Science.gov

Sample records for postnatal plp promoter

  1. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    SciTech Connect

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang; Xue, Jun; Shao, Xue-jun

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.

  2. Postnatal Leptin Promotes Organ Maturation and Development in IUGR Piglets

    PubMed Central

    Attig, Linda; Brisard, Daphné; Larcher, Thibaut; Mickiewicz, Michal; Guilloteau, Paul; Boukthir, Samir; Niamba, Claude-Narcisse; Gertler, Arieh; Djiane, Jean; Monniaux, Danielle; Abdennebi-Najar, Latifa

    2013-01-01

    Babies with intra-uterine growth restriction (IUGR) are at increased risk for experiencing negative neonatal outcomes due to their general developmental delay. The present study aimed to investigate the effects of a short postnatal leptin supply on the growth, structure, and functionality of several organs at weaning. IUGR piglets were injected from day 0 to day 5 with either 0.5 mg/kg/d leptin (IUGRLep) or saline (IUGRSal) and euthanized at day 21. Their organs were collected, weighed, and sampled for histological, biochemical, and immunohistochemical analyses. Leptin induced an increase in body weight and the relative weights of the liver, spleen, pancreas, kidneys, and small intestine without any changes in triglycerides, glucose and cholesterol levels. Notable structural and functional changes occurred in the ovaries, pancreas, and secondary lymphoid organs. The ovaries of IUGRLep piglets contained less oogonia but more oocytes enclosed in primordial and growing follicles than the ovaries of IUGRSal piglets, and FOXO3A staining grade was higher in the germ cells of IUGRLep piglets. Within the exocrine parenchyma of the pancreas, IUGRLep piglets presented a high rate of apoptotic cells associated with a higher trypsin activity. In the spleen and the Peyer’s patches, B lymphocyte follicles were much larger in IUGRLep piglets than in IUGRSal piglets. Moreover, IUGRLep piglets showed numerous CD79+cells in well-differentiated follicle structures, suggesting a more mature immune system. This study highlights a new role for leptin in general developmental processes and may provide new insight into IUGR pathology. PMID:23741353

  3. Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation.

    PubMed

    Stark, Danny A; Coffey, Nathan J; Pancoast, Hannah R; Arnold, Laura L; Walker, J Peyton D; Vallée, Joanne; Robitaille, Richard; Garcia, Michael L; Cornelison, D D W

    2015-12-01

    Each adult mammalian skeletal muscle has a unique complement of fast and slow myofibers, reflecting patterns established during development and reinforced via their innervation by fast and slow motor neurons. Existing data support a model of postnatal "matching" whereby predetermined myofiber type identity promotes pruning of inappropriate motor axons, but no molecular mechanism has yet been identified. We present evidence that fiber type-specific repulsive interactions inhibit innervation of slow myofibers by fast motor axons during both postnatal maturation of the neuromuscular junction and myofiber reinnervation after injury. The repulsive guidance ligand ephrin-A3 is expressed only on slow myofibers, whereas its candidate receptor, EphA8, localizes exclusively to fast motor endplates. Adult mice lacking ephrin-A3 have dramatically fewer slow myofibers in fast and mixed muscles, and misexpression of ephrin-A3 on fast myofibers followed by denervation/reinnervation promotes their respecification to a slow phenotype. We therefore conclude that Eph/ephrin interactions guide the fiber type specificity of neuromuscular interactions during development and adult life. PMID:26644518

  4. Ephrin-A3 promotes and maintains slow muscle fiber identity during postnatal development and reinnervation

    PubMed Central

    Stark, Danny A.; Coffey, Nathan J.; Pancoast, Hannah R.; Arnold, Laura L.; Walker, J. Peyton D.; Vallée, Joanne; Robitaille, Richard; Garcia, Michael L.

    2015-01-01

    Each adult mammalian skeletal muscle has a unique complement of fast and slow myofibers, reflecting patterns established during development and reinforced via their innervation by fast and slow motor neurons. Existing data support a model of postnatal "matching" whereby predetermined myofiber type identity promotes pruning of inappropriate motor axons, but no molecular mechanism has yet been identified. We present evidence that fiber type–specific repulsive interactions inhibit innervation of slow myofibers by fast motor axons during both postnatal maturation of the neuromuscular junction and myofiber reinnervation after injury. The repulsive guidance ligand ephrin-A3 is expressed only on slow myofibers, whereas its candidate receptor, EphA8, localizes exclusively to fast motor endplates. Adult mice lacking ephrin-A3 have dramatically fewer slow myofibers in fast and mixed muscles, and misexpression of ephrin-A3 on fast myofibers followed by denervation/reinnervation promotes their respecification to a slow phenotype. We therefore conclude that Eph/ephrin interactions guide the fiber type specificity of neuromuscular interactions during development and adult life. PMID:26644518

  5. FGF-2 signal promotes proliferation of cerebellar progenitor cells and their oligodendrocytic differentiation at early postnatal stage

    SciTech Connect

    Naruse, Masae; Shibasaki, Koji; Ishizaki, Yasuki

    2015-08-07

    The origins and developmental regulation of cerebellar oligodendrocytes are largely unknown, although some hypotheses of embryonic origins have been suggested. Neural stem cells exist in the white matter of postnatal cerebellum, but it is unclear whether these neural stem cells generate oligodendrocytes at postnatal stages. We previously showed that cerebellar progenitor cells, including neural stem cells, widely express CD44 at around postnatal day 3. In the present study, we showed that CD44-positive cells prepared from the postnatal day 3 cerebellum gave rise to neurospheres, while CD44-negative cells prepared from the same cerebellum did not. These neurospheres differentiated mainly into oligodendrocytes and astrocytes, suggesting that CD44-positive neural stem/progenitor cells might generate oligodendrocytes in postnatal cerebellum. We cultured CD44-positive cells from the postnatal day 3 cerebellum in the presence of signaling molecules known as mitogens or inductive differentiation factors for oligodendrocyte progenitor cells. Of these, only FGF-2 promoted survival and proliferation of CD44-positive cells, and these cells differentiated into O4+ oligodendrocytes. Furthermore, we examined the effect of FGF-2 on cerebellar oligodendrocyte development ex vivo. FGF-2 enhanced proliferation of oligodendrocyte progenitor cells and increased the number of O4+ and CC1+ oligodendrocytes in slice cultures. These results suggest that CD44-positive cells might be a source of cerebellar oligodendrocytes and that FGF-2 plays important roles in their development at an early postnatal stage. - Highlights: • CD44 is expressed in cerebellar neural stem/progenitor cells at postnatal day 3 (P3). • FGF-2 promoted proliferation of CD44-positive progenitor cells from P3 cerebellum. • FGF-2 promoted oligodendrocytic differentiation of CD44-positive progenitor cells. • FGF-2 increased the number of oligodendrocytes in P3 cerebellar slice culture.

  6. PLP1 gene analysis in 88 patients with leukodystrophy.

    PubMed

    Martínez-Montero, P; Muñoz-Calero, M; Vallespín, E; Campistol, J; Martorell, L; Ruiz-Falcó, M J; Santana, A; Pons, R; Dinopoulos, A; Sierra, C; Nevado, J; Molano, J

    2013-12-01

    Pelizaeus-Merzbacher disease (PMD) is caused in most cases by either duplications or point mutations in the PLP1 gene. This disease, a dysmyelinating disorder affecting mainly the central nervous system, has a wide clinical spectrum and its causing mutations act through different molecular mechanisms. Eighty-eight male patients with leukodystrophy were studied. PLP1 gene analysis was performed by the Multiplex Ligation-dependent Probe Amplification technique and DNA sequencing, and, in duplicated cases of PLP1, gene dosage was completed by using array-CGH. We have identified 21 patients with mutations in the PLP1 gene, including duplications, short and large deletions and several point mutations in our cohort. A customized array-CGH at the Xq22.2 area identified several complex rearrangements within the PLP1 gene region. Mutations found in the PLP1 gene are the cause of PMD in around 20% of the patients in this series. PMID:23347225

  7. CNS myelination and PLP gene dosage.

    PubMed

    Woodward, K; Malcolm, S

    2001-08-01

    The phenomenon of gene dosage effects demonstrates that the mechanisms of some genetic diseases are best recognised at the genomic level. Classical gene mutation screening approaches utilising PCR are unsuccessful in unravelling the basis of disease because the gene sequence is unaltered and only the copy number is different. Techniques for detecting DNA dosage are required. Examples of haploinsufficiency and gene deletions are well documented, but increased gene dosage is also an important genetic mechanism in disorders involving myelin proteins in the central (CNS) and peripheral nervous system (PNS). Here we review the dosage effects and mutations of the proteolipid protein (PLP) gene that causes Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia Type 2 (SPG2) disorders of CNS myelination. Similarities are drawn with the peripheral neuropathies Charcot-Marie-Tooth disease Type 1 (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) that are also caused by dosage effects and mutations in a single myelin protein gene (peripheral myelin protein 22, PMP-22). We compare the different mutational mechanisms in man and analogous mouse models that suggest a function for PLP beyond its structural role in myelin. We focus on the increased dosage of the PLP gene that is the major cause of PMD and results from a submicroscopic duplication of Xq22. Other clinical phenotypes may arise from gene dosage imbalance with the potential effect of submicroscopic duplications and deletions of the genome being underestimated. Genome sequencing may identify intrinsic structural properties of the DNA with greater susceptibility to these rearrangements and thereby reflect structural changes in the genome. PMID:11535114

  8. Altered PLP1 splicing causes hypomyelination of early myelinating structures

    PubMed Central

    Kevelam, Sietske H; Taube, Jennifer R; van Spaendonk, Rosalina M L; Bertini, Enrico; Sperle, Karen; Tarnopolsky, Mark; Tonduti, Davide; Valente, Enza Maria; Travaglini, Lorena; Sistermans, Erik A; Bernard, Geneviève; Catsman-Berrevoets, Coriene E; van Karnebeek, Clara D M; Østergaard, John R; Friederich, Richard L; Fawzi Elsaid, Mahmoud; Schieving, Jolanda H; Tarailo-Graovac, Maja; Orcesi, Simona; Steenweg, Marjan E; van Berkel, Carola G M; Waisfisz, Quinten; Abbink, Truus E M; van der Knaap, Marjo S; Hobson, Grace M; Wolf, Nicole I

    2015-01-01

    Objective The objective of this study was to investigate the genetic etiology of the X-linked disorder “Hypomyelination of Early Myelinating Structures” (HEMS). Methods We included 16 patients from 10 families diagnosed with HEMS by brain MRI criteria. Exome sequencing was used to search for causal mutations. In silico analysis of effects of the mutations on splicing and RNA folding was performed. In vitro gene splicing was examined in RNA from patients’ fibroblasts and an immortalized immature oligodendrocyte cell line after transfection with mutant minigene splicing constructs. Results All patients had unusual hemizygous mutations of PLP1 located in exon 3B (one deletion, one missense and two silent), which is spliced out in isoform DM20, or in intron 3 (five mutations). The deletion led to truncation of PLP1, but not DM20. Four mutations were predicted to affect PLP1/DM20 alternative splicing by creating exonic splicing silencer motifs or new splice donor sites or by affecting the local RNA structure of the PLP1 splice donor site. Four deep intronic mutations were predicted to destabilize a long-distance interaction structure in the secondary PLP1 RNA fragment involved in regulating PLP1/DM20 alternative splicing. Splicing studies in fibroblasts and transfected cells confirmed a decreased PLP1/DM20 ratio. Interpretation Brain structures that normally myelinate early are poorly myelinated in HEMS, while they are the best myelinated structures in Pelizaeus–Merzbacher disease, also caused by PLP1 alterations. Our data extend the phenotypic spectrum of PLP1-related disorders indicating that normal PLP1/DM20 alternative splicing is essential for early myelination and support the need to include intron 3 in diagnostic sequencing. PMID:26125040

  9. Leukemia inhibitory factor regulates the timing of oligodendrocyte development and myelination in the postnatal optic nerve

    PubMed Central

    Ishibashi, Tomoko; Lee, Philip R.; Baba, Hiroko; Fields, R. Douglas

    2009-01-01

    Leukemia inhibitory factor (LIF) promotes the survival of oligodendrocytes both in vitro and in an animal model of multiple sclerosis, but the possible role of LIF signaling in myelination during normal development has not been investigated. We find that LIF-/- mice have a pronounced myelination defect in optic nerve at postnatal day 10. Myelin basic protein (MBP)- and proteolipid protein (PLP)-positive myelin was evident throughout the optic nerve in the wild-type mice, but staining was present only at the chiasmal region in LIF-/- mice of the same age. Further experiments suggest that the myelination defect was a consequence of a delay in maturation of oligodendrocyte precursor cell (OPC) population. The number of Olig2-positive cells was dramatically decreased in optic nerve of LIF-/- mice, and the distribution of Olig2-positive cells was restricted to the chiasmal region of the nerve in a steep gradient toward the retina. Gene expression profiling and cell culture experiments revealed that OPCs from P10 optic nerve of LIF-/- mice remained in a highly proliferative immature stage compared with littermate controls. Interestingly, by postnatal day 14, MBP immunostaining in the LIF-/- optic nerve was comparable to that of LIF+/+ mice. These results suggest that, during normal development of mouse optic nerve, there is a defined developmental time window when LIF is required for correct myelination. Myelination seems to recover by postnatal day 14, so LIF is not necessary for the completion of myelination during postnatal development. PMID:19598242

  10. Thyroid Hormone Promotes Postnatal Rat Pancreatic β-Cell Development and Glucose-Responsive Insulin Secretion Through MAFA

    PubMed Central

    Aguayo-Mazzucato, Cristina; Zavacki, Ann Marie; Marinelarena, Alejandra; Hollister-Lock, Jennifer; El Khattabi, Ilham; Marsili, Alessandro; Weir, Gordon C.; Sharma, Arun; Larsen, P. Reed; Bonner-Weir, Susan

    2013-01-01

    Neonatal β cells do not secrete glucose-responsive insulin and are considered immature. We previously showed the transcription factor MAFA is key for the functional maturation of β cells, but the physiological regulators of this process are unknown. Here we show that postnatal rat β cells express thyroid hormone (TH) receptor isoforms and deiodinases in an age-dependent pattern as glucose responsiveness develops. In vivo neonatal triiodothyronine supplementation and TH inhibition, respectively, accelerated and delayed metabolic development. In vitro exposure of immature islets to triiodothyronine enhanced the expression of Mafa, the secretion of glucose-responsive insulin, and the proportion of responsive cells, all of which are effects that were abolished in the presence of dominant-negative Mafa. Using chromatin immunoprecipitation and electrophoretic mobility shift assay, we show that TH has a direct receptor-ligand interaction with the Mafa promoter and, using a luciferase reporter, that this interaction was functional. Thus, TH can be considered a physiological regulator of functional maturation of β cells via its induction of Mafa. PMID:23305647

  11. Thyroid hormone promotes postnatal rat pancreatic β-cell development and glucose-responsive insulin secretion through MAFA.

    PubMed

    Aguayo-Mazzucato, Cristina; Zavacki, Ann Marie; Marinelarena, Alejandra; Hollister-Lock, Jennifer; El Khattabi, Ilham; Marsili, Alessandro; Weir, Gordon C; Sharma, Arun; Larsen, P Reed; Bonner-Weir, Susan

    2013-05-01

    Neonatal β cells do not secrete glucose-responsive insulin and are considered immature. We previously showed the transcription factor MAFA is key for the functional maturation of β cells, but the physiological regulators of this process are unknown. Here we show that postnatal rat β cells express thyroid hormone (TH) receptor isoforms and deiodinases in an age-dependent pattern as glucose responsiveness develops. In vivo neonatal triiodothyronine supplementation and TH inhibition, respectively, accelerated and delayed metabolic development. In vitro exposure of immature islets to triiodothyronine enhanced the expression of Mafa, the secretion of glucose-responsive insulin, and the proportion of responsive cells, all of which are effects that were abolished in the presence of dominant-negative Mafa. Using chromatin immunoprecipitation and electrophoretic mobility shift assay, we show that TH has a direct receptor-ligand interaction with the Mafa promoter and, using a luciferase reporter, that this interaction was functional. Thus, TH can be considered a physiological regulator of functional maturation of β cells via its induction of Mafa. PMID:23305647

  12. Effect of postnatal progesterone therapy following preterm birth on neurosteroid concentrations and cerebellar myelination in guinea pigs.

    PubMed

    Palliser, H K; Kelleher, M A; Tolcos, M; Walker, D W; Hirst, J J

    2015-08-01

    Allopregnanolone protects the fetal brain and promotes normal development including myelination. Preterm birth results in the early separation of the infant from the placenta and consequently a decline in blood and brain allopregnanolone concentrations. Progesterone therapy may increase allopregnanolone and lead to improved oligodendrocyte maturation. The objectives of this study were to examine the efficacy of progesterone replacement in augmenting allopregnanolone concentrations during the postnatal period and to assess the effect on cerebellar myelination - a region with significant postnatal development. Preterm guinea pig neonates delivered at 62 days of gestation by caesarean section received daily s.c. injections of vehicle (2-Hydroxypropyl-β-cyclodextrin) or progesterone (16 mg/kg) for 8 days until term-equivalent age (TEA). Term delivered controls (PND1) received vehicle. Neonatal condition/wellbeing was scored, and salivary progesterone was sampled over the postnatal period. Brain and plasma allopregnanolone concentrations were measured by radioimmunoassay; cortisol and progesterone concentrations were determined by enzyme immunoassay; and myelin basic protein (MBP), proteolipid protein (PLP), oligodendroctye transcription factor 2 (OLIG2) and platelet-derived growth factor receptor-α (PDGFRα) were quantified by immunohistochemistry and western blot. Brain allopregnanolone concentrations were increased in progesterone-treated neonates. Plasma progesterone and cortisol concentrations were elevated in progesterone-treated male neonates. Progesterone treatment decreased MBP and PLP in lobule X of the cerebellum and total cerebellar OLIG2 and PDGFRα in males but not females at TEA compared with term animals. We conclude that progesterone treatment increases brain allopregnanolone concentrations, but also increases cortisol levels in males, which may disrupt developmental processes. Consideration should be given to the use of non-metabolizable neurosteroid

  13. 5-Hydroxytryptophan during critical postnatal period improves cognitive performances and promotes dendritic spine maturation in genetic mouse model of phenylketonuria

    PubMed Central

    Andolina, Diego; Conversi, David; Cabib, Simona; Trabalza, Antonio; Ventura, Rossella; Puglisi-Allegra, Stefano; Pascucci, Tiziana

    2011-01-01

    Although phenylketonuria (PKU) is the most common genetic cause of mental retardation, the cellular mechanisms underlying impaired brain function are still unclear. Using PAHenu2 mice (ENU2), the genetic mouse model of PKU, we previously demonstrated that high phenylalanine levels interfere with brain tryptophan hydroxylase activity by reducing the availability of serotonin (5-hydroxytryptamine, 5-HT), crucial for maturation of neuronal connectivity in the prefrontal cortex (PFC), around the third postnatal week, a critical period for cortical maturation. 5-Hydroxytryptophan (5-HTP), the product of tryptophan hydroxylation, is known to be a better treatment to increase brain 5-HT levels. In this study we investigated the role of 5-HT during the early postnatal period in cognitive disturbances and in cortical dendritic alterations of PKU subjects by restoring temporarily (postnatal days 14–21) physiological brain levels of 5-HT in ENU2 through 5-HTP treatment. In adult ENU2 mice early 5-HTP treatment reverses cognitive deficits in spatial and object recognition tests accompanied by an increase in spine maturation of pyramidal neurons in layer V of the prelimbic/infralimbic area of the PFC, although locomotor deficits are not recovered by treatment. Taken together, our results support the hypothesis that mental retardation in PKU depends on reduced availability of brain 5-HT during critical developmental periods that interferes with cortical maturation and point to 5-HTP supplementation as a highly promising additional tool to heal PKU patients. PMID:21040618

  14. 13 CFR 120.452 - What are the requirements of PLP loan processing?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What are the requirements of PLP loan processing? 120.452 Section 120.452 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Lenders Preferred Lenders Program (plp) § 120.452 What are the requirements of PLP loan processing? (a) Subparts A and B of this...

  15. Lactoferrin Promotes Early Neurodevelopment and Cognition in Postnatal Piglets by Upregulating the BDNF Signaling Pathway and Polysialylation.

    PubMed

    Chen, Yue; Zheng, Zhiqiang; Zhu, Xi; Shi, Yujie; Tian, Dandan; Zhao, Fengjuan; Liu, Ni; Hüppi, Petra S; Troy, Frederic A; Wang, Bing

    2015-08-01

    Lactoferrin (Lf) is a sialic acid (Sia)-rich, iron-binding milk glycoprotein that has multifunctional health benefits. Its potential role in neurodevelopment and cognition remains unknown. To test the hypothesis that Lf may function to improve neurodevelopment and cognition, the diet of postnatal piglets was supplemented with Lf from days 3 to 38. Expression levels of selected genes and their cognate protein profiles were quantitatively determined. The importance of our new findings is that Lf (1) upregulated several canonical signaling pathways associated with neurodevelopment and cognition; (2) influenced ~10 genes involved in the brain-derived neurotrophin factor (BDNF) signaling pathway in the hippocampus and upregulated the expression of polysialic acid, a marker of neuroplasticity, cell migration and differentiation of progenitor cells, and the growth and targeting of axons; (3) upregulated transcriptional and translational levels of BDNF and increased phosphorylation of the cyclic adenosine monophosphate (cAMP) response element-binding protein, CREB, a downstream target of the BDNF signaling pathway, and a protein of crucial importance in neurodevelopment and cognition; and (4) enhanced the cognitive function and learning of piglets when tested in an eight-arm radial maze. The finding that Lf can improve neural development and cognition in postnatal piglets has not been previously described. PMID:25146846

  16. Developmentally dictated expression of heat shock factors: exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter.

    PubMed

    Somasundaram, T; Bhat, Suraj P

    2004-10-22

    The molecular cascade of stress response in higher eukaryotes commences in the cytoplasm with the trimerization of the heat shock factor 1 (HSF1), followed by its transport to the nucleus, where it binds to the heat shock element leading to the activation of transcription from the down-stream gene(s). This well-established paradigm has been mostly studied in cultured cells. The developmental and tissue-specific control of the heat shock transcription factors (HSFs) and their interactions with heat shock promoters remain unexplored. We report here that in the rat lens, among the three mammalian HSFs, expression of HSF1 and HSF2 is largely fetal, whereas the expression of HSF4 is predominantly postnatal. Similar pattern of expression of HSF1 and HSF4 is seen in fetal and adult human lenses. This stage-specific inverse relationship between the expression of HSF1/2 and HSF4 suggests tissue-specific management of stress depending on the presence or absence of specific HSF(s). In addition to real-time PCR and immunoblotting, gel mobility shift assays, coupled with specific antibodies and HSE probes, derived from three different heat shock promoters, establish that there is no HSF1 or HSF2 binding activity in the postnatal lens nuclear extracts. Using this unique, developmentally modulated in vivo system, we demonstrate 1) specific patterns of HSF4 binding to heat shock elements derived from alphaB-crystallin, Hsp70, and Hsp82 promoters and 2) that it is HSF4 and not HSF1 or HSF2 that interacts with the canonical heat shock element of the alphaB-crystallin gene. PMID:15308659

  17. Rac1-mediated indentation of resting neurons promotes the chain migration of new neurons in the rostral migratory stream of post-natal mouse brain.

    PubMed

    Hikita, Takao; Ohno, Akihisa; Sawada, Masato; Ota, Haruko; Sawamoto, Kazunobu

    2014-03-01

    New neurons generated in the ventricular-subventricular zone in the post-natal brain travel toward the olfactory bulb by using a collective cell migration process called 'chain migration.' These new neurons show a saltatory movement of their soma, suggesting that each neuron cycles through periods of 'rest' during migration. Here, we investigated the role of the resting neurons in chain migration using post-natal mouse brain, and found that they undergo a dynamic morphological change, in which a deep indentation forms in the cell body. Inhibition of Rac1 activity resulted in less indentation of the new neurons in vivo. Live cell imaging using a Förster resonance energy transfer biosensor revealed that Rac1 was activated at the sites of contact between actively migrating and resting new neurons. On the cell surface of resting neurons, Rac1 activation coincided with the formation of the indentation. Furthermore, Rac1 knockdown prevented the indentation from forming and impaired migration along the resting neurons. These results suggest that Rac1 regulates a morphological change in the resting neurons, which allows them to serve as a migratory scaffold, and thereby non-cell-autonomously promotes chain migration. PMID:24188721

  18. [The Research Advances of the Pathomechanism of Phantom Limb Pain (PLP)].

    PubMed

    Jin, Qing-Qing; Tang, Dan-Dan; Peng, Wei-Wei; Hu, Li

    2015-10-01

    Phantom limb pain (PLP) is a hallucination that the patient feels the existence off the limb after its loss and experiences somewhat pain of the missing limb. Such a pain normally appears in the distal end of the missing limb. Currently, the pathomechanism of PLP is still unclear, and the clinical research of PLP mainly relies on the subjective report of the patients and the psychophysical measurements. In this paper, we discuss extensively the pathomechanism of PLP, and summarize comprehensively the advanced methods for studying the pathomechanism of PLP. In short, the paper could deepen our understanding of the pathomechanism of PLP, and could serve as an effective instruction basis for researchers and doctors to diagnose and treat the PLP. PMID:26904856

  19. Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function

    PubMed Central

    Lerit, Dorothy A.; Jordan, Holly A.; Poulton, John S.; Fagerstrom, Carey J.; Galletta, Brian J.; Peifer, Mark

    2015-01-01

    Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle–dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability. PMID:26150390

  20. Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function.

    PubMed

    Lerit, Dorothy A; Jordan, Holly A; Poulton, John S; Fagerstrom, Carey J; Galletta, Brian J; Peifer, Mark; Rusan, Nasser M

    2015-07-01

    Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle-dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability. PMID:26150390

  1. Maternal dietary loads of α-tocopherol depress protein kinase C signaling and synaptic plasticity in rat postnatal developing hippocampus and promote permanent deficits in adult offspring.

    PubMed

    Betti, Michele; Ambrogini, Patrizia; Minelli, Andrea; Floridi, Alessandro; Lattanzi, Davide; Ciuffoli, Stefano; Bucherelli, Corrado; Prospero, Emilia; Frontini, Andrea; Santarelli, Lory; Baldi, Elisabetta; Benetti, Fernando; Galli, Francesco; Cuppini, Riccardo

    2011-01-01

    Vitamin E (α-tocopherol) supplementation has been tested as prophylaxis against gestational disorders associated with oxidative damage. However, recent evidence showing that high maternal α-tocopherol intake can adversely affect offspring development raises concerns on the safety of vitamin E extradosages during pregnancy. Besides acting as an antioxidant, α-tocopherol depresses cell proliferation and modulates cell signaling through inhibiting protein kinase C (PKC), a kinase that is deeply involved in neural maturation and plasticity. Possible effects of α-tocopherol loads in the maturing brain, where PKC dysregulation is associated to developmental dysfunctions, are poorly known. Here, supranutritional doses of α-tocopherol were fed to pregnant and lactating dams to evaluate the effects on PKC signaling and morphofunctional maturation in offspring hippocampus. Results showed that maternal supplementation potentiates hippocampal α-tocopherol incorporation in offspring and leads to marked decrease of PKC phosphorylation throughout postnatal maturation, accompanied by reduced phosphorylation of growth-associated protein-43 and myristoylated alanine-rich C kinase substrate, two PKC substrates involved in neural development and plasticity. Although processes of neuronal maturation, synapse formation and targeting appeared unaffected, offspring of supplemented mothers displayed a marked reduction of long-term synaptic plasticity in juvenile hippocampus. Interestingly, this impairment persisted in adulthood, when a deficit in hippocampus-dependent, long-lasting spatial memory was also revealed. In conclusion, maternal supplementation with elevated doses of α-tocopherol can influence cell signaling and synaptic plasticity in developing hippocampus and promotes permanent adverse effects in adult offspring. The present results emphasize the need to evaluate the safety of supranutritional maternal intake of α-tocopherol in humans. PMID:20382010

  2. Further genotype-phenotype correlation emerging from two families with PLP1 exon 4 skipping.

    PubMed

    Biancheri, Roberta; Grossi, Serena; Regis, Stefano; Rossi, Andrea; Corsolini, Fabio; Rossi, Daniela Paola; Cavalli, Pietro; Severino, Mariasavina; Filocamo, Mirella

    2014-03-01

    Proteolipid protein 1 (PLP1) gene-related disorders due to mutations in the PLP1 include a wide spectrum of X-linked disorders ranging from severe connatal Pelizaeus-Merzbacher disease (PMD) to spastic paraplegia 2 (SPG2). Duplications, deletions or point mutations in coding and noncoding regions of the PLP1 gene may occur. We report the clinical, neuroradiologic and molecular findings in six patients from two unrelated families. The affected males showed severe mental retardation, spastic tetraparesis, inability of walking and pes cavus at onset in early infancy. Brain magnetic resonance imaging (MRI) showed hypomyelination and brain atrophy. Nystagmus was never observed. The affected females showed adult-onset progressive spastic paraparesis leading to wheel-chair dependency and subtle white matter changes on brain MRI. Molecular studies in the two families identified two different intronic mutations, the novel c.622+2T>C and the known c.622+1G>A, leading to the skipping of PLP1-exon 4. The clinical presentation of the affected males did not consistently fit in any of the PLP1-related disorder subtypes (i.e., connatal or classic PMD, SPG2 and 'PLP1 null syndrome'), and in addition, the carrier females were symptomatic despite the severe clinical picture of their respective probands. This study provides new insight into the genotype-phenotype correlations of patients with PLP1 splice-site mutations. PMID:23711321

  3. Loss of MiR-664 Expression Enhances Cutaneous Malignant Melanoma Proliferation by Upregulating PLP2

    PubMed Central

    Ding, Zhenhua; Jian, Sun; Peng, Xuebiao; Liu, Yimin; Wang, Jianyu; Zheng, Li; Ou, Chengshan; Wang, Yinghui; Zeng, Weixia; Zhou, Meijuan

    2015-01-01

    Abstract Proteolipid protein 2 (PLP2) has been shown to be upregulated in several cancers, including breast cancer, hepatocellular carcinoma, osteosarcoma, and melanoma. PLP2 specifically binds to phosphatidylinositol 3 kinase to activate the protein kinase B pathway to enhance cell proliferation, adhesion, and invasion in melanoma cells. Therefore, we speculated that PLP2 exhibits oncogenic potential. However, the regulatory mechanisms of PLP2 in cancer cells remain unclear. Herein, we found that microRNA (miR)-664 expression was significantly downregulated in cutaneous malignant melanoma (CMM) cells and tissues compared with normal human melanocytes and benign melanocytic naevi. MiR-664 expression level was significantly correlated with patient survival. Ectopic expression of miR-664 reduced CMM cell proliferation and anchorage-independent growth, whereas the inhibition of miR-664 induced these effects. Furthermore, inhibition of miR-664 in CMM cells resulted in modulation of their entry into the G1/S transitional phase, which was caused by downregulation of the cyclin-dependent kinase inhibitor P21 and upregulation of the cell-cycle regulator cyclin D1. Moreover, we demonstrated that miR-664 downregulated PLP2 expression by directly targeting the PLP2 untranslated region. Taken together, our results suggest that miR-664 may play an important role in suppressing proliferation of CMM cells and present a novel mechanism of miR-mediated direct suppression of PLP2 expression in cancer cells. PMID:26287415

  4. Interaction of PLP with GFP-MAL2 in the human oligodendroglial cell line HOG.

    PubMed

    Bello-Morales, Raquel; Pérez-Hernández, Marta; Rejas, María Teresa; Matesanz, Fuencisla; Alcina, Antonio; López-Guerrero, José Antonio

    2011-01-01

    The velocity of the nerve impulse conduction of vertebrates relies on the myelin sheath, an electrically insulating layer that surrounds axons in both the central and peripheral nervous systems, enabling saltatory conduction of the action potential. Oligodendrocytes are the myelin-producing glial cells in the central nervous system. A deeper understanding of the molecular basis of myelination and, specifically, of the transport of myelin proteins, will contribute to the search of the aetiology of many dysmyelinating and demyelinating diseases, including multiple sclerosis. Recent investigations suggest that proteolipid protein (PLP), the major myelin protein, could reach myelin sheath by an indirect transport pathway, that is, a transcytotic route via the plasma membrane of the cell body. If PLP transport relies on a transcytotic process, it is reasonable to consider that this myelin protein could be associated with MAL2, a raft protein essential for transcytosis. In this study, carried out with the human oligodendrocytic cell line HOG, we show that PLP colocalized with green fluorescent protein (GFP)-MAL2 after internalization from the plasma membrane. In addition, both immunoprecipitation and immunofluorescence assays, indicated the existence of an interaction between GFP-MAL2 and PLP. Finally, ultrastructural studies demonstrated colocalization of GFP-MAL2 and PLP in vesicles and tubulovesicular structures. Taken together, these results prove for the first time the interaction of PLP and MAL2 in oligodendrocytic cells, supporting the transcytotic model of PLP transport previously suggested. PMID:21573057

  5. Involvement of Peripheral Nerves in the Transgenic PLP-α-Syn Model of Multiple System Atrophy: Extending the Phenotype

    PubMed Central

    Kuzdas-Wood, Daniela; Irschick, Regina; Theurl, Markus; Malsch, Philipp; Mair, Norbert; Mantinger, Christine; Wanschitz, Julia; Klimaschewski, Lars; Poewe, Werner; Stefanova, Nadia; Wenning, Gregor K.

    2015-01-01

    Multiple system atrophy (MSA) is a fatal, rapidly progressive neurodegenerative disease with (oligodendro-)glial cytoplasmic α-synuclein (α-syn) inclusions (GCIs). Peripheral neuropathies have been reported in up to 40% of MSA patients, the cause remaining unclear. In a transgenic MSA mouse model featuring GCI-like inclusion pathology based on PLP-promoter driven overexpression of human α-syn in oligodendroglia motor and non-motor deficits are associated with MSA-like neurodegeneration. Since α-syn is also expressed in Schwann cells we aimed to investigate whether peripheral nerves are anatomically and functionally affected in the PLP-α-syn MSA mouse model. Results To this end, heat/cold as well as mechanical sensitivity tests were performed. Furthermore, in vivo and ex vivo nerve conduction and the G-ratios of the sciatic nerve were analyzed, and thermosensitive ion channel mRNA expression in dorsal root ganglia (DRG) was assessed. The presence of human α-syn in Schwann cells was associated with subtle behavioral impairments. The G-ratio of the sciatic nerve, the conduction velocity of myelinated and unmyelinated primary afferents and the expression of thermosensitive ion channels in the sensory neurons, however, were similar to wildtype mice. Conclusion Our results suggest that the PNS appears to be affected by Schwann cell α-syn deposits in the PLP-α-syn MSA mouse model. However, there was no consistent evidence for functional PNS perturbations resulting from such α-syn aggregates suggesting a more central cause of the observed behavioral abnormalities. Nonetheless, our results do not exclude a causal role of α-syn in the pathogenesis of MSA associated peripheral neuropathy. PMID:26496712

  6. The PLP cofactor: Lessons from studies on model reactions

    PubMed Central

    Richard, John P.; Amyes, Tina L.; Crugeiras, Juan; Rios, Ana

    2012-01-01

    Experimental probes of the acidity of weak carbon acids have been developed and used to determine the carbon acid pKas of glycine, glycine derivatives and iminium ion adducts of glycine to the carbonyl group, including 5′-deoxypyridoxal (DPL). The high reactivity of the DPL-stabilized glycyl carbanion towards nucleophilic addition to both DPL and the glycine-DPL iminium ion favors the formation of Claisen condensation products at enzyme active sites. The formation of the iminium ion between glycine and DPL is accompanied by a 12-unit decrease in the pKa of 29 for glycine. The complicated effects of formation of glycine iminium ions to DPL and other aromatic and aliphatic aldehydes and ketones on carbon acid pKa are discussed. These data provide insight into the contribution of the individual pyridine ring substituents to the catalytic efficiency of DPL It is suggested that the 5′-phosphodianion group of PLP may play an important role in enzymatic catalysis of carbon deprotonation by providing up to 12 kcal/mol of binding energy that is utilized to stabilize the transition state for the enzymatic reaction. PMID:21182991

  7. MAL Is a Regulator of the Recruitment of Myelin Protein PLP to Membrane Microdomains

    PubMed Central

    Bijlard, Marjolein; de Jonge, Jenny C.; Klunder, Bert; Nomden, Anita; Hoekstra, Dick; Baron, Wia

    2016-01-01

    In oligodendrocytes (OLGs), an indirect, transcytotic pathway is mediating transport of de novo synthesized PLP, a major myelin specific protein, from the apical-like plasma membrane to the specialized basolateral-like myelin membrane to prevent its premature compaction. MAL is a well-known regulator of polarized trafficking in epithelial cells, and given its presence in OLGs it was therefore of interest to investigate whether MAL played a similar role in PLP transport in OLGs, taking into account its timely expression in these cells. Our data revealed that premature expression of mCherry-MAL in oligodendrocyte progenitor cells interfered with terminal OLG differentiation, although myelin membrane formation per se was not impaired. In fact, also PLP transport to myelin membranes via the cell body plasma membrane was unaffected. However, the typical shift of PLP from TX-100-insoluble membrane domains to CHAPS-resistant, but TX-100-soluble membrane domains, seen in the absence of MAL expression, is substantially reduced upon expression of the MAL protein. Interestingly, not only in vitro, but also in developing brain a strongly diminished shift from TX-100 resistant to TX-100 soluble domains was observed. Consistently, the MAL-expression mediated annihilation of the typical membrane microdomain shift of PLP is also reflected by a loss of the characteristic surface expression profile of conformation-sensitive anti-PLP antibodies. Hence, these findings suggest that MAL is not involved in vesicular PLP trafficking to either the plasma membrane and/or the myelin membrane as such. Rather, we propose that MAL may regulate PLP’s distribution into distinct membrane microdomains that allow for lateral diffusion of PLP, directly from the plasma membrane to the myelin membrane once the myelin sheath has been assembled. PMID:27171274

  8. Identification and co-localization of perforin-like (TgPLP1) protein in Toxoplasma gondii bradyzoites.

    PubMed

    Shan, Dan; Qian, Weifeng; Liu, Jing; Liu, Renqiang; Liu, Qun

    2015-06-01

    For the first time, we show here that perforin-like (TgPLP1) is expressed in bradyzoites of Toxoplasma gondii. An immunofluorescence assay (IFA) and immunohistochemistry (IHC) revealed that TgPLP1 is expressed in T. gondii-encysted and in vitro-induced bradyzoites, TgPLP1 is distributed in micronemes in a manner similar to its distribution in tachyzoites. To shed light on the function of TgPLP1 in bradyzoites, quantitative PCR revealed that the expression level of TgPLP1 gene decreased over time during differentiation into bradyzoites in vitro. This finding suggests that TgPLP1 may play a role in the rupture of tissue cysts or the maintenance of cyst structure, although the exact function of this gene in the bradyzoites is still unknown. PMID:25746893

  9. Control of human PLP1 expression through transcriptional regulatory elements and alternatively spliced exons in intron 1.

