Science.gov

Sample records for potassium channel kzm1

  1. Potassium Channels in Epilepsy.

    PubMed

    Köhling, Rüdiger; Wolfart, Jakob

    2016-01-01

    This review attempts to give a concise and up-to-date overview on the role of potassium channels in epilepsies. Their role can be defined from a genetic perspective, focusing on variants and de novo mutations identified in genetic studies or animal models with targeted, specific mutations in genes coding for a member of the large potassium channel family. In these genetic studies, a demonstrated functional link to hyperexcitability often remains elusive. However, their role can also be defined from a functional perspective, based on dynamic, aggravating, or adaptive transcriptional and posttranslational alterations. In these cases, it often remains elusive whether the alteration is causal or merely incidental. With ∼80 potassium channel types, of which ∼10% are known to be associated with epilepsies (in humans) or a seizure phenotype (in animals), if genetically mutated, a comprehensive review is a challenging endeavor. This goal may seem all the more ambitious once the data on posttranslational alterations, found both in human tissue from epilepsy patients and in chronic or acute animal models, are included. We therefore summarize the literature, and expand only on key findings, particularly regarding functional alterations found in patient brain tissue and chronic animal models. PMID:27141079

  2. Targeting potassium channels in cancer

    PubMed Central

    2014-01-01

    Potassium channels are pore-forming transmembrane proteins that regulate a multitude of biological processes by controlling potassium flow across cell membranes. Aberrant potassium channel functions contribute to diseases such as epilepsy, cardiac arrhythmia, and neuromuscular symptoms collectively known as channelopathies. Increasing evidence suggests that cancer constitutes another category of channelopathies associated with dysregulated channel expression. Indeed, potassium channel–modulating agents have demonstrated antitumor efficacy. Potassium channels regulate cancer cell behaviors such as proliferation and migration through both canonical ion permeation–dependent and noncanonical ion permeation–independent functions. Given their cell surface localization and well-known pharmacology, pharmacological strategies to target potassium channel could prove to be promising cancer therapeutics. PMID:25049269

  3. 1990: Annus Mirabilis of Potassium Channels

    NASA Astrophysics Data System (ADS)

    Miller, Christopher

    1991-05-01

    Voltage-gated potassium channels make up a large mo- lecular family of integral membrane proteins that are fundamentally involved in the generation of bioelectric signals such as nerve impulses. These proteins span the cell membrane, forming potassium-selective pores that are rapidly switched open or closed by changes in mem- brane voltage. After the cloning of the first potassium channel over 3 years ago, recombinant DNA manipula- tion of potassium channel genes is now leading to a molecular understanding of potassium channel behavior. During the past year, functional domains responsible for channel gating and potassium selectivity have been iden- tiffed, and detailed structural pictures underlying these functions are beginning to emerge.

  4. Clofilium inhibits Slick and Slack potassium channels

    PubMed Central

    de los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na+ and Cl−, and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels. PMID:23271893

  5. Polyamine Block of Inwardly Rectifying Potassium Channels

    PubMed Central

    Kurata, Harley T.; Cheng, Wayland W.L.; Nichols, Colin G.

    2011-01-01

    Polyamine blockade of inwardly rectifying potassium (Kir) channels underlies their steep voltage-dependence observed in native cells. The structural determinants of polyamine blockade and the structure-activity profile of endogenous polyamines requires specialized methodology for characterizing polyamine interactions with Kir channels. Recent identification and growing interest in the structure and function of prokaryotic Kir channels (KirBacs) has driven the development of new techniques for measuring ion channel activity. Several methods for measuring polyamine interactions with prokaryotic and eukaryotic Kir channels are discussed. PMID:21318869

  6. Single-Channel Properties of IKs Potassium Channels

    PubMed Central

    Yang, Youshan; Sigworth, Fred J.

    1998-01-01

    Expressed in Xenopus oocytes, KvLQT1 channel subunits yield a small, rapidly activating, voltage- dependent potassium conductance. When coexpressed with the minK gene product, a slowly activating and much larger potassium current results. Using fluctuation analysis and single-channel recordings, we have studied the currents formed by human KvLQT1 subunits alone and in conjunction with human or rat minK subunits. With low external K+, the single-channel conductances of these three channel types are estimated to be 0.7, 4.5, and 6.5 pS, respectively, based on noise analysis at 20 kHz bandwidth of currents at +50 mV. Power spectra computed over the range 0.1 Hz–20 kHz show a weak frequency dependence, consistent with current interruptions occurring on a broad range of time scales. The broad spectrum causes the apparent single-channel current value to depend on the bandwidth of the recording, and is mirrored in very “flickery” single-channel events of the channels from coexpressed KvLQT1 and human minK subunits. The increase in macroscopic current due to the presence of the minK subunit is accounted for by the increased apparent single-channel conductance it confers on the expressed channels. The rat minK subunit also confers the property that the outward single-channel current is increased by external potassium ions. PMID:9834139

  7. Pharmacogenetics of Potassium Channel Blockers.

    PubMed

    Roden, Dan M

    2016-06-01

    The QT interval on surface electrocardiograms provides a model of a multicomponent integrated readout of many biological systems, including ion channels, modulatory subunits, signaling systems that modulate their activity, and mechanisms that regulate the expression of their responsible genes. The problem of drug exposure causing exaggerated QT interval prolongation and torsades de pointes highlights the multicomponent nature of cardiac repolarization and the way in which simple perturbations can yield exaggerated responses. Future directions will involve cellular approaches coupled to evolving technologies that can interrogate multicellular systems and provide a sophisticated view of mechanisms in this previously idiosyncratic drug reaction. PMID:27261829

  8. Sea Anemone Toxins Affecting Potassium Channels

    NASA Astrophysics Data System (ADS)

    Diochot, Sylvie; Lazdunski, Michel

    The great diversity of K+ channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of toxins acting on voltage-sensitive sodium and, more recently, potassium channels. Currently there are three major structural groups of sea anemone K+ channel (SAK) toxins that have been characterized. Radioligand binding and electrophysiological experiments revealed that each group contains peptides displaying selective activities for different subfamilies of K+ channels. Short (35-37 amino acids) peptides in the group I display pore blocking effects on Kv1 channels. Molecular interactions of SAK-I toxins, important for activity and binding on Kv1 channels, implicate a spot of three conserved amino acid residues (Ser, Lys, Tyr) surrounded by other less conserved residues. Long (58-59 amino acids) SAK-II peptides display both enzymatic and K+ channel inhibitory activities. Medium size (42-43 amino acid) SAK-III peptides are gating modifiers which interact either with cardiac HERG or Kv3 channels by altering their voltage-dependent properties. SAK-III toxins bind to the S3C region in the outer vestibule of Kv channels. Sea anemones have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of autoimmune diseases.

  9. Modulation of Potassium Channels Inhibits Bunyavirus Infection.

    PubMed

    Hover, Samantha; King, Barnabas; Hall, Bradley; Loundras, Eleni-Anna; Taqi, Hussah; Daly, Janet; Dallas, Mark; Peers, Chris; Schnettler, Esther; McKimmie, Clive; Kohl, Alain; Barr, John N; Mankouri, Jamel

    2016-02-12

    Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K(+)) channels to infect cells. Time of addition assays using K(+) channel modulating agents demonstrated that K(+) channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K(+) channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K(+) channels (K2P) were identified as the K(+) channel family mediating BUNV K(+) channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease. PMID:26677217

  10. Modulation of Potassium Channels Inhibits Bunyavirus Infection*

    PubMed Central

    Hover, Samantha; King, Barnabas; Hall, Bradley; Loundras, Eleni-Anna; Taqi, Hussah; Daly, Janet; Dallas, Mark; Peers, Chris; Schnettler, Esther; McKimmie, Clive; Kohl, Alain; Barr, John N.; Mankouri, Jamel

    2016-01-01

    Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K+) channels to infect cells. Time of addition assays using K+ channel modulating agents demonstrated that K+ channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K+ channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K+ channels (K2P) were identified as the K+ channel family mediating BUNV K+ channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease. PMID:26677217

  11. Potassium ion channels and allergic asthma.

    PubMed

    Kocmalova, M; Oravec, M; Adamkov, M; Sadlonova, V; Kazimierova, I; Medvedova, I; Joskova, M; Franova, S; Sutovska, M

    2015-01-01

    High-conductive calcium-sensitive potassium channels (BK+Ca) and ATP-sensitive potassium (K+ATP) channels play a significant role in the airway smooth muscle cell and goblet cell function, and cytokine production. The present study evaluated the therapeutic potential of BK+Ca and K+ATP openers, NS 1619 and pinacidil, respectively, in an experimental model of allergic inflammation. Airway allergic inflammation was induced with ovalbumine in guinea pigs during 21 days, which was followed by a 14-day treatment with BK+Ca and K+ATP openers. The outcome measures were airway smooth muscle cells reactivity in vivo and in vitro, cilia beating frequency and the level of exhaled NO (ENO), and the level of pro-inflammatory cytokines in the plasma and bronchoalveolar lavage fluid. The openers of both channels decreased airway smooth muscle cells reactivity, cilia beating frequency, and cytokine levels in the serum. Furthermore, NS1619 reduced ENO and inflammatory cells infiltration. The findings confirmed the presence of beneficial effects of BK+Ca and K+ATP openers on airway defence mechanisms. Although both openers dampened pro-inflammatory cytokines and mast cells infiltration, an evident anti-inflammatory effect was provided only by NS1619. Therefore, we conclude that particularly BK+Ca channels represent a promising new drug target in treatment of airway's allergic inflammation. PMID:25315623

  12. What do we not know about mitochondrial potassium channels?

    PubMed

    Laskowski, Michał; Augustynek, Bartłomiej; Kulawiak, Bogusz; Koprowski, Piotr; Bednarczyk, Piotr; Jarmuszkiewicz, Wieslawa; Szewczyk, Adam

    2016-08-01

    In this review, we summarize our knowledge about mitochondrial potassium channels, with a special focus on unanswered questions in this field. The following potassium channels have been well described in the inner mitochondrial membrane: ATP-regulated potassium channel, Ca(2+)-activated potassium channel, the voltage-gated Kv1.3 potassium channel, and the two-pore domain TASK-3 potassium channel. The primary functional roles of these channels include regulation of mitochondrial respiration and the alteration of membrane potential. Additionally, they modulate the mitochondrial matrix volume and the synthesis of reactive oxygen species by mitochondria. Mitochondrial potassium channels are believed to contribute to cytoprotection and cell death. In this paper, we discuss fundamental issues concerning mitochondrial potassium channels: their molecular identity, channel pharmacology and functional properties. Attention will be given to the current problems present in our understanding of the nature of mitochondrial potassium channels. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26951942

  13. Extracellular potassium inhibits Kv7.1 potassium channels by stabilizing an inactivated state.

    PubMed

    Larsen, Anders Peter; Steffensen, Annette Buur; Grunnet, Morten; Olesen, Søren-Peter

    2011-08-17

    Kv7.1 (KCNQ1) channels are regulators of several physiological processes including vasodilatation, repolarization of cardiomyocytes, and control of secretory processes. A number of Kv7.1 pore mutants are sensitive to extracellular potassium. We hypothesized that extracellular potassium also modulates wild-type Kv7.1 channels. The Kv7.1 currents were measured in Xenopus laevis oocytes at different concentrations of extracellular potassium (1-50 mM). As extracellular potassium was elevated, Kv7.1 currents were reduced significantly more than expected from theoretical calculations based on the Goldman-Hodgkin-Katz flux equation. Potassium inhibited the steady-state current with an IC(50) of 6.0 ± 0.2 mM. Analysis of tail-currents showed that potassium increased the fraction of channels in the inactivated state. Similarly, the recovery from inactivation was slowed by potassium, suggesting that extracellular potassium stabilizes an inactivated state in Kv7.1 channels. The effect of extracellular potassium was absent in noninactivating Kv7.1/KCNE1 and Kv7.1/KCNE3 channels, further supporting a stabilized inactivated state as the underlying mechanism. Interestingly, coexpression of Kv7.1 with KCNE2 did not attenuate the inhibition by potassium. In a number of other Kv channels, including Kv1.5, Kv4.3, and Kv7.2-5 channels, currents were only minimally reduced by an increase in extracellular potassium as expected. These results show that extracellular potassium modulates Kv7.1 channels and suggests that physiological changes in potassium concentrations may directly control the function of Kv7.1 channels. This may represent a novel regulatory mechanism of excitability and of potassium transport in tissues expressing Kv7.1 channels. PMID:21843472

  14. Proteinase inhibitor homologues as potassium channel blockers.

    PubMed

    Lancelin, J M; Foray, M F; Poncin, M; Hollecker, M; Marion, D

    1994-04-01

    We report here the NMR structure of dendrotoxin I, a powerful potassium channel blocker from the venom of the African Elapidae snake Dendroaspis polylepis polylepis (black mamba), calculated from an experimentally-derived set of 719 geometric restraints. The backbone of the toxin superimposes on bovine pancreatic trypsin inhibitor (BPTI) with a root-mean-square deviation of < 1.7 A. The surface electrostatic potential calculated for dendrotoxin I and BPTI, reveal an important difference which might account for the differences in function of the two proteins. These proteins may provide examples of adaptation for specific and diverse biological functions while at the same time maintaining the overall three-dimensional structure of a common ancestor. PMID:7544683

  15. Bioinspired Artificial Sodium and Potassium Ion Channels.

    PubMed

    Rodríguez-Vázquez, Nuria; Fuertes, Alberto; Amorín, Manuel; Granja, Juan R

    2016-01-01

    In Nature, all biological systems present a high level of compartmentalization in order to carry out a wide variety of functions in a very specific way. Hence, they need ways to be connected with the environment for communication, homeostasis equilibrium, nutrition, waste elimination, etc. The biological membranes carry out these functions; they consist of physical insulating barriers constituted mainly by phospholipids. These amphipathic molecules spontaneously aggregate in water to form bilayers in which the polar groups are exposed to the aqueous media while the non-polar chains self-organize by aggregating to each other to stay away from the aqueous media. The insulating properties of membranes are due to the formation of a hydrophobic bilayer covered at both sides by the hydrophilic phosphate groups. Thus, lipophilic molecules can permeate the membrane freely, while the small charged or very hydrophilic molecules require the assistance of other membrane components in order to overcome the energetic cost implied in crossing the non-polar region of the bilayer. Most of the large polar species (such as oligosaccharides, polypeptides or nucleic acids) cross into and out of the cell via endocytosis and exocytosis, respectively. Nature has created a series of systems (carriers and pores) in order to control the balance of small hydrophilic molecules and ions. The most important structures to achieve these goals are the ionophoric proteins that include the channel proteins, such as the sodium and potassium channels, and ionic transporters, including the sodium/potassium pumps or calcium/sodium exchangers among others. Inspired by these, scientists have created non-natural synthetic transporting structures to mimic the natural systems. The progress in the last years has been remarkable regarding the efficient transport of Na(+) and K(+) ions, despite the fact that the selectivity and the ON/OFF state of the non-natural systems remain a present and future challenge

  16. Intractable hyperkalemia due to nicorandil induced potassium channel syndrome

    PubMed Central

    Chowdhry, Vivek; Mohanty, B. B.

    2015-01-01

    Nicorandil is a commonly used antianginal agent, which has both nitrate-like and ATP-sensitive potassium (KATP) channel activator properties. Activation of potassium channels by nicorandil causes expulsion of potassium ions into the extracellular space leading to membrane hyperpolarization, closure of voltage-gated calcium channels and finally vasodilatation. However, on the other hand, being an activator of KATP channel, it can expel K+ ions out of the cells and can cause hyperkalemia. Here, we report a case of nicorandil induced hyperkalemia unresponsive to medical treatment in a patient with diabetic nephropathy. PMID:25566721

  17. Mitochondrial large-conductance potassium channel from Dictyostelium discoideum.

    PubMed

    Laskowski, Michal; Kicinska, Anna; Szewczyk, Adam; Jarmuszkiewicz, Wieslawa

    2015-03-01

    In the present study, we describe the existence of a large-conductance calcium-activated potassium (BKCa) channel in the mitochondria of Dictyostelium discoideum. A single-channel current was recorded in a reconstituted system, using planar lipid bilayers. The large-conductance potassium channel activity of 258±12 pS was recorded in a 50/150 mM KCl gradient solution. The probability of channel opening (the channel activity) was increased by calcium ions and NS1619 (potassium channel opener) and reduced by iberiotoxin (BKCa channel inhibitor). The substances known to modulate BKCa channel activity influenced the bioenergetics of D. discoideum mitochondria. In isolated mitochondria, NS1619 and NS11021 stimulated non-phosphorylating respiration and depolarized membrane potential, indicating the channel activation. These effects were blocked by iberiotoxin and paxilline. Moreover, the activation of the channel resulted in attenuation of superoxide formation, but its inhibition had the opposite effect. Immunological analysis with antibodies raised against mammalian BKCa channel subunits detected a pore-forming α subunit and auxiliary β subunits of the channel in D. discoideum mitochondria. In conclusion, we show for the first time that mitochondria of D. discoideum, a unicellular ameboid protozoon that facultatively forms multicellular structures, contain a large-conductance calcium-activated potassium channel with electrophysiological, biochemical and molecular properties similar to those of the channels previously described in mammalian and plant mitochondria. PMID:25596489

  18. [Cardiac potassium channels: molecular structure, physiology, pathophysiology and therapeutic implications].

