neuroimaging studies in cochlear implanted patients, which would help understand brain organisation to restore auditory cognitive processing in the implanted patients and would potentially suggest novel approaches for their rehabilitation. This article is part of a Special Issue entitled . PMID:25448166

  8. Using Flanagan's phase vocoder to improve cochlear implant performance

    NASA Astrophysics Data System (ADS)

    Zeng, Fan-Gang

    2004-10-01

    The cochlear implant has restored partial hearing to more than 100000 deaf people worldwide, allowing the average user to talk on the telephone in quiet environment. However, significant difficulty still remains for speech recognition in noise, music perception, and tonal language understanding. This difficulty may be related to speech processing strategies in current cochlear implants that emphasized the extraction and encoding of the temporal envelope while ignoring the temporal fine structure in speech sounds. A novel strategy was developed based on Flanagan's phase vocoder [Flanagan and Golden, Bell Syst. Tech. 45, 1493-1509 (1966)], in which frequency modulation was extracted from the temporal fine structure and then added to amplitude modulation in the current cochlear implants. Acoustic simulation results showed that amplitude and frequency modulation contributed complementarily to speech perception with amplitude modulation contributing mainly to intelligibility whereas frequency modulation contributed to speaker identification and auditory grouping. The results also showed that the novel strategy significantly improved cochlear implant performance under realistic listening situations. Overall, the present result demonstrated that Flanagan's classic work on phase vocoder still shed insight on current problems of both theoretical and practical importance. [Work supported by NIH.

  9. Relational Learning in Children with Deafness and Cochlear Implants

    ERIC Educational Resources Information Center

    Almeida-Verdu, Ana Claudia; Huziwara, Edson M.; de Souza, Deisy G.; de Rose, Julio C.; Bevilacqua, Maria Cecilia; Lopes, Jair, Jr.; Alves, Cristiane O.; McIlvane, William J.

    2008-01-01

    This four-experiment series sought to evaluate the potential of children with neurosensory deafness and cochlear implants to exhibit auditory-visual and visual-visual stimulus equivalence relations within a matching-to-sample format. Twelve children who became deaf prior to acquiring language (prelingual) and four who became deaf afterwards…

  10. Counselling Challenges and Strategies for Cochlear Implant Specialists

    ERIC Educational Resources Information Center

    English, Kris

    2010-01-01

    Cochlear implant specialists daily observe patients and families grapple with a wide range of emotions. As nonprofessional counsellors, we can help patients address those emotions by providing more opportunities to talk about their thoughts and feelings. This paper will review some familiar counselling challenges, such as the disappointment that…

  11. Cochlear Implants in the Inclusive Classroom: A Case Study

    ERIC Educational Resources Information Center

    Jachova, Zora; Kovacevic, Jasmina

    2010-01-01

    This article presents a case study of a child aged 12 years with a cochlear implant who is attending a mainstream educational setting in Skopje, FYR Macedonia. The study, which uses both qualitative and quantitative data, took place over a period of 12 months. It illustrates the importance of professional development and training of teachers and a…

  12. Profiles of Vocal Development in Young Cochlear Implant Recipients

    ERIC Educational Resources Information Center

    Ertmer, David J.; Young, Nancy M.; Nathani, Suneeti

    2007-01-01

    Purpose: The main purpose of this investigation was to examine the effects of cochlear implant experience on prelinguistic vocal development in young deaf children. Procedure: A prospective longitudinal research design was used to document the sequence and time course of vocal development in 7 children who were implanted between 10 and 36 months…

  13. Speech Perception in Noise by Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Caldwell, Amanda; Nittrouer, Susan

    2013-01-01

    Purpose: Common wisdom suggests that listening in noise poses disproportionately greater difficulty for listeners with cochlear implants (CIs) than for peers with normal hearing (NH). The purpose of this study was to examine phonological, language, and cognitive skills that might help explain speech-in-noise abilities for children with CIs.…

  14. Spelling of Deaf Children Who Use Cochlear Implants

    ERIC Educational Resources Information Center

    Hayes, Heather; Kessler, Brett; Treiman, Rebecca

    2011-01-01

    The spellings of 39 profoundly deaf users of cochlear implants, aged 6 to 12 years, were compared with those of 39 hearing peers. When controlled for age and reading ability, the error rates of the 2 groups were not significantly different. Both groups evinced phonological spelling strategies, performing better on words with more typical…

  15. Growing up with a Cochlear Implant: Education, Vocation, and Affiliation

    ERIC Educational Resources Information Center

    Spencer, Linda J.; Tomblin, J. Bruce; Gantz, Bruce J.

    2012-01-01

    The long-term educational/vocational, affiliation, and quality-of-life outcomes of the first and second cohorts of children with bilateral, profound hearing loss who received cochlear implants under a large National Institutes of Health-funded study was investigated in 41 of 61 eligible participants. Educational and vocational outcomes were…

  16. Reading Comprehension of Deaf Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Vermeulen, Anneke M.; van Bon, Wim; Schreuder, Rob; Knoors, Harry; Snik, Ad

    2007-01-01

    The reading comprehension and visual word recognition in 50 deaf children and adolescents with at least 3 years of cochlear implant (CI) use were evaluated. Their skills were contrasted with reference data of 500 deaf children without CIs. The reading comprehension level in children with CIs was expected to surpass that in deaf children without…

  17. Single Word and Sentence Intelligibility in Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Khwaileh, Fadwa A.; Flipsen, Peter, Jr.

    2010-01-01

    This study examined the intelligibility of speech produced by 17 children (aged 4-11 years) with cochlear implants. Stimulus items included sentences from the Beginners' Intelligibility Test (BIT) and words from the Children Speech Intelligibility Measure (CSIM). Naive listeners responded by writing sentences heard or with two types of responses…

  18. Bilateral Cochlear Implantation in Children: Experiences and Considerations

    ERIC Educational Resources Information Center

    Bohnert, Andrea; Spitzlei, Vera; Lippert, Karl L.; Keilmann, Annerose

    2006-01-01

    Between 2000 and 2006, the University Clinic for Ear Nose and Throat and Communication Disorders in Mainz, Germany, performed 41 bilateral cochlear implantations in children. This article addresses some of the factors to be considered in a decision to bilaterally implant a child, including the age of the child at the first implant, the length of…

  19. Automatic Model Generation Framework for Computational Simulation of Cochlear Implantation.

    PubMed

    Mangado, Nerea; Ceresa, Mario; Duchateau, Nicolas; Kjer, Hans Martin; Vera, Sergio; Dejea Velardo, Hector; Mistrik, Pavel; Paulsen, Rasmus R; Fagertun, Jens; Noailly, Jérôme; Piella, Gemma; González Ballester, Miguel Ángel

    2016-08-01

    Recent developments in computational modeling of cochlear implantation are promising to study in silico the performance of the implant before surgery. However, creating a complete computational model of the patient's anatomy while including an external device geometry remains challenging. To address such a challenge, we propose an automatic framework for the generation of patient-specific meshes for finite element modeling of the implanted cochlea. First, a statistical shape model is constructed from high-resolution anatomical μCT images. Then, by fitting the statistical model to a patient's CT image, an accurate model of the patient-specific cochlea anatomy is obtained. An algorithm based on the parallel transport frame is employed to perform the virtual insertion of the cochlear implant. Our automatic framework also incorporates the surrounding bone and nerve fibers and assigns constitutive parameters to all components of the finite element model. This model can then be used to study in silico the effects of the electrical stimulation of the cochlear implant. Results are shown on a total of 25 models of patients. In all cases, a final mesh suitable for finite element simulations was obtained, in an average time of 94 s. The framework has proven to be fast and robust, and is promising for a detailed prognosis of the cochlear implantation surgery. PMID:26715210

  20. Production Accuracy in a Young Cochlear Implant Recipient

    ERIC Educational Resources Information Center

    Warner-Czyz, Andrea D.; Davis, Barbara L.; Morrison, Helen M.

    2005-01-01

    The availability of cochlear implants in younger children has provided the opportunity to evaluate the relative impact of the production system, or the sounds young children can say, and the auditory system, or the sounds children can hear, on early vocal communication. Limited access to the acoustic properties of speech results in differences in…

  1. Enduring Advantages of Early Cochlear Implantation for Spoken Language Development

    ERIC Educational Resources Information Center

    Geers, Anne E.; Nicholas, Johanna G.

    2013-01-01

    Purpose: In this article, the authors sought to determine whether the precise age of implantation (AOI) remains an important predictor of spoken language outcomes in later childhood for those who received a cochlear implant (CI) between 12 and 38 months of age. Relative advantages of receiving a bilateral CI after age 4.5 years, better…

  2. Identification and Multiplicity of Double Vowels in Cochlear Implant Users

    ERIC Educational Resources Information Center

    Kwon, Bomjun J.; Perry, Trevor T.

    2014-01-01

    Purpose: The present study examined cochlear implant (CI) users' perception of vowels presented concurrently (i.e., "double vowels") to further our understanding of auditory grouping in electric hearing. Method: Identification of double vowels and single vowels was measured with 10 CI subjects. Fundamental frequencies (F0s) of…

  3. TeleCITE: Telehealth--A Cochlear Implant Therapy Exchange

    ERIC Educational Resources Information Center

    Stith, Joanna; Stredler-Brown, Arlene; Greenway, Pat; Kahn, Gary

    2012-01-01

    What might bring the efforts of a physician, a speech-language pathologist, a teacher of the deaf and hard of hearing, and a nurse together? The answer is the innovative use of telepractice to deliver high quality, family-centered early intervention to infants and toddlers with hearing loss. TeleCITE: Telehealth--A Cochlear Implant Therapy…

  4. Prelingual deafness: Benefits from cochlear implants versus conventional hearing aids

    PubMed Central

    Bittencourt, Aline Gomes; Torre, Ana Adelina Giantomassi Della; Bento, Ricardo Ferreira; Tsuji, Robinson Koji; Brito, Rubens de

    2012-01-01

    Summary Introduction: The majority of patients with hearing loss, including those with severe hearing loss, benefits from the use of hearing aids. The cochlear implant is believed to achieve better results in a child with hearing loss in cases where the severity of disability renders hearing aids incapable of providing adequate sound information, as they require sufficient cochlear reserve so that acoustic detention occurs. Objective: To assess if cochlear implants provide more benefit than conventional hearing aids in prelingually deaf patients. Summary of the findings: The study was a systematic review of scientific papers selected by a search of the SciELO, Cochrane, MEDLINE, and LILACS-BIREME databases. Among the 2169 articles found, 12 studies proved relevant to the issue and presented an evidence strength rating of B. No publications rated evidence strength A. Seven of the studies analyzed were prospective cohorts and 5 were cross-sectional studies. Conclusion: Based on several studies, cochlear implants were demonstrated to be the best current alternative for bilateral severe or profound hearing loss, achieving better results in speech perception and development in prelingual children when compared to conventional hearing aids. PMID:25991962

  5. Motor Development of Deaf Children with and without Cochlear Implants

    ERIC Educational Resources Information Center

    Gheysen, Freja; Loots, Gerrit; Van Waelvelde, Hilde

    2008-01-01

    The purpose of this study was to investigate the impact of a cochlear implant (CI) on the motor development of deaf children. The study involved 36 mainstreamed deaf children (15 boys, 21 girls; 4- to 12-years old) without any developmental problems. Of these children, 20 had been implanted. Forty-three hearing children constituted a comparison…

  6. Cortical Auditory Evoked Potentials in Unsuccessful Cochlear Implant Users

    ERIC Educational Resources Information Center

    Munivrana, Boska; Mildner, Vesna

    2013-01-01

    In some cochlear implant users, success is not achieved in spite of optimal clinical factors (including age at implantation, duration of rehabilitation and post-implant hearing level), which may be attributed to disorders at higher levels of the auditory pathway. We used cortical auditory evoked potentials to investigate the ability to perceive…

  7. Models of Deafness: Cochlear Implants in the Australian Daily Press

    ERIC Educational Resources Information Center

    Power, Des

    2005-01-01

    This article examined a database of Australian daily newspapers on the terms cochlear implant and deaf children to investigate how journalists and columnists report competing models of deafness: as either "medical" (deafness is a condition to be cured) or "sociocultural" (deafness provides a way of life to be lived). The results from the cochlear…

  8. Temporal-Gap Detection by Cochlear Prosthesis Users.

    ERIC Educational Resources Information Center

    Preece, John P.; Tyler, Richard S.

    1989-01-01

    Three experiments were undertaken involving three users of multi-electrode cochlear prostheses. The experiments established a scale of stimulus loudness; measured minimum-detectable gaps for sinusoidal stimuli as functions of stimulus level, frequency, and electrode place within the cochlea; and assessed independence of the electrodes using a…

  9. Concept Formation Skills in Long-Term Cochlear Implant Users

    ERIC Educational Resources Information Center

    Castellanos, Irina; Kronenberger, William G.; Beer, Jessica; Colson, Bethany G.; Henning, Shirley C.; Ditmars, Allison; Pisoni, David B.