    PubMed

    Hamdan, Hamdan; Kockara, Neriman T; Jolly, Lee Ann; Haun, Shirley; Wight, Patricia A

    2015-01-01

    Although the myelin proteolipid protein gene (PLP1) encodes the most abundant protein in central nervous system (CNS) myelin, not much is known about the mechanisms that govern expression of the human gene (hPLP1). Much more is known about the processes that regulate Plp1 gene expression in rodents. From studies with Plp1-lacZ transgenic mice, it was determined that the first intron of mouse Plp1 (mPlp1) is required to attain high levels of expression in brain, concurrent with the active myelination period. Other studies have suggested that within mPlp1 intron 1 (>8 kb) lie several regions with enhancer-like activity. To test whether these sequences (and possibly others) in hPLP1 intron 1 are functional, deletion-transfection analysis was performed with hPLP1-lacZ constructs that contain various portions of the intron, or lack it altogether. Results presented here demonstrate the importance of hPLP1 intron 1 in achieving maximal levels of expression in the immortalized oligodendroglial cell line, Oli-neu. Deletion analysis indicates that the intron contains multiple positive regulatory elements which are active in Oli-neu cells. Some of these elements appear to be functionally conserved between human and mouse, while others are not. Furthermore, our studies demonstrate that multiple splice variants can be formed due to inclusion of extra (supplementary) exons from what is classically thought of as hPLP1 intron 1. Thus, splicing of these novel exons (which are not recognized as such in mPlp1 due to lack of conserved splice sites) must utilize factors common to both human and mouse since Oli-neu cells are of mouse origin. PMID:25694552

  10. Comparative wavelet, PLP, and LPC speech recognition techniques on the Hindi speech digits database

    NASA Astrophysics Data System (ADS)

    Mishra, A. N.; Shrotriya, M. C.; Sharan, S. N.

    2010-02-01

    In view of the growing use of automatic speech recognition in the modern society, we study various alternative representations of the speech signal that have the potential to contribute to the improvement of the recognition performance. In this paper wavelet based features using different wavelets are used for Hindi digits recognition. The recognition performance of these features has been compared with Linear Prediction Coefficients (LPC) and Perceptual Linear Prediction (PLP) features. All features have been tested using Hidden Markov Model (HMM) based classifier for speaker independent Hindi digits recognition. The recognition performance of PLP features is11.3% better than LPC features. The recognition performance with db10 features has shown a further improvement of 12.55% over PLP features. The recognition performance with db10 is best among all wavelet based features.

  11. Late postnatal development of intrinsic and synaptic properties promotes fast and precise signaling in the dorsal nucleus of the lateral lemniscus.

    PubMed

    Ammer, J J; Grothe, B; Felmy, F

    2012-02-01

    The dorsal nucleus of the lateral lemniscus (DNLL) is an auditory brain stem structure that generates a long-lasting GABAergic output, which is important for binaural processing. Despite its importance in binaural processing, little is known about the cellular physiology and the synaptic input kinetics of DNLL neurons. To assess the relevant physiological parameters of DNLL neurons, their late postnatal developmental profile was analyzed in acute brain slices of 9- to 26-day-old Mongolian gerbils. The observed developmental changes in passive membrane and action potential (AP) properties all point toward an improvement of fast and precise signal integration in these neurons. Accordingly, synaptic glutamatergic and GABAergic current kinetics accelerate with age. The changes in intrinsic and synaptic properties contribute nearly equally to reduce the latency and jitter in AP generation and thus enhance the temporal precision of DNLL neurons. Furthermore, the size of the synaptic NMDA current is developmentally downregulated. Despite this developmental reduction, DNLL neurons display an NMDA-dependent postsynaptic amplification of AP generation, known to support high firing rates, throughout this developmental period. Taken together, our findings indicate that during late postnatal development DNLL neurons are optimized for high firing rates with high temporal precision. PMID:22131371

  12. The Major Myelin-Resident Protein PLP Is Transported to Myelin Membranes via a Transcytotic Mechanism: Involvement of Sulfatide

    PubMed Central

    Ozgen, Hande; Klunder, Bert; de Jonge, Jenny C.; Nomden, Anita; Plat, Annechien; Trifilieff, Elisabeth; de Vries, Hans; Hoekstra, Dick

    2014-01-01

    Myelin membranes are sheet-like extensions of oligodendrocytes that can be considered membrane domains distinct from the cell's plasma membrane. Consistent with the polarized nature of oligodendrocytes, we demonstrate that transcytotic transport of the major myelin-resident protein proteolipid protein (PLP) is a key element in the mechanism of myelin assembly. Upon biosynthesis, PLP traffics to myelin membranes via syntaxin 3-mediated docking at the apical-surface-like cell body plasma membrane, which is followed by subsequent internalization and transport to the basolateral-surface-like myelin sheet. Pulse-chase experiments, in conjunction with surface biotinylation and organelle fractionation, reveal that following biosynthesis, PLP is transported to the cell body surface in Triton X-100 (TX-100)-resistant microdomains. At the plasma membrane, PLP transiently resides within these microdomains and its lateral dissipation is followed by segregation into 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS)-resistant domains, internalization, and subsequent transport toward the myelin membrane. Sulfatide triggers PLP's reallocation from TX-100- into CHAPS-resistant membrane domains, while inhibition of sulfatide biosynthesis inhibits transcytotic PLP transport. Taking these findings together, we propose a model in which PLP transport to the myelin membrane proceeds via a transcytotic mechanism mediated by sulfatide and characterized by a conformational alteration and dynamic, i.e., transient, partitioning of PLP into distinct membrane microdomains involved in biosynthetic and transcytotic transport. PMID:25368380

  13. Liposomal prednisolone promotes macrophage lipotoxicity in experimental atherosclerosis.

    PubMed

    van der Valk, Fleur M; Schulte, Dominik M; Meiler, Svenja; Tang, Jun; Zheng, Kang He; Van den Bossche, Jan; Seijkens, Tom; Laudes, Matthias; de Winther, Menno; Lutgens, Esther; Alaarg, Amr; Metselaar, Josbert M; Dallinga-Thie, Geesje M; Mulder, Willem J M; Stroes, Erik S G; Hamers, Anouk A J

    2016-08-01

    Atherosclerosis is a lipid-driven inflammatory disease, for which nanomedicinal interventions are under evaluation. Previously, we showed that liposomal nanoparticles loaded with prednisolone (LN-PLP) accumulated in plaque macrophages, however, induced proatherogenic effects in patients. Here, we confirmed in low-density lipoprotein receptor knockout (LDLr(-/-)) mice that LN-PLP accumulates in plaque macrophages. Next, we found that LN-PLP infusions at 10mg/kg for 2weeks enhanced monocyte recruitment to plaques. In follow up, after 6weeks of LN-PLP exposure we observed (i) increased macrophage content, (ii) more advanced plaque stages, and (iii) larger necrotic core sizes. Finally, in vitro studies showed that macrophages become lipotoxic after LN-PLP exposure, exemplified by enhanced lipid loading, ER stress and apoptosis. These findings indicate that liposomal prednisolone may paradoxically accelerate atherosclerosis by promoting macrophage lipotoxicity. Hence, future (nanomedicinal) drug development studies are challenged by the multifactorial nature of atherosclerotic inflammation. PMID:27015770

  14. Parents and Teachers Working Together To Support Third Grade Achievement: Parents as Learning Partners (PLP) Findings.

    ERIC Educational Resources Information Center

    Quigley, Denise D.

    On the assumption that students are more successful if their parents participate at school and encourage education and learning at home, the Los Angeles Metropolitan Project granted funds to 29 Los Angeles schools for the Parents as Learning Partners (PLP) Project. This initiative focuses on three primary areas in which parents and teachers can…

  15. Crystal structures capture three states in the catalytic cycle of a pyridoxal phosphate (PLP) synthase.

    PubMed

    Smith, Amber Marie; Brown, William Clay; Harms, Etti; Smith, Janet L

    2015-02-27

    PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5'-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate. PMID:25568319

  16. Molecular characterization and structural instability of the industrially important composite metabolic plasmid pLP712.

    PubMed

    Wegmann, Udo; Overweg, Karin; Jeanson, Sophie; Gasson, Mike; Shearman, Claire

    2012-12-01

    The widely used plasmid-free Lactococcus lactis strain MG1363 was derived from the industrial dairy starter strain NCDO712. This strain carries a 55.39 kb plasmid encoding genes for lactose catabolism and a serine proteinase involved in casein degradation. We report the DNA sequencing and annotation of pLP712, which revealed additional metabolic genes, including peptidase F, d-lactate dehydrogenase and α-keto acid dehydrogenase (E3 complex). Comparison of pLP712 with other large lactococcal lactose and/or proteinase plasmids from L. lactis subsp. cremoris SK11 (pSK11L, pSK11P) and the plant strain L. lactis NCDO1867 (pGdh442) revealed their close relationship. The plasmid appears to have evolved through a series of genetic events as a composite of pGdh442, pSK11L and pSK11P. We describe in detail a scenario by which the metabolic genes relevant to the growth of its host in a milk environment have been unified on one replicon, reflecting the evolution of L. lactis as it changed its biological niche from plants to dairy environments. The extensive structural instability of pLP712 allows easy isolation of derivative plasmids lacking genes for casein degradation and/or lactose catabolism. Plasmid pLP712 is transferable by transduction and conjugation, and both of these processes result in significant molecular rearrangements. We report the detailed molecular analysis of insertion sequence element-mediated genetic rearrangements within pLP712 and several different mechanisms, including homologous recombination and adjacent deletion. Analysis of the integration of the lactose operon into the chromosome highlights the fluidity of the MG1363 integration hotspot and the potential for frequent movement of genes between plasmids and chromosomes in Lactococcus. PMID:23023974

  17. The Drosophila Pericentrin-like-protein (PLP) cooperates with Cnn to maintain the integrity of the outer PCM

    PubMed Central

    Richens, Jennifer H.; Barros, Teresa P.; Lucas, Eliana P.; Peel, Nina; Pinto, David Miguel Susano; Wainman, Alan; Raff, Jordan W.

    2015-01-01

    ABSTRACT Centrosomes comprise a pair of centrioles surrounded by a matrix of pericentriolar material (PCM). In vertebrate cells, Pericentrin plays an important part in mitotic PCM assembly, but the Drosophila Pericentrin-like protein (PLP) appears to have a more minor role in mitotic fly cells. Here we investigate the function of PLP during the rapid mitotic cycles of the early Drosophila embryo. Unexpectedly, we find that PLP is specifically enriched in the outer-most regions of the PCM, where it largely co-localizes with the PCM scaffold protein Cnn. In the absence of PLP the outer PCM appears to be structurally weakened, and it rapidly disperses along the centrosomal microtubules (MTs). As a result, centrosomal MTs are subtly disorganized in embryos lacking PLP, although mitosis is largely unperturbed and these embryos develop and hatch at near-normal rates. Y2H analysis reveals that PLP can potentially form multiple interactions with itself and with the PCM recruiting proteins Asl, Spd-2 and Cnn. A deletion analysis suggests that PLP participates in a complex network of interactions that ultimately help to strengthen the PCM. PMID:26157019

  18. The Drosophila Pericentrin-like-protein (PLP) cooperates with Cnn to maintain the integrity of the outer PCM.

    PubMed

    Richens, Jennifer H; Barros, Teresa P; Lucas, Eliana P; Peel, Nina; Pinto, David Miguel Susano; Wainman, Alan; Raff, Jordan W

    2015-01-01

    Centrosomes comprise a pair of centrioles surrounded by a matrix of pericentriolar material (PCM). In vertebrate cells, Pericentrin plays an important part in mitotic PCM assembly, but the Drosophila Pericentrin-like protein (PLP) appears to have a more minor role in mitotic fly cells. Here we investigate the function of PLP during the rapid mitotic cycles of the early Drosophila embryo. Unexpectedly, we find that PLP is specifically enriched in the outer-most regions of the PCM, where it largely co-localizes with the PCM scaffold protein Cnn. In the absence of PLP the outer PCM appears to be structurally weakened, and it rapidly disperses along the centrosomal microtubules (MTs). As a result, centrosomal MTs are subtly disorganized in embryos lacking PLP, although mitosis is largely unperturbed and these embryos develop and hatch at near-normal rates. Y2H analysis reveals that PLP can potentially form multiple interactions with itself and with the PCM recruiting proteins Asl, Spd-2 and Cnn. A deletion analysis suggests that PLP participates in a complex network of interactions that ultimately help to strengthen the PCM. PMID:26157019

  19. Myelin proteolipid protein (PLP) as a marker antigen of central nervous system contaminations for routine food control.

    PubMed

    Villmann, Carmen; Sandmeier, Barbara; Seeber, Silke; Hannappel, Ewald; Pischetsrieder, Monika; Becker, Cord-Michael

    2007-08-22

    Spreading transmissible spongiform encephalopathies (TSE) have been widely attributed to transmission by ingestion of mammalian central nervous system (CNS) tissue. Reliable exclusion of this epidemiological important route of transmission relies on an effective surveillance of food contamination. Here, myelin proteolipid protein (PLP) is identified as a specific and largely heat-resistant marker for detection of food contaminations by CNS tissue. PLP is a component of oligodendritic glial sheaths of neuronal processes that is specifically expressed in the CNS. A highly selective polyclonal antibody was developed directed against an epitope present in the full-length PLP protein, but absent from the developmentally regulated splice variant DM-20. In combination with a hydrophobic extraction of PLP from tissue samples, the antibody reliably detected PLP from spinal cord, cerebellum, and cortex of different mammalian species. Consistent with earlier reports on PLP expression, no cross-reactivity was observed with peripheral nerve or extraneural tissue, except for a very faint signal obtained with heart. When applied to an artificial CNS contamination present in sausages, the antibody reliably detected a low concentration (1%) of the contaminant. Application of heat, as used during conventional sausage manufacturing, led to a predominant alteration of arginine residues in the PLP protein and a partial loss of immunoreactivity. In contrast, a stretch of hydrophilic amino acids(112-122) proved to be heat-resistant, preserving the immunogenicity of this PLP epitope during heating. Taken together, the excellent CNS specificity of PLP immunodetection and the presence of a heat-resistant epitope have permitted the development of a highly sensitive immunoassay for CNS contamination in routine food control. PMID:17629299

  20. Differences in PLP-Dependent Cysteinyl Processing Lead to Diverse S-Functionalization of Lincosamide Antibiotics.

    PubMed

    Wang, Min; Zhao, Qunfei; Zhang, Qinglin; Liu, Wen

    2016-05-25

    Pyridoxal-5'-phosphate (PLP)-dependent proteins constitute one of the largest and most important families of enzymes in living organisms. These proteins participate in numerous biochemical processes, many of which have not been characterized, and transform substrates containing an amino group through various reactions that share aldimine as a common intermediate. Herein, we report that the PLP-dependent enzymes CcbF and LmbF, which are highly related in phylogenesis, process cysteine S-conjugated intermediates in different ways and associate with individual downstream enzyme(s) toward distinct S-functionalization of the lincosamide antibiotics celesticetin and lincomycin A. CcbF catalyzes an unusual conversion that involves decarboxylation-coupled oxidative deamination of the cysteinyl group during the formation of a two-carbon alcohol linker, whereas LmbF is responsible for β-elimination, followed by S-methylation to produce a methylmercapto group. The two tailoring routes are variable and exchangeable with each other, allowing for in vitro combinatorial biosynthesis of a number of hybrid lincosamide antibiotics, including the natural product Bu-2545. These findings demonstrate the wide diversity of PLP chemistry in enzymatic catalysis and its promising applicability in creation of new molecules. PMID:27171737

  1. Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder.

    PubMed

    Hudson, L D; Puckett, C; Berndt, J; Chan, J; Gencic, S

    1989-10-01

    Myelin is a highly specialized membrane unique to the nervous system that ensheaths axons to permit the rapid saltatory conduction of impulses. The elaboration of a compact myelin sheath is disrupted in a diverse spectrum of human disorders, many of which are of unknown etiology. The X chromosome-linked human disorder Pelizaeus-Merzbacher disease is a clinically and pathologically heterogeneous group of disorders that demonstrate a striking failure of oligodendrocyte differentiation. This disease appears pathologically and genetically to be similar to the disorder seen in the dysmyelinating mouse mutant jimpy, which has a point mutation in the gene encoding an abundant myelin protein, proteolipid protein (PLP). We report that the molecular defect in one Pelizaeus-Merzbacher family is likewise a point mutation in the PLP gene. A single T----C transition results in the substitution of a charged amino acid residue, arginine, for tryptophan in one of the four extremely hydrophobic domains of the PLP protein. The identification of a mutation in this Pelizaeus-Merzbacher family should facilitate the molecular classification and diagnosis of these X chromosome-linked human dysmyelinating disorders. PMID:2479017

  2. Paracoccidioides lutzii Plp43 Is an Active Glucanase with Partial Antigenic Identity with P. brasiliensis gp43

    PubMed Central

    Leitão, Natanael P.; Vallejo, Milene C.; Conceição, Palloma M.; Camargo, Zoilo P.; Hahn, Rosane; Puccia, Rosana

    2014-01-01

    Background Paracoccidioides brasiliensis and P. lutzii cause paracoccidioidomycosis (PCM). P. brasiliensis main diagnostic antigen is glycoprotein gp43, and its peptide sequence is 81% identical with a P. lutzii ortholog here called Plp43. P. lutzii (“Pb01-like”) apparently predominates in Midwestern/Northern Brazil, where high percentages of false-negative reactions using P. brasiliensis antigens have recently been reported. The aim of this work was to produce recombinant Plp43 to study its antigenic identity with gp43. Methodology We expressed rPlp43 as a secreted major component in Pichia pastoris and studied its reactivity in immunoblot with PCM patients' sera from Southwestern and Midwestern Brazil. Principal Findings We showed that rPlp43 is not glycosylated and bears glucanase activity. The protein did not react with anti-gp43 monoclonal antibodies in immunoblot, suggesting absence of the corresponding gp43 epitopes. Nevertheless, common epitope(s) might exist, considering that gp43-positive PCM sera recognized rPlp43 in immunoblot, while gp43-negative sera (33 out of 51) from patients resident in Midwestern Brazil were also rPlp43-negative. Two genotyped P. lutzii were from patients with gp43-negative sera, suggesting that non-reactive sera are from patients infected with this species. Conclusion Our data suggest that gp43 and Plp43 bear one or only a few common epitopes and that gp43 cannot be used in diagnosis of PCM patients infected with P. lutzii probably because Plp43 is poorly expressed during infection. PMID:25166744

  3. Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries.

    PubMed

    Park, Eun-Sil; Tilly, Jonathan L

    2015-01-01

    Several laboratories have independently isolated mitotically active germ cells, termed female germline stem cells or oogonial stem cells (OSCs), from adult mouse ovaries. However, a recent study using Ddx4-Cre;Rosa26 reporter mice concluded that such germ cells do not exist. Given the disparity in conclusions drawn in this study compared with others, we felt it was important to re-assess the utility of Ddx4-Cre;Rosa26 reporter mice for identification of OSCs in adult mouse ovaries. Transgenic Ddx4-Cre mice were crossed with Rosa26(tdTm/tdTm) mice to drive restricted tomato red (tdTm) gene expression in cells in which the Ddx4 gene promoter has been activated. Crude dispersion of ovaries from recombined offspring generated cell fractions containing tdTm-positive immature oocytes, which are incapable of proliferation and thus probably represent the uncharacterized reporter-positive ovarian cells identified in the paper Zhang et al. (2012) as being mitotically inactive. Dispersed ovaries further subjected to fluorescence-activated cell sorting yielded a large population of non-germline tdTm-positive cells, indicative of promoter 'leakiness' in the Ddx4-Cre mouse line. Nonetheless, a small percentage of these tdTm-positive cells exhibited externalized (extracellular, ec) expression of Ddx4 protein (ecDdx4-positive), expressed markers of primitive germ cells but not of oocytes, and actively proliferated in culture, all of which are characteristic features of OSCs. Thus, crude dispersion of ovaries collected from Ddx4 gene promoter-driven reporter mice is not, by itself, a reliable approach to identify OSCs, whereas the same ovarian dispersates further subjected to cell sorting strategies yield purified OSCs that can be expanded in culture. PMID:25147160

  4. Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient.

    PubMed

    Ortiz-Catalan, Max; Sander, Nichlas; Kristoffersen, Morten B; Håkansson, Bo; Brånemark, Rickard

    2014-01-01

    A variety of treatments have been historically used to alleviate phantom limb pain (PLP) with varying efficacy. Recently, virtual reality (VR) has been employed as a more sophisticated mirror therapy. Despite the advantages of VR over a conventional mirror, this approach has retained the use of the contralateral limb and is therefore restricted to unilateral amputees. Moreover, this strategy disregards the actual effort made by the patient to produce phantom motions. In this work, we investigate a treatment in which the virtual limb responds directly to myoelectric activity at the stump, while the illusion of a restored limb is enhanced through augmented reality (AR). Further, phantom motions are facilitated and encouraged through gaming. The proposed set of technologies was administered to a chronic PLP patient who has shown resistance to a variety of treatments (including mirror therapy) for 48 years. Individual and simultaneous phantom movements were predicted using myoelectric pattern recognition and were then used as input for VR and AR environments, as well as for a racing game. The sustained level of pain reported by the patient was gradually reduced to complete pain-free periods. The phantom posture initially reported as a strongly closed fist was gradually relaxed, interestingly resembling the neutral posture displayed by the virtual limb. The patient acquired the ability to freely move his phantom limb, and a telescopic effect was observed where the position of the phantom hand was restored to the anatomically correct distance. More importantly, the effect of the interventions was positively and noticeably perceived by the patient and his relatives. Despite the limitation of a single case study, the successful results of the proposed system in a patient for whom other medical and non-medical treatments have been ineffective justifies and motivates further investigation in a wider study. PMID:24616655

  5. A chimeric protein comprising the immunogenic domains of Mannheimia haemolytica leukotoxin and outer membrane protein PlpE induces antibodies against leukotoxin and PlpE.

    PubMed

    Batra, Sai Arun; Shanthalingam, Sudarvili; Donofrio, Gaetano; Srikumaran, Subramaniam

    2016-07-01

    Mannheimia haemolytica is a very important pathogen of pneumonia in ruminants. Bighorn sheep (BHS, Ovis canadensis) are highly susceptible to M. haemolytica-caused pneumonia which has significantly contributed to the drastic decline of bighorn sheep population in North America. Pneumonia outbreaks in wild BHS can cause mortality as high as 90%. Leukotoxin is the critical virulence factor of M. haemolytica. In a 'proof of concept' study, an experimental vaccine containing leukotoxin and surface antigens of M. haemolytica developed by us induced 100% protection of BHS, but required multiple booster injections. Vaccination of wild BHS is difficult. But they can be vaccinated at the time of transplantation into a new habitat. Administration of booster doses, however, is impossible. Therefore, a vaccine that does not require booster doses is necessary to immunize BHS against M. haemolytica pneumonia. Herpesviruses are ideal vectors for development of such a vaccine because of their ability to undergo latency with subsequent reactivation. As the first step towards developing a herpesvirus-vectored vaccine, we constructed a chimeric protein comprising the leukotoxin-neutralizing epitopes and the immuno-dominant epitopes of the outer membrane protein PlpE. The chimeric protein was efficiently expressed in primary BHS lung cells. The immunogenicity of the chimeric protein was evaluated in mice before inoculating BHS. Mice immunized with the chimeric protein developed antibodies against M. haemolytica leukotoxin and PlpE. More importantly, the anti-leukotoxin antibodies effectively neutralized leukotoxin-induced cytotoxicity. Taken together, these results represent the successful completion of the first step towards developing a herpesvirus-vectored vaccine for controlling M. haemolytica pneumonia in BHS, and possibly other ruminants. PMID:27269790

  6. Treatment of phantom limb pain (PLP) based on augmented reality and gaming controlled by myoelectric pattern recognition: a case study of a chronic PLP patient

    PubMed Central

    Ortiz-Catalan, Max; Sander, Nichlas; Kristoffersen, Morten B.; Håkansson, Bo; Brånemark, Rickard

    2014-01-01

    A variety of treatments have been historically used to alleviate phantom limb pain (PLP) with varying efficacy. Recently, virtual reality (VR) has been employed as a more sophisticated mirror therapy. Despite the advantages of VR over a conventional mirror, this approach has retained the use of the contralateral limb and is therefore restricted to unilateral amputees. Moreover, this strategy disregards the actual effort made by the patient to produce phantom motions. In this work, we investigate a treatment in which the virtual limb responds directly to myoelectric activity at the stump, while the illusion of a restored limb is enhanced through augmented reality (AR). Further, phantom motions are facilitated and encouraged through gaming. The proposed set of technologies was administered to a chronic PLP patient who has shown resistance to a variety of treatments (including mirror therapy) for 48 years. Individual and simultaneous phantom movements were predicted using myoelectric pattern recognition and were then used as input for VR and AR environments, as well as for a racing game. The sustained level of pain reported by the patient was gradually reduced to complete pain-free periods. The phantom posture initially reported as a strongly closed fist was gradually relaxed, interestingly resembling the neutral posture displayed by the virtual limb. The patient acquired the ability to freely move his phantom limb, and a telescopic effect was observed where the position of the phantom hand was restored to the anatomically correct distance. More importantly, the effect of the interventions was positively and noticeably perceived by the patient and his relatives. Despite the limitation of a single case study, the successful results of the proposed system in a patient for whom other medical and non-medical treatments have been ineffective justifies and motivates further investigation in a wider study. PMID:24616655

  7. Sudden Unexpected Postnatal Collapse of the Newborn.

    PubMed

    Ferrarello, Debi; Carmichael, Tanya

    2016-01-01

    Sudden unexpected postnatal collapse is a rare but devastating neonatal event. A well-appearing, full-term newborn with Agpar scores of eight or more suddenly crashes, often with full respiratory and cardiac arrest. Up to half of newborns with sudden unexpected postnatal collapse die, with many survivors suffering serious neurological damage. The first 2 hours of life are the hours of greatest risk, coinciding with the time frame when nurses encourage breastfeeding and uninterrupted skin-to-skin contact between women and newborns. Nursing assessments and measures to promote neonates' optimal transition to extrauterine life through skin-to-skin contact and early breastfeeding while decreasing the risk of this catastrophic event are described. Nursing surveillance to promote optimal transition in a safe environment is essential, and birth facilities should allocate staffing resources accordingly. PMID:27287353

  8. Impaired PLP-dependent metabolism in brain samples from Huntington disease patients and transgenic R6/1 mice.

    PubMed

    Sorolla, M Alba; Rodríguez-Colman, María José; Vall-Llaura, Núria; Vived, Celia; Fernández-Nogales, Marta; Lucas, José J; Ferrer, Isidre; Cabiscol, Elisa

    2016-06-01

    Oxidative stress has been described as important to Huntington disease (HD) progression. In a previous HD study, we identified several carbonylated proteins, including pyridoxal kinase and antiquitin, both of which are involved in the metabolism of pyridoxal 5´-phosphate (PLP), the active form of vitamin B6. In the present study, pyridoxal kinase levels were quantified and showed to be decreased both in HD patients and a R6/1 mouse model, compared to control samples. A metabolomic analysis was used to analyze metabolites in brain samples of HD patients and R6/1 mice, compared to control samples using mass spectrometry. This technique allowed detection of increased concentrations of pyridoxal, the substrate of pyridoxal kinase. In addition, PLP, the product of the reaction, was decreased in striatum from R6/1 mice. Furthermore, glutamate and cystathionine, both substrates of PLP-dependent enzymes were increased in HD. This reinforces the hypothesis that PLP synthesis is impaired, and could explain some alterations observed in the disease. Together, these results identify PLP as a potential therapeutic agent. PMID:26666246

  9. A subfamily of PLP-dependent enzymes specialized in handling terminal amines.

    PubMed

    Schiroli, Davide; Peracchi, Alessio

    2015-09-01

    The present review focuses on a subfamily of pyridoxal phosphate (PLP)-dependent enzymes, belonging to the broader fold-type I structural group and whose archetypes can be considered ornithine δ-transaminase and γ-aminobutyrate transaminase. These proteins were originally christened "subgroup-II aminotransferases" (AT-II) but are very often referred to as "class-III aminotransferases". As names suggest, the subgroup includes mainly transaminases, with just a few interesting exceptions. However, at variance with most other PLP-dependent enzymes, catalysts in this subfamily seem specialized at utilizing substrates whose amino function is not adjacent to a carboxylate group. AT-II enzymes are widespread in biology and play mostly catabolic roles. Furthermore, today several transaminases in this group are being used as bioorganic tools for the asymmetric synthesis of chiral amines. We present an overview of the biochemical and structural features of these enzymes, illustrating how they are distinctive and how they compare with those of the other fold-type I enzymes. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications. PMID:25770684

  10. Complex Genomic Rearrangements at the PLP1 Locus Include Triplication and Quadruplication

    PubMed Central

    Beck, Christine R.; Carvalho, Claudia M. B.; Banser, Linda; Gambin, Tomasz; Stubbolo, Danielle; Yuan, Bo; Sperle, Karen; McCahan, Suzanne M.; Henneke, Marco; Seeman, Pavel; Hobson, Grace M.; Lupski, James R.

    2015-01-01

    Inverted repeats (IRs) can facilitate structural variation as crucibles of genomic rearrangement. Complex duplication—inverted triplication—duplication (DUP-TRP/INV-DUP) rearrangements that contain breakpoint junctions within IRs have been recently associated with both MECP2 duplication syndrome (MIM#300260) and Pelizaeus-Merzbacher disease (PMD, MIM#312080). We investigated 17 unrelated PMD subjects with copy number gains at the PLP1 locus including triplication and quadruplication of specific genomic intervals—16/17 were found to have a DUP-TRP/INV-DUP rearrangement product. An IR distal to PLP1 facilitates DUP-TRP/INV-DUP formation as well as an inversion structural variation found frequently amongst normal individuals. We show that a homology—or homeology—driven replicative mechanism of DNA repair can apparently mediate template switches within stretches of microhomology. Moreover, we provide evidence that quadruplication and potentially higher order amplification of a genomic interval can occur in a manner consistent with rolling circle amplification as predicted by the microhomology-mediated break induced replication (MMBIR) model. PMID:25749076

  11. Complex genomic rearrangements at the PLP1 locus include triplication and quadruplication.

    PubMed

    Beck, Christine R; Carvalho, Claudia M B; Banser, Linda; Gambin, Tomasz; Stubbolo, Danielle; Yuan, Bo; Sperle, Karen; McCahan, Suzanne M; Henneke, Marco; Seeman, Pavel; Garbern, James Y; Hobson, Grace M; Lupski, James R

    2015-03-01

    Inverted repeats (IRs) can facilitate structural variation as crucibles of genomic rearrangement. Complex duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) rearrangements that contain breakpoint junctions within IRs have been recently associated with both MECP2 duplication syndrome (MIM#300260) and Pelizaeus-Merzbacher disease (PMD, MIM#312080). We investigated 17 unrelated PMD subjects with copy number gains at the PLP1 locus including triplication and quadruplication of specific genomic intervals-16/17 were found to have a DUP-TRP/INV-DUP rearrangement product. An IR distal to PLP1 facilitates DUP-TRP/INV-DUP formation as well as an inversion structural variation found frequently amongst normal individuals. We show that a homology-or homeology-driven replicative mechanism of DNA repair can apparently mediate template switches within stretches of microhomology. Moreover, we provide evidence that quadruplication and potentially higher order amplification of a genomic interval can occur in a manner consistent with rolling circle amplification as predicted by the microhomology-mediated break induced replication (MMBIR) model. PMID:25749076

  12. Prenatal diagnosis by FISH in a family with Pelizaeus-Merzbacher disease caused by duplication of PLP gene.

    PubMed

    Woodward, K; Palmer, R; Rao, K; Malcolm, S

    1999-03-01

    A diagnosis of Pelizaeus-Merzbacher disease (MIM 312080) was made in a young boy. No mutation in the coding region of the proteolipid protein (PLP) gene had been found. The boy's maternal aunt came for prenatal diagnosis when 16+ weeks pregnant and carrying a male fetus. Samples were tested for duplication of the PLP gene, by interphase FISH, in lymphocyte preparations from the proband, his aunt and an amniotic fluid cell preparation from the fetus. The proband was found to carry the duplication, thus confirming the diagnosis of Pelizaeus Merzbacher disease, but neither the aunt nor the fetus carried a duplication. PMID:10210128

  13. Myelin-reactive antibodies mediate the pathology of MBP-PLP fusion protein MP4-induced EAE.

    PubMed

    Kuerten, Stefanie; Pauly, Robert; Rottlaender, Andrea; Rodi, Michael; Gruppe, Traugott L; Addicks, Klaus; Tary-Lehmann, Magdalena; Lehmann, Paul V

    2011-07-01

    Experimental autoimmune encephalomyelitis (EAE) is frequently used for studies of multiple sclerosis (MS). Because in most EAE models T cells mediate the pathology in the absence of B cells/autoantibodies, the notion has evolved that also MS may be a primarily T cell-mediated disease. We have previously introduced MBP-PLP fusion protein (MP4)-induced EAE in C57BL/6 mice. Here we show that the disease in this model is antibody-dependent. Immunization of B cell-deficient mice did not induce EAE. When such B cell-deficient mice were, however, injected with MBP/PLP-specific antibodies in addition to the immunization with MP4, they developed disease of a severity and course that was similar to the wild-type mice. The deposition of antibodies in demyelinated lesions provided further evidence for the contribution of MBP/PLP-specific antibodies to CNS lesion formation. Based upon these data we suggest a two-stage model for the involvement of MBP/PLP-specific antibodies in autoimmune CNS pathology. PMID:21489887

  14. Plasma Pyridoxal 5'-phosphate (PLP) in the United States population: the National Health and Nutrition Examination Survey, 2003-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No large-scale, population-based study has considered the descriptive epidemiology of vitamin B6 status using the biological marker, plasma pyridoxal 5’ - phosphate (PLP). Consequently, how vitamin B6 status varies with basic demographic and lifestyle factors is unclear. We sought to examine the epi...

  15. Mechanism of Substrate Recognition And PLP-Induced Conformational Changes in II-Diaminopimelate Aminotransferase From Arabidopsis Thaliana

    SciTech Connect

    Watanabe, N.; Clay, M.D.; Belkum, M.J.van; Cherney, M.M.; Vederas, J.C.; James, M.N.G.

    2009-05-26

    LL-Diaminopimelate aminotransferase (LL-DAP-AT), a pyridoxal phosphate (PLP)-dependent enzyme in the lysine biosynthetic pathways of plants and Chlamydia, is a potential target for the development of herbicides or antibiotics. This homodimeric enzyme converts L-tetrahydrodipicolinic acid (THDP) directly to LL-DAP using L-glutamate as the source of the amino group. Earlier, we described the 3D structures of native and malate-bound LL-DAP-AT from Arabidopsis thaliana (AtDAP-AT). Seven additional crystal structures of AtDAP-AT and its variants are reported here as part of an investigation into the mechanism of substrate recognition and catalysis. Two structures are of AtDAP-AT with reduced external aldimine analogues: N-(5'-phosphopyridoxyl)-L-glutamate (PLP-Glu) and N-(5'-phosphopyridoxyl)- LL-Diaminopimelate (PLP-DAP) bound in the active site. Surprisingly, they reveal that both L-glutamate and LL-DAP are recognized in a very similar fashion by the same sets of amino acid residues; both molecules adopt twisted V-shaped conformations. With both substrates, the {alpha}-carboxylates are bound in a salt bridge with Arg404, whereas the distal carboxylates are recognized via hydrogen bonds to the well-conserved side chains of Tyr37, Tyr125 and Lys129. The distal C{sup {var_epsilon}} amino group of LL-DAP is specifically recognized by several non-covalent interactions with residues from the other subunit (Asn309*, Tyr94*, Gly95*, and Glu97* (Amino acid designators followed by an asterisk (*) indicate that the residues originate in the other subunit of the dimer)) and by three bound water molecules. Two catalytically inactive variants of AtDAP-AT were created via site-directed mutagenesis of the active site lysine (K270N and K270Q). The structures of these variants permitted the observation of the unreduced external aldimines of PLP with L-glutamate and with LL-DAP in the active site, and revealed differences in the torsion angle about the PLP-substrate bond. Lastly, an apo

  16. Crystal Structures Capture Three States in the Catalytic Cycle of a Pyridoxal Phosphate (PLP) Synthase*♦

    PubMed Central

    Smith, Amber Marie; Brown, William Clay; Harms, Etti; Smith, Janet L.

    2015-01-01

    PLP synthase (PLPS) is a remarkable single-enzyme biosynthetic pathway that produces pyridoxal 5′-phosphate (PLP) from glutamine, ribose 5-phosphate, and glyceraldehyde 3-phosphate. The intact enzyme includes 12 synthase and 12 glutaminase subunits. PLP synthesis occurs in the synthase active site by a complicated mechanism involving at least two covalent intermediates at a catalytic lysine. The first intermediate forms with ribose 5-phosphate. The glutaminase subunit is a glutamine amidotransferase that hydrolyzes glutamine and channels ammonia to the synthase active site. Ammonia attack on the first covalent intermediate forms the second intermediate. Glyceraldehyde 3-phosphate reacts with the second intermediate to form PLP. To investigate the mechanism of the synthase subunit, crystal structures were obtained for three intermediate states of the Geobacillus stearothermophilus intact PLPS or its synthase subunit. The structures capture the synthase active site at three distinct steps in its complicated catalytic cycle, provide insights into the elusive mechanism, and illustrate the coordinated motions within the synthase subunit that separate the catalytic states. In the intact PLPS with a Michaelis-like intermediate in the glutaminase active site, the first covalent intermediate of the synthase is fully sequestered within the enzyme by the ordering of a generally disordered 20-residue C-terminal tail. Following addition of ammonia, the synthase active site opens and admits the Lys-149 side chain, which participates in formation of the second intermediate and PLP. Roles are identified for conserved Asp-24 in the formation of the first intermediate and for conserved Arg-147 in the conversion of the first to the second intermediate. PMID:25568319

  17. Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene.

    PubMed

    Murgatroyd, C; Quinn, J P; Sharp, H M; Pickles, A; Hill, J

    2015-01-01

    In animal models, prenatal and postnatal stress is associated with elevated hypothalamic-pituitary axis (HPA) reactivity mediated via altered glucocorticoid receptor (GR) gene expression. Postnatal tactile stimulation is associated with reduced HPA reactivity mediated via increased GR gene expression. In this first study in humans to examine the joint effects of prenatal and postnatal environmental exposures, we report that GR gene (NR3C1) 1-F promoter methylation in infants is elevated in the presence of increased maternal postnatal depression following low prenatal depression, and that this effect is reversed by self-reported stroking of the infants by their mothers over the first weeks of life. PMID:25942041

  18. In vivo acylation of proteolipid protein and DM-20 in myelin and myelin subfractions of developing rat brain: immunoblot identification of acylated PLP and DM-20

    SciTech Connect

    Garwood, M.M.; Gilbert, W.R.; Agrawal, H.C.

    1983-05-01

    The acylation of proteolipid protein (PLP) was examined in myelin and myelin subfractions from rat brain during the active period of myelination. Proteolipid protein and DM-20 in myelin and myelin subfractions were readily acylated in developing rat brain 22 hours after intracerebral injection of (/sup 3/H)palmitic acid. No differences in the relative specific activity of PLP in myelin from 9-, 15-, and 30-day-old rat brains was observed; however, the relative specific activity of PLP in the heavy myelin subfraction tended to be higher than that in the light myelin subfraction. The acylation of PLP was confirmed by fluorography of immuno-stained cellulose nitrate sheets, clearly establishing that the acylated protein is in fact the oligodendroglial cell- and myelin-specific protein, PLP. Since PLP is acylated in the 9-day-old animal, when little compact myelin is present, it is possible that the acylation of PLP is a prerequisite for the incorporation of this protein into the myelin membrane.

  19. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  20. Solvent effects on acrylate kp in organic media?-A systematic PLP-SEC study.

