Science.gov

Sample records for potassium 49

  1. Potassium

    MedlinePlus

    Potassium is a mineral that the body needs to work normally. It helps nerves and muscles communicate. ... products out of cells. A diet rich in potassium helps to offset some of sodium's harmful effects ...

  2. Potassium

    MedlinePlus

    ... Sources of potassium in the diet include Leafy greens, such as spinach and collards Fruit from vines, such as grapes and blackberries Root vegetables, such as carrots and potatoes Citrus fruits, such as oranges and grapefruit

  3. Potassium

    MedlinePlus

    Klor-Con® Powder ... Klor-Con®/25 Powder ... Potassium comes in oral liquid, powder, granules, effervescent tablets, regular tablets, extended-release (long-acting) tablets, and extended-release capsules. It usually is taken two to four ...

  4. Potassium test

    MedlinePlus

    ... activity of nerves and muscles, especially the heart. Low levels of potassium can lead to an irregular heartbeat or other ... cell destruction Too much potassium in your diet Low levels of potassium ( hypokalemia ) may be due to: Chronic diarrhea Cushing ...

  5. Potassium Counts.

    ERIC Educational Resources Information Center

    Gipps, John

    1995-01-01

    Presents an activity to determine whether the radioactivity of a pure potassium salt is directly proportional to the amount of potassium in it and whether this could be used as a method of analysis for potassium in a solid. (MKR)

  6. Potassium Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Potassium Share this page: Was this page helpful? Also known as: K Formal name: Potassium, blood or urine Related tests: Chloride , Sodium , Bicarbonate , ...

  7. Potassium Iodide

    MedlinePlus

    ... radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. ... only take potassium iodide if there is a nuclear radiation emergency and public officials tell you that you ...

  8. Potassium Iodide

    MedlinePlus

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released during a nuclear radiation emergency. Radioactive iodine can damage the thyroid gland. You ...

  9. Potassium test

    MedlinePlus

    ... also be done if your provider suspects metabolic acidosis (for example, caused by uncontrolled diabetes) or alkalosis ( ... Hypoaldosteronism (very rare) Kidney failure Metabolic or respiratory acidosis Red blood cell destruction Too much potassium in ...

  10. Potassium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium cyanide is included in

  11. Potassium in diet

    MedlinePlus

    ... good sources of potassium. Soy products and veggie burgers are also good sources of potassium. Vegetables including ... these dietary intakes for potassium, based on age: Infants 0 - 6 months: 0.4 grams a day ( ...

  12. High potassium level

    MedlinePlus

    High potassium level is a problem in which the amount of potassium in the blood is higher than normal. The medical ... There are often no symptoms with a high level of potassium. When symptoms do occur, they may ...

  13. Low potassium level

    MedlinePlus

    Low potassium level is a condition in which the amount of potassium in the blood is lower than normal. The medical ... in the body. Common causes of low potassium level include: Antibiotics Diarrhea or vomiting Using too much ...

  14. Physicochemical action of potassium-magnesium citrate in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Pak, C. Y.; Koenig, K.; Khan, R.; Haynes, S.; Padalino, P.

    1992-01-01

    Effect of potassium-magnesium citrate on urinary biochemistry and crystallization of stone-forming salts was compared with that of potassium citrate at same dose of potassium in five normal subjects and five patients with calcium nephrolithiasis. Compared to the placebo phase, urinary pH rose significantly from 6.06 +/- 0.27 to 6.48 +/- 0.36 (mean +/- SD, p less than 0.0167) during treatment with potassium citrate (50 mEq/day for 7 days) and to 6.68 +/- 0.31 during therapy with potassium-magnesium citrate (containing 49 mEq K, 24.5 mEq Mg, and 73.5 mEq citrate per day). Urinary pH was significantly higher during potassium-magnesium citrate than during potassium citrate therapy. Thus, the amount of undissociated uric acid declined from 118 +/- 61 mg/day during the placebo phase to 68 +/- 54 mg/day during potassium citrate treatment and, more prominently, to 41 +/- 46 mg/day during potassium-magnesium citrate therapy. Urinary magnesium rose significantly from 102 +/- 25 to 146 +/- 37 mg/day during potassium-magnesium citrate therapy but not during potassium citrate therapy. Urinary citrate rose more prominently during potassium-magnesium citrate therapy (to 1027 +/- 478 mg/day from 638 +/- 252 mg/day) than during potassium citrate treatment (to 932 +/- 297 mg/day). Consequently, urinary saturation (activity product) of calcium oxalate declined significantly (from 1.49 x 10(-8) to 1.03 x 10(-8) M2) during potassium-magnesium citrate therapy and marginally (to 1.14 x 10(-8) M2) during potassium citrate therapy.(ABSTRACT TRUNCATED AT 250 WORDS).

  15. A double-suicide autopsy case of potassium poisoning by intravenous administration of potassium aspartate after intake of some psychopharmaceuticals.

    PubMed

    Watanabe, K; Hasegawa, K; Suzuki, O

    2011-07-01

    We report a curious double-suicide autopsy case of both male and female who died of potassium poisoning by intravenous administration of concentrated potassium aspartate solution. The plasma concentrations of potassium of the male and female subjects were as high as 49.7 and 62.8 mEq/L, respectively. In addition to the high concentrations of potassium, toxic levels of phenobarbital, promethazine and chlorpromazine, and relatively low levels of etizolam and brotizolam were also detected from whole blood and urine specimens of both cadavers. Twenty empty plastic bottles (10-mL capacity) labeled 'ASPARA® Potassium Injection 10 mEq' were found at the suicide spot. To our knowledge, this is the first description for suicidal death by potassium aspartate; in all of the previous literature, they used potassium chloride intravenously or per os. PMID:20670988

  16. 75 FR 23298 - Potassium Permanganate From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... potassium permanganate from China (70 FR 35630). The Commission is now conducting a third review to... 207), as most recently amended at 74 FR 2847 (January 16, 2009). \\1\\ No response to this request for... from China (49 FR 3897). Following first five-year reviews by Commerce and the Commission,...

  17. Potassium in diet

    MedlinePlus

    ... of electrolyte . Function Potassium is a very important mineral for the human body. Your body needs potassium to: Build proteins Break down and use carbohydrates Build muscle Maintain normal body growth Control ...

  18. Potassium carbonate poisoning

    MedlinePlus

    Potassium carbonate is a white powder used to make soap, glass, and other items. This article discusses poisoning from swallowing or breathing in potassium carbonate. This article is for information only. Do ...

  19. Penicillin V Potassium Oral

    MedlinePlus

    Penicillin V potassium is an antibiotic used to treat certain infections caused by bacteria such as pneumonia, ... Penicillin V potassium comes as a tablet and liquid to take by mouth. It is usually taken ...

  20. Regulation of Potassium Homeostasis

    PubMed Central

    2015-01-01

    Potassium is the most abundant cation in the intracellular fluid, and maintaining the proper distribution of potassium across the cell membrane is critical for normal cell function. Long-term maintenance of potassium homeostasis is achieved by alterations in renal excretion of potassium in response to variations in intake. Understanding the mechanism and regulatory influences governing the internal distribution and renal clearance of potassium under normal circumstances can provide a framework for approaching disorders of potassium commonly encountered in clinical practice. This paper reviews key aspects of the normal regulation of potassium metabolism and is designed to serve as a readily accessible review for the well informed clinician as well as a resource for teaching trainees and medical students. PMID:24721891

  1. Potassium food supplement

    NASA Technical Reports Server (NTRS)

    Bourland, C. T.; Huber, C. S.; Rambaut, C.; Heidelbaugh, N. D.

    1973-01-01

    Potassium gluconate is considered best supplementary source for potassium. Gluconate consistently received highest taste rating and was indistinguishable from nonsupplemented samples. No unfavorable side effects were found during use, and none are reported in literature. Gluconate is normal intermediary metabolite that is readily adsorbed and produces no evidence of gastrointestinal ulcerations.

  2. Penicillin V Potassium Oral

    MedlinePlus

    V-Cillin K® ... Penicillin V potassium is an antibiotic used to treat certain infections caused by bacteria such as pneumonia, scarlet fever, ... Penicillin V potassium comes as a tablet and liquid to take by mouth. It is usually taken every 6 ...

  3. Potassium and health.

    PubMed

    Weaver, Connie M

    2013-05-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints. PMID:23674806

  4. Potassium and Health123

    PubMed Central

    Weaver, Connie M.

    2013-01-01

    Potassium was identified as a shortfall nutrient by the Dietary Guidelines for Americans 2010 Advisory Committee. The committee concluded that there was a moderate body of evidence of the association between potassium intake and blood pressure reduction in adults, which in turn influences the risk of stroke and coronary heart disease. Evidence is also accumulating of the protective effect of adequate dietary potassium on age-related bone loss and reduction of kidney stones. These benefits depend on organic anions associated with potassium as occurs in foods such as fruits and vegetables, in contrast to similar blood pressure-lowering benefits of potassium chloride. Benefits to blood pressure and bone health may occur at levels below current recommendations for potassium intake, especially from diet, but dose-response trials are needed to confirm this. Nevertheless, intakes considerably above current levels are needed for optimal health, and studies evaluating small increases in fruit and vegetable intake on bone and heart outcomes for short periods have had disappointing results. In modern societies, Western diets have led to a decrease in potassium intake with reduced consumption of fruits and vegetables with a concomitant increase in sodium consumption through increased consumption of processed foods. Consumption of white vegetables is associated with decreased risk of stroke, possibly related to their high potassium content. Potatoes are the highest source of dietary potassium, but the addition of salt should be limited. Low potassium-to-sodium intake ratios are more strongly related to cardiovascular disease risk than either nutrient alone. This relationship deserves further attention for multiple target tissue endpoints. PMID:23674806

  5. What is Potassium?

    MedlinePlus

    ... carrots and beans. It's also found in dairy foods, meat, poultry, fish and nuts. Reach your recommended daily intake of potassium by frequently adding these foods to your daily menu: 1 cup cooked spinach: ...

  6. Potassium hydroxide poisoning

    MedlinePlus

    Symptoms from swallowing potassium hydroxide include: Abdominal pain - severe Burns in the mouth and throat Chest pain Collapse Diarrhea Drooling Mouth pain - severe Rapid drop in blood pressure (shock) Throat pain - severe Throat ...

  7. High Temperature Stability of Potassium Beta Alumina

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Kisor, A.; Ryan, M. A.

    1996-01-01

    None. From Objectives section: Evaluate the stability of potassium beta alumina under potassium AMTEC operating conditions. Evaluate the stability regime in which potassium beta alumina can be fabricated.

  8. Recipe for potassium

    SciTech Connect

    Izutani, Natsuko

    2012-11-12

    I investigate favorable conditions for producing potassium (K). Observations show [K/Fe] > 0 at low metallicities, while zero-metal supernova models show low [K/Fe] (< 0). Theoretically, it is natural that the odd-Z element, potassium decreases with lower metallicity, and thus, the observation should imply new and unknown sites for potassium. In this proceedings, I calculate proton-rich nucleosynthesis with three parameters, the initial Y{sub e} (from 0.51 to 0.60), the initial density {rho}{sub max} (10{sup 7}, 10{sup 8}, and 10{sup 9} [g/cm{sup 3}]), and the e-fold time {tau} for the density (0.01, 0.1, and 1.0 [sec]). Among 90 models I have calculated, only 26 models show [K/Fe] > 0, and they all have {rho}{sub max} = 10{sup 9}[g/cm{sup 3}]. I discuss parameter dependence of [K/Fe].

  9. Potassium Beta-Alumina/Molybdenum/Potassium Electrochemical Cells

    NASA Technical Reports Server (NTRS)

    Williams, R.; Kisor, A.; Ryan, M.; Nakamura, B.; Kikert, S.; O'Connor, D.

    1994-01-01

    potassium alkali metal thermal-to-electric converter (K-AMTEC) cells utilizing potassium beta alumina solid electrolyte (K-BASE) are predicted to have improved properties for thermal to electric conversion at somewhat lower temperatures than sodium AMTEC's.

  10. Errors in potassium balance

    SciTech Connect

    Forbes, G.B.; Lantigua, R.; Amatruda, J.M.; Lockwood, D.H.

    1981-01-01

    Six overweight adult subjects given a low calorie diet containing adequate amounts of nitrogen but subnormal amounts of potassium (K) were observed on the Clinical Research Center for periods of 29 to 40 days. Metabolic balance of potassium was measured together with frequent assays of total body K by /sup 40/K counting. Metabolic K balance underestimated body K losses by 11 to 87% (average 43%): the intersubject variability is such as to preclude the use of a single correction value for unmeasured losses in K balance studies.

  11. Potassium and High Blood Pressure

    MedlinePlus

    ... in blood pressure to certain patterns of food consumption. For example, the D.A.S.H. (Dietary Approaches ... are good natural sources of potassium. Potassium-rich foods include: Sweet ... Levels Mean * ...

  12. Potassium silver cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for potassium silver cyanide is inclu

  13. High potassium level

    MedlinePlus

    ... J. Martin, MD, MPH, ABIM Board Certified in Internal Medicine and Hospice and Palliative Medicine, Atlanta, GA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team. Related MedlinePlus Health Topics Kidney Diseases Potassium Browse the Encyclopedia A. ...

  14. Detecting potassium on Mercury

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Potter, A. E.; Morgan, T. H.

    1991-01-01

    A critical comment on the work of A.L. Sprague et al. (1990) is presented. It is argued that, in attributing an enhanced emission in the potassium D lines on Oct. 14, 1987 in the equatorial region of Mercury to a diffusion source centered on Caloris Basin, Sprague et al. misinterpreted the data. Sprague et al. present a reply, taking issue with the commenters.

  15. Potassium Channels in Epilepsy.

    PubMed

    Köhling, Rüdiger; Wolfart, Jakob

    2016-01-01

    This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. PMID:27141079

  16. Potassium toxicity at low serum potassium levels with refeeding syndrome.

    PubMed

    Vemula, Praveen; Abela, Oliver G; Narisetty, Keerthy; Rhine, David; Abela, George S

    2015-01-01

    Refeeding syndrome is a life-threatening condition occurring in severely malnourished patients after initiating feeding. Severe hypophosphatemia with reduced adenosine triphosphate production has been implicated, but little data are available regarding electrolyte abnormalities. In this case, we report electrocardiographic changes consistent with hyperkalemia during potassium replacement after a serum level increase from 1.9 to 2.9 mEq/L. This was reversed by lowering serum potassium back to 2.0 mEq/L. In conclusion, the patient with prolonged malnutrition became adapted to low potassium levels and developed potassium toxicity with replacement. PMID:25456880

  17. Targeting potassium channels in cancer

    PubMed Central

    2014-01-01

    Potassium channels are pore-forming transmembrane proteins that regulate a multitude of biological processes by controlling potassium flow across cell membranes. Aberrant potassium channel functions contribute to diseases such as epilepsy, cardiac arrhythmia, and neuromuscular symptoms collectively known as channelopathies. Increasing evidence suggests that cancer constitutes another category of channelopathies associated with dysregulated channel expression. Indeed, potassium channel–modulating agents have demonstrated antitumor efficacy. Potassium channels regulate cancer cell behaviors such as proliferation and migration through both canonical ion permeation–dependent and noncanonical ion permeation–independent functions. Given their cell surface localization and well-known pharmacology, pharmacological strategies to target potassium channel could prove to be promising cancer therapeutics. PMID:25049269

  18. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By...

  19. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By...

  20. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  1. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  2. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  3. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium carbonate. 184.1619 Section 184.1619 Food... Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate (K2CO3, CAS... potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By treating...

  4. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  5. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium carbonate. 184.1619 Section 184.1619... Listing of Specific Substances Affirmed as GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate... of potassium chloride followed by exposing the resultant potassium to carbon dioxide; (2) By...

  6. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets...

  7. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  8. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  9. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... Listing of Specific Substances Affirmed as GRAS § 184.1613 Potassium bicarbonate. (a) Potassium... potassium hydroxide with carbon dioxide; (2) By treating a solution of potassium carbonate with...

  10. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acesulfame potassium. 172.800 Section 172.800 Food... Multipurpose Additives § 172.800 Acesulfame potassium. Acesulfame potassium (CAS Reg. No. 55589-62-3), also... not preclude such use, under the following conditions: (a) Acesulfame potassium is the potassium...

  11. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Potassium alginate...

  12. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg. No. 1310-58-3) is also... powders. Potassium hydroxide is obtained commercially from the electrolysis of potassium chloride...

  13. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg. No. 7778-80-5) occurs.... It is prepared by the neutralization of sulfuric acid with potassium hydroxide or potassium...

  14. Frequently Asked Questions on Potassium Iodide (KI)

    MedlinePlus

    ... needs to take potassium iodide (KI) after a nuclear radiation release? What potassium iodide (KI) products are currently ... needs to take potassium iodide (KI) after a nuclear radiation release? The FDA guidance prioritizes groups based on ...

  15. Potassium hydroxide clay stabilization process

    SciTech Connect

    Sydansk, R.

    1981-07-28

    An aqueous solution having potassium hydroxide dissolved therein is injected into a subterranean sandstone formation containing water-sensitive fine particles, including clays. Potassium hydroxide stabilizes the fine particles for a substantial period of time thereby substantially preventing formation permeability damage caused by encroachment of aqueous solutions having a distinct ionic makeup into the treated formation.

  16. Bound potassium in muscle II.

    PubMed

    Hummel, Z

    1980-01-01

    Experiments were performed to decide between the alternatives a) the ionized K+ is in a dissolved state in the muscle water, or b) a part of the muscle potassium is in a "bound' state. Sartorius muscles of Rana esculenta were put into glicerol for about one hour at 0-2 degrees C. Most of muscle water came out, but most of muscle potassium remained in the muscles. In contrast to this: from muscle in heat rigor more potassium was released due to glicerol treating than from the intact ones. 1. Supposition a) is experimentally refuted. 2. Supposition b) corresponds to the experimental results. PMID:6969511

  17. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  18. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from...

  19. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from...

  20. 21 CFR 184.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium bicarbonate. 184.1613 Section 184.1613... GRAS § 184.1613 Potassium bicarbonate. (a) Potassium bicarbonate (KHCO3, CAS Reg. No. 298-14-6) is made by the following processes: (1) By treating a solution of potassium hydroxide with carbon dioxide;...

  1. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  2. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide....

  3. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide....

  4. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  5. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  6. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from...

  7. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food... GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide. (b) The ingredient meets...

  8. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  9. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  10. 21 CFR 184.1619 - Potassium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium carbonate. 184.1619 Section 184.1619... GRAS § 184.1619 Potassium carbonate. (a) Potassium carbonate (K2CO3, CAS Reg. No. 584-08-7) is produced by the following methods of manufacture: (1) By electrolysis of potassium chloride followed...

  11. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  12. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg. No. 7447-40-7) is a white... manufacturing practice. Potassium chloride may be used in infant formula in accordance with section 412(g)...

  13. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide....

  14. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  15. 21 CFR 184.1635 - Potassium iodate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodate. 184.1635 Section 184.1635 Food... Specific Substances Affirmed as GRAS § 184.1635 Potassium iodate. (a) Potassium iodate (KIO3, CAS Reg. No. 7758-05-6) does not occur naturally but can be prepared by reacting iodine with potassium hydroxide....

  16. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  17. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 172.375 Section 172.375 Food and....375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be safely added to a food as a source of...

  18. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  19. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  20. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  1. 21 CFR 184.1610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium alginate. 184.1610 Section 184.1610 Food... Specific Substances Affirmed as GRAS § 184.1610 Potassium alginate. (a) Potassium alginate (CAS Reg. No. 9005-36-1) is the potassium salt of alginic acid, a natural polyuronide constituent of certain...

  2. 21 CFR 172.375 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  3. 21 CFR 184.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium hydroxide. 184.1631 Section 184.1631... Listing of Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide..., including pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from...

  4. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  5. 21 CFR 184.1622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium chloride. 184.1622 Section 184.1622 Food... Specific Substances Affirmed as GRAS § 184.1622 Potassium chloride. (a) Potassium chloride (KCl, CAS Reg... levels not to exceed current good manufacturing practice. Potassium chloride may be used in...

  6. Evaporative cooling of potassium atoms

    NASA Astrophysics Data System (ADS)

    Inouye, Shin; Kishimoto, Tetsuo; Kobayashi, Jun; Aikawa, Kiyotaka; Noda, Kai; Arae, Takuto; Ueda, Masahito

    2007-06-01

    Recent advances in manipulating interactions between ultracold atoms opened up various new possibilities. One of the major goal of the field is to produce ultracold polar molecules. By utilizing a magnetic field induced Feshbach resonance, it is possible to produce heteronuclear molecules from a degenerate gas mixture. We are setting up an experiment to produce a degenerate gas mixture of fermionic alkali atoms, lithium-6 and potassium-40. Fermionic atoms are good candidate for minimizing the expected inelastic loss at the Feshbach resonance. For keeping the system as simple as possible, we decided to use bosonic potassium (potassium-41) as a coolant, and sympathetically cool the fermionic species. We will present our experimental setup and initial results for evaporatively cooling bosonic potassium atoms.

  7. The relation of potassium and sodium intakes to diet cost among U.S. adults.

    PubMed

    Drewnowski, A; Rehm, C D; Maillot, M; Monsivais, P

    2015-01-01

    The 2010 Dietary Guidelines recommended that Americans increase potassium and decrease sodium intakes to reduce the burden of hypertension. One reason why so few Americans meet the recommended potassium or sodium goals may be perceived or actual food costs. This study explored the monetary costs associated with potassium and sodium intakes using national food prices and a representative sample of US adults. Dietary intake data from the 2001-2002 National Health and Nutrition Examination Survey were merged with a national food prices database. In a population of 4744 adults, the association between the energy-adjusted sodium and potassium intakes, and the sodium-to-potassium ratio (Na:K) and energy-adjusted diet cost was evaluated. Diets that were more potassium-rich or had lower Na:K ratios were associated with higher diet costs, while sodium intakes were not related to cost. The difference in diet cost between extreme quintiles of potassium intakes was $1.49 (95% confidence interval: 1.29, 1.69). A food-level analysis showed that beans, potatoes, coffee, milk, bananas, citrus juices and carrots are frequently consumed and low-cost sources of potassium. Based on existing dietary data and current American eating habits, a potassium-dense diet was associated with higher diet costs, while sodium was not. Price interventions may be an effective approach to improve potassium intakes and reduce the Na:K ratio of the diet. The present methods helped identify some alternative low-cost foods that were effective in increasing potassium intakes. The identification and promotion of lower-cost foods to help individuals meet targeted dietary recommendations could accompany future dietary guidelines. PMID:24871907

  8. Experimental Cardiac Necrosis and Potassium

    PubMed Central

    Prioreschi, P.

    1967-01-01

    In recent years evidence has been brought forward supporting the hypothesis that myocardial infarction is not due to thrombotic occlusion of a coronary artery but to a metabolic derangement in a myocardium “conditioned” by coronary atherosclerosis. The author briefly reviews metabolic necroses experimentally induced in the animal and discusses the action of potassium in preventing their development. The basis for the clinical use of potassium and magnesium salts for the prevention of myocardial infarction is also discussed. PMID:5336956

  9. [Potassium channelopathies and Morvan's syndromes].

    PubMed

    Serratrice, Georges; Pellissier, Jean-François; Serra-Trice, Jacques; Weiller, Pierre-Jean

    2010-02-01

    Interest in Morvan's disease or syndrome has grown, owing to its close links with various potassium channelopathies. Potassium is crucial for gating mechanisms (channel opening and closing), and especially for repolarization. Defective potassium regulation can lead to neuronal hyperexcitability. There are three families of potassium channels: voltage-gated potassium channels or VGKC (Kv1.1-Kv1.8), inward rectifier K+ channels (Kir), and two-pore channels (K2p). VGK channels are the commonest, and especially those belonging to the Shaker group (neuromyotonia and Morvan's syndrome, limbic encephalitis, and type 1 episodic ataxia). Brain and heart K+ channelopathies are a separate group due to KCNQ1 mutation (severe type 2 long QT syndrome). Kv7 channel mutations (in KNQ2 and KCNQ3) are responsible for benign familial neonatal seizures. Mutation of the Ca+ activated K+ channel gene causes epilepsy and paroxysmal dyskinesia. Inward rectifier K+ channels regulate intracellular potassium levels. The DEND syndrome, a treatable channelopathy of the brain and pancreas, is due to KCNJ1 mutation. Andersen's syndrome, due to KCNJ2 mutation, is characterized by periodic paralysis, cardiac arrythmia, and dysmorphia. Voltage-insensitive K2p channelopathies form a final group. PMID:21166127

  10. [Determination of potassium in farmland soil using laser-induced breakdown spectroscopy].

    PubMed

    Dong, Da-Ming; Zheng, Wen-Gang; Zhao, Chun-Jiang; Zhao, Xian-De; Jiao, Lei-Zi; Zhang, Shi-Rui

    2013-03-01

    The real-time measurement of potassium in farmland soil has great importance. A method to determine the potassium content in farmland soil based on laser-induced breakdown spectroscopy (LIBS) was studied using a LIBS equipment consisting of a 1,064 nm laser generator and a high resolution spectrometer. The farmland soil samples with potassium content in the range of 8.74-34.56 g.kg-1 were analyzed. The 766.49 nm was chosen as the analysis line, by comparing the potassium atom characteristic lines of 404.40, 404.72, 766.49 and 769.90 nm. The errors of characteristic line strength caused by the laser stability and random noise was analyzed. The silicon, which is nearly constant in farmland soil, was chosen as the standard element, and a calibration model between the ratio of potassium to silicon (K/Si) and the potassium content was established. The linear fitting degree of the calibration curve was 0.935, and the relative standard deviation of the calibration model for prediction set samples was 9.26%. PMID:23705454

  11. 1990: Annus Mirabilis of Potassium Channels

    NASA Astrophysics Data System (ADS)

    Miller, Christopher

    1991-05-01

    Voltage-gated potassium channels make up a large mo- lecular family of integral membrane proteins that are fundamentally involved in the generation of bioelectric signals such as nerve impulses. These proteins span the cell membrane, forming potassium-selective pores that are rapidly switched open or closed by changes in mem- brane voltage. After the cloning of the first potassium channel over 3 years ago, recombinant DNA manipula- tion of potassium channel genes is now leading to a molecular understanding of potassium channel behavior. During the past year, functional domains responsible for channel gating and potassium selectivity have been iden- tiffed, and detailed structural pictures underlying these functions are beginning to emerge.