    2015-01-01

    This study investigated if a period of auditory sensory deprivation followed by degraded auditory input and related language delays affects visual concept formation skills in long-term prelingually deaf cochlear implant (CI) users. We also examined if concept formation skills are mediated or moderated by other neurocognitive domains (i.e.,…

  10. Perioperative complications of cochlear implant surgery in children.

    PubMed

    Darlong, V; Khanna, Puneet; Baidya, Dalim Kumar; Chandralekha; Pandey, Ravindra; Punj, Jyotsna; Kumar, Rakesh; Sikka, Kapil

    2015-02-01

    Cochlear implant is a commonly performed surgery for hearing loss in pre-school and school children. However, data on anesthesia management and anesthesia-related complications are sparse. We retrospectively reviewed the data of our institute from January, 2007 to December, 2012. Medical records and anesthesia charts of all the patients who had undergone cochlear implant under general anesthesia between this period were reviewed. Information related to the demographic profile, preoperative evaluation, anesthetic techniques, and perioperative complications were collected and analyzed. A total of 190 patients underwent cochlear implant surgery for pre-lingual (175) and post-lingual (15) deafness. General endotracheal anesthesia with inhalational agents was used in all the cases. Difficult intubation was encountered in three patients. Anesthesia-related complications were laryngospasm at extubation (4.73 %), emergence agitation (2.63 %), and postoperative nausea and vomiting (1.05 %). Major surgical complications were CSF leak without meningitis (3.15 %), device migration/failure (1.05 %), and flap infection (1.57 %). Cochlear implant under general anesthesia in small children is safe and anesthesia-related complications were minimal. Surgical complications, although more frequent, were predominantly minor and self-limiting. PMID:24986254

  11. Management of Children Using Cochlear Implants and Hearing Aids.

    ERIC Educational Resources Information Center

    Ching, Teresa Y. C.; Psarros, Colleen; Incerti, Paula; Hill, Mandy

    2001-01-01

    Four case studies identify six factors affecting successful use of a hearing aid with a cochlear implant: duration of hearing aid use prior to implantation, amount of residual hearing in the non-implanted ear, educational and listening demands, cosmetic issues, hearing aid rejection, and extended period of non-use of hearing aid. (Contains…

  12. Theory of Mind and Language in Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Remmel, Ethan; Peters, Kimberly

    2009-01-01

    Thirty children with cochlear implants (CI children), age range 3-12 years, and 30 children with normal hearing (NH children), age range 4-6 years, were tested on theory of mind and language measures. The CI children showed little to no delay on either theory of mind, relative to the NH children, or spoken language, relative to hearing norms. The…

  13. Implicit Sequence Learning in Deaf Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Conway, Christopher M.; Pisoni, David B.; Anaya, Esperanza M.; Karpicke, Jennifer; Henning, Shirley C.

    2011-01-01

    Deaf children with cochlear implants (CIs) represent an intriguing opportunity to study neurocognitive plasticity and reorganization when sound is introduced following a period of auditory deprivation early in development. Although it is common to consider deafness as affecting hearing alone, it may be the case that auditory deprivation leads to…

  14. Production of Consonants by Prelinguistically Deaf Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Bouchard, Marie-Eve Gaul; Le Normand, Marie-Therese; Cohen, Henri

    2007-01-01

    Consonant production following the sensory restoration of audition was investigated in 22 prelinguistically deaf French children who received cochlear implants. Spontaneous speech productions were recorded at 6, 12, and 18 months post-surgery and consonant inventories were derived from both glossable and non-glossable phones using two acquisition…

  15. Outcomes from Cochlear Implantation for Child and Family: Parental Perspectives

    ERIC Educational Resources Information Center

    Archbold, Sue; Sach, Tracey; O'Neill, Ciaran; Lutman, Mark; Gregory, Susan

    2008-01-01

    While cochlear implantation is an increasingly routine provision for profoundly deaf children in many countries, parents still require information about the procedure and likely outcomes in order to make an informed decision. Other parents can provide them with the insights of those who have undergone the process themselves and observed outcomes…

  16. Effects of Cochlear Implants on Children's Reading and Academic Achievement

    ERIC Educational Resources Information Center

    Marschark, Marc; Rhoten, Cathy; Fabich, Megan

    2007-01-01

    This article presents a critical analysis of empirical studies assessing literacy and other domains of academic achievement among children with cochlear implants. A variety of recent studies have demonstrated benefits to hearing, language, and speech from implants, leading to assumptions that early implantation and longer periods of implant should…

  17. Relationship between multipulse integration and speech recognition with cochlear implants

    PubMed Central

    Zhou, Ning; Pfingst, Bryan E.

    2014-01-01

    Comparisons of performance with cochlear implants and postmortem conditions in the cochlea in humans have shown mixed results. The limitations in those studies favor the use of within-subject designs and non-invasive measures to estimate cochlear conditions. One non-invasive correlate of cochlear health is multipulse integration, established in an animal model. The present study used this measure to relate neural health in human cochlear implant users to their speech recognition performance. The multipulse-integration slopes were derived based on psychophysical detection thresholds measured for two pulse rates (80 and 640 pulses per second). A within-subject design was used in eight subjects with bilateral implants where the direction and magnitude of ear differences in the multipulse-integration slopes were compared with those of the speech-recognition results. The speech measures included speech reception threshold for sentences and phoneme recognition in noise. The magnitude of ear difference in the integration slopes was significantly correlated with the magnitude of ear difference in speech reception thresholds, consonant recognition in noise, and transmission of place of articulation of consonants. These results suggest that multipulse integration predicts speech recognition in noise and perception of features that use dynamic spectral cues. PMID:25190399

  18. Linguistic and Pragmatic Skills in Toddlers with Cochlear Implant

    ERIC Educational Resources Information Center

    Rinaldi, Pasquale; Baruffaldi, Francesca; Burdo, Sandro; Caselli, Maria Cristina

    2013-01-01

    Background: An increasing number of deaf children received cochlear implants (CI) in the first years of life, but no study has focused on linguistic and pragmatic skills in children with CI younger than 3 years of age. Aims: To estimate the percentage of children who had received a CI before 2 years of age whose linguistic skills were within the…

  19. Musical Involvement and Enjoyment of Children Who Use Cochlear Implants.

    ERIC Educational Resources Information Center

    Gfeller, Kate; Witt, Shelley A.; Spencer, Linda J.; Stordahl, Julie; Tomblin, Bruce

    1999-01-01

    A questionnaire on their child's musical involvement and appreciation was completed by parents of 65 children who use cochlear implants. Findings indicated many of these children were involved in some type of formal or informal musical activity and few accommodations were provided in formal music classes. Correlations between speech measures and…

  20. Use of Acoustic Cues by Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Giezen, Marcel R.; Escudero, Paola; Baker, Anne

    2010-01-01

    Purpose: This study examined the use of different acoustic cues in auditory perception of consonant and vowel contrasts by profoundly deaf children with a cochlear implant (CI) in comparison to age-matched children and young adults with normal hearing. Method: A speech sound categorization task in an XAB format was administered to 15 children ages…

  1. Word Learning Processes in Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Walker, Elizabeth A.; McGregor, Karla K.

    2013-01-01

    Purpose: To determine whether 3 aspects of the word learning process--fast mapping, retention, and extension--are problematic for children with cochlear implants (CIs). Method: The authors compared responses of 24 children with CIs, 24 age-matched hearing children, and 23 vocabulary-matched hearing children to a novel object noun training episode.…

  2. Fricatives, Affricates, and Vowels in Croatian Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Mildner, Vesna; Liker, Marko

    2008-01-01

    The aim of the research was to analyse the speech of children with cochlear implants over approximately a 46-month period, and compare it with the speech of hearing controls. It focused on three categories of sounds in Croatian: vowels (F1 and F2 of /i/, /e/, /a/, /o/ and /u/), fricatives /s/ and /[esh]/ (spectral differences expressed in terms of…

  3. Picture Naming and Verbal Fluency in Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Wechsler-Kashi, Deena; Schwartz, Richard G.; Cleary, Miranda

    2014-01-01

    Purpose: In the present study, the authors examined lexical naming in children with cochlear implants (CIs). The goal was to determine whether children with CIs have deficits in lexical access and organization as revealed through reaction time in picture-naming and verbal fluency (VF) experiments. Method: Children with CIs (n = 20, ages 7-10) were…

  4. Deaf Teenagers with Cochlear Implants in Conversation with Hearing Peers

    ERIC Educational Resources Information Center

    Ibertsson, Tina; Hansson, Kristina; Maki-Torkko, Elina; Willstedt-Svensson, Ursula; Sahlen, Birgitta

    2009-01-01

    Background: This study investigates the use of requests for clarification in conversations between teenagers with a cochlear implant (CI) and hearing peers. So far very few studies have focused on conversational abilities in children with CI. Aims: The aim was to explore co-construction of dialogue in a referential communication task and the…

  5. Sensitivity of cross sections for elastic nucleus-nucleus scattering to halo nucleus density distributions

    SciTech Connect

    Alkhazov, G. D.; Sarantsev, V. V.

    2012-12-15

    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.

  6. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs

    PubMed Central

    Koka, Kanthaiah; Tollin, Daniel J.

    2014-01-01

    The interaural level difference (ILD) cue to sound location is first encoded in the lateral superior olive (LSO). ILD sensitivity results because the LSO receives excitatory input from the ipsilateral cochlear nucleus and inhibitory input indirectly from the contralateral cochlear nucleus via glycinergic neurons of the ipsilateral medial nucleus of the trapezoid body (MNTB). It is hypothesized that in order for LSO neurons to encode ILDs, the sound spectra at both ears must be accurately encoded via spike rate by their afferents. This spectral-coding hypothesis has not been directly tested in MNTB, likely because MNTB neurons have been mostly described and studied recently in regards to their abilities to encode temporal aspects of sounds, not spectral. Here, we test the hypothesis that MNTB neurons and their inputs from the cochlear nucleus and auditory nerve code sound spectra via discharge rate. The Random Spectral Shape (RSS) method was used to estimate how the levels of 100-ms duration spectrally stationary stimuli were weighted, both linearly and non-linearly, across a wide band of frequencies. In general, MNTB neurons, and their globular bushy cell inputs, were found to be well-modeled by a linear weighting of spectra demonstrating that the pathways through the MNTB can accurately encode sound spectra including those resulting from the acoustical cues to sound location provided by head-related directional transfer functions (DTFs). Together with the anatomical and biophysical specializations for timing in the MNTB-LSO complex, these mechanisms may allow ILDs to be computed for complex stimuli with rapid spectrotemporally-modulated envelopes such as speech and animal vocalizations and moving sound sources. PMID:25565971

  7. Binaural masking level differences in actual and simulated bilateral cochlear implant listeners

    PubMed Central

    Lu, Thomas; Litovsky, Ruth; Zeng, Fan-Gang

    2010-01-01

    At present commercially available bilateral cochlear implants (CIs) improve their users’ speech understanding in noise but they employ two independent speech processors that cannot provide accurate and appropriate interaural level and time differences as seen binaurally in normal hearing (NH) listeners. Previous work suggests that binaural cues are accessible to bilateral CI users when presented to single pairs of pitch-matched electrodes, but the scope was limited and the mechanisms remained unclear. In this study, binaural masking level differences (BMLDs) were measured in five bilateral Nucleus-24 CI users over multiple pairs of pitch-matched electrodes. Average BMLD was 4.6±4.9 dB, but large individual variability prevented significance (p=0.09). Considering just the 125 Hz condition, as in previous work, phase (N0S0 vs N0Sπ) and electrode effects were significant. Compared with simulated bilateral CI users, actual bilateral CI users had proportionally higher thresholds for N0Sπ than N0S0. Together the present results suggest that the performance gap in BMLDs between CI and NH listeners is not due to a lack of sufficient acoustic cues in the temporal envelope domain but to a true binaural deficit related to a central mechanism in deprived binaural processing. PMID:20329848

  8. Pitch ranking ability of cochlear implant recipients: A comparison of sound-processing strategies

    NASA Astrophysics Data System (ADS)

    Vandali, Andrew E.; Sucher, Catherine; Tsang, David J.; McKay, Colette M.; Chew, Jason W. D.; McDermott, Hugh J.

    2005-05-01

    Pitch ranking of sung vowel stimuli, separated in fundamental frequency (F0) by half an octave, was measured with a group of eleven Nucleus 24 cochlear implant recipients using different sound coding strategies. In three consecutive studies, either two or three different sound coding strategies were compared to the Advanced Combinational Encoder (ACE) strategy. These strategies included Continuous Interleaved Sampling (CIS), Peak Derived Timing (PDT), Modulation Depth Enhancement (MDE), F0 Synchronized ACE (F0Sync), and Multi-channel Envelope Modulation (MEM), the last four being experimental strategies. While pitch ranking results on average were poor compared to those expected for most normal hearing listeners, significantly higher scores were obtained using the MEM, MDE, and F0Sync strategies compared to ACE. These strategies enhanced coding of temporal F0 cues by providing deeper modulation cues to F0 coincidentally in time across all activated electrodes. In the final study, speech recognition tests were also conducted using ACE, CIS, MDE, and MEM. Similar results among all strategies were obtained for word tests in quiet and between ACE and MEM for sentence tests in noise. These findings demonstrate that strategies such as MEM may aid perception of pitch and still adequately code segmental speech features as per existing coding strategies. .