    PubMed

    Haehnel, Alexander P; Wenn, Benjamin; Kockler, Katrin; Bantle, Tobias; Misske, Andrea M; Fleischhaker, Friederike; Junkers, Thomas; Barner-Kowollik, Christopher

    2014-12-01

    The Arrhenius parameters of the propagation rate coefficient, kp , are determined employing high-frequency pulsed laser polymerization-size exclusion chromatography (PLP-SEC) for the homologous series of five linear alkyl acrylates (i.e., methyl acrylate (MA), butyl acrylate (BA), dodecyl acrylate (DA), stearyl acrylate (SA), and behenyl acrylate (BeA)) in 1 m solution in butyl acetate (BuAc) as well as in toluene. The comparison of the obtained kp values with the literature known values for bulk demonstrates that no significant solvent influence neither in BuAc nor in toluene on the propagation reaction compared to bulk is detectable. Concomitantly, the kp values in toluene and in BuAc solution display a similar increase with increasing number of C-atoms in the ester side chain as was previously reported for the bulk systems. These findings are in clear contrast to earlier studies, which report a decrease of kp with increasing ester side chain length in toluene. The additional investigation of the longest and shortest ester side chain acrylate (i.e., BeA and MA) over the entire experimentally available concentration range at one temperature (i.e., 50 °C) does not reveal any general concentration dependence and all observed differences in the kp are within the experimental error. PMID:25363291

  1. Structure of the PLP-Form of the Human Kynurenine Aminotransferase II in a Novel Spacegroup at 1.83 Å Resolution

    PubMed Central

    Nematollahi, Alireza; Sun, Guanchen; Harrop, Stephen J.; Hanrahan, Jane R.; Church, W. Bret

    2016-01-01

    Kynurenine aminotransferase II (KAT-II) is a 47 kDa pyridoxal phosphate (PLP)-dependent enzyme, active as a homodimer, which catalyses the transamination of the amino acids kynurenine (KYN) and 3-hydroxykynurenine (3-HK) in the tryptophan pathway, and is responsible for producing metabolites that lead to kynurenic acid (KYNA), which is implicated in several neurological diseases such as schizophrenia. In order to fully describe the role of KAT-II in the pathobiology of schizophrenia and other brain disorders, the crystal structure of full-length PLP-form hKAT-II was determined at 1.83 Å resolution, the highest available. The electron density of the active site reveals an aldimine linkage between PLP and Lys263, as well as the active site residues, which characterize the fold-type I PLP-dependent enzymes. PMID:27023527

  2. A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system.

    PubMed

    Werner, Hauke B; Krämer-Albers, Eva-Maria; Strenzke, Nicola; Saher, Gesine; Tenzer, Stefan; Ohno-Iwashita, Yoshiko; De Monasterio-Schrader, Patricia; Möbius, Wiebke; Moser, Tobias; Griffiths, Ian R; Nave, Klaus-Armin

    2013-04-01

    The formation of central nervous system myelin by oligodendrocytes requires sterol synthesis and is associated with a significant enrichment of cholesterol in the myelin membrane. However, it is unknown how oligodendrocytes concentrate cholesterol above the level found in nonmyelin membranes. Here, we demonstrate a critical role for proteolipids in cholesterol accumulation. Mice lacking the most abundant myelin protein, proteolipid protein (PLP), are fully myelinated, but PLP-deficient myelin exhibits a reduced cholesterol content. We therefore hypothesized that "high cholesterol" is not essential in the myelin sheath itself but is required for an earlier step of myelin biogenesis that is fully compensated for in the absence of PLP. We also found that a PLP-homolog, glycoprotein M6B, is a myelin component of low abundance. By targeting the Gpm6b-gene and crossbreeding, we found that single-mutant mice lacking either PLP or M6B are fully myelinated, while double mutants remain severely hypomyelinated, with enhanced neurodegeneration and premature death. As both PLP and M6B bind membrane cholesterol and associate with the same cholesterol-rich oligodendroglial membrane microdomains, we suggest a model in which proteolipids facilitate myelination by sequestering cholesterol. While either proteolipid can maintain a threshold level of cholesterol in the secretory pathway that allows myelin biogenesis, lack of both proteolipids results in a severe molecular imbalance of prospective myelin membrane. However, M6B is not efficiently sorted into mature myelin, in which it is 200-fold less abundant than PLP. Thus, only PLP contributes to the high cholesterol content of myelin by association and co-transport. PMID:23322581

  3. Molecular dynamics simulations of apo, holo, and inactivator bound GABA-at reveal the role of active site residues in PLP dependent enzymes.

    PubMed

    Gökcan, Hatice; Monard, Gerald; Sungur Konuklar, F Aylin

    2016-07-01

    The pyridoxal 5-phosphate (PLP) cofactor is a significant organic molecule in medicinal chemistry. It is often found covalently bound to lysine residues in proteins to form PLP dependent enzymes. An example of this family of PLP dependent enzymes is γ-aminobutyric acid aminotransferase (GABA-AT) which is responsible for the degradation of the neurotransmitter GABA. Its inhibition or inactivation can be used to prevent the reduction of GABA concentration in brain which is the source of several neurological disorders. As a test case for PLP dependent enzymes, we have performed molecular dynamics simulations of GABA-AT to reveal the roles of the protein residues and its cofactor. Three different states have been considered: the apoenzyme, the holoenzyme, and the inactive state obtained after the suicide inhibition by vigabatrin. Different protonation states have also been considered for PLP and two key active site residues: Asp298 and His190. Together, 24 independent molecular dynamics trajectories have been simulated for a cumulative total of 2.88 µs. Our results indicate that, unlike in aqueous solution, the PLP pyridine moiety is protonated in GABA-AT. This is a consequence of a pKa shift triggered by a strong charge-charge interaction with an ionic "diad" formed by Asp298 and His190 that would help the activation of the first half-reaction of the catalytic mechanism in GABA-AT: the conversion of PLP to free pyridoxamine phosphate (PMP). In addition, our MD simulations exhibit additional strong hydrogen bond networks between the protein and PLP: the phosphate group is held in place by the donation of at least three hydrogen bonds while the carbonyl oxygen of the pyridine ring interacts with Gln301; Phe181 forms a π-π stacking interaction with the pyridine ring and works as a gate keeper with the assistance of Val300. All these interactions are hypothesized to help maintain free PMP in place inside the protein active site to facilitate the second half

  4. Haploid Genetic Screens Identify an Essential Role for PLP2 in the Downregulation of Novel Plasma Membrane Targets by Viral E3 Ubiquitin Ligases

    PubMed Central

    Timms, Richard T.; Duncan, Lidia M.; Tchasovnikarova, Iva A.; Antrobus, Robin; Smith, Duncan L.; Dougan, Gordon; Weekes, Michael P.; Lehner, Paul J.

    2013-01-01

    The Kaposi's sarcoma-associated herpesvirus gene products K3 and K5 are viral ubiquitin E3 ligases which downregulate MHC-I and additional cell surface immunoreceptors. To identify novel cellular genes required for K5 function we performed a forward genetic screen in near-haploid human KBM7 cells. The screen identified proteolipid protein 2 (PLP2), a MARVEL domain protein of unknown function, as essential for K5 activity. Genetic loss of PLP2 traps the viral ligase in the endoplasmic reticulum, where it is unable to ubiquitinate and degrade its substrates. Subsequent analysis of the plasma membrane proteome of K5-expressing KBM7 cells in the presence and absence of PLP2 revealed a wide range of novel K5 targets, all of which required PLP2 for their K5-mediated downregulation. This work ascribes a critical function to PLP2 for viral ligase activity and underlines the power of non-lethal haploid genetic screens in human cells to identify the genes involved in pathogen manipulation of the host immune system. PMID:24278019

  5. Prevalence of Anaemia among Postnatal Mothers in Coastal Karnataka

    PubMed Central

    Bhagwan, Darshan; Kumar, Ashwini; Kamath, Asha

    2016-01-01

    Introduction Postpartum is the most neglected period in reproductive cycle of woman. Prevalence of anaemia in developing countries ranges from 50-95%. Aim To estimate the prevalence of anaemia among postnatal mothers. Setting and design A community based cross-sectional study among recently delivered mothers residing in field practice area of Department of Community Medicine, Kasturba Medical College, Manipal, India. Materials and Methods The study sample included 401 respondents who were selected using stratified random sampling with proportionate allocation from all rural health centres. Data was collected by personal interviews followed by haemoglobin estimation by indirect cyanomethaemoglobin method. Results The prevalence of postnatal anaemia was 26.5% (Anaemia = Hb<12gm/dl). There were no cases of severe anaemia. Postnatal anaemia was predominantly seen in mothers of age < 20 years and half of the mothers with inter-pregnancy intervals less than two years were found to be anaemic. Illiteracy was identified as a significant variable (OR=11.23, 95% CI = 1.90-65.08) for postpartum anaemia. Conclusion The prevalence of anaemia was significantly lower in the present study; however sustained efforts have to be made to further lower the prevalence of postnatal anaemia in order to promote the health and well-being of women. PMID:26894096

  6. Early influences of nutrition on postnatal growth.

    PubMed

    Koletzko, Berthold; Beyer, Jeanette; Brands, Brigitte; Demmelmair, Hans; Grote, Veit; Haile, Gudrun; Gruszfeld, Dariusz; Rzehak, Peter; Socha, Piotr; Weber, Martina

    2013-01-01

    Health and nutrition modulate postnatal growth. The availability of amino acids and energy, and insulin and insulin-like growth factor-I (IGF-I) regulates early growth through the mTOR pathway. Amino acids and glucose also stimulate the secretion of IGF-I and insulin. Postnatal growth induces lasting, programming effects on later body size and adiposity in animals and in human observational studies. Rapid weight gain in infancy and the first 2 years was shown to predict increased obesity risk in childhood and adulthood. Breastfeeding leads to lesser high weight gain in infancy and reduces obesity risk in later life by about 20%, presumably partly due to the lower protein supply with human milk than conventional infant formula. In a large randomized clinical trial, we tested the hypothesis that reduced infant formula protein contents lower insulin-releasing amino acid concentrations and thereby decrease circulating insulin and IGF-I levels, resulting in lesser early weight gain and reduced later obesity risk (the 'Early Protein Hypothesis'). The results demonstrate that lowered protein in infant formula induces similar - but not equal - metabolic and endocrine responses and normalizes weight and BMI relative to breastfed controls at the age of 2 years. The results available should lead to enhanced efforts to actively promote, protect and support breastfeeding. For infants that are not breastfed or not fully breastfed, the use of infant formulas with lower protein contents but high protein quality appears preferable. Cows' milk as a drink provides high protein intake and should be avoided in infancy. PMID:23502135

  7. Adaptive Immune Regulation of Mammary Postnatal Organogenesis.

    PubMed

    Plaks, Vicki; Boldajipour, Bijan; Linnemann, Jelena R; Nguyen, Nguyen H; Kersten, Kelly; Wolf, Yochai; Casbon, Amy-Jo; Kong, Niwen; van den Bijgaart, Renske J E; Sheppard, Dean; Melton, Andrew C; Krummel, Matthew F; Werb, Zena

    2015-09-14

    Postnatal organogenesis occurs in an immune competent environment and is tightly controlled by interplay between positive and negative regulators. Innate immune cells have beneficial roles in postnatal tissue remodeling, but roles for the adaptive immune system are currently unexplored. Here we show that adaptive immune responses participate in the normal postnatal development of a non-lymphoid epithelial tissue. Since the mammary gland (MG) is the only organ developing predominantly after birth, we utilized it as a powerful system to study adaptive immune regulation of organogenesis. We found that antigen-mediated interactions between mammary antigen-presenting cells and interferon-γ (IFNγ)-producing CD4+ T helper 1 cells participate in MG postnatal organogenesis as negative regulators, locally orchestrating epithelial rearrangement. IFNγ then affects luminal lineage differentiation. This function of adaptive immune responses, regulating normal development, changes the paradigm for studying players of postnatal organogenesis and provides insights into immune surveillance and cancer transformation. PMID:26321127

  8. Postnatal Organic Causes of Mental Retardation

    PubMed Central

    Hinton, G. G.

    1962-01-01

    A study of 1137 retarded children from Western Ontario revealed 129 (11.3%) in whom retardation was first noted after a specific postnatal event. Eighty-three of these were boys. The most common cause of postnatal cerebral injury in this series was a syndrome of unknown etiology characterized by the sudden onset of fever, convulsions and coma which occurred in 45 patients. The nature of this syndrome is discussed and the necessity for early treatment emphasized. Other postnatal causes of retardation are classified according to frequency, as encephalitis, accidents, meningitis and a miscellaneous group consisting of epilepsy and tumours. PMID:13907577

  9. Revealing tact within postnatal care.

    PubMed

    Smythe, Elizabeth; Payne, Deborah; Wilson, Sally; Paddy, Ann; Heard, Kate

    2014-02-01

    In this article, we explore the nature of good postnatal care through a hermeneutic unpacking of the notion of tact, drawing on the philosophical writings of Heidegger, Gadamer, and van Manen. The tactful encounters considered were from a hermeneutic research study within a small, rural birthing center in New Zealand. Insights drawn from the analysis were as follows: the openness of listening, watching and being attuned that builds a positive mode of engagement, recognizing that the distance the woman needs from her nurse/midwife is a call of tact, that tact is underpinned by a spirit of care, within tact there are moods and tact might require firmness, and that all of these factors come together to build trust. We conclude that the attunement of tact requires that the staff member has time to spend with a woman, enough energy to engage, and a spirit of care. Women know that tactful practice builds their confidence and affects their mothering experience. Tact cannot be assumed; it needs to be nurtured and sheltered. PMID:24448102

  10. Cholinergic Circuit Control of Postnatal Neurogenesis

    PubMed Central

    Asrican, Brent; Paez-Gonzalez, Patricia; Erb, Joshua; Kuo, Chay T.

    2016-01-01

    New neuron addition via continued neurogenesis in the postnatal/adult mammalian brain presents a distinct form of nervous system plasticity. During embryonic development, precise temporal and spatial patterns of neurogenesis are necessary to create the nervous system architecture. Similar between embryonic and postnatal stages, neurogenic proliferation is regulated by neural stem cell (NSC)-intrinsic mechanisms layered upon cues from their local microenvironmental niche. Following developmental assembly, it remains relatively unclear what may be the key driving forces that sustain continued production of neurons in the postnatal/adult brain. Recent experimental evidence suggests that patterned activity from specific neural circuits can also directly govern postnatal/adult neurogenesis. Here, we review experimental findings that revealed cholinergic modulation, and how patterns of neuronal activity and acetylcholine release may differentially or synergistically activate downstream signaling in NSCs. Higher-order excitatory and inhibitory inputs regulating cholinergic neuron firing, and their implications in neurogenesis control are also considered. PMID:27468423

  11. Epigenomic profiling indicates a role for DNA methylation in early postnatal liver development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The question of whether DNA methylation contributes to the stabilization of gene expression patterns in differentiated mammalian tissues remains controversial. Using genome-wide methylation profiling, we screened 3757 gene promoters for changes in methylation during postnatal liver development to te...

  12. The Crystal Structure of D-Threonine Aldolase from Alcaligenes xylosoxidans Provides Insight into a Metal Ion Assisted PLP-Dependent Mechanism

    PubMed Central

    Uhl, Michael K.; Oberdorfer, Gustav; Steinkellner, Georg; Riegler-Berket, Lina; Mink, Daniel; van Assema, Friso; Schürmann, Martin; Gruber, Karl

    2015-01-01

    Threonine aldolases catalyze the pyridoxal phosphate (PLP) dependent cleavage of threonine into glycine and acetaldehyde and play a major role in the degradation of this amino acid. In nature, L- as well as D-specific enzymes have been identified, but the exact physiological function of D-threonine aldolases (DTAs) is still largely unknown. Both types of enantio-complementary enzymes have a considerable potential in biocatalysis for the stereospecific synthesis of various β-hydroxy amino acids, which are valuable building blocks for the production of pharmaceuticals. While several structures of L-threonine aldolases (LTAs) have already been determined, no structure of a DTA is available to date. Here, we report on the determination of the crystal structure of the DTA from Alcaligenes xylosoxidans (AxDTA) at 1.5 Å resolution. Our results underline the close relationship of DTAs and alanine racemases and allow the identification of a metal binding site close to the PLP-cofactor in the active site of the enzyme which is consistent with the previous observation that divalent cations are essential for DTA activity. Modeling of AxDTA substrate complexes provides a rationale for this metal dependence and indicates that binding of the β-hydroxy group of the substrate to the metal ion very likely activates this group and facilitates its deprotonation by His193. An equivalent involvement of a metal ion has been implicated in the mechanism of a serine dehydratase, which harbors a metal ion binding site in the vicinity of the PLP cofactor at the same position as in DTA. The structure of AxDTA is completely different to available structures of LTAs. The enantio-complementarity of DTAs and LTAs can be explained by an approximate mirror symmetry of crucial active site residues relative to the PLP-cofactor. PMID:25884707

  13. Differential patterns of spinal cord pathology induced by MP4, MOG peptide 35-55, and PLP peptide 178-191 in C57BL/6 mice.

    PubMed

    Kuerten, Stefanie; Gruppe, Traugott L; Laurentius, Laura-Maria; Kirch, Christiane; Tary-Lehmann, Magdalena; Lehmann, Paul V; Addicks, Klaus

    2011-06-01

    In this study we demonstrate that experimental autoimmune encephalomyelitis (EAE) induced by the MBP-PLP fusion protein MP4, MOG peptide 35-55, or PLP peptide 178-191 in C57BL/6 mice, respectively, displays distinct features of CNS pathology. Major differences between the three models resided in (i) the region-/tract-specificity and disseminated nature of spinal cord degeneration, (ii) the extent and kinetics of demyelination, and (iii) the involvement of motoneurons in the disease. In contrast, axonal damage was present in all models and to a similar extent, proposing this feature as a possible morphological correlate for the comparable chronic clinical course of the disease induced by the three antigens. The data suggest that the antigen targeted in autoimmune encephalomyelitis is crucial to the induction of differential histopathological disease manifestations. The use of MP4-, MOG:35-55-, and PLP:178-191-induced EAE on the C57BL/6 background can be a valuable tool when it comes to reproducing and studying the structural-morphological diversity of multiple sclerosis. PMID:21569091

  14. 4′-CyanoPLP presents better prospect for the experimental detection of elusive cyclic intermediate radical in the reaction of lysine 5,6-aminomutase

    SciTech Connect

    Maity, Amarendra Nath; Ke, Shyue-Chu

    2015-02-06

    Graphical abstract: The results of our calculations suggest that the reaction of 4′-cyanoPLP with lysine 5,6-aminomutase offers better prospect for the experimental detection of elusive cyclic azacyclopropylcarbinyl radical, which is proposed to be a key intermediate in the reaction of pyridoxal-5′-phosphate dependent radical aminomutases. - Highlights: • 4′-CyanoI{sup ·} is the lowest energy radical intermediate in the reaction of 5,6-LAM. • 4′-CyanoPLP offers good prospect for the experimental observation of elusive I{sup ·}. • The calculated HFCCs would help to characterize 4′-cyanoI{sup ·} by EPR. - Abstract: The results of our calculations suggest that the reaction of 4′-cyanoPLP with lysine 5,6-aminomutase offers better prospect for the experimental detection of elusive cyclic azacyclopropylcarbinyl radical (I{sup ·}), which is proposed to be a key intermediate in the reaction of pyridoxal-5′-phosphate dependent radical aminomutases. We have calculated the corresponding hyperfine coupling constants (HFCCs) for {sup 14}N and {sup 13}C of cyano group using several basis sets to help the characterization of 4′-cyanoI{sup ·}.

  15. Toward postnatal reversal of ocular congenital malformations

    PubMed Central

    Sahel, José-Alain; Marazova, Katia

    2013-01-01

    Aniridia is a panocular disorder that severely affects vision in early life. Most cases are caused by dominantly inherited mutations or deletions of the PAX6 gene, which encodes a transcription factor that is essential for the development of the eye and the central nervous system. In this issue of the JCI, Gregory-Evans and colleagues demonstrate that early postnatal topical administration of an ataluren-based formulation reverses congenital malformations in the postnatal mouse eye, providing evidence that manipulation of PAX6 after birth may lead to corrective tissue remodeling. These findings offer hope that ataluren administration could be a therapeutic paradigm applicable to some major congenital eye defects. PMID:24355915

  16. Involvement of {gamma}-secretase in postnatal angiogenesis

    SciTech Connect

    Hayashi, Hiroki; Nakagami, Hironori Takami, Yoichi; Sato, Naoyuki; Saito, Yukihiro; Nishikawa, Tomoyuki; Mori, Masaki; Koriyama, Hiroshi; Tamai, Katsuto; Morishita, Ryuichi; Kaneda, Yasufumi

    2007-11-23

    {gamma}-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of {gamma}-secretase in the regulation of postnatal angiogenesis using {gamma}-secretase inhibitors (GSI). In endothelial cell (EC), {gamma}-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-induced angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that {gamma}-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.

  17. Postnatal Testosterone Concentrations and Male Social Development

    PubMed Central

    Alexander, Gerianne M.

    2014-01-01

    Converging evidence from over 40 years of behavioral research indicates that higher testicular androgens in prenatal life and at puberty contribute to the masculinization of human behavior. However, the behavioral significance of the transient activation of the hypothalamic–pituitary–gonadal (HPG) axis in early postnatal life remains largely unknown. Although early research on non-human primates indicated that suppression of the postnatal surge in testicular androgens had no measurable effects on the later expression of the male behavioral phenotype, recent research from our laboratory suggests that postnatal testosterone concentrations influence male infant preferences for larger social groups and temperament characteristics associated with the later development of aggression. In later assessment of gender-linked behavior in the second year of life, concentrations of testosterone at 3–4 months of age were unrelated to toy choices and activity levels during toy play. However, higher concentrations of testosterone predicted less vocalization in toddlers and higher parental ratings on an established screening measure for autism spectrum disorder. These findings suggest a role of the transient activation of the HPG axis in the development of typical and atypical male social relations and suggest that it may be useful in future research on the exaggerated rise in testosterone secretion in preterm infants or exposure to hormone disruptors in early postnatal life to include assessment of gender-relevant behavioral outcomes, including childhood disorders with sex-biased prevalence rates. PMID:24600437

  18. Stressors during Pregnancy and the Postnatal Period.

    ERIC Educational Resources Information Center

    Field, Tiffany

    1989-01-01

    Some infants experience unusual stress from pregnancy through the postnatal period and are especially called upon to exercise coping responses. Discusses unusual stressors, how the infant naturally copes with them, and how caregivers can provide assistance. Reviews studies on stress-relieving intervention techniques. (NH)

  19. Radiology of postnatal skeletal development. Pt. 7

    SciTech Connect

    Ogden, J.A.; Phillips, S.B.

    1983-02-01

    Twenty-four pairs of scapulae from fetal specimens and 35 pairs of scapulae from postnatal cadavers ranging in age from full-term neonates to 14 years, were studied morphologically and roentgenographically. Air-cartilage interfacing was used to demonstrate both the osseous and cartilaginous contours. When the entire chondro-osseous dimensions, rather than just the osseous dimensions, were measured, the scapula had a height-width ratio ranging from 1.36 to 1.52 (average 1.44) during most of fetal development. The exceptions were three stillborns with camptomelic, thanatophoric, and achondrogenic dwarfism in which the ratio averaged 0.6. At no time during fetal development was the glenoid cavity convex; it always had a concave articular surface. However, the osseous subchrondral countour was often flat or slightly convex. In the postnatal period the height-width ratio averaged 1.49. The ratio remained virtually unchanged throughout skeletal growth and maturation. In a patient with unilateral Sprengel's deformity the ratio for the normal side was 1.5, while the abnormal was 1.0. The cartilaginous glenoid cavity was always concave during postnatal development, even in the specimens with major structural deformities, although the subchondral osseous contour was usually flat or convex during the first few years of postnatal development. Ossification of the coracoid process began with the development of a primary center at three to four months. A bipolar physis was present between the primary coracoid center and the primary scapular center until late adolescence.

  20. Post-natal imprinting: evidence from marsupials.

    PubMed

    Stringer, J M; Pask, A J; Shaw, G; Renfree, M B

    2014-08-01

    Genomic imprinting has been identified in therian (eutherian and marsupial) mammals but not in prototherian (monotreme) mammals. Imprinting has an important role in optimising pre-natal nutrition and growth, and most imprinted genes are expressed and imprinted in the placenta and developing fetus. In marsupials, however, the placental attachment is short-lived, and most growth and development occurs post-natally, supported by a changing milk composition tailor-made for each stage of development. Therefore there is a much greater demand on marsupial females during post-natal lactation than during pre-natal placentation, so there may be greater selection for genomic imprinting in the mammary gland than in the short-lived placenta. Recent studies in the tammar wallaby confirm the presence of genomic imprinting in nutrient-regulatory genes in the adult mammary gland. This suggests that imprinting may influence infant post-natal growth via the mammary gland as it does pre-natally via the placenta. Similarly, an increasing number of imprinted genes have been implicated in regulating feeding and nurturing behaviour in both the adult and the developing neonate/offspring in mice. Together these studies provide evidence that genomic imprinting is critical for regulating growth and subsequently the survival of offspring not only pre-natally but also post-natally. PMID:24595366

  1. A highly conserved molecular switch binds MSY-3 to regulate myogenin repression in postnatal muscle

    PubMed Central

    Berghella, Libera; De Angelis, Luciana; De Buysscher, Tristan; Mortazavi, Ali; Biressi, Stefano; Forcales, Sonia V.; Sirabella, Dario; Cossu, Giulio; Wold, Barbara J.

    2008-01-01

    Myogenin is the dominant transcriptional regulator of embryonic and fetal muscle differentiation and during maturation is profoundly down-regulated. We show that a highly conserved 17-bp DNA cis-acting sequence element located upstream of the myogenin promoter (myogHCE) is essential for postnatal repression of myogenin in transgenic animals. We present multiple lines of evidence supporting the idea that repression is mediated by the Y-box protein MSY-3. Electroporation in vivo shows that myogHCE and MSY-3 are required for postnatal repression. We further show that, in the C2C12 cell culture system, ectopic MSY-3 can repress differentiation, while reduced MSY-3 promotes premature differentiation. MSY-3 binds myogHCE simultaneously with the homeodomain protein Pbx in postnatal innervated muscle. We therefore propose a model in which the myogHCE motif operates as a switch by specifying opposing functions; one that was shown previously is regulated by MyoD and Pbx and it specifies a chromatin opening, gene-activating function at the time myoblasts begin to differentiate; the other includes MYS-3 and Pbx, and it specifies a repression function that operates during and after postnatal muscle maturation in vivo and in myoblasts before they begin to differentiate. PMID:18676817

  2. Postnatal Treatment in Antenatally Diagnosed Meconium Peritonitis.

    PubMed

    Ionescu, S; Andrei, B; Oancea, M; Licsandru, E; Ivanov, M; Marcu, V; Popa-Stanila, R; Mocanu, M

    2015-01-01

    Meconium peritonitis is a rare prenatal disease with an increased rate of morbidity and mortality in the neonatal period. Distinctive features revealed by prenatal and postnatal ultrasoundmay be present: abdominal calcifications, ascites, polyhydramnios, meconium pseudocyst, echogenic mass and dilated bowel or intestinal obstruction. Establishing clear postnatal treatment and prognosis is difficult because of the heterogeneity of the results obtained by ultrasound. The aim of the study is to determine how prenatal diagnosis of meconium peritonitis is associated with perinatal management and further evolution. Clinical results are different depending on the presence of antenatal diagnosis of meconium peritonitis and its form, which can be mild or severe. Surgical treatment and management of meconium peritonitis depend on the clinical presentation of the newborn. Meconium peritonitis diagnosed prenatally differs from that of the newborn, not only concerning the mortality rates but also through reduced morbidity and overall better prognosis. PMID:26713828

  3. Post-natal myogenic and adipogenic developmental

    PubMed Central

    Konings, Gonda; van Weeghel, Michel; van den Hoogenhof, Maarten MG; Gijbels, Marion; van Erk, Arie; Schoonderwoerd, Kees; van den Bosch, Bianca; Dahlmans, Vivian; Calis, Chantal; Houten, Sander M; Misteli, Tom

    2011-01-01

    A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT−/−) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies. PMID:21818413

  4. Genetic disorders associated with postnatal microcephaly.

    PubMed

    Seltzer, Laurie E; Paciorkowski, Alex R

    2014-06-01

    Several genetic disorders are characterized by normal head size at birth, followed by deceleration in head growth resulting in postnatal microcephaly. Among these are classic disorders such as Angelman syndrome and MECP2-related disorder (formerly Rett syndrome), as well as more recently described clinical entities associated with mutations in CASK, CDKL5, CREBBP, and EP300 (Rubinstein-Taybi syndrome), FOXG1, SLC9A6 (Christianson syndrome), and TCF4 (Pitt-Hopkins syndrome). These disorders can be identified clinically by phenotyping across multiple neurodevelopmental and neurobehavioral realms, and enough data are available to recognize these postnatal microcephaly disorders as separate diagnostic entities in their own right. A second diagnostic grouping, comprised of Warburg MICRO syndrome, Cockayne syndrome, and Cerebral-oculo-facial skeletal syndrome, share similar features of somatic growth failure, ophthalmologic, and dysmorphologic features. Many postnatal microcephaly syndromes are caused by mutations in genes important in the regulation of gene expression in the developing forebrain and hindbrain, although important synaptic structural genes also play a role. This is an emerging group of disorders with a fascinating combination of brain malformations, specific epilepsies, movement disorders, and other complex neurobehavioral abnormalities. PMID:24839169

  5. Penicillin-Binding Protein 5 Sequence Alteration and Levels of plp5 mRNA Expression in Clinical Isolates of Enterococcus faecium with Different Levels of Ampicillin Resistance.

    PubMed

    Belhaj, Mondher; Boutiba-Ben Boubaker, Ilhem; Slim, Amin

    2016-04-01

    Eighty-two nonduplicated ampicillin-resistant Enterococcus faecium (AREF) isolates from clinical infections at the Charles Nicolle Hospital of Tunisia were investigated. They were collected from January 2001 to December 2009. Genetic relationship between them was studied using pulsed-field gel electrophoresis. The amino acid sequence difference variations of the C-terminal part of penicillin-binding protein 5 (PBP5) versus levels of expressed mRNA were investigated by polymerase chain reaction (PCR), sequencing, and real-time PCR quantification of (PBP5), respectively. No β-lactamase activity was detected and none of our strains showed resistance to glycopeptides, which retain their therapeutic efficiency against enterococcal infections in our hospital. Pattern analysis of the strains revealed six main clones disseminating in different wards. Sequence data revealed the existence of 19 different plp5 alleles with a difference in 16 amino acid positions spanning from residue 414 to 632. Each allele presented at least five amino acid substitutions (His-470→Gln, Asn-496→Lys, Ala-499→Thr, Glu-525→Asp, and Glu-629→Val). No correlation between amino acid sequence polymorphism of PBP5 and levels of ampicillin resistance was detected. The levels of plp5 mRNA expression varied between strains and did not always correlate with levels of ampicillin resistance in clinical AREF. PMID:26618475

  6. Effect of addition of esters of fatty acids on the microstructure and properties of sintered Nd-Fe-B magnets produced by PLP

    NASA Astrophysics Data System (ADS)

    Popov, A. G.; Gaviko, V. S.; Shchegoleva, N. N.; Golovnia, O. A.; Gorbunova, T. I.; Hadjipanayis, G. C.

    2015-07-01

    High filling density of powders for production of sintered Nd-Fe-B magnets by the pressless process (PLP) impedes magnetic alignment. The latter can be enhanced by reduction of friction forces between powder particles. Thus, increase in the remanence and maximum energy product of the magnets by lubrication of powder particles is studied. Esters of fatty acids have been added in toluene or acetone in the course of grinding of Nd-Fe-B alloy in a vibratory mill. Coated by a thin layer of a lubricant powders have been aligned in pulsed magnetic field. It is shown that the remanence of sintered magnets has been increased by 5-7%. Lubricant concentration should not exceed critical values, which for the lubricants used varied between 2.0 wt% (ethyl butyrate) and 0.3 wt% (ethyl laurate). Otherwise, the complicated removal of lubricant residue leads to reaction of the latter with Nd-rich grain-boundary phase in the course of sintering and results in a sharp decrease in magnetic hysteresis properties. Addition of lubricating additives allows one to produce PLP-magnets with density exceeding 7.5 g/cm3, Br≥14 kG, Hc≥9 kOe and (BH)max≥45 MG Oe.

  7. Postnatal depression and socio-cultural practices among postnatal mothers in Kota Bahru, Kelantan, Malaysia.

    PubMed

    Azidah, A K; Shaiful, B I; Rusli, N; Jamil, M Y

    2006-03-01

    This is a cross sectional study to determine the relationship of postnatal depression (PND) and socio-cultural practices post-delivery among women in Kota Bharu, Kelantan. Four hundred and twenty one pregnant women were screened for depression between 36 - 42 weeks of pregnancy, 1 week and 4 - 6 weeks postpartum using Edinburgh Postnatal Depression Scale (EPDS). The women also completed questionnaires on socio-demography, psychosocial support and traditional postnatal care. The prevalence of PND at 4-6 weeks postpartum was 20.7%. Depressive symptoms at the end of pregnancy (p<0.05) and one week postpartum (p<0.05), worry about the baby (p<0.05), use of traditional medication (p<0.05) and traditional massage (p<0.05) were significantly associated with PND. PMID:16708738

  8. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature

    PubMed Central

    Sabine, Amélie; Bovay, Esther; Demir, Cansaran Saygili; Kimura, Wataru; Jaquet, Muriel; Agalarov, Yan; Zangger, Nadine; Scallan, Joshua P.; Graber, Werner; Gulpinar, Elgin; Kwak, Brenda R.; Mäkinen, Taija; Martinez-Corral, Inés; Ortega, Sagrario; Delorenzi, Mauro; Kiefer, Friedemann; Davis, Michael J.; Djonov, Valentin; Miura, Naoyuki; Petrova, Tatiana V.

    2015-01-01

    Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease. PMID:26389677

  9. Postnatal glucocorticoid exposure alters the adult phenotype.

    PubMed

    He, Jing; Varma, Amit; Weissfeld, Lisa A; Devaskar, Sherin U

    2004-07-01

    We examined the effect of six doses of dexamethasone (Dex) administered daily (2-7 days of age) to postnatal rats on body weight gain, food and water intake, peripheral hormonal/metabolic milieu, and hypothalamic neuropeptides that regulate food intake. We observed a Dex-induced acute (3 days of age) suppression of endogenous corticosterone and an increase in circulating leptin concentrations that were associated with a decrease in body weight in males and females. Followup during the suckling, postsuckling, and adult stages (7-120 days of age) revealed hypoleptinemia in males and females, and hypoinsulinemia, a relative increase in the glucose-to-insulin ratio, and a larger increase in skeletal muscle glucose transporter (GLUT 4) concentrations predominantly in the males, reflective of a catabolic state associated with a persistent decrease in body weight gain. The increase in the glucose-to-insulin ratio and hyperglycemia was associated with an increase in water intake. In addition, the changes in the hormonal/metabolic milieu were associated with an increase in hypothalamic neuropeptide Y content in males and females during the suckling phase, which persisted only in the 120-day-old female with a transient postnatal decline in alpha-melanocyte-stimulating hormone and corticotropin-releasing factor. This increase in neuropeptide Y (NPY) during the suckling phase in males and females was associated with a subsequent increase in adult food intake that outweighed the demands of body weight gain. In contrast to the adult hypothalamic findings, cerebral ventricular dilatation was more prominent in adult males. We conclude that postnatal Dex treatment causes permanent sex-specific changes in the adult phenotype, setting the stage for future development of diabetes (increased glucose:insulin ratio), obesity (increased NPY and food intake), and neurological impairment (loss of cerebral volume). PMID:15001431

  10. Prenatal immunotoxicant exposure and postnatal autoimmune disease.

    PubMed Central

    Holladay, S D

    1999-01-01

    Reports in humans and rodents indicate that immune development may be altered following perinatal exposure to immunotoxic compounds, including chemotherapeutics, corticosteroids, polycyclic hydrocarbons, and polyhalogenated hydrocarbons. Effects from such exposure may be more dramatic or persistent than following exposure during adult life. For example, prenatal exposure to the insecticide chlordane or to the polycyclic aromatic hydrocarbon benzo[(italic)a(/italic)]pyrene produces what appears to be lifelong immunosuppression in mice. Whether prenatal immunotoxicant exposure may predispose the organism to postnatal autoimmune disease remains largely unknown. In this regard, the therapeutic immunosuppressant cyclosporin A (CsA) crosses the placenta poorly. However, lethally irradiated rodents exposed to CsA postsyngeneic bone marrow transplant (i.e., during re-establishment of the immune system) develop T-cell-mediated autoimmune disease, suggesting this drug may produce a fundamental disruption in development of self-tolerance by T cells. The environmental contaminant 2,3,7, 8-tetrachlorodibenzo-(italic)p(/italic)-dioxin (TCDD) crosses the placenta and produces fetal thymic effects (italic)in vivo(/italic) similar to effects of CsA in fetal thymic organ culture, including inhibited thymocyte maturation and reduced expression of thymic major histocompatability complex class II molecules. These observations led to the suggestion that gestational exposure to TCDD may interfere with normal development of self-tolerance. Possibly supporting this hypothesis, when mice predisposed to development of autoimmune disease were treated with TCDD during gestation, postnatal autoimmunity was exacerbated. Similar results have been reported for mice exposed to diethylstilbestrol during development. These reports suggest that prenatal exposure to certain immunotoxicants may play a role in postnatal expression of autoimmunity. PMID:10502532

  11. Postnatal Evaluation and Outcome of Prenatal Hydronephrosis

    PubMed Central

    Sadeghi-Bojd, Simin; Kajbafzadeh, Abdol-Mohammad; Ansari-Moghadam, Alireza; Rashidi, Somaye

    2016-01-01

    Background: Prenatal hydronephrosis (PNH) is dilation in urinary collecting system and is the most frequent neonatal urinary tract abnormality with an incidence of 1% to 5% of all pregnancies. PNH is defined as anteroposterior diameter (APD) of renal pelvis ≥ 4 mm at gestational age (GA) of < 33 weeks and APD ≥ 7 mm at GA of ≥ 33 weeks to 2 months after birth. All patients need to be evaluated after birth by postnatal renal ultrasonography (US). In the vast majority of cases, watchful waiting is the only thing to do; others need medical or surgical therapy. Objectives: There is a direct relationship between APD of renal pelvis and outcome of PNH. Therefore we were to find the best cutoff point APD of renal pelvis which leads to surgical outcome. Patients and Methods: In this retrospective cohort study we followed 200 patients 1 to 60 days old with diagnosis of PNH based on before or after birth ultrasonography; as a prenatal or postnatal detected, respectively. These patients were referred to the nephrology clinic in Zahedan Iran during 2011 to 2013. The first step of investigation was a postnatal renal US, by the same expert radiologist and classifying the patients into 3 groups; normal, mild/moderate and severe. The second step was to perform voiding cystourethrogram (VCUG) for mild/moderate to severe cases at 4 - 6 weeks of life. Tc-diethylene triamine-pentaacetic acid (DTPA) was the last step and for those with normal VCUG who did not show improvement in follow-up examination, US to evaluate obstruction and renal function. Finally all patients with mild/moderate to severe PNH received conservative therapy and surgery was preserved only for progressive cases, obstruction or renal function ≤35%. All patients’ data and radiologic information was recorded in separate data forms, and then analyzed by SPSS (version 22). Results: 200 screened PNH patients with male to female ratio 3.5:1 underwent first postnatal control US, of whom 65% had normal, 18% mild

  12. Hydronephrosis: prenatal and postnatal evaluation and management.

    PubMed

    Liu, Dennis B; Armstrong, William R; Maizels, Max

    2014-09-01

    Antenatal hydronephrosis (ANH) is one of the most frequently detected abnormalities found on routine prenatal ultrasounds, affecting 1% to 4.5% of all pregnancies. Despite its prevalence, there continues to be uncertainty regarding the clinical impact after birth. Prognosis depends on the severity of the dilation. Expectant prenatal management is the rule with fetal intervention rarely needed in a few select cases. Ureteropelvic junction obstruction and vesicoureteral reflux are the most common postnatal diagnoses. A renal and bladder ultrasound is essential in the follow-up of patients with ANH and helps dictate further investigation with voiding cystourethrography and/or diuretic renography. PMID:25155734

  13. Antenatal hydronephrosis with postnatal resolution: how long are postnatal studies warranted?

    PubMed

    Gatti, J M; Broecker, B H; Scherz, H C; Perez-Brayfield, M R; Kirsch, A J

    2001-06-01

    We present 2 cases of antenatal hydronephrosis with initial normalization of postnatal studies. Both patients experienced late-onset (6 and 22 months) hydronephrosis secondary to ureteropelvic junction obstruction, necessitating surgical intervention. These cases raise questions about the need for late follow-up imaging in patients with apparent resolution of hydronephrosis diagnosed antenatally. PMID:11377338

  14. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation

    PubMed Central

    Xavier, Guilherme M.; Patist, Amanda L.; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T.; Pedro Martinez-Barbera, Juan; Thavaraj, Selvam; Cobourne, Martyn T.; Andoniadou, Cynthia L.