  12. Equatorial potassium currents in lenses.

    PubMed

    Wind, B E; Walsh, S; Patterson, J W

    1988-02-01

    Earlier work with the vibrating probe demonstrated the existence of outward potassium currents at the equator and inward sodium currents at the optical poles of the lens. By adding microelectrodes to the system, it is possible to relate steady currents (J) to the potential difference (PD) measured with a microelectrode. By injecting an outward current (I), it is possible to determine resistances and also the PD at which the steady outward potassium current becomes zero (PDJ = 0). At this PD the concentration gradient for potassium efflux and the electrical gradient for potassium influx are balanced so that there is no net flow of potassium across the membranes associated with the production of J. The PDJ = 0 for 18 rat lenses was 86 mV and that for 12 frogs lenses was -95 mV. This agrees with the potassium equilibrium potential and provides strong evidence to support the view that the outward equatorial current, J, is a potassium current. With the injection of outward current, I, the PD becomes more negative, the outward equatorial current, J, decreases, and the inward current at the optical poles increases. This suggests that there are separate electrical loops for K+ and Na+ that are partially linked by the Na, K-pump. Using Ohm's law, it is possible to calculate the input resistance (R = delta PD/I), the resistance related to the production of J (RJ = delta PD/delta J), and the effect of the combined resistances (delta J/I). The driving force for J can be estimated (PDJ = 0-PD). The relationships among currents, voltages and resistance can be used to determine the characteristics of the membranes that are associated with the outward potassium current observed at the equator. The effects of graded deformation of the lens were determined. The effects were reversible. The sites of inward and outward currents were not altered. Following deformation, the equatorial current, J, increased, and the PD became less negative. The PDJ = 0 remains the same so the ratio of K

  13. The heart and potassium: a banana republic.

    PubMed

    Khan, Ehsan; Spiers, Christine; Khan, Maria

    2013-03-01

    The importance of potassium in maintaining stable cardiac function is a clinically understood phenomenon. Physiologically the importance of potassium in cardiac function is described by the large number of different kinds of potassium ions channels found in the heart compared to channels and membrane transport mechanisms for other ions such as sodium and calcium. Potassium is important in physiological homeostatic control of cardiac function, but is also of relevance to the diseased state, as potassium-related effects may stabilize or destabilize cardiac function. This article aims to provide a detailed understanding of potassium-mediated cardiac function. This will help the clinical practitioner evaluate how modulation of potassium ion channels by disease and pharmacological manipulation affect the cardiac patient, thus aiding in decision making when faced with clinical problems related to potassium. PMID:23425010

  14. Role of Circadian Rhythms in Potassium Homeostasis

    PubMed Central

    Gumz, Michelle L.; Rabinowitz, Lawrence

    2013-01-01

    It has been known for decades that urinary potassium excretion varies with a circadian pattern. In this review, we consider the historical evidence for this phenomenon and present an overview of recent developments in the field. Extensive evidence from the latter part of the last century clearly demonstrates that circadian potassium excretion does not depend on endogenous aldosterone. Of note is the recent discovery that the expression of several renal potassium transporters varies with a circadian pattern that appears to be consistent with substantial clinical data regarding daily fluctuations in urinary potassium levels. We propose the circadian clock mechanism as a key regulator of renal potassium transporters, and consequently renal potassium excretion. Further investigation into the mechanism of regulation of renal potassium transport by the circadian clock is warranted in order to increase our understanding of the clinical relevance of circadian rhythms to potassium homeostasis. PMID:23953800

  15. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  16. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and is prepared commercially...

  17. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  18. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  19. 21 CFR 184.1639 - Potassium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium lactate. 184.1639 Section 184.1639 Food... Specific Substances Affirmed as GRAS § 184.1639 Potassium lactate. (a) Potassium lactate (C3H5O3K, CAS Reg. No. 996-31-6) is the potassium salt of lactic acid. It is a hydroscopic, white, odorless solid and...

  20. Managing potassium in pecan orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mineral nutrition management of pecan orchards is especially difficult for potassium (K). This work provides insight into factors affecting tree K health and orchard profitability, and targets a K concentration of at least 1.5% dry weight as favoring high nutmeat yield and quality, and avoidance of...

  1. Status of potassium permanganate - 2008

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for potassium permanganate will be presented. Initial Label Claim (Columnaris on catfish/HSB): 1) Human Food Safety - Complete for all fin fish (June 1999). A hazard charac...

  2. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  3. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use....

  4. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  5. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use....

  6. 21 CFR 172.730 - Potassium bromate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium bromate. 172.730 Section 172.730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....730 Potassium bromate. The food additive potassium bromate may be safely used in the malting of...

  7. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5628 Potassium glycerophosphate. (a) Product. Potassium glycerophosphate....

  8. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a...

  9. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  11. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  12. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  13. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use....

  14. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  15. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  16. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use....

  17. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium bisulfite. 182.3616 Section 182.3616...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions, or explanation. This substance is...

  18. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium nitrate. 172.160 Section 172.160 Food... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a curing agent in the processing of...

  19. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use....

  20. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...

  1. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  2. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  3. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  4. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use....

  5. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use....

  7. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium metabisulfite. 182.3637 Section 182.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  8. 21 CFR 172.730 - Potassium bromate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bromate. 172.730 Section 172.730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Specific Usage Additives § 172.730 Potassium bromate. The food additive potassium bromate may be...

  9. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  11. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium metabisulfite. 182.3637 Section 182.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  12. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  13. 21 CFR 172.730 - Potassium bromate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium bromate. 172.730 Section 172.730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Other Specific Usage Additives § 172.730 Potassium bromate. The food additive potassium bromate may...

  14. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  15. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5628 Potassium glycerophosphate. (a) Product. Potassium glycerophosphate....

  16. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  17. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium bisulfite. 182.3616 Section 182.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  18. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bisulfite. 182.3616 Section 182.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  19. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  20. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5628 Potassium glycerophosphate. (a) Product. Potassium glycerophosphate....

  1. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  2. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5628 Potassium glycerophosphate. (a) Product. Potassium glycerophosphate....

  3. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...

  4. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  5. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  6. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use....

  7. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  8. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance...

  9. 21 CFR 172.730 - Potassium bromate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium bromate. 172.730 Section 172.730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Other Specific Usage Additives § 172.730 Potassium bromate. The food additive potassium bromate may...

  10. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  11. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use....

  12. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  13. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...

  14. 21 CFR 582.5628 - Potassium glycerophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium glycerophosphate. 582.5628 Section 582.5628 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5628 Potassium glycerophosphate. (a) Product. Potassium glycerophosphate....

  15. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance...

  16. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  17. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  18. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance...

  19. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use....

  20. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  1. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  2. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance...

  3. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  4. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use....

  5. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  6. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...

  7. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium bisulfite. 182.3616 Section 182.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  8. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  9. 21 CFR 582.3640 - Potassium sorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium sorbate. 582.3640 Section 582.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3640 Potassium sorbate. (a) Product. Potassium sorbate. (b) Conditions of use. This substance...

  10. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  11. 21 CFR 582.1631 - Potassium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use....

  12. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  13. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  14. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium metabisulfite. 182.3637 Section 182.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  15. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium metabisulfite. 182.3637 Section 182.3637...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  16. 21 CFR 172.730 - Potassium bromate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium bromate. 172.730 Section 172.730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Other Specific Usage Additives § 172.730 Potassium bromate. The food additive potassium bromate may...

  17. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  18. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  19. 21 CFR 182.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium bisulfite. 182.3616 Section 182.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions, or...

  20. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  1. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use....

  2. 21 CFR 582.1625 - Potassium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium citrate. 582.1625 Section 582.1625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1625 Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use....

  3. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  4. 21 CFR 582.6625 - Potassium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium citrate. 582.6625 Section 582.6625 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium citrate. (a) Product. Potassium citrate. (b) Conditions of use. This substance is...

  5. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  6. 21 CFR 582.3616 - Potassium bisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium bisulfite. 582.3616 Section 582.3616 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3616 Potassium bisulfite. (a) Product. Potassium bisulfite. (b) (c) Limitations, restrictions,...

  7. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  8. 21 CFR 582.1619 - Potassium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium carbonate. 582.1619 Section 582.1619 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1619 Potassium carbonate. (a) Product. Potassium carbonate. (b) Conditions of use....

  9. 21 CFR 201.72 - Potassium labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Potassium labeling. 201.72 Section 201.72 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.72 Potassium labeling. (a) The labeling of over-the-counter (OTC) drug products intended for oral ingestion shall contain the potassium...

  10. 21 CFR 582.1613 - Potassium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium bicarbonate. 582.1613 Section 582.1613 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1613 Potassium bicarbonate. (a) Product. Potassium bicarbonate. (b) Conditions of use....

  11. 21 CFR 582.5622 - Potassium chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium chloride. 582.5622 Section 582.5622 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5622 Potassium chloride. (a) Product. Potassium chloride. (b) Conditions of use....

  12. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  13. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  14. 21 CFR 582.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium metabisulfite. 582.3637 Section 582.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  15. 21 CFR 182.3637 - Potassium metabisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium metabisulfite. 182.3637 Section 182.3637 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3637 Potassium metabisulfite. (a) Product. Potassium metabisulfite. (b) (c) Limitations,...

  16. 21 CFR 184.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium sulfate. 184.1643 Section 184.1643 Food... Specific Substances Affirmed as GRAS § 184.1643 Potassium sulfate. (a) Potassium sulfate (K2SO4, CAS Reg... having a bitter, saline taste. It is prepared by the neutralization of sulfuric acid with...

  17. 21 CFR 582.7610 - Potassium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium alginate. 582.7610 Section 582.7610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Potassium alginate. (a) Product. Potassium alginate. (b) Conditions of use. This substance is...

  18. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  19. 21 CFR 582.1643 - Potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium sulfate. 582.1643 Section 582.1643 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1643 Potassium sulfate. (a) Product. Potassium sulfate. (b) Conditions of use....

  20. Does Hemodialysis Dialysate Potassium Composition Matter?.

    PubMed

    Haras, Mary S

    2015-01-01

    Dyskalemia is known to cause cardiac arrhythmias and cardiac arrest. In persons undergoing hemodialysis, potassium dialysate composition has been identified as a contributingfactor in addition to co-morbidities, medications, dietary potassium intake, and stage of kidney disease. Current evidence recommends a thorough evaluation of all factors affecting potassium balance, and lower potassium concentration should be used cautiously in patients who are likely to develop cardiac arrhythmias. Nephrology nurses play a key role inpatient assessment and edu- cation related to potassium balance. PMID:26875233

  1. Potassium Balances in Maintenance Hemodialysis

    PubMed Central

    Choi, Hoon Young

    2013-01-01

    Potassium is abundant in the ICF compartment in the body and its excretion primarily depends on renal (about 90%), and to a lesser extent (about 10%) on colonic excretion. Total body potassium approximated to 50mmol/kg body weight and 2% of total body potassium is in the ECF compartment and 98% of it in the intracellular compartment.Dyskalemia is a frequent electrolyte imbalance observed among the maintenance hemodialysis patients. In case of hyperkalemia, it is frequently "a silent and a potential life threatening electrolyte imbalance" among patients with ESRD under maintenance hemodialysis. The prevalence of hyperkalemia in maintenance HD patients was reported to be about 8.7-10%. Mortality related to the hyperkalemia has been shown to be about 3.1/1,000 patient-years and about 24% of patients with HD required emergency hemodialysis due to severe hyperkalemia. In contrast to the hyperkalemia, much less attention has been paid to the hypokalemia in hemodialysis patients because of the low prevalence under maintenance hemodialysis patients. Severe hypokalemia in the hemodialysis patients usually was resulted from low potassium intake (malnutrition), chronic diarrhea, mineralocorticoid use, and imprudent use of K-exchange resins. Recently, the numbers of the new patients with advanced chronic kidney disease undergoing maintenance hemodialysis are tremendously increasing worldwide. However, the life expectancy of these patients is still much lower than that of the general population. The causes of excess mortality in these patients seem to various, but dyskalemia is a common cause among the patients with ESRD undergoing hemodialysis. PMID:23946760

  2. The inhibitory effects of potassium chloride versus potassium silicate application on (137)Cs uptake by rice.

    PubMed

    Fujimura, Shigeto; Yoshioka, Kunio; Ota, Takeshi; Ishikawa, Tetsuya; Sato, Makoto; Satou, Mutsuto

    2016-03-01

    After the accident at the Fukushima Dai-ichi Nuclear Power Plant owned by the Tokyo Electric Power Company on 11 March 2011, potassium fertilizer was applied to agricultural fields in the southern Tohoku and northern Kanto regions of Japan to reduce the uptake of radiocesium by crops. In this study, we examined the effects of two types of potassium fertilizers, potassium chloride (a readily available potassium fertilizer) and potassium silicate (a slow-release potassium fertilizer), as well as a split application of potassium, on the accumulation of (137)Cs by rice plants in two pot experiments. The (137)Cs concentrations in the brown rice and in the above-ground plants were significantly lower after potassium chloride application than after potassium silicate application. The potassium ion (K(+)) concentrations in soil solutions sampled 9 and 21 d after transplanting were significantly higher for the potassium chloride application than for the potassium silicate application. The K(+) concentrations in soil solutions observed in the application of potassium silicate were similar to those in the treatment when no potassium was applied. This finding indicates that the application of potassium silicate did not sufficiently increase the available K(+) for rice plants in the soil, which led to a greater uptake of (137)Cs after the potassium silicate application than after the application of potassium chloride. The (137)Cs concentration in brown rice was higher in the split application of potassium fertilizer with the second application at the full heading stage than that without split application and the split application with the second application before heading. PMID:26773513

  3. Potassium Intake, Bioavailability, Hypertension, and Glucose Control

    PubMed Central

    Stone, Michael S.; Martyn, Lisa; Weaver, Connie M.

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60–100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  4. Potassium Intake, Bioavailability, Hypertension, and Glucose Control.

    PubMed

    Stone, Michael S; Martyn, Lisa; Weaver, Connie M

    2016-01-01

    Potassium is an essential nutrient. It is the most abundant cation in intracellular fluid where it plays a key role in maintaining cell function. The gradient of potassium across the cell membrane determines cellular membrane potential, which is maintained in large part by the ubiquitous ion channel the sodium-potassium (Na+-K+) ATPase pump. Approximately 90% of potassium consumed (60-100 mEq) is lost in the urine, with the other 10% excreted in the stool, and a very small amount lost in sweat. Little is known about the bioavailability of potassium, especially from dietary sources. Less is understood on how bioavailability may affect health outcomes. Hypertension (HTN) is the leading cause of cardiovascular disease (CVD) and a major financial burden ($50.6 billion) to the US public health system, and has a significant impact on all-cause morbidity and mortality worldwide. The relationship between increased potassium supplementation and a decrease in HTN is relatively well understood, but the effect of increased potassium intake from dietary sources on blood pressure overall is less clear. In addition, treatment options for hypertensive individuals (e.g., thiazide diuretics) may further compound chronic disease risk via impairments in potassium utilization and glucose control. Understanding potassium bioavailability from various sources may help to reveal how specific compounds and tissues influence potassium movement, and further the understanding of its role in health. PMID:27455317

  5. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O,...

  6. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O,...

  7. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O,...

  8. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... Specific Substances Affirmed as GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O,...

  9. 21 CFR 184.1625 - Potassium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available from the National... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium citrate. 184.1625 Section 184.1625 Food... GRAS § 184.1625 Potassium citrate. (a) Potassium citrate (C6H5K3O7·H2O, CAS Reg. No....

  10. Coherent dynamics of molten potassium

    NASA Astrophysics Data System (ADS)

    Tewari, S. P.; Silotia, P.; Dhingra, G.; Tandon, P.; Sood, J.

    2016-05-01

    The observed coherent dynamical structure factor S(k,ω) of molten Potassium at 343K as measured by high resolution inelastic X-ray scattering (IXS) particularly in the low wave - vector, k range 1.75nm-1 ≤ k ≤ 10.0nm-1 has been explained using the modified microscopic theory of collective dynamics of a simple liquid. The detailed line shape of S(k,ω) for liquid K, agree quite well with the corresponding reported experimental results.

  11. Potassium

    MedlinePlus

    ... a Healthy Heart Healthy Kids Our Kids Programs Childhood Obesity What is childhood obesity? Overweight in Children BMI in Children Is Childhood Obesity an Issue in Your Home? Addressing your Child's ...

  12. Potassium

    MedlinePlus

    ... Talk to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in your community. See the FDA's Safe Disposal of Medicines website (http://goo.gl/c4Rm4p) for ...

  13. The Potassium Binding Protein Kbp Is a Cytoplasmic Potassium Sensor.

    PubMed

    Ashraf, Khuram U; Josts, Inokentijs; Mosbahi, Khedidja; Kelly, Sharon M; Byron, Olwyn; Smith, Brian O; Walker, Daniel

    2016-05-01

    Escherichia coli possesses a number of specific K(+) influx and efflux systems that maintain an appropriate intracellular K(+) concentration. Although regulatory mechanisms have been identified for a number of these transport systems, the exact mechanism through which K(+) concentration is sensed in the cell remains unknown. In this work we show that Kbp (K(+) binding protein, formerly YgaU), a soluble 16-kDa cytoplasmic protein from Escherichia coli, is a highly specific K(+) binding protein and is required for normal growth in the presence of high levels of external K(+). Kbp binds a single potassium ion with high specificity over Na(+) and other metal ions found in biological systems, although, in common with K(+) transporters, it also binds Rb(+) and Cs(+). Dissection of the K(+) binding determinants of Kbp suggests a mechanism through which Kbp is able to sense changes in K(+) concentration over the relevant range of intracellular K(+) concentrations. PMID:27112601

  14. Process for preparation of potassium-38

    DOEpatents

    Lambrecht, Richard M.; Wolf, Alfred P.

    1981-01-01

    A solution of potassium-38 suitable for use as a radiopharmaceutical and a method for its production. Argon is irradiated with protons having energies above the threshold for the .sup.40 Ar(p,3n).sup.38 K reaction. The resulting potassium-38 is dissolved in a sterile water and any contaminating chlorine-38 is removed.

  15. 21 CFR 182.3640 - Potassium sorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium sorbate. 182.3640 Section 182.3640 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3640 Potassium sorbate. (a) Product....

  16. Radiolysis of Potassium Picrate in 77 K

    NASA Astrophysics Data System (ADS)

    Yakubik, D. G.; Pak, V. Kh; Anan'ev, V. A.; Ghyngazov, S. A.

    2016-02-01

    The formation of paramagnetic centers in potassium picrate under irradiation at low temperature was investigated. The heating irradiated at 77 K potassium picrate crystal to room temperature results in paramagnetic centers - 2,6-dinitro-para-quinone radicals, ortho- and para-iminoxyl radicals and atomic oxygen. These products are formed under irradiation at room temperature.

  17. Status of potassium permanganate label claim - 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for potassium permanganate will be presented. Various aspects of these technical sections will be open for discussion. Potassium Permanganate Initial Label Claim (Columnaris on cat...

  18. Extracellular potassium inhibits Kv7.1 potassium channels by stabilizing an inactivated state.

    PubMed

    Larsen, Anders Peter; Steffensen, Annette Buur; Grunnet, Morten; Olesen, Søren-Peter

    2011-08-17

    Kv7.1 (KCNQ1) channels are regulators of several physiological processes including vasodilatation, repolarization of cardiomyocytes, and control of secretory processes. A number of Kv7.1 pore mutants are sensitive to extracellular potassium. We hypothesized that extracellular potassium also modulates wild-type Kv7.1 channels. The Kv7.1 currents were measured in Xenopus laevis oocytes at different concentrations of extracellular potassium (1-50 mM). As extracellular potassium was elevated, Kv7.1 currents were reduced significantly more than expected from theoretical calculations based on the Goldman-Hodgkin-Katz flux equation. Potassium inhibited the steady-state current with an IC(50) of 6.0 ± 0.2 mM. Analysis of tail-currents showed that potassium increased the fraction of channels in the inactivated state. Similarly, the recovery from inactivation was slowed by potassium, suggesting that extracellular potassium stabilizes an inactivated state in Kv7.1 channels. The effect of extracellular potassium was absent in noninactivating Kv7.1/KCNE1 and Kv7.1/KCNE3 channels, further supporting a stabilized inactivated state as the underlying mechanism. Interestingly, coexpression of Kv7.1 with KCNE2 did not attenuate the inhibition by potassium. In a number of other Kv channels, including Kv1.5, Kv4.3, and Kv7.2-5 channels, currents were only minimally reduced by an increase in extracellular potassium as expected. These results show that extracellular potassium modulates Kv7.1 channels and suggests that physiological changes in potassium concentrations may directly control the function of Kv7.1 channels. This may represent a novel regulatory mechanism of excitability and of potassium transport in tissues expressing Kv7.1 channels. PMID:21843472

  19. Active Sodium and Potassium Transport in High Potassium and Low Potassium Sheep Red Cells

    PubMed Central

    Hoffman, P. G.; Tosteson, D. C.

    1971-01-01

    The kinetic characteristics of the ouabain-sensitive (Na + K) transport system (pump) of high potassium (HK) and low potassium (LK) sheep red cells have been investigated. In sodium medium, the curve relating pump rate to external K is sigmoid with half maximal stimulation (K1/2) occurring at 3 mM for both cell types, the maximum pump rate in HK cells being about four times that in LK cells. In sodium-free media, both HK and LK pumps are adequately described by the Michaelis-Menten equation, but the K1/2 for HK cells is 0.6 ± 0.1 mM K, while that for LK is 0.2 ± 0.05 mM K. When the internal Na and K content of the cells was varied by the PCMBS method, it was found that the pump rate of HK cells showed a gradual increase from zero at very low internal Na to a maximum when internal K was reduced to nearly zero (100% Na). In LK cells, on the other hand, no pump activity was detected if Na constituted less than 70% of the total (Na + K) in the cell. Increasing Na from 70 to nearly 100% of the internal cation composition, however, resulted in an exponential increase in pump rate in these cells to about ⅙ the maximum rate observed in HK cells. While changes in internal composition altered the pump rate at saturating concentrations of external K, it had no effect on the apparent affinity of the pumps for external K. These results lead us to conclude that the individual pump sites in the HK and LK sheep red cell membranes must be different. Moreover, we believe that these data contribute significantly to defining the types of mechanism which can account for the kinetic characteristics of (Na + K) transport in sheep red cells and perhaps in other systems. PMID:5112660

  20. Potassium bromide method of infrared sampling

    USGS Publications Warehouse

    Milkey, R.G.

    1958-01-01

    In the preparation of potassium bromide pressed windows for use in the infrared analysis of solids, severe grinding of the potassium bromide powder may produce strong absorption bands that could interfere seriously with the spectra of the sample. These absorption bands appear to be due to some crystal alteration of the potassium bromide as a result of the grinding process. They were less apt to occur when the coarser powder, which had received a relatively gentle grinding, was used. Window blanks prepared from the coarser powders showed smaller adsorbed water peaks and generally higher over-all transmittance readings than windows pressed from the very fine powders.

  1. Potassium in the atmosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1986-01-01

    Spectral data are reported from a search for potassium in the Mercury atmosphere. The data were collected with instrumentation at Kitt Peak (7699 A) and at McDonald Observatory (7698.98 and 7664.86 A). The equivalent mean widths of the potassium emission lines observed are tabulated, along with the estimated abundances, which are compared with sodium abundances as determined by resonance lines. The average column abundance of potassium is projected to be 1 billion atoms/sq cm, about 1 percent the column abundance of sodium.

  2. 49 CFR 511.49 - Fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Fees. 511.49 Section 511.49 Transportation Other... OF TRANSPORTATION ADJUDICATIVE PROCEDURES Hearings § 511.49 Fees. (a) Witnesses. Any person compelled... the same attendance and mileage fees as are paid witnesses in the courts of the United States,...

  3. 49 CFR 511.49 - Fees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Fees. 511.49 Section 511.49 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ADJUDICATIVE PROCEDURES Hearings § 511.49 Fees. (a) Witnesses. Any person compelled to appear in person in response to...

  4. 21 CFR 520.1696d - Penicillin V potassium tablets.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Penicillin V potassium tablets. 520.1696d Section... Penicillin V potassium tablets. (a) Specifications. Each tablet contains penicillin V potassium equivalent to... susceptible to penicillin V potassium. (3) Limitations. Administer orally 1 to 2 hours prior to feeding...

  5. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor...

  6. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor...

  7. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor...

  8. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  9. 21 CFR 520.1696d - Penicillin V potassium tablets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin V potassium tablets. 520.1696d Section... Penicillin V potassium tablets. (a) Specifications. Each tablet contains penicillin V potassium equivalent to... susceptible to penicillin V potassium. (3) Limitations. Administer orally 1 to 2 hours prior to feeding...

  10. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor...

  11. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  12. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  13. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  14. 21 CFR 520.1696d - Penicillin V potassium tablets.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Penicillin V potassium tablets. 520.1696d Section... Penicillin V potassium tablets. (a) Specifications. Each tablet contains penicillin V potassium equivalent to... susceptible to penicillin V potassium. (3) Limitations. Administer orally 1 to 2 hours prior to feeding...

  15. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  16. 21 CFR 862.1600 - Potassium test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potassium test system. 862.1600 Section 862.1600....1600 Potassium test system. (a) Identification. A potassium test system is a device intended to measure potassium in serum, plasma, and urine. Measurements obtained by this device are used to monitor...

  17. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  18. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrite and potassium nitrite. 181.34... nitrite and potassium nitrite. Sodium nitrite and potassium nitrite are subject to prior sanctions issued... without sodium or potassium nitrate, in the curing of red meat and poultry products....

  19. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate and potassium nitrate. 181.33... nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued... potassium nitrite, in the production of cured red meat products and cured poultry products....

  20. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium... nitrite, with or without sodium or potassium nitrite, in the production of cured red meat products...

  1. 21 CFR 181.34 - Sodium nitrite and potassium nitrite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrite and potassium nitrite. 181.34...-Sanctioned Food Ingredients § 181.34 Sodium nitrite and potassium nitrite. Sodium nitrite and potassium... fixatives and preservative agents, with or without sodium or potassium nitrate, in the curing of red...