  9. PARP-1-modulated AIF translocation is involved in streptomycin-induced cochlear hair cell death.

    PubMed

    Song, Yongdong; Fan, Zhaomin; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Wang, Mingming; Li, Jianfeng; Zheng, Qingyin; Zhang, Daogong; Wang, Haibo

    2016-06-01

    Conclusion SM-induced dose- and location-dependent cochlear hair cell death in vitro. AIF might be translocated from mitochondria to nucleus and cytoplasm within SM-treated hair cells. The translocation of AIF might be modulated by PARP-1. Objective Streptomycin (SM), one of the widely used aminoglycoside nowadays, is still causing significant permanent sensorineural hearing loss owing to sensory hair cell death. This study was designed to investigate the role of apoptosis-inducing factor (AIF), an important mitochondrial cell death regulator, in SM ototoxicity within neonatal rat cochleae and HEI-OC1 cells. Methods The viability of HEI-OC1 cells was quantified by MTT assay. AIF, PARP-1, and myosin VIIa distributions were achieved by immunofluorescence. mRNA and protein expression of AIF and PARP-1 were examined by q-PCR and Western-blot. Results The hair cell loss was concomitant with the SM concentration variation, and aggravated from apical to basal turn. AIF was detected in nuclear region and AIF mRNA was up-regulated after SM incubation. Besides, AIF protein expression in mitochondria was decreased, whereas in cytosol it was increased. PARP-1 mRNA and protein were also up-regulated. 3-AB could attenuate the cell death and reverse the changes of AIF distribution by blocking PARP-1. PMID:26963167

  10. The biologic safety of the Cochlear Corporation multiple-electrode intracochlear implant.

    PubMed

    Webb, R L; Clark, G M; Shepherd, R K; Franz, B K; Pyman, B C

    1988-01-01

    Studies have been undertaken to confirm the biologic safety of the Cochlear Corporation multi-electrode intracochlear implant. The materials used are biocompatible. The electrode array is flexible: it can be inserted with minimal or no trauma, providing the insertion is stopped when resistance is first felt. An atraumatic insertion is facilitated if a good view is obtained along the scala tympani of the basal turn of the cochlea by drilling through the crista fenestrae. The passage of the electrode around the cochlea can be facilitated if the electrode is rotated during insertion (clockwise for the left and anticlockwise for the right cochlea). The electrode can be explanted and another one reinserted with minimal or no trauma. A seal established around the electrode after an implantation period of 2 weeks can prevent infection extending from the middle to the inner ear. The electrical stimulus parameters produced by the Nucleus receiver-stimulator cause no loss of spiral ganglion cells or corrosion of the platinum band electrodes. Long-term stimulation has been carried out for up to 8 years in patients without affecting their clinical performance. PMID:3364540

  11. Aerodynamic assessment of the speech of adults undergoing multichannel cochlear implantation.

    PubMed

    Leeper, H A; Gagné, J P; Parnes, L S; Vidas, S

    1993-04-01

    This investigation was designed to evaluate the aerodynamic characteristics of the speech of adult multichannel cochlear implant (Nucleus, 21-channel) recipients. Five adults with an acquired profound sensorineural hearing loss were tested before implantation, immediately following implantation, and 3, 6, 9, and 12 months after implantation. A commercially available computerized pressure-flow instrumentation system was employed to assess the respiratory, laryngeal, velopharyngeal, and oral articulatory subsystems of speech of the implantees. The results of the investigation indicated 1) a slight increase in airflow rate values for sustained vowel /a/phonation after implantation, 2) a slight increase in duration of sustained vowel phonation from the preimplant period to the last postimplant period, 3) an increase in laryngeal airway resistance after implantation that resulted from a larger increase in estimated transglottal pressure than in transglottal airflow, 4) maintenance of normal velopharyngeal closure in oral-nasal contrastive contexts, and 5) slight increases in oral orifice area for fricative syllable utterances following implantation. Individual strategies for coordinated control of the speech mechanism appear to be potent variables to consider when assessing speech production. PMID:8476171

  12. Evaluation of NRT and behavioral measures for MAPping elderly cochlear implant users.

    PubMed

    Pedley, Karen; Psarros, Colleen; Gardner-Berry, Kirsty; Parker, Alison; Purdy, Suzanne C; Dawson, Pam; Plant, Kerrie

    2007-05-01

    We investigated the acceptability of electrophysiologically derived MAPs and the effect of these MAPs on speech perception in elderly adults using Nucleus 24 cochlear implants. Eight implant recipients aged 75 years or older trialed an electrophysiologically derived MAP and a behavioral MAP. The electrophysiologically derived MAP was based on the threshold and maximum comfort level for electrode 10 and evoked compound action potential thresholds measured on six electrodes using neural response telemetry (NRT). Word perception at 55 dB SPL and sentence perception in noise at 70 dB SPL were assessed after six weeks take-home experience and again after an additional two weeks of experience. During the final two weeks of take-home experience participants indicated their preferred MAP for different listening situations. The NRT derived MAP estimated behavioral T levels well, but underestimated behavioral C levels for apical electrodes in some subjects. Speech perception with NRT derived MAPs was comparable to speech perception with behaviorally measured MAPs. MAPs estimated from NRT data provided good speech perception outcomes for elderly implant recipients and were well tolerated. PMID:17487673

  13. Pitch ranking ability of cochlear implant recipients: a comparison of sound-processing strategies.

    PubMed

    Vandali, Andrew E; Sucher, Catherine; Tsang, David J; McKay, Colette M; Chew, Jason W D; McDermott, Hugh J

    2005-05-01

    Pitch ranking of sung vowel stimuli, separated in fundamental frequency (F0) by half an octave, was measured with a group of eleven Nucleus 24 cochlear implant recipients using different sound coding strategies. In three consecutive studies, either two or three different sound coding strategies were compared to the Advanced Combinational Encoder (ACE) strategy. These strategies included Continuous Interleaved Sampling (CIS), Peak Derived Timing (PDT), Modulation Depth Enhancement (MDE), F0 Synchronized ACE (FOSync), and Multi-channel Envelope Modulation (MEM), the last four being experimental strategies. While pitch ranking results on average were poor compared to those expected for most normal hearing listeners, significantly higher scores were obtained using the MEM, MDE, and FOSync strategies compared to ACE. These strategies enhanced coding of temporal F0 cues by providing deeper modulation cues to F0 coincidentally in time across all activated electrodes. In the final study, speech recognition tests were also conducted using ACE, CIS, MDE, and MEM. Similar results among all strategies were obtained for word tests in quiet and between ACE and MEM for sentence tests in noise. These findings demonstrate that strategies such as MEM may aid perception of pitch and still adequately code segmental speech features as per existing coding strategies. PMID:15957780

  14. Cochlear Implant Rate Pitch and Melody Perception as a Function of Place and Number of Electrodes.

    PubMed

    Marimuthu, Vijay; Swanson, Brett A; Mannell, Robert

    2016-01-01

    Six Nucleus cochlear implant recipients participated in a study investigating the effect of place of stimulation on melody perception using rate-pitch cues. Each stimulus was a pulse train delivered on either a single electrode or multiple electrodes sequentially. Four spatial stimulation patterns were used: a single apical electrode, a single mid electrode, a pair of electrodes (apical and mid), and 11 electrodes (from apical to mid). Within one block of trials, all stimuli had the same spatial stimulation pattern, with pulse rate varying from 131 to 262 pps. An additional pulse rate range of 262 to 523 pps was tested with the single-electrode stimuli. Two experimental procedures were used: note ranking; and a modified melodies test with backwards and warp modification. In each trial of the modified melodies test, a familiar melody and a version with modified pitch were presented (in random order), and the subject's task was to select the unmodified melody. There were no significant differences in performance for stimulation on 1, 2, or 11 electrodes, implying that recipients were unable to combine temporal information from different places in the cochlea to give a stronger pitch cue. No advantage of apical electrodes was found: at the lower pulse rates, there were no significant differences between electrodes; and at the higher pulse rates, scores on the apical electrode dropped more than those on the mid electrode. PMID:27094028

  15. Cochlear Implant Rate Pitch and Melody Perception as a Function of Place and Number of Electrodes

    PubMed Central

    Marimuthu, Vijay; Mannell, Robert

    2016-01-01

    Six Nucleus cochlear implant recipients participated in a study investigating the effect of place of stimulation on melody perception using rate-pitch cues. Each stimulus was a pulse train delivered on either a single electrode or multiple electrodes sequentially. Four spatial stimulation patterns were used: a single apical electrode, a single mid electrode, a pair of electrodes (apical and mid), and 11 electrodes (from apical to mid). Within one block of trials, all stimuli had the same spatial stimulation pattern, with pulse rate varying from 131 to 262 pps. An additional pulse rate range of 262 to 523 pps was tested with the single-electrode stimuli. Two experimental procedures were used: note ranking; and a modified melodies test with backwards and warp modification. In each trial of the modified melodies test, a familiar melody and a version with modified pitch were presented (in random order), and the subject’s task was to select the unmodified melody. There were no significant differences in performance for stimulation on 1, 2, or 11 electrodes, implying that recipients were unable to combine temporal information from different places in the cochlea to give a stronger pitch cue. No advantage of apical electrodes was found: at the lower pulse rates, there were no significant differences between electrodes; and at the higher pulse rates, scores on the apical electrode dropped more than those on the mid electrode. PMID:27094028

  16. Relationships among vocabulary size, nonverbal cognition, and spoken word recognition in adults with cochlear implants

    NASA Astrophysics Data System (ADS)

    Collison, Elizabeth A.; Munson, Benjamin; Carney, Arlene E.

    2002-05-01

    Recent research has attempted to identify the factors that predict speech perception performance among users of cochlear implants (CIs). Studies have found that approximately 20%-60% of the variance in speech perception scores can be accounted for by factors including duration of deafness, etiology, type of device, and length of implant use, leaving approximately 50% of the variance unaccounted for. The current study examines the extent to which vocabulary size and nonverbal cognitive ability predict CI listeners' spoken word recognition. Fifteen postlingually deafened adults with nucleus or clarion CIs were given standardized assessments of nonverbal cognitive ability and expressive vocabulary size: the Expressive Vocabulary Test, the Test of Nonverbal Intelligence-III, and the Woodcock-Johnson-III Test of Cognitive Ability, Verbal Comprehension subtest. Two spoken word recognition tasks were administered. In the first, listeners identified isophonemic CVC words. In the second, listeners identified gated words varying in lexical frequency and neighborhood density. Analyses will examine the influence of lexical frequency and neighborhood density on the uniqueness point in the gating task, as well as relationships among nonverbal cognitive ability, vocabulary size, and the two spoken word recognition measures. [Work supported by NIH Grant P01 DC00110 and by the Lions 3M Hearing Foundation.

  17. Variation analysis of transcriptome changes reveals cochlear genes and their associated functions in cochlear susceptibility to acoustic overstimulation.

    PubMed

    Yang, Shuzhi; Cai, Qunfeng; Bard, Jonathan; Jamison, Jennifer; Wang, Jianmin; Yang, Weiping; Hu, Bo Hua

    2015-12-01

    Individual variation in the susceptibility of the auditory system to acoustic overstimulation has been well-documented at both the functional and structural levels. However, the molecular mechanism responsible for this variation is unclear. The current investigation was designed to examine the variation patterns of cochlear gene expression using RNA-seq data and to identify the genes with expression variation that increased following acoustic trauma. This study revealed that the constitutive expressions of cochlear genes displayed diverse levels of gene-specific variation. These variation patterns were altered by acoustic trauma; approximately one-third of the examined genes displayed marked increases in their expression variation. Bioinformatics analyses revealed that the genes that exhibited increased variation were functionally related to cell death, biomolecule metabolism, and membrane function. In contrast, the stable genes were primarily related to basic cellular processes, including protein and macromolecular syntheses and transport. There was no functional overlap between the stable and variable genes. Importantly, we demonstrated that glutamate metabolism is related to the variation in the functional response of the cochlea to acoustic overstimulation. Taken together, the results indicate that our analyses of the individual variations in transcriptome changes of cochlear genes provide important information for the identification of genes that potentially contribute to the generation of individual variation in cochlear responses to acoustic overstimulation. PMID:26024952

  18. Neural tonotopy in cochlear implants: an evaluation in unilateral cochlear implant patients with unilateral deafness and tinnitus.

    PubMed

    Vermeire, Katrien; Nobbe, Andrea; Schleich, Peter; Nopp, Peter; Voormolen, Maurits H; Van de Heyning, Paul H

    2008-11-01

    In cochlear implants, the signal is filtered into different frequency bands and transmitted to electrodes along the cochlea. In this study the frequency-place function for electric hearing was investigated as a means to possibly improve speech coding by delivering information to the appropriate cochlear place. Fourteen subjects with functional hearing in the contralateral ear have been provided with a MED-EL cochlear implant in the deaf ear in order to reduce intractable tinnitus. Pitch scaling experiments were performed using single-electrode, constant-amplitude, constant-rate stimuli in the implanted ear, and acoustic sinusoids in the contralateral ear. The frequency-place function was calculated using the electrode position in the cochlea as obtained from postoperative skull radiographs. Individual frequency-place functions were compared to Greenwood's function in normal hearing. Electric stimulation elicited a low pitch in the apical region of the cochlea, and shifting the stimulating electrode towards the basal region elicited increasingly higher pitch. The frequency-place function did not show a significant shift relative to Greenwood's function. In cochlear implant patients with functional hearing in the non-implanted ear, electrical stimulation produced a frequency-place function that on average resembles Greenwood's function. These results differ from previously derived data. PMID:18817861

  19. Measurements and modeling of ear-canal reflectance and cochlear reflectance

    NASA Astrophysics Data System (ADS)

    Neely, Stephen T.; Rasetshwane, Daniel M.