    2015-01-01

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma. PMID:26411543

  15. Activated WNT signaling in postnatal SOX2-positive dental stem cells can drive odontoma formation.

    PubMed

    Xavier, Guilherme M; Patist, Amanda L; Healy, Chris; Pagrut, Ankita; Carreno, Gabriela; Sharpe, Paul T; Martinez-Barbera, Juan Pedro; Thavaraj, Selvam; Cobourne, Martyn T; Andoniadou, Cynthia L

    2015-01-01

    In common with most mammals, humans form only two dentitions during their lifetime. Occasionally, supernumerary teeth develop in addition to the normal complement. Odontoma represent a small group of malformations containing calcified dental tissues of both epithelial and mesenchymal origin, with varying levels of organization, including tooth-like structures. The specific cell type responsible for the induction of odontoma, which retains the capacity to re-initiate de novo tooth development in postnatal tissues, is not known. Here we demonstrate that aberrant activation of WNT signaling by expression of a non-degradable form of β-catenin specifically in SOX2-positive postnatal dental epithelial stem cells is sufficient to generate odontoma containing multiple tooth-like structures complete with all dental tissue layers. Genetic lineage-tracing confirms that odontoma form in a similar manner to normal teeth, derived from both the mutation-sustaining epithelial stem cells and adjacent mesenchymal tissues. Activation of the WNT pathway in embryonic SOX2-positive progenitors results in ectopic expression of secreted signals that promote odontogenesis throughout the oral cavity. Significantly, the inductive potential of epithelial dental stem cells is retained in postnatal tissues, and up-regulation of WNT signaling specifically in these cells is sufficient to promote generation and growth of ectopic malformations faithfully resembling human odontoma. PMID:26411543

  16. Small particles disrupt postnatal airway development

    PubMed Central

    Lee, DongYoub; Wallis, Chris; Schelegle, Edward S.; Van Winkle, Laura S.; Plopper, Charles G.; Fanucchi, Michelle V.; Kumfer, Ben; Kennedy, Ian M.; Chan, Jackie K. W.

    2010-01-01

    Increasing numbers of epidemiologic studies associate air pollution exposure in children with decreased lung function development. The objective of this study was to examine the effects of exposure to combustion-generated fine [230 and 212 nm number mean aerodynamic particle diameter (NMAD)] to ultrafine (73 nm NMAD) particles differing in elemental (EC) and organic (OC) carbon content on postnatal airway development in rats. Neonatal Sprague-Dawley rats were exposed from postnatal day 7 through 25, and lung function and airway architecture were evaluated 81 days of age. In a separate group of rats, cell proliferation was examined after a single particle exposure at 7 days of age. Early life exposure to 73 nm high OC/EC particles altered distal airway architecture and resulted in subtle changes in lung mechanics. Early life exposure to 212 nm high OC/EC particles did not alter lung architecture but did alter lung mechanics in a manner suggestive of central airway changes. In contrast, early life exposure to 230 nm low OC/EC particles did not alter lung architecture or mechanics. A single 6-h exposure to 73 nm high OC/EC particle decreased airway cell proliferation, whereas 212 nm high OC/EC particles increased it and 230 nm low OC/EC particles did not. The early life exposure to ultrafine, high OC/EC particles results in persistent alterations in distal airway architecture that is characterized by an initial decrease in airway cell proliferation. PMID:20634362

  17. Prenatal hydronephrosis: postnatal evaluation and management.

    PubMed

    Vemulakonda, Vijaya; Yiee, Jenny; Wilcox, Duncan T

    2014-08-01

    Congenital hydronephrosis is one of the most common anomalies identified on antenatal ultrasound. The underlying etiology of congenital hydronephrosis is multifold, ranging from transient hydronephrosis in utero to clinically significant congenital anomalies of the kidney and urinary tract. While traditional management of hydronephrosis was aimed at relieving symptoms, the advent of routine prenatal ultrasound has led to a shift in the goal of treatment to prevention of renal injury in the asymptomatic patient. However, despite this focus on renal preservation, the diagnostic criteria for identification of children "at risk" for renal damage that can be alleviated by surgical treatment remain a subject of debate. Both antenatal and postnatal imaging studies have been evaluated as indicators for potential reversible renal damage and have been used as potential indicators of the need for surgical intervention. The aim of this review is to discuss the current literature regarding the role of postnatal clinical and radiographic evaluation to identify children who may benefit from early surgical intervention. PMID:24927968

  18. Fetal and postnatal ovine mesenteric vascular reactivity

    PubMed Central

    Nair, Jayasree; Gugino, Sylvia F.; Nielsen, Lori C.; Caty, Michael G.; Lakshminrusimha, Satyan

    2016-01-01

    BACKGROUND Intestinal circulation and mesenteric arterial (MA) reactivity may play a role in preparing the fetus for enteral nutrition. We hypothesized that MA vasoreactivity changes with gestation and vasodilator pathways predominate in the postnatal period. METHODS Small distal MA rings (0.5-mm diameter) were isolated from fetal (116-d, 128-d, 134-d, and 141-d gestation, term ~ 147 d) and postnatal lambs. Vasoreactivity was evaluated using vasoconstrictors (norepinephrine (NE) after pretreatment with propranolol and endothelin-1(ET-1)) and vasodilators (NO donors A23187 and s-nitrosopenicillamine (SNAP)). Protein and mRNA assays for receptors and enzymes (endothelin receptor A, alpha-adrenergic receptor 1A (ADRA1A), endothelial NO synthase (eNOS), soluble guanylyl cyclase (sGC), and phosphodiesterase5 (PDE5)) were performed in mesenteric arteries. RESULTS MA constriction to NE and ET-1 peaked at 134 d. Relaxation to A23187 and SNAP was maximal after birth. Basal eNOS activity was low at 134 d. ADRA1A mRNA and protein increasedsignificantlyat134danddecreasedpostnatally.sGC and PDE5 protein increased from 134 to 141 d. CONCLUSION Mesenteric vasoconstriction predominates in late-preterm gestation (134 d; the postconceptional age with the highest incidence of necrotizing enterocolitis (NEC)) followed by a conversion to vasodilatory influences near the time of full-term birth. Perturbations in this ontogenic mechanism, including preterm birth, may be a risk factor for NEC. PMID:26672733

  19. Postnatal Support for Mothers of Children with Down Syndrome

    ERIC Educational Resources Information Center

    Skotko, Brian; Bedia, Ricardo Canal

    2005-01-01

    Delivering and receiving a postnatal diagnosis of Down syndrome is not an easy experience for most physicians or parents. In this study, 467 mothers of children with Down syndrome in Spain completed a survey about the postnatal support services they received immediately following the diagnosis of their child. Mothers reported feeling anxious,…

  20. Postnatal Depression. A Review. EUR/HFA Target 8.

    ERIC Educational Resources Information Center

    World Health Organization, Copenhagen (Denmark). Regional Office for Europe.

    This document contains three reports on postnatal depression. The first, "The Maternity Blues," by Flemming Warborg Larsen, presents a literature review on the topic. It concludes that most women look back at the "blues" as an episode that was brief, unpleasant, and difficult to explain. The second report, "Postnatal Depressions," by Lene Lier,…

  1. [Effect of ladasten on antenatal and postnatal development].

    PubMed

    Bugaeva, L I; Denisova, T D; Spasov, A A

    2012-01-01

    Positive effects of ladasten on both antenatal and postnatal development have been established in experiments on pregnant female rats. Under the action of this drug, the number of resorption events decreases and process of antenatal development of fetuses is activated. In the postnatal period, increased weight gain and accelerated physical development has been observed in the progeny of rats treated with ladasten. PMID:22702107

  2. Antenatally diagnosed hydronephrosis: current postnatal management.

    PubMed

    Davenport, Michael T; Merguerian, Paul A; Koyle, Martin

    2013-03-01

    The issue of antenatal hydronephrosis has become a routine component for the care of a pregnant woman despite limited evidence of a clinical benefit. The genitourinary tract represents the most commonly detected organ system with identified abnormalities, with antenatal hydronephrosis (ANH), being the most notable and common finding. ANH represents a spectrum, with most cases being a trivial and inconsequential finding on maternal fetal ultrasound. However, there is a correlation with increased grades of ANH being associated with increased severity of urinary tract pathology. Most patients can be managed expectantly with appropriate evaluation commenced postnatally based on severity of ANH and proper parental counseling and education. The purpose of this review was to assess current literature and guidelines pertaining to ANH and incorporate our practical interpretations of their significance. PMID:23325322

  3. Validation of the Edinburgh Postnatal Depression Scale (EPDS) in non-postnatal women.

    PubMed

    Cox, J L; Chapman, G; Murray, D; Jones, P

    1996-07-29

    This paper reports the validation of the EPDS against a Research Diagnostic Criteria diagnosis of Major and Minor depression. The EPDS was administered to non-postnatal women with older children (mean age of youngest child 3 years 9 months) and to postnatal women (baby aged 6 months). All who scored 9 or above and one third of low scorers were interviewed, using Goldberg's Clinical Interview Schedule. The study confirmed good user acceptability of the EPDS when administered as a postal questionnaire (92% response rate). The EPDS was found to have satisfactory sensitivity (79%) and specificity (85%). Our findings suggest that the EPDS take a place alongside other screening scales for depression in Community samples. It is proposed that when used in these settings it is referred to as the Edinburgh Depression Scale. PMID:8856422

  4. Identification of the hemangioblast in postnatal life.

    PubMed

    Pelosi, Elvira; Valtieri, Mauro; Coppola, Simona; Botta, Rosanna; Gabbianelli, Marco; Lulli, Valentina; Marziali, Giovanna; Masella, Barbara; Müller, Robert; Sgadari, Cecilia; Testa, Ugo; Bonanno, Giuseppina; Peschle, Cesare

    2002-11-01

    Postnatal CD34(+) cells expressing vascular endothelial growth factor receptor 2 (KDR) generate hematopoietic or endothelial progeny in different in vitro and in vivo assays. Hypothetically, CD34(+)KDR(+) cells may comprise hemangioblasts bipotent for both lineages. This hypothesis is consistent with 2 series of experiments. In the first series, in clonogenic culture permissive for hematopoietic and endothelial cell growth, CD34(+)KDR(+) cells generate large hemato-endothelial (Hem-End) colonies (5% of seeded cells), whereas CD34(+)KDR(-) cells do not. Limiting-dilution analysis indicates that Hem-End colonies are clonally generated by single hemangioblasts. Sibling cells generated by a hemangioblast, replated in unicellular culture, produce either hematopoietic or Hem-End colonies, depending on the specific culture conditions. Identification of endothelial cells was based on the expression of VE-cadherin and endothelial markers and with lack of CD45 and hematopoietic molecules, as evaluated by immunofluorescence, immunocytochemistry, and reverse transcription-polymerase chain reaction. Furthermore, endothelial cells were functionally identified using low-density lipoprotein (LDL) uptake and tube-formation assays. In the second series, to evaluate the self-renewal capacity of hemangioblasts, single CD34(+)KDR(+) cells were grown in 3-month extended long-term culture (ELTC) through 3 serial culture rounds-that is, blast cells generated in unicellular ELTC were reseeded for a subsequent round of unicellular ELTC. After 9 months, 10% blasts from tertiary ELTC functioned as hemangioblasts and generated macroscopic Hem-End colonies in clonogenic culture. These studies identified postnatal hemangioblasts in a CD34(+)KDR(+) cell subset, endowed with long-term proliferative potential and bilineage differentiation capacity. Although exceedingly rare, hemangioblasts may represent the lifetime source/reservoir for primitive hematopoietic and endothelial progenitors. PMID

  5. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications.

    PubMed

    Harb, Kawssar; Magrinelli, Elia; Nicolas, Céline S; Lukianets, Nikita; Frangeul, Laura; Pietri, Mariel; Sun, Tao; Sandoz, Guillaume; Grammont, Franck; Jabaudon, Denis; Studer, Michele; Alfano, Christian

    2016-01-01

    During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features. PMID:26814051

  6. Partial requirement of endothelin receptor B in spiral ganglion neurons for postnatal development of hearing.

    PubMed

    Ida-Eto, Michiru; Ohgami, Nobutaka; Iida, Machiko; Yajima, Ichiro; Kumasaka, Mayuko Y; Takaiwa, Kazutaka; Kimitsuki, Takashi; Sone, Michihiko; Nakashima, Tsutomu; Tsuzuki, Toyonori; Komune, Shizuo; Yanagisawa, Masashi; Kato, Masashi

    2011-08-26

    Impairments of endothelin receptor B (Ednrb/EDNRB) cause the development of Waardenburg-Shah syndrome with congenital hearing loss, hypopigmentation, and megacolon disease in mice and humans. Hearing loss in Waardenburg-Shah syndrome has been thought to be caused by an Ednrb-mediated congenital defect of melanocytes in the stria vascularis (SV) of inner ears. Here we show that Ednrb expressed in spiral ganglion neurons (SGNs) in inner ears is required for postnatal development of hearing in mice. Ednrb protein was expressed in SGNs from WT mice on postnatal day 19 (P19), whereas it was undetectable in SGNs from WT mice on P3. Correspondingly, Ednrb homozygously deleted mice (Ednrb(-/-) mice) with congenital hearing loss showed degeneration of SGNs on P19 but not on P3. The congenital hearing loss involving neurodegeneration of SGNs as well as megacolon disease in Ednrb(-/-) mice were markedly improved by introducing an Ednrb transgene under control of the dopamine β-hydroxylase promoter (Ednrb(-/-);DBH-Ednrb mice) on P19. Neither defects of melanocytes nor hypopigmentation in the SV and skin in Ednrb(-/-) mice was rescued in the Ednrb(-/-);DBH-Ednrb mice. Thus, the results of this study indicate a novel role of Ednrb expressed in SGNs distinct from that in melanocytes in the SV contributing partially to postnatal hearing development. PMID:21715336

  7. Spatial and Age-Dependent Hair Cell Generation in the Postnatal Mammalian Utricle.

    PubMed

    Gao, Zhen; Kelly, Michael C; Yu, Dehong; Wu, Hao; Lin, Xi; Chi, Fang-Lu; Chen, Ping

    2016-04-01

    Loss of vestibular hair cells is a common cause of balance disorders. Current treatment options for bilateral vestibular dysfunction are limited. During development, atonal homolog 1 (Atoh1) is sufficient and necessary for the formation of hair cells and provides a promising gene target to induce hair cell generation in the mammals. In this study, we used a transgenic mouse line to test the age and cell type specificity of hair cell induction in the postnatal utricle in mice. We found that forced Atoh1 expression in vivo can induce hair cell formation in the utricle from postnatal days 1 to 21, while the efficacy of hair cell induction is progressively reduced as the animals become older. In the utricle, the induction of hair cells occurs both within the sensory region and in cells in the transitional epithelium next to the sensory region. Within the sensory epithelium, the central region, known as the striola, is most subjective to the induction of hair cell formation. Furthermore, forced Atoh1 expression can promote proliferation in an age-dependent manner that mirrors the progressively reduced efficacy of hair cell induction in the postnatal utricle. These results suggest that targeting both cell proliferation and Atoh1 in the utricle striolar region may be explored to induce hair cell regeneration in mammals. The study also demonstrates the usefulness of the animal model that provides an in vivo Atoh1 induction model for vestibular regeneration studies. PMID:25666161

  8. Postnatal alterations in GABAB receptor tone produce sensorimotor gating deficits and protein level differences in adulthood.

    PubMed

    Bolton, Monica M; Heaney, Chelcie F; Murtishaw, Andrew S; Sabbagh, Jonathan J; Magcalas, Christy M; Kinney, Jefferson W

    2015-04-01

    The GABA transmitter system plays a vital role in modulating synaptic formation and activity during development. The GABAB receptor subtype in particular has been implicated in cell migration, promotion of neuronal differentiation, neurite outgrowth, and synapse formation but it's role in development is not well characterized. In order to investigate the effects of brief alterations in GABAB signaling in development, we administered to rats the GABAB agonist baclofen (2.0mg/kg) or antagonist phaclofen (0.3mg/kg) on postnatal days 7, 9, and 12, and evaluated sensorimotor gating in adulthood. We also examined tissue for changes in multiple proteins associated with GABAB receptor function and proteins associated with synapse formation. Our data indicate that early postnatal alterations to GABAB receptor-mediated signaling produced sex differences in sensorimotor gating in adulthood. Additionally, we found differences in GABAB receptor subunits and kalirin protein levels in the brain versus saline treated controls. Our data demonstrate that a subtle alteration in GABAB receptor function in early postnatal life induces changes that persist into adulthood. PMID:25314921

  9. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications

    PubMed Central

    Harb, Kawssar; Magrinelli, Elia; Nicolas, Céline S; Lukianets, Nikita; Frangeul, Laura; Pietri, Mariel; Sun, Tao; Sandoz, Guillaume; Grammont, Franck; Jabaudon, Denis; Studer, Michèle; Alfano, Christian

    2016-01-01

    During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features. DOI: http://dx.doi.org/10.7554/eLife.09531.001 PMID:26814051

  10. Mild to moderate postnatal hydronephrosis--grading systems and management.

    PubMed

    Timberlake, Matthew D; Herndon, C D Anthony

    2013-11-01

    No universal guidelines exist for the management of patients with mild to moderate antenatal hydronephrosis (ANH). Unsurprisingly, practice patterns vary considerably with respect to recommendations for postnatal evaluation and follow-up imaging schedule. Although some clinical tools are available to specifically grade ANH and postnatal hydronephrosis, these are commonly used interchangeably with varying degrees of success. A universal classification system and nomenclature are needed to best identify patients at risk of renal deterioration, UTI and need for surgical intervention. We present our own approach to postnatal risk stratification and management, including recommendations regarding serial ultrasonography schedule, prophylactic antibiotics, voiding cystourethrogram and renal scintigraphy. PMID:23958828

  11. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects.

    PubMed

    Sharma, Deepak; Shastri, Sweta; Sharma, Pradeep

    2016-01-01

    Intrauterine growth restriction (IUGR), a condition that occurs due to various reasons, is an important cause of fetal and neonatal morbidity and mortality. It has been defined as a rate of fetal growth that is less than normal in light of the growth potential of that specific infant. Usually, IUGR and small for gestational age (SGA) are used interchangeably in literature, even though there exist minute differences between them. SGA has been defined as having birth weight less than two standard deviations below the mean or less than the 10th percentile of a population-specific birth weight for specific gestational age. These infants have many acute neonatal problems that include perinatal asphyxia, hypothermia, hypoglycemia, and polycythemia. The likely long-term complications that are prone to develop when IUGR infants grow up includes growth retardation, major and subtle neurodevelopmental handicaps, and developmental origin of health and disease. In this review, we have covered various antenatal and postnatal aspects of IUGR. PMID:27441006

  12. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects

    PubMed Central

    Sharma, Deepak; Shastri, Sweta; Sharma, Pradeep

    2016-01-01

    Intrauterine growth restriction (IUGR), a condition that occurs due to various reasons, is an important cause of fetal and neonatal morbidity and mortality. It has been defined as a rate of fetal growth that is less than normal in light of the growth potential of that specific infant. Usually, IUGR and small for gestational age (SGA) are used interchangeably in literature, even though there exist minute differences between them. SGA has been defined as having birth weight less than two standard deviations below the mean or less than the 10th percentile of a population-specific birth weight for specific gestational age. These infants have many acute neonatal problems that include perinatal asphyxia, hypothermia, hypoglycemia, and polycythemia. The likely long-term complications that are prone to develop when IUGR infants grow up includes growth retardation, major and subtle neurodevelopmental handicaps, and developmental origin of health and disease. In this review, we have covered various antenatal and postnatal aspects of IUGR. PMID:27441006

  13. Reduced response of splenocytes after mitogen-stimulation in the prion protein (PrP) gene-deficient mouse: PrPLP/Doppel production and cerebral degeneration

    SciTech Connect

    Kim, Chi-Kyeong; Hirose, Yuko; Sakudo, Akikazu; Takeyama, Natsumi; Kang, Chung-Boo; Taniuchi, Yojiro; Matsumoto, Yoshitsugu; Itohara, Shigeyoshi; Sakaguchi, Suehiro; Onodera, Takashi . E-mail: aonoder@mail.ecc.u-tokyo.ac.jp

    2007-06-29

    Splenocytes of wild-type (Prnp {sup +/+}) and prion protein gene-deficient (Prnp {sup -/-}) mice were treated with various activation stimuli such as T cell mitogen concanavalin A (ConA), phorbol 12-myristate 13-acetate (PMA) + ionomycin (Io), or B cell mitogen lipopolysaccharide (LPS). Cellular prion protein (PrP{sup C}) expression was enhanced following ConA stimulation, but not PMA + Io or LPS in Prnp {sup +/+} splenocytes. Rikn Prnp {sup -/-} splenocytes elicited lower cell proliferations than Prnp {sup +/+} or Zrch I Prnp {sup -/-} splenocytes after LPS stimulation and showed sporadic nerve cells in the cerebral cortex and deeper structure. Around the degenerated nerve cells, mild vacuolation in the neuropil was observed. This neural alteration correlated well to the suppressed response of B cells in the spleen. The finding that discrete lesions within the central nervous systems induced marked modulation of immune function probably indicates the existence of a delicately balanced neural-endocrine network by PrP{sup C} and PrPLP/Doppel.

  14. Postnatal evaluation of infants with an abnormal antenatal renal sonogram

    PubMed Central

    Becker, Amy M.

    2009-01-01

    Purpose of review Antenatally detected renal abnormalities are frequently encountered. Recommended postnatal evaluation of these infants has evolved to minimize invasive testing while maximizing detection of significant abnormalities. Recent findings There is a low rate of detectable renal abnormalities in infants with a normal postnatal sonogram at 4–6 weeks of age. Routine prophylactic antibiotics are not indicated in infants with isolated antenatal hydronephrosis. Infants with a multicystic dysplastic kidney and a normal contralateral kidney on renal ultrasound do not require further evaluation. Parents of these children should be counseled on symptoms of urinary tract infections to allow prompt diagnosis. Summary All infants with abnormalities on antenatal sonogram should undergo postnatal evaluation with a sonogram after birth and at 4–6 weeks of age. Further evaluation can be safely limited when the postnatal sonogram is normal at 6 weeks of age. PMID:19663038

  15. Postnatal management of infants with antenatally detected hydronephrosis.

    PubMed

    Aksu, Nejat; Yavaşcan, Onder; Kangin, Murat; Kara, Orhan D; Aydin, Yahya; Erdoğan, Hakan; Tuncel, Tuba Cerçi; Cetinkaya, Ergün; Ozbay, Erkan; Sandikçioğlu, Tahir G

    2005-09-01

    With the increasing use of antenatal sonography, fetal hydronephrosis has been reported more frequently. Because of the lack of consensus regarding treatment of these infants, the postnatal approach toward fetal renal pelvis enlargement remains controversial. The aim of this prospective study is to demonstrate the postnatal investigation, treatment, and outcome of infants with prenatally diagnosed hydronephrosis. Infants whose antenatal ultrasound scan showed a fetal renal pelvis of 5 mm or greater were investigated postnatally using ultrasound (US) and voiding cystourethrography. When indicated, isotope studies and intravenous urograms were also performed. We followed prospectively neonates with antenatally diagnosed hydronephrosis and recommended management guidelines on the basis of our findings. In 156 neonates (193 kidney units) that were found to have hydronephrosis, the average gestational age at which the diagnosis was made was 32.94+/-5.10 weeks. The mean duration of postnatal follow-up was 26.3+/-13.56 months (range 3-60 months). The mean APPD of the fetal renal pelvis was 10.35+/-3.24 mm (5-9 mm in 84 kidneys, 10-14 mm in 96 kidneys and > or =15 mm in 13 kidneys). Of the 193 kidney units, 145 units were found to be pathological. The most common detected underlying abnormalities were ureteropelvic junction obstruction (in 91 kidneys; 62.7%) and vesicoureteral reflux (in 24 kidneys; 16.6%). Postnatally, 23 (45%) of 51 patients whose first US was normal were diagnosed postnatally as having urinary tract abnormality. There was a negative correlation between APPD and the rate of spontaneous resolution and positive correlation between APPD and the rate of surgery (P<0.01). In conclusion, because it is not possible to determine an upper limit of normal for the antenatal renal pelvis, any baby with AH should not be considered clinically insignificant. Infants with antenatal renal pelvis measurements > or =5 mm should be investigated postnatally. A normal

  16. DNA methylation markers in the postnatal developing rat brain

    PubMed Central

    Simmons, Rebecca K.; Stringfellow, Sara A.; Glover, Matthew E.; Wagle, Anjali A.; Clinton, Sarah M.

    2013-01-01

    In spite of intense interest in how altered epigenetic processes including DNA methylation may contribute to psychiatric and neurodevelopmental disorders, there is a limited understanding of how methylation processes change during early postnatal brain development. The present study used in situ hybridization to assess mRNA expression for the three major DNA methyltranserases (DNMTs) – DNMT1, DNMT3a and DNMT3b – in the developing rat brain at seven developmental timepoints: postnatal days (P) 1, 4, 7, 10, 14, 21, and 75. We also assessed 5-methylcytosine levels (an indicator of global DNA methylation) in selected brain regions during the first three postnatal weeks. DNMT1, DNMT3a and DNMT3b mRNAs are widely expressed throughout the adult and postnatal developing rat brain. Overall, DNMT mRNA levels reached their highest point in the first week of life and gradually decreased over the first three postnatal weeks within the hippocampus, amygdala, striatum, cingulate and lateral septum. Global DNA methylation levels did not follow this developmental pattern; methylation levels gradually increased over the first three postnatal weeks in the hippocampus, and remained stable in the developing amygdala and prefrontal cortex. Our results contribute to a growing understanding of how DNA methylation markers unfold in the developing brain, and highlight how these developmental processes may differ within distinct brain regions. PMID:23954679

  17. Imaginative resonance training (IRT) achieves elimination of amputees' phantom pain (PLP) coupled with a spontaneous in-depth proprioception of a restored limb as a marker for permanence and supported by pre-post functional magnetic resonance imaging (fMRI).

    PubMed

    Meyer, Paul; Matthes, Christoph; Kusche, Karl Erwin; Maurer, Konrad

    2012-05-31

    Non-pharmacological approaches such as mirror therapy and graded motor imagery often provide amelioration of amputees' phantom limb pain (PLP), but elimination has proved difficult to achieve. Proprioception of the amputated limb has been noted in studies to be defective and/or distorted in the presence of PLP, but has not, apparently, been researched for various stages of amelioration up to the absence of PLP. Previous studies using functional magnetic resonance imaging (fMRI) suggested that pathological cortical reorganisation after amputation may be the underlying neurobiological correlate of PLP. We report two cases of permanent elimination of PLP after application of imaginative resonance training. The patients, 69 years and 84 years old, reported freedom from PLP together with in-depth achievement of proprioception of a restored limb at the end of the treatment, which may thus be taken as an indication of permanence. Pre/post fMRI for the first case showed, against a group of healthy controls, analogous changes of activation in the sensorimotor cortex. PMID:22748628

  18. Irx3 is required for postnatal maturation of the mouse ventricular conduction system

    PubMed Central

    Kim, Kyoung-Han; Rosen, Anna; Hussein, Samer M. I.; Puviindran, Vijitha; Korogyi, Adam S.; Chiarello, Carmelina; Nagy, Andras; Hui, Chi-chung; Backx, Peter H.

    2016-01-01

    The ventricular conduction system (VCS) orchestrates the harmonious contraction in every heartbeat. Defects in the VCS are often associated with life-threatening arrhythmias and also promote adverse remodeling in heart disease. We have previously established that the Irx3 homeobox gene regulates rapid electrical propagation in the VCS by modulating the transcription of gap junction proteins Cx40 and Cx43. However, it is unknown whether other factors contribute to the conduction defects observed in Irx3 knockout (Irx3−/−) mice. In this study, we show that during the early postnatal period, Irx3−/− mice develop morphological defects in the VCS which are temporally dissociated from changes in gap junction expression. These morphological defects were accompanied with progressive changes in the cardiac electrocardiogram including right bundle branch block. Hypoplastic VCS was not associated with increased apoptosis of VCS cardiomyocytes but with a lack of recruitment and maturation of ventricular cardiomyocytes into the VCS. Computational analysis followed by functional verification revealed that Irx3 promotes VCS-enriched transcripts targeted by Nkx2.5 and/or Tbx5. Altogether, these results indicate that, in addition to ensuring the appropriate expression of gap junctional channels in the VCS, Irx3 is necessary for the postnatal maturation of the VCS, possibly via its interactions with Tbx5 and Nkx2.5. PMID:26786475

  19. Impact of AT2 Receptor Deficiency on Postnatal Cardiovascular Development

    PubMed Central

    Biermann, Daniel; Heilmann, Andreas; Didié, Michael; Schlossarek, Saskia; Wahab, Azadeh; Grimm, Michael; Römer, Maria; Reichenspurner, Hermann; Sultan, Karim R.; Steenpass, Anna; Ergün, Süleyman; Donzelli, Sonia; Carrier, Lucie; Ehmke, Heimo; Zimmermann, Wolfram H.; Hein, Lutz; Böger, Rainer H.; Benndorf, Ralf A.

    2012-01-01

    Background The angiotensin II receptor subtype 2 (AT2 receptor) is ubiquitously and highly expressed in early postnatal life. However, its role in postnatal cardiac development remained unclear. Methodology/Principal Findings Hearts from 1, 7, 14 and 56 days old wild-type (WT) and AT2 receptor-deficient (KO) mice were extracted for histomorphometrical analysis as well as analysis of cardiac signaling and gene expression. Furthermore, heart and body weights of examined animals were recorded and echocardiographic analysis of cardiac function as well as telemetric blood pressure measurements were performed. Moreover, gene expression, sarcomere shortening and calcium transients were examined in ventricular cardiomyocytes isolated from both genotypes. KO mice exhibited an accelerated body weight gain and a reduced heart to body weight ratio as compared to WT mice in the postnatal period. However, in adult KO mice the heart to body weight ratio was significantly increased most likely due to elevated systemic blood pressure. At postnatal day 7 ventricular capillarization index and the density of α-smooth muscle cell actin-positive blood vessels were higher in KO mice as compared to WT mice but normalized during adolescence. Echocardiographic assessment of cardiac systolic function at postnatal day 7 revealed decreased contractility of KO hearts in response to beta-adrenergic stimulation. Moreover, cardiomyocytes from KO mice showed a decreased sarcomere shortening and an increased peak Ca2+ transient in response to isoprenaline when stimulated concomitantly with angiotensin II. Conclusion The AT2 receptor affects postnatal cardiac growth possibly via reducing body weight gain and systemic blood pressure. Moreover, it moderately attenuates postnatal vascularization of the heart and modulates the beta adrenergic response of the neonatal heart. These AT2 receptor-mediated effects may be implicated in the physiological maturation process of the heart. PMID:23144713

  20. Effect of pre- and postnatal growth and post-weaning activity on glucose metabolism in the offspring.

    PubMed

    Dellschaft, Neele S; Alexandre-Gouabau, Marie-Cecile; Gardner, David S; Antignac, Jean-Philippe; Keisler, Duane H; Budge, Helen; Symonds, Michael E; Sebert, Sylvain P

    2015-02-01

    Maternal caloric restriction during late gestation reduces birth weight, but whether long-term adverse metabolic outcomes of intra-uterine growth retardation (IUGR) are dependent on either accelerated postnatal growth or exposure to an obesogenic environment after weaning is not established. We induced IUGR in twin-pregnant sheep using a 40% maternal caloric restriction commencing from 110 days of gestation until term (∼147 days), compared with mothers fed to 100% of requirements. Offspring were reared either as singletons to accelerate postnatal growth or as twins to achieve standard growth. To promote an adverse phenotype in young adulthood, after weaning, offspring were reared under a low-activity obesogenic environment with the exception of a subgroup of IUGR offspring, reared as twins, maintained in a standard activity environment. We assessed glucose tolerance together with leptin and cortisol responses to feeding in young adulthood when the hypothalamus was sampled for assessment of genes regulating appetite control, energy and endocrine sensitivity. Caloric restriction reduced maternal plasma glucose, raised non-esterified fatty acids, and changed the metabolomic profile, but had no effect on insulin, leptin, or cortisol. IUGR offspring whose postnatal growth was enhanced and were obese showed insulin and leptin resistance plus raised cortisol. This was accompanied by increased hypothalamic gene expression for energy and glucocorticoid sensitivity. These long-term adaptations were reduced but not normalized in IUGR offspring whose postnatal growth was not accelerated and remained lean in a standard post-weaning environment. IUGR results in an adverse metabolic phenotype, especially when postnatal growth is enhanced and offspring progress to juvenile-onset obesity. PMID:25416820

  1. Periconceptional events perturb postnatal growth regulation in sheep.

    PubMed

    Jaquiery, Anne L; Oliver, Mark H; Bloomfield, Frank H; Harding, Jane E

    2011-09-01

    Periconceptional undernutrition and twin conception alter intrauterine growth and metabolism and are associated with later adverse metabolic outcomes. The contribution of postnatal growth to these outcomes is less well defined. We investigated whether maternal periconceptional undernutrition or twin conception altered postnatal growth regulation in ways that could lead to metabolic disease. Single and twin offspring of ewes undernourished (UN) from 61 d before until 30 d after mating, fed to achieve and maintain 10-15% weight loss (UN), were compared with offspring of maintenance-fed controls (N). At 2 h and 1, 6, and 12 wk after birth, lambs were weighed and plasma hormone and metabolite concentrations analyzed. Milk intake, measured by deuterium oxide dilution, was inversely related to birth weight only in N singles, although twins had the greatest postnatal growth velocity. Positive associations were seen between milk intake, growth velocity, and leptin concentrations in N, but not UN, offspring. We conclude that periconceptional undernutrition alters the relationships between regulators of postnatal growth, including nutrient intake and key hormonal axes, in both singles and twins without affecting size at birth or postnatal growth velocity. Dissociation of growth from its key regulators is one possible mechanism underlying adverse metabolic outcomes after periconceptional undernutrition. PMID:21587096

  2. Prenatal stimulation and postnatal testosterone affects infanticide in female rats.

    PubMed

    Miley, W M; Blustein, J; Kennedy, K

    1982-04-01

    Prenatal handling, prenatal stress, and early postnatal exogeneous testosterone were examined in female rats for their effects on rat pup-killing and pup retrieval. During each of the last 5 days of pregnancy. Long-Evans rats received either 3 minutes of handling, 45 minutes of restraint and intense illumination or remained untouched. Half of the offspring of each group received testosterone from Day 1 after birth to Day 30. In adulthood, animals that received handling prenatally and testosterone postnatally killed pups more rapidly than any other group and a larger proportion did so than in the control groups. Animals not manipulated at any time retrieved pups more rapidly and a larger proportion did so than the combined other groups. The study suggests that prenatal handling interacts with testosterone presented immediately postnatally to increase infanticide in female rats. A variety of perinatal manipulations seem to suppress pup retrieval. PMID:7200619

  3. Stromal matrix metalloproteinase-11 is involved in the mammary gland postnatal development.

    PubMed

    Tan, J; Buache, E; Alpy, F; Daguenet, E; Tomasetto, C-L; Ren, G-S; Rio, M-C

    2014-07-31

    MMP-11 is a bad prognosis paracrine factor in invasive breast cancers. However, its mammary physiological function remains largely unknown. In the present study we have investigated MMP-11 function during postnatal mammary gland development and function using MMP-11-deficient (MMP-11-/-) mice. Histological and immunohistochemical analyses as well as whole-mount mammary gland staining show alteration of the mammary gland in the absence of MMP-11, where ductal tree, alveolar structures and milk production are reduced. Moreover, a series of transplantation experiments allowed us to demonstrate that MMP-11 exerts an essential local paracrine function that favors mammary gland branching and epithelial cell outgrowth and invasion through adjacent connective tissues. Indeed, MMP-11-/- cleared fat pads are not permissive for wild-type epithelium development, whereas MMP-11-/- epithelium transplants grow normally when implanted in wild-type cleared fat pads. In addition, using primary mammary epithelial organoids, we show in vitro that this MMP-11 pro-branching effect is not direct, suggesting that MMP-11 acts via production/release of stroma-associated soluble factor(s). Finally, the lack of MMP-11 leads to decreased periductal collagen content, suggesting that MMP-11 has a role in collagen homeostasis. Thus, local stromal MMP-11 might also regulate mammary epithelial cell behavior mechanically by promoting extracellular matrix stiffness. Collectively, the present data indicate that MMP-11 is a paracrine factor involved during postnatal mammary gland morphogenesis, and support the concept that the stroma strongly impact epithelial cell behavior. Interestingly, stromal MMP-11 has previously been reported to favor malignant epithelial cell survival and promote cancer aggressiveness. Thus, MMP-11 has a paracrine function during mammary gland development that might be harnessed to promote tumor progression, exposing a new link between development and malignancy. PMID:24141782

  4. Neurotrophic effects of L-DOPA in postnatal midbrain dopamine neuron/cortical astrocyte cocultures.

    PubMed

    Mena, M A; Davila, V; Sulzer, D

    1997-10-01

    L-DOPA is toxic to catecholamine neurons in culture, but the toxicity is reduced by exposure to astrocytes. We tested the effect of L-DOPA on dopamine neurons using postnatal ventral midbrain neuron/cortical astrocyte cocultures in serum-free, glia-conditioned medium. L-DOPA (50 microM) protected against dopamine neuronal cell death and increased the number and branching of dopamine processes. In contrast to embryonically derived glia-free cultures, where L-DOPA is toxic, postnatal midbrain cultures did not show toxicity at 200 microM L-DOPA. The stereoisomer D-DOPA (50-400 microM) was not neurotrophic. The aromatic amino acid decarboxylase inhibitor carbidopa (25 microM) did not block the neurotrophic effect. These data suggest that the neurotrophic effect of L-DOPA is stereospecific but independent of the production of dopamine. However, L-DOPA increased the level of glutathione. Inhibition of glutathione peroxidase by L-buthionine sulfoximine (3 microM for 24 h) blocked the neurotrophic action of L-DOPA. N-Acetyl-L-cysteine (250 microM for 48 h), which promotes glutathione synthesis, had a neurotrophic effect similar to that of L-DOPA. These data suggest that the neurotrophic effect of L-DOPA may be mediated, at least in part, by elevation of glutathione content. PMID:9326268

  5. Knowledge, attitudes, and breast feeding practices of postnatal mothers: A cross sectional survey

    PubMed Central

    Vijayalakshmi, Poreddi; Susheela, T; Mythili, D

    2015-01-01

    Background Breast feeding has several benefits for both the infants and mothers. However, despite strong evidences in support of breast feeding its prevalence has remained low worldwide. The objective of the present study was to examine the knowledge and attitude towards breast feeding and infant feeding practices among Indian postnatal mothers. Methodology A cross sectional descriptive study was carried out among randomly selected postnatal mothers at Pediatric outpatient department at a tertiary care center. Data was collected through face-to-face interview using a structured questionnaire. Results Our findings revealed that a majority (88.5%) of the mothers were breast feeders. However, merely 27% of the mothers were exclusive breast feeders and only 36.9% initiated breast feeding within an hour. While mothers have good knowledge on breast feeding (12.05±1.74, M±SD), the average score of the Iowa Infant Feeding Scale (IIFAS) (58.77±4.74, M ±SD) indicate neutral attitudes toward breast feeding. Mothers those who were currently breast feeding (58.83 ± 4.74) had more positive attitudes than non- breastfeed mothers (45.21±5.22). Conclusion Our findings also show that the level of exclusive breast-feeding was low. Thus, it is important to provide prenatal education to mothers and fathers on breast-feeding. We also recommend strengthening the public health education campaigns to promote breast-feeding. PMID:26715916