  2. Low Potassium Diet (Beyond the Basics)

    MedlinePlus

    ... to 120 mL/min) . A registered dietitian or nutritionist can help to create a low-potassium meal ... volumes. You agree to comply with all applicable laws, including all US export laws and regulations, in ...

  3. Strategies for Improving Potassium Use Efficiency in Plants

    PubMed Central

    Shin, Ryoung

    2014-01-01

    Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci. PMID:24938230

  4. Strategies for improving potassium use efficiency in plants.

    PubMed

    Shin, Ryoung

    2014-08-01

    Potassium is a macronutrient that is crucial for healthy plant growth. Potassium availability, however, is often limited in agricultural fields and thus crop yields and quality are reduced. Therefore, improving the efficiency of potassium uptake and transport, as well as its utilization, in plants is important for agricultural sustainability. This review summarizes the current knowledge on the molecular mechanisms involved in potassium uptake and transport in plants, and the molecular response of plants to different levels of potassium availability. Based on this information, four strategies for improving potassium use efficiency in plants are proposed; 1) increased root volume, 2) increasing efficiency of potassium uptake from the soil and translocation in planta, 3) increasing mobility of potassium in soil, and 4) molecular breeding new varieties with greater potassium efficiency through marker assisted selection which will require identification and utilization of potassium associated quantitative trait loci. PMID:24938230

  5. Circadian variation of intercompartmental potassium fluxes in man

    NASA Technical Reports Server (NTRS)

    Moore Ede, M. C.; Brennan, M. F.; Ball, M. R.

    1975-01-01

    Circadian rhythms of plasma potassium concentration and urinary potassium excretion persisted in three normal volunteers when diurnal variations in activity, posture, and dietary intake were eliminated for 3-10 days. Measurements of the arteriovenous difference in plasma potassium concentration across the resting forearm and of erythrocyte potassium concentration suggested that there is a net flux of potassium from ICF to ECF in the early morning and a reverse net flux later in the day. The total net ICF-ECF fluxes were estimated from the diurnal variations in extracellular potassium content corrected for dietary intake and urinary potassium loss. The net fluxes between ICF and ECF were found to be counterbalanced by the circadian rhythm in urinary potassium excretion. Desynchronization of these rhythms would result in marked fluctuations in extracellular potassium content. These findings suggest that some revision is required of the concept of basal state in potassium homeostasis.

  6. Estimated Potassium Content in Hanford Workers

    SciTech Connect

    Lynch, Timothy P.; Rivard, James; Garcia, Silvia

    2004-10-15

    Potassium content in male and female workers at the Department of Energy Hanford Site was estimated based on measurements made in 2002 of 40K activity in the body. A coaxial germanium detection system was used for the measurements. The activity in female workers ranged from 2.1 to 4.1 kBq with an average of 3.1 ± 0.02 kBq. Total body potassium (TBK) content in female workers averaged 96 ± 0.3 g. The activity in male workers ranged from 2.8 to 6.6 kBq with an average of 4.3 ± 0.01 kBq and the average TBK was 136 ± 0.3 g. The average potassium concentration decreased with age in both males and females. The average potassium content and potassium concentrations for both males and females were less than the corresponding reference values. Potassium concentrations were inversely correlated with body-build index, body-mass index, and body weight for both males and females.

  7. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is also called potassium bitartrate or cream...

  8. Potassium acetate and potassium lactate enhance the microbiological and physical properties of marinated catfish fillets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sodium or potassium salts such as lactate and acetate can be used to inhibit the growth of spoilage bacteria and food-borne pathogens, and thereby prolong the shelf-life of refrigerated seafood. However, minimal information is available regarding the combined effects of potassium salts (acetate and ...

  9. Development of potassium ion conducting hollow glass fibers. [potassium sulfur battery

    NASA Technical Reports Server (NTRS)

    Tsang, F. Y.

    1974-01-01

    Potassium ion conducting glasses, chemically resistant to potassium, potassium sulfide and sulfur, were made and their possible utility as the membrane material for a potassium/sulfur battery was evaluated. At least one satisfactory candidate was found. It possesses an electrical resistance which makes it usable as a membrane in the form of a fine hollow fiber. It's chemical and electrochemical resistances are excellent. The other aspects of the possible potassium sulfur battery utilizing such fine hollow fibers, including the header (or tube sheet) and a cathode current collector were studied. Several cathode materials were found to be satisfactory. None of the tube sheet materials studied possessed all the desired properties. Multi-fiber cells had very limited life-time due to physical failure of fibers at the fiber/tube sheet junctions.

  10. Potassium Permanganate Poisoning: A Nonfatal Outcome

    PubMed Central

    Eteiwi, Suzan M.; Al-Eyadah, Abdallah A.; Al-Sarihin, Khaldon K.; Al-Omari, Ahmad A.; Al-Asaad, Rania A.; Haddad, Fares H.

    2015-01-01

    Acute poisoning by potassium permanganate is a rare condition with high morbidity and mortality. Diagnosis of the condition relies on a history of exposure or ingestion and a high degree of clinical suspicion. Oxygen desaturation and the presence of methemoglobin are also helpful indicators. Since no specific antidote is available, treatment is mainly supportive. Few cases have been reported in the literature following potassium permanganate ingestion, whether intentional or accidental, and most of the patients in these cases had unfavorable outcomes, which was not the case in our patient. Our patient, a 73-year-old male, purchased potassium permanganate over the counter mistaking it for magnesium salt, which he frequently used as a laxative. Several hours after he ingested it, he was admitted to the endocrine department at King Hussein Medical Center, Jordan, with acute rapidly evolving shortness of breath. During hospitalization, his liver function tests deteriorated. Since he was diagnosed early and managed promptly he had a favorable outcome. PMID:26366264

  11. Potassium Permanganate Poisoning: A Nonfatal Outcome.

    PubMed

    Eteiwi, Suzan M; Al-Eyadah, Abdallah A; Al-Sarihin, Khaldon K; Al-Omari, Ahmad A; Al-Asaad, Rania A; Haddad, Fares H

    2015-07-01

    Acute poisoning by potassium permanganate is a rare condition with high morbidity and mortality. Diagnosis of the condition relies on a history of exposure or ingestion and a high degree of clinical suspicion. Oxygen desaturation and the presence of methemoglobin are also helpful indicators. Since no specific antidote is available, treatment is mainly supportive. Few cases have been reported in the literature following potassium permanganate ingestion, whether intentional or accidental, and most of the patients in these cases had unfavorable outcomes, which was not the case in our patient. Our patient, a 73-year-old male, purchased potassium permanganate over the counter mistaking it for magnesium salt, which he frequently used as a laxative. Several hours after he ingested it, he was admitted to the endocrine department at King Hussein Medical Center, Jordan, with acute rapidly evolving shortness of breath. During hospitalization, his liver function tests deteriorated. Since he was diagnosed early and managed promptly he had a favorable outcome. PMID:26366264

  12. Studies of potassium-promoted nickel catalysts for methane steam reforming: Effect of surface potassium location

    NASA Astrophysics Data System (ADS)

    Borowiecki, Tadeusz; Denis, Andrzej; Rawski, Michał; Gołębiowski, Andrzej; Stołecki, Kazimierz; Dmytrzyk, Jaromir; Kotarba, Andrzej

    2014-05-01

    The effect of potassium addition to the Ni/Al2O3 steam reforming catalyst has been investigated on several model systems, including K/Al2O3 with various amounts of alkali promoters (1-4 wt% of K2O), a model catalyst 90%NiO-10%Al2O3 promoted with potassium and a commercial catalyst. The potassium surface state and stability were investigated by means of the Species Resolved Thermal Alkali Desorption method (SR-TAD). The activity of the catalysts in the steam reforming of methane and their coking-resistance were also evaluated. The results reveal that the beneficial effect of potassium addition is strongly related to its location in the catalysts. The catalyst surface should be promoted with potassium in order to obtain high coking-resistant catalysts. Moreover, the catalyst preparation procedure should ensure a direct interaction of potassium with the Al2O3 support surface. Due to the low stability of potassium on θ-Al2O3 this phase is undesirable during the preparation of a stable steam reforming catalyst.

  13. Titanium-potassium heat pipe corrosion studies

    SciTech Connect

    Lundberg, L.B.

    1984-07-01

    An experimental study of the susceptibility of wickless titanium/potassium heat pipes to corrosive attack has been conducted in vacuo at 800/sup 0/K for 6511h and at 900/sup 0/K for 4797h without failure or degradation. Some movement of carbon, nitrogen and oxygen was observed in the titanium container tube, but no evidence of attack could be detected in metallographic cross sections of samples taken along the length of the heat pipes. The lack of observable attack of titanium by potassium under these conditions refutes previous reports of Ti-K incompatibility.

  14. A potassium Faraday anomalous dispersion optical filter

    NASA Technical Reports Server (NTRS)

    Yin, B.; Shay, T. M.

    1992-01-01

    The characteristics of a potassium Faraday anomalous dispersion optical filter operating on the blue and near infrared transitions are calculated. The results show that the filter can be designed to provide high transmission, very narrow pass bandwidth, and low equivalent noise bandwidth. The Faraday anomalous dispersion optical filter (FADOF) provides a narrow pass bandwidth (about GHz) optical filter for laser communications, remote sensing, and lidar. The general theoretical model for the FADOF has been established in our previous paper. In this paper, we have identified the optimum operational conditions for a potassium FADOF operating on the blue and infrared transitions. The signal transmission, bandwidth, and equivalent noise bandwidth (ENBW) are also calculated.

  15. Improved Synthesis Of Potassium Beta' '-Alumina

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Jeffries-Nakamura, Barbara; Ryan, Margaret A.; O'Connor, Dennis E.; Kisor, Adam; Underwood, Mark

    1996-01-01

    Improved formulations of precursor materials synthesize nearly-phase-pure potassium beta' '-alumina solid electrolyte (K-BASE) powder. Materials are microhomogeneous powders (or, alternatively, gels) containing K(+,) Mg(2+), and Al(3+). K-BASE powder produced used in potassium-working-fluid alkali-metal thermal-to-electric conversion (K-AMTEC), in which heat-input and heat-rejection temperatures lower than sodium-working-fluid AMTEC (Na-AMTEC). Additional potential use lies in purification of pottassium by removal of sodium and calcium.

  16. Myocardial kinetics of potassium-38 in humans and comparison with copper-62-PTSM

    SciTech Connect

    Melon, P.G.; Brihaye, C.; Degueldre, C.

    1994-07-01

    The aim of this study was to define the kinetics of {sup 38}K and its suitability to evaluate myocardial blood flow at rest and during pharmacological vasodilation in normal subjects. Potassium-38`s kinetic characteristics were also compared to those of a {sup 62}Cu-pyruvaldehyde bis(n{sup 4}l-methyl-thio-semicarbazone) copper (II) (PTSM) flow tracer. Potassium-38 and {sup 62}Cu-PTSM were injected at rest and after pharmacological vasodilation in six healthy volunteers. Dynamic PET acquisition was performed over 20 min and myocardial tracer retention calculated. Homogeneity of regional myocardial tracer distribution was also evaluated. High image quality of the heart was observed at rest and after dipyridamole with both tracers. Potassium-38 demonstrated prolonged myocardial retention with minimal lung and liver accumulation. in contrast to {sup 38}K, {sup 62}Cu-PTSM demonstrated high liver uptake which may hinder observation of the inferior wall of the myocardium. Copper-62-PTSM dipyridamole-to-rest retention ratio was 1.49. Potassium-38 and {sup 62}Cu-PTSM display suitable kinetics for the qualitative evaluation of blood flow and flow reserve in the human heart. Compared to {sup 62}Cu-PTSM, potassium-38, which does not show high liver uptake, may more accurately estimate blood flow in the inferior wall of the heart. However, accurate quantification of myocardial blood flow using {sup 38}K or {sup 62}Cu-PTSM retention appears to be limited to decreasing retention fraction at hyperhemic states. 29 refs., 5 figs.

  17. Potassium-oxygen interactions on a Ru(001) surface

    SciTech Connect

    Hrbek, J.; Shek, M.L.; Xu, G.Q. ); Sham, T.K. )

    1992-10-01

    The interaction of potassium with oxygen has been examined using synchrotron-based photoemission and NEXAFS, thermal desorption, work function measurements, and isotope exchange. Potassium coverages on Ru(001) surface ranging from monolayer to multilayer were investigated. Oxygen coadsorbed with potassium at 80 K forms a potassium-dioxygen complex, where both peroxide and superoxide ions were identified. The complex has high thermal stability on the Ru(001) surface, decomposing and desorbing at T > 900 K. 52 refs., 14 figs., 2 tabs.

  18. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and...

  19. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and...

  20. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium potassium tartrate. 184.1804 Section 184... as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and is also called the...

  1. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is...

  2. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is...

  3. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and...

  4. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is...

  5. 21 CFR 184.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium potassium tartrate. 184.1804 Section 184... Listing of Specific Substances Affirmed as GRAS § 184.1804 Sodium potassium tartrate. (a) Sodium potassium tartrate (C4H4KNaO6·4H2O, CAS Reg. No. 304-59-6) is the sodium potassium salt of l−(+)−tartaric acid and...

  6. 21 CFR 184.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium acid tartrate. 184.1077 Section 184.1077... Listing of Specific Substances Affirmed as GRAS § 184.1077 Potassium acid tartrate. (a) Potassium acid tartrate (C4H5KO6, CAS Reg. No. 868-14-4) is the potassium acid salt of l−(+)−tartaric acid and is...

  7. Proton conductivity of potassium doped barium zirconates

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoxiang; Tao, Shanwen; Irvine, John T. S.

    2010-01-01

    Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10%. Introducing extra potassium leads to the formation of second phase or YSZ impurities. The water uptake of barium zirconates was increased even with 5% doping of potassium at the A-site. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. The maximum solubility for yttrium at B-sites is around 15 at% after introducing 1 wt% zinc. The conductivity of Ba 0.95K 0.05Zr 0.85Y 0.11Zn 0.04O 3-δ at 600 °C is 2.2×10 -3 S/cm in wet 5% H 2. The activation energies for bulk and grain boundary are 0.29(2), 0.79(2) eV in wet 5% H 2 and 0.31(1), 0.74(3) eV in dry 5% H 2. A power density of 7.7 mW/cm 2 at 718 °C was observed when a 1 mm thick Ba 0.95K 0.05Zr 0.85Y 0.11Zn 0.04O 3-δ pellet was used as electrolyte and platinum electrodes.

  8. Potassium - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Chinese - Simplified (简体中文) Chinese - Traditional (繁體中文) Spanish (español) Chinese - Simplified (简体中文) Potassium Content of Common Foods (High) English 含高量钾质的食品(每份所含钾质多过200毫克) - 简体中文 (Chinese - Simplified) PDF ...

  9. Hg0 absorption in potassium persulfate solution*

    PubMed Central

    Ye, Qun-feng; Wang, Cheng-yun; Wang, Da-hui; Sun, Guan; Xu, Xin-hua

    2006-01-01

    The aqueous phase oxidation of gaseous elemental mercury (Hg0) by potassium persulfate (KPS) catalyzed by Ag+ was investigated using a glass bubble column reactor. Concentration of gaseous mercury and potassium persulfate were measured by cold vapor atom absorption (CVAA) and ion chromatograph (IC), respectively. The effects of pH value, concentration of potassium persulfate and silver nitrate (SN), temperature, Hg0 concentration in the reactor inlet and tertiary butanol (TBA), free radical scavenger, on the removal efficiency of Hg0 were studied. The results showed that the removal efficiency of Hg0 increased with increasing concentration of potassium persulfate and silver nitrate, while temperature and TBA were negatively effective. Furthermore, the removal efficiency of Hg0 was much better in neutral solution than in both acidic and alkaline solution. But the influence of pH was almost eliminated by adding AgNO3. High Hg0 concentration has positive effect. The possible reaction mechanism of gaseous mercury was also discussed. PMID:16615172

  10. Potentiating potassium nitrate's desensitization with dimethyl isosorbide.

    PubMed

    Hodosh, M

    2001-01-01

    Desensitization of hypersensitive teeth by the combination of dimethyl isosorbide (DMI) and potassium nitrate (KNO3) is more effective than when KNO3 is used alone. KNO3/DMI work together to desensitize hypersensitive teeth at a higher, quicker, and more profound and lasting level. PMID:12017799

  11. Potassium chloride deters Lygus hesperus feeding behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of bioassays were conducted to determine the response of adult western tarnished plant bugs, Lygus hesperus Knight (Heteroptera: Miridae), to artificial diets containing potassium chloride (KCl). We first examined the feeding behavior of L. hesperus by direct observation on a single diet c...

  12. The physiology of potassium in crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potassium plays a major role in the basic functions of plant growth and development. In addition, K is also involved in numerous physiological functions related to plant health and tolerance to biotic and abiotic stress. However, deficiencies occur widely resulting in poor growth, lost yield and red...

  13. Calcium, magnesium, and potassium in food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biochemical and physiological functions and consequences of deficient intakes, which show the nutritional importance of calcium, magnesium and potassium for humans, are reviewed. The dietary recommendations and food sources for these essential mineral elements for humans are presented. Factors t...

  14. Potassium ferrate treatment of RFETS` contaminated groundwater

    SciTech Connect

    1995-01-01

    The potassium ferrate treatment study of Rocky Flats Environmental Technology Site (RFETS) groundwater was performed under the Sitewide Treatability Studies Program (STSP). This study was undertaken to determine the effectiveness of potassium ferrate in a water treatment system to remove the contaminants of concern (COCS) from groundwater at the RFETS. Potassium ferrate is a simple salt where the iron is in the plus six valence state. It is the iron at the plus six valence state (Fe {sup +6}) that makes it an unique water treatment chemical, especially in waters where the pH is greater than seven. In basic solutions where the solubility of the oxides/hydroxides of many of the COCs is low, solids are formed as the pH is raised. By using ferrate these solids are agglomerated so they can be effectively removed by sedimentation in conventional water treatment equipment. The objective of this study was to determine the quality of water after treatment with potassium ferrate and to determine if the Colorado Water Quality Control Commission (CWQCC) discharge limits for the COCs listed in Table 1.0-1 could be met. Radionuclides in the groundwater were of special concern.

  15. Hg(0) absorption in potassium persulfate solution.

    PubMed

    Ye, Qun-feng; Wang, Cheng-yun; Wang, Da-hui; Sun, Guan; Xu, Xin-hua

    2006-05-01

    The aqueous phase oxidation of gaseous elemental mercury (Hg(0)) by potassium persulfate (KPS) catalyzed by Ag(+) was investigated using a glass bubble column reactor. Concentration of gaseous mercury and potassium persulfate were measured by cold vapor atom absorption (CVAA) and ion chromatograph (IC), respectively. The effects of pH value, concentration of potassium persulfate and silver nitrate (SN), temperature, Hg(0) concentration in the reactor inlet and tertiary butanol (TBA), free radical scavenger, on the removal efficiency of Hg(0) were studied. The results showed that the removal efficiency of Hg(0) increased with increasing concentration of potassium persulfate and silver nitrate, while temperature and TBA were negatively effective. Furthermore, the removal efficiency of Hg(0) was much better in neutral solution than in both acidic and alkaline solution. But the influence of pH was almost eliminated by adding AgNO(3). High Hg(0) concentration has positive effect. The possible reaction mechanism of gaseous mercury was also discussed. PMID:16615172

  16. Proton conductivity of potassium doped barium zirconates

    SciTech Connect

    Xu Xiaoxiang; Tao Shanwen; Irvine, John T.S.

    2010-01-15

    Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10%. Introducing extra potassium leads to the formation of second phase or YSZ impurities. The water uptake of barium zirconates was increased even with 5% doping of potassium at the A-site. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. The maximum solubility for yttrium at B-sites is around 15 at% after introducing 1 wt% zinc. The conductivity of Ba{sub 0.95}K{sub 0.05}Zr{sub 0.85}Y{sub 0.11}Zn{sub 0.04}O{sub 3-{delta}} at 600 deg. C is 2.2x10{sup -3} S/cm in wet 5% H{sub 2}. The activation energies for bulk and grain boundary are 0.29(2), 0.79(2) eV in wet 5% H{sub 2} and 0.31(1), 0.74(3) eV in dry 5% H{sub 2}. A power density of 7.7 mW/cm{sup 2} at 718 deg. C was observed when a 1 mm thick Ba{sub 0.95}K{sub 0.05}Zr{sub 0.85}Y{sub 0.11}Zn{sub 0.04}O{sub 3-{delta}} pellet was used as electrolyte and platinum electrodes. - Graphical abstract: Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10 %. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. Five percent doping of potassium at A-site can double the total conductivity.

  17. Suzuki Coupling of Potassium Cyclopropyl- and Alkoxymethyltrifluoroborates with Benzyl Chlorides

    PubMed Central

    Colombel, Virginie; Rombouts, Frederik; Oehlrich, Daniel; Molander, Gary A.

    2012-01-01

    Efficient Csp3-Csp3 Suzuki couplings have been developed with both potassium cyclopropyl- and alkoxymethyltrifluoroborates. Moderate to good yields have been achieved in the cross-coupling of potassium cyclopropyltrifluoroborate with benzyl chlorides possessing electron-donating or electron-withdrawing substituents. Benzyl chloride was also successfully cross-coupled to potassium alkoxymethyltrifluoroborates derived from primary, secondary, and tertiary alcohols. PMID:22390789

  18. Comparative Efficacy of Potassium Levulinate with/without Potassium Diacetate and Potassium Propionate vs Potassium Lactate and Sodium Diacetate for Control of Listeria monocytogenes on commercially prepared uncured t.breast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the efficacy of potassium levulinate, potassium diacetate, and potassium propionate to inhibit Listeria monocytogenes on commercially-prepared, uncured turkey breast during refrigerated storage. Whole muscle, uncured turkey breast chubs (ca. 5 kg each) were formulated with or without po...

  19. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions...

  20. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting...

  1. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions...

  2. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate....

  3. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium...

  4. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of...

  5. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions...

  6. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting...

  7. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting...

  8. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  9. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions...

  10. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate....

  11. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Iron, citrate phosphate potassium... Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical..., citrate phosphate potassium complexes (PMN P-09-382; CAS No. 120579-31-9) is subject to reporting...

  12. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium...

  13. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions...

  14. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting...

  15. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use....

  16. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of...

  17. 21 CFR 526.1130 - Hetacillin potassium for intramammary infusion.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hetacillin potassium for intramammary infusion... Hetacillin potassium for intramammary infusion. (a) Specifications. Each 10 milliliter syringe contains hetacillin potassium equivalent of 62.5 milligrams of ampicillin. (b) Sponsor. See No. 000010 in §...

  18. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  19. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use....

  20. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use....

  1. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of...

  2. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Iron, citrate phosphate potassium... Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical..., citrate phosphate potassium complexes (PMN P-09-382; CAS No. 120579-31-9) is subject to reporting...

  3. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium...

  4. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions...

  5. 21 CFR 582.1804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium potassium tartrate. 582.1804 Section 582.1804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions...

  6. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions...

  7. 21 CFR 526.1130 - Hetacillin potassium for intramammary infusion.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Hetacillin potassium for intramammary infusion... § 526.1130 Hetacillin potassium for intramammary infusion. (a) Specifications. Each 10 milliliter syringe contains hetacillin potassium equivalent of 62.5 milligrams of ampicillin. (b) Sponsor. See...

  8. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions...

  9. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium...

  10. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of...

  11. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use....

  12. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate....

  13. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum potassium sulfate. 182.1129 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions of use. This substance is...

  14. 21 CFR 526.1130 - Hetacillin potassium for intramammary infusion.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Hetacillin potassium for intramammary infusion... § 526.1130 Hetacillin potassium for intramammary infusion. (a) Specifications. Each 10 milliliter syringe contains hetacillin potassium equivalent of 62.5 milligrams of ampicillin. (b) Sponsor. See...

  15. 21 CFR 582.6804 - Sodium potassium tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium potassium tartrate. 582.6804 Section 582.6804 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6804 Sodium potassium tartrate. (a) Product. Sodium potassium tartrate. (b) Conditions of use....

  16. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  17. 21 CFR 526.1130 - Hetacillin potassium for intramammary infusion.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Hetacillin potassium for intramammary infusion... § 526.1130 Hetacillin potassium for intramammary infusion. (a) Specifications. Each 10 milliliter syringe contains hetacillin potassium equivalent of 62.5 milligrams of ampicillin. (b) Sponsor. See...

  18. 40 CFR 721.638 - Silyl amine, potassium salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Silyl amine, potassium salt (generic... Substances § 721.638 Silyl amine, potassium salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as silyl amine, potassium...

  19. 21 CFR 582.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum potassium sulfate. 582.1129 Section 582.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate. (b) Conditions...

  20. 40 CFR 721.5970 - Phosphated polyarylphenol ethoxylate, potassium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., potassium salt. 721.5970 Section 721.5970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5970 Phosphated polyarylphenol ethoxylate, potassium salt. (a) Chemical... as phosphated polyarylphenol ethoxylate, potassium salt (PMN P-93-1222) is subject to reporting...

  1. 40 CFR 721.10357 - Iron, citrate phosphate potassium complexes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Iron, citrate phosphate potassium... Specific Chemical Substances § 721.10357 Iron, citrate phosphate potassium complexes. (a) Chemical..., citrate phosphate potassium complexes (PMN P-09-382; CAS No. 120579-31-9) is subject to reporting...

  2. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  3. 40 CFR 721.7375 - Potassium salt of polyolefin acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Potassium salt of polyolefin acid. 721... Substances § 721.7375 Potassium salt of polyolefin acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a potassium salt of...

  4. 21 CFR 182.1129 - Aluminum potassium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum potassium sulfate. 182.1129 Section 182.1129 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1129 Aluminum potassium sulfate. (a) Product. Aluminum potassium sulfate....

  5. 21 CFR 582.1077 - Potassium acid tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium acid tartrate. 582.1077 Section 582.1077 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1077 Potassium acid tartrate. (a) Product. Potassium acid tartrate. (b) Conditions of...