    2015-12-01

    Cochlear reflectance (CR), the cochlear contribution to ear-canal reflectance (ECR), has theoretical advantages for cochlear modeling. Comparisons between measurements and models may lead to improved clinical interpretation of cochlear status and provide a basis for making improvements to the models. Simulation of ECR was performed using a combination of (1) an ear-canal model, (2) a middle-ear model and (3) a one-dimensional cochlear model. Simulated CR was the ECR difference between active and passive conditions of the model. The model simulation results were compared with measurements of both ECR and CR in both the time-domain and frequency-domains. Disparities between measurements and model provide a basis for improvements in the model. Substantial agreement between measurements and model suggest that CR is consistent with linear coherent reflection due to random impedance perturbations along the cochlear partition.

  20. Visualization of spiral ganglion neurites within the scala tympani with a cochlear implant in situ

    PubMed Central

    Chikar, Jennifer A.; Batts, Shelley A.; Pfingst, Bryan E.; Raphael, Yehoash

    2009-01-01

    Current cochlear histology methods do not allow in situ processing of cochlear implants. The metal components of the implant preclude standard embedding and mid-modiolar sectioning, and whole mounts do not have the spatial resolution needed to view the implant within the scala tympani. One focus of recent auditory research is the regeneration of structures within the cochlea, particularly the ganglion cells and their processes, and there are multiple potential benefits to cochlear implant users from this work. To facilitate experimental investigations of auditory nerve regeneration performed in conjunction with cochlear implantation, it is critical to visualize the cochlear tissue and the implant together to determine if the nerve has made contact with the implant. This paper presents a novel histological technique that enables simultaneous visualization of the in situ cochlear implant and neurofilament – labeled nerve processes within the scala tympani, and the spatial relationship between them. PMID:19428528

  1. MED-EL Cochlear Implants: State of the Art and a Glimpse Into the Future

    PubMed Central

    Hochmair, Ingeborg; Nopp, Peter; Jolly, Claude; Schmidt, Marcus; Schößer, Hansjörg; Garnham, Carolyn; Anderson, Ilona

    2006-01-01

    Cochlear implantation is an accepted treatment method for adults and children with severe to profound hearing loss. Confidence in technology has led to changes in individuals who can receive a cochlear implant and changes in expected benefit with a cochlear implant. This article describes the research and development activities at MED-EL, which make possible the implementation of new speech-coding strategies as well as the application of acoustic and electric stimulation via a combined speech processor in MED-EL devices. Research on benefits from bilateral cochlear implantation and electric-acoustic stimulation are also reviewed. Finally, the potential of drug delivery systems is considered as a way to improve cochlear implant outcomes, and results from preliminary evaluations of a hybrid cochlear implant system with drug delivery capabilities are reported. PMID:17172548

  2. Influence of medial olivocochlear efferents on the sharpness of cochlear tuning estimates in children.

    PubMed

    Mishra, Srikanta K; Dinger, Zoë

    2016-08-01

    The present study objectively quantified the efferent-induced changes in the sharpness of cochlear tuning estimates and compared these alterations in cochlear tuning between adults and children. Click evoked otoacoustic emissions with and without contralateral broadband noise were recorded from 15 young adults and 14 children aged between 5 and 10 yrs. Time-frequency distributions of click evoked otoacoustic emissions were obtained via the S-transform, and the otoacoustic emission latencies were used to estimate the sharpness of cochlear tuning. Contralateral acoustic stimulation caused a significant reduction in the sharpness of cochlear tuning estimates in the low to mid frequency region, but had no effect in the higher frequencies (3175 and 4000 Hz). The magnitude of efferent-induced changes in cochlear tuning estimates was similar between adults and children. The current evidence suggests that the stimulation of the medial olivocochlear efferent neurons causes similar alterations in cochlear frequency selectivity in adults and children. PMID:27586737

  3. Double Nucleus in M83

    NASA Astrophysics Data System (ADS)

    Mast, Damián; Díaz, Rubén J.; Agüero, M. Paz

    2006-03-01

    M83 is one of the nearest galaxies with enhanced nuclear star formation, and it presents one of the best opportunities to study the kinematics and physical properties of a circumnuclear starburst. Our three-dimensional spectroscopy data in the R band confirm the presence of a secondary nucleus or mass concentration (previously suggested by Thatte and coworkers). We determine the position of this hidden nucleus, which would be more massive than the visible one and was not detected in the optical Hubble Space Telescope images due, probably, to the strong dust extinction. Using a Keplerian approximation, we estimated for the optical nucleus a mass of (5.0+/-0.8)×106 Msolar/sini (r<1.5"), and for the hidden nucleus, located 4''+/-1'' to the northwest (position angle of 271deg+/-15deg) of the optical nucleus, a mass of (1.00+/-0.08)×107 Msolar/sini (r<1.5"). The emission-line ratio map also unveils the presence of a second circumnuclear ring structure, previously discovered by IR imaging (Elmegreen and coworkers). The data allow us to resolve the behavior of the interstellar medium inside the circumnuclear ring and around the binary mass concentration.

  4. Are routine preoperative CT scans necessary in adult cochlear implantation? Implications for the allocation of resources in cochlear implant programs.

    PubMed

    Kenway, Bruno; Vlastarakos, Petros V; Kasbekar, Anand V; Axon, Patrick R; Donnelly, Neil

    2016-08-01

    Our aim was to critically assess the influence of preoperative computed tomography (CT) scans on implantation decisions for adult cochlear implant candidates. The working hypothesis was that these routine scans might not provide critical additional information in most adult cochlear implant candidates. The charts of 175 adults with unilateral cochlear implantation were reviewed. Preoperative CT scan reports were audited, and scans with reported pathology were examined by an Otologist/ENT Surgeon. Clinic notes and multidisciplinary team meeting summaries were also analyzed to assess whether the results of the radiology report had influenced the decision to implant or the laterality of implantation. Twenty-five of the 175 scans (14.3%) showed an abnormality. Five of those 25 scans showed evidence of previous surgeries already known to the clinicians. Of the remaining 20 scans, 17 showed abnormalities, including wide vestibular aqueducts, Mondini deformities, and varying degrees of otospongiosis, the identification of which can be considered preoperatively helpful. Of the 175 scans, 3 (1.7%) demonstrated abnormalities that influenced the side of implantation or the decision to implant and, therefore, had an impact on treatment. We conclude that a preoperative CT scan seems to have an impact on treatment in only a small percentage of adult cochlear implantees. Hence, it may only need to be performed in patients with a history or clinical suspicion of meningitis or otosclerosis, if the individual was born deaf or became deaf before the age of 16, or if there are other clinical reasons to scan (e.g., otoscopic appearance). The related resources can be allocated to other facets of cochlear implant programs. PMID:27551842

  5. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    PubMed

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation. PMID:27150816

  6. [Development of improving speech perception of cochlear implants in noisy environment].

    PubMed

    Pan, Haolai; Chen, Zhengnong

    2016-01-01

    Cochlear implantation has been a standard therapy for treating severe deafness because patients who receive it have better speech perception. However, the hearing performance of cochlear implantation in noisy environment is far from satisfaction. Efforts have been made to reverse such condition, such as EAS, bimodal stimulation, environment-adaptive speech enhancement and multipolar stimulation, and patients who receive it get more or less better speech perception in noisy environment than traditional cochlear implantation. PMID:27192923

  7. Nucleus management with irrigating vectis.

    PubMed

    Srinivasan, Aravind

    2009-01-01

    The main objective in modern cataract surgery is to achieve a better unaided visual acuity with rapid post-surgical recovery and minimal surgery-related complications. Early visual rehabilitation and better unaided vision can be achieved only by reducing the incision size. In manual small incision cataract surgery (MSICS), incision is between 5.5 to 7 mm. Once the nucleus is prolapsed into the anterior chamber, it can be extracted through the tunnel. Nucleus extraction with an irrigating vectis is a very simple technique, which combines mechanical and hydrostatic forces to express out the nucleus. This technique is time-tested with good results and more than 95% of nuclei in MSICS are extracted in this way offering all the merits of phacoemulsification with the added benefits of having wider applicability, better safety, shorter learning curve and lower cost. PMID:19075403

  8. Cometary nucleus and active regions

    NASA Technical Reports Server (NTRS)

    Whipple, F. L.

    1984-01-01

    On the basis of the icy conglomerate model of cometary nuclei, various observations demonstrate the spotted nature of many or most nuclei, i.e., regions of unusual activity, either high or low. Rotation periods, spin axes and even precession of the axes are determined. The observational evidence for variations in activity over the surfaces of cometary nuclei are listed and discussed. On June 11 the comet IRAS-ARAKI-ALCOCK approached the Earth to a distance of 0.031 AU, the nearest since C/Lexell, 1770 I, providing a unique opportunity for near-nucleus observations. Preliminary analysis of these images establishes the spin axis of the nucleus, with an oblioquity to the orbit plane of approximately 50 deg, and a lag angle of sublimation approximately 35 deg from the solar meridian on the nucleus. Asymmetries of the inner coma suggests a crazy-quilt distribution of ices with differing volatility over the surface of the nucleus. The observations of Comet P/Homes 1892 III, exhibiting two 8-10 magnitude bursts, are carefully analyzed. The grazing encounter produced, besides the first great burst, an active area on the nucleus, which was rotating retrograde with a period of 16.3hr and inclination nearly 180 deg. After the first burst the total magnitude fell less than two magnitudes from November 7 to November 30 (barely naked eye) while the nuclear region remained diffuse or complex, rarely if ever showing a stellar appearance. The fading was much more rapid after the second burst. The grazing encounter distributed a volume of large chunks in the neighborhood of the nucleus, maintaining activity for weeks.

  9. Brain voice processing with bilateral cochlear implants: a positron emission tomography study.

    PubMed

    Coez, Arnaud; Zilbovicius, Monica; Ferrary, Evelyne; Bouccara, Didier; Mosnier, Isabelle; Ambert-Dahan, Emmanuèle; Bizaguet, Eric; Martinot, Jean-Luc; Samson, Yves; Sterkers, Olivier

    2014-12-01

    Most cochlear implantations are unilateral. To explore the benefits of a binaural cochlear implant, we used water-labelled oxygen-15 positron emission tomography. Relative cerebral blood flow was measured in a binaural implant group (n = 11), while the subjects were passively listening to human voice sounds, environmental sounds non-voice or silence. Binaural auditory stimulation in the cochlear implant group bilaterally activated the temporal voice areas, whereas monaural cochlear implant stimulation only activated the left temporal voice area. Direct comparison of the binaural and the monaural cochlear implant stimulation condition revealed an additional right temporal activation during voice processing in the binaural condition and the activation of a right fronto-parietal cortical network during sound processing that has been implicated in attention. These findings provide evidence that a bilateral cochlear implant stimulation enhanced the spectral cues associated with sound perception and improved brain processing of voice stimuli in the right temporal region when compared to a monaural cochlear implant stimulation. Moreover, the recruitment of sensory attention resources in a right fronto-parietal network allowed patients with bilateral cochlear implant stimulation to enhance their sound discrimination, whereas the same patients with only one cochlear implant stimulation had more auditory perception difficulties. PMID:24272140

  10. Formin' actin in the nucleus.

    PubMed

    Baarlink, Christian; Grosse, Robert

    2014-01-01

    Many if not most proteins can, under certain conditions, change cellular compartments, such as, for example, shuttling from the cytoplasm to the nucleus. Thus, many proteins may exert functions in various and very different subcellular locations, depending on the signaling context. A large amount of actin regulatory proteins has been detected in the mammalian cell nucleus, although their potential roles are much debated and are just beginning to emerge. Recently, members of the formin family of actin nucleators were also reported to dynamically localize to the nuclear environment. Here we discuss our findings that specific diaphanous-related formins can promote nuclear actin assembly in a signal-dependent manner. PMID:24637338

  11. Acridine: a versatile heterocyclic nucleus.

    PubMed

    Kumar, Ramesh; Kaur, Mandeep; Kumari, Meena

    2012-01-01

    Acridine is a heterocyclic nucleus. It plays an important role in various medicines. A number of therapeutic agents are based on acridine nucleus such as quinacrine (antimalarial), acriflavine and proflavine (antiseptics), ethacridine (abortifacient), amsacrine and nitracine (anticancer), and tacrine. Acridine is obtained from high boiling fraction of coal tar. It is also obtained in nature from plant and marine sources. Acridine undergoes a number of reactions such as nucleophilic addition, electrophilic substitution, oxidation, reduction, reductive alkylation and photoalkylation. The present review article summarizes the synthesis, reaction, literature review and pharmaceutical importance of acridine. PMID:22574501