  6. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages

    PubMed Central

    Gibbings, Sophie L.; Goyal, Rajni; Desch, A. Nicole; Leach, Sonia M.; Prabagar, Miglena; Atif, Shaikh M.; Bratton, Donna L.; Janssen, William

    2015-01-01

    Alveolar macrophages (AMs) reside on the luminal surfaces of the airways and alveoli where they maintain host defense and promote alveolar homeostasis by ingesting inhaled particulates and regulating inflammatory responses. Recent studies have demonstrated that AMs populate the lungs during embryogenesis and self-renew throughout life with minimal replacement by circulating monocytes, except under extreme conditions of depletion or radiation injury. Here we demonstrate that on a global scale, environment appears to dictate AM development and function. Indeed, transcriptome analysis of embryonic host-derived and postnatal donor-derived AMs coexisting within the same mouse demonstrated >98% correlation and overall functional analyses were similar. However, we also identified several genes whose expression was dictated by origin rather than environment. The most differentially expressed gene not altered by environment was Marco, a gene recently demonstrated to have enhancer activity in embryonic-derived but not postnatal-derived tissue macrophages. Overall, we show that under homeostatic conditions, the environment largely dictates the programming and function of AMs, whereas the expression of a small number of genes remains linked to the origin of the cell. PMID:26232173

  7. Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus

    PubMed Central

    Volkenstein, Stefan; Oshima, Kazuo; Sinkkonen, Saku T.; Corrales, C. Eduardo; Most, Sam P.; Chai, Renjie; Jan, Taha A.; van Amerongen, Renée; Cheng, Alan G.; Heller, Stefan

    2013-01-01

    In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here we show that new neurons are born in the CN during the critical period of postnatal plasticity. Coincidently, we found a population of neural progenitor cells that are controlled by a complex interplay of Wnt, Notch, and TGFβ/BMP signaling, in which low levels of TGFβ/BMP signaling are permissive for progenitor proliferation that is promoted by Wnt and Notch activation. We further show that cells with activated Wnt signaling reside in the CN and that these cells have high propensity for neurosphere formation. Cochlear ablation resulted in diminishment of progenitors and Wnt/β-catenin-active cells, suggesting that the neonatal CN maintains an afferent innervation-dependent population of progenitor cells that display active canonical Wnt signaling. PMID:23940359

  8. Pulsed electromagnetic field improves postnatal neovascularization in response to hindlimb ischemia

    PubMed Central

    Li, Rui-Lin; Huang, Jing-Juan; Shi, Yi-Qin; Hu, An; Lu, Zhao-Yang; Weng, Liang; Wang, Shen-Qi; Han, Yi-Peng; Zhang, Lan; Hao, Chang-Ning; Duan, Jun-Li

    2015-01-01

    Pulsed electromagnetic fields (PEMF) have been shown to promote proliferation and regeneration in the damaged tissue. Here, we examined whether PEMF therapy improved postnatal neovascularization using murine model of hindlimb ischemia, and the underlying cellular/molecular mechanisms were further investigated. Hindlimb ischemia was induced by unilateral femoral artery resection using 6-8 week-old male C57BL6 mice. Then, mice were exposed to extracorporeal PEMF therapy (4 cycles, 8min/cycle, 30 ± 3 Hz, 5 mT) every day until day 14. Our data demonstrated that PEMF therapy significantly accelerated wound healing, decreased prevalence of gangrene and increased postnatal neovascularization. Moreover, the levels of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS) and Akt phosphorylation in ischemic muscles were markedly enhanced following PEMF therapy. In vitro, PEMF inhibited the process of hypoxia-induced apoptosis and augmented tube formation, migration and proliferative capacities of human umbilical vein endothelial cells (HUVECs). Additionally, PEMF exposure increased VEGF secretion, as well as the eNOS and Akt phosphorylation, and these benefits could be blocked by either phosphoinositide 3-kinase (PI3K) or eNOS inhibitor. In conclusion, our data indicated that PEMF therapy enhanced ischemia-mediated angiogenesis, through up-regulating VEGF expression and activating the PI3K-Akt-eNOS pathway. Therefore, PEMF should be a valuable treatment for the patients with critical limb ischemia. PMID:26045885

  9. Pulsed electromagnetic field improves postnatal neovascularization in response to hindlimb ischemia.

    PubMed

    Li, Rui-Lin; Huang, Jing-Juan; Shi, Yi-Qin; Hu, An; Lu, Zhao-Yang; Weng, Liang; Wang, Shen-Qi; Han, Yi-Peng; Zhang, Lan; Hao, Chang-Ning; Duan, Jun-Li

    2015-01-01

    Pulsed electromagnetic fields (PEMF) have been shown to promote proliferation and regeneration in the damaged tissue. Here, we examined whether PEMF therapy improved postnatal neovascularization using murine model of hindlimb ischemia, and the underlying cellular/molecular mechanisms were further investigated. Hindlimb ischemia was induced by unilateral femoral artery resection using 6-8 week-old male C57BL6 mice. Then, mice were exposed to extracorporeal PEMF therapy (4 cycles, 8min/cycle, 30 ± 3 Hz, 5 mT) every day until day 14. Our data demonstrated that PEMF therapy significantly accelerated wound healing, decreased prevalence of gangrene and increased postnatal neovascularization. Moreover, the levels of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS) and Akt phosphorylation in ischemic muscles were markedly enhanced following PEMF therapy. In vitro, PEMF inhibited the process of hypoxia-induced apoptosis and augmented tube formation, migration and proliferative capacities of human umbilical vein endothelial cells (HUVECs). Additionally, PEMF exposure increased VEGF secretion, as well as the eNOS and Akt phosphorylation, and these benefits could be blocked by either phosphoinositide 3-kinase (PI3K) or eNOS inhibitor. In conclusion, our data indicated that PEMF therapy enhanced ischemia-mediated angiogenesis, through up-regulating VEGF expression and activating the PI3K-Akt-eNOS pathway. Therefore, PEMF should be a valuable treatment for the patients with critical limb ischemia. PMID:26045885

  10. Gestational and Early Postnatal Exposure to Simulated High Altitude Does Not Modify Postnatal Body Mass Growth Trajectory in the Rat

    PubMed Central

    Champin, Graciela M.; Bozzini, Clarisa; Alippi, Rosa M.

    2014-01-01

    Abstract Bozzini, Carlos E, Graciela M. Champin, Clarisa Bozzini, and Rosa M. Alippi. Gestational and Early Postnatal Exposure to Simulated High Altitude Does Not Modify Postnatal Body Mass Growth Trajectory in the Rat. High Alt Med Biol 15:418–421, 2014.—Postnatal hypoxia blunts body mass growth. It is also known that the quality of the fetal environment can influence the subsequent adult phenotype. The main purpose of the study was to determine whether gestational hypoxia and early postnatal hypoxia are able to blunt growth when the offspring is raised under normoxia. Hypobaric hypoxia was induced in simulated high altitude (SHA) chambers in which air was maintained at 380 mmHg (5450 m). Mature Sprague-Dawley rats of both sexes were divided in normoxic (NX) and hypoxic (HX) groups and, in the case of the HX group, maintained for 1 month at 5450 m. Mating was then allowed under NX or HX conditions. Offspring were NX-NX, NX-HX, HX-HX, or HX-NX: the first term indicates NX or HX during both gestation and the first 30 days of life; the second term indicates NX or HX during postnatal life between days 30 and 133. Body mass (g) was measured periodically and body mass growth rate (BMGR, g/d) was estimated between days 33 and 65 of postnatal life. Results can be summarized as follows: 1) BM was significantly higher in NX than in HX rats at weaning; 2) BMGR was not significantly different between NX-NX and HX-NX rats, and between HX-HX and NX-HX animals; and 3) BMGR was significantly higher in rats living under NX conditions than in those living under HX conditions during postnatal life. Data suggest that that hypobaric hypoxia during gestational and early postnatal development of rats does not alter the regulation of body mass growth in rats when compared to that seen under sea-level conditions. PMID:25184739

  11. Pet-1 Switches Transcriptional Targets Postnatally to Regulate Maturation of Serotonin Neuron Excitability

    PubMed Central

    Wyler, Steven C.; Spencer, W. Clay; Green, Noah H.; Rood, Benjamin D.; Crawford, LaTasha; Craige, Caryne; Gresch, Paul; McMahon, Douglas G.; Beck, Sheryl G.

    2016-01-01

    Newborn neurons enter an extended maturation stage, during which they acquire excitability characteristics crucial for development of presynaptic and postsynaptic connectivity. In contrast to earlier specification programs, little is known about the regulatory mechanisms that control neuronal maturation. The Pet-1 ETS (E26 transformation-specific) factor is continuously expressed in serotonin (5-HT) neurons and initially acts in postmitotic precursors to control acquisition of 5-HT transmitter identity. Using a combination of RNA sequencing, electrophysiology, and conditional targeting approaches, we determined gene expression patterns in maturing flow-sorted 5-HT neurons and the temporal requirements for Pet-1 in shaping these patterns for functional maturation of mouse 5-HT neurons. We report a profound disruption of postmitotic expression trajectories in Pet-1−/− neurons, which prevented postnatal maturation of 5-HT neuron passive and active intrinsic membrane properties, G-protein signaling, and synaptic responses to glutamatergic, lysophosphatidic, and adrenergic agonists. Unexpectedly, conditional targeting revealed a postnatal stage-specific switch in Pet-1 targets from 5-HT synthesis genes to transmitter receptor genes required for afferent modulation of 5-HT neuron excitability. 5-HT1a autoreceptor expression depended transiently on Pet-1, thus revealing an early postnatal sensitive period for control of 5-HT excitability genes. Chromatin immunoprecipitation followed by sequencing revealed that Pet-1 regulates 5-HT neuron maturation through direct gene activation and repression. Moreover, Pet-1 directly regulates the 5-HT neuron maturation factor Engrailed 1, which suggests Pet-1 orchestrates maturation through secondary postmitotic regulatory factors. The early postnatal switch in Pet-1 targets uncovers a distinct neonatal stage-specific function for Pet-1, during which it promotes maturation of 5-HT neuron excitability. SIGNIFICANCE STATEMENT The

  12. Relevé postnatal Rourke 2014

    PubMed Central

    Riverin, Bruno; Li, Patricia; Rourke, Leslie; Leduc, Denis; Rourke, James

    2015-01-01

    Résumé Objectif Mettre à jour la version de 2011 du Relevé postnatal Rourke (RPR) à la suite d’une révision des meilleures données probantes récentes sur le suivi de la santé des nourrissons et des enfants de la naissance jusqu’à l’âge de 5 ans. Qualité des données La qualité des données a été cotée en fonction de l’ancien système de classification du Groupe d’étude canadien sur les soins de santé préventifs (jusqu’à 2006) et l’approche de détermination, d’élaboration et d’évaluation des recommandations (GRADE). Message principal De nouveaux faits scientifiques ont été pris en compte dans les recommandations du RPR 2014 en ce qui a trait au suivi de la croissance, à la nutrition, à l’éducation et aux conseils, au développement, à l’examen physique et à l’immunisation. La croissance est surveillée à l’aide des courbes de l’Organisation mondiale de la Santé qui ont été révisées en 2014. On devrait introduire les aliments solides en fonction de l’état de préparation du nourrisson et ces produits devraient contenir du fer. Il n’est actuellement plus recommandé de retarder l’introduction des allergènes alimentaires courants pour prévenir les allergies. Il faut promouvoir l’utilisation d’une tasse sans couvercle au lieu d’une tasse à bec dès l’âge de 12 mois. La section sur l’éducation et les conseils porte sur les blessures causées par du mobilier instable, ainsi que l’utilisation d’un siège d’auto orienté vers l’arrière jusqu’à 2 ans. Elle comporte aussi de l’information sur les saines habitudes de sommeil, la prévention de la maltraitance des enfants, la vie saine et active et la sédentarité de la famille, de même que l’hygiène buccale. On a aussi ajouté à cette section une nouvelle catégorie consacrée à la santé environnementale pour tenir compte des effets des dangers environnementaux sur la santé des enfants. Le RPR a recours à une

  13. Overexpression of Dlx2 leads to postnatal condyle degradation

    PubMed Central

    Dai, Jiewen; Si, Jiawen; Zhu, Xiaofang; Zhang, Lei; Wu, Dandan; Lu, Jingting; Ouyang, Ningjuan; Wang, Xudong; Shen, Guofang

    2016-01-01

    Distal-less homeobox 2 (Dlx2), a member of the Dlx family of transcription factors, is important for the development of craniofacial tissues. Previous studies based on knock-out mutant mice revealed that Dlx2 primarily disturbed the development of tissues from maxillary arch. The present study used a transgenic mouse model to specifically overexpress Dlx2 in neural crest cells in order to investigate the role of Dlx2 overexpression in post-natal condyle in mice. The model was constructed and the phenotype observed using gross observation, micro-CT scan and histological examination. The model determined that overexpression of Dlx2 may lead to postnatal condyle malformation, subchondral bone degradation and irregular histological structure of the condylar cartilage. In addition, the expression of osteocalcin in the condyle region was markedly downregulated, whereas expression of msh homeobox 2 was upregulated. The results of the present study suggest that Dlx2 overexpression in cranial neural crest cells would disrupt the development of post-natal condyle, which demonstrates that the expression level and the spatiotemporal expression patterns of Dlx2 may be important in regulating the development of post-natal condyle in mice, and also offered a possible temporal-mandibular joint osteoarthritis model animal for future studies. PMID:27315306

  14. Implications of Post-Natal Cortical Development for Creativity Research.

    ERIC Educational Resources Information Center

    Gordon, Marjory; Dacey, John

    Man's long period of cerebral growth has important implications for education. The brain goes through major developmental changes after birth, and researchers have suggested that this growth process presents an opportunity for fostering the plasticity of genetically determined connections. Animal studies show that postnatal growth of the brain is…

  15. Postnatal dysregulation of Notch signal disrupts dendrite development of adult-born neurons in the hippocampus and contributes to memory impairment

    PubMed Central

    Ding, Xue-Feng; Gao, Xiang; Ding, Xin-Chun; Fan, Ming; Chen, Jinhui

    2016-01-01

    Deficits in the Notch pathway are involved in a number of neurologic diseases associated with mental retardation or/and dementia. The mechanisms by which Notch dysregulation are associated with mental retardation and dementia are poorly understood. We found that Notch1 is highly expressed in the adult-born immature neurons in the hippocampus of mice. Retrovirus mediated knockout of notch1 in single adult-born immature neurons decreases mTOR signaling and compromises their dendrite morphogenesis. In contrast, overexpression of Notch1 intracellular domain (NICD), to constitutively activate Notch signaling in single adult-born immature neurons, promotes mTOR signaling and increases their dendrite arborization. Using a unique genetic approach to conditionally and selectively knockout notch 1 in the postnatally born immature neurons in the hippocampus decreases mTOR signaling, compromises their dendrite morphogenesis, and impairs spatial learning and memory. Conditional overexpression of NICD in the postnatally born immature neurons in the hippocampus increases mTOR signaling and promotes dendrite arborization. These data indicate that Notch signaling plays a critical role in dendrite development of immature neurons in the postnatal brain, and dysregulation of Notch signaling in the postnatally born neurons disrupts their development and thus contributes to the cognitive deficits associated with neurological diseases. PMID:27173138

  16. Postnatal dysregulation of Notch signal disrupts dendrite development of adult-born neurons in the hippocampus and contributes to memory impairment.

    PubMed

    Ding, Xue-Feng; Gao, Xiang; Ding, Xin-Chun; Fan, Ming; Chen, Jinhui

    2016-01-01

    Deficits in the Notch pathway are involved in a number of neurologic diseases associated with mental retardation or/and dementia. The mechanisms by which Notch dysregulation are associated with mental retardation and dementia are poorly understood. We found that Notch1 is highly expressed in the adult-born immature neurons in the hippocampus of mice. Retrovirus mediated knockout of notch1 in single adult-born immature neurons decreases mTOR signaling and compromises their dendrite morphogenesis. In contrast, overexpression of Notch1 intracellular domain (NICD), to constitutively activate Notch signaling in single adult-born immature neurons, promotes mTOR signaling and increases their dendrite arborization. Using a unique genetic approach to conditionally and selectively knockout notch 1 in the postnatally born immature neurons in the hippocampus decreases mTOR signaling, compromises their dendrite morphogenesis, and impairs spatial learning and memory. Conditional overexpression of NICD in the postnatally born immature neurons in the hippocampus increases mTOR signaling and promotes dendrite arborization. These data indicate that Notch signaling plays a critical role in dendrite development of immature neurons in the postnatal brain, and dysregulation of Notch signaling in the postnatally born neurons disrupts their development and thus contributes to the cognitive deficits associated with neurological diseases. PMID:27173138

  17. Dacryocystocele on prenatal ultrasonography: diagnosis and postnatal outcomes

    PubMed Central

    2015-01-01

    Purpose: To report the incidence of dacryocystoceles detected by prenatal ultrasonography (US) and their postnatal outcomes and to determine the factors associated with the postnatal persistence of dacryocystoceles at birth. Methods: We retrospectively reviewed the prenatal US database at our institution for the period between January 2012 and December 2013. The medical records of women who had fetuses diagnosed with dacryocystocel larger than 5 mm were reviewed for maternal age, gestational age (GA) at detection, size and side of the dacryocystoceles, delivery, and postnatal information, such as GA at delivery, delivery mode, and gender of the neonate. Results: A total of 49 singletons were diagnosed with a dacryocystocele on prenatal US, yielding an overall incidence of 0.43%. The incidence of dacryocystoceles was the highest at the GA of 27 weeks and decreased toward term. Of the 49 fetuses including three of undeter mined gender, 25 (54%) were female. The mean GA at first detection was 31.2 weeks. The dacryocystocele was unilateral in 29 cases, with a mean maximum diameter of 7 mm. Spontaneous resolution at birth was documented in 35 out of 46 neonates (76%), including six with prenatal resolution. Multivariate analysis demonstrated that GA at delivery was a significant predictor of the postnatal persistence of dacryocystoceles (P=0.045). Conclusion: The overall incidence of prenatal dacryocystoceles was 0.43%; the incidence was higher in the early third trimester and decreased thereafter. Prenatal dacryocystoceles resolved in 76% of the patients at birth, and the GA at delivery was a significant predictor of postnatal persistence. PMID:25475649

  18. Postnatal Depression and Infant Health Practices among High-Risk Women

    ERIC Educational Resources Information Center

    Zajicek-Farber, Michaela L.

    2009-01-01

    Women's postnatal depressive symptoms have been associated with many adverse outcomes for children. The current study examined the frequency association with relative risk between postnatal depressive symptoms and mothers' use of preventative infant health practices. The study used the Edinburgh Postnatal Depression Scale (EPDS) and Parental…

  19. Rax Homeoprotein Regulates Photoreceptor Cell Maturation and Survival in Association with Crx in the Postnatal Mouse Retina

    PubMed Central

    Irie, Shoichi; Sanuki, Rikako; Muranishi, Yuki; Kato, Kimiko; Chaya, Taro

    2015-01-01

    The Rax homeobox gene plays essential roles in multiple processes of vertebrate retina development. Many vertebrate species possess Rax and Rax2 genes, and different functions have been suggested. In contrast, mice contain a single Rax gene, and its functional roles in late retinal development are still unclear. To clarify mouse Rax function in postnatal photoreceptor development and maintenance, we generated conditional knockout mice in which Rax in maturing or mature photoreceptor cells was inactivated by tamoxifen treatment (Rax iCKO mice). When Rax was inactivated in postnatal Rax iCKO mice, developing photoreceptor cells showed a significant decrease in the level of the expression of rod and cone photoreceptor genes and mature adult photoreceptors exhibited a specific decrease in cone cell numbers. In luciferase assays, we found that Rax and Crx cooperatively transactivate Rhodopsin and cone opsin promoters and that an optimum Rax expression level to transactivate photoreceptor gene expression exists. Furthermore, Rax and Crx colocalized in maturing photoreceptor cells, and their coimmunoprecipitation was observed in cultured cells. Taken together, these results suggest that Rax plays essential roles in the maturation of both cones and rods and in the survival of cones by regulating photoreceptor gene expression with Crx in the postnatal mouse retina. PMID:25986607

  20. In vivo Postnatal Electroporation and Time-lapse Imaging of Neuroblast Migration in Mouse Acute Brain Slices

    PubMed Central

    Oudin, Madeleine Julie; Doherty, Patrick; Lalli, Giovanna

    2013-01-01

    The subventricular zone (SVZ) is one of the main neurogenic niches in the postnatal brain. Here, neural progenitors proliferate and give rise to neuroblasts able to move along the rostral migratory stream (RMS) towards the olfactory bulb (OB). This long-distance migration is required for the subsequent maturation of newborn neurons in the OB, but the molecular mechanisms regulating this process are still unclear. Investigating the signaling pathways controlling neuroblast motility may not only help understand a fundamental step in neurogenesis, but also have therapeutic regenerative potential, given the ability of these neuroblasts to target brain sites affected by injury, stroke, or degeneration. In this manuscript we describe a detailed protocol for in vivo postnatal electroporation and subsequent time-lapse imaging of neuroblast migration in the mouse RMS. Postnatal electroporation can efficiently transfect SVZ progenitor cells, which in turn generate neuroblasts migrating along the RMS. Using confocal spinning disk time-lapse microscopy on acute brain slice cultures, neuroblast migration can be monitored in an environment closely resembling the in vivo condition. Moreover, neuroblast motility can be tracked and quantitatively analyzed. As an example, we describe how to use in vivo postnatal electroporation of a GFP-expressing plasmid to label and visualize neuroblasts migrating along the RMS. Electroporation of shRNA or CRE recombinase-expressing plasmids in conditional knockout mice employing the LoxP system can also be used to target genes of interest. Pharmacological manipulation of acute brain slice cultures can be performed to investigate the role of different signaling molecules in neuroblast migration. By coupling in vivo electroporation with time-lapse imaging, we hope to understand the molecular mechanisms controlling neuroblast motility and contribute to the development of novel approaches to promote brain repair. PMID:24326479

  1. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    SciTech Connect

    Blossom, Sarah J.; Cooney, Craig A.; Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J.; Wessinger, William D.

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  2. Predictors of severity for postnatal cytomegalovirus infection in preterm infants and implications for treatment.

    PubMed

    Gunkel, Julia; Wolfs, Tom F W; de Vries, Linda S; Nijman, Joppe

    2014-11-01

    Postnatal cytomegalovirus (CMV) infection is common in neonates and is mostly acquired through infected breast milk from seropositive mothers. In this review, risk factors of postnatal CMV transmission and predictors of severity, preventive measures and treatment of symptomatic postnatal CMV infection in preterm infants are discussed. Several viral, transmission route and host factors have been associated with a higher risk of postnatal CMV transmission from mother to child. Severity predictors of symptomatic postnatal CMV infection may include extreme prematurity (gestational age <26 weeks), timing of postnatal infection as well as comorbidities. Further research in postnatally infected preterm infants at risk for severe symptoms is essential with respect to preventive measures involving the infected breast milk and antiviral treatment. PMID:25277116

  3. Review of the antenatal and postnatal use of steroids.

    PubMed

    Bartholomew, Julie; Kovacs, Lajos; Papageorgiou, Apostolos

    2014-05-01

    Antenatal and postnatal corticosteroids play an extremely important role in the management of premature infants. The antenatal administration of steroids has been universally implemented. They have not only been shown to reduce the incidence and severity of respiratory distress syndrome (RDS), but also have an impact on the incidence of intraventricular hemorrhage (IVH), patent ductus arteriosus (PDA), necrotizing enterocolitis (NEC), and possibly retinopathy of prematurity (ROP) by reducing the need for supplemental oxygen due to improved lung function. The postnatal use of dexamethasone in ventilated infants has been adopted with caution, as there have been several reports of long-term neurodevelopmental complications with this therapy. Hence, changes in dosage and indications and the search for alternative therapies has emerged. Hydrocortisone appears to be a good alternative, with reassuring long-term evaluations thus far. PMID:24682835

  4. Postnatal overestimation of gestational age in preterm infants.

    PubMed

    Shukla, H; Atakent, Y S; Ferrara, A; Topsis, J; Antoine, C

    1987-10-01

    In a study involving 25 preterm infants, obstetric clinical age (standard gestational age) was determined by history, physical examination, and ultrasonographic evaluation. Postnatally, these infants were then evaluated using the Dubowitz Scoring System (DSS) for gestational age assessment. The DSS, as administered by us, significantly overestimated gestational age compared with the standard gestational age (mean +/- 1 SD: 34.2 +/- 2.9 vs 32.5 +/- 3.9 weeks, respectively) in preterm infants. To illustrate, the gestational ages of 13 newborns (52%) in the total study group were each overestimated by more than two weeks. This percentage increased to 75% among the 16 infants whose gestational ages were less than 34 weeks (by standard gestational age). When the standard gestational age was underestimated by the DSS, this difference never exceeded two weeks. These findings suggest that the present system of postnatal assessment of gestational age in preterm infants needs further investigation. PMID:3307384

  5. The maternal microbiota drives early postnatal innate immune development.

    PubMed

    Gomez de Agüero, Mercedes; Ganal-Vonarburg, Stephanie C; Fuhrer, Tobias; Rupp, Sandra; Uchimura, Yasuhiro; Li, Hai; Steinert, Anna; Heikenwalder, Mathias; Hapfelmeier, Siegfried; Sauer, Uwe; McCoy, Kathy D; Macpherson, Andrew J

    2016-03-18

    Postnatal colonization of the body with microbes is assumed to be the main stimulus to postnatal immune development. By transiently colonizing pregnant female mice, we show that the maternal microbiota shapes the immune system of the offspring. Gestational colonization increases intestinal group 3 innate lymphoid cells and F4/80(+)CD11c(+) mononuclear cells in the pups. Maternal colonization reprograms intestinal transcriptional profiles of the offspring, including increased expression of genes encoding epithelial antibacterial peptides and metabolism of microbial molecules. Some of these effects are dependent on maternal antibodies that potentially retain microbial molecules and transmit them to the offspring during pregnancy and in milk. Pups born to mothers transiently colonized in pregnancy are better able to avoid inflammatory responses to microbial molecules and penetration of intestinal microbes. PMID:26989247

  6. Protein Expression Dynamics During Postnatal Mouse Brain Development

    PubMed Central

    Laeremans, Annelies; Van de Plas, Babs; Clerens, Stefan; Van den Bergh, Gert; Arckens, Lutgarde; Hu, Tjing-Tjing

    2013-01-01

    We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation. PMID:25157209

  7. Diagnostic accuracy of postnatal ultrasound screening for urinary tract abnormalities.

    PubMed

    Hálek, Jan; Flögelová, Hana; Michálková, Kamila; Smakal, Oldrich; Dubrava, Lubomír; Zapletalová, Jana; Janout, Vladimír

    2010-02-01

    The study was aimed at (1) the determination of the incidence of abnormalities of the urinary tract in newborn infants detected by postnatal ultrasound screening, and (2) the evaluation of the diagnostic accuracy of postnatal ultrasound screening for detecting surgical urinary tract abnormalities. The prospective study was of full-term neonates born in the University Hospital of Olomouc in 2005-2008 who underwent renal ultrasound screening after 72 h of life. Significant findings were recorded. Subsequent diagnostic and therapeutic procedures were recorded and evaluated in a group of children with detected renal pelvic dilatation (RPD). (1) A total of 6,088 newborn infants was examined. The absolute and relative RPD incidence rates (anteroposterior diameter, APD) were as follows: 5-7 mm, 146 (2.4%); 7-10 mm, 70 (1.15%); 10-15 mm, 13 (0.21%), and 15 mm or more, 5 (0.08%). Of those, 16 children were operated on for abnormalities of the urinary tract, of which nine (56%) had been detected by prenatal screening. Other findings: six cases of unilateral renal agenesis, four cases of multicystic renal dysplasia, four of renal dystopia, one of polycystic kidney disease and one of renal hypoplasia. (2) A group of 224 children with postnatally detected RPD was examined, of whom 40 (17.9%) underwent voiding cystourethrography and/or scintigraphy and 16 (7.1%) were treated surgically. The receiver operating characteristic curves were analyzed, and the areas under the curves were calculated. Postnatal renal ultrasound screening is probably a suitable test for detecting significant urinary tract abnormalities. PMID:19856001

  8. Prenatal and postnatal prevalence of Turner's syndrome: a registry study.

    PubMed Central

    Gravholt, C. H.; Juul, S.; Naeraa, R. W.; Hansen, J.

    1996-01-01

    OBJECTIVE--To study prevalence of Turner's syndrome in Denmark and to assess validity of prenatal diagnosis. DESIGN--Study of data on prenatal and postnatal Turner's syndrome in Danish Cytogenetic Central Register. SUBJECTS--All registered Turner's syndrome karyotypes (100 prenatal cases and 215 postnatal cases) during 1970-93. MAIN OUTCOME MEASURES--Prevalence of Turner's syndrome karyotypes among prenatally tested fetuses and Turner's syndrome among liveborn infants. RESULTS--Among infant girls, prevalence of Turner's syndrome was 32/100,000. Among female fetuses tested by amniocentesis, prevalence of Turner's syndrome karyotypes was 176/100,000 (relative risk of syndrome, 6.74 compared with prevalence among untested pregnancies). Among female fetuses tested by chorion villus sampling, prevalence of syndrome karyotypes was 392/100,000 (relative risk, 16.8). We excluded prenatal tests referred because of results of ultrasound scanning: among fetuses tested by amniocentesis revised relative risk was 5.68, while revised relative risk among fetuses tested by chorion villus sampling was 13.3. For 29 fetuses with prenatal diagnosis of possible Turner's syndrome, pregnancy was allowed to continue and 24 children were live born. Thirteen of these children were karyotyped postnatally, and diagnosis of Turner's syndrome had to be revised for eight, seven being normal girls and one boy. This gives tentative predictive value of amniocentesis in diagnosing Turner's syndrome of between 21% and 67%. There was no significant relation between mother's age and risk of Turner's syndrome. CONCLUSIONS--Discrepancy between prenatal and postnatal prevalence of Turner's syndrome challenges specificity of prenatal examination in diagnosing Turner's syndrome. PMID:8555850

  9. Postnatal management of newborn with antenatal detected urinary tract abnormalities.

    PubMed

    Galiano, Rossella; Spasari, Ezio

    2011-10-01

    The goals of postnatal management of congenital anomalies of the kidneys and the urinary tracts are two: The first to distinguish between patients (the minority) who are at risk for renal parenchyma damage, from neonates (the majority) who have not consequences to renal functionality; the second to avoid for healthy infant strenuous follow-up, painful diagnostic procedures, and unnecessary anxiety for their parents. PMID:21942607

  10. The role of alternative medicine in treating postnatal depression.

    PubMed

    Mantle, Fiona

    2002-11-01

    Postnatal depression is a serious and debilitating condition. Due to the perceived stigma of mental illness, the incidence of it is underreported and many mothers refuse psychiatric help either assuming postnatal depression to be normal or because of the potential consequences of having a psychiatric history. Community practitioners who are in contact with new mothers may welcome additional interventions which can enhance the supportive care they give to these women. This article discusses the evidence for a number of these interventions which mothers may find more acceptable than orthodox treatment. The aim of this article is to highlight the possible role of a number of complementary and alternative medicines as adjuncts or alternative treatments for postnatal depression. The interventions discussed in this article include Ayurvedic medicine, herbalism, homeopathy, aromatherapy, massage, hypnosis and traditional Chinese medicine (TCM). With the exception of TCM and Ayurvedic medicine, these interventions have been supported by the House of Lord's Select Committee on Science and Technology (2000) as having an evidence base. Ayurvedic medicine and TCM have been included in this article however, because a number of clients may be using them as their main system of health care--thereby validating the need for information regarding their efficacy. This article is not exhaustive, nor a licence to practice, but is intended as a resource for practitioners with a sound understanding of postnatal depression and conventional treatments whose clients may reject these approaches and be looking for alternative interventions. The final choice of treatment should be the result of discussion between the health visitor and the client and will depend on considerations such as availability, cost and acceptability of the intervention--this article does not, therefore, suggest a 'best option' approach. In addition, it does not address the professional and legal responsibilities of

  11. Disrupting effect of androgens in postnatal female domestic cats.

    PubMed

    Demaldé, Lucía; Lopez Merlo, Mariana; Vercellini, Rosario; Barbeito, Claudio G; Fernandez, Patricia; Gobello, Cristina

    2016-08-01

    To test the hypothesis that in domestic cats, postnatal androgens induce sterility, the aims of this study were to describe the reproductive effects and the clinical safety of a postnatal administration of a long term release androgen in this species. Thirteen newborn littermate female kittens were randomly assigned to one of the following treatment groups within the first 24h of birth: testosterone enanthate 12.5mg sc (TE; n=8) or Placebo (PL; n=5). The animals were subsequently assessed for fecal sexual hormones until puberty was attained and subsequently when matings occurred. After 21 days, ovulation and gestation were diagnosed. All queens were subsequently ovario-hysterectomized. Fecal testosterone concentrations differed between the treatment groups throughout the study period (P<0.05) being greater during the first 2 postnatal weeks in those of the TE group (P<0.01). Fecal estradiol was not affected by treatment (P>0.1). While all the females were receptive during the pubertal estrus (P>0.1), two TE (2/8) compared with all (5/5) females of the PL group had ovulations (P<0.05). Only one (1/2) compared with three (3/5) of the queens of the TE and PL groups, respectively became pregnant. All kittens of the TE group had transient clitoral enlargement. Anovulatory TE-treated cats had no corpus luteum, and a significant diminution of the endometrial glands as well as of the height of the uterine epithelium. It is concluded that, in domestic cats, a single postnatal supra-physiological dose of testosterone caused a large proportion of queens to be anovulatory and there were also histological endometrial abnormalities that also occurred with this treatment that were accompanied by mild and transient side effects. PMID:27305841

  12. A Randomized Trial of Prenatal versus Postnatal Repair of Myelomeningocele

    PubMed Central

    Adzick, N. Scott; Thom, Elizabeth A.; Spong, Catherine Y.; Brock, John W.; Burrows, Pamela K.; Johnson, Mark P.; Howell, Lori J.; Farrell, Jody A.; Dabrowiak, Mary E.; Sutton, Leslie N.; Gupta, Nalin; Tulipan, Noel B.; D'Alton, Mary E.; Farmer, Diana L.