  6. Suzuki coupling of potassium cyclopropyl- and alkoxymethyltrifluoroborates with benzyl chlorides.

    PubMed

    Colombel, Virginie; Rombouts, Frederik; Oehlrich, Daniel; Molander, Gary A

    2012-03-16

    Efficient Csp(3)-Csp(3) Suzuki couplings have been developed with both potassium cyclopropyl- and alkoxymethyltrifluoroborates. Moderate to good yields have been achieved in the cross-coupling of potassium cyclopropyltrifluoroborate with benzyl chlorides possessing electron-donating or electron-withdrawing substituents. Benzyl chloride was also successfully cross-coupled to potassium alkoxymethyltrifluoroborates derived from primary, secondary, and tertiary alcohols. PMID:22390789

  7. Narrative Review: Evolving Concepts in Potassium Homeostasis and Hypokalemia

    PubMed Central

    Greenlee, Megan; Wingo, Charles S.; McDonough, Alicia A.; Youn, Jang-Hyun; Kone, Bruce C.

    2016-01-01

    Humans are intermittently exposed to large variations in potassium intake, which range from periods of fasting to ingestion of potassium-rich meals. These fluctuations would abruptly alter plasma potassium concentration if not for rapid mechanisms, primarily in skeletal muscle and the liver, that buffer the changes in plasma potassium concentration by means of transcellular potassium redistribution and feedback control of renal potassium excretion. However, buffers have capacity limits, and even robust feedback control mechanisms require that the perturbation occur before feedback can initiate corrective action. In contrast, feedforward control mechanisms sense the effect of disturbances on the system’s homeostasis. This review highlights recent experimental insights into the participation of feedback and feedforward control mechanisms in potassium homeostasis. New data make clear that feedforward homeostatic responses activate when decreased potassium intake is sensed, even when plasma potassium concentration is still within the normal range and before frank hypokalemia ensues, in addition to the classic feedback activation of renal potassium conservation when plasma potassium concentration decreases. Given the clinical importance of dyskalemias in patients, these novel experimental paradigms invite renewed clinical inquiry into this important area. PMID:19414841

  8. Potassium and Its Discontents: New Insight, New Treatments.

    PubMed

    Ellison, David H; Terker, Andrew S; Gamba, Gerardo

    2016-04-01

    Hyperkalemia is common in patients with impaired kidney function or who take drugs that inhibit the renin-angiotensin-aldosterone axis. During the past decade, substantial advances in understanding how the body controls potassium excretion have been made, which may lead to improved standard of care for these patients. Renal potassium disposition is primarily handled by a short segment of the nephron, comprising part of the distal convoluted tubule and the connecting tubule, and regulation results from the interplay between aldosterone and plasma potassium. When dietary potassium intake and plasma potassium are low, the electroneutral sodium chloride cotransporter is activated, leading to salt retention. This effect limits sodium delivery to potassium secretory segments, limiting potassium losses. In contrast, when dietary potassium intake is high, aldosterone is stimulated. Simultaneously, potassium inhibits the sodium chloride cotransporter. Because more sodium is then delivered to potassium secretory segments, primed by aldosterone, kaliuresis results. When these processes are disrupted, hyperkalemia results. Recently, new agents capable of removing potassium from the body and treating hyperkalemia have been tested in clinical trials. This development suggests that more effective and safer approaches to the prevention and treatment of hyperkalemia may be on the horizon. PMID:26510885

  9. The influence of potassium administration and of potassium deprivation on plasma renin in normal and hypertensive subjects

    PubMed Central

    Brunner, Hans R.; Baer, Leslie; Sealey, Jean E.; Ledingham, John G. G.; Laragh, John H.

    1970-01-01

    The effect of potassium administration and of dietary potassium deprivation on plasma renin activity and aldosterone excretion has been studied in 10 normal subjects and in 12 hypertensive patients maintained on a constant dietary regimen. Potassium administration reduced plasma renin activity in 18 of 28 studies of both normal and hypertensive subjects. Suppression of renin often occurred despite sodium diuresis induced by potassium administration. The renin suppression was related to induced changes in plasma potassium concentration and urinary potassium excretion. The failure of suppression of plasma renin in 10 studies could be accounted for by the smaller amounts of potassium administered to these subjects, together with a possibly overriding influence of an induced sodium diuresis. In six studies potassium deprivation invariably increased plasma renin activity even though a tendency for sodium retention often accompanied this procedure. The data indicate that both the suppression of plasma renin activity induced by potassium administration and the stimulation of renin activity which follows potassium depletion occur independently of associated changes in either aldosterone secretion or in sodium balance. However, the results do suggest that in various situations, the influence of potassium on plasma renin activity may be either amplified or preempted by changes in sodium balance. These interactions between potassium and plasma renin could be mediated by an ill-defined extrarenal pathway. But the findings are more consistent with an intrarenal action of potassium ions to modify renin release. Potassium might modify renin secretion directly by acting on the juxtaglomerular cells or by a change in its tubular reabsorption or secretion. The effects of potassium ions on renin secretion might also be mediated indirectly via an induced change in tubular sodium transport. PMID:4319970

  10. Multistability in a neuron model with extracellular potassium dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Xing; Shuai, J. W.

    2012-06-01

    Experiments show a primary role of extracellular potassium concentrations in neuronal hyperexcitability and in the generation of epileptiform bursting and depolarization blocks without synaptic mechanisms. We adopt a physiologically relevant hippocampal CA1 neuron model in a zero-calcium condition to better understand the function of extracellular potassium in neuronal seizurelike activities. The model neuron is surrounded by interstitial space in which potassium ions are able to accumulate. Potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion are regulatory mechanisms of extracellular potassium. We also consider a reduced model with a fixed potassium concentration. The bifurcation structure and spiking frequency of the two models are studied. We show that, besides hyperexcitability and bursting pattern modulation, the potassium dynamics can induce not only bistability but also tristability of different firing patterns. Our results reveal the emergence of the complex behavior of multistability due to the dynamical [K+]o modulation on neuronal activities.

  11. Laser Radar Measurements of Atmospheric Potassium

    NASA Technical Reports Server (NTRS)

    Felix, F.; Keenliside, W.; Kent, G. S.; Sandford, M. C. W.

    1973-01-01

    A dye laser capable of transmitting in the near infra red region of the spectrum has been constructed to be used in conjunction with the large Mark II laser system at present in existence at Kingston, Jamaica. Preliminary measurements have been obtained of concentration of atomic potassium in the 70-100 km region of the atmosphere. The data indicates the likelihood of a double peak in the height distribution. The lower peak, which is the" larger, is at a height of about 82 kIn, the upper peak is at a height of 94 kIn. Although an exact value for the scattering cross-section has not been obtained, a reasonable approximation of this parameter yields a value of about 1-15 x 10(exp 11) m(exp -2) for the column density of atomic potassium, which is in agreement with other data.

  12. Intercalation of hexagonal boron nitride with potassium

    SciTech Connect

    Doll, G.L.; Speck, J.S.; Dresselhaus, G.; Dresselhaus, M.S. ); Nakamura, K.; Tanuma, S.

    1989-09-15

    We have performed photoluminescence, photoexcitation, and transmission electron microscopy measurements on boron nitride films grown by chemical vapor deposition and later reacted with potassium. After reaction, the potassium atoms were found to intercalate the BN host and to form a (2{times}2){ital R}0{degree} in-plane structure which is commensurate with the pristine BN lattice. Optical transitions with {similar to}2.7 eV onsets were found to occur within the {similar to}5-eV BN band gap and have been interpreted as {Gamma}-point transitions between the K(4{ital s}) band and the BN(2{ital p}) bands. The absence of an appreciable shift in the {ital E}{sub 2{ital g}{sub 2}} phonon frequency of the pristine and reacted films suggests that the charge transfer between the K and BN bands is very small.

  13. Integration of nitrogen and potassium signaling.

    PubMed

    Tsay, Yi-Fang; Ho, Cheng-Hsun; Chen, Hui-Yu; Lin, Shan-Hua

    2011-01-01

    Sensing and responding to soil nutrient fluctuations are vital for the survival of higher plants. Over the past few years, great progress has been made in our understanding of nitrogen and potassium signaling. Key components of the signaling pathways including sensors, kinases, miRNA, ubiquitin ligases, and transcriptional factors. These components mediate the transcriptional responses, root-architecture changes, and uptake-activity modulation induced by nitrate, ammonium, and potassium in the soil solution. Integration of these responses allows plants to compete for limited nutrients and to survive under nutrient deficiency or toxic nutrient excess. A future challenge is to extend the present fragmented sets of data to a comprehensive signaling network. Then, such knowledge and the accompanying molecular tools can be applied to improve the efficiency of nutrient utilization in crops. PMID:21495843

  14. Sodium and potassium in the lunar atmosphere

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Morgan, T. H.

    1991-01-01

    The discovery that sodium and potassium vapor can be observed in the lunar atmosphere using ground-based telescopes has opened up a field of investigation that was closed after the last Apollo mission to the Moon. Sodium has been detected at altitudes up to 1500 km above the surface. This implies a high effective temperature for sodium, of the order of 1000 K. However, there is some evidence for two populations of sodium and potassium, one at temperatures corresponding to the surface, and another corresponding to high temperatures. The sources for the lunar atmosphere are not understood. Meteoric bombardment of the surface, solar wind sputtering of the surface, and photo-sputtering of the surface have all been suggested as possible sources for the lunar atmosphere. One of the objectives of the current research is to test different hypotheses by measurements of the atmosphere under different conditions of solar illumination and shielding from the solar wind by the Earth.

  15. 21 CFR 172.800 - Acesulfame potassium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... approves this incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. You may... at NARA, call 202-741-6030 or go to: http://www.archives.gov/federal-register/cfr/ibr-locations.html... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acesulfame potassium. 172.800 Section 172.800...

  16. Frequency-modulated excitation of potassium atoms

    SciTech Connect

    Zhang, Xianzhou; Jiang, Hongmin; Rao, Jianguo; Li, Baiwen

    2003-08-01

    A time-dependent perturbation method is proposed to study the properties of the frequency-modulated excitation of a potassium atom. Rabi oscillations in the absence of a modulation, square-wave oscillations in the presence of slow modulation, and radio-frequency multiphoton resonances in the presence of fast modulation have been calculated using this method. The numerical results are in excellent agreement with those of the experiment; novel explanations have been given to understand some of the experimental results.

  17. Formulation and optimization of potassium iodide tablets

    PubMed Central

    Al-Achi, Antoine; Patel, Binit

    2014-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light. PMID:25685048

  18. Formulation and optimization of potassium iodide tablets.

    PubMed

    Al-Achi, Antoine; Patel, Binit

    2015-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light. PMID:25685048

  19. Historical and technical developments of potassium resources.

    PubMed

    Ciceri, Davide; Manning, David A C; Allanore, Antoine

    2015-01-01

    The mining of soluble potassium salts (potash) is essential for manufacturing fertilizers required to ensure continuous production of crops and hence global food security. As of 2014, potash is mined predominantly in the northern hemisphere, where large deposits occur. Production tonnage and prices do not take into account the needs of the farmers of the poorest countries. Consequently, soils of some regions of the southern hemisphere are currently being depleted of potassium due to the expansion and intensification of agriculture coupled with the lack of affordable potash. Moving away from mined salts towards locally available resources of potassium, such as K-bearing silicates, could be one option to improve this situation. Overall, the global potash production system and its sustainability warrant discussion. In this contribution we examine the history of potash production and discuss the different sources and technologies used throughout the centuries. In particular, we highlight the political and economic conditions that favored the development of one specific technology over another. We identified a pattern of needs driving innovation. We show that as needs evolved throughout history, alternatives to soluble salts have been used to obtain K-fertilizers. Those alternatives may meet the incoming needs of our century, providing the regulatory and advisory practices that prevailed in the 20th century are revised. PMID:25302446

  20. Effects of low-dose thiazide diuretics on fasting plasma glucose and serum potassium-a meta-analysis.

    PubMed

    Mukete, Bertrand N; Rosendorff, Clive

    2013-01-01

    This study is a meta-analysis of the metabolic profile (fasting plasma glucose and serum potassium) of low-dose thiazide and thiazide-like diuretics. The meta-analysis involved 10 randomized controlled clinical trials with a total sample size of 17,636 and 17,947 for the potassium and glucose arms respectively. The random effect model was used to calculate the odds ratio with 95 percent confidence interval. The cumulative mean change of fasting plasma glucose was +0.20 mmol/L (+3.6 mg/dL) for the diuretic arm versus +0.12 mmol/L (+2.2 mg/dL) for the comparator arm. The cumulative mean change of serum potassium was -0.22 mmol/L (-0.22 mEq/L) for the diuretic arm versus +0.05 mmol/L (+0.05 mEq/L) for the comparator arm. The aggregate odds ratio for having higher fasting plasma glucose in subjects on low-dose thiazide versus non-thiazide antihypertensive was 1.22 (1.11 to 1.33; P < .01). The odds ratio for having a lower serum potassium in subjects on low-dose thiazide versus non-thiazide antihypertensive was 0.36 (0.27 to 0.49; P < .01). The magnitude of the observed change in fasting plasma glucose associated with low-dose thiazide diuretic use, while statistically significant, does not appear to place patients at clinically significant risk. On the other hand, the observed change in serum potassium was also statistically significant, and may be clinically significant in patients whose baseline potassium concentration is low or low-normal, and could predispose at-risk patients, such as those with ischemic heart disease, to ventricular arrhythmias. PMID:23800570

  1. Chemical characterization of a potassium hydroxyapatite prepared by soaking in potassium chloride and carbonate solutions.

    PubMed

    Nordström, E G; Karlsson, K H

    1992-01-01

    A potassium-doped synthetic apatite was prepared by soaking hydroxyapatite in potassium carbonate and potassium chloride solutions. The hydroxyapatite was prepared by firing slip cast ceramic bodies in vacuum at 1100 degrees C. The conical ceramic samples and a crushed material of this were soaked in carbonate and chloride solutions for 2, 4, 6, and 8 weeks. Potassium, calcium, and phosphate were determined by direct current plasma emission spectroscopy. The carbonate content was determined by thermogravimetric analysis and chloride titrimetrically. After 2 weeks, one potassium ion substituted one calcium ion when soaked in a carbonate solution. When soaked in the chloride solution substitution occurred to the same extent. At phosphate sites the substitution of phosphate for carbonate occurred at one sixth of the sites after 2 weeks. Chloride incorporated one half of the OH-sites after 2 weeks. After 4 weeks about one chloride ion was found in the apatite, and after 6 weeks one and a half of the OH-sites were occupied by chloride ions. PMID:1483120

  2. 40 CFR 49.101-49.120 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.101-49.120 Section 49.101-49.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY General Federal Implementation Plan Provisions §§ 49.101-49.120 General Rules...

  3. 40 CFR 49.4161-49.5510 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.4161-49.5510 Section 49.4161-49.5510 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region VIII §§ 49.4161-49.5510...

  4. 40 CFR 49.711-49.920 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.711-49.920 Section 49.711-49.920 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region IV §§ 49.711-49.920...

  5. 40 CFR 49.1971-49.3920 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.1971-49.3920 Section 49.1971-49.3920 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region VI §§ 49.1971-49.3920...

  6. 40 CFR 49.921-49.1970 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.921-49.1970 Section 49.921-49.1970 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region V §§ 49.921-49.1970...

  7. 40 CFR 49.12-49.21 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.12-49.21 Section 49.12-49.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Tribal Authority §§ 49.12-49.21...

  8. 40 CFR 49.5511-49.9860 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.5511-49.9860 Section 49.5511-49.9860 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region IX §§ 49.5511-49.9860...

  9. 40 CFR 49.51-49.100 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.51-49.100 Section 49.51-49.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY General Provisions §§ 49.51-49.100...

  10. 40 CFR 49.681-49.710 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.681-49.710 Section 49.681-49.710 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region III §§ 49.681-49.710...

  11. 40 CFR 49.25-49.50 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.25-49.50 Section 49.25-49.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Tribal Authority §§ 49.25-49.50...

  12. 40 CFR 49.3921-49.4160 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.3921-49.4160 Section 49.3921-49.4160 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region VII §§ 49.3921-49.4160...

  13. Proapoptotic Role of Potassium Ions in Liver Cells

    PubMed Central

    Xia, Zhenglin; Huang, Xusen; Chen, Kaiyun; Wang, Hanning; Xiao, Jinfeng; He, Ke; Huang, Rui; Duan, Xiaopeng; Liu, Hao; Zhang, Jinqian; Xiang, Guoan

    2016-01-01

    Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1. PMID:27069917

  14. Effects of extracellular potassium diffusion on electrically coupled neuron networks

    NASA Astrophysics Data System (ADS)

    Wu, Xing-Xing; Shuai, Jianwei

    2015-02-01

    Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimentally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks. We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most favorable environment for the generation and continuance of the action potential waves in the network.

  15. Proapoptotic Role of Potassium Ions in Liver Cells.

    PubMed

    Xia, Zhenglin; Huang, Xusen; Chen, Kaiyun; Wang, Hanning; Xiao, Jinfeng; He, Ke; Huang, Rui; Duan, Xiaopeng; Liu, Hao; Zhang, Jinqian; Xiang, Guoan

    2016-01-01

    Potassium channels are transmembrane proteins that selectively promote the infiltration of potassium ions. The significance of these channels for tumor biology has become obvious. However, the effects of potassium ions on the tumor or normal cells have seldom been studied. To address this problem, we studied the biological effects of L02 and HepG2 cells with ectogenous potassium ions. Cell proliferation, cell cycle, and apoptosis rate were analyzed. Our results indicated that potassium ions inhibited proliferation of L02 and HepG2 cells and promoted their apoptosis. Potassium ions induced apoptosis through regulating Bcl-2 family members and depolarized the mitochondrial membrane, especially for HepG2 cell. These biological effects were associated with channel protein HERG. By facilitating expression of channel protein HERG, potassium ions may prevent it from being shunted to procancerous pathways by inducing apoptosis. These results demonstrated that potassium ions may be a key regulator of liver cell function. Thus, our findings suggest that potassium ions could inhibit tumorigenesis through inducing apoptosis of hepatoma cells by upregulating potassium ions transport channel proteins HERG and VDAC1. PMID:27069917

  16. New Stability-Indicating RP-HPLC Method for Determination of Diclofenac Potassium and Metaxalone from their Combined Dosage Form

    PubMed Central

    Panda, Sagar Suman; Patanaik, Debasis; Ravi Kumar, Bera V. V.

    2012-01-01

    A simple, precise and accurate isocratic RP-HPLC stability-indicating assay method has been developed to determine diclofenac potassium and metaxalone in their combined dosage forms. Isocratic separation was achieved on a Hibar-C18, Lichrosphere-100® (250 mm × 4.6 mm i.d., particle size 5 μm) column at room temperature in isocratic mode, the mobile phase consists of methanol: water (80:20, v/v) at a flow rate of 1.0 ml/min, the injection volume was 20 μl and UV detection was carried out at 280nm. The drug was subjected to acid and alkali hydrolysis, oxidation, photolysis and heat as stress conditions. The method was validated for specificity, linearity, precision, accuracy, robustness and system suitability. The method was linear in the drug concentration range of 2.5–30 μg/ml and 20–240 μg/ml for diclofenac potassium and metaxalone, respectively. The precision (RSD) of six samples was 0.83 and 0.93% for repeatability, and the intermediate precision (RSD) among six-sample preparation was 1.63 and 0.49% for diclofenac potassium and metaxalone, respectively. The mean recoveries were between 100.99–102.58% and 99.97–100.01% for diclofenac potassium and metaxalone, respectively. The proposed method can be used successfully for routine analysis of the drug in bulk and combined pharmaceutical dosage forms. PMID:22396909

  17. Periodic paralysis and the sodium-potassium pump.

    PubMed

    Layzer, R B

    1982-06-01

    Analysis of the pathophysiology of hypokalemic paralysis, as it occurs in barium poisoning, chronic potassium deficiency, and thyrotoxicosis, suggests that these disorders may have a similar mechanism. An increased ratio of muscle sodium permeability to potassium permeability reduces the ionic diffusion potential, while the resting membrane potential is sustained by an increase of Na-K pump electrogenesis. The result is that potassium entry (the sum of active and passive influx) exceeds potassium efflux; this causes a large shift of extracellular potassium into muscle until the Na-K pump turns off, leading to depolarization and paralysis. The primary defect in familial hypokalemic periodic paralysis, as in the example of barium poisoning, may be a marked reduction of muscle permeability to potassium. PMID:6287910

  18. Potassium emission absorption system. Topical report 12

    SciTech Connect

    Bauman, L.E.

    1995-04-01

    The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

  19. What do we not know about mitochondrial potassium channels?

    PubMed

    Laskowski, Michał; Augustynek, Bartłomiej; Kulawiak, Bogusz; Koprowski, Piotr; Bednarczyk, Piotr; Jarmuszkiewicz, Wieslawa; Szewczyk, Adam

    2016-08-01

    In this review, we summarize our knowledge about mitochondrial potassium channels, with a special focus on unanswered questions in this field. The following potassium channels have been well described in the inner mitochondrial membrane: ATP-regulated potassium channel, Ca(2+)-activated potassium channel, the voltage-gated Kv1.3 potassium channel, and the two-pore domain TASK-3 potassium channel. The primary functional roles of these channels include regulation of mitochondrial respiration and the alteration of membrane potential. Additionally, they modulate the mitochondrial matrix volume and the synthesis of reactive oxygen species by mitochondria. Mitochondrial potassium channels are believed to contribute to cytoprotection and cell death. In this paper, we discuss fundamental issues concerning mitochondrial potassium channels: their molecular identity, channel pharmacology and functional properties. Attention will be given to the current problems present in our understanding of the nature of mitochondrial potassium channels. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26951942

  20. Antemortem vitreous potassium may strengthen postmortem interval estimates.

    PubMed

    Kokavec, Jan; Min, San H; Tan, Mei H; Gilhotra, Jagjit S; Newland, Henry S; Durkin, Shane R; Casson, Robert J

    2016-06-01

    The purpose of this letter is to highlight that postmortem interval estimates using vitreous potassium concentrations may be further optimised by calibration against antemortem vitreous samples. PMID:27080618

  1. Possible potassium chlorate nephrotoxicity associated with chronic matchstick ingestion*

    PubMed Central

    Thurlow, John S.; Little, Dustin J.; Baker, Thomas P.; Yuan, Christina M.

    2013-01-01

    We present a case of a 48-year-old active duty male soldier with a history of chronic exposure to potassium chlorate, later diagnosed with chronic interstitial nephritis. He reported regular matchstick consumption to prevent chigger (Trombicula autumnalis) bites, amounting to ∼5.8 g of potassium chlorate over 3 years. Potassium chlorate can cause anuric renal failure within days of a toxic dose. Its slow excretion and mechanism of action suggest that renal toxicity may result from lower-dose chronic exposure. This case represents possible sequelae of chronic potassium chlorate ingestion. PMID:26064493

  2. [Studies on potassium transport through glial cell membranes (author's transl)].

    PubMed

    Coles, J A; Gardner-Medwin, A R; Tsacopoulos, M

    1980-04-01

    The retina of the honeybee drone is used as a model for the study of ion movements across the membranes of the glial cells caused by changes in the extracellular potassium concentration. The values found for changes in extracellular potential suggest that at least some of the potassium that enters glial cells in an active region of tissue is associated with an efflux of potassium from parts of the glial syncytium not affected by an increase in extracellular potassium concentration. In addition, it appears that ions other than K+ cross the glial membrane. PMID:7421023

  3. Hypersensitive dentinal pain attenuation with potassium nitrate.

    PubMed

    Touyz, L Z; Stern, J

    1999-01-01

    Dentinal hypersensitivity occurs when gingival recession exposes dentin at the cervical margins of teeth. Twenty-four periodontal patients, with postoperative hypersensitive dentin were treated by burnishing saturated potassium nitrate (KNO3) to relieve pain. Using a visual analogue scale with participants acting as their own control, a subjective assessment of pain was measured and compared before and after KNO3 application. Thirty-six regions involving 98 teeth were assessed. A significant reduction of sensitivity and pain was achieved by using a saturated KNO3 solution (p < .0001 Student-t). PMID:10321150

  4. Crystal structure of potassium sodium tartrate trihydrate

    SciTech Connect

    Egorova, A. E. Ivanov, V. A.; Somov, N. V.; Portnov, V. N.; Chuprunov, E. V.

    2011-11-15

    Crystals of potassium sodium tartrate trihydrate (dl-KNaC{sub 4}H{sub 4}O{sub 6} {center_dot} 3H{sub 2}O) were obtained from an aqueous solution. The crystal shape was described. The atomic structure of the compound was determined and compared with the known structures of dl-KNaC{sub 4}H{sub 4}O{sub 6} {center_dot} 4H{sub 2}O and l-KNaC{sub 4}H{sub 4}O{sub 6} {center_dot} 4H{sub 2}O.

  5. Hydrogen and helium adsorption on potassium

    SciTech Connect

    Garcia, R.; Mulders, N.; Hess, G.

    1995-04-01

    A previous quartz microbalance study of adsorption of helium on sodium indicates that the inert layer is surprisingly small. Similar experiments with hydrogen on sodium show layer by layer growth below a temperature of 7K. These results motivated the authors to extend the experiments to lower temperatures. A suitable apparatus, capable of reaching 0.45 K, while still enabling them to do in situ alkali evaporation, has been constructed. The authors will report on the results of microbalance adsorption experiments of helium and hydrogen on potassium.

  6. Nuclear magnetic resonance study of potassium dihydrophosphate

    NASA Astrophysics Data System (ADS)

    Uskova, N. I.; Podorozhkin, D. Yu.; Charnaya, E. V.; Nefedov, D. Yu.; Baryshnikov, S. V.; Bugaev, A. S.; Lee, M. K.; Chang, L. J.

    2016-04-01

    A powder sample of potassium dihydrophosphate KH2PO4 has been studied by the 31P NMR method in a wide temperature range covering the ferroelectric phase transition. Changes in the position and shape of the resonance line at the transition to the ferroelectric phase have been revealed. The parameters of the chemical shift tensor of 31P (isotropic shift, anisotropy, and asymmetry) in the ferroelectric phase have been calculated from the experimental data. A sharp increase in the anisotropy of the tensor at the phase transition has been demonstrated. Dielectric measurements have also been carried out to verify the transition temperature.

  7. Polyamine Block of Inwardly Rectifying Potassium Channels

    PubMed Central

    Kurata, Harley T.; Cheng, Wayland W.L.; Nichols, Colin G.