    PubMed

    Mironov, N Iu; Golitsyn, S P

    2013-01-01

    Potassium channels and currents play essential roles in cardiac repolarization. Potassium channel blockade by class III antiarrhythmic drugs prolongs cardiac repolarization and results in termination and prevention of cardiac arrhythmias. Excessive inhomogeneous repolarization prolongation may lead to electrical instability and proarrhythmia (Torsade de Pointes tachycardia). This review focuses on molecular structure, physiology, pathophysiology and therapeutic potential of potassium channels of cardiac conduction system and myocardium providing information on recent findings in pathogenesis of cardiac arrhythmias, including inherited genetic abnormalities, and future perspectives. PMID:24654438

  19. Potassium channels and vascular reactivity in genetically hypertensive rats.

    PubMed

    Furspan, P B; Webb, R C

    1990-06-01

    In hypertension, membrane potassium permeability and vascular reactivity are increased. This study characterizes a potassium-selective channel and contractions to barium, a potassium channel inhibitor, in vascular smooth muscle (tail artery) from spontaneously hypertensive stroke-prone rats (SHRSP) and normotensive Wistar-Kyoto (WKY) rats. Smooth muscle cells were isolated by enzymatic digestion, and potassium channel activity was characterized by using patch-clamp technique (inside-out configuration). Isometric contractile activity was evaluated in helically cut arterial strips by using standard muscle bath methodology. In membrane patches, a voltage-gated, calcium-insensitive, potassium-selective channel of large conductance (200 picosiemens) was observed. The channel did not conduct sodium or rubidium. Barium (10(-6) to 10(-4) M) produced a dose-dependent blockade of channel activity. These channel characteristics did not differ in SHRSP and WKY rat cells. After treatment with 35 mM KCl, barium (10(-5) to 10(-3) M) caused greater contractions in SHRSP arteries compared with arteries in WKY rats. The contractions to barium were markedly attenuated in calcium-free solution, and nifedipine and verapamil abolished contractions induced by barium in depolarizing solution. We conclude that increased vascular reactivity to barium in SHRSP arteries is not due to an alteration in the biophysical properties of the potassium channel studied. PMID:2351424

  20. Cumulative Activation of Voltage-Dependent KVS-1 Potassium Channels

    PubMed Central

    Rojas, Patricio; Garst-Orozco, Jonathan; Baban, Beravan; de Santiago-Castillo, Jose Antonio; Covarrubias, Manuel; Salkoff, Lawrence

    2008-01-01

    In this study, we reveal the existence of a novel use-dependent phenomenon in potassium channels, which we refer to as cumulative activation (CA). CA consists of an increase in current amplitude in response to repetitive depolarizing step pulses to the same potential. CA persists for up to 20 s and is similar to a phenomenon called “voltage-dependent facilitation” observed in some calcium channels. The KVS-1 K+ channel, which exhibits CA, is a rapidly activating and inactivating voltage-dependent potassium channel expressed in chemosensory and other neurons of Caenorhabditis elegans. It is unusual in being most closely related to the Shab (Kv2) family of potassium channels, which typically behave like delayed rectifier K+ channels in other species. The magnitude of CA depends on the frequency, voltage, and duration of the depolarizing step pulse. CA also radically changes the activation and inactivation kinetics of the channel, suggesting that the channel may undergo a physical modification in a use-dependent manner; thus, a model that closely simulates the behavior of the channel postulates the existence of two populations of channels, unmodified and modified. Use-dependent changes in the behavior of potassium channels, such as CA observed in KVS-1, could be involved in functional mechanisms of cellular plasticity such as synaptic depression that represent the cellular basis of learning and memory. PMID:18199775

  1. Potassium channel distribution in spinal root axons of dystrophic mice.

    PubMed

    Bostock, H; Rasminsky, M

    1983-07-01

    We have used 4-aminopyridine (4AP), a potassium channel blocker, to assess the presence and distribution of potassium channels in the congenitally abnormally myelinated spinal root axons of dystrophic mice. 1 mM-4AP slightly depressed the amplitude but had no effect on the half-width of the monophasic action potential of normal A fibres, indicating the absence of a significant concentration of potassium channels at normal mouse nodes of Ranvier. By progressively increasing stimulus intensity it was possible to elicit three more or less discrete components of the compound action potential from dystrophic mouse spinal roots, presumably corresponding to myelinated fibres, large diameter bare axons and, in the case of dorsal roots, C fibres. The amplitude and duration of all three components were increased on exposure to 4AP, indicating the presence of potassium channels in all types of dystrophic mouse spinal root axons. Conduction in single fibres was studied using longitudinal current analysis. Both saltatory and continuous conduction were observed corresponding to the myelinated and bare portions of dystrophic mouse spinal root axons. Three types of 'nodal' membrane could be inferred from the membrane current recordings from myelinated dystrophic mouse axons: (1) pure sodium channel membrane, (2) membrane containing both sodium and potassium channels, and (3) membrane containing predominantly, if not exclusively, potassium channels. The large early outward currents at the latter two types of nodes suggested that these nodes were wider than normal. Recordings of continuous conduction indicated that potassium channels were also distributed irregularly along bare portions of the dystrophic mouse axons. These abnormalities of ion channel distribution are interpreted as reflecting failure of normal axon-Schwann cell communication in the dystrophic mouse spinal roots. PMID:6310095

  2. Photochromic Potassium Channel Blockers: Design and Electrophysiological Characterization

    PubMed Central

    Mourot, Alexandre; Fehrentz, Timm; Kramer, Richard H.

    2016-01-01

    Voltage-gated potassium (Kv) channels are membrane proteins that open a selective pore upon membrane depolarization, allowing K+ ions to flow down their electrochemical gradient. In neurons, Kv channels play a key role in repolarizing the membrane potential during the falling phase of the action potential, often resulting in an after hyperpolarization. Opening of Kv channels results in a decrease of cellular excitability, whereas closing (or pharmacological block) has the opposite effect, increased excitability. We have developed a series of photosensitive blockers for Kv channels that enable reversible, optical regulation of potassium ion flow. Such molecules can be used for remote control of neuronal excitability using light as an on/off switch. Here we describe the design and electrophysiological characterization of photochromic blockers of ion channels. Our focus is on Kv channels but in principle, the techniques described here can be applied to other ion channels and signaling proteins. PMID:23494374

  3. Cardiac Delayed Rectifier Potassium Channels in Health and Disease.

    PubMed

    Chen, Lei; Sampson, Kevin J; Kass, Robert S

    2016-06-01

    Cardiac delayed rectifier potassium channels conduct outward potassium currents during the plateau phase of action potentials and play pivotal roles in cardiac repolarization. These include IKs, IKr and the atrial specific IKur channels. In this article, we will review their molecular identities and biophysical properties. Mutations in the genes encoding delayed rectifiers lead to loss- or gain-of-function phenotypes, disrupt normal cardiac repolarization and result in various cardiac rhythm disorders, including congenital Long QT Syndrome, Short QT Syndrome and familial atrial fibrillation. We will also discuss the prospect of using delayed rectifier channels as therapeutic targets to manage cardiac arrhythmia. PMID:27261823

  4. Effects of cytokines on potassium channels in renal tubular epithelia.

    PubMed

    Nakamura, Kazuyoshi; Komagiri, You; Kubokawa, Manabu

    2012-02-01

    Renal tubular potassium (K(+)) channels play important roles in the formation of cell-negative potential, K(+) recycling, K(+) secretion, and cell volume regulation. In addition to these physiological roles, it was reported that changes in the activity of renal tubular K(+) channels were involved in exacerbation of renal cell injury during ischemia and endotoxemia. Because ischemia and endotoxemia stimulate production of cytokines in immune cells and renal tubular cells, it is possible that cytokines would affect K(+) channel activity. Although the regulatory mechanisms of renal tubular K(+) channels have extensively been studied, little information is available about the effects of cytokines on these K(+) channels. The first report was that tumor necrosis factor acutely stimulated the single channel activity of the 70 pS K(+) channel in the rat thick ascending limb through activation of tyrosine phosphatase. Recently, it was also reported that interferon-γ (IFN-γ) and interleukin-1β (IL-1β) modulated the activity of the 40 pS K(+) channel in cultured human proximal tubule cells. IFN-γ exhibited a delayed suppression and an acute stimulation of K(+) channel activity, whereas IL-1β acutely suppressed the channel activity. Furthermore, these cytokines suppressed gene expression of the renal outer medullary potassium channel. The renal tubular K(+) channels are functionally coupled to the coexisting transporters. Therefore, the effects of cytokines on renal tubular transporter activity should also be taken into account, when interpreting their effects on K(+) channel activity. PMID:22042037

  5. Slack, Slick, and Sodium-Activated Potassium Channels

    PubMed Central

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  6. Role of leak potassium channels in pain signaling.

    PubMed

    Li, Xiang-Yao; Toyoda, Hiroki

    2015-10-01

    Potassium (K(+)) channels are membrane proteins that allow rapid and selective flow of K(+) ions across the cell membrane, generating electrical signals in neurons. Thus, K(+) channels play a critical role in determining the neuronal excitability. Two-pore domain (K2P) "leak" K(+) channels give rise to leak K(+) currents that are responsible for the resting membrane potential and input resistance. The wide expression of leak K(+) channels in the central and peripheral nervous system suggests that these channels are critically involved in pain signaling and behavior. Indeed, it has become apparent in the past decade that the leak K(+) channels play essential roles in the development of pain. In this review, we describe evidence for the roles of TASK1, TASK3, TREK1, TREK2, TRAAK and TRESK channels in pain signaling and behavior. Furthermore, we describe the possible involvement of TASK2 and TWIK1 channels in pain. PMID:26321392

  7. The open pore conformation of potassium channels

    NASA Astrophysics Data System (ADS)

    Jiang, Youxing; Lee, Alice; Chen, Jiayun; Cadene, Martine; Chait, Brian T.; MacKinnon, Roderick

    2002-05-01

    Living cells regulate the activity of their ion channels through a process known as gating. To open the pore, protein conformational changes must occur within a channel's membrane-spanning ion pathway. KcsA and MthK, closed and opened K+ channels, respectively, reveal how such gating transitions occur. Pore-lining `inner' helices contain a `gating hinge' that bends by approximately 30°. In a straight conformation four inner helices form a bundle, closing the pore near its intracellular surface. In a bent configuration the inner helices splay open creating a wide (12Å) entryway. Amino-acid sequence conservation suggests a common structural basis for gating in a wide range of K+ channels, both ligand- and voltage-gated. The open conformation favours high conduction by compressing the membrane field to the selectivity filter, and also permits large organic cations and inactivation peptides to enter the pore from the intracellular solution.

  8. Potassium channels in cell cycle and cell proliferation

    PubMed Central

    Urrego, Diana; Tomczak, Adam P.; Zahed, Farrah; Stühmer, Walter; Pardo, Luis A.

    2014-01-01

    Normal cell-cycle progression is a crucial task for every multicellular organism, as it determines body size and shape, tissue renewal and senescence, and is also crucial for reproduction. On the other hand, dysregulation of the cell-cycle progression leading to uncontrolled cell proliferation is the hallmark of cancer. Therefore, it is not surprising that it is a tightly regulated process, with multifaceted and very complex control mechanisms. It is now well established that one of those mechanisms relies on ion channels, and in many cases specifically on potassium channels. Here, we summarize the possible mechanisms underlying the importance of potassium channels in cell-cycle control and briefly review some of the identified channels that illustrate the multiple ways in which this group of proteins can influence cell proliferation and modulate cell-cycle progression. PMID:24493742

  9. Potassium channels – multiplicity and challenges

    PubMed Central

    Jenkinson, Donald H

    2006-01-01

    The development of our knowledge of the function, structure and pharmacology of K+ channels is briefly outlined. This is the most diverse of all the ion channel families with at least 75 coding genes in mammals. Alternative splicing as well as variations in the channel subunits and accessory proteins that co-assemble to form the functional channel add to the multiplicity. Whereas diversity of this order suggests that it may be possible to develop new classes of drug, for example, for immunomodulation and some diseases of the central nervous system, the ubiquity of K+ channels imposes stringent requirements for selectivity. Animal toxins from the snake, bee and scorpion provide useful leads, though only in a few instances (e.g. with apamin) it has been possible to produce non-peptidic analogues of high potency. The scale of the resources needed to identify, and characterize fully, specific K+ channel as targets and then develop modulators with the required selectivity presents a challenge to both academic and applied pharmacologists. PMID:16402122

  10. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options?

    PubMed Central

    Félétou, Michel

    2009-01-01

    The three subtypes of calcium-activated potassium channels (KCa) of large, intermediate and small conductance (BKCa, IKCa and SKCa) are present in the vascular wall. In healthy arteries, BKCa channels are preferentially expressed in vascular smooth muscle cells, while IKCa and SKCa are preferentially located in endothelial cells. The activation of endothelial IKCa and SKCa contributes to nitric oxide (NO) generation and is required to elicit endothelium-dependent hyperpolarizations. In the latter responses, the hyperpolarization of the smooth muscle cells is evoked either via electrical coupling through myo-endothelial gap junctions or by potassium ions, which by accumulating in the intercellular space activate the inwardly rectifying potassium channel Kir2.1 and/or the Na+/K+-ATPase. Additionally, endothelium-derived factors such as cytochrome P450-derived epoxyeicosatrienoic acids and under some circumstances NO, prostacyclin, lipoxygenase products and hydrogen peroxide (H2O2) hyperpolarize and relax the underlying smooth muscle cells by activating BKCa. In contrast, cytochrome P450-derived 20-hydroxyeicosatetraenoic acid and various endothelium-derived contracting factors inhibit BKCa. Aging and cardiovascular diseases are associated with endothelial dysfunctions that can involve a decrease in NO bioavailability, alterations of EDHF-mediated responses and/or enhanced production of endothelium-derived contracting factors. Because potassium channels are involved in these endothelium-dependent responses, activation of endothelial and/or smooth muscle KCa could prevent the occurrence of endothelial dysfunction. Therefore, direct activators of these potassium channels or compounds that regulate their activity or their expression may be of some therapeutic interest. Conversely, blockers of IKCa may prevent restenosis and that of BKCa channels sepsis-dependent hypotension. PMID:19187341

  11. Inactivation Gating of Kv4 Potassium Channels

    PubMed Central

    Jerng, Henry H.; Shahidullah, Mohammad; Covarrubias, Manuel

    1999-01-01

    Kv4 channels represent the main class of brain A-type K+ channels that operate in the subthreshold range of membrane potentials (Serodio, P., E. Vega-Saenz de Miera, and B. Rudy. 1996. J. Neurophysiol. 75:2174– 2179), and their function depends critically on inactivation gating. A previous study suggested that the cytoplasmic NH2- and COOH-terminal domains of Kv4.1 channels act in concert to determine the fast phase of the complex time course of macroscopic inactivation (Jerng, H.H., and M. Covarrubias. 1997. Biophys. J. 72:163–174). To investigate the structural basis of slow inactivation gating of these channels, we examined internal residues that may affect the mutually exclusive relationship between inactivation and closed-state blockade by 4-aminopyridine (4-AP) (Campbell, D.L., Y. Qu, R.L. Rasmussen, and H.C. Strauss. 1993. J. Gen. Physiol. 101:603–626; Shieh, C.-C., and G.E. Kirsch. 1994. Biophys. J. 67:2316–2325). A double mutation V[404,406]I in the distal section of the S6 region of the protein drastically slowed channel inactivation and deactivation, and significantly reduced the blockade by 4-AP. In addition, recovery from inactivation was slightly faster, but the pore properties were not significantly affected. Consistent with a more stable open state and disrupted closed state inactivation, V[404,406]I also caused hyperpolarizing and depolarizing shifts of the peak conductance–voltage curve (∼5 mV) and the prepulse inactivation curve (>10 mV), respectively. By contrast, the analogous mutations (V[556,558]I) in a K+ channel that undergoes N- and C-type inactivation (Kv1.4) did not affect macroscopic inactivation but dramatically slowed deactivation and recovery from inactivation, and eliminated open-channel blockade by 4-AP. Mutation of a Kv4-specifc residue in the S4–S5 loop (C322S) of Kv4.1 also altered gating and 4-AP sensitivity in a manner that closely resembles the effects of V[404,406]I. However, this mutant did not exhibit

  12. Potassium Channel Complex Autoimmunity Induced by Inhaled Brain Tissue Aerosol

    PubMed Central

    Meeusen, Jeffrey W.; Klein, Christopher J.; Pirko, Istvan; Haselkorn, Keegan E.; Kryzer, Thomas J.; Pittock, Sean J.; Lachance, Daniel H.; Dyck, P. James; Lennon, Vanda A.