  12. Compensation of Vestibular Function and Plasticity of Vestibular Nucleus after Unilateral Cochleostomy

    PubMed Central

    Suh, Myung-Whan; Hyun, Jaihwan; Lyu, Ah-Ra; Kim, Dong Woon; Park, Sung Jae; Choi, Jin Woong; Hur, Gang Min

    2016-01-01

    Dizziness and vertigo frequently occur after cochlear implantation (CI) surgery, particularly during the early stages. It could recover over time but some of the patients suffered from delayed or sustained vestibular symptoms after CI. This study used rat animal models to investigate the effect of unilateral cochleostomy on the vestibular organs over time. Twenty-seven Sprague Dawley rats underwent cochleostomy to evaluate the postoperative changes in hearing threshold, gain and symmetry of the vestibular ocular response, overall balance function, number of hair cells in the crista, and the c-Fos activity in the brainstem vestibular nucleus. Loss of vestibular function was observed during the early stages, but function recovered partially over time. Histopathological findings demonstrated a mild decrease in vestibular hair cells numbers. Increased c-Fos immunoreactivity in the vestibular nucleus, observed in the early stages after cochleostomy, decreased over time. Cochleostomy is a risk factor for peripheral vestibular organ damage that can cause functional impairment in the peripheral vestibular organs. Altered vestibular nucleus activity may be associated with vestibular compensation and plasticity after unilateral cochleostomy. PMID:26881130

  13. Recurrent Inhibition to the Medial Nucleus of the Trapezoid Body in the Mongolian Gerbil (Meriones Unguiculatus)

    PubMed Central

    Dondzillo, Anna; Thompson, John A.; Klug, Achim

    2016-01-01

    Principal neurons in the medial nucleus of the trapezoid body (MNTB) receive strong and temporally precise excitatory input from globular bushy cells in the cochlear nucleus through the calyx of Held. The extremely large synaptic currents produced by the calyx have sometimes led to the view of the MNTB as a simple relay synapse which converts incoming excitation to outgoing inhibition. However, electrophysiological and anatomical studies have shown the additional presence of inhibitory glycinergic currents that are large enough to suppress action potentials in MNTB neurons at least in some cases. The source(s) of glycinergic inhibition to MNTB are not fully understood. One major extrinsic source of glycinergic inhibitory input to MNTB is the ventral nucleus of the trapezoid body. However, it has been suggested that MNTB neurons receive additional inhibitory inputs via intrinsic connections (collaterals of glycinergic projections of MNTB neurons). While several authors have postulated their presence, these collaterals have never been examined in detail. Here we test the hypothesis that collaterals of MNTB principal cells provide glycinergic inhibition to the MNTB. We injected dye into single principal neurons in the MNTB, traced their projections, and immunohistochemically identified their synapses. We found that collaterals terminate within the MNTB and provide an additional source of inhibition to other principal cells, creating an inhibitory microcircuit within the MNTB. Only about a quarter to a third of MNTB neurons receive such collateral inputs. This microcircuit could produce side band inhibition and enhance frequency tuning of MNTB neurons, consistent with physiological observations. PMID:27489949

  14. Functionalized active-nucleus complex sensor

    DOEpatents

    Pines, Alexander; Wemmer, David E.; Spence, Megan; Rubin, Seth

    2003-11-25

    A functionalized active-nucleus complex sensor that selectively associates with one or more target species, and a method for assaying and screening for one or a plurality of target species utilizing one or a plurality of functionalized active-nucleus complexes with at least two of the functionalized active-nucleus complexes having an attraction affinity to different corresponding target species. The functionalized active-nucleus complex has an active-nucleus and a targeting carrier. The method involves functionalizing an active-nucleus, for each functionalized active-nucleus complex, by incorporating the active-nucleus into a macromolucular or molecular complex that is capable of binding one of the target species and then bringing the macromolecular or molecular complexes into contact with the target species and detecting the occurrence of or change in a nuclear magnetic resonance signal from each of the active-nuclei in each of the functionalized active-nucleus complexes.

  15. The acceptability of cochlear implants and vibrotactile aids.

    PubMed

    Thornton, A R

    1988-05-01

    To obtain data on the likely acceptability of cochlear implants (and of vibrotactile aids), a questionnaire was sent to profoundly/totally hearing-impaired patients. The patients were asked how they felt about their current communication problems and possible benefits to be obtained from such devices. Of the 153 replies obtained, the combined 'yes' or 'maybe' responses indicated that 58% would accept an implant. The corresponding figure for vibrotactile aids was 73%. The statistically significant factors correlating with cochlear implant acceptance were the patient's expectation of the benefit it would give, the time needed for rehabilitation and the degree of communication difficulty that they suffer. The only significant factor in acceptance of a vibrotactile aid was whether the patient had attended the IHR clinic. This implies that the underlying factor is the patient's knowledge about these devices. PMID:2968826

  16. Cochlear function in mice following inhalation of brevetoxin-3

    PubMed Central

    Benson, Janet M.; Stagner, Barden B.; Martin, Glen K.; Friedman, Melissa; Durr, Sarah E.; Gomez, Andrea; McDonald, Jacob; Fleming, Lora E.; Backer, Lorraine C.; Baden, Daniel G.; Bourdelais, Andrea; Naar, Jerome; Lonsbury-Martin, Brenda L.

    2009-01-01

    Brevetoxin-3 was shown previously to adversely affect central auditory function in goldfish. The present study evaluated the effects of exposure to this agent on cochlear function in mice using the 2f1-f2 distortion-product otoacoustic emission (DPOAE). Towards this end, inbred CBA/CaJ mice were exposed to a relatively high concentration of brevetoxin-3 (∼400 μg/m3) by nose-only inhalation for a 2-h period. Further, a subset of these mice received a second exposure a day later that lasted for an additional 4 h. Mice exposed only once for 2 h did not exhibit any notable cochlear effects. Similarly, mice exposed two times, for a cumulative dose of 6 h, exhibited essentially no change in DPOAE levels. PMID:15902474

  17. Severe cochlear dysplasia causing recurrent meningitis: a surgical lesson.

    PubMed

    Stevenson, D S; Proops, D W; Phelps, P D

    1993-08-01

    Meningitis may be the sole presenting sign of a cerebrospinal fluid (CSF) fistula of the temporal bone. An eight-year-old boy suffering from recurrent meningitis was found to have bilateral severe cochlear dysplasia. Bilateral tympanotomies were performed, planning to obliterate each vestibule. In the right ear a stapedectomy was performed, resulting in a torrential 'CSF gusher' and difficulty in packing the vestibule. CSF rhinorrhoea requiring revision surgery and two episodes of gram-negative bacterial meningitis complicated the post-operative management, resulting in a prolonged hospital stay. Subsequently, the left ear was managed in a different fashion, leaving the stapes in situ, with grafts placed to seal the oval window niche. We would recommend this alternative procedure in cases of severe cochlear dysplasia, where abnormalities of the vestibule and basal turn of the cochlea mean that performing a stapedectomy to pack the vestibule may result in a severe 'CSF gusher', by opening directly into the subarachnoid space. PMID:8409727

  18. [Cochlear implant in children: rational, indications and cost/efficacy].

    PubMed

    Martini, A; Bovo, R; Trevisi, P; Forli, F; Berrettini, S

    2013-06-01

    A cochlear implant (CI) is a partially implanted electronic device that can help to provide a sense of sound and support speech to severely to profoundly hearing impaired patients. It is constituted by an external portion, that usually sits behind the ear and an internal portion surgically placed under the skin. The external components include a microphone connected to a speech processor that selects and arranges sounds pucked up by the microphone. This is connected to a transmitter coil, worn on the side of the head, which transmits data to an internal receiver coil placed under the skin. The received data are delivered to an array of electrodes that are surgically implanted within the cochlea. The primary neural targets of the electrodes are the spiral ganglion cells which innervate fibers of the auditory nerve. When the electrodes are activated by the signal, they send a current along the auditory nerve and auditory pathways to the auditory cortex. Children and adults who are profoundly or severely hearing impaired can be fitted with cochlear implants. According to the Food and Drug Administration, approximately 188,000 people worldwide have received implants. In Italy it is extimated that there are about 6-7000 implanted patients, with an average of 700 CI surgeries per year. Cochlear implantation, followed by intensive postimplantation speech therapy, can help young children to acquire speech, language, and social skills. Early implantation provides exposure to sounds that can be helpful during the critical period when children learn speech and language skills. In 2000, the Food and Drug Administration lowered the age of eligibility to 12 months for one type of CI. With regard to the results after cochlear implantation in relation to early implantation, better linguistic results are reported in children implanted before 12 months of life, even if no sufficient data exist regarding the relation between this advantage and the duration of implant use and how long

  19. Intracochlear Bleeding Enhances Cochlear Fibrosis and Ossification: An Animal Study

    PubMed Central

    Ryu, Kyeung A.; Lyu, Ah-Ra; Park, Heesung; Choi, Jin Woong; Hur, Gang Min; Park, Yong-Ho

    2015-01-01

    The aim of this study was to investigate the effects of intracochlear bleeding during cochleostomy on cochlear inflammatory response and residual hearing in a guinea pig animal model. Auditory brainstem response threshold shifts were greater in blood injected ears (p<0.05). Interleukin-1β, interleukin-10, tumor necrosis factor-α and nitric oxide synthase 2, cytokines that are related to early stage inflammation, were significantly increased in blood injected ears compared to normal and cochleostomy only ears at 1 day after surgery; with the increased IL-1β being sustained until 3 days after the surgery (p<0.05). Hair cells were more severely damaged in blood injected ears than in cochleostomy only ears. Histopathologic examination revealed more extensive fibrosis and ossification in blood injected ears than cochleostomy only ears. These results show that intracochlear bleeding enhanced cochlear inflammation resulting in increased fibrosis and ossification in an experimental animal model. PMID:26308864

  20. Achieving early functional auditory access in paediatric cochlear implantation.

    PubMed

    Orzan, E; Muzzi, E; Marchi, R; Falzone, C; Battelino, S; Ciciriello, E

    2016-02-01

    Cochlear implantation (CI) is a viable option for providing access to auditory stimulation in severe-to-profound hearing loss/impairment of cochlear origin. It has been demonstrated that CI is safe and effective for deaf children. Younger age at activation after CI is linked with better outcomes. It is important to study variables and issues that can interfere with an early fitting and access to sound after CI. They range from patient characteristics, family compliance and support, to technical, medical or organisational problems. A SWOT analysis and a subsequent TOWS matrix was conducted to discuss issues and propose recommendations to be considered when operating an early switch on of the CI. PMID:27054390

  1. Bimodal Hearing Aid Retention after Unilateral Cochlear Implantation.

    PubMed

    Devocht, Elke M J; George, Erwin L J; Janssen, A Miranda L; Stokroos, Robert J

    2015-01-01

    The goal of this study was to investigate contralateral hearing aid (HA) use after unilateral cochlear implantation and to identify factors of influence on the occurrence of a unilateral cochlear implant (CI) recipient becoming a bimodal user. A retrospective cross-sectional chart review was carried out among 77 adult unilateral CI recipients 1 year after implantation. A bimodal HA retention rate of 64% was observed. Associations with demographics, hearing history, residual hearing and speech recognition ability were investigated. Better pure-tone thresholds and unaided speech scores in the non-implanted ear, as well as a smaller difference in speech recognition scores between both ears, were significantly associated with HA retention. A combined model of HA retention was proposed, and cut-off points were determined to identify those CI recipients who were most likely to become bimodal users. These results can provide input to clinical guidelines concerning bimodal CI candidacy. PMID:26461124

  2. Decoding of neural firing to improve cochlear implants

    NASA Astrophysics Data System (ADS)

    Moissl, Ulrich; Meyer-Baese, Uwe

    2000-03-01

    In the last decades biologists have gained much knowledge about neural firing in the auditory system. It is a challenging problem to use this knowledge for the improvement of hearing aids and cochlear implants. This study first present the model of a human cochlea, which transforms acoustic signals into auditory nerve impulses. Then a method is proposed, which reconstructs the nerve impulses into acoustic signals. This method will then be used on the impulse-output of a widely used cochlear implant, in order to get an impression of what patients actually perceive with such a device. Suggestions for the improvement of coding strategies will be made, based on the findings of this study.

  3. Music recognition by Japanese children with cochlear implants.

    PubMed

    Nakata, Takayuki; Trehub, Sandra E; Mitani, Chisato; Kanda, Yukihiko; Shibasaki, Atsuko; Schellenberg, E Glenn

    2005-01-01

    Congenitally deaf Japanese children with cochlear implants were tested on their recognition of theme songs from television programs that they watched regularly. The children, who were 4-9 years of age, attempted to identify each song from a closed set of alternatives. Their song identification ability was examined in the context of the original commercial recordings (vocal plus instrumental), the original versions without the words (i.e., karaoke versions), and flute versions of the melody. The children succeeded in identifying the music only from the original versions, and their performance was related to their music listening habits. Children gave favorable appraisals of the music even when they were unable to recognize it. Further research is needed to find means of enhancing cochlear implants users' perception and appreciation of music. PMID:15684539

  4. Otoacoustic Estimates of Cochlear Tuning: Testing Predictions in Macaque

    NASA Astrophysics Data System (ADS)

    Shera, Christopher A.; Bergevin, Christopher; Kalluri, Radha; Mc Laughlin, Myles; Michelet, Pascal; van der Heijden, Marcel; Joris, Philip X.