    2011-01-01

    Polyamine blockade of inwardly rectifying potassium (Kir) channels underlies their steep voltage-dependence observed in native cells. The structural determinants of polyamine blockade and the structure-activity profile of endogenous polyamines requires specialized methodology for characterizing polyamine interactions with Kir channels. Recent identification and growing interest in the structure and function of prokaryotic Kir channels (KirBacs) has driven the development of new techniques for measuring ion channel activity. Several methods for measuring polyamine interactions with prokaryotic and eukaryotic Kir channels are discussed. PMID:21318869

  8. Transformation of potassium Lindquist hexaniobate to various potassium niobates: solvothermal synthesis and structural evolution mechanism.

    PubMed

    Kong, Xingang; Hu, Dengwei; Wen, Puhong; Ishii, Tomohiko; Tanaka, Yasuhiro; Feng, Qi

    2013-06-01

    This paper introduces the formation reactions and reaction mechanisms of a series of potassium niobates from a potassium salt of the Lindquist hexaniobate [Nb6O19](8-) ion under solvothermal conditions. The structure and particle morphology of the potassium niobate product can be controlled easily with the reaction solution alkalinity using this solvothermal process. KNb3O8 with a plate-like morphology, K4Nb6O17·4.5H2O with a plate-like morphology, a new phase of K2Nb2O6·H2O with fibrous morphology, KNbO3 perovskites with cubic morphology are obtained at pH = 5.5, and in 0.3, 0.5, 1.0 mol L(-1) KOH solutions at 230 °C, respectively. The reaction conditions are much milder than those in the normal hydrothermal process. Furthermore, the K2Nb2O6·H2O fibers can be topotactically transformed into KNbO3 fibers, Nb2O5 fibers after H(+)-exchange-treatment, and LiNbO3 fibers after Li(+)-exchange-treatment by heat-treatments at 730, 560, and 520 °C, respectively. The formation reaction and structure of these potassium niobates were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), energy-dispersive spectroscopy (EDS), Raman spectra and TG-DTA. The formation mechanism of this series of potassium niobates from the [Nb6O19](8-) precursor is systematically explained via the correlation between the octahedrons [NbO6] sharing forms in the precursor structure and in the product structures. PMID:23545951

  9. [Norfloxacin Solution Degradation Under Ultrasound, Potassium Persulfate Collaborative System].

    PubMed

    Wei, Hong; Shi, Jing-zhuan; Li, Jia-lin; Li, Ke-bin; Zhao, Lin; Han, Kai

    2015-11-01

    High oxidative sulfate radicals can be produced by potassium persulfate (K2S2O8). The integrated effect of ultrasonic and K2S2O8, on norfloxacin degradation was investigated. The experimental parameters such as K2S2O8 concentration, norfloxacin initial concentration, initial pH value, free radicals quenching agents such as methanol and tert-butyl on norfloxacin degradation were discussed. The results indicated that ultrasonic/K2S2O8, system had an obvious degradation and mineralization effect on norfloxacin. Norfloxacin removal efficiencies were 3.2 and 8.9 times in ultrasonic/K2S2O8 system than those in single K252O8 and ultrasonic oxidation system, respectively. And the reaction followed the first-order kinetics. Norfloxacin removal efficiency varied gently with K2S2O8 concentration. Solution initial pH had a significant effect on norfloxacin degradation, which was attributed to the different oxidizing species under different pH values. The radicals were sulfate radicals under acidic and neutral conditions, and was the combination of sulfate and hydroxyl radicals under alkaline conditions. TOC and agar diffusion test with E. coli showed that 49.12% norfloxacin was mineralized and antibacterial activity was completely removed, with the diameter of E. coli inhibition zone decreased from 45 mm to 14 mm (filter paper diameter). The result implied that ultrasound/K2S2O8 showed promising results as a possible application for treatment of norfloxacin antibiotics wastewater. PMID:26910998

  10. Oxidation kinetics of antibiotics during water treatment with potassium permanganate.

    PubMed

    Hu, Lanhua; Martin, Heather M; Strathmann, Timothy J

    2010-08-15

    The ubiquitous occurrence of antibiotics in aquatic environments raises concerns about potential adverse effects on aquatic ecology and human health, including the promotion of increased antibiotic resistance. This study examined the oxidation of three widely detected antibiotics (ciprofloxacin, lincomycin, and trimethoprim) by potassium permanganate [KMnO(4); Mn(VII)]. Reaction kinetics were described by second-order rate laws, with apparent second-order rate constants (k(2)) at pH 7 and 25 degrees C in the order of 0.61 +/- 0.02 M(-1) s(-1) (ciprofloxacin) < 1.6 +/- 0.1 M(-1) s(-1) (trimethoprim) < 3.6 +/- 0.1 M(-1) s(-1) (lincomycin). Arrhenius temperature dependence was observed with apparent activation energies (E(a)) ranging from 49 kJ mol(-1) (trimethoprim) to 68 kJ mol(-1) (lincomycin). Rates of lincomycin and trimethoprim oxidation exhibited marked pH dependences, whereas pH had only a small effect on rates of ciprofloxacin oxidation. The effects of pH were quantitatively described by considering parallel reactions between KMnO(4) and individual acid-base species of the target antibiotics. Predictions from a kinetic model that included temperature, KMnO(4) dosage, pH, and source water oxidant demand as input parameters agreed reasonably well with measurements of trimethoprim and lincomycin oxidation in six drinking water utility sources. Although Mn(VII) reactivity with the antibiotics was lower than that reported for ozone and free chlorine, its high selectivity and stability suggests a promising oxidant for treating sensitive micropollutants in organic-rich matrices (e.g., wastewater). PMID:20704243

  11. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO{sub 2}, highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO{sub 4}/2.5M H{sub 3}PO{sub 4} solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO{sub 2} (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  12. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO[sub 2], highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO[sub 4]/2.5M H[sub 3]PO[sub 4] solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO[sub 2] (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  13. Potassium ion channels and allergic asthma.

    PubMed

    Kocmalova, M; Oravec, M; Adamkov, M; Sadlonova, V; Kazimierova, I; Medvedova, I; Joskova, M; Franova, S; Sutovska, M

    2015-01-01

    High-conductive calcium-sensitive potassium channels (BK+Ca) and ATP-sensitive potassium (K+ATP) channels play a significant role in the airway smooth muscle cell and goblet cell function, and cytokine production. The present study evaluated the therapeutic potential of BK+Ca and K+ATP openers, NS 1619 and pinacidil, respectively, in an experimental model of allergic inflammation. Airway allergic inflammation was induced with ovalbumine in guinea pigs during 21 days, which was followed by a 14-day treatment with BK+Ca and K+ATP openers. The outcome measures were airway smooth muscle cells reactivity in vivo and in vitro, cilia beating frequency and the level of exhaled NO (ENO), and the level of pro-inflammatory cytokines in the plasma and bronchoalveolar lavage fluid. The openers of both channels decreased airway smooth muscle cells reactivity, cilia beating frequency, and cytokine levels in the serum. Furthermore, NS1619 reduced ENO and inflammatory cells infiltration. The findings confirmed the presence of beneficial effects of BK+Ca and K+ATP openers on airway defence mechanisms. Although both openers dampened pro-inflammatory cytokines and mast cells infiltration, an evident anti-inflammatory effect was provided only by NS1619. Therefore, we conclude that particularly BK+Ca channels represent a promising new drug target in treatment of airway's allergic inflammation. PMID:25315623

  14. Structural investigation of the potassium vanadomolybdate crystal

    SciTech Connect

    Mucha, D.; Olszewski, P.K.; Napruszewska, B.

    1999-08-01

    Potassium vanadomolybdate KVMoO{sub 6} crystallizes in the orthorhombic system (space group Pnma, a = 10.3478(1) {angstrom}, b = 3.6967(1) {angstrom}, c = 13.3769(2) {angstrom}, Z = 4). With an X-ray powder diffraction technique, its structure was solved and refined by direct and Rietveld methods, respectively (R{sub F} = 3.33, R{sub 1} = 4.70, R{sub wp} = 12.44). The crystals are isostructural with PbV{sub 2}O{sub 6}. Octahedra of two types build chains parallel to the b direction; there is disorder in the octahedra described by different occupation numbers of V and Mo atoms: 0.721(4) and 0.279(4), respectively. Potassium atoms occupy the space between the octahedra chains. They play a decisive role, due to the large ionic radius, in generating both KVMoO{sub 6} and pseudobrannerite, K{sub x}V{sub x}Mo{sub 2{minus}x}O{sub 6} (0.76 {le} x {le} 0.82) structures, contrary to other alkali-metal vanadomolybdates of the brannerite structure type. The melting point of KVMoO{sub 6} was detected at 480 C using the DTA method.

  15. Clofilium inhibits Slick and Slack potassium channels

    PubMed Central

    de los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na+ and Cl−, and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels. PMID:23271893

  16. Potassium as a respiratory signal in humans.

    PubMed

    Newstead, C G; Donaldson, G C; Sneyd, J R

    1990-11-01

    Six renal transplant recipients underwent a series of incremental exercise experiments. Minute ventilation (VE), carbon dioxide production rate (VCO2), and arterial blood chemistry were measured at rest and while subjects exercised on a stationary bicycle. Four of the subjects performed a similar experiment while exercising on a static rowing machine. Within each subject, arterial potassium concentration ([K+]a) was linearly related to VCO2 and VE during exercise. The slope of the relationship between [K+]a and VCO2 was similar in the cycling and rowing experiments. This implies that the absorption of potassium by resting muscle does not significantly limit the arterial hyperkalemia seen during exercise. When VE, VCO2, and [K+]a were measured 1 and 5 min after the end of cycling there was no correlation, whereas VE continued to be closely correlated with VCO2. The relationship demonstrated between change in [K+]a and VCO2 in these experiments is compatible with change of [K+]a acting as a respiratory signal during exercise but not during recovery from exercise in humans. PMID:2125595

  17. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  18. STATUS OF POTASSIUM PERMANGANATE INITIAL LABEL CLAIM - 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A brief overview of the Technical Sections completed and being worked on for the New Animal Drug Application (NADA) for potassium permanganate will be presented. Various aspects of these technical sections will be open for discussion. Potassium Permanganate NADA: 1) Human Food Safety - Complete...

  19. Changes in potassium and sodium concentrations in stored blood.

    PubMed

    Opoku-Okrah, Clement; Acquah, Benjamin Kojo Safo; Dogbe, Elliot Eli

    2015-01-01

    Potassium is the principal intracellular cation with sodium being the principal extracellular cation. Maintenance of the distribution of potassium and sodium between the intracellular and the extracellular compartments relies on several homeostatic mechanisms. This study analysed the effect of blood storage on the concentrations of potassium and sodium in stored blood and also determine any variations that may exist in their concentrations. 50 mls of blood was sampled each from 28 units of evenly mixed donated blood in citrate phosphate dextrose adenine (CPDA-1) bags immediately after donation into satellite bag and stored at 4oC. Potassium and sodium concentration determinations were done on each of the 28 samples on day 0 (before blood was initially stored in the fridge), day 5, day 10, day 15 and day 20 of storage using the Roche 9180 ISE Electrolyte Analyser (Hoffmann-La Roche Ltd, Switzerland). data analysis showed significant changes in the potassium and sodium concentrations with a continuous rise in potassium and a continuous fall in sodium. A daily change of 0.59 mmol/l and 0.50 mmol/l was observed in the potassium and sodium concentrations respectively. We showed steady but increased daily concentrations of potassium and decrease concentrations of sodium in blood stored over time at 4oC. PMID:27386032

  20. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30 requests to use the NCELs... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new...

  1. 40 CFR 721.10553 - Potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alternative to the § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject...

  2. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30 requests to use the NCELs... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new...

  3. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  4. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30 requests to use the NCELs... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new...

  5. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  6. 40 CFR 721.10553 - Potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alternative to the § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Potassium titanium oxide. 721.10553... Substances § 721.10553 Potassium titanium oxide. (a) Chemical substance and significant new uses subject...

  7. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30 requests to use the NCELs... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new...

  8. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  9. 40 CFR 721.10021 - Magnesium potassium titanium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 721.63 respirator requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium potassium titanium oxide... Specific Chemical Substances § 721.10021 Magnesium potassium titanium oxide. (a) Chemical substance...

  10. 40 CFR 721.10031 - Lithium potassium titanium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements may request to do so under 40 CFR 721.30. Persons whose § 721.30 requests to use the NCELs... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithium potassium titanium oxide. 721... Substances § 721.10031 Lithium potassium titanium oxide. (a) Chemical substance and significant new...

  11. Potassium silicate-zinc oxide solution for metal finishes

    NASA Technical Reports Server (NTRS)

    Schutt, J. B.

    1970-01-01

    Examples of zinc dust formulations, which are not subject to cracking or crazing, are fire retardant, and have high adhesive qualities, are listed. The potassium silicate in these formulations has mol ratios of dissolved silica potassium oxide in the range 4.8 to 1 - 5.3 to 1.

  12. The effect of uncomplicated potassium depletion on urine acidification

    PubMed Central

    Tannen, Richard L.

    1970-01-01

    Studies were performed on normal human subjects to determine the effects of potassium depletion on urine acidification. Depletion was induced by ingestion of a low potassium diet either alone or in combination with a potassium-binding resin, and the response of each subject to an acute ammonium chloride load in the potassium-depleted state was compared to his normal response. Urine pH was significantly higher during potassium deficiency if sufficient potassium depletion had been induced. No differences in blood acid-base parameters, urinary flow rate, or urinary fixed buffer excretion rate were found to account for this change; however, the increase in urine pH was accompanied by a concomitant increase in net acid and ammonium excretion. It is proposed that these changes during potassium depletion reflect an increase in ammonia diffusion into the urine, presumably as a result of increased renal ammonia production. In addition, it is speculated that changes in ammonia metabolism may be a physiologic control mechanism for potassium conservation. PMID:5443182

  13. Process for preparation of potassium-38. [DOE patent application

    DOEpatents

    Lambrecht, R.M.; Wolf, A.P.

    A solution of potassium-38 suitable for use as a radiopharmaceutical and a method for its production. Argon is irradiated with protons having energies above the threshold for the /sup 40/Ar(p,3n)/sup 38/K reaction. The resulting potassium-38 is dissolved in a sterile water and any contaminating chlorine-38 is removed.

  14. STUDIES INTO THE MECHANISMS OF POTASSIUM BROMATE INDUCED THYROID CARCINOGENESIS

    EPA Science Inventory

    Studies into the Mechanisms of Potassium Bromate Induced Thyroid Carcinogenesis.

    Potassium bromate (KBrO3) occurs in finished drinking water as a by-product of the ozonation disinfection process and has been found to induce thyroid follicular cell tumors in the rat after ...

  15. Changes in potassium and sodium concentrations in stored blood

    PubMed Central

    Opoku-Okrah, Clement; Acquah, Benjamin Kojo Safo; Dogbe, Elliot Eli

    2015-01-01

    Potassium is the principal intracellular cation with sodium being the principal extracellular cation. Maintenance of the distribution of potassium and sodium between the intracellular and the extracellular compartments relies on several homeostatic mechanisms. This study analysed the effect of blood storage on the concentrations of potassium and sodium in stored blood and also determine any variations that may exist in their concentrations. 50mls of blood was sampled each from 28 units of evenly mixed donated blood in citrate phosphate dextrose adenine (CPDA-1) bags immediately after donation into satellite bag and stored at 4oC. Potassium and sodium concentration determinations were done on each of the 28 samples on day 0 (before blood was initially stored in the fridge), day 5, day 10, day 15 and day 20 of storage using the Roche 9180 ISE Electrolyte Analyser (Hoffmann-La Roche Ltd, Switzerland). data analysis showed significant changes in the potassium and sodium concentrations with a continuous rise in potassium and a continuous fall in sodium. A daily change of 0.59mmol/l and 0.50mmol/l was observed in the potassium and sodium concentrations respectively. We showed steady but increased daily concentrations of potassium and decrease concentrations of sodium in blood stored over time at 4oC.

  16. An improved automotive brake lining using fibrous potassium titanate

    NASA Technical Reports Server (NTRS)

    Mansfield, J. A.; Halberstadt, M. L.; Riccitiello, S. R.; Rhee, S. K.

    1976-01-01

    Simultaneous fade reduction and wear improvement of a commercial automotive brake lining were achieved by adding fibrous potassium titanate. The dependence of friction and wear characteristics on quantitative variations in potassium titanate, asbestos, phenolic binder, and organic and inorganic modifiers was evaluated.

  17. Varietal Differences in Potassium Uptake by Barley 1

    PubMed Central

    Glass, Anthony D. M.; Perley, James E.

    1980-01-01

    Potassium influx isotherms were obtained for 10 cultivars of barley using plants which had been grown with or without potassium (high K+ and low K+ plants, respectively), and the cultivars ranked with respect to Km or Vmax values for influx with a view to using these rankings as a predictive measure of long term performance under conditions of potassium-limited growth. Analyses of these rankings revealed significant differences between cultivars. Net uptake rates for low K+ plants, determined over a 24-hour period, confirmed the differences between upper (Herta) and lower (Conquest) ranked cultivars, and established similar differences in the rates of translocation to the shoot. Efflux analyses showed no differences in potassium efflux from the cytoplasm or from the vacuole for these cultivars. Growth rate studies under different conditions of potassium limitation indicated, with some exceptions, strong positive correlations between ranks accorded cultivars on the basis of influx kinetics and those based upon growth rates. PMID:16661134

  18. Enhanced Photovoltaic Properties of Potassium-Adsorbed Titania Nanotubes

    SciTech Connect

    Richter, C.; Jaye, C; Fischer, D; Lewis, L; Willey, R; Menon, L

    2009-01-01

    It is demonstrated that vertically-aligned titania nanotube planar arrays fabricated by electrochemical anodization using standard potassium-containing electrolytes invariably contain a significant amount of surface-adsorbed potassium ions, hitherto undetected, that affect the titania photoelectrochemical or PEC performance. Synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy reveals the strong ionic nature of surface potassium-titania bonds that alters the PEC performance over that of pure titania nanotubes through reduction of the external electrical bias needed to produce hydrogen at maximum efficiency. This result implies that the external electrical energy input required per liter of solar hydrogen produced with potassium-adsorbed titania nanotubes may be reduced. Tailoring the potassium content may thus be an alternative means to fine-tune the photoelectrochemical response of TiO2 nanotube-based PEC electrodes.

  19. Multimegawatt potassium Rankine power for nuclear electric power

    NASA Technical Reports Server (NTRS)

    Rovang, Richard D.; Mills, Joseph C.; Baumeister, Ernie B.

    1991-01-01

    A cermet fueled potassium rankine power system concept has been developed for various power ranges and operating lifetimes. This concept utilizes a single primary lithium loop to transport thermal energy from the reactor to the boiler. Multiple, independent potassium loops are employed to achieve the required reliability of 99 percent. The potassium loops are two phase systems which expand heated potassium vapor through multistage turboalternators to produce a 10-kV dc electrical output. Condensation occurs by-way-of a shear-flow condenser, producing a 100 percent liquid potassium stream which is pumped back to the boiler. Waste heat is rejected by an advanced carbon-carbon radiator at approximately 1000 K. Overall system efficiencies of 19.3 percent to 20.5 percent were calculated depending on mission life and power level.

  20. Potassium dihydrogen phosphate and potassium tantalate niobate pyroelectric materials and far-infrared detectors

    SciTech Connect

    Baumann, H. B.

    1993-10-01

    This thesis discusses characterization of two ferroelectric materials and the fabrication of bolometers. Potassium tantalate niobate (KTN) and potassium dihydrogen phosphate (KDP) are chosen because they can be optimized for operation near 100K. Chap. 2 reviews the physics underlying pyroelectric materials and its subclass of ferroelectric materials. Aspects of pyroelectric detection are discussed in Chap. 3 including measurement circuit, noise sources, and effects of materials properties on pyroelectric response. Chap. 4 discusses materials selection and specific characteristics of KTN and KDP; Chap. 5 describes materials preparation; and Chap. 6 presents detector configuration and a thermal analysis of the pyroelectric detector. Electrical techniques used to characterize the materials and devices and results are discussed in Chap. 7 followed by conclusions on feasibility of KDP and KTN pyroelectric detectors in Chap. 8.

  1. Potassium in clinopyroxene inclusions from diamonds.

    PubMed

    Harlow, G E; Veblen, D R

    1991-02-01

    Analytical transmission electron microscopy, electron microprobe analyses, and singlecrystal x-ray diffraction data support the conclusion that high potassium contents, up to 1.5 weight percent K(2)O, of some diopside and omphacite inclusions from diamonds represent valid clinopyroxene compositions with K in solid solution. This conclusion contradicts the traditional view of pyroxene crystal chemistry, which holds that K is too large to be incorporated in the pyroxene structure. These diopside and omphacite inclusions have a high degree of crystal perfection and anomalously large unit-cell volumes, and a defect-free structure is observed in K-bearing regions when imaged by transmission electron microscopy. These observations imply that clinopyroxene can be a significant host for K in the mantle and that some clinopyroxene inclusions and their diamond hosts may have grown in a highly K-enriched environment. PMID:17741381

  2. Spectrophotometric Estimation of Raltegravir Potassium in Tablets

    PubMed Central

    Kore, P. P.; Gamepatil, M. M.; Nimje, H. M.; Baheti, K. G.

    2014-01-01

    Ultra violet spectrophotometric estimation of the raltegravir potassium, an integrase inhibitor antiretroviral agent was estimated by Ultra violet absorption maxima method at λmax of 328 nm and UV area under curve method in the wave length range of 323-333 nm. The Beer's law obeyed in the concentration range of 3-55 μg/ml and correlation coefficients were found to be more than 0.996 for both methods. The results of the analysis were 100.58±0.99 and 99.69±0.59 by absorption maxima and area under curve method respectively. Both the methods were validated as per ICH guidelines. PMID:25593392

  3. Electron impact study of potassium hydroxide

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.

    1979-01-01

    An attempt is made to measure the sum of the elastic, rotational and vibrational scattering of electrons by KOH at low impact energies (5 to 20 eV) at angles from 10 to 120 deg. Energy loss spectra taken in the 0 to 18 eV range using an electron impact spectrometer are used to identify the species contributing to electric scattering. At temperatures between 300 and 500 C, only inelastic spectral features belonging to water are detected, while at temperatures from 500 to 800 C strong atomic K lines, indicative of molecular dissociation, and H2 energy loss features become prominent. No features attributable to KOH, the KOH dimer, O2 or potassium oxides were observed, due to the effects of the dissociation products, and it is concluded that another technique will have to be developed in order to measure electron scattering by KOH.

  4. High pressure studies of potassium perchlorate

    NASA Astrophysics Data System (ADS)

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; Reiser, Sharissa; White, Melanie

    2016-09-01

    Two experiments are reported on KClO4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO4 → hν KCl + 2O2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O2 was monitored. The decomposition rate slowed at higher pressures. We present the first direct evidence for O2 crystallization at higher pressures, demonstrating that O2 molecules aggregate at high pressure.

  5. Proteinase inhibitor homologues as potassium channel blockers.

    PubMed

    Lancelin, J M; Foray, M F; Poncin, M; Hollecker, M; Marion, D

    1994-04-01

    We report here the NMR structure of dendrotoxin I, a powerful potassium channel blocker from the venom of the African Elapidae snake Dendroaspis polylepis polylepis (black mamba), calculated from an experimentally-derived set of 719 geometric restraints. The backbone of the toxin superimposes on bovine pancreatic trypsin inhibitor (BPTI) with a root-mean-square deviation of < 1.7 A. The surface electrostatic potential calculated for dendrotoxin I and BPTI, reveal an important difference which might account for the differences in function of the two proteins. These proteins may provide examples of adaptation for specific and diverse biological functions while at the same time maintaining the overall three-dimensional structure of a common ancestor. PMID:7544683

  6. Sodium and Potassium Interactions with Nucleic Acids.

    PubMed

    Auffinger, Pascal; D'Ascenzo, Luigi; Ennifar, Eric

    2016-01-01

    Metal ions are essential cofactors for the structure and functions of nucleic acids. Yet, the early discovery in the 70s of the crucial role of Mg(2+) in stabilizing tRNA structures has occulted for a long time the importance of monovalent cations. Renewed interest in these ions was brought in the late 90s by the discovery of specific potassium metal ions in the core of a group I intron. Their importance in nucleic acid folding and catalytic activity is now well established. However, detection of K(+) and Na(+) ions is notoriously problematic and the question about their specificity is recurrent. Here we review the different methods that can be used to detect K(+) and Na(+) ions in nucleic acid structures such as X-ray crystallography, nuclear magnetic resonance or molecular dynamics simulations. We also discuss specific versus non-specific binding to different structures through various examples. PMID:26860302

  7. DKDP /potassium dideuterium phosphate/ light valves

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1977-01-01

    The use of potassium dideuterium phosphate (DKDP) light valves for optical data processing is discussed. The operating principles and structure of optically and electron beam addressed DKDPs are compared, and specifications for both devices given. Optically addressed DKDPs are capable of higher resolution and contrast, but both systems represent viable real time spatial light modulators adaptable to optical processing. Examples of real time data processing performed by the DKDPs include: image addition and subtraction; reduction of noise introduced by scattered light in recording media; reconstruction of computer generated and acoustic holograms; reconstruction of synthetic aperture radar data; retrieval of three-dimensional information in X-ray diagnoses; radar signal processing and display; and optical pattern recognition and correlation of images, which has applications for missile guidance systems.