    2011-01-01

    Objective Test the hypothesis that autoimmunity induced by inhalation of aerosolized brain tissue caused outbreaks of sensory-predominant polyradiculoneuropathy among swine abattoir employees in Midwestern USA Methods Mice were exposed intranasally, 5 days weekly, to liquefied brain tissue. Serum from exposed mice, patients and unaffected abattoir employees were analyzed for clinically pertinent neural autoantibodies. Results Patients, coworkers and mice exposed to liquefied brain tissue had an autoantibody profile dominated by neural cation channel IgGs. The most compelling link between patients and exposed mice was MRI evidence of grossly swollen spinal nerve roots. Autoantibody responses in patients and mice were dose-dependent and declined after antigen exposure ceased. Autoantibodies detected most frequently, and at high levels, bound to detergent-solubilized macromolecular complexes containing neuronal voltage-gated potassium channels ligated with a high affinity Kv1 channel antagonist, 125I-α-dendrotoxin. Exposed mice exhibited a behavioral phenotype consistent with potassium channel dysfunction recognized in drosophila with mutant (“shaker”) channels: reduced sensitivity to isoflurane-induced anesthesia. Pathological and electrophysiological findings in patients supported peripheral nerve hyperexcitability over destructive axonal loss. The pain-predominant symptoms were consistent with sensory nerve hyperexcitability Interpretation Our observations establish that inhaled neural antigens readily induce neurological autoimmunity and identify voltage-gated potassium channel complexes as a major immunogen. PMID:22451206

  13. Potassium Channels and Human Epileptic Phenotypes: An Updated Overview

    PubMed Central

    Villa, Chiara; Combi, Romina

    2016-01-01

    Potassium (K+) channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K+ channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K+ channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K+ channels dysfunctions linked to inherited epilepsy in humans and non-human model animals. This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K+ channels in monogenic forms. PMID:27064559

  14. Potassium Channels and Human Epileptic Phenotypes: An Updated Overview.

    PubMed

    Villa, Chiara; Combi, Romina

    2016-01-01

    Potassium (K(+)) channels are expressed in almost every cells and are ubiquitous in neuronal and glial cell membranes. These channels have been implicated in different disorders, in particular in epilepsy. K(+) channel diversity depends on the presence in the human genome of a large number of genes either encoding pore-forming or accessory subunits. More than 80 genes encoding the K(+) channels were cloned and they represent the largest group of ion channels regulating the electrical activity of cells in different tissues, including the brain. It is therefore not surprising that mutations in these genes lead to K(+) channels dysfunctions linked to inherited epilepsy in humans and non-human model animals. This article reviews genetic and molecular progresses in exploring the pathogenesis of different human epilepsies, with special emphasis on the role of K(+) channels in monogenic forms. PMID:27064559

  15. TRESK potassium channel in human T lymphoblasts

    SciTech Connect

    Sánchez-Miguel, Dénison Selene; García-Dolores, Fernando; Rosa Flores-Márquez, María; Delgado-Enciso, Iván; Pottosin, Igor; Dobrovinskaya, Oxana

    2013-05-03

    Highlights: • TRESK (KCNK18) mRNA is present in different T lymphoblastic cell lines. • KCNK18 mRNA was not found in resting peripheral blood lymphocytes. • Clinical samples of T lymphoblastic leukemias and lymphomas were positive for TRESK. • TRESK in T lymphoblasts has dual localization, in plasma membrane and intracellular. -- Abstract: TRESK (TWIK-related spinal cord K{sup +}) channel, encoded by KCNK18 gene, belongs to the double-pore domain K{sup +} channel family and in normal conditions is expressed predominantly in the central nervous system. In our previous patch-clamp study on Jurkat T lymphoblasts we have characterized highly selective K{sup +} channel with pharmacological profile identical to TRESK. In the present work, the presence of KCNK18 mRNA was confirmed in T lymphoblastic cell lines (Jurkat, JCaM, H9) but not in resting peripheral blood lymphocytes of healthy donors. Positive immunostaining for TRESK was demonstrated in lymphoblastic cell lines, in germinal centers of non-tumoral lymph nodes, and in clinical samples of T acute lymphoblastic leukemias/lymphomas. Besides detection in the plasma membrane, intracellular TRESK localization was also revealed. Possible involvement of TRESK channel in lymphocyte proliferation and tumorigenesis is discussed.

  16. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  17. Neuronal and Cardiovascular Potassium Channels as Therapeutic Drug Targets

    PubMed Central

    Humphries, Edward S. A.

    2015-01-01

    Potassium (K+) channels, with their diversity, often tissue-defined distribution, and critical role in controlling cellular excitability, have long held promise of being important drug targets for the treatment of dysrhythmias in the heart and abnormal neuronal activity within the brain. With the exception of drugs that target one particular class, ATP-sensitive K+ (KATP) channels, very few selective K+ channel activators or inhibitors are currently licensed for clinical use in cardiovascular and neurological disease. Here we review what a range of human genetic disorders have told us about the role of specific K+ channel subunits, explore the potential of activators and inhibitors of specific channel populations as a therapeutic strategy, and discuss possible reasons for the difficulty in designing clinically relevant K+ channel modulators. PMID:26303307

  18. Migraine: Role of the TRESK two-pore potassium channel.

    PubMed

    Lafrenière, Ronald G; Rouleau, Guy A

    2011-11-01

    Migraine is a severe episodic headache disorder affecting one in five people. Genetic studies have identified mutations in the CACNA1, ATP1A2 and SCN1A genes in the rare familial hemiplegic migraine. Recently, a mutation in the KCNK18 gene, encoding the TRESK two-pore domain potassium channel, was described in a large family with migraine with aura. This review will elaborate on the possible role of the TRESK channel in regulating neuronal excitability, its role in migraine pathogenesis, and on promising therapeutic opportunities targeting this channel. PMID:21855646

  19. Sodium and potassium competition in potassium-selective and non-selective channels

    NASA Astrophysics Data System (ADS)

    Sauer, David B.; Zeng, Weizhong; Canty, John; Lam, Yeeling; Jiang, Youxing

    2013-11-01

    Potassium channels selectively conduct K+, primarily to the exclusion of Na+, despite the fact that both ions can bind within the selectivity filter. Here we perform crystallographic titration and single-channel electrophysiology to examine the competition of Na+ and K+ binding within the filter of two NaK channel mutants; one is the potassium-selective NaK2K mutant and the other is the non-selective NaK2CNG, a CNG channel pore mimic. With high-resolution structures of these engineered NaK channel constructs, we explicitly describe the changes in K+ occupancy within the filter upon Na+ competition by anomalous diffraction. Our results demonstrate that the non-selective NaK2CNG still retains a K+-selective site at equilibrium, whereas the NaK2K channel filter maintains two high-affinity K+ sites. A double-barrier mechanism is proposed to explain K+ channel selectivity at low K+ concentrations.

  20. Functional Consequences of a Decreased Potassium Affinity in a Potassium Channel Pore

    PubMed Central

    Ogielska, Eva M.; Aldrich, Richard W.

    1999-01-01

    Ions bound near the external mouth of the potassium channel pore impede the C-type inactivation conformational change (Lopez-Barneo, J., T. Hoshi, S. Heinemann, and R. Aldrich. 1993. Receptors Channels. 1:61– 71; Baukrowitz, T., and G. Yellen. 1995. Neuron. 15:951–960). In this study, we present evidence that the occupancy of the C-type inactivation modulatory site by permeant ions is not solely dependent on its intrinsic affinity, but is also a function of the relative affinities of the neighboring sites in the potassium channel pore. The A463C mutation in the S6 region of Shaker decreases the affinity of an internal ion binding site in the pore (Ogielska, E.M., and R.W. Aldrich, 1998). However, we have found that this mutation also decreases the C-type inactivation rate of the channel. Our studies indicate that the C-type inactivation effects observed with substitutions at position A463 most likely result from changes in the pore occupancy of the channel, rather than a change in the C-type inactivation conformational change. We have found that a decrease in the potassium affinity of the internal ion binding site in the pore results in lowered (electrostatic) interactions among ions in the pore and as a result prolongs the time an ion remains bound at the external C-type inactivation site. We also present evidence that the C-type inactivation constriction is quite local and does not involve a general collapse of the selectivity filter. Our data indicate that in A463C potassium can bind within the selectivity filter without interfering with the process of C-type inactivation. PMID:9925829

  1. Plasmodium falciparum: growth response to potassium channel blocking compounds.

    PubMed

    Waller, Karena L; Kim, Kami; McDonald, Thomas V

    2008-11-01

    Potassium channels are essential for cell survival and regulate the cell membrane potential and electrochemical gradient. During its lifecycle, Plasmodium falciparum parasites must rapidly adapt to dramatically variant ionic conditions within the mosquito mid-gut, the hepatocyte and red blood cell (RBC) cytosols, and the human circulatory system. To probe the participation of K(+) channels in parasite viability, growth response assays were performed in which asexual stage P. falciparum parasites were cultured in the presence of various Ca(2+)-activated K(+) channel blocking compounds. These data describe the novel anti-malarial effects of bicuculline methiodide and tubocurarine chloride and the novel lack of effect of apamine and verruculogen. Taken together, the data herein imply the presence of K(+) channels, or other parasite-specific targets, in P. falciparum-infected RBCs that are sensitive to blockade with Ca(2+)-activated K(+) channel blocking compounds. PMID:18703053

  2. Pharmacodynamics of potassium channel openers in cultured neuronal networks.

    PubMed

    Wu, Calvin; V Gopal, Kamakshi; Lukas, Thomas J; Gross, Guenter W; Moore, Ernest J

    2014-06-01

    A novel class of drugs - potassium (K(+)) channel openers or activators - has recently been shown to cause anticonvulsive and neuroprotective effects by activating hyperpolarizing K(+) currents, and therefore, may show efficacy for treating tinnitus. This study presents measurements of the modulatory effects of four K(+) channel openers on the spontaneous activity and action potential waveforms of neuronal networks. The networks were derived from mouse embryonic auditory cortices and grown on microelectrode arrays. Pentylenetetrazol was used to create hyperactivity states in the neuronal networks as a first approximation for mimicking tinnitus or tinnitus-like activity. We then compared the pharmacodynamics of the four channel activators, retigabine and flupirtine (voltage-gated K(+) channel KV7 activators), NS1619 and isopimaric acid ("big potassium" BK channel activators). The EC50 of retigabine, flupirtine, NS1619, and isopimaric acid were 8.0, 4.0, 5.8, and 7.8µM, respectively. The reduction of hyperactivity compared to the reference activity was significant. The present results highlight the notion of re-purposing the K(+) channel activators for reducing hyperactivity of spontaneously active auditory networks, serving as a platform for these drugs to show efficacy toward target identification, prevention, as well as treatment of tinnitus. PMID:24681057

  3. Diversity of Potassium Channel Ligands: Focus on Scorpion Toxins.

    PubMed

    Kuzmenkov, A I; Grishin, E V; Vassilevski, A A

    2015-12-01

    Potassium (K+) channels are a widespread superfamily of integral membrane proteins that mediate selective transport of K+ ions through the cell membrane. They have been found in all living organisms from bacteria to higher multicellular animals, including humans. Not surprisingly, K+ channels bind ligands of different nature, such as metal ions, low molecular mass compounds, venom-derived peptides, and antibodies. Functionally these substances can be K+ channel pore blockers or modulators. Representatives of the first group occlude the channel pore, like a cork in a bottle, while the second group of ligands alters the operation of channels without physically blocking the ion current. A rich source of K+ channel ligands is venom of different animals: snakes, sea anemones, cone snails, bees, spiders, and scorpions. More than a half of the known K+ channel ligands of polypeptide nature are scorpion toxins (KTx), all of which are pore blockers. These compounds have become an indispensable molecular tool for the study of K+ channel structure and function. A recent special interest is the possibility of toxin application as drugs to treat diseases involving K+ channels or related to their dysfunction (channelopathies). PMID:26878580

  4. Mechanism of Proarrhythmic Effects of Potassium Channel Blockers.

    PubMed

    Skibsbye, Lasse; Ravens, Ursula

    2016-06-01

    Any disturbance of electrical impulse formation in the heart and of impulse conduction or action potential (AP) repolarization can lead to rhythm disorders. Potassium (K(+)) channels play a prominent role in the AP repolarization process. In this review we describe the causes and mechanisms of proarrhythmic effects that arise as a response to blockers of cardiac K(+) channels. The largest and chemically most diverse groups of compound targets are Kv11.1 (hERG) and Kv7.1 (KvLQT1) channels. Finally, the proarrhythmic propensity of atrial-selective K(+) blockers inhibiting Kv1.5, Kir3.1/3.4, SK, and K2P channels is discussed. PMID:27261830

  5. Chloride and potassium channels in cystic fibrosis airway epithelia

    NASA Astrophysics Data System (ADS)

    Welsh, Michael J.; Liedtke, Carole M.

    1986-07-01

    Cystic fibrosis, the most common lethal genetic disease in Caucasians, is characterized by a decreased permeability in sweat gland duct and airway epithelia. In sweat duct epithelium, a decreased Cl- permeability accounts for the abnormally increased salt content of sweat1. In airway epithelia a decreased Cl- permeability, and possibly increased sodium absorption, may account for the abnormal respiratory tract fluid2,3. The Cl- impermeability has been localized to the apical membrane of cystic fibrosis airway epithelial cells4. The finding that hormonally regulated Cl- channels make the apical membrane Cl- permeable in normal airway epithelial cells5 suggested abnormal Cl- channel function in cystic fibrosis. Here we report that excised, cell-free patches of membrane from cystic fibrosis epithelial cells contain Cl- channels that have the same conductive properties as Cl- channels from normal cells. However, Cl- channels from cystic fibrosis cells did not open when they were attached to the cell. These findings suggest defective regulation of Cl- channels in cystic fibrosis epithelia; to begin to address this issue, we performed two studies. First, we found that isoprenaline, which stimulates Cl- secretion, increases cellular levels of cyclic AMP in a similar manner in cystic fibrosis and non-cystic fibrosis epithelial cells. Second, we show that adrenergic agonists open calcium-activated potassium channels, indirectly suggesting that calcium-dependent stimulus-response coupling is intact in cystic fibrosis. These data suggest defective regulation of Cl- channels at a site distal to cAMP accumulation.

  6. Mechanism of Electromechanical Coupling in Voltage-Gated Potassium Channels

    PubMed Central

    Blunck, Rikard; Batulan, Zarah

    2012-01-01

    Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3–4e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4–S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during

  7. Transmembrane allosteric coupling of the gates in a potassium channel

    PubMed Central

    Wylie, Benjamin J.; Bhate, Manasi P.; McDermott, Ann E.