    2011-11-01

    Otoacoustic estimates of cochlear frequency selectivity suggest substantially sharper tuning in humans. However, the logic and methodology underlying these estimates remain untested by direct measurements in primates. We report measurements of frequency tuning in macaque monkeys, Old-World primates phylogenetically closer to humans than the small laboratory animals often taken as models of human hearing (e.g., cats, guinea pigs, and chinchillas). We find that measurements of tuning obtained directly from individual nerve fibers and indirectly using otoacoustic emissions both indicate that peripheral frequency selectivity in macaques is significantly sharper than in small laboratory animals, matching that inferred for humans at high frequencies. Our results validate the use of otoacoustic emissions for noninvasive measurement of cochlear tuning and corroborate the finding of sharper tuning in humans.

  5. Deafness: Cross-modal plasticity and cochlear implants

    NASA Astrophysics Data System (ADS)

    Lee, Dong Soo; Lee, Jae Sung; Oh, Seung Ha; Kim, Seok-Ki; Kim, Jeung-Whoon; Chung, June-Key; Lee, Myung Chul; Kim, Chong Sun

    2001-01-01

    Hearing in profoundly deaf people can be helped by inserting an implant into the inner ear to stimulate the cochlear nerve. This also boosts the low metabolic activity of the auditory cortex, the region of the brain normally used for hearing. Other sensory modalities, such as sign language, can also activate the auditory cortex, a phenomenon known as cross-modal plasticity. Here we show that when metabolism in the auditory cortex of prelingually deaf children (whose hearing was lost before they learned to talk) has been restored by cross-modal plasticity, the auditory cortex can no longer respond to signals from a cochlear implant installed afterwards. Neural substrates in the auditory cortex might therefore be routed permanently to other cognitive processes in prelingually deaf patients.

  6. Higgs and Particle Production in Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Liu, Zhe

    We apply a diagrammatic approach to study Higgs boson, a color-neutral heavy particle, pro- duction in nucleus-nucleus collisions in the saturation framework without quantum evolution. We assume the strong coupling constant much smaller than one. Due to the heavy mass and colorless nature of Higgs particle, final state interactions are absent in our calculation. In order to treat the two nuclei dynamically symmetric, we use the Coulomb gauge which gives the appropriate light cone gauge for each nucleus. To further eliminate initial state interactions we choose specific prescriptions in the light cone propagators. We start the calculation from only two nucleons in each nucleus and then demonstrate how to generalize the calculation to higher orders diagrammatically. We simplify the diagrams by the Slavnov-Taylor-Ward identities. The resulting cross section is factorized into a product of two Weizsacker-Williams gluon distributions of the two nuclei when the transverse momentum of the produced scalar particle is around the saturation momentum. To our knowledge this is the first process where an exact analytic formula has been formed for a physical process, involving momenta on the order of the saturation momentum, in nucleus-nucleus collisions in the quasi-classical approximation. Since we have performed the calculation in an unconventional gauge choice, we further confirm our results in Feynman gauge where the Weizsacker-Williams gluon distribution is interpreted as a transverse momentum broadening of a hard gluons traversing a nuclear medium. The transverse momentum factorization manifests itself in light cone gauge but not so clearly in Feynman gauge. In saturation physics there are two different unintegrated gluon distributions usually encountered in the literature: the Weizsacker-Williams gluon distribution and the dipole gluon distribution. The first gluon distribution is constructed by solving classical Yang-Mills equation of motion in the Mc

  7. Cochlear implantation outcomes in children with Waardenburg syndrome.

    PubMed

    Amirsalari, Susan; Ajallouyean, Mohammad; Saburi, Amin; Haddadi Fard, Adel; Abed, Maryam; Ghazavi, Yasaman

    2012-10-01

    Waardenburg syndrome (WS) is an autosomal dominant disease, characterized by dystopia canthorum, hyperplasia of the eyebrows, heterochromia iridis, white forelock, and congenital sensori-neural hearing loss (SNHL). The aim of this study was to evaluate the outcome of cochlear implantation in children with WS and compare it with children with pure SNHL. In a prospective study we evaluated 336 cochlear implanted children from 2008 to 2010. The WS was diagnosed by its established criteria and for control group children without any dysmorphic features, anatomical, behavioral, and developmental disorders were also enrolled. We evaluated children of both groups 1 year after cochlear implantation by categories of auditory performance (CAP) and speech intelligibility rating (SIR) tests. Eighty-one children out of the total 336 who had SNHL were included in study. Out of these 75 (22.3%) were healthy and six (1.78%) had WS. Of the 75 healthy children 40 (53.3%) were girls, while of the six children with WS, three (50%) were girls. There was a significant difference in SIR between WS and cases with pure SNHL (2.67 ± 1.03 vs. 3.79 ± 1.11, p = 021) however, the difference was not significant in CAP (4 ± 1.26 vs. 5.13 ± 1.13, p = 0.082). Prevalence of WS was 1.78% at Baqiyatallah Cochlear Implant Center. One year after implantation there was no significant difference in auditory outcome; however, the difference in speech outcome was significant between WS and cases with pure SNHL. PMID:22159916

  8. Cochlear mechanics: implications of electrophysiological and acoustical observations.

    PubMed

    Kim, D O

    1980-06-01

    Implications of the spatial distribution of distortion products (2f1--f2) and (f2--f1) observed from populations of cochlear nerve fibers for cochlear mechanics are reviewed (the terms f1 and f2 represent the primary stimulus frequencies; f1 < f2). Characteristics of the distortion products (2f1--f2) and (f2--f1) in the ear-canal sound pressure of the cat and the chinchilla are investigated. Physiological origin of the acoustic distortion product (2f1--f2) is supported by demonstrations of the vulnerability of the distortion product to anoxia, to overstimulation and to cyanide perfusion of the cochlea. Observations are presented describing the dependence of levels of acoustic distortion products (2f1--f2) and (f2--f1): (1) on primary levels; (2) on f2 with iso-f1; and (3) on f1 and f2 with iso-(2f1--f2). Observations and interpretations are discussed in support of the conclusions: (1) that the distortion product (2f1--f2) in the ear-canal sound pressure observed in our studies is not generated in the experimental apparatus, in the eardrum, or in the middle ear but in the primary-frequency region of the cochlea; (2) that the distortion-product generation requires normal physiological processes in the cochlear sensory apparatus but not the neural activity; and (3) that the distortion-product is mechanically propagated from the generation region in the cochlea toward the distortion-frequency place and toward the stapes, through the middle ear, and into the ear canal involving gross motions of the cochlear partition and the middle-ear ossicles. It is now inevitable that we accept the notion that, in a normal ear, manifestations of significant nonlinear behavior are present in the mechanical response of the middle ear and the cochlea at most of the physiologically normal sound pressure levels. PMID:7410234

  9. The evolution of cochlear implant technology and its clinical relevance

    PubMed Central

    Hainarosie, M; Zainea, V; Hainarosie, R

    2014-01-01

    The article presents a brief history of the development of the cochlear implant, from its beginnings to the present day. After a short description of the device, it describes the evolution of the technology for three of the top manufacturing companies, from the first model marketed, to the latest. It presents the technological advancements from one model to the next, taking into account the exterior design, processing capabilities and functionality. PMID:25870662

  10. Acoustic Analysis of Speech of Cochlear Implantees and Its Implications

    PubMed Central

    Patadia, Rajesh; Govale, Prajakta; Rangasayee, R.; Kirtane, Milind

    2012-01-01

    Objectives Cochlear implantees have improved speech production skills compared with those using hearing aids, as reflected in their acoustic measures. When compared to normal hearing controls, implanted children had fronted vowel space and their /s/ and /∫/ noise frequencies overlapped. Acoustic analysis of speech provides an objective index of perceived differences in speech production which can be precursory in planning therapy. The objective of this study was to compare acoustic characteristics of speech in cochlear implantees with those of normal hearing age matched peers to understand implications. Methods Group 1 consisted of 15 children with prelingual bilateral severe-profound hearing loss (age, 5-11 years; implanted between 4-10 years). Prior to an implant behind the ear, hearing aids were used; prior & post implantation subjects received at least 1 year of aural intervention. Group 2 consisted of 15 normal hearing age matched peers. Sustained productions of vowels and words with selected consonants were recorded. Using Praat software for acoustic analysis, digitized speech tokens were measured for F1, F2, and F3 of vowels; centre frequency (Hz) and energy concentration (dB) in burst; voice onset time (VOT in ms) for stops; centre frequency (Hz) of noise in /s/; rise time (ms) for affricates. A t-test was used to find significant differences between groups. Results Significant differences were found in VOT for /b/, F1 and F2 of /e/, and F3 of /u/. No significant differences were found for centre frequency of burst, energy concentration for stops, centre frequency of noise in /s/, or rise time for affricates. These findings suggest that auditory feedback provided by cochlear implants enable subjects to monitor production of speech sounds. Conclusion Acoustic analysis of speech is an essential method for discerning characteristics which have or have not been improved by cochlear implantation and thus for planning intervention. PMID:22701768

  11. Pitch Discrimination: An Independent Factor in Cochlear Implant Performance Outcomes

    PubMed Central

    Kenway, Bruno; Tam, Yu Chuen; Vanat, Zebunnisa; Harris, Frances; Gray, Roger; Birchall, John; Carlyon, Robert; Axon, Patrick

    2015-01-01

    Objective: To assess differences in pitch-ranking ability across a range of speech understanding performance levels and as a function of electrode position. Study Design: An observational study of a cross-section of cochlear implantees. Setting: Tertiary referral center for cochlear implantation. Patients: A total of 22 patients were recruited. All three manufacturers’ devices were included (MED-EL, Innsbruck, Austria, n = 10; Advanced Bionics, California, USA, n = 8; and Cochlear, Sydney, Australia, n = 4) and all patients were long-term users (more than 18 months). Twelve of these were poor performers (scores on BKB sentence lists <60%) and 10 were excellent performers (BKB >90%). Intervention: After measurement of threshold and comfort levels, and loudness balancing across the array, all patients underwent thorough pitch-ranking assessments at 80% of comfort levels. Main Outcome Measure: Ability to discriminate pitch across the electrode array, measured by consistency in discrimination of adjacent pairs of electrodes, as well as an assessment of the pitch order across the array using the midpoint comparison task. Results: Within the poor performing group there was wide variability in ability to pitch rank, from no errors, to a complete inability to reliably and consistently differentiate pitch change across the electrode array. Good performers were overall significantly more accurate at pitch ranking (p = 0.026). Consistent pitch ranking was found to be a significant independent predictor of BKB score, even after adjusting for age. Users of the MED-EL implant experienced significantly more pitch confusions at the apex than at more basal parts of the electrode array. Conclusions: Many cochlear implant users struggle to discriminate pitch effectively. Accurate pitch ranking appears to be an independent predictor of overall outcome. Future work will concentrate on manipulating maps based upon pitch discrimination findings in an attempt to improve

  12. Consensus panel on a cochlear coordinate system applicable in histological, physiological and radiological studies of the human cochlea

    PubMed Central

    Verbist, Berit M; Skinner, Margaret W; Cohen, Lawrence T; Leake, Patricia A.; James, Chris; Boëx, Colette; Holden, Timothy A; Finley, Charles C; Roland, Peter S; Roland, J. Thomas; Haller, Matt; Patrick, Jim F; Jolly, Claude N; Faltys, Mike A; Briaire, Jeroen J; Frijns, Johan HM

    2010-01-01

    Hypothesis An objective cochlear framework, for evaluation of the cochlear anatomy and description of the position of an implanted cochlear implant electrode, would allow the direct comparison of measures performed within the various sub-disciplines involved in cochlear implant research. Background Research on the human cochlear anatomy in relation to tonotopy and cochlear implantation is conducted by specialists from numerous disciplines such as histologists, surgeons, physicists, engineers, audiologists and radiologists. To allow accurate comparisons between and combinations of previous and forthcoming scientific and clinical studies, cochlear structures and electrode positions must be specified in a consistent manner. Methods Researchers with backgrounds in the various fields of inner ear research as well as representatives of the different manufacturers of cochlear implants (Advanced Bionics Corp, Med-El, Cochlear Corp) were involved in consensus meetings held in Dallas, March 2005 and Asilomar, August 2005. Existing coordinate systems were evaluated and requisites for an objective cochlear framework were discussed. Results The consensus panel agreed upon a 3-dimensional, cylindrical coordinate system of the cochlea using the “Cochlear View” as a basis and choosing a z-axis through the modiolus. The zero reference angle was chosen at the centre of the round window, which has a close relationship to the basal end of the Organ of Corti. Conclusions Consensus was reached on an objective cochlear framework, allowing the outcomes of studies from different fields of research to be compared directly. PMID:20147866