    2013-01-01

    Background Prenatal repair of myelomeningocele, the most common form of spina bifida, may result in better neurologic function than repair deferred until after delivery. We compared outcomes of in utero repair with standard postnatal repair. Methods We randomly assigned eligible women to undergo either prenatal surgery before 26 weeks of gestation or standard postnatal repair. One primary outcome was a composite of fetal or neonatal death or the need for placement of a cerebrospinal fluid shunt by the age of 12 months. Another primary outcome at 30 months was a composite of mental development and motor function. Results The trial was stopped for efficacy of prenatal surgery after the recruitment of 183 of a planned 200 patients. This report is based on results in 158 patients whose children were evaluated at 12 months. The first primary outcome occurred in 68% of the infants in the prenatal-surgery group and in 98% of those in the postnatal-surgery group (relative risk, 0.70; 97.7% confidence interval [CI], 0.58 to 0.84; P<0.001). Actual rates of shunt placement were 40% in the prenatal-surgery group and 82% in the postnatal-surgery group (relative risk, 0.48; 97.7% CI, 0.36 to 0.64; P<0.001). Prenatal surgery also resulted in improvement in the composite score for mental development and motor function at 30 months (P = 0.007) and in improvement in several secondary outcomes, including hindbrain herniation by 12 months and ambulation by 30 months. However, prenatal surgery was associated with an increased risk of preterm delivery and uterine dehiscence at delivery. Conclusions Prenatal surgery for myelomeningocele reduced the need for shunting and improved motor outcomes at 30 months but was associated with maternal and fetal risks. (Funded by the National Institutes of Health; ClinicalTrials.gov number, NCT00060606.) PMID:21306277

  13. Oligodendrogenesis and myelinogenesis during postnatal development effect of glatiramer acetate.

    PubMed

    From, Renana; Eilam, Raya; Bar-Lev, Dekel D; Levin-Zaidman, Smadar; Tsoory, Michael; LoPresti, Patrizia; Sela, Michael; Arnon, Ruth; Aharoni, Rina

    2014-04-01

    Myelinogenesis in the mammal nervous system occurs predominantly postnatally. Glatiramer acetate (GA), a drug for the treatment for multiple sclerosis (MS), has been shown to induce immunomodulation and neuroprotection in the inflamed CNS in MS and in experimental autoimmune encephalomyelitis (EAE). Here we investigated whether GA can affect myelinogenesis and oligodendrogenesis in the developing nervous system under nonpathological conditions. Towards this end we studied myelination in mice injected daily by GA, at postnatal Days 7-21. Immunohistological and ultrastructural analyses revealed significant elevation in the number of myelinated axons as well as in the thickness of the myelin encircling them and their resulting g-ratios, in spinal cords of GA-injected mice compared with their PBS-injected littermates, at postnatal Day 14. Elevation in myelinated axons was detected also in the peripheral ventral roots of the motor nerves. GA induced also an increase in axonal diameter, implying an effect on the overall development of the nervous system. A prominent elevation in the amount of progenitor oligodendrocytes and their BrdU incorporation, as well as in mature oligodendrocytes indicated that the effect of GA is linked to increased proliferation and differentiation along the oligodendroglial maturation cascade. In addition, elevation in insulin-like growth factor (IGF-1) and brain-derived neurotrophic factor (BDNF) was found in the white matter of the GA-injected mice. Furthermore, a functional advantage in rotating rod test was exhibited by GA-injected mice over their littermates at postnatal Day 21. These cumulative findings corroborate the beneficial effect of GA on oligodendrogenesis and myelination. PMID:24481644

  14. The Postnatal Role of Sox9 in Cartilage

    PubMed Central

    Henry, Stephen P.; Liang, Shoudan; Akdemir, Kadir C; de Crombrugghe, Benoit

    2012-01-01

    Sox9 is an essential transcription factor for the differentiation of the chondrocytic lineage during embryonic development. To test whether Sox9 continues to play a critical role in cartilaginous tissues in the adult mice, we used an inducible, genetic strategy to disrupt the Sox9 gene postnatally in these tissues. The postnatal inactivation of Sox9 led to stunted growth characterized by decreased proliferation, increased cell death, and de-differentiation of growth plate chondrocytes. Upon postnatal Sox9 inactivation in the articular cartilage, the sulfated proteoglycan and aggrecan content of the uncalcified cartilage were rapidly depleted and the degradation of aggrecan was accompanied by higher ADAMTS5 immunostaining and increased detection of the aggrecan neoepitope, NITEGE. In spite of the severe loss of Collagen 2a1 mRNA, the Collagen II protein persisted in the articular cartilage, and no histopathological signs of osteoarthritis were observed. The homeostasis of the intervertebral disk (IVD) was dramatically altered upon Sox9 depletion, resulting in disk compression and subsequent degeneration. Inactivation of Sox9 in the IVD markedly reduced the expression of several genes encoding extracellular matrix proteins, as well as some of the enzymes responsible for their posttranslational modification. Furthermore, the loss of Sox9 in the IVD decreased the expression of cytokines, cell surface receptors, and ion channels suggesting that Sox9 coordinates a large genetic program that is instrumental for the proper homeostasis of the cells contained in the intervertebral disk postnatally. Our results indicate that Sox9 has an essential role in the physiological control of cartilaginous tissues in adult mice. PMID:22777888

  15. Effect of GnRH analogs in postnatal domestic cats.

    PubMed

    Carranza, A; Faya, M; Merlo, M Lopez; Batista, P; Gobello, C

    2014-07-01

    The aim of this study was to reproductively assess the clinical and hormonal effects of a GnRH agonist (AG) and an antagonist (AN) administered during the postnatal period in domestic cats. Forty-eight male and female postnatal kittens were randomly assigned to deslorelin acetate 1.6 mg subcutaneous (AG; n = 16), acyline 33 μg/100 g subcutaneous weekly for 3 months (AN; n = 16), or control (CO; n = 16) which remained untreated. The cats were followed up (behavioral observation, physical examination, fecal sexual steroid determinations, mating test, and pregnancy diagnosis) up to puberty. Puberty was delayed (weeks) in the AG animals (62.9 ± 3.5; P < 0.01) but not in the AN (15.5 ± 1.7; P > 0.05) when they were compared with CO kittens (13.4 ± 0.4). Fifteen (15/16) of the AN and CO animals, and only 11 of 16 cats of the AG group were fertile (P > 0.1). No differences were found in body weight (P > 0.1) and measurements (P > 0.1), libido (P > 0.1) and in the appearance of side effects (P > 0.1; except a pyometra in an AG female) among groups. In both AG- and AN-treated males (testosterone; P < 0.01) and females (estradiol-17β; P < 0.01) fecal hormone concentrations were lower than in CO group during the first five postnatal weeks but not later. It is concluded that the neonatal administration of these AG and AN decreased fecal sexual steroids during the first postnatal weeks causing, the agonists but not the antagonist, a significant, reversible delay in puberty appearance. PMID:24725419

  16. Association of HIV-1 Envelope-Specific Breast Milk IgA Responses with Reduced Risk of Postnatal Mother-to-Child Transmission of HIV-1

    PubMed Central

    Pollara, Justin; McGuire, Erin; Fouda, Genevieve G.; Rountree, Wes; Eudailey, Josh; Overman, R. Glenn; Seaton, Kelly E.; Deal, Aaron; Edwards, R. Whitney; Tegha, Gerald; Kamwendo, Deborah; Kumwenda, Jacob; Nelson, Julie A. E.; Liao, Hua-Xin; Brinkley, Christie; Denny, Thomas N.; Ochsenbauer, Christina; Ellington, Sascha; King, Caroline C.; Jamieson, Denise J.; van der Horst, Charles; Kourtis, Athena P.; Tomaras, Georgia D.; Ferrari, Guido

    2015-01-01

    responses in plasma and breast milk of HIV-1-transmitting and -nontransmitting mothers to identify responses that correlated with reduced risk of postnatal HIV-1 transmission. We found that neither plasma nor breast milk IgG antibody responses were associated with risk of HIV-1 transmission. In contrast, the magnitudes of the breast milk IgA and secretory IgA responses against HIV-1 envelope proteins were associated with reduced risk of postnatal HIV-1 transmission. The results of this study support further investigations of the mechanisms by which mucosal IgA may reduce the risk of HIV-1 transmission via breastfeeding and the development of strategies to enhance milk envelope-specific IgA responses to reduce mother-to-child HIV transmission and promote an HIV-free generation. PMID:26202232

  17. Prenatal and postnatal factors increase risk of severe ROP.

    PubMed

    Anaya-Alaminos, Roberto; García-Serrano, José Luis; Cantero-Hinojosa, Jesús

    2014-04-01

    To determine that slower weight premature twins have more risk to develop severe retinopathy of prematurity (ROP) than the higher weight twins. We know that the lower weight twins had less optimal intra-uterine environments than their higher weight twins. We screened 94 consecutive premature twins for ROP. We compared the lower weight twins (n = 47) against their higher weight twins (n = 47). The risk of severe ROP (ROP stage 3 or greater) was significantly higher in the lower weight twin group (p < 0.006). In the same way, in the lower weight twin group the non-perfused area of the temporal retinal artery was higher than that of the other group (an average of 1.2 diameters of the optic nerve head), in the 4-6 postnatal weeks (p < 0.004). The lower weight twin group have an increased risk of severe ROP associated with bacteremia (p = 0.045), or a weight gain less than 7 g per day in the 4-6 postnatal weeks (p = 0.013) or a supplementary postnatal oxygen >4 days (p = 0.007) compared to the higher weight twin group. We confirm Dr. Lee's work that less optimal prenatal factors, in preterm twins, increase the risk of severe ROP. PMID:23796013

  18. Postnatal growth and age estimation in Scotophilus kuhlii.

    PubMed

    Chen, Shiang-Fan; Huang, Shang-Shang; Lu, Dau-Jye; Shen, Tsung-Jen

    2016-01-01

    Adequate postnatal growth is important for young bats to develop skilled sensory and locomotor abilities, which are highly associated with their survival once independent. This study investigated the postnatal growth and development of Scotophilus kuhlii in captivity. An empirical growth curve was established, and the postnatal growth rate was quantified to derive an age-predictive equation. By further controlling the fostering conditions of twins, the differences in the development patterns between pups that received maternal care or were hand-reared were analyzed to determine whether the latter developed in the same manner as their maternally reared counterparts. Our results indicate that both forearm length and body mass increased rapidly and linearly during the first 4 weeks, after which the growth rate gradually decreased to reach a stable level. The first flight occurred at an average age of 39 days with a mean forearm length and body mass of 92.07% and 70.52% of maternal size, respectively. The developmental pattern of hand-reared pups, although similar to that of their maternally reared twin siblings, displayed a slightly faster growth rate in the 4th and 5th weeks. The heavier body mass of hand-reared pups during the pre-fledging period may cause higher wing loading, potentially influencing the flight performance and survival of the bats once independent. PMID:26600428

  19. Postnatal Development of the Mouse Enteric Nervous System.

    PubMed

    Foong, Jaime Pei Pei

    2016-01-01

    Owing to over three decades of research, we now have a good understanding of the genetic and molecular control of enteric nervous system (ENS) development during embryonic and prenatal stages. On the other hand, it has only just become clear that a substantial process of ENS maturation occurs after birth (Hao et al. 2013a). During postnatal stages, in addition to genetic influences, ENS development is also potentially affected by the external environment. Thus it is possible that manipulating certain environmental factors could help prevent or reduce motility disorders. However the genetic and environmental factors that regulate postnatal ENS development remain unknown. Researchers have used a variety of animal models that are easy to manipulate genetically or experimentally, and have short gestational periods, to understand the development of the ENS. Notably, due to the availability of mouse models for several human enteric neuropathies, many studies have used the mature and developing murine ENS as a model. Here, I will discuss recent advances in knowledge about postnatal development of the murine ENS, and highlight future directions for this emerging research field. PMID:27379641

  20. Postnatal TLR2 activation impairs learning and memory in adulthood.

    PubMed

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. PMID:26021559

  1. Postnatal TLR2 activation impairs learning and memory in adulthood

    PubMed Central

    Madar, Ravit; Rotter, Aviva; Ben-Asher, Hiba Waldman; Mughal, Mohamed R.; Arumugam, Thiruma V.; Wood, WH; Becker, KG; Mattson, Mark P.; Okun, Eitan

    2015-01-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. PMID:26021559

  2. Prenatal and early postnatal lead exposure in mice: neuroimaging findings

    PubMed Central

    Lindquist, Diana M.; Beckwith, Travis; Sánchez-Martín, Francisco Javier; Landero-Figueroa, Julio; Puga, Alvaro

    2015-01-01

    Background Childhood lead exposure has been linked to adult gray matter loss accompanied by changes in myelination and neurochemistry noninvasively revealed by magnetic resonance imaging (MRI) methods. However, the extent, duration and timing of lead exposure required to produce such imaging changes in humans are difficult to ascertain. Methods To determine if such changes are related to early exposure to low levels of lead, we treated mouse dams with 0, 3, or 30 ppm of lead acetate in drinking water for 2 months prior to mating through gestation until weaning of the offspring at post-natal day 21. Two male and two female pups from each litter were imaged at post-natal day 60. Volumetric, diffusion tensor imaging and magnetic resonance spectroscopy (MRS) measurements were obtained using a seven Tesla Bruker animal MRI scanner. Results Postnatal blood lead levels were identical between groups at the time of imaging. No effects of lead exposure were detected in the volumetric or MRS data. Mean diffusivity in the hippocampus showed significant effects of lead exposure and gender. Conclusions These data suggest that low-level, gestational lead exposure in a mouse model produces minimal changes observed by MRI. PMID:26435914

  3. Role of thyroid hormone in postnatal circulatory and metabolic adjustments.

    PubMed Central

    Breall, J A; Rudolph, A M; Heymann, M A

    1984-01-01

    To assess the role of the early postnatal surge in plasma thyroid hormone concentrations on cardiovascular and metabolic adaptations, we measured cardiac output, total oxygen consumption, and plasma triiodothyronine (T3) concentrations in three groups of lambs in the first 6 h after delivery. 15 fetal lambs were prepared at gestational ages of 128-129 d by placing catheters in the brachiocephalic artery, descending aorta, distal inferior vena cava, left atrium, and pulmonary artery so that measurements could be made soon after delivery. They were divided into three groups: Group I comprised five control animals; Group II consisted of five fetuses in which thyroidectomy was performed at surgery at 129 d gestation; and Group III consisted of five animals in which thyroidectomy was performed at term gestation during delivery by caesarian section, prior to severing the umbilical cord. The lambs in Group I exhibited a rapid postnatal rise in T3 concentrations, similar to that described previously, reaching a peak value of about 5 ng/ml. Although the postnatal surge in T3 concentration was arrested in Group II and III animals, Group II had no detectable plasma T3, while the Group III animals had T3 concentrations of about 0.8 ng/ml, which were within the range previously reported for term lamb fetuses. The lambs in group II showed 40-50% lower left ventricular outputs (190 vs. 297 ml/kg per min), systemic blood flows (155 vs. 286 ml/kg per min), and oxygen consumptions (9.8 vs. 20.2 ml/kg per min) as compared with Group I animals over the entire 6-h period. The lambs in Group II also had significantly lower heart rates (131 vs. 192 beats/min) and mean systemic arterial pressures (56 vs. 72 torr). However, there were no significant differences for any of these measurements between the Group III and Group I lambs. The reduction in cardiac output in the Group II animals were reflected in a significantly lower blood flow to the peripheral circulation, but there were no

  4. Postnatal Isoflurane Exposure Induces Cognitive Impairment and Abnormal Histone Acetylation of Glutamatergic Systems in the Hippocampus of Adolescent Rats.

    PubMed

    Liang, Bing; Fang, Jie

    2016-09-01

    Isoflurane can elicit cognitive impairment. However, the pathogenesis in the brain remains inconclusive. The present study investigated the mechanism of glutamate neurotoxicity in adolescent male rats that underwent postnatal isoflurane exposure and the role of sodium butyrate (NaB) in cognitive impairment induced by isoflurane exposure. Seven-day-old rats were exposed to 1.7 % isoflurane for 35 min every day for four consecutive days, and then glutamate neurotoxicity was examined in the hippocampus. Morris water maze analysis showed cognitive impairments in isoflurane-exposed rats. High-performance liquid chromatography found higher hippocampal glutamate concentrations following in vitro and in vivo isoflurane exposure. The percentage of early apoptotic hippocampal neurons was markedly increased after isoflurane exposure. Decreased acetylation and increased HDAC2 activity were observed in the hippocampus of isoflurane-exposed rats and hippocampal neurons. Furthermore, postnatal isoflurane exposure decreased histone acetylation of hippocampal neurons in the promoter regions of GLT-1 and mGLuR1/5, but not mGLuR2/3. Treatment with NaB not only restored the histone acetylation of the GLT-1 and mGLuR1/5 promoter regions and glutamate excitatory neurotoxicity in hippocampal neurons, but also improved cognitive impairment in vivo. Moreover, NaB may be a potential therapeutic drug for cognitive impairment caused by isoflurane exposure. These results suggest that postnatal isoflurane exposure contributes to cognitive impairment via decreasing histone acetylation of glutamatergic systems in the hippocampus of adolescent rats. PMID:27307148

  5. Effect of fetal undernutrition and postnatal overfeeding on rat adipose tissue and organ growth at early stages of postnatal development.

    PubMed

    Munoz-Valverde, D; Rodríguez-Rodríguez, P; Gutierrez-Arzapalo, P Y; López de Pablo, A L; Carmen González, M; López-Giménez, R; Somoza, B; Arribas, S M

    2015-01-01

    Intrauterine and perinatal life are critical periods for programming of cardiometabolic diseases. However, their relative role remains controversial. We aimed to assess, at weaning, sex-dependent alterations induced by fetal or postnatal nutritional interventions on key organs for metabolic and cardiovascular control. Fetal undernutrition was induced by dam food restriction (50 % from mid-gestation to delivery) returning to ad libitum throughout lactation (Maternal Undernutrition, MUN, 12 pups/litter). Postnatal overfeeding (POF) was induced by litter size reduction from normally fed dams (4 pups/litter). Compared to control, female and male MUN offspring exhibited: 1) low birth weight and accelerated growth, reaching similar weight and tibial length by weaning, 2) increased glycemia, liver and white fat weights; 3) increased ventricular weight and tendency to reduced kidney weight (males only). Female and male POF offspring showed: 1) accelerated growth; 2) increased glycemia, liver and white fat weights; 3) unchanged heart and kidney weights. In conclusion, postnatal accelerated growth, with or without fetal undernutrition, induces early alterations relevant for metabolic disease programming, while fetal undernutrition is required for heart abnormalities. The progression of cardiac alterations and their role on hypertension development needs to be evaluated. The similarities between sexes in pre-pubertal rats suggest a role of sex-hormones in female protection against programming. PMID:25470520

  6. The paradox of screening: Rural women's views on screening for postnatal depression

    PubMed Central

    2010-01-01

    Background Universal screening for postnatal depression is currently being promoted in Australia to assist detection and treatment of affected women, yet debate continues internationally about the effectiveness of screening. One rural shire in Victoria has been screening all women for postnatal depression at maternal and child health checks for many years. This paper explores the views of women affected by this intervention. Methods A postal survey was sent to an entire one year cohort of women resident in the shire and eligible for this program [n = 230]. Women were asked whether they recalled having been screened for postnatal depression and what their experience had been, including any referrals made as a result of screening. Women interested in providing additional information were invited to give a phone number for further contact. Twenty women were interviewed in-depth about their experiences. The interview sample was selected to include both depressed and non-depressed women living in town and on rural properties, who represented the range of circumstances of women living in the shire. Results The return rate for the postal survey was 62% [n = 147/230]. Eighty-seven women indicated that they were interested in further contact, 80 of whom were able to be reached by telephone and 20 were interviewed in-depth. Women had diverse views and experiences of screening. The EPDS proved to be a barrier for some women, and a facilitator for others, in accessing support and referrals. The mediating factor appeared to be a trusting relationship with the nurse able to communicate her concern for the woman and offer support and referrals if required. Conclusions Detection of maternal depression requires more than administration of a screening tool at a single time point. While this approach did work for some women, for others it actually made appropriate care and support more difficult. Rather, trained and empathic healthcare providers working in a coordinated primary care

  7. Essential childbirth and postnatal interventions for improved maternal and neonatal health

    PubMed Central

    2014-01-01

    Childbirth and the postnatal period, spanning from right after birth to the following several weeks, presents a time in which the number of deaths reported still remain alarmingly high. Worldwide, about 800 women die from pregnancy- or childbirth-related complications daily while almost 75% of neonatal deaths occur within the first seven days of delivery and a vast majority of these occur in the first 24 hours. Unfortunately, this alarming trend of mortality persists, as287,000 women lost their lives to pregnancy and childbirth related causes in 2010. Almost all of these deaths were preventable and occurred in low-resource settings, pointing towards dearth of adequate facilities in these parts of the world. The main objective of this paper is to review the evidence based childbirth and post natal interventions which have a beneficial impact on maternal and newborn outcomes. It is a compilation of existing, new and updated interventions designed to help physicians and policy makers and enable them to reduce the burden of maternal and neonatal morbidities and mortalities. Interventions during the post natal period that were found to be associated with a decrease in maternal and neonatal morbidity and mortality included: advice and support of family planning, support and promotion of early initiation and continued breastfeeding; thermal care or kangaroo mother care for preterm and/or low birth weight babies; hygienic care of umbilical cord and skin following delivery, training health personnel in basic neonatal resuscitation; and postnatal visits. Adequate delivery of these interventions is likely to bring an unprecedented decrease in the number of deaths reported during childbirth. PMID:25177795

  8. Essential childbirth and postnatal interventions for improved maternal and neonatal health.

    PubMed

    Salam, Rehana A; Mansoor, Tarab; Mallick, Dania; Lassi, Zohra S; Das, Jai K; Bhutta, Zulfiqar A

    2014-01-01

    Childbirth and the postnatal period, spanning from right after birth to the following several weeks, presents a time in which the number of deaths reported still remain alarmingly high. Worldwide, about 800 women die from pregnancy- or childbirth-related complications daily while almost 75% of neonatal deaths occur within the first seven days of delivery and a vast majority of these occur in the first 24 hours. Unfortunately, this alarming trend of mortality persists, as 287,000 women lost their lives to pregnancy and childbirth related causes in 2010. Almost all of these deaths were preventable and occurred in low-resource settings, pointing towards dearth of adequate facilities in these parts of the world. The main objective of this paper is to review the evidence based childbirth and post natal interventions which have a beneficial impact on maternal and newborn outcomes. It is a compilation of existing, new and updated interventions designed to help physicians and policy makers and enable them to reduce the burden of maternal and neonatal morbidities and mortalities. Interventions during the post natal period that were found to be associated with a decrease in maternal and neonatal morbidity and mortality included: advice and support of family planning, support and promotion of early initiation and continued breastfeeding; thermal care or kangaroo mother care for preterm and/or low birth weight babies; hygienic care of umbilical cord and skin following delivery, training health personnel in basic neonatal resuscitation; and postnatal visits. Adequate delivery of these interventions is likely to bring an unprecedented decrease in the number of deaths reported during childbirth. PMID:25177795

  9. Asthma Pregnancy Alters Postnatal Development of Chromaffin Cells in the Rat Adrenal Medulla

    PubMed Central

    Li, Xiao-Zhao; Zou, Ye-Qiang; Zou, Jun-Tao; Li, Yuan-Yuan; Feng, Jun-Tao

    2011-01-01

    Background Adrenal neuroendocrine plays an important role in asthma. The activity of the sympathoadrenal system could be altered by early life events. The effects of maternal asthma during pregnancy on the adrenal medulla of offspring remain unknown. Methodology/Principal Findings This study aims to explore the influence of maternal asthma during pregnancy on the development and function of adrenal medulla in offspring from postnatal day 3 (P3) to postnatal day 60 (P60). Asthmatic pregnant rats (AP), nerve growth factor (NGF)-treated pregnant rats (NP) and NGF antibody-treated pregnant rats (ANP) were sensitized and challenged with ovalbumin (OVA); NP and ANP were treated with NGF and NGF antibody respectively. Offspring rats from the maternal group were divided into four groups: offspring from control pregnant rats (OCP), offspring from AP (OAP), offspring from NP (ONP), and offspring from ANP (OANP). The expressions of phenylethanolamine N-methyltransferase (PNMT) protein in adrenal medulla were analyzed. The concentrations of epinephrine (EPI), corticosterone and NGF in serum were measured. Adrenal medulla chromaffin cells (AMCC) were prone to differentiate into sympathetic nerve cells in OAP and ONP. Both EPI and PNMT were decreased in OAP from P3 to P14, and then reached normal level gradually from P30 to P60, which were lower from birth to adulthood in ONP. Corticosterone concentration increased significantly in OAP and ONP. Conclusion/Significance Asthma pregnancy may promote AMCC to differentiate into sympathetic neurons in offspring rats and inhibit the synthesis of EPI, resulting in dysfunction of bronchial relaxation. PMID:21647384

  10. Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult

    PubMed Central

    2012-01-01

    Background Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. Results We show that overexpression of the Alzheimer’s-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Conclusions Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer’s disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the

  11. The yield of early postnatal ultrasound scan in neonates with documented antenatal hydronephrosis.

    PubMed

    Maayan-Metzger, Ayala; Lotan, Danny; Jacobson, Jeffrey M; Raviv-Zilka, Lisa; Ben-Shlush, Aviva; Kuint, Jacob; Mor, Yoram

    2011-09-01

    We retrospectively assessed the yield of early postnatal ultrasound scans in neonates with documented antenatal hydronephrosis. We reviewed recording data of prenatal renal ultrasound for 178 newborn infants and the results of renal ultrasound performed during the first days of life. Of 119 infants with prenatal diagnosis of mild hydronephrosis (renal pelvic diameter <10 mm), 116 (97.5%) had postnatal ultrasound results showing normal or mild hydronephrosis. Prenatal diagnosis of severe hydronephrosis (renal pelvic diameter >20 mm; 10 infants) was correlated with high incidence (90%) of moderate and severe postnatal hydronephrosis. Prenatal diagnosis of moderate hydronephrosis (renal pelvic diameter 10 to 20 mm) resulted in moderate postnatal hydronephrosis in 20% and improvement in 80% of the newborn infants. Our evidence supports the option of delaying postnatal renal ultrasound in infants with prenatal diagnosis of mild hydronephrosis (renal pelvic diameter <10 mm). This strategy can safely reduce the number of early postnatal studies and consequently significantly decrease hospitals' inpatient workload. PMID:21494995

  12. Assessment of women's perspectives and experiences of childbirth and postnatal care using Q-methodology.

    PubMed

    Shabila, N P; Ahmed, H M; Yasin, M Y

    2015-09-01

    To complement standard measures of maternity care outcomes, an assessment of women's satisfaction with care is needed. The aim of this study was to elicit the perspectives and experiences of Iraqi women about childbirth and postnatal care services. The study participants were a sample of 37 women of different educational and socioeconomic status who had given birth during the previous 6 months. Q-methodology was used for data collection and analysis. Three distinct viewpoints and experiences of childbirth and postnatal care services were identified: a general perception of poor childbirth and postnatal care with lack of appropriate interpersonal care and support; a high satisfaction and positive experience with childbirth and postnatal care services among the confident and well-supported women; and poor satisfaction with the childbirth and postnatal care services in terms of meeting traditional cultural practices. Needs assessment around providers' skills and attitudes and the wider sociocultural environment of childbirth and postnatal care is necessary in Iraq. PMID:26450861

  13. RHEB1 expression in embryonic and postnatal mouse.

    PubMed

    Tian, Qi; Smart, James L; Clement, Joachim H; Wang, Yingming; Derkatch, Alex; Schubert, Harald; Danilchik, Michael V; Marks, Daniel L; Fedorov, Lev M

    2016-05-01

    Ras homolog enriched in brain (RHEB1) is a member within the superfamily of GTP-binding proteins encoded by the RAS oncogenes. RHEB1 is located at the crossroad of several important pathways including the insulin-signaling pathways and thus plays an important role in different physiological processes. To understand better the physiological relevance of RHEB1 protein, the expression pattern of RHEB1 was analyzed in both embryonic (at E3.5-E16.5) and adult (1-month old) mice. RHEB1 immunostaining and X-gal staining were used for wild-type and Rheb1 gene trap mutant mice, respectively. These independent methods revealed similar RHEB1 expression patterns during both embryonic and postnatal developments. Ubiquitous uniform RHEB1/β-gal and/or RHEB1 expression was seen in preimplantation embryos at E3.5 and postimplantation embryos up to E12.5. Between stages E13.5 and E16.5, RHEB1 expression levels became complex: In particular, strong expression was identified in neural tissues, including the neuroepithelial layer of the mesencephalon, telencephalon, and neural tube of CNS and dorsal root ganglia. In addition, strong expression was seen in certain peripheral tissues including heart, intestine, muscle, and urinary bladder. Postnatal mice have broad spatial RHEB1 expression in different regions of the cerebral cortex, subcortical regions (including hippocampus), olfactory bulb, medulla oblongata, and cerebellum (particularly in Purkinje cells). Significant RHEB1 expression was also viewed in internal organs including the heart, intestine, urinary bladder, and muscle. Moreover, adult animals have complex tissue- and organ-specific RHEB1 expression patterns with different intensities observed throughout postnatal development. Its expression level is in general comparable in CNS and other organs of mouse. Thus, the expression pattern of RHEB1 suggests that it likely plays a ubiquitous role in the development of the early embryo with more tissue-specific roles in later

  14. A qualitative study of the experiences and expectations of women receiving in-patient postnatal care in one English maternity unit

    PubMed Central

    2010-01-01

    Background Studies consistently highlight in-patient postnatal care as the area of maternity care women are least satisfied with. As part of a quality improvement study to promote a continuum of care from the birthing room to discharge home from hospital, we explored women's expectations and experiences of current in-patient care. Methods For this part of the study, qualitative data from semi-structured interviews were transcribed and analysed using content analyses to identify issues and concepts. Women were recruited from two postnatal wards in one large maternity unit in the South of England, with around 6,000 births a year. Results Twenty women, who had a vaginal or caesarean birth, were interviewed on the postnatal ward. Identified themes included; the impact of the ward environment; the impact of the attitude of staff; quality and level of support for breastfeeding; unmet information needs; and women's low expectations of hospital based postnatal care. Findings informed revision to the content and planning of in-patient postnatal care, results of which will be reported elsewhere. Conclusions Women's responses highlighted several areas where changes could be implemented. Staff should be aware that how they inter-act with women could make a difference to care as a positive or negative experience. The lack of support and inconsistent advice on breastfeeding highlights that units need to consider how individual staff communicate information to women. Units need to address how and when information on practical aspects of infant care is provided if women and their partners are to feel confident on the woman's transfer home from hospital. PMID:20979605

  15. Conflicting cultural perspectives: meanings and experiences of postnatal depression among women in Indian communities.

    PubMed

    Jain, Anita; Levy, David

    2013-01-01

    A woman's cultural and social context affects her experience of postnatal depression. In this literature review, the authors explore questions regarding normal and abnormal postnatal experiences of Indian women with consideration to cross-cultural perspectives. Although postnatal distress or sadness is recognized among many cultures, it is constructed as a transient state in some cultures and as an illness in others. A major challenge for health care providers in Western countries like the United Kingdom and Australia is to develop culturally sensitive approaches to postnatal care for migrant mothers. PMID:23909400

  16. Postnatal depression among Sudanese women: prevalence and validation of the Edinburgh Postnatal Depression Scale at 3 months postpartum

    PubMed Central

    Khalifa, Dina Sami; Glavin, Kari; Bjertness, Espen; Lien, Lars

    2015-01-01

    Purpose Postnatal depression (PND) rates in low-resource countries have reached levels between 4.9% and 59%. Maternal mental health has not been researched in Sudan, and there are no existing statistics on prevalence or significant risk factors for PND. Consequently, no screening test has been validated to screen for PND at the primary health care level. This study investigates the 3 months prevalence of PND and validates the Edinburgh Postnatal Depression Scale (EPDS) against the Mini-International Neuropsychiatric Interview (MINI). Methodology Pregnant Sudanese women in the second and third trimesters were recruited to the study during routine antenatal care visits in two major maternity hospitals in Khartoum state. They were screened for PND at 3 months postpartum using the EPDS. Test positive women were matched with test negative women according to nearest date of birth. A clinical psychologist verified their depression status using the MINI. Results The follow-up rate was 79%. At a cutoff point of ≥12, the 3 months prevalence of PND was 9.2%. The sensitivity and specificity of the EPDS were 89% and 82%, respectively. The EPDS and MINI showed a strong positive relationship (odds ratio =36). The positive predictive value and negative predictive value, using this study’s prevalence, were 33% and 98.7%, respectively. The receiver operator characteristic analysis showed an area under the curve of 0.89. The cut-off point ≥12 was the most acceptable point as it had the lowest number needed to diagnose (1.4) and a false-positive rate of 18%. Conclusion The EPDS is a valid tool for screening for PND on a Sudanese population. It was accepted, easily administered, and understood by postnatal women. Health care personnel, especially village midwives, should be trained on screening and referral of depressed women for clinical evaluation and management. Due to limited resources available in Sudan, shorter screening tests need to be validated in the future. PMID

  17. Postnatal reproductive autonomy: promoting relational autonomy and self-trust in new parents.

    PubMed

    Goering, Sara

    2009-01-01

    New parents suddenly come face to face with myriad issues that demand careful attention but appear in a context unlikely to provide opportunities for extended or clear-headed critical reflection, whether at home with a new baby or in the neonatal intensive care unit. As such, their capacity for autonomy may be compromised. Attending to new parental autonomy as an extension of reproductive autonomy, and as a complicated phenomenon in its own right rather than simply as a matter to be balanced against other autonomy rights, can help us to see how new parents might be aided in their quest for competency and good decision making. In this paper I show how a relational view of autonomy--attentive to the coercive effects of oppressive social norms and to the importance of developing autonomy competency, especially as related to self-trust--can improve our understanding of the situation of new parents and signal ways to cultivate and to better respect their autonomy. PMID:19076938

  18. Spaceflight affects postnatal development of the aortic wall in rats.

    PubMed

    Katsuda, Shin-ichiro; Yamasaki, Masao; Waki, Hidefumi; Miyake, Masao; O-ishi, Hirotaka; Katahira, Kiyoaki; Nagayama, Tadanori; Miyamoto, Yukako; Hasegawa, Masamitsu; Wago, Haruyuki; Okouchi, Toshiyasu; Shimizu, Tsuyoshi

    2014-01-01

    We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam). The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta. PMID:25210713

  19. Postnatal changes in fatty acids composition of brown adipose tissue

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Ogawa, K.; Kuroshima, A.

    1992-03-01

    It has been demonstrated that thermogenic activity of brown adipose tissue (BAT) is higher during the early postnatal period, decreasing towards a low adult level. The present study examined postnatal changes in the lipid composition of BAT. BAT from pre-weaning rats at 4 and 14 days old showed the following differences in lipid composition compared to that from adults of 12 weeks old. (i) Relative weight of interscapular BAT to body weight was markedly greater. (ii) BAT-triglyceride (TG) level was lower, while BAT-phospholipid (PL)level was higher. (iii) In TG fatty acids (FA) polyunsaturated fatty acids (PU; mol %), arachidonate index (AI), unsaturation index (UI) and PU/saturated FA (SA) were higher; rare FA such as eicosadienoate, bishomo- γ-linolenic acid and lignoceric acid in mol % were also higher. (iv) In PL-FA monounsaturated FA (MU) in mol % was lower; PU mol %, AI and UI were higher. These features in BAT of pre-weaning rats resembled those in the cold-acclimated adults, suggesting a close relationship of the PL-FA profile to high activity of BAT.

  20. Prenatal and postnatal cocaine exposure predict teen cocaine use

    PubMed Central

    Delaney-Black, Virginia; Chiodo, Lisa M.; Hannigan, John H.; Greenwald, Mark K.; Janisse, James; Patterson, Grace; Huestis, Marilyn A.; Partridge, Robert T.; Ager, Joel; Sokol, Robert J.

    2015-01-01

    Preclinical studies have identified alterations in cocaine and alcohol self-administration and behavioral responses to pharmacological challenges in adolescent offspring following prenatal exposure. To date, no published human studies have evaluated the relation between prenatal cocaine exposure and postnatal adolescent cocaine use. Human studies of prenatal cocaine-exposed children have also noted an increase in behaviors previously associated with substance use/abuse in teens and young adults, specifically childhood and teen externalizing behaviors, impulsivity, and attention problems. Despite these findings, human research has not addressed prior prenatal exposure as a potential predictor of teen drug use behavior. The purpose of this study was to evaluate the relations between prenatal cocaine exposure and teen cocaine use in a prospective longitudinal cohort (n = 316) that permitted extensive control for child, parent and community risk factors. Logistic regression analyses and Structural Equation Modeling revealed that both prenatal exposure and postnatal parent/caregiver cocaine use were uniquely related to teen use of cocaine at age 14 years. Teen cocaine use was also directly predicted by teen community violence exposure and caregiver negativity, and was indirectly related to teen community drug exposure. These data provide further evidence of the importance of prenatal exposure, family and community factors in the intergenerational transmission of teen/young adult substance abuse/use. PMID:20609384

  1. Effects of postnatal estrogen manipulations on juvenile alloparental behavior.

    PubMed

    Perry, Adam N; Sue Carter, C; Cushing, Bruce S

    2015-09-01

    Sex- and species-specific patterns of estrogen receptor (ER)-α expression are established early in development, which may contribute to sexual differentiation of behavior and determine male social organization. The current study investigated the effects of ERα and ERβ activation during the second postnatal week on subsequent alloparental behavior and ERα expression in juvenile prairie voles. Male and female pups were treated daily with 17β-estradiol (E2, ERα/ERβ agonist), PPT (selective ERα agonist), DPN (selective ERβ agonist), or the oil vehicle on postnatal days (PD) 8-14. Alloparental behavior and ERα expression were examined at PD21. PPT treatment inhibited prosocial motivation in males and increased pup-directed aggression in both sexes. E2 and DPN had no apparent effect on behavior in either sex. PPT-treated males had increased ERα expression in the medial preoptic area (MPN), medial amygdala (MEApd) and bed nucleus of the stria terminalis (BSTpr). DPN treatment also increased ERα expression in males, but only in the BSTpr. Female ERα expression was unaffected by treatment. These results support the hypothesis that ERα activation in early life is associated with less prosocial patterns of central ERα expression and alloparental behavior in males. The lack of an effect of E2 on behavior suggests that ERβ may antagonize the effects of ERα on alloparental behavior. The results in DPN-treated males suggest that ERα in the MEApd, and not the BSTpr, may be a primary determinant of alloparental behavior in males. PMID:26222494

  2. Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis

    PubMed Central

    Jiang, Jianming; Burgon, Patrick G.; Wakimoto, Hiroko; Onoue, Kenji; Gorham, Joshua M.; O’Meara, Caitlin C.; Fomovsky, Gregory; McConnell, Bradley K.; Lee, Richard T.; Seidman, J. G.; Seidman, Christine E.

    2015-01-01

    Homozygous cardiac myosin binding protein C-deficient (Mybpct/t) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpct/t myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpct/t myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpct/t mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3+/− individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3−/− mice is primarily myocyte hyperplasia. PMID:26153423

  3. Postnatal evaluation and outcome of infants with antenatal hydronephrosis.

    PubMed

    Valent-Morić, Bernardica; Zigman, Tamara; Cuk, Martin; Zaja-Franulović, Orjena; Malenica, Masa

    2011-12-01

    This study was aimed at evaluating the clinical outcome of infants with antenatally diagnosed hydronephrosis. Our objective was also to determine whether there is a significant correlation between anterior posterior pelvic diameter (APPD) and urinary tract abnormalities detected. We retrospectively analyzed data of 145 infants collected between January 2000 and May 2010. Inclusion criteria were the presence of APPD > or = 5 mm on prenatal US scan after 20 weeks of gestation, at least 6-month follow-up and at least two postnatal US scans. Most patients underwent renal scintigraphy (n = 140, 96.6%) and micturating cystourethrography (n = 141, 97.2%). Of 145 infants, 77 (53.1%) had idiopathic or transient hydronephrosis. The second most common diagnosis was vesicoureteral reflux found in 21 (14.4%) infants, followed by ureteropelvic junction obstruction without significant kidney damage found in 18 (12.4%) infants. The relative risk of significant urologic abnormality according to the degree of antenatal hydronephrosis (ANH) was 21.25 (95% CI: 2.95-156.49) for severe ANH, 1.57 (95% CI: 0.94-2.62) for moderate ANH and 0.47 (95% CI: 0.33-0.66) for mild ANH. There was a significant increase in the riskper increasing degree of hydronephrosis. In 19 out of 145 (13.2%) infants, immediate surgery was required. These data support the need of antenatal detection and long-term postnatal follow-up of infants with ANH. PMID:22649872

  4. Postnatal development of the exocrine pancreas in suckling goat kids.

    PubMed

    Lopez, V; Martínez-Victoria, E; Yago, M D; Lupiani, M J; Mañas, M

    1997-04-01

    A total of 25 preruminant Granadina breed goats were used. They were bottle-fed goat milk ad libitum from postnatal day 3 to 28. Until the age of 3 d, kids were fed colostrum. Body weight, pancreas weight, total protein concentration, enzyme activities in pancreatic tissue and hormone concentrations (cortisol, gastrin, T3 and T4) were determined at 3, 7, 14, 21 and 28 d of age. Our results show that the rates of pancreatic synthesis and secretion of chymotrypsin are well developed at birth in the kid, and may compensate for possible deficiencies in gastric and/or enterocytes intracellular proteolysis. In week 4, there was a marked increase in amylase activity, change that can be attributed to the beginning of the transitional period known as weaning. The significant increase in circulating concentration of cortisol during week 4 suggests the involvement of corticosteroid as a mediator of pancreatic development at weaning. Changes in blood levels of this hormone are believed to be important in the expression of amylase in the neonatal period. However, T3-T4 blood levels remained unchanged from d 3 to 28, suggesting that, in the kid, these hormones appear to have no clear influence upon the postnatal development of the exocrine pancreas. PMID:9255407

  5. Pre- and Postnatal Neuroimaging of Congenital Cerebellar Abnormalities.

    PubMed

    Poretti, Andrea; Boltshauser, Eugen; Huisman, Thierry A G M

    2016-02-01

    The human cerebellum has a protracted development that makes it vulnerable to a broad spectrum of developmental disorders including malformations and disruptions. Starting from 19 to 20 weeks of gestation, prenatal magnetic resonance imaging (MRI) can reliably study the developing cerebellum. Pre- and postnatal neuroimaging plays a key role in the diagnostic work-up of congenital cerebellar abnormalities. Diagnostic criteria for cerebellar malformations and disruptions are based mostly on neuroimaging findings. The diagnosis of a Dandy-Walker malformation is based on the presence of hypoplasia, elevation, and counterclockwise upward rotation of the cerebellar vermis and cystic dilatation of the fourth ventricle, which extends posteriorly filling out the posterior fossa. For the diagnosis of Joubert syndrome, the presence of the molar tooth sign (thickened, elongated, and horizontally orientated superior cerebellar peduncles and an abnormally deep interpeduncular fossa) is needed. The diagnostic criteria of rhombencephalosynapsis include a complete or partial absence of the cerebellar vermis and continuity of the cerebellar hemispheres across the midline. Unilateral cerebellar hypoplasia is defined by the complete aplasia or hypoplasia of one cerebellar hemisphere. Familiarity with these diagnostic criteria as well as the broad spectrum of additional neuroimaging findings is important for a correct pre- and postnatal diagnosis. A correct diagnosis is essential for management, prognosis, and counseling of the affected children and their family. PMID:26166429

  6. Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis.

    PubMed

    Jiang, Jianming; Burgon, Patrick G; Wakimoto, Hiroko; Onoue, Kenji; Gorham, Joshua M; O'Meara, Caitlin C; Fomovsky, Gregory; McConnell, Bradley K; Lee, Richard T; Seidman, J G; Seidman, Christine E

    2015-07-21

    Homozygous cardiac myosin binding protein C-deficient (Mybpc(t/t)) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpc(t/t) myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpc(t/t) myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpc(t/t) mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3(+/-) individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3(-/-) mice is primarily myocyte hyperplasia. PMID:26153423

  7. Spatiotemporal dynamics of the postnatal developing primate brain transcriptome

    PubMed Central

    Bakken, Trygve E.; Miller, Jeremy A.; Luo, Rui; Bernard, Amy; Bennett, Jeffrey L.; Lee, Chang-Kyu; Bertagnolli, Darren; Parikshak, Neelroop N.; Smith, Kimberly A.; Sunkin, Susan M.; Amaral, David G.; Geschwind, Daniel H.; Lein, Ed S.