    2014-01-01

    It has been hypothesized that transmembrane allostery is the basis for inactivation of the potassium channel KcsA: opening the intracellular gate is spontaneously followed by ion expulsion at the extracellular selectivity filter. This suggests a corollary: following ion expulsion at neutral pH, a spontaneous global conformation change of the transmembrane helices, similar to the motion involved in opening, is expected. Consequently, both the low potassium state and the low pH state of the system could provide useful models for the inactivated state. Unique NMR studies of full-length KcsA in hydrated bilayers provide strong evidence for such a mutual coupling across the bilayer: namely, upon removing ambient potassium ions, changes are seen in the NMR shifts of carboxylates E118 and E120 in the pH gate in the hinges of the inner transmembrane helix (98–103), and in the selectivity filter, all of which resemble changes seen upon acid-induced opening and inhibition and suggest that ion release can trigger channel helix opening. PMID:24344306

  8. Determinants of pore folding in potassium channel biogenesis

    PubMed Central

    Delaney, Erin; Khanna, Pooja; Tu, LiWei; Robinson, John M.; Deutsch, Carol

    2014-01-01

    Many ion channels, both selective and nonselective, have reentrant pore loops that contribute to the architecture of the permeation pathway. It is a fundamental feature of these diverse channels, regardless of whether they are gated by changes of membrane potential or by neurotransmitters, and is critical to function of the channel. Misfolding of the pore loop leads to loss of trafficking and expression of these channels on the cell surface. Mature tetrameric potassium channels contain an α-helix within the pore loop. We systematically mutated the “pore helix” residues of the channel Kv1.3 and assessed the ability of the monomer to fold into a tertiary reentrant loop. Our results show that pore loop residues form a canonical α-helix in the monomer early in biogenesis and that disruption of tertiary folding is caused by hydrophilic substitutions only along one face of this α-helix. These results provide insight into the determinants of the reentrant pore conformation, which is essential for ion channel function. PMID:24616516

  9. Protein complex analysis of native brain potassium channels by proteomics.

    PubMed

    Sandoz, Guillaume; Lesage, Florian

    2008-01-01

    TREK potassium channels belong to a family of channel subunits with two-pore domains (K(2P)). TREK1 knockout mice display impaired polyunsaturated fatty acid-mediated protection against brain ischemia, reduced sensitivity to volatile anesthetics, resistance to depression and altered perception of pain. Recently, we isolated native TREK1 channels from mouse brain and identified their specific components by mass spectrometry. Among the identified partners, the A-Kinase Anchoring Protein AKAP150 binds to a regulatory domain of TREK1 and acts as a molecular switch. It transforms low activity, outwardly rectifying TREK1 currents into robust leak conductances resistant to stimulation by arachidonic acid, membrane stretch and acidification. Inhibition of the TREK1/AKAP150 channel by Gs-coupled receptors is as extensive as for TREK1 alone (but faster) whereas inhibition of TREK1/AKAP150 by Gq-coupled receptors is reduced. Furthermore, the association of AKAP150 with TREK1 channels integrates them into postsynaptic scaffolds where G protein-coupled membrane receptors and channels dock simultaneously. This chapter describes the proteomic approach used to study the composition of native TREK1 channels and point out its advantages and limitations over more classical methods (two-hybrid screenings in the yeast and bacteria or GST-pull down). PMID:18998088

  10. Chaotic dynamics in cardiac aggregates induced by potassium channel block

    NASA Astrophysics Data System (ADS)

    Quail, Thomas; McVicar, Nevin; Aguilar, Martin; Kim, Min-Young; Hodge, Alex; Glass, Leon; Shrier, Alvin

    2012-09-01

    Chaotic rhythms in deterministic models can arise as a consequence of changes in model parameters. We carried out experimental studies in which we induced a variety of complex rhythms in aggregates of embryonic chick cardiac cells using E-4031 (1.0-2.5 μM), a drug that blocks the hERG potassium channel. Following the addition of the drug, the regular rhythm evolved to display a spectrum of complex dynamics: irregular rhythms, bursting oscillations, doublets, and accelerated rhythms. The interbeat intervals of the irregular rhythms can be described by one-dimensional return maps consistent with chaotic dynamics. A Hodgkin-Huxley-style cardiac ionic model captured the different types of complex dynamics following blockage of the hERG mediated potassium current.

  11. Solution structure of the potassium channel inhibitor agitoxin 2: caliper for probing channel geometry.

    PubMed Central

    Krezel, A. M.; Kasibhatla, C.; Hidalgo, P.; MacKinnon, R.; Wagner, G.

    1995-01-01

    The structure of the potassium channel blocker agitoxin 2 was solved by solution NMR methods. The structure consists of a triple-stranded antiparallel beta-sheet and a single helix covering one face of the beta-sheet. The cysteine side chains connecting the beta-sheet and the helix form the core of the molecule. One edge of the beta-sheet and the adjacent face of the helix form the interface with the Shaker K+ channel. The fold of agitoxin is homologous to the previously determined folds of scorpion venom toxins. However, agitoxin 2 differs significantly from the other channel blockers in the specificity of its interactions. This study was thus focused on a precise characterization of the surface residues at the face of the protein interacting with the Shaker K+ channel. The rigid toxin molecule can be used to estimate dimensions of the potassium channel. Surface-exposed residues, Arg24, Lys27, and Arg31 of the beta-sheet, have been identified from mutagenesis studies as functionally important for blocking the Shaker K+ channel. The sequential and spatial locations of Arg24 and Arg31 are not conserved among the homologous toxins. Knowledge on the details of the channel-binding sites of agitoxin 2 formed a basis for site-directed mutagenesis studies of the toxin and the K+ channel sequences. Observed interactions between mutated toxin and channel are being used to elucidate the channel structure and mechanisms of channel-toxin interactions. PMID:8520473

  12. Potassium channel dysfunction in fibroblasts identifies patients with Alzheimer disease.

    PubMed Central

    Etcheberrigaray, R; Ito, E; Oka, K; Tofel-Grehl, B; Gibson, G E; Alkon, D L

    1993-01-01

    Since memory loss is characteristic of Alzheimer disease (AD), and since K+ channels change during acquisition of memory in both molluscs and mammals, we investigated K+ channel function as a possible site of AD pathology and, therefore, as a possible diagnostic index as well. A 113-pS tetraethylammonium (TEA)-sensitive K+ channel was consistently absent from AD fibroblasts, while it was often present in young and aged control fibroblasts. A second (166-pS) K+ channel was present in all three groups. Elevated external potassium raised intracellular Ca2+ in all cases. TEA depolarized and caused intracellular Ca2+ elevation in young and aged control fibroblasts but not AD fibroblasts. The invariable absence of a 113-pS TEA-sensitive K+ channel and TEA-induced Ca2+ signal indicate K+ channel dysfunction in AD fibroblasts. These results suggest the possibility of a laboratory method that would diagnostically distinguish AD patients, with or without a family history of AD, from normal age-matched controls and also from patients with non-AD neurological and psychiatric disorders. PMID:8367484

  13. Molecular basis of potassium channels in pancreatic duct epithelial cells

    PubMed Central

    Hayashi, Mikio; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance. PMID:23962792

  14. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    PubMed

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). PMID:22406520

  15. EMODEPSIDE AND SL0-1 POTASSIUM CHANNELS: A REVIEW

    PubMed Central

    Martin, R. J.; Buxton, S.K.; Neveu, C.; Charvet, C. L.; Robertson, A. P.

    2011-01-01

    Nematode parasites infect humans and domestic animals; treatment and prophylaxis require anthelmintic drugs because vaccination and sanitation is limited. Emodepside is a more recently introduced cyclooctadepsipeptide drug that has actions against GI nematodes, lungworm, and microfilaria. It has a novel mode of action which breaks resistance to the classical anthelmintics (benzimidazoles, macrocyclic lactones and cholinergic agonists). Here we review studies on its mode of action which suggest that it acts to inhibit neuronal and muscle activity of nematodes by increasing the opening of calcium-activated potassium (SLO-1) channels. PMID:21910990

  16. Structural and Functional Diversity of Acidic Scorpion Potassium Channel Toxins

    PubMed Central

    He, Ya-Wen; Pan, Na; Ding, Jiu-Ping; Cao, Zhi-Jian; Liu, Mai-Li; Li, Wen-Xin; Yi, Hong; Jiang, Ling; Wu, Ying-Liang

    2012-01-01

    Background Although the basic scorpion K+ channel toxins (KTxs) are well-known pharmacological tools and potential drug candidates, characterization the acidic KTxs still has the great significance for their potential selectivity towards different K+ channel subtypes. Unfortunately, research on the acidic KTxs has been ignored for several years and progressed slowly. Principal Findings Here, we describe the identification of nine new acidic KTxs by cDNA cloning and bioinformatic analyses. Seven of these toxins belong to three new α-KTx subfamilies (α-KTx28, α-KTx29, and α-KTx30), and two are new members of the known κ-KTx2 subfamily. ImKTx104 containing three disulfide bridges, the first member of the α-KTx28 subfamily, has a low sequence homology with other known KTxs, and its NMR structure suggests ImKTx104 adopts a modified cystine-stabilized α-helix-loop-β-sheet (CS-α/β) fold motif that has no apparent α-helixs and β-sheets, but still stabilized by three disulfide bridges. These newly described acidic KTxs exhibit differential pharmacological effects on potassium channels. Acidic scorpion toxin ImKTx104 was the first peptide inhibitor found to affect KCNQ1 channel, which is insensitive to the basic KTxs and is strongly associated with human cardiac abnormalities. ImKTx104 selectively inhibited KCNQ1 channel with a Kd of 11.69 µM, but was less effective against the basic KTxs-sensitive potassium channels. In addition to the ImKTx104 toxin, HeTx204 peptide, containing a cystine-stabilized α-helix-loop-helix (CS-α/α) fold scaffold motif, blocked both Kv1.3 and KCNQ1 channels. StKTx23 toxin, with a cystine-stabilized α-helix-loop-β-sheet (CS-α/β) fold motif, could inhibit Kv1.3 channel, but not the KCNQ1 channel. Conclusions/Significance These findings characterize the structural and functional diversity of acidic KTxs, and could accelerate the development and clinical use of acidic KTxs as pharmacological tools and potential drugs. PMID

  17. In vitro synthesis, tetramerization and single channel characterization of virus-encoded potassium channel Kcv.

    PubMed

    Shim, Ji Wook; Yang, Mingming; Gu, Li-Qun

    2007-03-01

    Chlorella virus-encoded membrane protein Kcv represents a new class of potassium channel. This 94-amino acids miniature K(+) channel consists of two trans-membrane alpha-helix domains intermediated by a pore domain that contains a highly conserved K(+) selectivity filter. Therefore, as an archetypal K(+) channel, the study of Kcv may yield valuable insights into the structure-function relationships underlying this important class of ion channel. Here, we report a series of new properties of Kcv. We first verified Kcv can be synthesized in vitro. By co-synthesis and assembly of wild-type and the tagged version of Kcv, we were able to demonstrate a tetrameric stoichiometry, a molecular structure adopted by all known K(+) channels. Most notably, the tetrameric Kcv complex retains its functional integrity in SDS (strong detergent)-containing solutions, a useful feature that allows for direct purification of protein from polyacrylamide gel. Once purified, the tetramer can form single potassium-selective ion channels in a lipid bilayer with functions consistent to the heterologously expressed Kcv. These finding suggest that the synthetic Kcv can serve as a model of virus-encoded K(+) channels; and its newly identified properties can be applied to the future study on structure-determined mechanisms such as K(+) channel functional stoichiometry. PMID:17316630

  18. Trypsin-Sensitive, Rapid Inactivation of a Calcium-Activated Potassium Channel

    NASA Astrophysics Data System (ADS)

    Solaro, Christopher R.; Lingle, Christopher J.

    1992-09-01

    Most calcium-activated potassium channels couple changes in intracellular calcium to membrane excitability by conducting a current with a probability that depends directly on submembrane calcium concentration. In rat adrenal chromaffin cells, however, a large conductance, voltage- and calcium-activated potassium channel (BK) undergoes rapid inactivation, suggesting that this channel has a physiological role different than that of other BK channels. The inactivation of the BK channel, like that of the voltage-gated Shaker B potassium channel, is removed by trypsin digestion and channels are blocked by the Shaker B amino-terminal inactivating domain. Thus, this BK channel shares functional and possibly structural homologies with other inactivating voltage-gated potassium channels.

  19. Kv3.3 potassium channels and spinocerebellar ataxia.

    PubMed

    Zhang, Yalan; Kaczmarek, Leonard K

    2016-08-15

    The voltage-dependent potassium channel subunit Kv3.3 is expressed at high levels in cerebellar Purkinje cells, in auditory brainstem nuclei and in many other neurons capable of firing at high rates. In the cerebellum, it helps to shape the very characteristic complex spike of Purkinje cells. Kv3.3 differs from other closely related channels in that human mutations in the gene encoding Kv3.3 (KCNC3) result in a unique neurodegenerative disease termed spinocerebellar ataxia type 13 (SCA13). This primarily affects the cerebellum, but also results in extracerebellar symptoms. Different mutations produce either early onset SCA13, associated with delayed motor and impaired cognitive skill acquisition, or late onset SCA13, which typically produces cerebellar degeneration in middle age. This review covers the localization and physiological function of Kv3.3 in the central nervous system and how the normal function of the channel is altered by the disease-causing mutations. It also describes experimental approaches that are being used to understand how Kv3.3 mutations are linked to neuronal survival, and to develop strategies for treatment. PMID:26442672

  20. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology.

    PubMed

    Wu, Wei; Sanguinetti, Michael C

    2016-06-01

    Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity. PMID:27261821

  1. The effect of AL0671, a novel potassium channel opener, on potassium current in rat aortic smooth muscle cells.

    PubMed

    Matzno, S; Sato, R; Takai, H; Aida, Y; Karasaki, S; Oyaizu, M; Nakamura, N; Katori, R

    1995-10-01

    1. We evaluated the mechanism of activation by AL0671, a novel potassium channel opener, of potassium current in rat aortic smooth muscle cells. 2. Under conditions of whole cell recording, AL0671 (1-1000 microM) markedly increased potassium current with a Hill coefficient of 2 and dissociation constant of 1.5 x 10(-4) M. This activation was completely inhibited by intracellular ATP. 3. Under inside-out patch conditions, the ATP-sensitive K+ channels (KATP) treated with AL0671 (100 microM) showed prolongation of the slower open time component and shortening of the slower closed time component without modification of channel conductance. PMID:7590127

  2. K(V)7 potassium channels: a new therapeutic target in smooth muscle disorders.

    PubMed

    Stott, Jennifer B; Jepps, Thomas A; Greenwood, Iain A

    2014-04-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been identified as being crucial mediators of this process in a variety of smooth muscle. Recently, KV7 channels have been shown to be involved in the pathogenesis of hypertension, as well as being implicated in other smooth muscle disorders, providing a new and inviting target for smooth muscle disorders. PMID:24333708

  3. Depletion of intracellular polyamines relieves inward rectification of potassium channels.

    PubMed Central

    Shyng, S L; Sha, Q; Ferrigni, T; Lopatin, A N; Nichols, C G

    1996-01-01

    Two different approaches were used to examine the in vivo role of polyamines in causing inward rectification of potassium channels. In two-microelectrode voltage-clamp experiments, 24-hr incubation of Xenopus oocytes injected with 50 nl of difluoromethylornithine (5 mM) and methylglyoxal bis(guanylhydrazone) (1 mM) caused an approximate doubling of expressed Kir2.1 currents and relieved rectification by causing an approximately +10-mV shift of the voltage at which currents are half-maximally inhibited. Second, a putrescine auxotrophic, ornithine decarboxylase-deficient Chinese hamster ovary (O-CHO) cell line was stably transfected with the cDNA encoding Kir2.3. Withdrawal of putrescine from the medium led to rapid (1-day) loss of the instantaneous phase of Kir2.3 channel activation, consistent with a decline of intracellular putrescine levels. Four days after putrescine withdrawal, macroscopic conductance, assessed using an 86Rb+ flux assay, was approximately doubled, and this corresponded to a +30-mV shift of V1/2 of rectification. With increasing time after putrescine withdrawal, there was an increase in the slowest phase of current activation, corresponding to an increase in the spermine-to-spermidine ratio over time. These results provide direct evidence for a role of each polyamine in induction of rectification, and they further demonstrate that in vivo modulation of rectification is possible by manipulation of polyamine levels using genetic and pharmacological approaches. PMID:8876254

  4. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons.