  8. Bioinspired Artificial Sodium and Potassium Ion Channels.

    PubMed

    Rodríguez-Vázquez, Nuria; Fuertes, Alberto; Amorín, Manuel; Granja, Juan R

    2016-01-01

    In Nature, all biological systems present a high level of compartmentalization in order to carry out a wide variety of functions in a very specific way. Hence, they need ways to be connected with the environment for communication, homeostasis equilibrium, nutrition, waste elimination, etc. The biological membranes carry out these functions; they consist of physical insulating barriers constituted mainly by phospholipids. These amphipathic molecules spontaneously aggregate in water to form bilayers in which the polar groups are exposed to the aqueous media while the non-polar chains self-organize by aggregating to each other to stay away from the aqueous media. The insulating properties of membranes are due to the formation of a hydrophobic bilayer covered at both sides by the hydrophilic phosphate groups. Thus, lipophilic molecules can permeate the membrane freely, while the small charged or very hydrophilic molecules require the assistance of other membrane components in order to overcome the energetic cost implied in crossing the non-polar region of the bilayer. Most of the large polar species (such as oligosaccharides, polypeptides or nucleic acids) cross into and out of the cell via endocytosis and exocytosis, respectively. Nature has created a series of systems (carriers and pores) in order to control the balance of small hydrophilic molecules and ions. The most important structures to achieve these goals are the ionophoric proteins that include the channel proteins, such as the sodium and potassium channels, and ionic transporters, including the sodium/potassium pumps or calcium/sodium exchangers among others. Inspired by these, scientists have created non-natural synthetic transporting structures to mimic the natural systems. The progress in the last years has been remarkable regarding the efficient transport of Na(+) and K(+) ions, despite the fact that the selectivity and the ON/OFF state of the non-natural systems remain a present and future challenge

  9. Alternatives for sodium-potassium alloy treatment

    SciTech Connect

    Takacs, T.J.; Johnson, M.E.

    1993-04-08

    Sodium-potassium alloy (NaK) is currently treated at the Y-12 Plant by open burning. Due to uncertainties with future permits for this process alternative treatment methods were investigated, revealing that two treatment processes are feasible. One process reacts the NaK with water in a highly concentrated molten caustic solution (sodium and potassium hydroxide). The final waste is a caustic that may be used elsewhere in the plant. This process has two safety concerns: Hot corrosive materials used throughout the process present handling difficulties and the process must be carefully controlled (temperature and water content) to avoid explosive NaK reactions. To avoid these problems a second process was developed that dissolves NaK in a mixture of propylene glycol and water at room temperature. While this process is safer, it generates more waste than the caustic process. The waste may possibly be used as a carbon food source in biological waste treatment operations at the Y-12 Plant. Experiments were conducted to demonstrate both processes, and they showed that both processes are feasible alternatives for NaK treatment. Process flow sheets with mass balances were generated for both processes and compared. While the caustic process generates less waste, the propylene glycol process is safer in several ways (temperature, material handling, and reaction control). The authors recommend that the propylene glycol alternative be pursued further as an alternative for NaK treatment. To optimize this process for a larger scale several experiments should be conducted. The amount of NaK dissolved in propylene glycol and subsequent waste generated should be optimized. The offgas processes should be optimized. The viability of using this waste as a carbon food source at one of the Y-12 Plant treatment facilities should be investigated. If the state accepts this process as an alternative, design and construction of a pilot-scale treatment system should begin.

  10. Functional Consequences of a Decreased Potassium Affinity in a Potassium Channel Pore

    PubMed Central

    Ogielska, Eva M.; Aldrich, Richard W.

    1999-01-01

    Ions bound near the external mouth of the potassium channel pore impede the C-type inactivation conformational change (Lopez-Barneo, J., T. Hoshi, S. Heinemann, and R. Aldrich. 1993. Receptors Channels. 1:61– 71; Baukrowitz, T., and G. Yellen. 1995. Neuron. 15:951–960). In this study, we present evidence that the occupancy of the C-type inactivation modulatory site by permeant ions is not solely dependent on its intrinsic affinity, but is also a function of the relative affinities of the neighboring sites in the potassium channel pore. The A463C mutation in the S6 region of Shaker decreases the affinity of an internal ion binding site in the pore (Ogielska, E.M., and R.W. Aldrich, 1998). However, we have found that this mutation also decreases the C-type inactivation rate of the channel. Our studies indicate that the C-type inactivation effects observed with substitutions at position A463 most likely result from changes in the pore occupancy of the channel, rather than a change in the C-type inactivation conformational change. We have found that a decrease in the potassium affinity of the internal ion binding site in the pore results in lowered (electrostatic) interactions among ions in the pore and as a result prolongs the time an ion remains bound at the external C-type inactivation site. We also present evidence that the C-type inactivation constriction is quite local and does not involve a general collapse of the selectivity filter. Our data indicate that in A463C potassium can bind within the selectivity filter without interfering with the process of C-type inactivation. PMID:9925829

  11. Photorefractive properties of paraelectric potassium lithium tantalate niobate crystal doped with iron

    NASA Astrophysics Data System (ADS)

    Tian, Hao; Zhou, Zhongxiang; Gong, Dewei; Wang, Haifeng; Jiang, Yongyuan; Hou, Chunfeng

    2008-03-01

    We report the successful growth of paraelectric potassium lithium tantalate niobate (KLTN) single crystal doped with iron. Detailed investigations have been made on the photorefractive properties of the as-grown crystal. The key parameters such as space-charge field, grating response time, photorefractive sensitivity and sign of the dominant charge carrier were obtained by two-wave mixing technique. 1.7 mm thick sample exhibits a high diffraction efficiency of 78% at the external field of 3.3 kV/cm and a sensitivity of 1.49 × 10-10E0 cm2/J. The two-wave mixing gain coefficient increases linearly with external field, and reaches a large value of 19.4 cm-1 at 4 kV/cm. Based on experimental results, iron is an effective dopant to KLTN which shows high diffraction efficiency and two-wave mixing gain coefficient.

  12. Generating potassium abundance variations in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2016-04-01

    An intriguing aspect of chondritic meteorites is that they are complementary: while their separate components have wildly varying abundances, bulk chondrites have nearly solar composition. This implies that the nearly-solar reservoirs in which chondrites were born were in turn assembled from sub-reservoirs of differing compositions that birthed the different components. We focus on explaining the potassium abundance variations between chondrules even within a single chondrite, while maintaining the observed CI 41K to 39K ratios. This requires physically separating potassium and chondrules while the temperature is high enough for K to be in the gas phase. We examine several mechanisms which could drive the dust through gas and show that to do so locally would have required long (sub-orbital to many orbits) time scales; with shortest potassium depletion time scales occurring in a scenario where chondrules formed high above the midplane and settled out of the evaporated potassium. While orbital time scales are at odds with laboratory chondrule cooling rate estimates, any other model for the origin for the potassium abundance variation has to wrestle with the severe logistical difficulty of generating a plethora of correlated reservoirs which varied strongly in their potassium abundances, but not in their potassium isotope ratios.

  13. Sodium and potassium intake patterns and trends in South Korea.

    PubMed

    Lee, H S; Duffey, K J; Popkin, B M

    2013-05-01

    We examined major trends and patterns regarding sodium and potassium intake and the ratio of sodium and potassium in the diets of South Koreans. We used data from 24-h dietary recall data from 10,267, 8819 and 9264 subjects ages > or =2 years in the 1998, 2005 and 2009 Korean National Health and Nutrition Examination Surveys, respectively. Mean sodium intake did not change significantly between 1998 and 2009 (4.6 vs. 4.7 g per day), while potassium intake increased significantly (2.6 vs. 2.9 g per day (P<0.001)). The major dietary sodium sources were kimchi, salt, soy sauce and soybean paste, and most potassium came from unprocessed foods (white rice, vegetables, kimchi and fruits). About 50% of the participants consumed > or =4 g of sodium per capita per day. The proportion of respondents consuming four to six grams of potassium per capita per day increased from 10.3% in 1998 to 14.3% in 2009 (P<0.001), and the sodium-potassium ratio decreased from 1.88 to 1.71 (P<0.001). One major implication is that efforts to reduce sodium in processed foods will be ineffective and future efforts must focus on both education to reduce use of sodium in food preparation and sodium replacement in salt, possibly with potassium. PMID:23151751

  14. The abundance of potassium in the Earth's core

    NASA Astrophysics Data System (ADS)

    Watanabe, Kosui; Ohtani, Eiji; Kamada, Seiji; Sakamaki, Tatsuya; Miyahara, Masaaki; Ito, Yoshinori

    2014-12-01

    We studied partitioning of potassium (K) between aluminosilicate (adularia, KAlSi3O8) and metals with and without light elements, oxygen and silicon (Fe-O, Fe-Si, and pure Fe metals). We conducted experiments at pressures up to 50 GPa, temperatures up to 3500 K, and oxygen fugacities (log fO2) between 2.5 and 4.0 log units below the iron-wüstite (IW) buffer using a double-sided laser-heated diamond anvil cell. Our results on pressure, temperature, and compositional effects on partition coefficient of potassium, DK (i.e., the content of potassium in metal [wt%] divided by the content of potassium in silicate [wt%]), revealed that the temperature effect is slightly positive but weaker than that reported previously, whereas the pressure effect is negative. Oxygen in metal increases the potassium content in metal, whereas silicon in metal has the opposite effect. According to the present study on potassium partitioning, we estimated that the amount of potassium in the core is less than 40 ppm and that it generates less than 0.17 TW heat in the core. The amount of heat generated in the core is very small compared with the heat escaping from the core at the core-mantle boundary (5-15 TW).

  15. An interlaboratory study of potassium determination in rocks and minerals.

    PubMed

    Rice, T D

    1976-05-01

    Seven laboratories took part in this interlaboratory study which was part of an investigation of the flame-speetrometric determination of potassium in rocks and minerals suitable for potassium-argon age-measurement. Three of these laboratories determined potassium in the following five international reference rocks: tonalite T-1, basalt BCR-1, andesite AGV-1, granite G-2, and granodiorite GSP-1. The other five samples (with the number of laboratories analysing them in parentheses) were: a chlorite rock (7), an altered basic igneous rock (5), an altered basaltic andesite (5), a biotite (6) and a potassium feldspar (7). Details of sample preparation and methods of analysis are given; no laboratory used exactly the same method as any of the other six laboratories. Results have been examined by analysis of variance; larger relative between- and within-laboratory variations occurred for the two samples containing less than 0.1% potassium than for seven of the eight other (higher potassium) samples; between-laboratory variations for the basalt BCR-1 and, to a lesser extent, the andesite AGV-1, were high and of similar magnitude to those for the samples containing less than 0.1% potassium. The causes of any poor interlaboratory agreement in the present study are considered. PMID:18961875

  16. Generating potassium abundance variations in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2016-08-01

    An intriguing aspect of chondritic meteorites is that they are complementary: while their separate components have wildly varying abundances, bulk chondrites have nearly solar composition. This implies that the nearly solar reservoirs in which chondrites were born were in turn assembled from sub-reservoirs of differing compositions that birthed the different components. We focus on explaining the potassium abundance variations between chondrules even within a single chondrite, while maintaining the observed CI 41K to 39K ratios. This requires physically separating potassium and chondrules while the temperature is high enough for K to be in the gas phase. We examine several mechanisms which could drive the dust through gas and show that to do so locally would have required long (sub-orbital to many orbits) time scales; with shortest potassium depletion time-scales occurring in a scenario where chondrules formed high above the mid-plane and settled out of the evaporated potassium. While orbital time-scales are at odds with laboratory chondrule cooling rate estimates, any other model for the origin for the potassium abundance variation has to wrestle with the severe logistical difficulty of generating a plethora of correlated reservoirs which varied strongly in their potassium abundances, but not in their potassium isotope ratios.

  17. Nitrogen and Potassium Effect on the Color of Red Roses.

    PubMed

    Lindstrom, R S; Markakis, P

    1963-12-27

    Variable coloration was displayed by Rosa hybrida, var. Better Times, grown in solutions of various concentrations of nitrogen and potassium. As revealed by measuring the color in Hunter values, growth in high potassium and low nitrogen concentrations resulted in less reddish and more bluish roses, while cultivation in a low nitrogen concentration, irrespective of the N/ K ratio, resulted in roses which were more lightly colored than those grown in high concentrations of nitrogen and potassium. The results were statistically significant at the 1 percent probability level. PMID:17834373

  18. [Cardiac potassium channels: molecular structure, physiology, pathophysiology and therapeutic implications].

    PubMed

    Mironov, N Iu; Golitsyn, S P

    2013-01-01

    Potassium channels and currents play essential roles in cardiac repolarization. Potassium channel blockade by class III antiarrhythmic drugs prolongs cardiac repolarization and results in termination and prevention of cardiac arrhythmias. Excessive inhomogeneous repolarization prolongation may lead to electrical instability and proarrhythmia (Torsade de Pointes tachycardia). This review focuses on molecular structure, physiology, pathophysiology and therapeutic potential of potassium channels of cardiac conduction system and myocardium providing information on recent findings in pathogenesis of cardiac arrhythmias, including inherited genetic abnormalities, and future perspectives. PMID:24654438

  19. Intractable hyperkalemia due to nicorandil induced potassium channel syndrome

    PubMed Central

    Chowdhry, Vivek; Mohanty, B. B.

    2015-01-01

    Nicorandil is a commonly used antianginal agent, which has both nitrate-like and ATP-sensitive potassium (KATP) channel activator properties. Activation of potassium channels by nicorandil causes expulsion of potassium ions into the extracellular space leading to membrane hyperpolarization, closure of voltage-gated calcium channels and finally vasodilatation. However, on the other hand, being an activator of KATP channel, it can expel K+ ions out of the cells and can cause hyperkalemia. Here, we report a case of nicorandil induced hyperkalemia unresponsive to medical treatment in a patient with diabetic nephropathy. PMID:25566721

  20. Synthesis of potassium hexatitanate whiskers starting from metatitanic acid and potassium carbonate and sulfate by calcination method

    SciTech Connect

    Liu Chunyan; Yin Hengbo Liu Yumin; Ren Min; Wang Aili; Ge Chen; Yao Hengping; Feng Hui; Chen Jun; Jiang Tingshun

    2009-05-06

    Potassium hexatitanate whiskers were synthesized starting from metatitanic acid (H{sub 2}TiO{sub 3}), potassium carbonate and sulfate by calcination method. The effects of mole ratios of K{sub 2}CO{sub 3} to metatitanic acid (H{sub 2}TiO{sub 3}), content of potassium sulfate, and calcination temperature on the crystallinity and morphology of the resultant potassium titanate whiskers were investigated by X-ray diffraction and scanning electron microscopy. Well crystallized potassium hexatitanate whiskers with an average length of 7.3 {mu}m and an average diameter of 0.62 {mu}m were synthesized when the molar ratio of K{sub 2}CO{sub 3} to metatitanic acid was kept at 1:3.5 and the calcination temperature was up to 1150 deg. C. The presence of K{sub 2}SO{sub 4} favored the formation of thin potassium hexatitanate whiskers as compared to the absence of K{sub 2}SO{sub 4}. The whiteness and brightness of the synthesized potassium hexatitanate whiskers were comparable to that of rutile TiO{sub 2} pigment.

  1. Patterns in potassium dynamics in forest ecosystems.

    PubMed

    Tripler, Christopher E; Kaushal, Sujay S; Likens, Gene E; Walter, M Todd

    2006-04-01

    The biotic cycling of potassium (K) in forest systems has been relatively understudied in comparison with nitrogen (N) and phosphorus (P) despite its critical roles in maintaining the nutrition of primary production in forests. We investigated the ecological significance of K in forests from a literature review and data synthesis. We focused on (1) describing patterns of the effects of K availability on aboveground growth and change in foliar tissue of tree species from a variety of forests; and (2) documenting previously unreported relationships between hydrologic losses of K and N in forested watersheds from the Americas. In a review of studies examining tree growth under K manipulations/fertilizations, a high percentage (69% of studies) showed a positive response to increases in K availability in forest soils. In addition, 76% of the tree studies reviewed showed a positive and significant increase in K concentrations in plant tissue after soil K manipulation/fertilization. A meta-analysis on a subset of the reviewed studies was found to provide further evidence that potassium effects tree growth and increased tissue [K] with an effect size of 0.709 for growth and an overall effect size of 0.56. In our review of watershed studies, we observed that concentrations of K typically decreased during growing seasons in streams draining forested areas in the Temperate Zones and were responsive to vegetation disturbance in both temperate and tropical regions. We found a strong relationship (r2 = 0.42-0.99) between concentrations of K and N (another critical plant nutrient) in stream water, suggesting that similar mechanisms of biotic retention may control the flow of these nutrients. Furthermore, K dynamics appear to be unique among the base cations, e.g. calcium, magnesium, and sodium, because the others do not show similar seasonal patterns to K. We suggest that K may be important to the productivity and sustenance of many forests, and its dynamics and ecological

  2. 49 CFR 821.49 - Issues on appeal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Issues on appeal. 821.49 Section 821.49... RULES OF PRACTICE IN AIR SAFETY PROCEEDINGS Appeal From Initial Decision § 821.49 Issues on appeal. (a) On appeal, the Board will consider only the following issues: (1) Are the findings of fact...

  3. 40 CFR 49.472-49.680 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.472-49.680 Section 49.472-49.680 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region II Implementation Plan for the Saint...

  4. 40 CFR 49.140-49.200 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.140-49.200 Section 49.140-49.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY General Federal Implementation Plan Provisions General Rules for Application...

  5. 40 CFR 49.202-49.470 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.202-49.470 Section 49.202-49.470 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region I Implementation Plan for the Mohegan...

  6. 40 CFR 49.10051-49.10100 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false 49.10051-49.10100 Section 49.10051-49.10100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE TRIBAL CLEAN AIR ACT AUTHORITY Implementation Plans for Tribes-Region X Implementation Plan for the...

  7. 49 CFR 821.49 - Issues on appeal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Issues on appeal. 821.49 Section 821.49... RULES OF PRACTICE IN AIR SAFETY PROCEEDINGS Appeal From Initial Decision § 821.49 Issues on appeal. (a) On appeal, the Board will consider only the following issues: (1) Are the findings of fact...

  8. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Control valves for brakes. 393.49 Section 393.49... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as provided..., which is equipped with power brakes, must have the braking system so arranged that one application...

  9. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Control valves for brakes. 393.49 Section 393.49... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as provided..., which is equipped with power brakes, must have the braking system so arranged that one application...

  10. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Control valves for brakes. 393.49 Section 393.49... NECESSARY FOR SAFE OPERATION Brakes § 393.49 Control valves for brakes. (a) General rule. Except as provided..., which is equipped with power brakes, must have the braking system so arranged that one application...

  11. Sodium and Potassium Intake of Urban Dwellers: Nothing Changed in Yazd, Iran

    PubMed Central

    Mirzaei, Masoud; Namayandeh, Mahdieh; GharahiGhehi, Neda

    2014-01-01

    To assess the daily salt intake of people aged 20-74 years based on the 24-hour urinary sodium excretion in urban population of Yazd, a population-based cross-sectional study was conducted. This is a substudy of Yazd Healthy Heart Project in Iran. From 2004 to 2005, two thousand people of the urban population of Yazd city, aged 20-74 years, were enrolled in the main study. Overall, 219 volunteer participants of 20-70 years were enrolled in this substudy. Sample frame was the household numbers according to the database of Yazd City Health Services. Calcium, phosphorus, sodium, potassium, and creatinine were measured in the urine samples collected from the participants over a 24-hour period. Sodium content in urine over 24 hours was 171.7±82.9 mmol/day in males and 127.8±56.1 mmol/day in females (p<0.0001) while potassium content was 49.4±23.2 mmol/day in males and 41.5±25.1 mmol/day in females (p=0.2). Estimated average daily salt (NaCl) intake was 10.0±4.8 g/day in males and 7.5±3.3 g/day in females (p<0.0001). Only one participant had the ideal Na/K ratio of less than one. Na/K ratios greater than one and less than two were seen in 11.3% (n=24), and a ratio equal to or greater than 2 was observed in 82.3% (n=118) of the participants. The average Na/K ratio was 3.69±1.58. Unlike many developed countries where sodium intake declined over the past few decades, the daily sodium intake in Yazd is high, and daily potassium intake is low. This is similar to what was observed four decades ago in an area not far from Yazd. Efforts must be directed towards health promotion interventions to increase public awareness to reduce sodium intake and increase potassium intake. PMID:24847600

  12. Potassium application to table grape clusters after veraison increases soluble solids by enhancing berry water loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potassium salt solutions were applied twice to clusters of several table grapes cultivars, after the onset of veraison and three weeks later. Potassium bicarbonate, potassium sorbate, and glycine-complexed potassium, a commercial fertilizer product, increased soluble solids content consistently, whi...

  13. TEST AND EVALUATION OF POTASSIUM SENSORS IN FRESH AND SALTWATER

    EPA Science Inventory

    Three types of potassium ion-selective electrodes were evaluated for suitability in monitoring or in-situ measurement applications. Each sensor was tested for the following parameters: accuracy, precision, temperature dependence, short and long-term stability, durability, sensiti...

  14. Intracellular mediators of potassium-induced aldosterone secretion

    SciTech Connect

    Ganguly, A.; Chiou, S.; Davis, J.S. )

    1990-01-01

    We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}) in {sup 3}H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium.

  15. Equilibrium among potassium polytellurides in N,N-dimethylformamide solution

    NASA Astrophysics Data System (ADS)

    McAfee, Jason L.; Andreatta, Jeremy R.; Sevcik, Richard S.; Schultz, Linda D.

    2012-08-01

    Reactions between elemental potassium and tellurium in N,N-dimethylformamide (DMF) are monitored using UV-visible spectroscopy and compared with those in liquid ammonia solution. In liquid ammonia, the elements react together, via a step-wise sequence, to form polytellurides, each of which is characterized by a distinctive color, the highest being potassium tritelluride. However, when the elements are combined in DMF, these distinctive color changes are not observed - the solution develops an initial plum color, which gradually darkens to purple as the reaction progresses. UV-visible and Raman spectroscopic studies indicate that equilibrium exists among the mono-, di-, and tritelluride in DMF. This equilibrium is not seen in liquid ammonia solution due to the insolubility of potassium monotelluride in that solvent. Spectral data also indicate that potassium tetratelluride is formed in DMF solution.

  16. Potassium Isotopic Compositions of NIST Potassium Standards and 40Ar/39Ar Mineral Standards

    NASA Technical Reports Server (NTRS)

    Morgan, Leah; Tappa, Mike; Ellam, Rob; Mark, Darren; Higgins, John; Simon, Justin I.

    2013-01-01

    Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25per mille level (1s) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards.

  17. Potassium permanganate for mercury vapor environmental control

    NASA Technical Reports Server (NTRS)

    Kuivinen, D. E.

    1972-01-01

    Potassium permanganate (KMnO4) was evaluated for application in removing mercury vapor from exhaust air systems. The KMnO4 may be used in water solution with a liquid spray scrubber system or as a solid adsorber bed material when impregnated onto a zeolite. Air samples contaminated with as much as 112 mg/cu m of mercury were scrubbed to 0.06mg/cum with the KMnO4-impregnated zeolite (molecular sieve material). The water spray solution of permanganate was also found to be as effective as the impregnated zeolite. The KMnO4-impregnated zeolite was applied as a solid adsorber material to (1) a hardware decontamination system, (2) a model incinerator, and (3) a high vacuum chamber for ion engine testing with mercury as the propellant. A liquid scrubber system was also applied in an incinerator system. Based on the results of these experiments, it is concluded that the use of KMnO4 can be an effective method for controlling noxious mercury vapor.

  18. A man with a worrying potassium deficiency

    PubMed Central

    Tabasum, A; Shute, C; Datta, D; George, L

    2014-01-01

    Summary Hypokalaemia may present as muscle cramps and Cardiac arrhythmias. This is a condition commonly encountered by endocrinologists and general physicians alike. Herein, we report the case of a 43-year-old gentleman admitted with hypokalaemia, who following subsequent investigations was found to have Gitelman's syndrome (GS). This rare, inherited, autosomal recessive renal tubular disorder is associated with genetic mutations in the thiazide-sensitive sodium chloride co-transporter and magnesium channels in the distal convoluted tubule. Patients with GS typically presents at an older age, and a spectrum of clinical presentations exists, from being asymptomatic to predominant muscular symptoms. Clinical suspicion should be raised in those with hypokalaemic metabolic alkalosis associated with hypomagnesaemia. Treatment of GS consists of long-term potassium and magnesium salt replacement. In general, the long-term prognosis in terms of preserved renal function and life expectancy is excellent. Herein, we discuss the biochemical imbalance in the aetiology of GS, and the case report highlights the need for further investigations in patients with recurrent hypokalaemic episodes. Learning points Recurrent hypokalaemia with no obvious cause warrants investigation for hereditary renal tubulopathies.GS is the most common inherited renal tubulopathy with a prevalence of 25 per million people.GS typically presents at an older age and clinical suspicion should be raised in those with hypokalaemic metabolic alkalosis associated with hypomagnesaemia.Confirmation of diagnosis is by molecular analysis for mutation in the SLC12A3 gene. PMID:24683481

  19. Modulation of Potassium Channels Inhibits Bunyavirus Infection.

    PubMed

    Hover, Samantha; King, Barnabas; Hall, Bradley; Loundras, Eleni-Anna; Taqi, Hussah; Daly, Janet; Dallas, Mark; Peers, Chris; Schnettler, Esther; McKimmie, Clive; Kohl, Alain; Barr, John N; Mankouri, Jamel

    2016-02-12

    Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K(+)) channels to infect cells. Time of addition assays using K(+) channel modulating agents demonstrated that K(+) channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K(+) channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K(+) channels (K2P) were identified as the K(+) channel family mediating BUNV K(+) channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease. PMID:26677217

  20. Sea Anemone Toxins Affecting Potassium Channels

    NASA Astrophysics Data System (ADS)

    Diochot, Sylvie; Lazdunski, Michel

    The great diversity of K+ channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of toxins acting on voltage-sensitive sodium and, more recently, potassium channels. Currently there are three major structural groups of sea anemone K+ channel (SAK) toxins that have been characterized. Radioligand binding and electrophysiological experiments revealed that each group contains peptides displaying selective activities for different subfamilies of K+ channels. Short (35-37 amino acids) peptides in the group I display pore blocking effects on Kv1 channels. Molecular interactions of SAK-I toxins, important for activity and binding on Kv1 channels, implicate a spot of three conserved amino acid residues (Ser, Lys, Tyr) surrounded by other less conserved residues. Long (58-59 amino acids) SAK-II peptides display both enzymatic and K+ channel inhibitory activities. Medium size (42-43 amino acid) SAK-III peptides are gating modifiers which interact either with cardiac HERG or Kv3 channels by altering their voltage-dependent properties. SAK-III toxins bind to the S3C region in the outer vestibule of Kv channels. Sea anemones have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of autoimmune diseases.