    2015-01-01

    Developmental changes in the temporal and spatial regulation of gene expression drive the emergence of normal mature brain function, while disruptions in these processes underlie many neurodevelopmental abnormalities. To solidify our foundational knowledge of such changes in a primate brain with an extended period of postnatal maturation like in human, we investigated the whole-genome transcriptional profiles of rhesus monkey brains from birth to adulthood. We found that gene expression dynamics are largest from birth through infancy, after which gene expression profiles transition to a relatively stable state by young adulthood. Biological pathway enrichment analysis revealed that genes more highly expressed at birth are associated with cell adhesion and neuron differentiation, while genes more highly expressed in juveniles and adults are associated with cell death. Neocortex showed significantly greater differential expression over time than subcortical structures, and this trend likely reflects the protracted postnatal development of the cortex. Using network analysis, we identified 27 co-expression modules containing genes with highly correlated expression patterns that are associated with specific brain regions, ages or both. In particular, one module with high expression in neonatal cortex and striatum that decreases during infancy and juvenile development was significantly enriched for autism spectrum disorder (ASD)-related genes. This network was enriched for genes associated with axon guidance and interneuron differentiation, consistent with a disruption in the formation of functional cortical circuitry in ASD. PMID:25954031

  8. Spaceflight Affects Postnatal Development of the Aortic Wall in Rats

    PubMed Central

    Yamasaki, Masao; Waki, Hidefumi; Miyake, Masao; Nagayama, Tadanori; Miyamoto, Yukako; Wago, Haruyuki; Okouchi, Toshiyasu; Shimizu, Tsuyoshi

    2014-01-01

    We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam). The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta. PMID:25210713

  9. Postnatal outcomes of prenatally diagnosed 45,X/46,XX.

    PubMed

    Tokita, Mari J; Sybert, Virginia P

    2016-05-01

    High quality information is critical for informed decision-making in pregnancy following a prenatal diagnosis of sex chromosome aneuploidy. The goal of this study was to define the spectrum of outcomes in patients with prenatally diagnosed 45,X/46,XX mosaic Turner syndrome in order to provide a better basis for genetic counseling at the time of intrauterine diagnosis. Phenotype data for twenty-five patients with prenatally diagnosed 45,X/46,XX mosaicism were collected by retrospective chart review and, when possible, semi-structured telephone interview. Existing data from a cohort of 58 patients with postnatally diagnosed 45,X/46,XX mosaicism were used for comparison. Relative to those diagnosed postnatally, prenatal patients were more likely to have normal growth and normal secondary sexual development, less likely to manifest distinctive Turner syndrome features such as nuchal webbing and edema, and had significantly fewer renal defects. These differences underscore the need for a nuanced approach to prenatal counseling in cases of 45,X/46,XX mosaicism. © 2016 Wiley Periodicals, Inc. PMID:26789280

  10. Expression studies of neuronatin in prenatal and postnatal rat pituitary.

    PubMed

    Kanno, Naoko; Higuchi, Masashi; Yoshida, Saishu; Yako, Hideji; Chen, Mo; Ueharu, Hiroki; Nishimura, Naoto; Kato, Takako; Kato, Yukio

    2016-05-01

    The pituitary gland, an indispensable endocrine organ that synthesizes and secretes pituitary hormones, develops with the support of many factors. Among them, neuronatin (NNAT), which was discovered in the neonatal mouse brain as a factor involved in neural development, has subsequently been revealed to be coded by an abundantly expressing gene in the pituitary gland but its role remains elusive. We analyze the expression profile of Nnat and the localization of its product during rat pituitary development. The level of Nnat expression was high during the embryonic period but remarkably decreased after birth. Immunohistochemistry demonstrated that NNAT appeared in the SOX2-positive stem/progenitor cells in the developing pituitary primordium on rat embryonic day 11.5 (E11.5) and later in the majority of SOX2/PROP1 double-positive cells on E13.5. Thereafter, during pituitary embryonic development, Nnat expression was observed in some stem/progenitor cells, proliferating cells and terminally differentiating cells. In postnatal pituitaries, NNAT-positive cells decreased in number, with most coexpressing Sox2 or Pit1, suggesting a similar role for NNAT to that during the embryonic period. NNAT was widely localized in mitochondria, peroxisomes and lysosomes, in addition to the endoplasmic reticulum but not in the Golgi. The present study thus demonstrated the variability in expression of NNAT-positive cells in rat embryonic and postnatal pituitaries and the intracellular localization of NNAT. Further investigations to obtain functional evidence for NNAT are a prerequisite. PMID:26613603

  11. The amyloid precursor protein and postnatal neurogenesis/neuroregeneration

    SciTech Connect

    Chen Yanan; Tang, Bor Luen . E-mail: bchtbl@nus.edu.sg

    2006-03-03

    The amyloid precursor protein (APP) is the source of amyloid-beta (A{beta}) peptide, produced via its sequential cleavage {beta}- and {gamma}-secretases. Various biophysical forms of A{beta} (and the mutations of APP which results in their elevated levels) have been implicated in the etiology and early onset of Alzheimer's disease. APP's evolutionary conservation and the existence of APP-like isoforms (APLP1 and APLP2) which lack the A{beta} sequence, however, suggest that these might have important physiological functions that are unrelated to A{beta} production. Soluble N-terminal fragments of APP have been known to be neuroprotective, and the interaction of its cytoplasmic C-terminus with a myriad of proteins associates it with diverse processes such as axonal transport and transcriptional regulation. The notion for an essential postnatal function of APP has been demonstrated genetically, as mice deficient in both APP and APLP2 or all three APP isoforms exhibit early postnatal lethality and neuroanatomical abnormalities. Recent findings have also brought to light two possible functions of the APP family in Brain-regulation of neural progenitor cell proliferation and axonal outgrowth after injury. Interestingly, these two apparently related neurogenic/neuroregenerative functions of APP involve two separate domains of the molecule.

  12. Browning attenuates murine white adipose tissue expansion during postnatal development.

    PubMed

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease. PMID:23376694

  13. Congenital pulmonary airway malformations: from prenatal diagnosis to postnatal outcome.

    PubMed

    Pelizzo, Gloria; Costanzo, Federico; Andreatta, Erika; Calcaterra, Valeria

    2016-08-01

    Congenital pulmonary airway malformations (CPAMs) include cystic and non-cystic lung lesions. These represent about 30-40% of developmental lung bud anomaly lesions mainly diagnosed during pregnancy or in newborn infants; or sometimes they remain undetected until adult life. The malformation usually presents as a sporadic, non-hereditary lung abnormality, with no predilection for the right or left lung, sex or race. CPAMs vary in their histological features, epidemiological and clinical presentation, severity and prognosis, supporting the embryologic hypothesis of arrested lung growth during branching morphogenesis. The existence of "hybrid" forms underline the possible common pathogenic mechanism involved in the development of different lesion types; a genetic role has also been proposed in abnormal lung development. Influence of the natural history on pre and postnatal management is relevant. Surgical resection is the standard of therapy for symptomatic CPAMs, while the management of asymptomatic cases remains controversial. The potential risk of infection and malignancy in CPAMs justifies complete surgical resection in the first year of life; while long term follow-up is required in children who do not undergo surgery. A multidisciplinary team including gynecologists, neonatologists, radiologists, pediatricians and pediatric surgeons is recommended in pre, postnatal management and in the postsurgical follow-up of all children with CPAMs. PMID:26365821

  14. The septal organ of the rat during postnatal development.

    PubMed

    Weiler, Elke; Farbman, Albert I

    2003-09-01

    The septal organ of Masera (SO) is a small, isolated patch of olfactory epithelium, located in the ventral part of the nasal septum. We investigated in this systematic study the postnatal development of the SO in histological sections of rats at various ages from the day of birth (P1) to P666. The SO-area increases to a maximum at P66-P105, just as the animals reach sexual maturity, and decreases thereafter, significantly however only in males, indicating a limited neurogenetic capacity for regeneration. In contrast, the main olfactory epithelium area continues to expand beyond P300. The modified respiratory epithelium ('zwischen epithelium') separating the SO and the main olfactory epithelium contains a few olfactory neurons up to age P66. Its length increases postnatally so that the SO becomes more ventral to the OE. Although the position of the SO relative to other anatomical landmarks changes with development it is consistently located just posterior to the opening of the nasopalatine duct (NPAL). Thus, a possible function of the SO is in sensing chemicals in fluids entering the mouth by licking and then delivered to the nasal cavity via the NPAL; therefore the SO may be involved in social/sexual behavior as is the vomeronasal organ (VNO). We suggest that the SO is a separate accessory olfactory organ with properties somewhat different from both OE and VNO and may exist only in species where the NPAL does not open into the VNO. PMID:14578120

  15. Blimp1/Prdm1 Functions in Opposition to Irf1 to Maintain Neonatal Tolerance during Postnatal Intestinal Maturation.

    PubMed

    Mould, Arne W; Morgan, Marc A J; Nelson, Andrew C; Bikoff, Elizabeth K; Robertson, Elizabeth J

    2015-07-01

    The neonatal intestine is a very complex and dynamic organ that must rapidly adapt and remodel in response to a barrage of environmental stimuli during the first few postnatal weeks. Recent studies demonstrate that the zinc finger transcriptional repressor Blimp1/Prdm1 plays an essential role governing postnatal reprogramming of intestinal enterocytes during this period. Functional loss results in global changes in gene expression patterns, particularly in genes associated with metabolic function. Here we engineered a knock-in allele expressing an eGFP-tagged fusion protein under control of the endogenous regulatory elements and performed genome wide ChIP-seq analysis to identify direct Blimp1 targets and further elucidate the function of Blimp1 in intestinal development. Comparison with published human and mouse datasets revealed a highly conserved core set of genes including interferon-inducible promoters. Here we show that the interferon-inducible transcriptional activator Irf1 is constitutively expressed throughout fetal and postnatal intestinal epithelium development. ChIP-seq demonstrates closely overlapping Blimp1 and Irf1 peaks at key components of the MHC class I pathway in fetal enterocytes. The onset of MHC class I expression coincides with down-regulated Blimp1 expression during the suckling to weaning transition. Collectively, these experiments strongly suggest that in addition to regulating the enterocyte metabolic switch, Blimp1 functions as a gatekeeper in opposition to Irf1 to prevent premature activation of the MHC class I pathway in villus epithelium to maintain tolerance in the neonatal intestine. PMID:26158850

  16. Effect of nutritional rehabilitation on the development of intestinal brush border disaccharidases of postnatally malnourished weanling rats.

    PubMed

    Rossi, T M; Lee, P C; Young, C M; Lerner, A; Lebenthal, E

    1986-08-01

    The reversibility of the effects of postnatal malnutrition on the intestinal brush border enzymes and somatic and intestinal weights were examined using either ad libitum or restricted feedings. Malnutrition was induced in the immediate postnatal period by expanding newborn rat litters to 20 pups/dam. At 21 days of age, malnourished pups exhibited significantly decreased body and intestinal weights as compared to those from control litters. Malnourished pups also had significantly elevated lactase specific activities whereas sucrase and maltase activities were not affected in the proximal small intestine. With subsequent nutritional rehabilitation by an ad libitum (food available 24 h/day) or restricted feeding regimen (food available 2 h/day), body and intestinal weights remained significantly depressed by 56 days in malnourished as compared to control animals. Rats on 2-h feedings consumed approximately 35% of the food consumed by their ad libitum-fed counterparts. Comparison of the ratio of weight gained to the amount of food consumed did not demonstrate a greater food efficiency with any particular feeding pattern. With ad libitum or restricted feedings, lactase specific activity in the proximal segment attained control values by 14 days. Restricted feedings resulted in an apparent elevation of specific activity of sucrase and of maltase, when rats were sacrificed at one chosen time point. Multiple time studies in a 24-h cycle showed that maximal elevations in enzyme activities were associated with feeding time. There were no significant differences in mean specific daily enzyme activities between the two feeding regimens. Restricted feedings show no advantage in enzyme efficiency or in promoting the rate of recovery of the intestine after postnatal malnutrition. PMID:3090509

  17. Blimp1/Prdm1 Functions in Opposition to Irf1 to Maintain Neonatal Tolerance during Postnatal Intestinal Maturation

    PubMed Central

    Mould, Arne W.; Morgan, Marc A. J.; Nelson, Andrew C.; Bikoff, Elizabeth K.; Robertson, Elizabeth J.

    2015-01-01

    The neonatal intestine is a very complex and dynamic organ that must rapidly adapt and remodel in response to a barrage of environmental stimuli during the first few postnatal weeks. Recent studies demonstrate that the zinc finger transcriptional repressor Blimp1/Prdm1 plays an essential role governing postnatal reprogramming of intestinal enterocytes during this period. Functional loss results in global changes in gene expression patterns, particularly in genes associated with metabolic function. Here we engineered a knock-in allele expressing an eGFP-tagged fusion protein under control of the endogenous regulatory elements and performed genome wide ChIP-seq analysis to identify direct Blimp1 targets and further elucidate the function of Blimp1 in intestinal development. Comparison with published human and mouse datasets revealed a highly conserved core set of genes including interferon-inducible promoters. Here we show that the interferon-inducible transcriptional activator Irf1 is constitutively expressed throughout fetal and postnatal intestinal epithelium development. ChIP-seq demonstrates closely overlapping Blimp1 and Irf1 peaks at key components of the MHC class I pathway in fetal enterocytes. The onset of MHC class I expression coincides with down-regulated Blimp1 expression during the suckling to weaning transition. Collectively, these experiments strongly suggest that in addition to regulating the enterocyte metabolic switch, Blimp1 functions as a gatekeeper in opposition to Irf1 to prevent premature activation of the MHC class I pathway in villus epithelium to maintain tolerance in the neonatal intestine. PMID:26158850

  18. Determinants of postnatal service utilisation among mothers in rural settings of Malawi.

    PubMed

    Phiri, Precious William C; Rattanapan, Cheerawit; Mongkolchati, Aroonsri

    2015-09-01

    The aim of this study was to determine significant predictors for the utilisation of postnatal service among mothers. A total of 295 postnatal mothers were enrolled in a cross-sectional study design undertaken in six health facilities of Lilongwe District using two-stage cluster sampling with a response rate of 100%. The data were collected by interview from December 2012 to January 2013 using a structured questionnaire. The result showed that over half of the mothers (56.6%) utilised postnatal service within 6 weeks after delivery. A stepwise multiple logistic regression was used to determine significant determinants of utilisation of postnatal service among mothers. After adjusting for confounding factors, utilisation of an alternative local source of care in home after delivery [adjusted odds ratio (aOR): 7.77, 95% CI: 4.14-14.58], women's perception on performance of health workforce during delivery and postnatal service (aOR: 6.56, 95% CI: 3.09-13.94), health education before hospital discharge of postnatal mothers (aOR: 4.08, 95% CI: 2.11-7.92), place of delivery (aOR: 4.32, 95% CI: 1.32-14.12), family income (aOR: 1.89, 95% CI: 1.03-3.46) and the occurrence of no complications during delivery (aOR: 1.90, 95% CI: 1.03-3.50) were significantly associated with the utilisation of postnatal service. Hence, this study suggests that improved health workforce performance coupled with effective health education may increase the utilisation of postnatal service. Furthermore, the utilisation of postnatal service may also be increased through reducing home deliveries, delivery complications and the use of alternative local care at home after delivery. Integration of postnatal service in outreach clinics might also assist through reducing the cost of accessing postnatal service among mothers. PMID:25319930

  19. Evidence That Up-Regulation of MicroRNA-29 Contributes to Postnatal Body Growth Deceleration

    PubMed Central

    Kamran, Fariha; Andrade, Anenisia C.; Nella, Aikaterini A.; Clokie, Samuel J.; Rezvani, Geoffrey; Nilsson, Ola; Baron, Jeffrey

    2015-01-01

    Body growth is rapid in infancy but subsequently slows and eventually ceases due to a progressive decline in cell proliferation that occurs simultaneously in multiple organs. We previously showed that this decline in proliferation is driven in part by postnatal down-regulation of a large set of growth-promoting genes in multiple organs. We hypothesized that this growth-limiting genetic program is orchestrated by microRNAs (miRNAs). Bioinformatic analysis identified target sequences of the miR-29 family of miRNAs to be overrepresented in age–down-regulated genes. Concomitantly, expression microarray analysis in mouse kidney and lung showed that all members of the miR-29 family, miR-29a, -b, and -c, were strongly up-regulated from 1 to 6 weeks of age. Real-time PCR confirmed that miR-29a, -b, and -c were up-regulated with age in liver, kidney, lung, and heart, and their expression levels were higher in hepatocytes isolated from 5-week-old mice than in hepatocytes from embryonic mouse liver at embryonic day 16.5. We next focused on 3 predicted miR-29 target genes (Igf1, Imp1, and Mest), all of which are growth-promoting. A 3′-untranslated region containing the predicted target sequences from each gene was placed individually in a luciferase reporter construct. Transfection of miR-29 mimics suppressed luciferase gene activity for all 3 genes, and this suppression was diminished by mutating the target sequences, suggesting that these genes are indeed regulated by miR-29. Taken together, the findings suggest that up-regulation of miR-29 during juvenile life drives the down-regulation of multiple growth-promoting genes, thus contributing to physiological slowing and eventual cessation of body growth. PMID:25866874

  20. Pre- and Postnatal Women's Leisure Time Physical Activity Patterns: A Multilevel Longitudinal Analysis

    ERIC Educational Resources Information Center

    Cramp, Anita G.; Bray, Steven R.

    2009-01-01

    The purpose of this study was to examine women's leisure time physical activity (LTPA) before pregnancy, during pregnancy, and through the first 7 months postnatal. Pre- and postnatal women (n = 309) completed the 12-month Modifiable Activity Questionnaire and demographic information. Multilevel modeling was used to estimate a growth curve…

  1. A review of postnatal mental health websites: help for healthcare professionals and patients.

    PubMed

    Moore, Donna; Ayers, Susan

    2011-12-01

    The internet offers an accessible and cost-effective way to help women suffering with various types of postnatal mental illness and also can provide resources for healthcare professionals. Many websites on postnatal mental illness are available, but there is little information on the range or quality of information and resources offered. The current study therefore aimed to review postnatal health websites and evaluate their quality on a variety of dimensions. A systematic review of postnatal health websites was conducted. Searches were carried out on four search engines (Google, Yahoo, Ask Jeeves and Bing) which are used by 98% of web users. The first 25 websites found for each key word and their hyperlinks were assessed for inclusion in the review. Websites had to be exclusively dedicated to postnatal mental health or have substantial information on postnatal mental illness. Eligible websites (n=114) were evaluated for accuracy of information, available resources and quality. Results showed that information was largely incomplete and difficult to read; available help was limited and website quality was variable. The top five postnatal mental illness websites were identified for (1) postnatal mental illness sufferers and (2) healthcare professionals. It is hoped these top websites can be used by healthcare professionals both for their own information and to advise patients on quality online resources. PMID:22109827

  2. Depression in Men in the Postnatal Period and Later Child Psychology: A Population Cohort Study

    ERIC Educational Resources Information Center

    Ramchandani, Paul G.; Stein, Alan; O'Connor, Thomas G.; Heron, Jon; Murray, Lynne; Evans, Jonathan

    2008-01-01

    The factors responsible for depression in men following childbirth and the association between their depression in the postnatal period and later psychiatric disorders in their children are assessed. Findings show that depression in fathers in their postnatal period is associated with later psychiatric disorders in their children, independent of…

  3. Maternal low protein diet and postnatal high fat diet increases adipose imprinted gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maternal and postnatal diet can alter Igf2 gene expression and DNA methylation. To test whether maternal low protein and postnatal high fat (HF) diet result in alteration in Igf2 expression and obesity, we fed obese-prone Sprague-Dawley rats 8% (LP) or 20% (NP) protein for 3 wk prior to breeding and...

  4. Maternal Postnatal Depression and the Development of Depression in Offspring up to 16 Years of Age

    ERIC Educational Resources Information Center

    Murray, Lynne; Arteche, Adriane; Fearon, Pasco; Halligan, Sarah; Goodyer, Ian; Cooper, Peter

    2011-01-01

    Objective: The aim of this study was to determine the developmental risk pathway to depression by 16 years in offspring of postnatally depressed mothers. Method: This was a prospective longitudinal study of offspring of postnatally depressed and nondepressed mothers; child and family assessments were made from infancy to 16 years. A total of 702…

  5. Early postnatal nutrition determines adult physical activity and energy expenditure in female mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Decades of research in rodent models has shown that early postnatal overnutrition induces excess adiposity and other components of metabolic syndrome that persist into adulthood. The specific biologic mechanisms explaining the persistence of these effects, however, remain unknown. On postnatal day 1...

  6. Lin41/Trim71 is essential for mouse development and specifically expressed in postnatal ependymal cells of the brain

    PubMed Central

    Cuevas, Elisa; Rybak-Wolf, Agnieszka; Rohde, Anna M.; Nguyen, Duong T. T.; Wulczyn, F. Gregory

    2015-01-01

    Lin41/Trim71 is a heterochronic gene encoding a member of the Trim-NHL protein family, and is the original, genetically defined target of the microRNA let-7 in C. elegans. Both the LIN41 protein and multiple regulatory microRNA binding sites in the 3′ UTR of the mRNA are highly conserved from nematodes to humans. Functional studies have described essential roles for mouse LIN41 in embryonic stem cells, cellular reprogramming and the timing of embryonic neurogenesis. We have used a new gene trap mouse line deficient in Lin41 to characterize Lin41 expression during embryonic development and in the postnatal central nervous system (CNS). In the embryo, Lin41 is required for embryonic viability and neural tube closure. Nevertheless, neurosphere assays suggest that Lin41 is not required for adult neurogenesis. Instead, we show that Lin41 promoter activity and protein expression in the postnatal CNS is restricted to ependymal cells lining the walls of the four ventricles. We use ependymal cell culture to confirm reestablishment of Lin41 expression during differentiation of ependymal progenitors to post-mitotic cells possessing motile cilia. Our results reveal that terminally differentiated ependymal cells express Lin41, a gene to date associated with self-renewing stem cells. PMID:25883935

  7. Phosphoinositide-Dependent Kinase 1 and mTORC2 Synergistically Maintain Postnatal Heart Growth and Heart Function in Mice

    PubMed Central

    Zhao, Xia; Lu, Shuangshuang; Nie, Junwei; Hu, Xiaoshan; Luo, Wen; Wu, Xiangqi; Liu, Hailang; Feng, Qiuting; Chang, Zai; Liu, Yaoqiu; Cao, Yunshan; Sun, Haixiang; Li, Xinli; Hu, Yali

    2014-01-01

    The protein kinase Akt plays a critical role in heart function and is activated by phosphorylation of threonine 308 (T308) and serine 473 (S473). While phosphoinositide-dependent kinase 1 (PDK1) is responsible for Akt T308 phosphorylation, the identities of the kinases for Akt S473 phosphorylation in the heart remain controversial. Here, we disrupted mTOR complex 2 (mTORC2) through deletion of Rictor in the heart and found normal heart growth and function. Rictor deletion caused significant reduction of Akt S473 phosphorylation but enhanced Akt T308 phosphorylation, suggesting that a high level of Akt T308 phosphorylation maintains Akt activity and heart function. Deletion of Pdk1 in the heart caused significantly enhanced Akt S473 phosphorylation that was suppressed by removal of Rictor, leading to worsened dilated cardiomyopathy (DCM) and accelerated heart failure in Pdk1-deficient mice. In addition, we found that increasing Akt S473 phosphorylation through deletion of Pten or chemical inhibition of PTEN reversed DCM and heart failure in Pdk1-deficient mice. Investigation of heart samples from human DCM patients revealed changes similar to those in the mouse models. These results demonstrated that PDK1 and mTORC2 synergistically promote postnatal heart growth and maintain heart function in postnatal mice. PMID:24662050

  8. Coverage, quality of and barriers to postnatal care in rural Hebei, China: a mixed method study

    PubMed Central

    2014-01-01

    Background Postnatal care is an important link in the continuum of care for maternal and child health. However, coverage and quality of postnatal care are poor in low- and middle-income countries. In 2009, the Chinese government set a policy providing free postnatal care services to all mothers and their newborns in China. Our study aimed at exploring coverage, quality of care, reasons for not receiving and barriers to providing postnatal care after introduction of this new policy. Methods We carried out a mixed method study in Zhao County, Hebei Province, China from July to August 2011. To quantify the coverage, quality of care and reasons for not using postnatal care, we conducted a household survey with 1601 caregivers of children younger than two years of age. We also conducted semi-structured interviews with 24 township maternal and child healthcare workers to evaluate their views on workload, in-service training and barriers to postnatal home visits. Results Of 1442 (90% of surveyed caregivers) women who completed the postnatal care survey module, 8% received a timely postnatal home visit (within one week after delivery) and 24% of women received postnatal care within 42 days after delivery. Among women who received postnatal care, 37% received counseling or guidance on infant feeding and 32% on cord care. 24% of women reported that the service provider checked jaundice of their newborns and 18% were consulted on danger signs and thermal care of their newborns. Of 991 mothers who did not seek postnatal care within 42 days after birth, 65% of them said that they did not knew about postnatal care and 24% of them thought it was unnecessary. Qualitative findings revealed that staff shortages and inconvenient transportation limited maternal and child healthcare workers in reaching out to women at home. In addition, maternal and child healthcare workers said that in-service training was inadequate and more training on postnatal care, hands-on practice, and

  9. Prenatal Imaging of the Gastrointestinal Tract with Postnatal Imaging Correlation.

    PubMed

    Blask, Anna Nussbaum; Fagen, Kimberly

    2016-03-01

    Prenatal detection of a wide variety of anomalies and masses of the gastrointestinal tract is now possible. Prenatal imaging with ultrasonography and in selected cases magnetic resonance imaging provides invaluable information to the referring obstetrician, the maternal fetal medicine specialist, the neonatologist and pediatrician who will care for the child after birth, the surgeons and pediatric specialists who will repair or manage a prenatally detected anomaly, and of course to the parents, allowing them to prepare psychologically and financially for the specific interventions that may be needed for their child. Additional screening for associated anomalies can take place, route of delivery can be decided, and arrangements for delivery in an appropriate setting can be made. Prenatal detection also allows for consideration for pregnancy termination. This article will give a broad overview of anomalies of the gastrointestinal tract that can be detected prenatally and their imaging appearance postnatally. PMID:26086457

  10. Apoptosis Process in Mouse Leydig Cells during Postnatal Development

    NASA Astrophysics Data System (ADS)

    Salles Faria, Maria José; Simões, Zilá Paulino; Luz; Orive Lunardi, Laurelucia; Hartfelder, Klaus

    2003-02-01

    The development of Leydig cells in mammals has been widely described as a biphasic pattern with two temporally mature Leydig cell populations, fetal stage followed by the adult generation beginning at puberty. In the present study, mouse Leydig cells were examined for apoptosis during postnatal testis development using electron microscopy and in situ DNA fragmentation by terminal deoxynucleotidyl transferase staining (TdT). Both the morphological study and the DNA fragmentation analysis showed that cellular death by apoptosis did not occur in Leydig cells during the neonatal, prepubertal, puberty, and adult periods. From these results, we suggest that the remaining fetal Leydig cells in the neonatal testis are associated with the involution or degeneration processes. In contrast, in the prepubertal and puberty stages, fragmentation of apoptotic DNA was detected in germ cells present in some seminiferous tubules.

  11. Validation of Edinburgh postnatal depression scale for adolescent mothers.

    PubMed

    Logsdon, M Cynthia; Usui, Wayne M; Nering, Michael

    2009-12-01

    The Edinburgh Postnatal Depression Scale has widespread use internationally with adult women, but few psychometric properties have been described for samples of adolescent mothers. The purpose of this paper is to validate the psychometric properties of the EPDS in a sample of adolescent mothers (n = 149) in a southern, urban area of the United States. Internal consistency reliability was .88. Principal components analysis supported a two factor structure accounting for 60% of variance. Results of item response theory analysis suggest that the EPDS and the Center for Epidemiologic Studies of Depression Scale have similar psychometric properties. This data can be used to provide evidence of construct validity of the EPDS. The study provides a foundation for further psychometric testing of the instrument. PMID:19639384

  12. Haematopoiesis in snakes (Ophidia) in early postnatal development.

    PubMed

    Dabrowski, Z; Sano Martins, I S; Tabarowski, Z; Witkowska-Pelc, E; Spadacci Morena, D D; Spodaryk, K; Podkowa, D

    2007-05-01

    The occurrence of haematopoiesis has been studied in various parts of the spine and in the ribs in four species of snakes (Boa constrictor L., Elaphe guttata L., Lamprophis fulaginosus Boie., Bothrops jararaca Wied.) from hatching until 150 days of postnatal development. Marrow spaces are formed by chondrolysis with various time frames depending on the studied species. Marrow cells egress to the general circulation in two ways: via migration through the endothelial cells lining the venous sinuses or by the rupture of protrusions. Erythroblasts are present in the lumen of marrow sinuses suggesting their final maturation there. Various relationships of the spleen to the pancreas have been found. No myelopoietic foci occur in the spleen, liver or kidney of any of the studied species. However, erythropoiesis (sparse islets) has been observed in Bothrops jararaca spleen. PMID:17225172

  13. Systematic Evaluation of Key L-Carnitine Homeostasis Mechanisms during Postnatal Development in Rat

    PubMed Central

    2012-01-01

    Background The conditionally essential nutrient, L-carnitine, plays a critical role in a number of physiological processes vital to normal neonatal growth and development. We conducted a systematic evaluation of the developmental changes in key L-carnitine homeostasis mechanisms in the postnatal rat to better understand the interrelationship between these pathways and their correlation to ontogenic changes in L-carnitine levels during postnatal development. Methods mRNA expression of heart, kidney and intestinal L-carnitine transporters, liver γ-butyrobetaine hydroxylase (Bbh) and trimethyllysine hydroxylase (Tmlh), and heart carnitine palmitoyltransferase (Cpt) were measured using quantitative RT-PCR. L-Carnitine levels were determined by HPLC-UV. Cpt and Bbh activity were measured by a spectrophotometric method and HPLC, respectively. Results Serum and heart L-carnitine levels increased with postnatal development. Increases in serum L-carnitine correlated significantly with postnatal increases in renal organic cation/carnitine transporter 2 (Octn2) expression, and was further matched by postnatal increases in intestinal Octn1 expression and hepatic γ-Bbh activity. Postnatal increases in heart L-carnitine levels were significantly correlated to postnatal increases in heart Octn2 expression. Although cardiac high energy phosphate substrate levels remained constant through postnatal development, creatine showed developmental increases with advancing neonatal age. mRNA levels of Cpt1b and Cpt2 significantly increased at postnatal day 20, which was not accompanied by a similar increase in activity. Conclusions Several L-carnitine homeostasis pathways underwent significant ontogenesis during postnatal development in the rat. This information will facilitate future studies on factors affecting the developmental maturation of L-carnitine homeostasis mechanisms and how such factors might affect growth and development. PMID:22805277

  14. Postnatal Sulfur Dioxide Exposure Reversibly Alters Parasympathetic Regulation of Heart Rate

    PubMed Central

    Woerman, Amanda L.; Mendelowitz, David

    2014-01-01

    Perinatal sulfur dioxide exposure disrupts parasympathetic regulation of cardiovascular activity. Here, we examine the relative risks of prenatal versus postnatal exposure to the air pollutant, and the reversibility of the cardiovascular effects. Two groups of animals were used for this study. For prenatal exposure, pregnant Sprague-Dawley dams were exposed to 5 parts per million sulfur dioxide for 1 hour daily throughout gestation, and with their pups upon birth to medical-grade air through 6 days postnatal. For postnatal exposure, dams were exposed to air, and upon delivery along with their pups to 5 parts per million sulfur dioxide through postnatal day 6. Electrocardiograms were recorded from pups on postnatal day 5 to examine changes in heart rate. Whole-cell patch-clamp electrophysiology was used to examine changes in neurotransmission to cardiac vagal neurons upon sulfur dioxide exposure. Postnatal sulfur dioxide exposure diminished glutamatergic neurotransmission to cardiac vagal neurons by 40.9% and increased heart rate, whereas prenatal exposure altered neither of these properties. When postnatal exposure concluded on postnatal day 5, excitatory neurotransmission remained decreased through day 6, and returned to basal levels by day 7. Electrocardiograms showed that heart rate remained elevated through day 6 and recovered by day 7. Upon activation of the parasympathetic diving reflex, the response was significantly blunted by postnatal sulfur dioxide exposure through day 7 but recovered by day 8. Postnatal, but not prenatal, exposure to sulfur dioxide can disrupt parasympathetic regulation of cardiovascular activity. Neonates can recover from these effects within 2–3 days of discontinued exposure. PMID:23774227

  15. Postnatal sulfur dioxide exposure reversibly alters parasympathetic regulation of heart rate.

    PubMed

    Woerman, Amanda L; Mendelowitz, David

    2013-08-01

    Perinatal sulfur dioxide exposure disrupts parasympathetic regulation of cardiovascular activity. Here, we examine the relative risks of prenatal versus postnatal exposure to the air pollutant and the reversibility of the cardiovascular effects. Two groups of animals were used for this study. For prenatal exposure, pregnant Sprague-Dawley dams were exposed to 5 parts per million sulfur dioxide for 1 hour daily throughout gestation and with their pups after birth to medical-grade air through 6 days postnatal. For postnatal exposure, dams were exposed to air, and after delivery along with their pups to 5 parts per million sulfur dioxide through postnatal day 6. ECGs were recorded from pups on postnatal day 5 to examine changes in heart rate. Whole-cell patch-clamp electrophysiology was used to examine changes in neurotransmission to cardiac vagal neurons in the nucleus ambiguus on sulfur dioxide exposure. Postnatal sulfur dioxide exposure diminished glutamatergic neurotransmission to cardiac vagal neurons by 40.9% and increased heart rate, whereas prenatal exposure altered neither of these properties. When postnatal exposure concluded on postnatal day 5, excitatory neurotransmission remained decreased through day 6 and returned to basal levels by day 7. ECGs showed that heart rate remained elevated through day 6 and recovered by day 7. On activation of the parasympathetic diving reflex, the response was significantly blunted by postnatal sulfur dioxide exposure through day 7 but recovered by day 8. Postnatal, but not prenatal, exposure to sulfur dioxide can disrupt parasympathetic regulation of cardiovascular activity. Neonates can recover from these effects within 2 to 3 days of discontinued exposure. PMID:23774227

  16. Racial Variation In Timing Of Pyeloplasty: Prenatal Versus Postnatal Diagnosis

    PubMed Central

    Routh, Jonathan C.; Pennison, Melanie; Rosoklija, Ilina; Dobbins, Sarah; Kokorowski, Paul J.; Hubert, Katherine C.; Huang, Lin; Nelson, Caleb P.

    2013-01-01

    Purpose We have previously shown that non-white patients with UPJ obstruction undergo pyeloplasty at a younger age than do whites. The mechanisms behind this are unclear, as there is no known racial variation in the natural history of UPJ obstruction. We sought to use a detailed clinical database to explain this phenomenon. Methods We performed a retrospective review of all patients undergoing primary pyeloplasty at our institution between 1992 and 2008. Over 360 data points were abstracted for each patient, including self-reported patient race, socioeconomic status, symptom duration, and presentation. Results Of 847 patients undergoing pyeloplasty during the study period, 741 met inclusion criteria. Non-white patients underwent surgery younger than did whites (non-white 0.6 v. white 2.6 years, p<0.0001). When stratified by timing of clinical presentation (prenatal versus postnatal), there was no significant difference by race among patients presenting prenatally (0.37 v. 0.36 years, p=0.22). Non-white patients presenting postnatally were significantly younger than white patients (6.3 v. 8.2 years, p=0.03). This appeared to be due to differences in both the age at initial clinical presentation (5.4 v. 7.0 years, p=0.03) and in time from initial clinical presentation to urology evaluation (0.6 v. 3.2 months, p=0.03). These differences persisted after correcting for other factors, including markers of socioeconomic status. Conclusions Consistent with previous studies, we found that non-white patients underwent primary pyeloplasty at a younger age than whites. This difference is limited to patients presenting after birth. Prenatally diagnosed patients underwent surgery at similar ages regardless of race. PMID:22014821

  17. Feasibility and acceptability of alternate methods of postnatal data collection.

    PubMed

    McCormack, Lacey A; Friedrich, Christa; Fahrenwald, Nancy; Specker, Bonny

    2014-05-01

    This study was done in preparation for the launch of the National Children's Study (NCS) main study. The goal of this study was to examine the feasibility (completion rates and completeness of data), acceptability, staff time and cost-effectiveness of three methods of data collection for the postnatal 3- and 9-month questionnaires completed as part of NCS protocol. Eligible NCS participants who were scheduled to complete a postnatal questionnaire at three and nine months were randomly assigned to receive either: (a) telephone data collection (b) web-based data collection, or (c) self-administered (mailed) questionnaires. Event completion rates and satisfaction across the three data collection methods were compared and the influence of socio-demographic factors on completion rates and satisfaction rates was examined. Cost data were compared to data for completion and satisfaction for each of the delivery methods. Completion rates and satisfaction did not differ significantly by method, but completeness of data did, with odds of data completeness higher among web than phone (p < 0.001) or mail (p < 0.001). Costs were highest for the phone, followed by mail and web methods (p < 0.001). No significant differences in participant time (i.e. burden) across the three data collection methods were seen. Mail and phone data collection were the least complete of the three methods and were the most expensive. Mailed data collection was neither complete nor exceptionally economical. Web-based data collection was the least costly and provided the most complete data. Participants without web access could complete the questionnaire over the phone. PMID:23793486

  18. Postnatal maturation of GABAergic transmission in the rat basolateral amygdala.

    PubMed

    Ehrlich, David E; Ryan, Steven J; Hazra, Rimi; Guo, Ji-Dong; Rainnie, Donald G

    2013-08-01

    Many psychiatric disorders, including anxiety and autism spectrum disorders, have early ages of onset and high incidence in juveniles. To better treat and prevent these disorders, it is important to first understand normal development of brain circuits that process emotion. Healthy and maladaptive emotional processing involve the basolateral amygdala (BLA), dysfunction of which has been implicated in numerous psychiatric disorders. Normal function of the adult BLA relies on a fine balance of glutamatergic excitation and GABAergic inhibition. Elsewhere in the brain GABAergic transmission changes throughout development, but little is known about the maturation of GABAergic transmission in the BLA. Here we used whole cell patch-clamp recording and single-cell RT-PCR to study GABAergic transmission in rat BLA principal neurons at postnatal day (P)7, P14, P21, P28, and P35. GABAA currents exhibited a significant twofold reduction in rise time and nearly 25% reduction in decay time constant between P7 and P28. This corresponded with a shift in expression of GABAA receptor subunit mRNA from the α2- to the α1-subunit. The reversal potential for GABAA receptors transitioned from depolarizing to hyperpolarizing with age, from around -55 mV at P7 to -70 mV by P21. There was a corresponding shift in expression of opposing chloride pumps that influence the reversal, from NKCC1 to KCC2. Finally, we observed short-term depression of GABAA postsynaptic currents in immature neurons that was significantly and gradually abolished by P28. These findings reveal that in the developing BLA GABAergic transmission is highly dynamic, reaching maturity at the end of the first postnatal month. PMID:23719209

  19. Adenosine A1 receptor inhibits postnatal neurogenesis and sustains astrogliogenesis from the subventricular zone.

    PubMed

    Benito-Muñoz, Monica; Matute, Carlos; Cavaliere, Fabio

    2016-09-01

    We previously demonstrated that activation of ATP P2X receptors during oxygen and glucose deprivation inhibits neuroblast migration and in vitro neurogenesis from the subventricular zone (SVZ). Here, we have studied the effects of adenosine, the natural end-product of ATP hydrolysis, in modulating neurogenesis and gliogenesis from the SVZ. We provide immunochemical, molecular and pharmacological evidence that adenosine via A1 receptors reduces neuronal differentiation of neurosphere cultures generated from postnatal SVZ. Furthermore, activation of A1 receptors induces downregulation of genes related to neurogenesis as demonstrated by gene expression analysis. Specifically, we found that A1 receptors trigger a signaling cascade that, through the release of IL10, turns on the Bmp2/SMAD pathway. Furthermore, activating A1 receptors in SVZ-neural progenitor cells inhibits neurogenesis and stimulates astrogliogenesis as assayed in vitro in neurosphere cultures and in vivo in the olfactory bulb. Together, these data indicate that adenosine acting at A1 receptors negatively regulates adult neurogenesis while promoting astrogliogenesis, and that this feature may be relevant to pathological conditions whereby purines are profusely released. GLIA 2016;64:1465-1478. PMID:27301342

  20. Rheb1 is Required for mTORC1 and Myelination in Postnatal Brain Development

    PubMed Central

    Zou, Jia; Zhou, Liang; Du, Xiao-Xia; Ji, Yifei; Xu, Jia; Tian, Junlong; Jiang, Wanxiang; Zou, Yi; Yu, Shouyang; Gan, Lingxue; Luo, Maowen; Yang, Qiaona; Cui, Yiyuan; Yang, Wanchun; Xia, Xiaoqiang; Chen, Mina; Zhao, Xia; Shen, Ying; Chen, PO Yu; Worley, Paul F.; Xiao, Bo

    2011-01-01

    SUMMARY mTor kinase is involved in cell growth, proliferation, and differentiation. The roles of mTor activators, Rheb1 and Rheb2, have not been established in vivo. Here, we report that Rheb1, but not Rheb2, is critical for embryonic survival and mTORC1 signaling. Embryonic deletion of Rheb1 in neural progenitor cells abolishes mTORC1 signaling in developing brain and increases mTORC2 signaling. Remarkably, embryonic and early postnatal brain development appears grossly normal in these Rheb1f/f, Nes-cre mice with the notable exception of deficits of myelination. Conditional expression of Rheb1 transgene in neural progenitors increases mTORC1 activity and promotes myelination in the brain. In addition, the Rheb1 transgene rescues mTORC1 signaling and hypomyelination in the Rheb1f/f, Nes-cre mice. Our study demonstrates that Rheb1 is essential for mTORC1 signaling and myelination in the brain, and suggests that mTORC1 signaling plays a role in selective cellular adaptations, rather than general cellular viability. PMID:21238928

  1. Neurodevelopmental sequelae of postnatal maternal care in rodents: clinical and research implications of molecular insights.