    PubMed

    Bock, Tobias; Stuart, Greg J

    2016-03-01

    Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels onN-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive. PMID:26936985

  5. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance

    PubMed Central

    Ahmad, Izhar; Mian, Afaq; Maathuis, Frans J. M.

    2016-01-01

    Potassium (K+) is the most important cationic nutrient for all living organisms and has roles in most aspects of plant physiology. To assess the impact of one of the main K+ uptake components, the K+ inward rectifying channel AKT1, we characterized both loss of function and overexpression of OsAKT1 in rice. In many conditions, AKT1 expression correlated with K+ uptake and tissue K+ levels. No salinity-related growth phenotype was observed for either loss or gain of function mutants. However, a correlation between AKT1 expression and root Na+ when the external Na/K ratio was high suggests that there may be a role for AKT1 in Na+ uptake in such conditions. In contrast to findings with Arabidopsis thaliana, we did not detect any change in growth of AKT1 loss of function mutants in the presence of NH4 +. Nevertheless, NH4 +-dependent inhibition was detected during K+ uptake assays in loss of function and wild type plants, depending on pre-growth conditions. The most prominent result of OsAKT1 overexpression was a reduction in sensitivity to osmotic/drought stress in transgenic plants: the data suggest that AKT1 overexpression improved rice osmotic and drought stress tolerance by increasing tissue levels of K+, especially in the root. PMID:26969743

  6. Kalium: a database of potassium channel toxins from scorpion venom.

    PubMed

    Kuzmenkov, Alexey I; Krylov, Nikolay A; Chugunov, Anton O; Grishin, Eugene V; Vassilevski, Alexander A

    2016-01-01

    Kalium (http://kaliumdb.org/) is a manually curated database that accumulates data on potassium channel toxins purified from scorpion venom (KTx). This database is an open-access resource, and provides easy access to pages of other databases of interest, such as UniProt, PDB, NCBI Taxonomy Browser, and PubMed. General achievements of Kalium are a strict and easy regulation of KTx classification based on the unified nomenclature supported by researchers in the field, removal of peptides with partial sequence and entries supported by transcriptomic information only, classification of β-family toxins, and addition of a novel λ-family. Molecules presented in the database can be processed by the Clustal Omega server using a one-click option. Molecular masses of mature peptides are calculated and available activity data are compiled for all KTx. We believe that Kalium is not only of high interest to professional toxinologists, but also of general utility to the scientific community.Database URL:http://kaliumdb.org/. PMID:27087309

  7. Kalium: a database of potassium channel toxins from scorpion venom

    PubMed Central

    Kuzmenkov, Alexey I.; Krylov, Nikolay A.; Chugunov, Anton O.; Grishin, Eugene V.; Vassilevski, Alexander A.

    2016-01-01

    Kalium (http://kaliumdb.org/) is a manually curated database that accumulates data on potassium channel toxins purified from scorpion venom (KTx). This database is an open-access resource, and provides easy access to pages of other databases of interest, such as UniProt, PDB, NCBI Taxonomy Browser, and PubMed. General achievements of Kalium are a strict and easy regulation of KTx classification based on the unified nomenclature supported by researchers in the field, removal of peptides with partial sequence and entries supported by transcriptomic information only, classification of β-family toxins, and addition of a novel λ-family. Molecules presented in the database can be processed by the Clustal Omega server using a one-click option. Molecular masses of mature peptides are calculated and available activity data are compiled for all KTx. We believe that Kalium is not only of high interest to professional toxinologists, but also of general utility to the scientific community. Database URL: http://kaliumdb.org/ PMID:27087309

  8. EAG2 potassium channel with evolutionarily conserved function as a brain tumor target.

    PubMed

    Huang, Xi; He, Ye; Dubuc, Adrian M; Hashizume, Rintaro; Zhang, Wei; Reimand, Jüri; Yang, Huanghe; Wang, Tongfei A; Stehbens, Samantha J; Younger, Susan; Barshow, Suzanne; Zhu, Sijun; Cooper, Michael K; Peacock, John; Ramaswamy, Vijay; Garzia, Livia; Wu, Xiaochong; Remke, Marc; Forester, Craig M; Kim, Charles C; Weiss, William A; James, C David; Shuman, Marc A; Bader, Gary D; Mueller, Sabine; Taylor, Michael D; Jan, Yuh Nung; Jan, Lily Yeh

    2015-09-01

    Over 20% of the drugs for treating human diseases target ion channels, but no cancer drug approved by the US Food and Drug Administration (FDA) is intended to target an ion channel. We found that the EAG2 (Ether-a-go-go 2) potassium channel has an evolutionarily conserved function for promoting brain tumor growth and metastasis, delineate downstream pathways, and uncover a mechanism for different potassium channels to functionally cooperate and regulate mitotic cell volume and tumor progression. EAG2 potassium channel was enriched at the trailing edge of migrating medulloblastoma (MB) cells to regulate local cell volume dynamics, thereby facilitating cell motility. We identified the FDA-approved antipsychotic drug thioridazine as an EAG2 channel blocker that reduces xenografted MB growth and metastasis, and present a case report of repurposing thioridazine for treating a human patient. Our findings illustrate the potential of targeting ion channels in cancer treatment. PMID:26258683

  9. EAG2 potassium channel with evolutionarily conserved function as a brain tumor target

    PubMed Central

    Huang, Xi; He, Ye; Dubuc, Adrian M.; Hashizume, Rintaro; Zhang, Wei; Reimand, Jüri; Yang, Huanghe; Wang, Tongfei A.; Stehbens, Samantha J.; Younger, Susan; Barshow, Suzanne; Zhu, Sijun; Cooper, Michael K.; Peacock, John; Ramaswamy, Vijay; Garzia, Livia; Wu, Xiaochong; Remke, Marc; Forester, Craig M.; Kim, Charles C.; Weiss, William A.; James, C. David; Shuman, Marc A.; Bader, Gary D.; Mueller, Sabine; Taylor, Michael D.; Jan, Yuh Nung; Jan, Lily Yeh

    2015-01-01

    Over 20% of the drugs for treating human diseases target ion channels, however, no cancer drug approved by the U.S. Food and Drug Administration (FDA) is intended to target an ion channel. Here, we demonstrate the evolutionarily conserved function of EAG2 potassium channel in promoting brain tumor growth and metastasis, delineate downstream pathways and uncover a mechanism for different potassium channels to functionally corporate and regulate mitotic cell volume and tumor progression. We show that EAG2 potassium channel is enriched at the trailing edge of migrating MB cells to regulate local cell volume dynamics, thereby facilitating cell motility. We identify the FDA-approved antipsychotic drug thioridazine as an EAG2 channel blocker that reduces xenografted MB growth and metastasis, and present a case report of repurposing thioridazine for treating a human patient. Our findings thus illustrate the potential of targeting ion channels in cancer treatment. PMID:26258683

  10. Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels.

    PubMed

    Levitz, Joshua; Royal, Perrine; Comoglio, Yannick; Wdziekonski, Brigitte; Schaub, Sébastien; Clemens, Daniel M; Isacoff, Ehud Y; Sandoz, Guillaume

    2016-04-12

    Twik-related K(+) channel 1 (TREK1), TREK2, and Twik-related arachidonic-acid stimulated K(+) channel (TRAAK) form the TREK subfamily of two-pore-domain K(+) (K2P) channels. Despite sharing up to 78% sequence homology and overlapping expression profiles in the nervous system, these channels show major differences in their regulation by physiological stimuli. For instance, TREK1 is inhibited by external acidification, whereas TREK2 is activated. Here, we investigated the ability of the members of the TREK subfamily to assemble to form functional heteromeric channels with novel properties. Using single-molecule pull-down (SiMPull) from HEK cell lysate and subunit counting in the plasma membrane of living cells, we show that TREK1, TREK2, and TRAAK readily coassemble. TREK1 and TREK2 can each heterodimerize with TRAAK, but do so less efficiently than with each other. We functionally characterized the heterodimers and found that all combinations form outwardly rectifying potassium-selective channels but with variable voltage sensitivity and pH regulation. TREK1-TREK2 heterodimers show low levels of activity at physiological external pH but, unlike their corresponding homodimers, are activated by both acidic and alkaline conditions. Modeling based on recent crystal structures, along with mutational analysis, suggests that each subunit within a TREK1-TREK2 channel is regulated independently via titratable His. Finally, TREK1/TRAAK heterodimers differ in function from TRAAK homodimers in two critical ways: they are activated by both intracellular acidification and alkalinization and are regulated by the enzyme phospholipase D2. Thus, heterodimerization provides a means for diversifying functionality through an expansion of the channel types within the K2P channels. PMID:27035963

  11. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    ERIC Educational Resources Information Center

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  12. Potassium

    MedlinePlus

    Potassium is a mineral that the body needs to work normally. It helps nerves and muscles communicate. ... products out of cells. A diet rich in potassium helps to offset some of sodium's harmful effects ...

  13. Descending vasa recta endothelia express inward rectifier potassium channels.

    PubMed

    Cao, Chunhua; Lee-Kwon, Whaseon; Payne, Kristie; Edwards, Aurélie; Pallone, Thomas L

    2007-10-01

    Descending vasa recta (DVR) are capillary-sized microvessels that supply blood flow to the renal medulla. They are composed of contractile pericytes and endothelial cells. In this study, we used the whole cell patch-clamp method to determine whether inward rectifier potassium channels (K(IR)) exist in the endothelia, affect membrane potential, and modulate intracellular Ca(2+) concentration ([Ca(2+)](cyt)). The endothelium was accessed for electrophysiology by removing abluminal pericytes from collagenase-digested vessels. K(IR) currents were recorded using symmetrical 140 mM K(+) solutions that served to maximize currents and eliminate cell-to-cell coupling by closing gap junctions. Large, inwardly rectifying currents were observed at membrane potentials below the equilibrium potential for K(+). Ba(2+) potently inhibited those currents in a voltage-dependent manner, with affinity k = 0.18, 0.33, 0.60, and 1.20 microM at -160, -120, -80, and -40 mV, respectively. Cs(+) also blocked those currents with k = 20, 48, 253, and 1,856 microM at -160, -120, -80, and -40 mV, respectively. In the presence of 1 mM ouabain, increasing extracellular K(+) concentration from 5 to 10 mM hyperpolarized endothelial membrane potential by 15 mV and raised endothelial [Ca(2+)](cyt). Both the K(+)-induced membrane hyperpolarization and the [Ca(2+)](cyt) elevation were reversed by Ba(2+). Immunochemical staining verified that both pericytes and endothelial cells of DVR express K(IR)2.1, K(IR)2.2, and K(IR)2.3 subunits. We conclude that strong, inwardly rectifying K(IR)2.x isoforms are expressed in DVR and mediate K(+)-induced hyperpolarization of the endothelium. PMID:17670900

  14. Eag1 potassium channels as markers of cervical dysplasia.

    PubMed

    Ortiz, Cindy Sharon; Montante-Montes, Daniel; Saqui-Salces, Milena; Hinojosa, Luz María; Gamboa-Dominguez, Armando; Hernández-Gallegos, Elisabeth; Martínez-Benítez, Braulio; Del Rosario Solís-Pancoatl, María; Garcia-Villa, Enrique; Ramírez, Ana; Aguilar-Guadarrama, Ricardo; Gariglio, Patricio; Pardo, Luis A; Stühmer, Walter; Camacho, Javier

    2011-12-01

    Human ether à-go-go 1 (Eag1) potassium channels are potential tumor markers and therapeutic targets for several types of malignancies, including cervical cancer. Estrogens and human papilloma virus oncogenes regulate Eag1 gene expression, suggesting that Eag1 may already be present in pre-malignant lesions. Therefore, Eag1 could be used as an early marker and/or a potential risk indicator for cervical cancer. Consequently, we studied Eag1 protein expression by immunochemistry in cervical cancer cell lines, normal keratinocytes, cervical cytologies from intraepithelial lesions, biopsies from cervical intraepithelial neoplasias (CIN 1, 2 and 3) and in normal smears from patients taking or not taking estrogens. Two hundred and eighty-six samples obtained by liquid-based cytology and fifteen CIN biopsies were studied. We observed Eag1 protein expression in the cervical cancer cell lines, as opposed to normal keratinocytes. Eag1 was found in 67% of the cervical cytologies from low-grade intra-epithelial lesions and in 92% of the samples from high-grade intraepithelial lesions, but only in 27% of the normal samples. Noteworthy, morphologically normal cells obtained from dysplastic samples also exhibited Eag1 expression. In CIN biopsies we found that the higher the grade of the lesion, the broader the Eag1 protein distribution. Almost 50% of the normal patients taking estrogens displayed Eag1 expression. We suggest Eag1 as a potential marker of cervical dysplasia and a risk indicator for developing cervical lesions in patients taking estrogens. Eag1 detection in cervical cancer screening programs should help to improve early diagnosis and decrease mortality rates from this disease. PMID:21887469

  15. Potassium channel antagonists and vascular reactivity in stroke-prone spontaneously hypertensive rats.

    PubMed

    Kolias, T J; Chai, S; Webb, R C

    1993-06-01

    The goal of this study was to characterize differences in contractile responsiveness to several potassium channel antagonists in vascular smooth muscle from stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto normotensive rats (WKY). Helically-cut strips of carotid arteries (endothelium removed) from SHRSP and WKY were mounted in muscle baths for measurement of isometric force generation. Contractile responses to tetraethylammonium (10(-4) to 3 x 10(-2) mol/L) and barium (3 x 10(-5) mol/L), blockers of the voltage-dependent and large conductance, calcium activated potassium channels, were greater in carotid arteries from SHRSP than in those from WKY. In contrast, contractile responses to the voltage-dependent potassium channel blockers 3,4-diamino-pyridine (10(-6) to 3 x 10(-3) mol/L) and sparteine (10(-6) to 3 x 10(-2) mol/L) in arteries from SHRSP did not differ from WKY values. Carotid arteries from SHRSP and WKY did not contract to apamin (10(-9) to 10(-6) mol/L), an antagonist of the small conductance, calcium activated potassium channel. Furthermore, relaxation responses to diazoxide (3 x 10(-4) mol/L), an activator of the ATP-sensitive potassium channel, and subsequent contractions to the ATP-sensitive potassium channel blocker glyburide (10(-8) to 3 x 10(-6) mol/L) in arteries from SHRSP did not differ from WKY values. Carotid artery segments from SHRSP were more sensitive to the contractile effects of elevated potassium than those from WKY. We conclude that altered activity of the large conductance, calcium activated potassium channel may play a role in the increased responsiveness observed in arteries from SHRSP. PMID:8343237

  16. Modeling of the Binding of Peptide Blockers to Voltage-Gated Potassium Channels: Approaches and Evidence

    PubMed Central

    Novoseletsky, V. N.; Volyntseva, A. D.; Shaitan, K. V.; Kirpichnikov, M. P.; Feofanov, A. V.

    2016-01-01

    Modeling of the structure of voltage-gated potassium (KV) channels bound to peptide blockers aims to identify the key amino acid residues dictating affinity and provide insights into the toxin-channel interface. Computational approaches open up possibilities for in silico rational design of selective blockers, new molecular tools to study the cellular distribution and functional roles of potassium channels. It is anticipated that optimized blockers will advance the development of drugs that reduce over activation of potassium channels and attenuate the associated malfunction. Starting with an overview of the recent advances in computational simulation strategies to predict the bound state orientations of peptide pore blockers relative to KV-channels, we go on to review algorithms for the analysis of intermolecular interactions, and then take a look at the results of their application. PMID:27437138

  17. Regulation of Arterial Tone by Activation of Calcium-Dependent Potassium Channels

    NASA Astrophysics Data System (ADS)

    Brayden, Joseph E.; Nelson, Mark T.

    1992-04-01

    Blood pressure and tissue perfusion are controlled in part by the level of intrinsic (myogenic) vascular tone. However, many of the molecular determinants of this response are unknown. Evidence is now presented that the degree of myogenic tone is regulated in part by the activation of large-conductance calcium-activated potassium channels in arterial smooth muscle. Tetraethylammonium ion (TEA^+) and charybdotoxin (CTX), at concentrations that block calcium-activated potassium channels in smooth muscle cells isolated from cerebral arteries, depolarized and constricted pressurized cerebral arteries with myogenic tone. Both TEA^+ and CTX had little effect on arteries when intracellular calcium was reduced by lowering intravascular pressure or by blocking calcium channels. Elevation of intravascular pressure through membrane depolarization and an increase in intracellular calcium may activate calcium-activated potassium channels. Thus, these channels may serve as a negative feedback pathway to control the degree of membrane depolarization and vasoconstriction.