  13. Prediction of Cochlear Implant Outcomes in Patients With Prelingual Deafness

    PubMed Central

    Kang, Dong Hoon; Lee, Myoung Jin; Lee, Kyu-Yup; Lee, Sang Heun; Jang, Jeong Hun

    2016-01-01

    Objectives. To evaluate the factors that limit post-cochlear implantation (CI) speech perception in prelingually deaf children. Methods. Patients with CI were divided into two groups according to Category of Auditory Performance (CAP) scores 3 years post-CI: the poor performance group (poor performance group, CAP scores≤4, n=41) and the good performance group (good performance group, CAP scores≥5, n=85). The distribution and contribution of the potential limiting factors related to post-CI speech perception was compared. Results. Perinatal problems, inner ear anomalies, narrow bony cochlear nerve canal (BCNC), and intraoperative problems was significantly higher in the poor performance group than the good performance group (P=0.010, P=0.003, P=0.001, and P=0.045, respectively). The mean number of limiting factors was significantly higher in the poor performance group (1.98±1.04) than the good performance group (1.25±1.11, P=0.001). The odds ratios for perinatal problems and narrow bony cochlear nerve canal in the poor performance group in comparison with the good performance group were 4.878 (95% confidence interval, 0.067 to 0.625; P=0.005) and 4.785 (95% confidence interval, 0.045 to 0.972; P=0.046). Conclusion. This study highlights the comprehensive prediction of speech perception after CI and provides otologic surgeons with useful information for individualized preoperative counseling of CI candidates. PMID:27337951

  14. Is age a limiting factor for adaptation to cochlear implant?

    PubMed

    Hiel, Anne-Lise; Gerard, Jean-Marc; Decat, Monique; Deggouj, Naïma

    2016-09-01

    The influence of age on adaptation to cochlear implant (CI) is still being contested in the literature. The aim of this study was twofold. First, hearing outcomes in quiet conditions were compared between CI users implanted over and under the age of 70 years. Second, the effect of the duration of auditory deprivation was investigated. The study design is a retrospective review and the setting is in academic tertiary referral center. One hundred and twenty-one postlingually deafened implanted adults participated in this study. Hearing outcomes were compared between 121 postlingually deafened adults implanted under 40, between 40 and 70, and over 70 years of age. Speech audiometry measurements were taken at 1, 3, 6, 12, 24 and 60 months post-cochlear implantation (pCI), in quiet conditions only. Hearing outcomes were significantly better only at 1 year pCI in the youngest group compared to the two older groups. No significant difference was observed between the middle-aged and eldest subjects at any time. The influence of the severe-to-profound hearing loss (SPHL) duration was investigated and found to be equally distributed among the different age groups. Good hearing outcomes in elderly patients are not secondary to a difference in SPHL duration. Age should not be a limiting factor for cochlear implantation decision. PMID:26676874

  15. Secreted Factors from Human Vestibular Schwannomas Can Cause Cochlear Damage

    PubMed Central

    Dilwali, Sonam; Landegger, Lukas D.; Soares, Vitor Y. R.; Deschler, Daniel G.; Stankovic, Konstantina M.

    2015-01-01

    Vestibular schwannomas (VSs) are the most common tumours of the cerebellopontine angle. Ninety-five percent of people with VS present with sensorineural hearing loss (SNHL); the mechanism of this SNHL is currently unknown. To establish the first model to study the role of VS-secreted factors in causing SNHL, murine cochlear explant cultures were treated with human tumour secretions from thirteen different unilateral, sporadic VSs of subjects demonstrating varied degrees of ipsilateral SNHL. The extent of cochlear explant damage due to secretion application roughly correlated with the subjects’ degree of SNHL. Secretions from tumours associated with most substantial SNHL resulted in most significant hair cell loss and neuronal fibre disorganization. Secretions from VSs associated with good hearing or from healthy human nerves led to either no effect or solely fibre disorganization. Our results are the first to demonstrate that secreted factors from VSs can lead to cochlear damage. Further, we identified tumour necrosis factor alpha (TNFα) as an ototoxic molecule and fibroblast growth factor 2 (FGF2) as an otoprotective molecule in VS secretions. Antibody-mediated TNFα neutralization in VS secretions partially prevented hair cell loss due to the secretions. Taken together, we have identified a new mechanism responsible for SNHL due to VSs. PMID:26690506

  16. Development of micro-electromechanical system (MEMS) cochlear biomodel

    NASA Astrophysics Data System (ADS)

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    2015-05-01

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. In this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.

  17. Optical coherence tomography as a guide for cochlear implant surgery?

    NASA Astrophysics Data System (ADS)

    Just, T.; Lankenau, E.; Hüttmann, G.; Pau, H. W.

    2008-02-01

    To assess the potential use of optical coherence tomography (OCT) in cochlear implant surgery, OCT was applied in human temporal bones before cochleostomy. The question was whether OCT might provide information about the cochlear topography, especially about the site of the scala tympani. OCT was carried out on human temporal bone preparations, in which the cochleostomy was performed leaving the membranous labyrinth and the fluid-filled inner ear intact. A specially equipped operating microscope with integrated OCT prototype was used. Spectral-domain (SD)-OCT was used for all investigations. On all scans, OCT supplied information about inner ear structures, such as scala tympani, scala vestibuli while the membranous labyrinth was still intact. In the fresh temporal bone the scala media, basilar membrane and the Reissner's membrane were identified. This OCT study clearly documents the possibility to identify inner ear structures, especially the scala tympani without opening its enveloping membranes. These findings may have an impact on cochlear implant surgery, especially as an orientation guide to localize the scala tympani precisely before opening the fluid filled inner ear.

  18. Optoacoustic effect is responsible for laser-induced cochlear responses

    PubMed Central

    Kallweit, N.; Baumhoff, P.; Krueger, A.; Tinne, N.; Kral, A.; Ripken, T.; Maier, H.

    2016-01-01

    Optical stimulation of the cochlea with laser light has been suggested as an alternative to conventional treatment of sensorineural hearing loss with cochlear implants. The underlying mechanisms are controversially discussed: The stimulation can either be based on a direct excitation of neurons, or it is a result of an optoacoustic pressure wave acting on the basilar membrane. Animal studies comparing the intra-cochlear optical stimulation of hearing and deafened guinea pigs have indicated that the stimulation requires intact hair cells. Therefore, optoacoustic stimulation seems to be the underlying mechanism. The present study investigates optoacoustic characteristics using pulsed laser stimulation for in vivo experiments on hearing guinea pigs and pressure measurements in water. As a result, in vivo as well as pressure measurements showed corresponding signal shapes. The amplitude of the signal for both measurements depended on the absorption coefficient and on the maximum of the first time-derivative of laser pulse power (velocity of heat deposition). In conclusion, the pressure measurements directly demonstrated that laser light generates acoustic waves, with amplitudes suitable for stimulating the (partially) intact cochlea. These findings corroborate optoacoustic as the basic mechanism of optical intra-cochlear stimulation. PMID:27301846

  19. Development of micro-electromechanical system (MEMS) cochlear biomodel

    SciTech Connect

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    2015-05-15

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. In this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.

  20. Influence of Ionizing Radiation on Two Generations of Cochlear Implants

    PubMed Central

    Guevara, Nicolas; Gérard, Anaïs; Dupré, Jeanne; Goursonnet, Delphine; Hoen, Michel; Gnansia, Dan; Angellier, Gaëlle; Thariat, Juliette

    2015-01-01

    The purpose of the present study was to test the behavior of two different generations of cochlear implant systems subjected to a clinical radiotherapy scheme and to determine the maximal acceptable cumulative radiation levels at which the devices show out-of-specification behaviors. Using stereotactic irradiation (Cyberknife, 6 MV photon beam), three Digisonic SP and three Neuro devices were submitted to 5 Gy doses that cumulated to 60 Gy (12 sessions) and 80 Gy (16 sessions), respectively. A follow-up series of irradiation was then applied, in which Digisonic SP devices received two additional fractions of 50 Gy each, cumulating to 160 Gy, and Neuro devices three additional fractions of 20, 40, and 150 Gy, cumulating to 290 Gy. Output current values were monitored during the treatment. At clinical doses, with 60 or 80 Gy cumulative radiation exposure, no single measurement showed more than 10% divergence from the reference measure. The cochlear implants tested in this study showed high resistance to clinically relevant cumulative radiation doses and showed no out-of-bounds behavior up to cumulative doses of 140 or 160 Gy. These observations suggest that cochlear implant users can undergo radiotherapy up to cumulative doses well above those currently used in clinical situations without risk of failure. PMID:26491679

  1. Influence of Ionizing Radiation on Two Generations of Cochlear Implants.

    PubMed

    Guevara, Nicolas; Gérard, Anaïs; Dupré, Jeanne; Goursonnet, Delphine; Hoen, Michel; Gnansia, Dan; Angellier, Gaëlle; Thariat, Juliette

    2015-01-01

    The purpose of the present study was to test the behavior of two different generations of cochlear implant systems subjected to a clinical radiotherapy scheme and to determine the maximal acceptable cumulative radiation levels at which the devices show out-of-specification behaviors. Using stereotactic irradiation (Cyberknife, 6 MV photon beam), three Digisonic SP and three Neuro devices were submitted to 5 Gy doses that cumulated to 60 Gy (12 sessions) and 80 Gy (16 sessions), respectively. A follow-up series of irradiation was then applied, in which Digisonic SP devices received two additional fractions of 50 Gy each, cumulating to 160 Gy, and Neuro devices three additional fractions of 20, 40, and 150 Gy, cumulating to 290 Gy. Output current values were monitored during the treatment. At clinical doses, with 60 or 80 Gy cumulative radiation exposure, no single measurement showed more than 10% divergence from the reference measure. The cochlear implants tested in this study showed high resistance to clinically relevant cumulative radiation doses and showed no out-of-bounds behavior up to cumulative doses of 140 or 160 Gy. These observations suggest that cochlear implant users can undergo radiotherapy up to cumulative doses well above those currently used in clinical situations without risk of failure. PMID:26491679

  2. Tricellulin deficiency affects tight junction architecture and cochlear hair cells

    PubMed Central

    Nayak, Gowri; Lee, Sue I.; Yousaf, Rizwan; Edelmann, Stephanie E.; Trincot, Claire; Van Itallie, Christina M.; Sinha, Ghanshyam P.; Rafeeq, Maria; Jones, Sherri M.; Belyantseva, Inna A.; Anderson, James M.; Forge, Andrew; Frolenkov, Gregory I.; Riazuddin, Saima

    2013-01-01

    The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin. PMID:23979167

  3. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review).

    PubMed

    Shi, Xiaorui

    2016-08-01

    The blood-labyrinth barrier (BLB) in the stria vascularis is a highly specialized capillary network that controls exchanges between blood and the intrastitial space in the cochlea. The barrier shields the inner ear from blood-born toxic substances and selectively passes ions, fluids, and nutrients to the cochlea, playing an essential role in the maintenance of cochlear homeostasis. Anatomically, the BLB is comprised of endothelial cells (ECs) in the strial microvasculature, elaborated tight and adherens junctions, pericytes (PCs), basement membrane (BM), and perivascular resident macrophage-like melanocytes (PVM/Ms), which together form a complex "cochlear-vascular unit" in the stria vascularis. Physical interactions between the ECs, PCs, and PVM/Ms, as well as signaling between the cells, is critical for controlling vascular permeability and providing a proper environment for hearing function. Breakdown of normal interactions between components of the BLB is seen in a wide range of pathological conditions, including genetic defects and conditions engendered by inflammation, loud sound trauma, and ageing. In this review, we will discuss prevailing views of the structure and function of the strial cochlear-vascular unit (also referred to as the "intrastrial fluid-blood barrier"). We will also discuss the disrupted homeostasis seen in a variety of hearing disorders. Therapeutic targeting of the strial barrier may offer opportunities for improvement of hearing health and amelioration of auditory disorders. This article is part of a Special Issue entitled . PMID:26802581

  4. Optoacoustic effect is responsible for laser-induced cochlear responses.

    PubMed

    Kallweit, N; Baumhoff, P; Krueger, A; Tinne, N; Kral, A; Ripken, T; Maier, H

    2016-01-01

    Optical stimulation of the cochlea with laser light has been suggested as an alternative to conventional treatment of sensorineural hearing loss with cochlear implants. The underlying mechanisms are controversially discussed: The stimulation can either be based on a direct excitation of neurons, or it is a result of an optoacoustic pressure wave acting on the basilar membrane. Animal studies comparing the intra-cochlear optical stimulation of hearing and deafened guinea pigs have indicated that the stimulation requires intact hair cells. Therefore, optoacoustic stimulation seems to be the underlying mechanism. The present study investigates optoacoustic characteristics using pulsed laser stimulation for in vivo experiments on hearing guinea pigs and pressure measurements in water. As a result, in vivo as well as pressure measurements showed corresponding signal shapes. The amplitude of the signal for both measurements depended on the absorption coefficient and on the maximum of the first time-derivative of laser pulse power (velocity of heat deposition). In conclusion, the pressure measurements directly demonstrated that laser light generates acoustic waves, with amplitudes suitable for stimulating the (partially) intact cochlea. These findings corroborate optoacoustic as the basic mechanism of optical intra-cochlear stimulation. PMID:27301846

  5. Dynamical nucleus-nucleus potential at short distances

    SciTech Connect

    Jiang Yongying; Wang Ning; Li Zhuxia; Scheid, Werner

    2010-04-15

    The dynamical nucleus-nucleus potentials for fusion reactions {sup 40}Ca+{sup 40}Ca, {sup 48}Ca+{sup 208}Pb, and {sup 126}Sn+{sup 130}Te are studied with the improved quantum molecular dynamics model together with the extended Thomas-Fermi approximation for the kinetic energies of nuclei. The obtained fusion barrier for {sup 40}Ca+{sup 40}Ca is in good agreement with the extracted fusion barrier from the measured fusion excitation function, and the depths of the fusion pockets are close to the results of time-dependent Hartree-Fock calculations. The energy dependence of the fusion barrier is also investigated. The fusion pocket becomes shallow for a heavy fusion system and almost disappears for heavy nearly symmetric systems, and the obtained potential at short distances is higher than the adiabatic potential.