  1. Potassium Ion Batteries with Graphitic Materials.

    PubMed

    Luo, Wei; Wan, Jiayu; Ozdemir, Burak; Bao, Wenzhong; Chen, Yanan; Dai, Jiaqi; Lin, Hao; Xu, Yue; Gu, Feng; Barone, Veronica; Hu, Liangbing

    2015-11-11

    Graphite intercalation compounds (GICs) have attracted tremendous attention due to their exceptional properties that can be finely tuned by controlling the intercalation species and concentrations. Here, we report for the first time that potassium (K) ions can electrochemically intercalate into graphitic materials, such as graphite and reduced graphene oxide (RGO) at ambient temperature and pressure. Our experiments reveal that graphite can deliver a reversible capacity of 207 mAh/g. Combining experiments with ab initio calculations, we propose a three-step staging process during the intercalation of K ions into graphite: C → KC24 (Stage III) → KC16 (Stage II) → KC8 (Stage I). Moreover, we find that K ions can also intercalate into RGO film with even higher reversible capacity (222 mAh/g). We also show that K ions intercalation can effectively increase the optical transparence of the RGO film from 29.0% to 84.3%. First-principles calculations suggest that this trend is attributed to a decreased absorbance produced by K ions intercalation. Our results open opportunities for novel nonaqueous K-ion based electrochemical battery technologies and optical applications. PMID:26509225

  2. Incommensurate lattice modulations in Potassium Vanadate

    NASA Astrophysics Data System (ADS)

    Chakoumakos, Bryan; Banerjee, Arnab; Mark, Lumsden; Cao, Huibo; Kim, Jong-Woo; Hoffman, Christina; Wang, Xiaoping

    Potassium Vanadate (K2V3O8) is an S = 1/2 2D square lattice antiferromagnet that shows spin reorientation indicating a strong coupling between the magnetism and its dielectric properties with a promise of rich physics that promises multiferroicity. These tangible physical properties are strongly tied through a spin-lattice coupling to the underlying lattice and superlattice behavior. It has a superlattice (SL) onsetting below Tc = 115 K with an approximate [3 x 3 x 2] modulation. Here we present our recent experiments at TOPAZ beamline at SNS which for the first time proves conclusively that the lattice modulations are incommensurate, with an in-plane Q of 0.315. We will also show our attempts to refine the data using JANA which requires a redefinition of the lattice, as well as the temperature and Q dependence of the superlattice modulation measured using neutrons at HFIR and synchrotron x-rays at APS. Our results are not only relevant for the ongoing search of multifunctional behavior in K2V3O8 but also generally for the superlattice modulations observed in a large family of fresnoites. Work performed at ORNL and ANL is supported by U.S. Dept. of Energy, Office of Basic Energy Sciences and Office of User Facilities Division.

  3. Modulation of Potassium Channels Inhibits Bunyavirus Infection*

    PubMed Central

    Hover, Samantha; King, Barnabas; Hall, Bradley; Loundras, Eleni-Anna; Taqi, Hussah; Daly, Janet; Dallas, Mark; Peers, Chris; Schnettler, Esther; McKimmie, Clive; Kohl, Alain; Barr, John N.; Mankouri, Jamel

    2016-01-01

    Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K+) channels to infect cells. Time of addition assays using K+ channel modulating agents demonstrated that K+ channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K+ channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K+ channels (K2P) were identified as the K+ channel family mediating BUNV K+ channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease. PMID:26677217

  4. Performance of MHD insulating materials in a potassium environment

    SciTech Connect

    Natesan, K.; Park, J.H.; Rink, D.L.; Thomas, C.A.

    1991-12-01

    The objectives of this study are to evaluate the compatibility of the MHD insulating materials boron nitride and silicon nitride in a potassium environment at temperatures of 1000 and 1400{degrees}F (538 and 760{degrees}C, respectively) and to measure the electrical conductivities of the specimens before and after exposure to potassium. Based on the test results, an assessment is to be made of the suitability of these materials for application as insulator materials in an MHD channel.

  5. Evaluating Status Change of Soil Potassium from Path Model

    PubMed Central

    He, Wenming; Chen, Fang

    2013-01-01

    The purpose of this study is to determine critical environmental parameters of soil K availability and to quantify those contributors by using a proposed path model. In this study, plot experiments were designed into different treatments, and soil samples were collected and further analyzed in laboratory to investigate soil properties influence on soil potassium forms (water soluble K, exchangeable K, non-exchangeable K). Furthermore, path analysis based on proposed path model was carried out to evaluate the relationship between potassium forms and soil properties. Research findings were achieved as followings. Firstly, key direct factors were soil S, ratio of sodium-potassium (Na/K), the chemical index of alteration (CIA), Soil Organic Matter in soil solution (SOM), Na and total nitrogen in soil solution (TN), and key indirect factors were Carbonate (CO3), Mg, pH, Na, S, and SOM. Secondly, path model can effectively determine direction and quantities of potassium status changes between Exchangeable potassium (eK), Non-exchangeable potassium (neK) and water-soluble potassium (wsK) under influences of specific environmental parameters. In reversible equilibrium state of , K balance state was inclined to be moved into β and χ directions in treatments of potassium shortage. However in reversible equilibrium of , K balance state was inclined to be moved into θ and λ directions in treatments of water shortage. Results showed that the proposed path model was able to quantitatively disclose moving direction of K status and quantify its equilibrium threshold. It provided a theoretical and practical basis for scientific and effective fertilization in agricultural plants growth. PMID:24204659

  6. Potassium channels and vascular reactivity in genetically hypertensive rats.

    PubMed

    Furspan, P B; Webb, R C

    1990-06-01

    In hypertension, membrane potassium permeability and vascular reactivity are increased. This study characterizes a potassium-selective channel and contractions to barium, a potassium channel inhibitor, in vascular smooth muscle (tail artery) from spontaneously hypertensive stroke-prone rats (SHRSP) and normotensive Wistar-Kyoto (WKY) rats. Smooth muscle cells were isolated by enzymatic digestion, and potassium channel activity was characterized by using patch-clamp technique (inside-out configuration). Isometric contractile activity was evaluated in helically cut arterial strips by using standard muscle bath methodology. In membrane patches, a voltage-gated, calcium-insensitive, potassium-selective channel of large conductance (200 picosiemens) was observed. The channel did not conduct sodium or rubidium. Barium (10(-6) to 10(-4) M) produced a dose-dependent blockade of channel activity. These channel characteristics did not differ in SHRSP and WKY rat cells. After treatment with 35 mM KCl, barium (10(-5) to 10(-3) M) caused greater contractions in SHRSP arteries compared with arteries in WKY rats. The contractions to barium were markedly attenuated in calcium-free solution, and nifedipine and verapamil abolished contractions induced by barium in depolarizing solution. We conclude that increased vascular reactivity to barium in SHRSP arteries is not due to an alteration in the biophysical properties of the potassium channel studied. PMID:2351424

  7. Potassium Buffering in the Neurovascular Unit: Models and Sensitivity Analysis

    PubMed Central

    Witthoft, Alexandra; Filosa, Jessica A.; Karniadakis, George Em

    2013-01-01

    Astrocytes are critical regulators of neural and neurovascular network communication. Potassium transport is a central mechanism behind their many functions. Astrocytes encircle synapses with their distal processes, which express two potassium pumps (Na-K and NKCC) and an inward rectifying potassium channel (Kir), whereas the vessel-adjacent endfeet express Kir and BK potassium channels. We provide a detailed model of potassium flow throughout the neurovascular unit (synaptic region, astrocytes, and arteriole) for the cortex of the young brain. Our model reproduces several phenomena observed experimentally: functional hyperemia, in which neural activity triggers astrocytic potassium release at the perivascular endfoot, inducing arteriole dilation; K+ undershoot in the synaptic space after periods of neural activity; neurally induced astrocyte hyperpolarization during Kir blockade. Our results suggest that the dynamics of the vascular response during functional hyperemia are governed by astrocytic Kir for the fast onset and astrocytic BK for maintaining dilation. The model supports the hypothesis that K+ undershoot is caused by excessive astrocytic uptake through Na-K and NKCC pumps, whereas the effect is balanced by Kir. We address parametric uncertainty using high-dimensional stochastic sensitivity analysis and identify possible model limitations. PMID:24209849

  8. Potassium Iodide ("KI"): Instructions to Make Potassium Iodide Solution for Use During a Nuclear Emergency (Liquid Form)

    MedlinePlus

    ... make Potassium Iodide Solution for Use During a Nuclear Emergency (Liquid Form) Share Tweet Linkedin Pin it ... Preparation and Dosing Instructions for Use During a Nuclear Emergency To Make KI Solution (Liquid Form), using ...

  9. Gastrointestinal potassium binding-more than just lowering serum [K(+)]: patiromer, potassium balance, and the renin angiotensin aldosterone axis.

    PubMed

    Emmett, Michael; Mehta, Ankit

    2016-09-01

    Hyperkalemia limits the use of renin-angiotensin-aldosterone axis (RAAS) blockers in patients with renal insufficiency. This can be managed by efforts to increase kaliuresis and by gastrointestinal potassium binding with sodium polystyrene sulfonate, a relatively ineffective agent. Now with the availability of patiromer, RAAS blockers can be used more liberally. In addition, potassium reduction decreases aldosterone, which may be beneficial. Adverse nonepithelial aldosterone effects such as endothelial dysfunction and cardiac fibrosis may be ameliorated. PMID:27521112

  10. Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium

    PubMed Central

    Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang

    2016-01-01

    Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (Ito) and slow delayed rectifier potassium current (IKs). Methods The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record Ito and IKs in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. Results The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of Ito and IKs in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of Ito in M layers and partly inhibit the channel openings of Ito in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of IKs channel in Epi and Endo layers without affecting its activation. Conclusions Our study gives partially explanation about the mechanisms of transmural inhibition of Ito and IKs channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings. PMID:27403141

  11. Formation and structural characterization of potassium titanates and the potassium ion exchange property

    SciTech Connect

    Wang Qiang; Guo Zhanhu; Chung, Jong Shik

    2009-10-15

    In the present work, K{sub 2}Ti{sub 2}O{sub 5}, K{sub 2}Ti{sub 4}O{sub 9} and K{sub 2}Ti{sub 6}O{sub 13} are synthesized by solid state method. Their structures and morphologies are characterized by X-ray diffraction, Raman spectra and scanning electron microscopy. The binding energies of K, Ti and O in potassium titanates were then evaluated by X-ray photoelectron spectroscopy and compared with those in K/TiO{sub 2}. Finally the corresponding K ion exchange properties are investigated by synthesizing NO oxidation catalysts with Co(NO{sub 3}){sub 2} precursor. It is found that the binding energy of K in K{sub 2}Ti{sub 2}O{sub 5} is much higher than those in K{sub 2}Ti{sub 4}O{sub 9} and K{sub 2}Ti{sub 6}O{sub 13}, and because of which, it shows quite different catalytic performances. Compared with other potassium titanates, the K in K{sub 2}Ti{sub 2}O{sub 5} is much easier to be exchanged out.

  12. Impact of potassium bromate and potassium iodate in a pound cake system.

    PubMed

    Wilderjans, Edith; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A

    2010-05-26

    This study investigates the impact of the oxidants potassium bromate and potassium iodate (8, 16, 32, 64, and 128 micromol/g dry matter of egg white protein) on pound cake making. The impact of the oxidants on egg white characteristics was studied in a model system. Differential scanning calorimetry showed that the oxidants caused egg white to denature later. During heating in a rapid visco analyzer, the oxidants caused the free sulfhydryl (SH) group levels to decrease more intensively and over a smaller temperature range. The oxidants made the proteins more resistant to decreases in protein extractability in sodium dodecyl sulfate containing buffer during cake recipe mixing and less resistant to such decreases during cake baking. We assume that, during baking, the degree to which SH/disulfide exchange and SH oxidation can occur depends on the properties of the protein at the onset of the process. In our view, the prevention of extractability loss during mixing increased the availability of SH groups and caused more such loss during baking. During cooling, all cakes baked with added oxidants showed less collapse. On the basis of the presented data, we put forward that only those protein reactions that occur during baking contribute to the formation of a network that supports final cake structure and prevents collapse. PMID:20423045

  13. Sodium and potassium competition in potassium-selective and non-selective channels

    NASA Astrophysics Data System (ADS)

    Sauer, David B.; Zeng, Weizhong; Canty, John; Lam, Yeeling; Jiang, Youxing

    2013-11-01

    Potassium channels selectively conduct K+, primarily to the exclusion of Na+, despite the fact that both ions can bind within the selectivity filter. Here we perform crystallographic titration and single-channel electrophysiology to examine the competition of Na+ and K+ binding within the filter of two NaK channel mutants; one is the potassium-selective NaK2K mutant and the other is the non-selective NaK2CNG, a CNG channel pore mimic. With high-resolution structures of these engineered NaK channel constructs, we explicitly describe the changes in K+ occupancy within the filter upon Na+ competition by anomalous diffraction. Our results demonstrate that the non-selective NaK2CNG still retains a K+-selective site at equilibrium, whereas the NaK2K channel filter maintains two high-affinity K+ sites. A double-barrier mechanism is proposed to explain K+ channel selectivity at low K+ concentrations.

  14. Activated Carbons From Grape Seeds By Chemical Activation With Potassium Carbonate And Potassium Hydroxide

    NASA Astrophysics Data System (ADS)

    Okman, Irem; Karagöz, Selhan; Tay, Turgay; Erdem, Murat

    2014-02-01

    Activated carbons were produced from grape seed using either potassium carbonate (K2CO3) or potassium hydroxide (KOH). The carbonization experiments were accomplished at 600 and 800 °C. The effects of the experimental conditions (i.e., type of activation reagents, reagent concentrations, and carbonization temperatures) on the yields and the properties of these activated carbons were analyzed under identical conditions. An increase in the temperature at the same concentrations for both K2CO3 and KOH led to a decrease in the yields of the activated carbons. The lowest activated carbon yields were obtained at 800 °C at the highest reagent concentration (100 wt%) for both K2CO3 and KOH. The activated carbon with the highest surface area of 1238 m2g-1 was obtained at 800 °C in K2CO3 concentration of 50 wt% while KOH produced the activated carbon with the highest surface area of 1222 m2g-1 in a concentration of 25wt% at 800 °C. The obtained activated carbons were mainly microporous.

  15. Potassium Uptake Modulates Staphylococcus aureus Metabolism.

    PubMed

    Gries, Casey M; Sadykov, Marat R; Bulock, Logan L; Chaudhari, Sujata S; Thomas, Vinai C; Bose, Jeffrey L; Bayles, Kenneth W

    2016-01-01

    As a leading cause of community-associated and nosocomial infections, Staphylococcus aureus requires sophisticated mechanisms that function to maintain cellular homeostasis in response to its exposure to changing environmental conditions. The adaptation to stress and maintenance of homeostasis depend largely on membrane activity, including supporting electrochemical gradients and synthesis of ATP. This is largely achieved through potassium (K(+)) transport, which plays an essential role in maintaining chemiosmotic homeostasis, affects antimicrobial resistance, and contributes to fitness in vivo. Here, we report that S. aureus Ktr-mediated K(+) uptake is necessary for maintaining cytoplasmic pH and the establishment of a proton motive force. Metabolite analyses revealed that K(+) deficiency affects both metabolic and energy states of S. aureus by impairing oxidative phosphorylation and directing carbon flux toward substrate-level phosphorylation. Taken together, these results underline the importance of K(+) uptake in maintaining essential components of S. aureus metabolism. IMPORTANCE Previous studies describing mechanisms for K(+) uptake in S. aureus revealed that the Ktr-mediated K(+) transport system was required for normal growth under alkaline conditions but not under neutral or acidic conditions. This work focuses on the effect of K(+) uptake on S. aureus metabolism, including intracellular pH and carbon flux, and is the first to utilize a pH-dependent green fluorescent protein (GFP) to measure S. aureus cytoplasmic pH. These studies highlight the role of K(+) uptake in supporting proton efflux under alkaline conditions and uncover a critical role for K(+) uptake in establishing efficient carbon utilization. PMID:27340697

  16. Potassium Uptake Modulates Staphylococcus aureus Metabolism

    PubMed Central

    Gries, Casey M.; Sadykov, Marat R.; Bulock, Logan L.; Chaudhari, Sujata S.; Thomas, Vinai C.; Bose, Jeffrey L.

    2016-01-01

    ABSTRACT As a leading cause of community-associated and nosocomial infections, Staphylococcus aureus requires sophisticated mechanisms that function to maintain cellular homeostasis in response to its exposure to changing environmental conditions. The adaptation to stress and maintenance of homeostasis depend largely on membrane activity, including supporting electrochemical gradients and synthesis of ATP. This is largely achieved through potassium (K+) transport, which plays an essential role in maintaining chemiosmotic homeostasis, affects antimicrobial resistance, and contributes to fitness in vivo. Here, we report that S. aureus Ktr-mediated K+ uptake is necessary for maintaining cytoplasmic pH and the establishment of a proton motive force. Metabolite analyses revealed that K+ deficiency affects both metabolic and energy states of S. aureus by impairing oxidative phosphorylation and directing carbon flux toward substrate-level phosphorylation. Taken together, these results underline the importance of K+ uptake in maintaining essential components of S. aureus metabolism. IMPORTANCE Previous studies describing mechanisms for K+ uptake in S. aureus revealed that the Ktr-mediated K+ transport system was required for normal growth under alkaline conditions but not under neutral or acidic conditions. This work focuses on the effect of K+ uptake on S. aureus metabolism, including intracellular pH and carbon flux, and is the first to utilize a pH-dependent green fluorescent protein (GFP) to measure S. aureus cytoplasmic pH. These studies highlight the role of K+ uptake in supporting proton efflux under alkaline conditions and uncover a critical role for K+ uptake in establishing efficient carbon utilization. PMID:27340697

  17. Potassium in agriculture--status and perspectives.

    PubMed

    Zörb, Christian; Senbayram, Mehmet; Peiter, Edgar

    2014-05-15

    In this review we summarize factors determining the plant availability of soil potassium (K), the role of K in crop yield formation and product quality, and the dependence of crop stress resistance on K nutrition. Average soil reserves of K are generally large, but most of it is not plant-available. Therefore, crops need to be supplied with soluble K fertilizers, the demand of which is expected to increase significantly, particularly in developing regions of the world. Recent investigations have shown that organic exudates of some bacteria and plant roots play a key role in releasing otherwise unavailable K from K-bearing minerals. Thus, breeding for genotypes that have improved mechanisms to gain access to this fixed K will contribute toward more sustainable agriculture, particularly in cropping systems that do not have access to fertilizer K. In K-deficient crops, the supply of sink organs with photosynthates is impaired, and sugars accumulate in source leaves. This not only affects yield formation, but also quality parameters, for example in wheat, potato and grape. As K has beneficial effects on human health, its concentration in the harvest product is a quality parameter in itself. Owing to its fundamental roles in turgor generation, primary metabolism, and long-distance transport, K plays a prominent role in crop resistance to drought, salinity, high light, or cold as well as resistance to pests and pathogens. Despite the abundance of vital roles of K in crop production, an improvement of K uptake and use efficiency has not been a major focus of conventional or transgenic breeding in the past. In addition, current soil analysis methods for K are insufficient for some common soils, posing the risk of imbalanced fertilization. A stronger prioritization of these areas of research is needed to counter declines in soil fertility and to improve food security. PMID:24140002

  18. Systematic review and meta-analysis of randomised controlled trials on the effects of potassium supplements on serum potassium and creatinine

    PubMed Central

    Cappuccio, Francesco P; Buchanan, Laura A; Ji, Chen; Siani, Alfonso; Miller, Michelle A

    2016-01-01

    Objectives High potassium intake could prevent stroke, but supplementation is considered hazardous. We assessed the effect of oral potassium supplementation on serum or plasma potassium levels and renal function. Setting We updated a systematic review of the effects of potassium supplementation in randomised clinical trials carried out worldwide, published in 2013, extending it to July 2015. We followed the PRISMA guidelines. Participants Any individual taking part in a potassium supplementation randomised clinical trial. Studies included met the following criteria: randomised clinical trials, potassium supplement given and circulating potassium levels reported. Intervention Oral potassium supplementation. Primary outcome measures Serum or plasma potassium and serum or plasma creatinine. Results A total of 20 trials (21 independent groups) were included (1216 participants from 12 different countries). All but 2 were controlled (placebo n=16, control n=2). Of these trials, 15 were crossover, 4 had a parallel group and 1 was sequential. The duration of supplementation varied from 2 to 24 weeks and the amount of potassium given from 22 to 140 mmol/day. In the pooled analysis, potassium supplementation caused a small but significant increase in circulating potassium levels (weighted mean difference (WMD) 0.14 mmol/L, 95% CI 0.09 to 0.19, p<1×10−5), not associated with dose or duration of treatment. The average increase in urinary potassium excretion was 45.75 mmol/24 hours, 95% CI 38.81 to 53.69, p<1×10−5. Potassium supplementation did not cause any change in circulating creatinine levels (WMD 0.30 µmol/L, 95% CI −1.19 to 1.78, p=0.70). Conclusions In short-term studies of relatively healthy persons, a moderate oral potassium supplement resulted in a small increase in circulating potassium levels and no change in renal function. PMID:27566636

  19. 40 CFR 721.8100 - Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis (hy-droxy...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis (hy-droxy-ethyl) tal-lo-wa-mine oxide phos-phate. 721.8100... Substances § 721.8100 Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis...

  20. 40 CFR 721.8100 - Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis (hy-droxy...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis (hy-droxy-ethyl) tal-lo-wa-mine oxide phos-phate. 721.8100... Substances § 721.8100 Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis...

  1. 40 CFR 721.8100 - Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis (hy-droxy...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis (hy-droxy-ethyl) tal-lo-wa-mine oxide phos-phate. 721.8100... Substances § 721.8100 Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis...

  2. 40 CFR 721.8100 - Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis (hy-droxy...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis (hy-droxy-ethyl) tal-lo-wa-mine oxide phos-phate. 721.8100... Substances § 721.8100 Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis...

  3. 40 CFR 721.8100 - Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis (hy-droxy...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis (hy-droxy-ethyl) tal-lo-wa-mine oxide phos-phate. 721.8100... Substances § 721.8100 Potassium N,N-bis (hydroxy-ethyl) cocoamine oxide phosphate, and potassium N,N-bis...

  4. Potassium isotope abundances in Australasian tektites and microtektites.

    NASA Astrophysics Data System (ADS)

    Herzog, G. F.; O'D. Alexander, C. M.; Berger, E. L.; Delaney, J. S.; Glass, B. P.

    2008-10-01

    We report electron microprobe determinations of the elemental compositions of 11 Australasian layered tektites and 28 Australasian microtektites; and ion microprobe determinations of the 41K/39K ratios of all 11 tektites and 13 of the microtektites. The elemental compositions agree well with literature values, although the average potassium concentrations measured here for microtektites, 1.1 1.6 wt%, are lower than published average values, 1.9 2.9 wt%. The potassium isotope abundances of the Australasian layered tektites vary little. The average value of δ41K, 0.02 ± 0.12‰ (1σ mean), is indistinguishable from the terrestrial value (= 0 by definition) as represented by our standard, thereby confirming four earlier tektite analyses of Humayun and Koeberl (2004). In agreement with those authors, we conclude that evaporation has significantly altered neither the isotopic nor the elemental composition of Australasian layered tektites for elements less volatile than potassium. Although the average 41K/39K ratio of the microtektites, 1.1 ± 1.7‰ (1σ mean), is also statistically indistinguishable from the value for the standard, the individual ratios vary over a very large range, from -10.6 ± 1.4‰ to +13.8 ± 1.5‰ and at least three of them are significantly different from zero. We interpret these larger variations in terms of the evaporation of isotopically light potassium; condensation of potassium in the vapor plume; partial or complete stirring and quenching of the melts; and the possible uptake of potassium from seawater. That the average 41K/39K ratio of the microtektites equals the terrestrial value suggests that the microtektite-forming system was compositionally closed with respect to potassium and less volatile elements. The possibility remains open that 41K/39K ratios of microtektites vary systematically with location in the strewn field.

  5. Potassium channel distribution in spinal root axons of dystrophic mice.

    PubMed

    Bostock, H; Rasminsky, M

    1983-07-01

    We have used 4-aminopyridine (4AP), a potassium channel blocker, to assess the presence and distribution of potassium channels in the congenitally abnormally myelinated spinal root axons of dystrophic mice. 1 mM-4AP slightly depressed the amplitude but had no effect on the half-width of the monophasic action potential of normal A fibres, indicating the absence of a significant concentration of potassium channels at normal mouse nodes of Ranvier. By progressively increasing stimulus intensity it was possible to elicit three more or less discrete components of the compound action potential from dystrophic mouse spinal roots, presumably corresponding to myelinated fibres, large diameter bare axons and, in the case of dorsal roots, C fibres. The amplitude and duration of all three components were increased on exposure to 4AP, indicating the presence of potassium channels in all types of dystrophic mouse spinal root axons. Conduction in single fibres was studied using longitudinal current analysis. Both saltatory and continuous conduction were observed corresponding to the myelinated and bare portions of dystrophic mouse spinal root axons. Three types of 'nodal' membrane could be inferred from the membrane current recordings from myelinated dystrophic mouse axons: (1) pure sodium channel membrane, (2) membrane containing both sodium and potassium channels, and (3) membrane containing predominantly, if not exclusively, potassium channels. The large early outward currents at the latter two types of nodes suggested that these nodes were wider than normal. Recordings of continuous conduction indicated that potassium channels were also distributed irregularly along bare portions of the dystrophic mouse axons. These abnormalities of ion channel distribution are interpreted as reflecting failure of normal axon-Schwann cell communication in the dystrophic mouse spinal roots. PMID:6310095

  6. Potassium isotopic compositions of NIST potassium standards and 40Ar/39Ar mineral standards

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Tappa, M.; Ellam, R. M.; Mark, D. F.; Lloyd, N. S.; Higgins, J. A.; Simon, J. I.