  18. Eag and HERG potassium channels as novel therapeutic targets in cancer

    PubMed Central

    2010-01-01

    Voltage gated potassium channels have been extensively studied in relation to cancer. In this review, we will focus on the role of two potassium channels, Ether à-go-go (Eag), Human ether à-go-go related gene (HERG), in cancer and their potential therapeutic utility in the treatment of cancer. Eag and HERG are expressed in cancers of various organs and have been implicated in cell cycle progression and proliferation of cancer cells. Inhibition of these channels has been shown to reduce proliferation both in vitro and vivo studies identifying potassium channel modulators as putative inhibitors of tumour progression. Eag channels in view of their restricted expression in normal tissue may emerge as novel tumour biomarkers. PMID:21190577

  19. Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel

    PubMed Central

    Zhang, Hongkang; Zou, Beiyan; Yu, Haibo; Moretti, Alessandra; Wang, Xiaoying; Yan, Wei; Babcock, Joseph J.; Bellin, Milena; McManus, Owen B.; Tomaselli, Gordon; Nan, Fajun; Laugwitz, Karl-Ludwig; Li, Min

    2012-01-01

    Long QT syndrome (LQTS) is a genetic disease characterized by a prolonged QT interval in an electrocardiogram (ECG), leading to higher risk of sudden cardiac death. Among the 12 identified genes causal to heritable LQTS, ∼90% of affected individuals harbor mutations in either KCNQ1 or human ether-a-go-go related genes (hERG), which encode two repolarizing potassium currents known as IKs and IKr. The ability to quantitatively assess contributions of different current components is therefore important for investigating disease phenotypes and testing effectiveness of pharmacological modulation. Here we report a quantitative analysis by simulating cardiac action potentials of cultured human cardiomyocytes to match the experimental waveforms of both healthy control and LQT syndrome type 1 (LQT1) action potentials. The quantitative evaluation suggests that elevation of IKr by reducing voltage sensitivity of inactivation, not via slowing of deactivation, could more effectively restore normal QT duration if IKs is reduced. Using a unique specific chemical activator for IKr that has a primary effect of causing a right shift of V1/2 for inactivation, we then examined the duration changes of autonomous action potentials from differentiated human cardiomyocytes. Indeed, this activator causes dose-dependent shortening of the action potential durations and is able to normalize action potentials of cells of patients with LQT1. In contrast, an IKr chemical activator of primary effects in slowing channel deactivation was not effective in modulating action potential durations. Our studies provide both the theoretical basis and experimental support for compensatory normalization of action potential duration by a pharmacological agent. PMID:22745159

  20. Potassium ions in the cavity of a KcsA channel model

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei; Qiao, Baofu; Olvera de la Cruz, Monica

    2013-12-01

    The high rate of ion flux and selectivity of potassium channels has been attributed to the conformation and dynamics of the ions in the filter which connects the channel cavity and the extracellular environment. The cavity serves as the reservoir for potassium ions diffusing from the intracellular medium. The cavity is believed to decrease the dielectric barrier for the ions to enter the filter. We study here the equilibrium and dynamic properties of potassium ions entering the water-filled cavity of a KcsA channel model. Atomistic molecular dynamics simulations that are supplemented by electrostatic calculations reveal the important role of water molecules and the partially charged protein helices at the bottom of the cavity in overcoming the energy barrier and stabilizing the potassium ion in the cavity. We further show that the average time for a potassium ion to enter the cavity is much shorter than the conduction rate of a potassium passing through the filter, and this time duration is insensitive over a wide range of the membrane potential. The conclusions drawn from the study of the channel model are applicable in generalized contexts, including the entry of ions in artificial ion channels and other confined geometries.

  1. Role of different types of potassium channels in the relaxation of corpus cavernosum induced by resveratrol

    PubMed Central

    Dalaklioglu, Selvinaz; Ozbey, G.

    2014-01-01

    Background: Resveratrol (RVT), one of the most commonly employed dietary polyphenol, is used in traditional Japanese and Chinese medicine for treatment of cardiovascular diseases. Recently, we have shown that RVT has a potent relaxant effect on rat corpus cavernosum via endothelium-dependent and -independent mechanisms. Objective: The present study addressed the question whether different types of potassium channels are involved in the endothelium-dependent and -independent mechanism of corpus cavernosum relaxation induced by RVT. Materials and Methods: Strips of corpus cavernosum from rats were mounted in an organ-bath system for isometric tension studies. Results: RVT (1-100 μmol/L) produced concentration-dependent relaxation responses in rat corpus cavernosum pre-contracted by phenylephrine. The non-selective potassium channels blocker tetraethylammonium chloride (TEA, 10 mmol/L), ATP-sensitive potassium (KATP) channels blocker glibenclamide (10 μmol/L), and inward rectifier potassium (Kir) channels inhibitor barium chloride (BaCl2, 30 μmol/L) caused a significant inhibition on the relaxation response to RVT, whereas voltage-dependent potassium channels inhibitor 4-aminopyridine (4-AP, 1 mmol/L), and large conductance calcium-activated potassium (BKCa) channels inhibitor iberiotoxin (IbTX, 0.1 μmol/L) did not significantly alter relaxant responses of corpus cavernosum strips to RVT. In addition, relaxant responses to RVT did not significantly inhibited by the combination of selective inhibitors of small and intermediate conductance BKCa channels (0.1 μmol/L charybdotoxin and 1 μmol/L apamin, respectively). Conclusion: These results demonstrated that endothelial small and intermediate conductance BKCa channels are not thought to be an important role in RVT-induced endothelium-dependent relaxation of corpus cavernosum. The endothelium-independent corpus cavernosum relaxation induced by RVT is seems to largely depend on Kir channels and KATP channels in

  2. Conformational Changes During the Gating of a Potassium Channel Revealed by Structural Mass Spectrometry

    SciTech Connect

    Gupta, S.; Bavro, V; D' Mello, R; Tucker, S; Venien-Bryan, C; Chance, M

    2010-01-01

    Potassium channels are dynamic proteins that undergo large conformational changes to regulate the flow of K{sup +} ions across the cell membrane. Understanding the gating mechanism of these channels therefore requires methods for probing channel structure in both their open and closed conformations. Radiolytic footprinting is used to study the gating mechanism of the inwardly-rectifying potassium channel KirBac3.1. The purified protein stabilized in either open or closed conformations was exposed to focused synchrotron X-ray beams on millisecond timescales to modify solvent accessible amino acid side chains. These modifications were identified and quantified using high-resolution mass spectrometry. The differences observed between the closed and open states were then used to reveal local conformational changes that occur during channel gating. The results provide support for a proposed gating mechanism of the Kir channel and demonstrate a method of probing the dynamic gating mechanism of other integral membrane proteins and ion channels.

  3. Involvement of potassium channels in the progression of cancer to a more malignant phenotype.

    PubMed

    Comes, Nuria; Serrano-Albarrás, Antonio; Capera, Jesusa; Serrano-Novillo, Clara; Condom, Enric; Ramón Y Cajal, Santiago; Ferreres, Joan Carles; Felipe, Antonio

    2015-10-01

    Potassium channels are a diverse group of pore-forming transmembrane proteins that selectively facilitate potassium flow through an electrochemical gradient. They participate in the control of the membrane potential and cell excitability in addition to different cell functions such as cell volume regulation, proliferation, cell migration, angiogenesis as well as apoptosis. Because these physiological processes are essential for the correct cell function, K+ channels have been associated with a growing number of diseases including cancer. In fact, different K+ channel families such as the voltage-gated K+ channels, the ether à-go-go K+ channels, the two pore domain K+ channels and the Ca2+-activated K+ channels have been associated to tumor biology. Potassium channels have a role in neoplastic cell-cycle progression and their expression has been found abnormal in many types of tumors and cancer cells. In addition, the expression and activity of specific K+ channels have shown a significant correlation with the tumor malignancy grade. The aim of this overview is to summarize published data on K+ channels that exhibit oncogenic properties and have been linked to a more malignant cancer phenotype. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. PMID:25517985

  4. Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases.

    PubMed

    Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi

    2016-01-01

    Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases. PMID:27038376

  5. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease

    PubMed Central

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca2+, possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus.

  6. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease.

    PubMed

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca(2+), possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus. PMID:27445840

  7. The dipole moment of membrane proteins: potassium channel protein and beta-subunit.

    PubMed

    Takashima, S

    2001-12-25

    The mechanism of ion channel opening is one of the most fascinating problems in membrane biology. Based on phenomenological studies, early researchers suggested that the elementary process of ion channel opening may be the intramembrane charge movement or the orientation of dipolar proteins in the channel. In spite of the far reaching significance of these hypotheses, it has not been possible to formulate a comprehensive molecular theory for the mechanism of channel opening. This is because of the lack of the detailed knowledge on the structure of channel proteins. In recent years, however, the research on the structure of channel proteins made marked advances and, at present, we are beginning to have sufficient information on the structure of some of the channel proteins, e.g. potassium-channel protein and beta-subunits. With these new information, we are now ready to have another look at the old hypothesis, in particular, the dipole moment of channel proteins being the voltage sensor for the opening and closing of ion channels. In this paper, the dipole moments of potassium channel protein and beta-subunit, are calculated using X-ray diffraction data. A large dipole moment was found for beta-subunits while the dipole moment of K-channel protein was found to be considerably smaller than that of beta-subunits. These calculations were conducted as a preliminary study of the comprehensive research on the dipolar structure of channel proteins in excitable membranes, above all, sodium channel proteins. PMID:11804731

  8. Energetics of Multi-Ion Conduction Pathways in Potassium Ion Channels

    PubMed Central

    2013-01-01

    Potassium ion channels form pores in cell membranes, allowing potassium ions through while preventing the passage of sodium ions. Despite numerous high-resolution structures, it is not yet possible to relate their structure to their single molecule function other than at a qualitative level. Over the past decade, there has been a concerted effort using molecular dynamics to capture the thermodynamics and kinetics of conduction by calculating potentials of mean force (PMF). These can be used, in conjunction with the electro-diffusion theory, to predict the conductance of a specific ion channel. Here, we calculate seven independent PMFs, thereby studying the differences between two potassium ion channels, the effect of the CHARMM CMAP forcefield correction, and the sensitivity and reproducibility of the method. Thermodynamically stable ion–water configurations of the selectivity filter can be identified from all the free energy landscapes, but the heights of the kinetic barriers for potassium ions to move through the selectivity filter are, in nearly all cases, too high to predict conductances in line with experiment. This implies it is not currently feasible to predict the conductance of potassium ion channels, but other simpler channels may be more tractable. PMID:24353479

  9. Voltage-Gated Potassium Channels: A Structural Examination of Selectivity and Gating.

    PubMed

    Kim, Dorothy M; Nimigean, Crina M

    2016-01-01

    Voltage-gated potassium channels play a fundamental role in the generation and propagation of the action potential. The discovery of these channels began with predictions made by early pioneers, and has culminated in their extensive functional and structural characterization by electrophysiological, spectroscopic, and crystallographic studies. With the aid of a variety of crystal structures of these channels, a highly detailed picture emerges of how the voltage-sensing domain reports changes in the membrane electric field and couples this to conformational changes in the activation gate. In addition, high-resolution structural and functional studies of K(+) channel pores, such as KcsA and MthK, offer a comprehensive picture on how selectivity is achieved in K(+) channels. Here, we illustrate the remarkable features of voltage-gated potassium channels and explain the mechanisms used by these machines with experimental data. PMID:27141052

  10. The antifungal plant defensin AtPDF2.3 from Arabidopsis thaliana blocks potassium channels

    PubMed Central

    Vriens, Kim; Peigneur, Steve; De Coninck, Barbara; Tytgat, Jan; Cammue, Bruno P. A.; Thevissen, Karin

    2016-01-01

    Scorpion toxins that block potassium channels and antimicrobial plant defensins share a common structural CSαβ-motif. These toxins contain a toxin signature (K-C4-X-N) in their amino acid sequence, and based on in silico analysis of 18 plant defensin sequences, we noted the presence of a toxin signature (K-C5-R-G) in the amino acid sequence of the Arabidopsis thaliana defensin AtPDF2.3. We found that recombinant (r)AtPDF2.3 blocks Kv1.2 and Kv1.6 potassium channels, akin to the interaction between scorpion toxins and potassium channels. Moreover, rAtPDF2.3[G36N], a variant with a KCXN toxin signature (K-C5-R-N), is more potent in blocking Kv1.2 and Kv1.6 channels than rAtPDF2.3, whereas rAtPDF2.3[K33A], devoid of the toxin signature, is characterized by reduced Kv channel blocking activity. These findings highlight the importance of the KCXN scorpion toxin signature in the plant defensin sequence for blocking potassium channels. In addition, we found that rAtPDF2.3 inhibits the growth of Saccharomyces cerevisiae and that pathways regulating potassium transport and/or homeostasis confer tolerance of this yeast to rAtPDF2.3, indicating a role for potassium homeostasis in the fungal defence response towards rAtPDF2.3. Nevertheless, no differences in antifungal potency were observed between the rAtPDF2.3 variants, suggesting that antifungal activity and Kv channel inhibitory function are not linked. PMID:27573545

  11. The antifungal plant defensin AtPDF2.3 from Arabidopsis thaliana blocks potassium channels.

    PubMed

    Vriens, Kim; Peigneur, Steve; De Coninck, Barbara; Tytgat, Jan; Cammue, Bruno P A; Thevissen, Karin

    2016-01-01

    Scorpion toxins that block potassium channels and antimicrobial plant defensins share a common structural CSαβ-motif. These toxins contain a toxin signature (K-C4-X-N) in their amino acid sequence, and based on in silico analysis of 18 plant defensin sequences, we noted the presence of a toxin signature (K-C5-R-G) in the amino acid sequence of the Arabidopsis thaliana defensin AtPDF2.3. We found that recombinant (r)AtPDF2.3 blocks Kv1.2 and Kv1.6 potassium channels, akin to the interaction between scorpion toxins and potassium channels. Moreover, rAtPDF2.3[G36N], a variant with a KCXN toxin signature (K-C5-R-N), is more potent in blocking Kv1.2 and Kv1.6 channels than rAtPDF2.3, whereas rAtPDF2.3[K33A], devoid of the toxin signature, is characterized by reduced Kv channel blocking activity. These findings highlight the importance of the KCXN scorpion toxin signature in the plant defensin sequence for blocking potassium channels. In addition, we found that rAtPDF2.3 inhibits the growth of Saccharomyces cerevisiae and that pathways regulating potassium transport and/or homeostasis confer tolerance of this yeast to rAtPDF2.3, indicating a role for potassium homeostasis in the fungal defence response towards rAtPDF2.3. Nevertheless, no differences in antifungal potency were observed between the rAtPDF2.3 variants, suggesting that antifungal activity and Kv channel inhibitory function are not linked. PMID:27573545

  12. Scorpion Potassium Channel-blocking Defensin Highlights a Functional Link with Neurotoxin.

    PubMed

    Meng, Lanxia; Xie, Zili; Zhang, Qian; Li, Yang; Yang, Fan; Chen, Zongyun; Li, Wenxin; Cao, Zhijian; Wu, Yingliang

    2016-03-25

    The structural similarity between defensins and scorpion neurotoxins suggests that they might have evolved from a common ancestor. However, there is no direct experimental evidence demonstrating a functional link between scorpion neurotoxins and defensins. The scorpion defensin BmKDfsin4 from Mesobuthus martensiiKarsch contains 37 amino acid residues and a conserved cystine-stabilized α/β structural fold. The recombinant BmKDfsin4, a classical defensin, has been found to have inhibitory activity against Gram-positive bacteria such as Staphylococcus aureus, Bacillus subtilis, and Micrococcus luteusas well as methicillin-resistant Staphylococcus aureus Interestingly, electrophysiological experiments showed that BmKDfsin4,like scorpion potassium channel neurotoxins, could effectively inhibit Kv1.1, Kv1.2, and Kv1.3 channel currents, and its IC50value for the Kv1.3 channel was 510.2 nm Similar to the structure-function relationships of classical scorpion potassium channel-blocking toxins, basic residues (Lys-13 and Arg-19) of BmKDfsin4 play critical roles in peptide-Kv1.3 channel interactions. Furthermore, mutagenesis and electrophysiological experiments demonstrated that the channel extracellular pore region is the binding site of BmKDfsin4, indicating that BmKDfsin4 adopts the same mechanism for blocking potassium channel currents as classical scorpion toxins. Taken together, our work identifies scorpion BmKDfsin4 as the first invertebrate defensin to block potassium channels. These findings not only demonstrate that defensins from invertebrate animals are a novel type of potassium channel blockers but also provide evidence of a functional link between defensins and neurotoxins. PMID:26817841