    PubMed

    Kaffman, Arie; Meaney, Michael J

    2007-01-01

    Parental care plays an important role in the emotional and cognitive development of the offspring. Children who have been exposed to abuse or neglect are more likely to develop numerous psychopathologies, while good parent-infant bonding is associated with improved resiliency to stress. Similar observations have also been reported in non-human primates and rodents, suggesting that at least some neurodevelopmental aspects of parent-offspring interactions are conserved among mammals and could therefore be studied in animals. We present data to suggest that frequency of licking and grooming provided by the dam during a critical period in development plays an important role in modifying neurodevelopment. These findings are examined in the broader context in which exposure to other sensory modalities such as vision or hearing during a specific period in development shapes brain development with functional consequences that persist into adulthood. We also discuss recent rodent work showing that increased frequency of licking and grooming provided by the dam during the first week of life is associated with changes in DNA methylation of promoter elements that control expression of these genes and behavior. The stability of DNA methylation in postmitotic cells provides a possible molecular scaffold by which changes in gene expression and behavioral traits induced by postnatal maternal care are maintained throughout life. Finally, the relevance of findings reported in rodents to those noted in non-human primates and humans are assessed and the research and clinical implications of these observations for future work are explored. PMID:17355397

  2. Enriched environment has limited capacity for the correction of hippocampal memory-dependent schizoid behaviors in rats with early postnatal NMDAR dysfunction.

    PubMed

    Melik, Enver; Babar, Emine; Kocahan, Sayad; Guven, Mustafa; Akillioglu, Kubra

    2014-04-01

    Pre- and early postnatal stress can cause dysfunction of the N-methyl-d-aspartate receptor (NMDAR) and thereby promote the development of hippocampus memory-dependent schizoid abnormalities of navigation in space, time, and knowledge. An enriched environment improves mental abilities in humans and animals. Whether an enriched environment can prevent the development of schizoid symptoms induced by neonatal NMDAR dysfunction was the central question of our paper. The experimental animals were Wistar rats. Early postnatal NMDAR dysfunction was created by systemic treatment of rat pups with the NMDAR antagonist MK-801 at PD10-20 days. During the development period (PD21-90 days), the rats were reared in cognitively and physically enriched cages. Adult age rats were tested on navigation based on pattern separation and episodic memory in the open field and on auto-hetero-associations based on episodic and semantic memory in a step-through passive avoidance task. The results showed that postnatal NMDAR antagonism caused abnormal behaviors in both tests. An enriched environment prevented deficits in the development of navigation in space based on pattern separation and hetero-associations based on semantic memory. However, an enriched environment was unable to rescue navigation in space and auto-associations based on episodic memory. These data may contribute to the understanding that an enriched environment has a limited capacity for therapeutic interventions in protecting the development of schizoid syndromes in children and adolescents. PMID:24184288

  3. 9-cis-retinoic acid in combination with retinal pigment epithelium induces apoptosis in cultured retinal explants only during early postnatal development.

    PubMed

    Söderpalm, A K; Karlsson, J; Caffé, A R; vanVeen, T

    1999-12-10

    Retinoic acid is one of the active metabolites of vitamin A and has profound effects on the development of the CNS including retina. Previously, we have shown that rod-specific apoptosis is induced in retinal explants from neonatal mice by exposure to 9-cis-retinoic acid (9CRA) when the retinal pigment epithelium (RPE) is present. In explants lacking RPE, it instead has a differentiation-promoting effect seen as an accelerated opsin expression on postnatal day 3. To investigate the long-term effect of 9CRA exposure, we have explanted retinas from neonatal C3H mice with or without RPE attached and placed in organ culture. After 19 or 48 h in culture or 7, 8 or 13 days in culture, the explants were either fixed for histochemical examination or frozen for assay of DEVDase activity. We found that long-term exposure to 9CRA caused a decrease in the number of cell layers in the outer nuclear layer (ONL) only in explants with the RPE attached. When explants with RPE attached were exposed to 9CRA only during the second postnatal week, neither an increase in DEVDase activity, TUNEL-positive cells, nor a decrease in cell layers of the ONL could be demonstrated, indicating that the retina was insensitive to the apoptosis-inducing effect of 9CRA after the first postnatal week. The absence of RPE in control explants resulted in a higher number of rosettes and the extrusion of cells into the subretinal space. PMID:10611516

  4. Identification of proliferative progenitors associated with prominent postnatal growth of the pons

    PubMed Central

    Lindquist, Robert A.; Guinto, Cristina D.; Rodas-Rodriguez, Jose L.; Fuentealba, Luis C.; Tate, Matthew C.; Rowitch, David H.; Alvarez-Buylla, Arturo

    2016-01-01

    The pons controls crucial sensorimotor and autonomic functions. In humans, it grows sixfold postnatally and is a site of paediatric gliomas; however, the mechanisms of pontine growth remain poorly understood. We show that the murine pons quadruples in volume postnatally; growth is fastest during postnatal days 0–4 (P0–P4), preceding most myelination. We identify three postnatal proliferative compartments: ventricular, midline and parenchymal. We find no evidence of postnatal neurogenesis in the pons, but each progenitor compartment produces new astroglia and oligodendroglia; the latter expand 10- to 18-fold postnatally, and are derived mostly from the parenchyma. Nearly all parenchymal progenitors at P4 are Sox2+Olig2+, but by P8 a Sox2− subpopulation emerges, suggesting a lineage progression from Sox2+ ‘early' to Sox2− ‘late' oligodendrocyte progenitor. Fate mapping reveals that >90% of adult oligodendrocytes derive from P2–P3 Sox2+ progenitors. These results demonstrate the importance of postnatal Sox2+Olig2+ progenitors in pontine growth and oligodendrogenesis. PMID:27188978

  5. Identification of proliferative progenitors associated with prominent postnatal growth of the pons.

    PubMed

    Lindquist, Robert A; Guinto, Cristina D; Rodas-Rodriguez, Jose L; Fuentealba, Luis C; Tate, Matthew C; Rowitch, David H; Alvarez-Buylla, Arturo

    2016-01-01

    The pons controls crucial sensorimotor and autonomic functions. In humans, it grows sixfold postnatally and is a site of paediatric gliomas; however, the mechanisms of pontine growth remain poorly understood. We show that the murine pons quadruples in volume postnatally; growth is fastest during postnatal days 0-4 (P0-P4), preceding most myelination. We identify three postnatal proliferative compartments: ventricular, midline and parenchymal. We find no evidence of postnatal neurogenesis in the pons, but each progenitor compartment produces new astroglia and oligodendroglia; the latter expand 10- to 18-fold postnatally, and are derived mostly from the parenchyma. Nearly all parenchymal progenitors at P4 are Sox2(+)Olig2(+), but by P8 a Sox2(-) subpopulation emerges, suggesting a lineage progression from Sox2(+) 'early' to Sox2(-) 'late' oligodendrocyte progenitor. Fate mapping reveals that >90% of adult oligodendrocytes derive from P2-P3 Sox2(+) progenitors. These results demonstrate the importance of postnatal Sox2(+)Olig2(+) progenitors in pontine growth and oligodendrogenesis. PMID:27188978

  6. Pyridoxal phosphate binding sites are similar in human heme-dependent and yeast heme-independent cystathionine beta-synthases. Evidence from 31P NMR and pulsed EPR spectroscopy that heme and PLP cofactors are not proximal in the human enzyme.

    PubMed

    Kabil, O; Toaka, S; LoBrutto, R; Shoemaker, R; Banerjee, R

    2001-06-01

    Two classes of cystathionine beta-synthases have been identified in eukaryotes, the heme-independent enzyme found in yeast and the heme-dependent form found in mammals. Both classes of enzymes catalyze a pyridoxal phosphate (PLP)-dependent condensation of serine and homocysteine to produce cystathionine. The role of the heme in the human enzyme and its location relative to the PLP in the active site are unknown. (31)P NMR spectroscopy revealed that spin-lattice relaxation rates of the phosphorus nucleus in PLP are similar in both the paramagnetic ferric (T(1) = 6.34 +/- 0.01 s) and the diamagnetic ferrous (T(1) = 5.04 +/- 0.06 s) enzyme, suggesting that the two cofactors are not proximal to each other. This is also supported by pulsed EPR studies that do not provide any evidence for strong or weak coupling between the phosphorus nucleus and the ferric iron. However, the (31)P signal in the reduced enzyme moved from 5.4 to 2.2 ppm, and the line width decreased from 73 to 16 Hz, providing the first structural evidence for transmission to the active site of an oxidation state change in the heme pocket. These results are consistent with a regulatory role for the heme as suggested by previous biochemical studies from our laboratory. The (31)P chemical shifts of the resting forms of the yeast and human enzymes are similar, suggesting that despite the difference in their heme content, the microenvironment of the PLP is similar in the two enzymes. The addition of the substrate, serine, resulted in an upfield shift of the phosphorus resonance in both enzymes, signaling formation of reaction intermediates. The resting enzyme spectra were recovered following addition of excess homocysteine, indicating that both enzymes retained catalytic activity during the course of the NMR experiment. PMID:11278994

  7. Cognition and behavioural development in early childhood: the role of birth weight and postnatal growth

    PubMed Central

    Huang, Cheng; Martorell, Reynaldo; Ren, Aiguo; Li, Zhiwen

    2013-01-01

    Background We evaluate the relative importance of birth weight and postnatal growth for cognition and behavioural development in 8389 Chinese children, 4–7 years of age. Method Weight was the only size measure available at birth. Weight, height, head circumference and intelligence quotient (IQ) were measured between 4 and 7 years of age. Z-scores of birth weight and postnatal conditional weight gain to 4–7 years, as well as height and head circumference at 4–7 years of age, were the exposure variables. Z-scores of weight at 4–7 years were regressed on birth weight Z-scores, and the residual was used as the measure of postnatal conditional weight gain. The outcomes were child’s IQ, measured by the Chinese Wechsler Young Children Scale of Intelligence, as well as internalizing behavioural problems, externalizing behavioural problems and other behavioural problems, evaluated by the Child Behavior Checklist 4–18. Multivariate regressions were conducted to investigate the relationship of birth weight and postnatal growth variables with the outcomes, separately for preterm children and term children. Results Both birth weight and postnatal weight gain were associated with IQ among term children; 1 unit increment in Z-score of birth weight (∼450 g) was associated with an increase of 1.60 [Confidence interval (CI): 1.18–2.02; P < 0.001] points in IQ, and 1 unit increment in conditional postnatal weight was associated with an increase of 0.46 (CI: 0.06–0.86; P = 0.02) points in IQ, after adjustment for confounders; similar patterns were observed when Z-scores of postnatal height and head circumference at age 4–7 years were used as alternative measurements of postnatal growth. Effect sizes of relationships with IQ were smaller than 0.1 of a standard deviation in all cases. Neither birth weight nor postnatal growth indicators were associated with behavioural outcomes among term children. In preterm children, neither birth weight nor postnatal growth

  8. Pre- and post-natal growth in two sisters with 3-M syndrome.

    PubMed

    Lugli, Licia; Bertucci, Emma; Mazza, Vincenzo; Elmakky, Amira; Ferrari, Fabrizio; Neuhaus, Christine; Percesepe, Antonio

    2016-04-01

    3-M syndrome (OMIM #273750) is a rare autosomal recessive growth disorder characterized by severe pre- and post-natal growth restriction, associated with minor skeletal abnormalities and dysmorphisms. Although the 3-M syndrome is well known as a primordial dwarfism, descriptions of the prenatal growth are missing. We report a family with variable phenotypic features of 3-M syndrome and we describe the prenatal and postnatal growth pattern of two affected sisters with a novel homozygous CUL7 mutation (c.3173-1G>C), showing a pre- and post-natal growth deficiency and a normal cranial circumference. PMID:26850509

  9. Developing electrical properties of postnatal mouse lumbar motoneurons

    PubMed Central

    Durand, Jacques; Filipchuk, Anton; Pambo-Pambo, Arnaud; Amendola, Julien; Borisovna Kulagina, Iryna; Guéritaud, Jean-Patrick

    2015-01-01

    We studied the rapid changes in electrical properties of lumbar motoneurons between postnatal days 3 and 9 just before mice weight-bear and walk. The input conductance and rheobase significantly increased up to P8. A negative correlation exists between the input resistance (Rin) and rheobase. Both parameters are significantly correlated with the total dendritic surface area of motoneurons, the largest motoneurons having the lowest Rin and the highest rheobase. We classified the motoneurons into three groups according to their discharge firing patterns during current pulse injection (transient, delayed onset, sustained). The delayed onset firing type has the highest rheobase and the fastest action potential (AP) whereas the transient firing group has the lowest rheobase and the less mature AP. We found 32 and 10% of motoneurons with a transient firing at P3–P5 and P8, respectively. About 20% of motoneurons with delayed onset firing were detected at P8. At P9, all motoneurons exhibit a sustained firing. We defined five groups of motoneurons according to their discharge firing patterns in response to ascending and descending current ramps. In addition to the four classical types, we defined a fifth type called transient for the quasi-absence of discharge during the descending phase of the ramp. This transient type represents about 40% between P3–P5 and tends to disappear with age. Types 1 and 2 (linear and clockwise hysteresis) are the most preponderant at P6–P7. Types 3 and 4 (prolonged sustained and counter clockwise hysteresis) emerge at P8–P9. The emergence of types 3 and 4 probably depends on the maturation of L type calcium channels in the dendrites of motoneurons. No correlation was found between groups defined by step or triangular ramp of currents with the exception of transient firing patterns. Our data support the idea that a switch in the electrical properties of lumbar motoneurons might exist in the second postnatal week of life in mice. PMID

  10. Postnatal and adult neurogenesis in the development of human disease.

    PubMed

    Danzer, Steve C

    2008-10-01

    The mammalian brain contains a population of neurons that are continuously generated from late embryogenesis through adulthood-after the generation of almost all other neuronal types. This brain region-the hippocampal dentate gyrus-is in a sense, therefore, persistently immature. Postnatal and adult neurogenesis is likely an essential feature of the dentate, which is critical for learning and memory. Protracted neurogenesis after birth would allow the new cells to develop in conjunction with external events-but it may come with a price: while neurogenesis in utero occurs in a protected environment, children and adults are exposed to any number of hazards, such as toxins and infectious agents. Mature neurons might be resistant to such exposures, but new neurons may be vulnerable. Consistent with this prediction, in adult rodents seizures disrupt the integration of newly generated granule cells, whereas mature granule cells are comparatively unaffected. Significantly, abnormally interconnected cells may contribute to epileptogenesis and/or associated cognitive and memory deficits. Finally, studies increasingly indicate that new granule cells are extremely sensitive to a host of endogenous and exogenous factors, raising the possibility that disrupted granule cell integration may be a common feature of many neurological diseases. PMID:18997123

  11. Pre- and early postnatal nongenetic determinants of type 2 diabetes.

    PubMed

    Ozanne, Susan E; Hales, C Nick

    2002-12-01

    Epidemiological studies have revealed strong and internationally reproducible links between early growth restriction and subsequent risk of developing type 2 diabetes and the metabolic syndrome (glucose intolerance, hypertension and hypertriglyceridaemia). This effect can exist independently of genetic factors. There is also direct evidence that poor maternal nutrition and maternal smoking cause both a reduction in birthweight and subsequent loss of glucose tolerance. High rates of growth in childhood may add to these effects. The 'thrifty phenotype' hypothesis attempts to explain these associations in terms of an altered programming of growth and metabolism that aids survival both pre- and postnatally. Type 2 diabetes is envisaged as a consequence of a clash of this programming with adult obesity. Tests of this hypothesis in animal models have shown that both the metabolic syndrome and type 2 diabetes can result from early growth restriction in rats consequent upon rat dams being fed a reduced protein, isocaloric diet (in which the protein is replaced by an equal quantity of nonprotein energy). A variety of other models of early growth restriction in rats lead to a similar phenotype. Several structural and gene expression changes have been shown in many tissues, including pancreas, liver, kidney, muscle and adipose tissue. Changes in gene expression include those concerned with hormone receptors, signalling and glycolytic enzymes. Many important questions remain for future research. PMID:14987383

  12. Effects of prenatal propofol exposure on postnatal development in rats.

    PubMed

    Li, Jing; Xiong, Ming; Alhashem, Hussain M; Zhang, Yong; Tilak, Vasanti; Patel, Anuradha; Siegel, Allan; Ye, Jiang Hong; Bekker, Alex

    2014-01-01

    Preclinical studies suggest that propofol may cause damage to immature neurons. However, the effect of maternal propofol exposure on the neuronal development of the offspring is largely unknown. In this study, pregnant rats were assigned to receive continuous infusion of saline (control) or propofol for 1 h (1HP) or 2 h (2HP) on gestational day 18. An additional group (lipid) was assigned to receive continuous infusion of intralipid fat emulsion (vehicle of propofol) for 2 h. Pups were then tested on the appearance and progression of sensory and physical motor abilities between postnatal day 1 (P1) and P28. The brain and body weights of pups from 2HP group on P10 were significantly lower than those from the saline control group, although they were the same in all four groups at birth (P0). Pups from 1HP and 2HP groups, but not lipid group, showed slower maturation of eyes (delayed opening) and several neurological reflexes (hindlimb reflex, righting reflex); they also showed delayed improvement in execution on gait reflex and inclined board tests. The forelimb reflex and negative geotaxis were also delayed in 2HP group. All parameters examined except body weight of 2HP pups recovered to normal levels by P28. We conclude that administration of propofol to pregnant rats leads to retardation in physical and neurological reflex development in their offspring. PMID:24726880

  13. Atrial natriuretic factor and postnatal diuresis in respiratory distress syndrome.

    PubMed Central

    Rozycki, H J; Baumgart, S

    1991-01-01

    To find out if atrial natriuretic factor plays a part in the control of urine output during the initiation alone or throughout postnatal diuresis in neonates with respiratory distress syndrome, atrial natriuretic factor concentrations and clinical and renal variables were measured prospectively three times during the first three days of life in 13 premature infants. Atrial natriuretic factor concentrations rose significantly between the first and second sample times as did the urine output and output:input ratio. By the time that the third sample was taken, atrial natriuretic factor concentration had decreased significantly since the second sample had been taken, while urine flow was maintained. All subjects initiated a spontaneous diuresis that was related to the second concentration of atrial natriuretic factor. With partial correlation analysis a significant relationship was shown between the concentration of atrial natriuretic factor and the maintenance of urine output throughout the study period. Individual hormone concentrations did not, however, correlate with simultaneous renal variables. Changes in the concentrations of atrial natriuretic factor coincided with initiation of spontaneous diuresis in babies with respiratory distress syndrome, and may have a role in the complex mechanisms that maintain this diuresis. PMID:1825462

  14. Aspm sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice.

    PubMed

    Williams, Scott E; Garcia, Idoia; Crowther, Andrew J; Li, Shiyi; Stewart, Alyssa; Liu, Hedi; Lough, Kendall J; O'Neill, Sean; Veleta, Katherine; Oyarzabal, Esteban A; Merrill, Joseph R; Shih, Yen-Yu Ian; Gershon, Timothy R

    2015-11-15

    Alterations in genes that regulate brain size may contribute to both microcephaly and brain tumor formation. Here, we report that Aspm, a gene that is mutated in familial microcephaly, regulates postnatal neurogenesis in the cerebellum and supports the growth of medulloblastoma, the most common malignant pediatric brain tumor. Cerebellar granule neuron progenitors (CGNPs) express Aspm when maintained in a proliferative state by sonic hedgehog (Shh) signaling, and Aspm is expressed in Shh-driven medulloblastoma in mice. Genetic deletion of Aspm reduces cerebellar growth, while paradoxically increasing the mitotic rate of CGNPs. Aspm-deficient CGNPs show impaired mitotic progression, altered patterns of division orientation and differentiation, and increased DNA damage, which causes progenitor attrition through apoptosis. Deletion of Aspm in mice with Smo-induced medulloblastoma reduces tumor growth and increases DNA damage. Co-deletion of Aspm and either of the apoptosis regulators Bax or Trp53 (also known as p53) rescues the survival of neural progenitors and reduces the growth restriction imposed by Aspm deletion. Our data show that Aspm functions to regulate mitosis and to mitigate DNA damage during CGNP cell division, causes microcephaly through progenitor apoptosis when mutated, and sustains tumor growth in medulloblastoma. PMID:26450969

  15. Explaining postnatal growth plasticity in a generalist brood parasite

    NASA Astrophysics Data System (ADS)

    Remeš, Vladimír

    2010-03-01

    Selection of a particular host has clear consequences for the performance of avian brood parasites. Experimental studies showed that growth rate and fledging mass of brood parasites varied between host species independently of the original host species. Finding correlates of this phenotypic plasticity in growth is important for assessing adaptiveness and potential fitness consequences of host choice. Here, I analyzed the effects of several host characteristics on growth rate and fledging mass of the young of brown-headed cowbird ( Molothrus ater), a generalist, non-evicting brood parasite. Cowbird chicks grew better in fast-developing host species and reached higher fledging mass in large hosts with fast postnatal development. A potential proximate mechanism linking fast growth and high fledging mass of cowbird with fast host development is superior food supply in fast-developing foster species. So far, we know very little about the consequences of the great plasticity in cowbird growth for later performance of the adult parasite. Thus, cowbird species could become interesting model systems for investigating the role of plasticity and optimization in the evolution of growth rate in birds.

  16. Placental transfer of antidepressant medications: implications for postnatal adaptation syndrome.

    PubMed

    Ewing, Grace; Tatarchuk, Yekaterina; Appleby, Dina; Schwartz, Nadav; Kim, Deborah

    2015-04-01

    Seven to thirteen percent of women are either prescribed or taking (depending on the study) an antidepressant during pregnancy. Because antidepressants freely cross into the intrauterine environment, we aim to summarize the current findings on placental transfer of antidepressants. Although generally low risk, antidepressants have been associated with postnatal adaptation syndrome (PNAS). Specifically, we explore whether the antidepressants most closely associated with PNAS (paroxetine, fluoxetine, venlafaxine) cross the placenta to a greater extent than other antidepressants. We review research on antidepressants in the context of placental anatomy, placental transport mechanisms, placental metabolism, pharmacokinetics, as well as non-placental maternal and fetal factors. This provides insight into the complexity involved in understanding how placental transfer of antidepressants may relate to adverse perinatal outcomes. Ultimately, from this data there is no pattern in which PNAS is related to placental transfer of antidepressant medications. In general, there is large interindividual variability for each type of antidepressant. To make the most clinically informed decisions about the use of antidepressants in pregnancy, studies that link maternal, placental and fetal genetic polymorphisms, placental transfer rates and infant outcomes are needed. PMID:25711391

  17. Postnatal development under conditions of simulated weightlessness and space flight

    NASA Technical Reports Server (NTRS)

    Walton, K.

    1998-01-01

    The adaptability of the developing nervous system to environmental influences and the mechanisms underlying this plasticity has recently become a subject of interest in space neuroscience. Ground studies on neonatal rats using the tail suspension model of weightlessness have shown that the force of gravity clearly influences the events underlying the postnatal development of motor function. These effects depend on the age of the animal, duration of the perturbation and the motor function studied. A nine-day flight study has shown that a dam and neonates can develop under conditions of space flight. The motor function of the flight animals after landing was consistent with that seen in the tail suspension studies, being marked by limb joint extension. However, there were expected differences due to: (1) the unloading of the vestibular system in flight, which did not occur in the ground-based experiments; (2) differences between flight and suspension durations; and (3) the inability to evaluate motor function during the flight. The next step is to conduct experiments in space with the flexibility and rigor that is now limited to ground studies: an opportunity offered by the International Space Station. Copyright 1998 Published by Elsevier Science B.V.

  18. Progressive postnatal pansynostosis: an insidious and pernicious form of craniosynostosis.

    PubMed

    Wood, Benjamin C; Oh, Albert K; Keating, Robert F; Boyajian, Michael J; Myseros, John S; Magge, Suresh N; Rogers, Gary F

    2015-09-01

    OBJECT Progressive postnatal pansynostosis (PPP) is a rare form of craniosynostosis that is characterized by a normal head shape, insidious decrease in percentile head circumference, and high rates of elevated intracranial pressure (ICP). This investigation describes the clinical, radiographic, and genetic features of this entity. METHODS The authors' craniofacial database for the period 1997-2013 was retrospectively culled to identify patients who had a normal or near-normal head shape and CT-confirmed multiple-suture synostosis. Patients with kleeblatt-schädel or previous craniofacial surgery were excluded. All demographic information was collected and analyzed. RESULTS Seventeen patients fit the inclusion criteria. Nine patients had a syndromic diagnosis: Crouzon syndrome (n = 4), Pfeiffer syndrome (n = 2), Saethre-Chotzen syndrome (n = 1), Apert syndrome (n = 1), and achondroplasia (n = 1). With the exception of 3 patients with mild turricephaly, all patients had a relatively normal head shape. Patients were diagnosed at an average age of 62.9 months. Nearly all patients had some combination of clinical, radiographic, or ophthalmological evidence of increased ICP. CONCLUSIONS PPP is insidious; diagnosis is typically delayed because the clinical signs are subtle and appear gradually. All normocephalic infants or children with a known or suspected craniosynostotic disorder should be carefully monitored; any decrease in percentile head circumference or signs/symptoms of increased ICP should prompt CT evaluation. PMID:26046691

  19. Metabolic imprinting by prenatal, perinatal, and postnatal overnutrition: a review.

    PubMed

    Dyer, Jennifer Shine; Rosenfeld, Charles R

    2011-05-01

    Epidemiological studies have suggested that metabolic programming is one of the critical factors contributing to the etiology of obesity as well as concurrent increase in related chronic diseases (e.g., type 2 diabetes and cardiovascular disease). Metabolic programming is the phenomenon whereby a nutritional stress/stimulus applied during critical periods of early development permanently alters an organism's physiology and metabolism, the consequences of which are often observed much later in life. The idea of metabolic programming originated from the fetal origins hypothesis proposed by Barker in which he suggested that disproportionate size at birth of the newborn due to an adverse intrauterine environment correlated well with an increased risk of adult-onset ill health outcomes (type 2 diabetes, hypertension, and cardiovascular disease). The fetal origins hypothesis, proposed by Barker, suggests that adequate nutrition during fetal development is critical. Overnutrition is a form of malnutrition that has increased in the United States over the past several decades in which nutrients are oversupplied relative to the amounts required for normal growth, development, and metabolism. Evidence for the effects of maternal obesity and overnutrition on metabolic programming is reviewed during critical prenatal, perinatal, and postnatal periods. PMID:21769766

  20. Postnatal Foot Length to Determine Gestational Age: A Pilot Study.

    PubMed

    Wyk, Lizelle Van; Smith, Johan

    2016-04-01

    Gestational age is a critical factor in the management, decision-making, prognostication and follow-up of newborn infants. It is also essential for research and epidemiology. In the absence of an early assessment of fetal gestation by abdominal ultrasound, many neonatal units in developing countries determine gestational age by neonatal scores and last menstrual period-both of which are highly inaccurate. The aim of this pilot study was to determine whether postnatal foot length measurement could accurately determine gestational age in a specified South African hospitalized neonatal population. Foot length was measured with a plastic Verniere's caliper. Foot length was shown to correlate well with gestational age (r = 0.919,p < 0.001). Intra-observer and inter-observer variability of foot length measurements was low. Foot length can therefore be used with high accuracy to determine the gestational age in a population where there is poor access to or utilization of antenatal sonar. PMID:26758249

  1. Postnatal oogenesis in humans: a review of recent findings

    PubMed Central

    Virant-Klun, Irma

    2015-01-01

    In spite of generally accepted dogma that the total number of follicles and oocytes is established in human ovaries during the fetal period of life rather than forming de novo in adult ovaries, some new evidence in the field challenges this understanding. Several studies have shown that different populations of stem cells, such as germinal stem cells and small round stem cells with diameters of 2 to 4 μm, that resembled very small embryonic-like stem cells and expressed several genes related to primordial germ cells, pluripotency, and germinal lineage are present in adult human ovaries and originate in ovarian surface epithelium. These small stem cells were pushed into the germinal direction of development and formed primitive oocyte-like cells in vitro. Moreover, oocyte-like cells were also formed in vitro from embryonic stem cells and induced pluripotent stem cells. This indicates that postnatal oogenesis is not excluded. It is further supported by the occurrence of mesenchymal stem cells that can restore the function of sterilized ovaries and lead to the formation of new follicles and oocytes in animal models. Both oogenesis in vitro and transplantation of stem cell-derived “oocytes” into the ovarian niche to direct their natural maturation represent a big challenge for reproductive biomedicine in the treatment of female infertility in the future and needs to be explored and interpreted with caution, but it is still very important for clinical practice in the field of reproductive medicine. PMID:25848307

  2. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells.

    PubMed

    Lotz, Michael; Gütle, Dominique; Walther, Sabrina; Ménard, Sandrine; Bogdan, Christian; Hornef, Mathias W

    2006-04-17

    The role of innate immune recognition by intestinal epithelial cells (IECs) in vivo is ill-defined. Here, we used highly enriched primary IECs to analyze Toll-like receptor (TLR) signaling and mechanisms that prevent inappropriate stimulation by the colonizing microflora. Although the lipopolysaccharide (LPS) receptor complex TLR4/MD-2 was present in fetal, neonatal, and adult IECs, LPS-induced nuclear factor kappaB (NF-kappaB) activation and chemokine (macrophage inflammatory protein 2 [MIP-2]) secretion was only detected in fetal IECs. Fetal intestinal macrophages, in contrast, were constitutively nonresponsive to LPS. Acquisition of LPS resistance was paralleled by a spontaneous activation of IECs shortly after birth as illustrated by phosphorylation of IkappaB-alpha and nuclear translocation of NF-kappaB p65 in situ as well as transcriptional activation of MIP-2. Importantly, the spontaneous IEC activation occurred in vaginally born mice but not in neonates delivered by Caesarean section or in TLR4-deficient mice, which together with local endotoxin measurements identified LPS as stimulatory agent. The postnatal loss of LPS responsiveness of IECs was associated with a posttranscriptional down-regulation of the interleukin 1 receptor-associated kinase 1, which was essential for epithelial TLR4 signaling in vitro. Thus, unlike intestinal macrophages, IECs acquire TLR tolerance immediately after birth by exposure to exogenous endotoxin to facilitate microbial colonization and the development of a stable intestinal host-microbe homeostasis. PMID:16606665

  3. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries

    PubMed Central

    Zhang, Hua; Zheng, Wenjing; Shen, Yan; Adhikari, Deepak; Ueno, Hiroo; Liu, Kui

    2012-01-01

    It has been generally accepted for more than half a century that, in most mammalian species, oocytes cannot renew themselves in postnatal or adult life, and that the number of oocytes is already fixed in fetal or neonatal ovaries. This assumption, however, has been challenged over the past decade. In this study, we have taken an endogenous genetic approach to this question and generated a multiple fluorescent Rosa26rbw/+;Ddx4-Cre germline reporter mouse model for in vivo and in vitro tracing of the development of female germline cell lineage. Through live cell imaging and de novo folliculogenesis experiments, we show that the Ddx4-expressing cells from postnatal mouse ovaries did not enter mitosis, nor did they contribute to oocytes during de novo folliculogenesis. Our results provide evidence that supports the traditional view that no postnatal follicular renewal occurs in mammals, and no mitotically active Ddx4-expressing female germline progenitors exist in postnatal mouse ovaries. PMID:22778414

  4. Postnatal development of substance P in the inner ear of the guinea pig.

    PubMed

    Nowak, R; Zelck, U; Rathsack, R; Oehme, P; Scholtz, H J; Koitschev, A; Beleites, B

    1990-01-01

    Appreciable amounts of substance P (SP) were found in guinea pig cochleas. The highest values were found in the postnatal period. Data presented favor the assumption of SP acting as a neuromodulator or neurotransmitter in the inner ear. PMID:1693520

  5. Major epigenetic development distinguishing neuronal and non-neuronal cells occurs postnatally in the murine hypothalamus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prenatal and early postnatal environment can persistently alter one's risk of obesity. Environmental effects on hypothalamic developmental epigenetics constitute a likely mechanism underlying such 'developmental programming' of energy balance regulation. To advance our understanding of these process...

  6. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development.

    PubMed

    Mitchell, Kathryn J; Pannérec, Alice; Cadot, Bruno; Parlakian, Ara; Besson, Vanessa; Gomes, Edgar R; Marazzi, Giovanna; Sassoon, David A

    2010-03-01

    Satellite cells are resident myogenic progenitors in postnatal skeletal muscle involved in muscle postnatal growth and adult regenerative capacity. Here, we identify and describe a population of muscle-resident stem cells, which are located in the interstitium, that express the cell stress mediator PW1 but do not express other markers of muscle stem cells such as Pax7. PW1(+)/Pax7(-) interstitial cells (PICs) are myogenic in vitro and efficiently contribute to skeletal muscle regeneration in vivo as well as generating satellite cells and PICs. Whereas Pax7 mutant satellite cells show robust myogenic potential, Pax7 mutant PICs are unable to participate in myogenesis and accumulate during postnatal growth. Furthermore, we found that PICs are not derived from a satellite cell lineage. Taken together, our findings uncover a new and anatomically identifiable population of muscle progenitors and define a key role for Pax7 in a non-satellite cell population during postnatal muscle growth. PMID:20118923

  7. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy.

    PubMed

    Long, Chengzu; Amoasii, Leonela; Mireault, Alex A; McAnally, John R; Li, Hui; Sanchez-Ortiz, Efrain; Bhattacharyya, Samadrita; Shelton, John M; Bassel-Duby, Rhonda; Olson, Eric N

    2016-01-22

    CRISPR/Cas9-mediated genome editing holds clinical potential for treating genetic diseases, such as Duchenne muscular dystrophy (DMD), which is caused by mutations in the dystrophin gene. To correct DMD by skipping mutant dystrophin exons in postnatal muscle tissue in vivo, we used adeno-associated virus-9 (AAV9) to deliver gene-editing components to postnatal mdx mice, a model of DMD. Different modes of AAV9 delivery were systematically tested, including intraperitoneal at postnatal day 1 (P1), intramuscular at P12, and retro-orbital at P18. Each of these methods restored dystrophin protein expression in cardiac and skeletal muscle to varying degrees, and expression increased from 3 to 12 weeks after injection. Postnatal gene editing also enhanced skeletal muscle function, as measured by grip strength tests 4 weeks after injection. This method provides a potential means of correcting mutations responsible for DMD and other monogenic disorders after birth. PMID:26721683

  8. Postnatal Environmental Tobacco Smoke Exposure Related to Behavioral Problems in Children

    PubMed Central

    Cadwalladder, Jean Sébastien; Robert, Sarah; Dywer, John; Charpin, Denis André; Caillaud, Denis; de Blay, Frédéric; Raherison, Chantal; Lavaud, François; Annesi-Maesano, Isabella

    2015-01-01

    Objective The purpose of this study was to examine the association between pre and post environmental tobacco smoke (ETS) exposure and behavioral problems in schoolchildren. Methods In the cross-sectional 6 cities Study conducted in France, 5221 primary school children were investigated. Pre- and postnatal exposure to secondhand tobacco smoke at home was assessed using a parent questionnaire. Child’s behavioral outcomes (emotional symptoms and conduct problems) were evaluated by the Strengths and Difficulties Questionnaire (SDQ) completed by the parents. Results ETS exposure during the postnatal period and during both pre- and postnatal periods was associated with behavioral problems in children. Abnormal emotional symptoms (internalizing problems) were related to ETS exposure in children who were exposed during the pre- and postnatal periods with an OR of 1.72 (95% Confidence Interval (CI)= 1.36-2.17), whereas the OR was estimated to be 1.38 (95% CI= 1.12-1.69) in the case of postnatal exposure only. Abnormal conduct problems (externalizing problems) were related to ETS exposure in children who were exposed during the pre- and postnatal periods with an OR of 1.94 (95% CI= 1.51-2.50), whereas the OR was estimated to be 1.47 (95% CI=1.17-1.84) in the case of postnatal exposure only. Effect estimates were adjusted for gender, study center, ethnic origin, child age, low parental education, current physician diagnosed asthma, siblings, preterm birth and single parenthood. Conclusion Postnatal ETS exposure, alone or in association with prenatal exposure, increases the risk of behavioral problems in school-age children. PMID:26244898

  9. Decrease and disappearance of intramural neurons in the rat bladder during post-natal development.

    PubMed

    Alian, M; Gabella, G

    1996-11-01

    While confirming previous results that the bladder of adult female rats is devoid of intramural neurons, we show that during postnatal development some intramural neurons are present. There is about 200 of them per bladder at birth, and their number progressively decreases during post-natal life. In this strain of rats some neurons are still present at 12 weeks of age, and in one animal (out of five) there were still 25 neurons at 20 weeks of age. PMID:8945738

  10. Adrenal response of male rats exposed to prenatal stress and early postnatal stimulation.

    PubMed

    Liaudat, A C; Rodríguez, N; Chen, S; Romanini, M C; Vivas, A; Rolando, A; Gauna, H; Mayer, N

    2015-01-01

    Stress in pregnant rats caused by chronic immobilization alters the pattern of secretion of corticosterone and modifies the hypothalamic-pituitary-adrenal axis (HPA) of the fetus. Early postnatal handling, however, may reverse the effects of increased secretion of corticosterone. We investigated the effects of prenatal stress and postnatal handling on the activity of the HPA axis of male offspring of stressed female rats. Male 90-day-old rats from four groups were investigated: prenatally stressed animals without postnatal handling, prenatally stressed animals with postnatal handling, unstressed control animals with postnatal handling, and unstressed control animals without postnatal handling. After sacrifice, the adrenal glands were weighed to determine the adrenal-somatic index. Apoptosis was evaluated by TUNEL assay and active caspase-3 expression. We found that the adrenal gland cortex:medulla ratio increased in animals with prenatal stress and that eventually the stress caused apoptosis. Handling newborns to simulate maternal activity ameliorated some of the negative effects of prenatal stress. PMID:25867787