    2013-12-01

    Knowledge of the isotopic ratios of standards, spikes, and reference materials is fundamental to the accuracy of many geochronological methods. For example, the 238U/235U ratio relevant to U-Pb geochronology was recently re-determined [1] and shown to differ significantly from the previously accepted value employed during age determinations. These underlying values are fundamental to accurate age calculations in many isotopic systems, and uncertainty in these values can represent a significant (and often unrecognized) portion of the uncertainty budget for determined ages. The potassium isotopic composition of mineral standards, or neutron flux monitors, is a critical, but often overlooked component in the calculation of K-Ar and 40Ar/39Ar ages. It is currently assumed that all terrestrial materials have abundances indistinguishable from that of NIST SRM 985 [2]; this is apparently a reasonable assumption at the 0.25‰ level (1σ) [3]. The 40Ar/39Ar method further relies on the assumption that standards and samples (including primary and secondary standards) have indistinguishable 40K/39K values. We will present data establishing the potassium isotopic compositions of NIST isotopic K SRM 985, elemental K SRM 999b, and 40Ar/39Ar biotite mineral standard GA1550 (sample MD-2). Stable isotopic compositions (41K/39K) were measured by the peak shoulder method with high resolution MC-ICP-MS (Thermo Scientific NEPTUNE Plus), using the accepted value of NIST isotopic SRM 985 [2] for fractionation [4] corrections [5]. 40K abundances were measured by TIMS (Thermo Scientific TRITON), using 41K/39K values from ICP-MS measurements (or, for SRM 985, values from [2]) for internal fractionation corrections. Collectively these data represent an important step towards a metrologically traceable calibration of 40K concentrations in primary 40Ar/39Ar mineral standards and improve uncertainties by ca. an order of magnitude in the potassium isotopic compositions of standards. [1] Hiess

  7. Potassium contents of northeastern Thai foods.

    PubMed

    Sriboonlue, P; Prasongwatana, V; Suwantrai, S; Bovornpadungkitti, S; Tungsanga, K; Tosukhowong, P

    1998-08-01

    From our previous nutritional assessment, low potassium (K) intake among northeastern Thai males has been clearly demonstrated. This prompted us to undertake a survey of the K content of local foods. Food samples comprised of 57 animal and 142 plant products which were collected from various places in the northeast of Thailand. The dry ashing method was used to prepare the samples for K analysis using an atomic absorption spectrophotometer. Foods could be divided into 7 groups according to their K levels. Foods containing K > or = 1000 mg per 100 g fresh food were categorized in group 1. These were mainly foods in the legume group, i.e., soybean, cowpea and mungbean. While rice (polished) and rice products, the main staple, were in group 7, the lowest K group of less than 100 mg per 100 g fresh food. Comparison studies of the natural foods between those collected from the northeast and from the central regions of the country, and between the cooked foods purchased from the rural villages and from the urban areas of Khon Kaen municipality, showed that, for most food items, the K content was similar wherever it came from. However, when the K content in various parts or in different stages of growth of the same kind of plants or animals was compared, a great variation was clearly seen, for example, young tamarind leaves contained K in group 6 whereas ripe tamarind fruit contained K in group 1. According to our food consumption data, the analysis of food components of 48 meals taken during the hot season by 13 rural volunteers revealed that food items eaten with the highest frequencies and in the largest amount were those in the low K food groups, i.e., glutinous rice (group 7) and green papaya (group 6). Our results suggest that the low K intake of these northeast rural Thai people is not due to a low K content of foods in this region, but rather that their food habits and low socioeconomic status restricts consumption of those food items with higher K contents. PMID

  8. 40 CFR 49.9901-49.9920 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Tribes of the Chehalis Reservation, Washington §§ 49.9901-49.9920 Implementation Plan for the Coeur D'Alene Tribe of the Coeur D'Alene Reservation, Idaho Source: 70 FR 18111, Apr. 8, 2005, unless...

  9. 40 CFR 49.10471-49.10490 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Nooksack Indian Tribe of Washington §§ 49.10471-49.10490 Implementation Plan for the Port Gamble Indian Community of the Port Gamble Reservation, Washington Source: 70 FR 18122, Apr. 8, 2005, unless...

  10. Nonequilibrium boundary layer of potassium-seeded combustion products

    SciTech Connect

    Benilov, M.S.; Pozdeev, P.A.; Rogov, B.V.; Sinel'shchikov, V.A. . Inst. for High Temperatures)

    1994-09-01

    Results are reported from numerical modeling and experimental study of a chemically reacting boundary layer, formed on a body inserted into a stream of potassium-seeded combustion products of gaseous hydrocarbon fuels. The numerical model developed in previous work is modified to incorporate current data on potassium chemical kinetics. The temperature and potassium atom number density profiles are measured across the boundary layer formed on a cylindrical specimen of Al[sub 2]O[sub 3] dense ceramics by flow of combustion products of a propane-air mixture. The numerical results are compared with present experimental data as well as those available from the literature. The comparison is carried out for a broad range of experimental conditions including the postflame burned-gas region, and the boundary layers on a cylinder and on a flat plate. It provides verification of the proposed model, revision of the rate constants of some reactions of potassium-containing species, and supports the value of potassium superoxide dissociation energy of 247 kJ/mol.

  11. Prognostic Utility of Serum Potassium in Chronic Digoxin Toxicity

    PubMed Central

    Manini, Alex F.; Nelson, Lewis S.; Hoffman, Robert S.

    2016-01-01

    Objective In contrast to patients with acute digoxin overdose, the prognostic utility of the serum potassium concentration for patients with chronic digoxin toxicity is unclear. In such patients, we aimed to evaluate the relationship between pre-treatment serum potassium and survival. Methods This was a case-control study at an urban Poison Control Center affiliated with a large urban medical center. We compared the serum potassium concentration between patients with chronic digoxin toxicity resulting in fatality (cases) over a 7-year period (2000–2006) versus survivors (controls) over a 1-year period (2007–2008). Results During the study period, there were 13 fatalities (cases) and 13 survivors (controls), of whom seven cases and five controls received appropriately dosed digoxin-specific antibody Fab fragments (Fab). There were no statistically significant differences between cases and controls with respect to serum digoxin concentration, creatinine, age, or sex. Serum potassium elevation pre-Fab was significantly associated with fatality both in mean difference (p < 0.03) and using a dichotomous cutoff of 5.0 mEq/L (p < 0.001), which performed with 92% sensitivity (95% CI 67, 99). In 86% of deaths despite appropriate Fab administration, the clinical presentation included the combination of bradycardia plus hyperkalemia. Conclusion In these patients with chronic digoxin toxicity, elevated serum potassium was associated with fatality. The combination of bradycardia and hyperkalemia strongly predicted fatality even in cases with appropriate Fab administration. PMID:21619380

  12. Potassium acceptor doping of ZnO crystals

    SciTech Connect

    Parmar, Narendra S. Lynn, K. G.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-05-15

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ∼1 × 10{sup 16} cm{sup −3}. IR measurements show a local vibrational mode (LVM) at 3226 cm{sup −1}, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O–H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm{sup −1}. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  13. Solid contact potassium selective electrodes for biomedical applications - a review.

    PubMed

    van de Velde, L; d'Angremont, E; Olthuis, W

    2016-11-01

    Ion-selective electrodes (ISE) are used in several biomedical applications, including laboratory sensing of potassium concentration in blood and urine samples. For on-site determination of potassium concentration and usage in other applications such as determination of extracellular potassium concentration, miniaturization of the sensors is required. To that extent, solid contacts have proven to be an adequate substitute of liquid contacts as inner layer for ion-to-electron transduction, allowing industrial production of miniaturized ISEs. This review paper covers relevant developments of solid-state ISEs in the past decade, critically compares current potassium ISEs and discusses future prospects for biomedical applications. Performances of three main types of solid contact materials in potassium sensing are compared, namely polypyrrole, polythiophenes and conducting nanomaterials. With these new materials, numerous improvements in stability, selectivity and time response of solid-state ISEs have been made. Current developments are new operational methods of sensing, flexible miniaturized sensors and multi-electrode designs able to measure electrolyte concentrations in one-drop blood samples or transmembrane ionic flows. PMID:27591587

  14. Potassium acceptor doping of ZnO crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra S.; Corolewski, Caleb D.; McCluskey, Matthew D.; Lynn, K. G.

    2015-05-01

    ZnO bulk single crystals were doped with potassium by diffusion at 950°C. Positron annihilation spectroscopy confirms the filling of zinc vacancies and a different trapping center for positrons. Secondary ion mass spectroscopy measurements show the diffusion of potassium up to 10 μm with concentration ˜1 × 1016 cm-3. IR measurements show a local vibrational mode (LVM) at 3226 cm-1, at a temperature of 9 K, in a potassium doped sample that was subsequently hydrogenated. The LVM is attributed to an O-H bond-stretching mode adjacent to a potassium acceptor. When deuterium substitutes for hydrogen, a peak is observed at 2378 cm-1. The O-H peak is much broader than the O-D peak, perhaps due to an unusually low vibrational lifetime. The isotopic frequency ratio is similar to values found in other hydrogen complexes. Potassium doping increases the resistivity up to 3 orders of magnitude at room temperature. The doped sample has a donor level at 0.30 eV.

  15. Both barium and calcium activate neuronal potassium currents.

    PubMed Central

    Ribera, A B; Spitzer, N C

    1987-01-01

    Amphibian spinal neurons in culture possess both rapidly inactivating and sustained calcium-dependent potassium current components, similar to those described for other cells. Divalent cation-dependent whole-cell outward currents were isolated by subtracting the voltage-dependent potassium currents recorded from Xenopus laevis neurons in the presence of impermeant cadmium (100-500 microM) from the currents produced without cadmium but in the presence of permeant divalent cations (50-100 microM). These concentrations of permeant ions were low enough to avoid contamination by macroscopic inward currents through calcium channels. Calcium-dependent potassium currents were reduced by 1 microM tetraethylammonium. These currents can also be activated by barium or strontium. Barium as well as calcium activated outward currents in young neurons (6-8 hr) and in relatively mature neurons (19-26 hr in vitro). However, barium influx appeared to suppress the sustained voltage-dependent potassium current in most cells. Barium also activated at least one class of potassium channels observed in excised membrane patches, while blocking others. The blocking action may have masked and hindered detection of the stimulatory action of barium in other systems. PMID:2442762

  16. 49 CFR 230.49 - Setting of safety relief valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Setting of safety relief valves. 230.49 Section... Appurtenances Safety Relief Valves § 230.49 Setting of safety relief valves. (a) Qualifications of individual who adjusts. Safety relief valves shall be set and adjusted by a competent person who is...

  17. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  18. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  19. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  20. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  1. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  2. 49 CFR 230.49 - Setting of safety relief valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Setting of safety relief valves. 230.49 Section... Appurtenances Safety Relief Valves § 230.49 Setting of safety relief valves. (a) Qualifications of individual who adjusts. Safety relief valves shall be set and adjusted by a competent person who is...

  3. 49 CFR 230.49 - Setting of safety relief valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Setting of safety relief valves. 230.49 Section... Appurtenances Safety Relief Valves § 230.49 Setting of safety relief valves. (a) Qualifications of individual who adjusts. Safety relief valves shall be set and adjusted by a competent person who is...

  4. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Control valves for brakes. 393.49 Section 393.49 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS PARTS AND...

  5. 49 CFR 393.49 - Control valves for brakes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Control valves for brakes. 393.49 Section 393.49 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS PARTS AND...

  6. Effect of chronic potassium loading on potassium secretion by the pars recta or descending limb of the juxtamedullary nephron in the rat.

    PubMed Central

    Battilana, C A; Dobyan, D C; Lacy, F B; Bhattacharya, J; Johnston, P A; Jamison, R L

    1978-01-01

    Recently we demonstrated potassium secretion by the pars recta or by the descending limb of the juxtamedullary nephron. The purpose of this present investigation is to study the effect of a chronic high-potassium intake on this phenomenon. Fractional reabsorption of water and sodium by the juxtamedullary proximal nephron was decreased when compared to that in normal hydropenic rats. There was a striking increase in the fraction of filtered potassium at the end of the juxtamedullary descending limb from 94+/11% to 180+/18%, which was principally a result of enhanced potassium secretion. When the concentration of potassium in the collecting tubule fluid of potassium-loaded rats was reduced after the administration of amiloride, a sharp fall was observed in the amount of potassium which reached the end of the descending limb (64+/8%). A direct correlation was observed between the fraction of filtered potassium at the descending limb and the potassium concentration in the final urine (P less than 0.001). The findings suggest that potassium, like urea, normally undergoes medullary recycling, which is enhanced by chronic potassium loading. PMID:711855

  7. Errors in Potassium Measurement: A Laboratory Perspective for the Clinician

    PubMed Central

    Asirvatham, Jaya R; Moses, Viju; Bjornson, Loring

    2013-01-01

    Errors in potassium measurement can cause pseudohyperkalemia, where serum potassium is falsely elevated. Usually, these are recognized either by the laboratory or the clinician. However, the same factors that cause pseudohyperkalemia can mask hypokalemia by pushing measured values into the reference interval. These cases require a high-index of suspicion by the clinician as they cannot be easily identified in the laboratory. This article discusses the causes and mechanisms of spuriously elevated potassium, and current recommendations to minimize those factors. “Reverse” pseudohyperkalemia and the role of correction factors are also discussed. Relevant articles were identified by a literature search performed on PubMed using the terms “pseudohyperkalemia,” “reverse pseudohyperkalemia,” “factitious hyperkalemia,” “spurious hyperkalemia,” and “masked hypokalemia.” PMID:23724399

  8. PRE-ORE POTASSIUM METASOMATISM, CREEDE MINING DISTRICT, COLORADO.

    USGS Publications Warehouse

    Bethke, P.M.; Rye, R.O.; Barton, P.B., Jr.

    1985-01-01

    Rhyolitic welded-tuff wallrocks of the epithermal base and precious metal veins of the Creede district were pervasively altered by the addition of more than two billion metric tons of potassium some 1. 5-2 million years before mineralization. Sodium, calcium and magnesium were strongly depleted, yielding a nearly binary quartz plus potassium feldspar assemblage containing as much as 13 weight percent K//2O. This large-scale metasomatism, originally noted by Steven and Rattle (1965), took place progressively by initial alteration of plagioclase phenocrysts to orthoclase or microcline followed by alteration of the groundmass feldspar to orthoclase and gradual change of the sanidine phenocrysts to more Or-rich compositions. Oxygen isotope and chemical studies show that the metasomatism resulted from the interaction of the tuffs with deeply circulating heated ground water and suggest that the potassium metasomatism of rhyolitic rocks is the facies equivalent of propylitization of volcanic rocks of more basic composition.

  9. Electromagnetically Induced Transparency in Potassium Vapors: Features and Restrictions

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Petrov, P. A.; Vartanyan, T. A.; Sarkisyan, D.

    2016-03-01

    Features of electromagnetically induced transparency (EIT) in potassium vapors at the D1 line of the 39K isotope are studied. EIT resonances with a subnatural width of 3.5 MHz have been recorded upon excitation by two independent narrow-band diode lasers in a 1-cm-long cell filled with a natural mixture of potassium isotopes and buffer gas. The splitting of EIT resonances in potassium vapors in longitudinal and transverse magnetic fields has been studied for the first time. The splitted components also have a subnatural width. The smallness of the coupling factor of the hyperfine structure in 39K atoms leads to a transition to the Paschen—Back regime at relatively weaker magnetic fields than in the case of Cs, Rb, and Na atoms. Practical applications of the phenomena under study are noted. The theoretical model well explains the experiment.

  10. Tapered fiber optic sensor for potassium detection in distilled water

    NASA Astrophysics Data System (ADS)

    Yasin, M.; Pujiyanto, .; Apsari, R.; Tanjung, M.

    2015-01-01

    A simple sensor is proposed and demonstrated using a silica tapered fiber for sensing different concentration of potassium in de-ionized water. The tapered fiber is fabricated using a flame brushing technique to achieve a waist diameter and length of 10 μm and 80 mm, respectively. For a concentration change from 0 to 50 %, the ouput signal of the sensor decreases exponentially from -10.04 dBm to -11.11 dBm with linearity of more than 92%. The increment of potassium concentration increases the refractive index of the solution, which in turn reduces the index difference between core and cladding of the tapered fiber and thus allows more light to be leaked out from the fiber. This new potassium monitoring system provides numerous advantages such as simplicity of design and low cost of production.

  11. The short range of the electronic promoter effect of potassium

    NASA Astrophysics Data System (ADS)

    Markert, K.; Wandelt, K.

    1985-08-01

    Photoemission of Adsorbed Xenon atoms (PAX) as a local work function probe is used to investigate the range of the electronic promoter effect of potassium submonolayers on a Ru(001) surface. Three Xe states on these bimetallic K/Ru surfaces are clearly distinguishable by their 5p photoemission and are associated with Xe probe atoms at basically unmodified Ru sites, at "mixed" K.Ru sites next to K ions, and on top of potassium, respectively. From the relative intensities of these three states as well as from their 5p electron binding energies as a function of potassium coverage it is concluded that the radius of the "sphere" of modified charge density around one K ion is ˜ 6 Å.

  12. Femtosecond laser fluorescence and propagation in very dense potassium vapor.

    PubMed

    Makdisi, Y; Kokaj, J; Afrousheh, K; Nair, R; Mathew, J; Pichler, G

    2013-12-16

    Femtosecond (fs) laser propagation and fluorescence of dense potassium vapor was studied, and the spectral region around the first and the second doublets of the principal series lines of potassium atoms was investigated. In our search we did not observe the conical emission in the far field, although it was previously observed in the case of rubidium. We discuss the possible reason of this unexpected result. The fluorescence spectrum revealed Rb impurity resonance lines in emission due to the collisional redistribution from the K(4p) levels into the Rb(5p) levels. In the forward propagation of 400 nm femtosecond light we observed the molecular band red shifted from potassium second doublet. However, no molecular spectrum was observed when the mode-locked fs laser light was discretely tuned within the wings of the first resonance lines, at 770 nm. PMID:24514609

  13. [Determination of potassium in sodium by flame atomic emission spectroscopy].

    PubMed

    Xie, C; Wen, X; Jia, Y; Sun, S

    2001-06-01

    Sodium is used as a coolant in China experiment fast reactor (CEFR). Potassium in sodium has an influence on heat property of reactor. A analytical method has been developed to determinate potassium in sodium by flame atomic emission spectroscopy. Sodium sample is dissolved by ultrasonic humidifier. The working conditions of the instrument and inTerferences from matrix sodium, acid effect and concomitant elements have been studied. Standard addition experiments are carried out with potassium chloride. The percentage recoveries are 94.7%-109.8%. The relative standard deviation is 4.2%. The analytical range accords with sodium quality control standard of CFFR. The precision corresponds to the international analytical method in sodium coolant reactor. PMID:12947670

  14. 49 CFR - Unknown Title

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Section Transportation Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS FEDERAL MOTOR CARRIER SAFETY REGULATIONS; GENERAL Unified Registration...

  15. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    SciTech Connect

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  16. Euthanasia by CO₂ inhalation affects potassium levels in mice.

    PubMed

    Traslavina, Ryan P; King, Edward J; Loar, Andrew S; Riedel, Elyn R; Garvey, Michael S; Ricart-Arbona, Rodolfo; Wolf, Felix R; Couto, Suzana S

    2010-05-01

    We and others frequently have noted serum potassium levels of 8.0 +/- 0.85 mEq/L or greater in laboratory mice; this concentration has even been published as the upper limit of a 'normal' reference range. However, if bone fide, this potassium concentration would be incompatible with life in all species. We investigated conditions frequently encountered in the research setting to distinguish artifactual from true hyperkalemia. Variables evaluated included site of collection, time allowed for clot formation before serum separation, time elapsed between collection and analysis of samples collected in a serum separator tube, precollection method of anesthesia, and euthanasia technique. Serum potassium was measured from 75 C57BL/6NTac 10-wk-old female mice and divided into at least 5 mice per variable. Animals were euthanized by exsanguination immediately after terminal CO₂ or ketamine-xylazine (KX) administration. Mice euthanized with CO₂ had higher mean serum potassium (7.0 +/- 0.5 mEq/L) and range serum potassium (6.0 to 8.1 mEq/L) than did KX-treated mice. CO₂ inhalation resulted in significantly lower blood pH (6.9 +/- 0.1), higher pCO₂ (153.3 +/- 38.8 mm Hg), and higher lactate levels (3.9 +/- 0.9 mmol/L) than did KX anesthesia followed by exsanguination. These results suggest that antemortem respiratory acidosis from CO₂ administration causes artifactual hyperkalemia in mice. Therefore, blood collection under KX anesthesia is preferable over CO₂ inhalation to obtain accurate potassium values from mice. PMID:20587163

  17. Potassium kinetics in heavily seeded atmospheric pressure laminar methane flames

    SciTech Connect

    Slack, M.; Cox, J.W.; Grillo, A.; Ryan, R. )

    1989-09-01

    Hydroxl radical decay rates were measured in laminar atmospheric pressure CH/sub 4//O/sub 2-/N/sub 2-/Ar flames (phi=0.85-1.1) with and without the addition of potassium (mole fractions up to 3.6 x 10/sup -4/). Flames were stabilized on a flat-flame burner shrouded by nitrogen. OH number density profiles were determined from laser absorption at 309.28nm (A-X, O-O Q/sub 2/(6)). Potassium profiles were obtained from laser absorption on the 404.53-nm transition. Addition of potassium was observed to accelerate the OH decay rate, with the additive influence being most pronounced at higher equivalence ratios. The influence of {Kappa} was nonlinear, and increasing seeding levels produced progressively less acceleration of the OH decay rate. The measured potassium atom number density decayed slowly with distance above the burner for fuel-rich conditions but decayed rapidly in lean flames. Potassium reaction mechanisms were tested against the experimental data in a series of numerical simulations. Based on a best fit to the experimental data, a rate coefficient for K + OH + M {yields} KOH + M was estimated as 5 X 10/sup 32/cm/sup 6/molec/sup -2/s/sup -1/ at 2000{Kappa}. A two-reaction model suggested by Jensen appears to be a global approximation of the above mechanism. also, addition of sodium to a phi=1.1 flame produced an OH decay profile indistinguishable from that measured with potassium seeding, suggesting similar chemistry for both alkali metals.

  18. Modulation of Cardiac Potassium Current by Neural Tone and Ischemia.

    PubMed

    Tomson, Todd T; Arora, Rishi

    2016-06-01

    The cardiac action potential is generated by intricate flows of ions across myocyte cell membranes in a coordinated fashion to control myocardial contraction and the heart rhythm. Modulation of the flow of these ions in response to a variety of stimuli results in changes to the action potential. Abnormal or altered ion currents can result in cardiac arrhythmias. Abnormalities of autonomic regulation of potassium current play a role in the genesis of cardiac arrhythmias, and alterations in acetylcholine-activated potassium channels may play a key role in atrial fibrillation. Ischemia is another important modulator of cardiac cellular electrophysiology. PMID:27261826

  19. Lunar Sodium and Potassium Exosphere in May 2014

    NASA Astrophysics Data System (ADS)

    Oliversen, R. J.; Kuruppuaratchi, D. C. P.; Mierkiewicz, E. J.; Derr, N. J.; Rosborough, S.; Gallant, M. A.; Roesler, F. L.

    2015-12-01

    We apply high resolution spectroscopy to investigate the lunar exosphere by measuring sodium and potassium spectral line profiles to determine the variations in exospheric effective temperatures and velocities. Observations were made at the National Solar Observatory McMath-Pierce Telescope during May 2014. Data were collected over several nights, centered on full moon (May 14) and covering a waxing phase angle of 67° to a waning phase angle of 75°. We used a dual-etalon Fabry-Perot spectrometer with a resolving power of 184,000 (1.63 km s-1) to measure the line widths and radial velocity shifts of the sodium D2 (5889.951 Å) and potassium D1 (7698.965 Å) emission lines. The field of view was 3 arcmin (~330 km) and positioned at several locations, each centered at 1.5 arcmin (~165 km) off the East and West sunlit limbs. The deconvolved line widths indicate significant differences between the sodium and potassium temperatures. The sodium line widths were mostly symmetric as a function of phase for both the waxing and waning phases. At phase angles > 40º (outside of the magnetotail) the full width half maximum (FWHM) line widths are 1.5 - 2.0 km s-1 or ~1500 K for FWHM = 1.75 km s-1. Inside the magnetotail (phase angle < 40º) and near full moon (phase angle ~6°), the FWHM increased to ~4 km s-1. The implied line width temperature is 8000 K, although some of the observed line width may be due to a dispersion in velocities from many contribution along the extended sodium tail. Unlike sodium, the potassium line widths are wider by 50% during the waxing phase compared to the waning phase at phases > 40º. The potassium temperatures pre-magnetotail passage are ~1000 K while the temperatures post-magnetotail passage are ~2000K. At phase angles < 40º, the potassium intensities decreased dramatically; on consecutive days, when the phase angle changed from 44º to 31º to 20º, the relative intensities dropped by 1.0:0.6:0.15. The potassium intensity in the East and

  20. Geometric and electronic structures of potassium-adsorbed rubrene complexes

    SciTech Connect

    Li, Tsung-Lung; Lu, Wen-Cai

    2015-06-28

    The geometric and electronic structures of potassium-adsorbed rubrene complexes are studied in this article. It is found that the potassium-rubrene (K{sub 1}RUB) complexes inherit the main symmetry characteristics from their pristine counterparts and are thus classified into D{sub 2}- and C{sub 2h}-like complexes according to the relative orientations of the four phenyl side groups. The geometric structures of K{sub 1}RUB are governed by two general effects on the total energy: Deformation of the carbon frame of the pristine rubrene increases the total energy, while proximity of the potassium ion to the phenyl ligands decreases the energy. Under these general rules, the structures of D{sub 2}- and C{sub 2h}-like K{sub 1}RUB, however, exhibit their respective peculiarities. These peculiarities can be illustrated by their energy profiles of equilibrium structures. For the potassium adsorption-sites, the D{sub 2}-like complexes show minimum-energy basins, whereas the C{sub 2h}-like ones have single-point minimum-energies. If the potassium atom ever has the energy to diffuse from the minimum-energy site, the potassium diffusion path on the D{sub 2}-like complexes is most likely along the backbone in contrast to the C{sub 2h}-like ones. Although the electronic structures of the minimum-energy structures of D{sub 2}- and C{sub 2h}-like K{sub 1}RUB are very alike, decompositions of their total spectra reveal insights into the electronic structures. First, the spectral shapes are mainly determined by the facts that, in comparison with the backbone carbons, the phenyl carbons have more uniform chemical environments and far less contributions to the electronic structures around the valence-band edge. Second, the electron dissociated from the potassium atom mainly remains on the backbone and has little effects on the electronic structures of the phenyl groups. Third, the two phenyls on the same side of the backbone as the potassium atom have more similar chemical environments