  13. Mechanisms contributing to myocardial potassium channel diversity, regulation and remodeling.

    PubMed

    Yang, Kai-Chien; Nerbonne, Jeanne M

    2016-04-01

    In the mammalian heart, multiple types of K(+) channels contribute to the control of cardiac electrical and mechanical functioning through the regulation of resting membrane potentials, action potential waveforms and refractoriness. There are similarly vast arrays of K(+) channel pore-forming and accessory subunits that contribute to the generation of functional myocardial K(+) channel diversity. Maladaptive remodeling of K(+) channels associated with cardiac and systemic diseases results in impaired repolarization and increased propensity for arrhythmias. Here, we review the diverse transcriptional, post-transcriptional, post-translational, and epigenetic mechanisms contributing to regulating the expression, distribution, and remodeling of cardiac K(+) channels under physiological and pathological conditions. PMID:26391345

  14. Physiology of intracellular potassium channels: A unifying role as mediators of counterion fluxes?

    PubMed

    Checchetto, Vanessa; Teardo, Enrico; Carraretto, Luca; Leanza, Luigi; Szabo, Ildiko

    2016-08-01

    Plasma membrane potassium channels importantly contribute to maintain ion homeostasis across the cell membrane. The view is emerging that also those residing in intracellular membranes play pivotal roles for the coordination of correct cell function. In this review we critically discuss our current understanding of the nature and physiological tasks of potassium channels in organelle membranes in both animal and plant cells, with a special emphasis on their function in the regulation of photosynthesis and mitochondrial respiration. In addition, the emerging role of potassium channels in the nuclear membranes in regulating transcription will be discussed. The possible functions of endoplasmic reticulum-, lysosome- and plant vacuolar membrane-located channels are also referred to. Altogether, experimental evidence obtained with distinct channels in different membrane systems points to a possible unifying function of most intracellular potassium channels in counterbalancing the movement of other ions including protons and calcium and modulating membrane potential, thereby fine-tuning crucial cellular processes. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-7, 2016', edited by Prof. Paolo Bernardi. PMID:26970213

  15. Potassium channel blockers as an effective treatment to restore impulse conduction in injured axons.

    PubMed

    Shi, Riyi; Sun, Wenjing

    2011-02-01

    Most axons in the vertebral central nervous system are myelinated by oligodendrocytes. Myelin protects and insulates neuronal processes, enabling the fast, saltatory conduction unique to myelinated axons. Myelin disruption resulting from trauma and biochemical reaction is a common pathological event in spinal cord injury and chronic neurodegenerative diseases. Myelin damage-induced axonal conduction block is considered to be a significant contributor to the devastating neurological deficits resulting from trauma and illness. Potassium channels are believed to play an important role in axonal conduction failure in spinal cord injury and multiple sclerosis. Myelin damage has been shown to unmask potassium channels, creating aberrant potassium currents that inhibit conduction. Potassium channel blockade reduces this ionic leakage and improves conduction. The present review was mainly focused on the development of this technique of restoring axonal conduction and neurological function of demyelinated axons. The drug 4-aminopyridine has recently shown clinical success in treating multiple sclerosis symptoms. Further translational research has also identified several novel potassium channel blockers that may prove effective in restoring axonal conduction. PMID:21270902

  16. Sequence of a probable potassium channel component encoded at shaker locus of drosophila

    SciTech Connect

    Tempel, B.L.; Papazian, D.M.; Schwarz, T.L.; Jan, Y.N.; Jan, L.Y.

    1987-08-24

    Potassium currents are crucial for the repolarization of electrically excitable membranes, a role that makes potassium channels a target for physiological modifications that alter synaptic efficacy. The Shaker locus of Drosophila is thought to encode a K/sup +/ channel. The sequence of two complementary DNA clones from the Shaker locus is reported here. The sequence predicts an integral membrane protein of 70,200 daltons containing seven potential membrane-spanning sequences. In addition, the predicted protein is homologous to the vertebrate sodium channel in a region previously proposed to be involved in the voltage-dependent activation of the Na/sup +/ channel. These results support the hypothesis that Shaker encodes a structural component of a voltage-dependent K/sup +/ channel and suggest a conserved mechanism for voltage activation.

  17. Potassium

    MedlinePlus

    ... Sources of potassium in the diet include Leafy greens, such as spinach and collards Fruit from vines, such as grapes and blackberries Root vegetables, such as carrots and potatoes Citrus fruits, such as oranges and grapefruit

  18. Oxidative Modulation of Voltage-Gated Potassium Channels

    PubMed Central

    Sahoo, Nirakar; Hoshi, Toshinori

    2014-01-01

    Abstract Significance: Voltage-gated K+ channels are a large family of K+-selective ion channel protein complexes that open on membrane depolarization. These K+ channels are expressed in diverse tissues and their function is vital for numerous physiological processes, in particular of neurons and muscle cells. Potentially reversible oxidative regulation of voltage-gated K+ channels by reactive species such as reactive oxygen species (ROS) represents a contributing mechanism of normal cellular plasticity and may play important roles in diverse pathologies including neurodegenerative diseases. Recent Advances: Studies using various protocols of oxidative modification, site-directed mutagenesis, and structural and kinetic modeling provide a broader phenomenology and emerging mechanistic insights. Critical Issues: Physicochemical mechanisms of the functional consequences of oxidative modifications of voltage-gated K+ channels are only beginning to be revealed. In vivo documentation of oxidative modifications of specific amino-acid residues of various voltage-gated K+ channel proteins, including the target specificity issue, is largely absent. Future Directions: High-resolution chemical and proteomic analysis of ion channel proteins with respect to oxidative modification combined with ongoing studies on channel structure and function will provide a better understanding of how the function of voltage-gated K+ channels is tuned by ROS and the corresponding reducing enzymes to meet cellular needs. Antioxid. Redox Signal. 21, 933–952. PMID:24040918

  19. hERG Potassium Channel Blockade by the HCN Channel Inhibitor Bradycardic Agent Ivabradine

    PubMed Central

    Melgari, Dario; Brack, Kieran E.; Zhang, Chuan; Zhang, Yihong; El Harchi, Aziza; Mitcheson, John S.; Dempsey, Christopher E.; Ng, G. André; Hancox, Jules C.

    2015-01-01

    Background Ivabradine is a specific bradycardic agent used in coronary artery disease and heart failure, lowering heart rate through inhibition of sinoatrial nodal HCN‐channels. This study investigated the propensity of ivabradine to interact with KCNH2‐encoded human Ether‐à‐go‐go–Related Gene (hERG) potassium channels, which strongly influence ventricular repolarization and susceptibility to torsades de pointes arrhythmia. Methods and Results Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. IhERG was inhibited with an IC50 of 2.07 μmol/L for the hERG 1a isoform and 3.31 μmol/L for coexpressed hERG 1a/1b. The voltage and time‐dependent characteristics of IhERG block were consistent with preferential gated‐state‐dependent channel block. Inhibition was partially attenuated by the N588K inactivation‐mutant and the S624A pore‐helix mutant and was strongly reduced by the Y652A and F656A S6 helix mutants. In docking simulations to a MthK‐based homology model of hERG, the 2 aromatic rings of the drug could form multiple π‐π interactions with the aromatic side chains of both Y652 and F656. In monophasic action potential (MAP) recordings from guinea‐pig Langendorff‐perfused hearts, ivabradine delayed ventricular repolarization and produced a steepening of the MAPD90 restitution curve. Conclusions Ivabradine prolongs ventricular repolarization and alters electrical restitution properties at concentrations relevant to the upper therapeutic range. In absolute terms ivabradine does not discriminate between hERG and HCN channels: it inhibits IhERG with similar potency to that reported for native If and HCN channels, with S6 binding determinants resembling those observed for HCN4. These findings may have important implications both clinically and for future bradycardic drug design. PMID:25911606

  20. Psychiatric presentation of voltage-gated potassium channel antibody-associated encephalopathy

    PubMed Central

    PARTHASARATHI, U. D.; HARROWER, T.; TEMPEST, M.; HODGES, J. R.; WALSH, C.; McKENNA, P. J.; FLETCHER, P.C.

    2012-01-01

    Summary Voltage-gated potassium channel antibody encephalopathy, a rare cause of limbic encephalopathy, typically presents with memory impairment and seizures. Psychiatric symptoms have not been emphasised in the literature. Here we describe a 58-year-old man who presented with panic attacks and psychogenic non-epileptic seizures and, later on, developed delusions and hallucinations and then confusion.He was found to have antibodies to voltage-gated potassium channels.Treatment with immuno-modulatory therapy resulted in almost complete recovery. PMID:16880491

  1. Apical potassium channels in the rat connecting tubule.

    PubMed

    Frindt, Gustavo; Palmer, Lawrence G

    2004-11-01

    Apical membrane K channels in the rat connecting tubule (CNT) were studied using the patch-clamp technique. Tubules were isolated from the cortical labyrinth of the kidney and split open to provide access to the apical membrane. Cell-attached patches were formed on presumed principal and/or connecting tubule cells. The major channel type observed had a single-channel conductance of 52 pS, high open probability and kinetics that were only weakly dependent on voltage. These correspond closely to the "SK"-type channels in the cortical collecting duct, identified with the ROMK (Kir1.1) gene product. A second channel type, which was less frequently observed, mediated larger currents and was strongly activated by depolarization of the apical membrane voltage. These were identified as BK or maxi-K channels. The density of active SK channels revealed a high degree of clustering. Although heterogeneity of tubules or of cell types within a tubule could not be excluded, the major factor underlying the distribution appeared to be the presence of channel clusters on the membrane of individual cells. The overall density of channels was higher than that previously found in the cortical collecting tubule (CCT). In contrast to results in the CCT, we did not detect an increase in the overall density of SK channels in the apical membrane after feeding the animals a high-K diet. However, the activity of amiloride-sensitive Na channels was undetectable under control conditions but was increased after both 1 day (90 +/- 24 pA/cell) or 7 days (385 +/- 82 pA/cell) of K loading. Thus one important factor leading to an increased K secretion in the CNT in response to increased dietary K is an increased apical Na conductance, leading to depolarization of the apical membrane voltage and an increased driving force for K movement out into the tubular lumen. PMID:15280155

  2. Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect.

    PubMed

    Slocinska, Malgorzata; Lubawy, Jan; Jarmuszkiewicz, Wieslawa; Rosinski, Grzegorz

    2013-11-01

    In the present study, we describe the existence of mitochondrial ATP-dependent K(+) channel (mitoKATP) in two different insect tissues, fat body and muscle of cockroach Gromphadorhina coquereliana. We found that pharmacological substances known to modulate potassium channel activity influenced mitochondrial resting respiration. In isolated mitochondria oxygen consumption increased by about 13% in the presence of potassium channel openers (KCOs) such as diazoxide and pinacidil. The opening of mitoKATP was reversed by glibenclamide (potassium channel blocker) and 1 mM ATP. Immunological studies with antibodies raised against the Kir6.1 and SUR1 subunits of the mammalian ATP-sensitive potassium channel, indicated the existence of mitoKATP in insect mitochondria. MitoKATP activation by KCOs resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of mitochondrial ATP-sensitive potassium channel in insects. PMID:23973818

  3. A role of the sulfonylurea receptor 1 in endocytic trafficking of ATP-sensitive potassium channels

    PubMed Central

    Bruederle, Cathrin E.; Gay, Joel; Shyng, Show-Ling

    2011-01-01

    The ATP-sensitive potassium (KATP) channel consisting of sulfonylurea receptor 1 (SUR1) and inward rectifier potassium channel 6.2 (Kir6.2) has a well-established role in insulin secretion. Mutations in either subunit can lead to disease due to aberrant channel gating, altered channel density at the cell surface or a combination of both. Endocytic trafficking of channels at the plasma membrane is one way to influence surface channel numbers. It has been previously reported that channel endocytosis is dependent on a tyrosine-based motif in Kir6.2 while SUR1 alone is unable to internalize. In this study, we followed endocytic trafficking of surface channels in real time by live cell imaging of channel subunits tagged with an extracellular minimal α-bungarotoxin binding peptide labeled with a fluorescent dye. We demonstrate that SUR1 undergoes endocytosis independent of Kir6.2. Moreover, mutations in the putative endocytosis motif of Kir6.2, Y330C, Y330A and F333I are unable to prevent channel endocytosis. These findings challenge the notion that Kir6.2 bears the sole endocytic signal for KATP channels and support a role of SUR1 in this trafficking process. PMID:21649805

  4. KCNQ potassium channels in sensory system and neural circuits

    PubMed Central

    Wang, Jing-jing; Li, Yang

    2016-01-01

    M channels, an important regulator of neural excitability, are composed of four subunits of the Kv7 (KCNQ) K+ channel family. M channels were named as such because their activity was suppressed by stimulation of muscarinic acetylcholine receptors. These channels are of particular interest because they are activated at the subthreshold membrane potentials. Furthermore, neural KCNQ channels are drug targets for the treatments of epilepsy and a variety of neurological disorders, including chronic and neuropathic pain, deafness, and mental illness. This review will update readers on the roles of KCNQ channels in the sensory system and neural circuits as well as discuss their respective mechanisms and the implications for physiology and medicine. We will also consider future perspectives and the development of additional pharmacological models, such as seizure, stroke, pain and mental illness, which work in combination with drug-design targeting of KCNQ channels. These models will hopefully deepen our understanding of KCNQ channels and provide general therapeutic prospects of related channelopathies. PMID:26687932

  5. Inhibitory actions of GABA on rabbit urinary bladder muscle strips: mediation by potassium channels.

    PubMed

    Ferguson, D R; Marchant, J S

    1995-05-01

    1. The actions of gamma-aminobutyric acid (GABA) upon rabbit urinary bladder muscle were investigated to determine whether they were mediated through potassium channels. 2. In vitro experiments were undertaken in which bladder muscle strips were caused to contract with carbachol. Addition of GABA or baclofen reduced the size of such evoked contractions in the case of GABA by 20.7 +/- 3.2%, in the case of baclofen by 22.4 +/- 2.2%. 3. Electrical stimulation of autonomic nerves in bladder wall strips also evoked contractions which were significantly smaller in potassium-free Krebs solution. The size of contractions produced by carbachol on the other hand were unaffected by the absence of potassium in the Krebs solution. 4. The inhibitory actions of GABA and baclofen on carbachol-induced contractions of bladder muscle were detected at much lower concentrations in potassium-free compared with potassium containing solutions. 5. The inhibitory effects of baclofen were completely reversed by tetraethyl ammonium chloride between 1 and 5 mM, caesium chloride between 0.5 and 3 mM and barium chloride between 0.5 and 2.5 mM. The actions of baclofen were only partially reversed by 4-amino-pyridine between 1 and 5 mM. 6. It was concluded that the GABAB receptor-mediated inhibitory actions on rabbit urinary bladder smooth muscle cells were produced by activation of potassium channels. PMID:7647988

  6. Proarrhythmic and Torsadogenic Effects of Potassium Channel Blockers in Patients.

    PubMed

    McCauley, Mark; Vallabhajosyula, Sharath; Darbar, Dawood

    2016-06-01

    The most common arrhythmia requiring drug treatment is atrial fibrillation (AF), which affects 2 to 5 million Americans and continues to be a major cause of morbidity and increased mortality. Despite recent advances in catheter-based and surgical therapies, antiarrhythmic drugs continue to be the mainstay of therapy for most patients with symptomatic AF. However, many antiarrhythmics block the rapid component of the cardiac delayed rectifier potassium current (IKr) as a major mechanism of action, and marked QT prolongation and pause-dependent polymorphic ventricular tachycardia (torsades de pointes) are major class toxicities. PMID:27261836