  6. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    SciTech Connect

    Mali, P.; Mukhopadhyay, A. Sarkar, S.; Singh, G.

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see a direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.

  7. Analysis of relativistic nucleus-nucleus interactions in emulsion chambers

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The development of a computer-assisted method is reported for the determination of the angular distribution data for secondary particles produced in relativistic nucleus-nucleus collisions in emulsions. The method is applied to emulsion detectors that were placed in a constant, uniform magnetic field and exposed to beams of 60 and 200 GeV/nucleon O-16 ions at the Super Proton Synchrotron (SPS) of the European Center for Nuclear Research (CERN). Linear regression analysis is used to determine the azimuthal and polar emission angles from measured track coordinate data. The software, written in BASIC, is designed to be machine independent, and adaptable to an automated system for acquiring the track coordinates. The fitting algorithm is deterministic, and takes into account the experimental uncertainty in the measured points. Further, a procedure for using the track data to estimate the linear momenta of the charged particles observed in the detectors is included.

  8. Single nucleon emission in relativistic nucleus-nucleus reactions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Townsend, Lawrence W.

    1992-01-01

    Significant discrepancies between theory and experiment have previously been noted for nucleon emission via electromagnetic processes in relativistic nucleus-nucleus collisions. The present work investigates the hypothesis that these discrepancies have arisen due to uncertainties about how to deduce the experimental electromagnetic cross section from the total measured cross section. An optical-model calculation of single neutron removal is added to electromagnetic cross sections and compared to the total experimental cross sections. Good agreement is found thereby resolving some of the earlier noted discrepancies. A detailed comparison to the recent work of Benesh, Cook, and Vary is made for both the impact parameter and the nuclear cross section. Good agreement is obtained giving an independent confirmation of the parameterized formulas developed by those authors.

  9. Speech recognition at simulated soft, conversational, and raised-to-loud vocal efforts by adults with cochlear implants.

    PubMed

    Skinner, M W; Holden, L K; Holden, T A; Demorest, M E; Fourakis, M S

    1997-06-01

    Ten postlinguistically deaf adults who used the Nucleus Cochlear Implant System and SPEAK speech coding strategy responded to vowels, consonants, words, and sentences presented sound-only at 70, 60, and 50 dB sound-pressure level. Highest group mean scores were at a raised-to-loud level of 70 dB for consonants (73%), words (44%), and sentences (87%); the highest score for vowels (70%) was at a conversational level of 60 dB. Lowest group mean scores were at a soft level of 50 dB for vowels (56%), consonants (47%), words (10%), and sentences (29%); all except subject 7 had some open-set speech recognition at this level. For the conversational level (60 dB), group mean scores for sentences and words were 72% and 29%, respectively. With this performance and sound-pressure level, it was observed that these subjects communicated successfully in a variety of listening situations. Given these subjects' speech recognition scores at 60 dB and the fact that 70 dB does not simulate the vocal effort used in everyday speaking situations, it is suggested that cochlear implant candidates and implantees be evaluated with speech tests presented at 60 dB instead of the customary 70 dB sound-pressure level to simulate benefit provided by implants in everyday life. Analysis of individuals' scores at the three levels for the four speech materials revealed different patterns of speech recognition among subjects (e.g., subjects 1 and 5). Future research on the relation between stimuli, sound processing, and subjects' responses associated with these different patterns may provide guidelines to select parameter values with which to map incoming sound onto an individual's electrical dynamic range between threshold and maximum acceptable loudness level to improve speech recognition. PMID:9193063

  10. Comparison of Auditory Perception in Cochlear Implanted Children with and without Additional Disabilities

    PubMed Central

    Hashemi, Seyed Basir; Monshizadeh, Leila

    2016-01-01

    Background: The number of children with cochlear implants who have other difficulties such as attention deficiency and cerebral palsy has increased dramatically. Despite the need for information on the results of cochlear implantation in this group, the available literature is extremely limited. We, therefore, sought to compare the levels of auditory perception in children with cochlear implants with and without additional disabilities. Methods: A spondee test comprising 20 two-syllable words was performed. The data analysis was done using SPSS, version 19. Results: Thirty-one children who had received cochlear implants 2 years previously and were at an average age of 7.5 years were compared via the spondee test. From the 31 children, 15 had one or more additional disabilities. The data analysis indicated that the mean score of auditory perception in this group was approximately 30 scores below that of the children with cochlear implants who had no additional disabilities. Conclusion: Although there was an improvement in the auditory perception of all the children with cochlear implants, there was a noticeable difference in the level of auditory perception between those with and without additional disabilities. Deafness and additional disabilities depended the children on lip reading alongside the auditory ways of communication. In addition, the level of auditory perception in the children with cochlear implants who had more than one additional disability was significantly less than that of the other children with cochlear implants who had one additional disability. PMID:27217602

  11. Preliminary speech recognition results after cochlear implantation in patients with unilateral hearing loss: a case series

    PubMed Central

    2011-01-01

    Introduction Cochlear implants known to provide support in individuals with bilateral hearing loss may also be of great benefit for individuals with unilateral hearing loss. This case report demonstrates the positive effects of cochlear implantation on speech understanding in noise conditions in patients with unilateral hearing loss and normal hearing on the contralateral side. To the best of our knowledge, the data presented here are from the first few cases to receive a cochlear implant for unilateral hearing loss. Case presentation Four Caucasian German men, two aged 48 and the others aged 51 and 57 years old, with post-lingual unilateral hearing loss and normal hearing on the contralateral side were implanted with a cochlear implant. All our patients were members of the German army. Before and after implantation, they were given a battery of speech tests in different hearing conditions to assess the effect of unilateral cochlear implantation on speech understanding in noise conditions. Test results showed that all patients benefited from unilateral cochlear implantation, particularly in terms of speech understanding in noise conditions. Conclusions Unilateral cochlear implantation might be a successful treatment method for patients with unilateral hearing loss not benefiting from alternative treatment options. The results of this case report open up the field of cochlear implantation for expanded criteria and new areas of research. PMID:21810235

  12. Analogic and Symbolic Comparison of Numerosity in Preschool Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Arfe, Barbara; Lucangeli, Daniela; Genovese, Elisabetta; Monzani, Daniele; Gubernale, Marco; Trevisi, Patrizia; Santarelli, Rosamaria

    2011-01-01

    This study explores how preschoolers with cochlear implants process numerical comparisons from two different inputs: a) nonverbal (analogical) and b) verbal (symbolic). Preschool cochlear-implanted children (CI) ranging in age from 4;3 to 6;1 were compared with 99 age-matched hearing children (HC) in three numerical tasks: verbal counting, a digit…

  13. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline.

    PubMed

    Sergeyenko, Yevgeniya; Lall, Kumud; Liberman, M Charles; Kujawa, Sharon G

    2013-08-21

    Aging listeners experience greater difficulty understanding speech in adverse listening conditions and exhibit degraded temporal resolution, even when audiometric thresholds are normal. When threshold evidence for peripheral involvement is lacking, central and cognitive factors are often cited as underlying performance declines. However, previous work has uncovered widespread loss of cochlear afferent synapses and progressive cochlear nerve degeneration in noise-exposed ears with recovered thresholds and no hair cell loss (Kujawa and Liberman 2009). Here, we characterize age-related cochlear synaptic and neural degeneration in CBA/CaJ mice never exposed to high-level noise. Cochlear hair cell and neuronal function was assessed via distortion product otoacoustic emissions and auditory brainstem responses, respectively. Immunostained cochlear whole mounts and plastic-embedded sections were studied by confocal and conventional light microscopy to quantify hair cells, cochlear neurons, and synaptic structures, i.e., presynaptic ribbons and postsynaptic glutamate receptors. Cochlear synaptic loss progresses from youth (4 weeks) to old age (144 weeks) and is seen throughout the cochlea long before age-related changes in thresholds or hair cell counts. Cochlear nerve loss parallels the synaptic loss, after a delay of several months. Key functional clues to the synaptopathy are available in the neural response; these can be accessed noninvasively, enhancing the possibilities for translation to human clinical characterization. PMID:23966690

  14. Beginning To Talk at 20 Months: Early Vocal Development in a Young Cochlear Implant Recipient.

    ERIC Educational Resources Information Center

    Ertmer, David J.; Mellon, Jennifer A.

    2001-01-01

    Early vocal development, consonant production, and spoken vocabulary were examined in a deaf toddler whose multichannel cochlear implant was activated at 20 months. The child understood almost 240 words and spoke approximately 90 words after one year of implant experience. The combination of early cochlear implantation, family support, and regular…

  15. Quality of life in bimodal hearing users (unilateral cochlear implants and contralateral hearing aids).

    PubMed

    Farinetti, A; Roman, S; Mancini, J; Baumstarck-Barrau, K; Meller, R; Lavieille, J P; Triglia, J M

    2015-11-01

    The main objective was to evaluate the bimodal self-rated benefits on auditory performance under real conditions and the quality of life in two groups of cochlear-implanted adults, with or without a contralateral hearing aid. The secondary objective was to investigate correlations between the use of a hearing aid and residual hearing on the non-implanted ear. This retrospective study was realized between 2000 and 2010 in two referral centers. A population of 183 postlingually deaf adults, implanted with a cochlear experience superior to 6 months, was selected. The Speech, Spatial, and other Qualities of Hearing Scale were administered to evaluate the auditory performances, and the Nijmegen Cochlear Implant Questionnaire to evaluate the quality of life. The population was divided into two groups: a group with unilateral cochlear implants (Cochlear Implant-alone, n = 54), and a bimodal group with a cochlear implant and a contralateral hearing aid (n = 62). Both groups were similar in terms of auditory deprivation duration, duration of cochlear implant use, and pure-tone average on the implanted ear. There was a significant difference in terms of pure-tone average on low and low-to-mid frequencies on the non-implanted ear. The scores on both questionnaires showed an improvement in the basic sound perception and quality of social activities for the bimodal group. The results suggest that the bimodal stimulation (cochlear implant and contralateral hearing aid) improved auditory perception in quiet and the quality of life domain of social activities. PMID:25373837

  16. Cochlear Implantation among Deaf Children with Additional Disabilities: Parental Perceptions of Benefits, Challenges, and Service Provision

    ERIC Educational Resources Information Center

    Zaidman-Zait, Anat; Curle, Deirdre; Jamieson, Janet R.; Chia, Ruth; Kozak, Frederick K.

    2015-01-01

    Although increasing numbers of children with additional disabilities are receiving cochlear implants (CIs), little is known about family perspectives of the benefits and the challenges of cochlear implantation in this pediatric population. This study examines perceptions among parents of deaf children with additional disabilities regarding…

  17. Children with Cochlear Implants and Developmental Disabilities: A Language Skills Study with Developmentally Matched Hearing Peers

    ERIC Educational Resources Information Center

    Meinzen-Derr, Jareen; Wiley, Susan; Grether, Sandra; Choo, Daniel I.

    2011-01-01

    The number of children receiving cochlear implants (CIs) with significant disabilities in addition to their deafness has increased substantially. Unfortunately, children with additional disabilities receiving CIs have largely been excluded from studies on cochlear implant outcomes. Thus limited data exists on outcomes in this population to guide…

  18. Examining Multiple Sources of Influence on the Reading Comprehension Skills of Children Who Use Cochlear Implants

    ERIC Educational Resources Information Center

    Connor, Carol McDonald; Zwolan, Teresa A.

    2004-01-01

    Children with profound deafness are at risk for serious reading difficulties. Multiple factors affect their development of reading skills, including use of cochlear implants. Further, multiple factors influence the overall success that children experience with their cochlear implants. These factors include the age at which they receive an implant,…

  19. Phonological Awareness and Print Knowledge of Preschool Children with Cochlear Implants

    ERIC Educational Resources Information Center

    Ambrose, Sophie E.; Fey, Marc E.; Eisenberg, Laurie S.

    2012-01-01

    Purpose: To determine whether preschool-age children with cochlear implants have age-appropriate phonological awareness and print knowledge and to examine the relationships of these skills with related speech and language abilities. Method: The sample comprised 24 children with cochlear implants (CIs) and 23 peers with normal hearing (NH), ages 36…

  20. Children with Cochlear Implants in Australia: Educational Settings, Supports, and Outcomes

    ERIC Educational Resources Information Center

    Punch, Renee; Hyde, Merv

    2010-01-01

    This Australian study examined the communication, academic, and social outcomes of pediatric cochlear implantation from the perspectives of teachers working with children with cochlear implants. The children were aged from 1 to 18 years and attended a range of educational settings in early intervention, primary, and secondary schooling. One…