  7. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    PubMed Central

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  8. Oxidative Regulation of Large Conductance Calcium-Activated Potassium Channels

    PubMed Central

    Tang, Xiang D.; Daggett, Heather; Hanner, Markus; Garcia, Maria L.; McManus, Owen B.; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

    2001-01-01

    Reactive oxygen/nitrogen species are readily generated in vivo, playing roles in many physiological and pathological conditions, such as Alzheimer's disease and Parkinson's disease, by oxidatively modifying various proteins. Previous studies indicate that large conductance Ca2+-activated K+ channels (BKCa or Slo) are subject to redox regulation. However, conflicting results exist whether oxidation increases or decreases the channel activity. We used chloramine-T, which preferentially oxidizes methionine, to examine the functional consequences of methionine oxidation in the cloned human Slo (hSlo) channel expressed in mammalian cells. In the virtual absence of Ca2+, the oxidant shifted the steady-state macroscopic conductance to a more negative direction and slowed deactivation. The results obtained suggest that oxidation enhances specific voltage-dependent opening transitions and slows the rate-limiting closing transition. Enhancement of the hSlo activity was partially reversed by the enzyme peptide methionine sulfoxide reductase, suggesting that the upregulation is mediated by methionine oxidation. In contrast, hydrogen peroxide and cysteine-specific reagents, DTNB, MTSEA, and PCMB, decreased the channel activity. Chloramine-T was much less effective when concurrently applied with the K+ channel blocker TEA, which is consistent with the possibility that the target methionine lies within the channel pore. Regulation of the Slo channel by methionine oxidation may represent an important link between cellular electrical excitability and metabolism. PMID:11222629

  9. Characterization of Voltage-Gated Potassium Channels in Human Neural Progenitor Cells

    PubMed Central

    Schaarschmidt, Grit; Wegner, Florian; Schwarz, Sigrid C.; Schmidt, Hartmut; Schwarz, Johannes

    2009-01-01

    Background Voltage-gated potassium (Kv) channels are among the earliest ion channels to appear during brain development, suggesting a functional requirement for progenitor cell proliferation and/or differentiation. We tested this hypothesis, using human neural progenitor cells (hNPCs) as a model system. Methodology/Principal Findings In proliferating hNPCs a broad spectrum of Kv channel subtypes was identified using quantitative real-time PCR with a predominant expression of the A-type channel Kv4.2. In whole-cell patch-clamp recordings Kv currents were separated into a large transient component characteristic for fast-inactivating A-type potassium channels (IA) and a small, sustained component produced by delayed-rectifying channels (IK). During differentiation the expression of IA as well as A-type channel transcripts dramatically decreased, while IK producing delayed-rectifiers were upregulated. Both Kv currents were differentially inhibited by selective neurotoxins like phrixotoxin-1 and α-dendrotoxin as well as by antagonists like 4-aminopyridine, ammoniumchloride, tetraethylammonium chloride and quinidine. In viability and proliferation assays chronic inhibition of the A-type currents severely disturbed the cell cycle and precluded proper hNPC proliferation, while the blockade of delayed-rectifiers by α-dendrotoxin increased proliferation. Conclusions/Significance These findings suggest that A-type potassium currents are essential for proper proliferation of immature multipotent hNPCs. PMID:19584922

  10. Characterization of single potassium channels in mouse pancreatic acinar cells.

    PubMed Central

    Schmid, A; Schulz, I

    1995-01-01

    1. Single K(+)-selective channels with a conductance of about 48 pS (pipette, 145 mM KCl; bath, 140 mM NaCl + 4.7 mM KCl) were recorded in the patch-clamp whole-cell configuration in isolated mouse pancreatic acinar cells. 2. Neither application of the secretagogues acetylcholine (second messenger, inositol 1,4,5-trisphosphate) or secretin (second messenger, cAMP), nor addition of the catalytic subunit of protein kinase A to the pipette solution changed the activity of the 48 pS K+ channel. 3. Intracellular acidification with sodium propionate (20 mM) diminished activity of the 48 pS channel, whereas channel open probability was increased by cytosolic alkalization with 20 mM NH4Cl. 4. BaCl2 (5 mM), TEA (10 mM) or apamin (1 microM) added to the bath solution had no obvious effect on the kinetics of the 48 pS channel. Similarly, glibenclamide and diazoxide failed to influence the channel activity. 5. When extracellular NaCl was replaced by KCl, whole-cell recordings revealed an inwardly rectifying K+ current carried by a 17 pS K+ channel. 6. The inwardly rectifying K+ current was not pH dependent and could largely be blocked by Ba2+ but not by TEA. 7. Since the 48 pS K+ channel is neither Ca2+ nor cAMP regulated, we suggest that this channel could play a role in the maintenance of the negative cell resting potential. PMID:7623283

  11. Differential polyamine sensitivity in inwardly rectifying Kir2 potassium channels.

    PubMed

    Panama, Brian K; Lopatin, Anatoli N

    2006-03-01

    Recent studies have shown that Kir2 channels display differential sensitivity to intracellular polyamines, and have raised a number of questions about several properties of inward rectification important to the understanding of their physiological roles. In this study, we have carried out a detailed characterization of steady-state and kinetic properties of block of Kir2.1-3 channels by spermine. High-resolution recordings from outside-out patches showed that in all Kir2 channels current-voltage relationships display a 'crossover' effect upon change in extracellular K+. Experiments at different concentrations of spermine allowed for the characterization of two distinct shallow components of rectification, with the voltages for half-block negative (V1(1/2)) and positive (V2(1/2)) to the voltage of half-block for the major steep component of rectification (V0(1/2)). While V1(1/2) and V2(1/2) voltages differ significantly between Kir2 channels, they were coupled to each other according to the equation V1(1/2)-V2(1/2) = constant, strongly suggesting that similar structures may underlie both components. In Kir2.3 channels, the V2(1/2) was approximately 50 mV positive to V0(1/2), leading to a pattern of outward currents distinct from that of Kir2.1 and Kir2.2 channels. The effective valency of spermine block (Z0) was highest in Kir2.2 channels while the valencies in Kir2.1 and Kir2.3 channels were not significantly different. The voltage dependence of spermine unblock was similar in all Kir2 channels, but the rates of unblock were approximately 7-fold and approximately 16-fold slower in Kir2.3 channels than those in Kir2.1 and Kir2.2 when measured at high and physiological extracellular K+, respectively. In all Kir2 channels, the instantaneous phase of activation was present. The instantaneous phase was difficult to resolve at high extracellular K+ but it became evident and accounted for nearly 30-50% of the total current when recorded at physiological extracellular K

  12. Computational Studies of Venom Peptides Targeting Potassium Channels.

    PubMed

    Chen, Rong; Chung, Shin-Ho

    2015-12-01

    Small peptides isolated from the venom of animals are potential scaffolds for ion channel drug discovery. This review article mainly focuses on the computational studies that have advanced our understanding of how various toxins interfere with the function of K⁺ channels. We introduce the computational tools available for the study of toxin-channel interactions. We then discuss how these computational tools have been fruitfully applied to elucidate the mechanisms of action of a wide range of venom peptides from scorpions, spiders, and sea anemone. PMID:26633507

  13. Computational Studies of Venom Peptides Targeting Potassium Channels

    PubMed Central

    Chen, Rong; Chung, Shin-Ho

    2015-01-01

    Small peptides isolated from the venom of animals are potential scaffolds for ion channel drug discovery. This review article mainly focuses on the computational studies that have advanced our understanding of how various toxins interfere with the function of K+ channels. We introduce the computational tools available for the study of toxin-channel interactions. We then discuss how these computational tools have been fruitfully applied to elucidate the mechanisms of action of a wide range of venom peptides from scorpions, spiders, and sea anemone. PMID:26633507

  14. Combinatorial augmentation of voltage-gated KCNQ potassium channels by chemical openers

    PubMed Central

    Xiong, Qiaojie; Sun, Haiyan; Zhang, Yangming; Nan, Fajun; Li, Min

    2008-01-01

    Noninactivating potassium current formed by KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) subunits resembles neuronal M-currents which are activated by voltage and play a critical role in controlling membrane excitability. Activation of voltage-gated potassium channels by a chemical opener is uncommon. Therefore, the mechanisms of action are worthy further investigation. Retigabine and zinc pyrithione are two activators for KCNQ channels but their molecular interactions with KCNQ channel remain largely elusive. Here we report that retigabine and zinc pyrithione recognize two different sites of KCNQ2 channels. Their agonistic actions are noncompetitive and allow for simultaneous binding of two different activators on the same channel complex, hence giving rise to combinatorial potentiation with characteristic properties of both openers. Examining their effects on mutant channels, we showed zinc pyrithione is capable of opening nonconductive channels and coapplication of zinc pyrithione and retigabine could restore a disease mutant channel similar to wild type. Our results indicate two independent activator binding sites present in KCNQ channels. The resultant combinatorial potentiation by multiple synthetic chemical openers indicates that KCNQ channels are accessible to various types and combinations of pharmacological regulation. PMID:18272489

  15. Apamin-sensitive, small-conductance, calcium-activated potassium channels mediate cholinergic inhibition of chick auditory hair cells.

    PubMed

    Yuhas, W A; Fuchs, P A

    1999-11-01

    Acetylcholine released from efferent neurons in the cochlea causes inhibition of mechanosensory hair cells due to the activation of calcium-dependent potassium channels. Hair cells are known to have large-conductance, "BK"-type potassium channels associated with the afferent synapse, but these channels have different properties than those activated by acetylcholine. Whole-cell (tight-seal) and cell-attached patch-clamp recordings were made from short (outer) hair cells isolated from the chicken basilar papilla (cochlea equivalent). The peptides apamin and charybdotoxin were used to distinguish the calcium-activated potassium channels involved in the acetylcholine response from the BK-type channels associated with the afferent synapse. Differential toxin blockade of these potassium currents provides definitive evidence that ACh activates apamin-sensitive, "SK"-type potassium channels, but does not activate carybdotoxin-sensitive BK channels. This conclusion is supported by tentative identification of small-conductance, calcium-sensitive but voltage-insensitive potassium channels in cell-attached patches. The distinction between these channel types is important for understanding the segregation of opposing afferent and efferent synaptic activity in the hair cell, both of which depend on calcium influx. These different calcium-activated potassium channels serve as sensitive indicators for functionally significant calcium influx in the hair cell. PMID:10573868

  16. Large conducting potassium channel reconstituted from airway smooth muscle.

    PubMed

    Savaria, D; Lanoue, C; Cadieux, A; Rousseau, E

    1992-03-01

    Microsomal fractions were prepared from canine and bovine airway smooth muscle (ASM) by differential and gradient centrifugations. Surface membrane vesicles were characterized by binding assays and incorporated into planar lipid bilayers. Single-channel activities were recorded in symmetric or asymmetric K+ buffer systems and studied under voltage and Ca2+ clamp conditions. A large-conductance K(+)-selective channel (greater than 220 pS in 150 mM K+) displaying a high Ca2+, low Ba2+, and charybdotoxin (CTX) sensitivity was identified. Time analysis of single-channel recordings revealed a complex kinetic behavior compatible with the previous schemes proposed for Ca(2+)-activated K+ channels in a variety of biological surface membranes. We now report that the open probability of the channel at low Ca2+ concentration is enhanced on in vitro phosphorylation, which is mediated via an adenosine 3',5'-cyclic monophosphate-dependent protein kinase. In addition to this characterization at the molecular level, a second series of pharmacological experiments were designed to assess the putative role of this channel in ASM strips. Our results show that 50 nM CTX, a specific inhibitor of the large conducting Ca(2+)-dependent K+ channel, prevents norepinephrine transient relaxation on carbamylcholine-precontracted ASM strips. It was also shown that CTX reversed the steady-state relaxation induced by vasoactive intestinal peptide and partially antagonized further relaxation induced by cumulative doses of this potent bronchodilatator. Thus it is proposed that the Ca(2+)-activated K+ channels have a physiological role because they are indirectly activated on stimulation of various membrane receptors via intracellular mechanisms. PMID:1372487

  17. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation

    PubMed Central

    Gründemann, Jan; Clark, Beverley A.

    2015-01-01

    Summary Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, KCa3.1) by local, activity-dependent calcium (Ca2+) influx at nodes of Ranvier via a T-type voltage-gated Ca2+ current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  18. OsKAT2 is the prevailing functional inward rectifier potassium channels in rice guard cell

    PubMed Central

    Hwang, Hyunsik; Yoon, Jin-Young; Cho, Hana; Kim, Beom-Gi

    2013-01-01

    AtKAT1 plays roles as a major channel to uptake K+ in guard cell when stomata open in dicot model plant Arabidopsis. In a recent publication, we isolated 3 KAT-like potassium channels in rice. We expressed them in CHO cell to identify electrophysiological characteristics of the channels. OsKAT2 showed much bigger inwardly rectifying potassium channel activities among them. The histochemical X-glu staining of transgenic rice leaf blades expressing β-glucuronidase fused with OsKAT2 promoter showed that the OsKAT2 is dominantly expressed in rice guard cell. These findings indicate that OsKAT2 may be a functional ortholog of AtKAT1 in rice. Thus this gene will be the prime target for engineering the guard cell movement to improve drought tolerance in monocot plants, including most major crops. PMID:24103920

  19. Calcium-Activated Potassium Channels at Nodes of Ranvier Secure Axonal Spike Propagation.

    PubMed

    Gründemann, Jan; Clark, Beverley A

    2015-09-22

    Functional connectivity between brain regions relies on long-range signaling by myelinated axons. This is secured by saltatory action potential propagation that depends fundamentally on sodium channel availability at nodes of Ranvier. Although various potassium channel types have been anatomically localized to myelinated axons in the brain, direct evidence for their functional recruitment in maintaining node excitability is scarce. Cerebellar Purkinje cells provide continuous input to their targets in the cerebellar nuclei, reliably transmitting axonal spikes over a wide range of rates, requiring a constantly available pool of nodal sodium channels. We show that the recruitment of calcium-activated potassium channels (IK, K(Ca)3.1) by local, activity-dependent calcium (Ca(2+)) influx at nodes of Ranvier via a T-type voltage-gated Ca(2+) current provides a powerful mechanism that likely opposes depolarizing block at the nodes and is thus pivotal to securing continuous axonal spike propagation in spontaneously firing Purkinje cells. PMID:26344775

  20. Characterization of apical potassium channels induced in rat distal colon during potassium adaptation.

    PubMed Central

    Butterfield, I; Warhurst, G; Jones, M N; Sandle, G I

    1997-01-01

    1. Chronic dietary K+ loading stimulates an active K+ secretory process in rat distal colon, which involves an increase in the macroscopic apical K+ conductance of surface epithelial cells. In the present study, the abundance and characteristics of K+ channels constituting this enhanced apical K+ conductance were evaluated using patch clamp recording techniques. 2. In isolated non-polarized surface cells, K+ channels were seen in 9 of 90 (10%) cell-attached patches in cells from control animals, and in 247 of 437 (57%) cell-attached patches in cells from K(+)-loaded animals, with a significant (P < 0.001) shift in distribution density. Similarly, recordings from cell-attached patches of the apical membrane of surface cells surrounding the openings of distal colonic crypts revealed identical K+ channels in 1 of 11 (9%) patches in control animals, and in 9 of 13 (69%) patches in K(+)-loaded animals. 3. In isolated surface cells and surface cells in situ, K+ channels had mean slope conductances of 209 +/- 6 and 233 +/- 14 pS, respectively, when inside-out patches were bathed symmetrically in K2SO4 solution. The channels were sensitive to 'cytosolic' Ca2+ concentration, were voltage sensitive at 'cytosolic' Ca2+ concentrations encountered in colonic epithelial cells, and were inhibited by 1 mM quinidine, 20 mM TEA or 5 mM Ba2+ ions. 4. The data show that dietary K+ loading increases the abundance of Ca(2+)- and voltage-sensitive large-conductance K+ channels in the apical membrane of surface cells in rat distal colon. These channels constitute the enhanced macroscopic apical K+ conductance previously identified in these cells, and are likely to play a critical role in the active K+ secretory process that typifies this model of colonic K+ adaptation. PMID:9218214

  1. The effect of copper sulfate, potassium permanganate, and peracetic acid on Ichthyobodo necator in channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ichthyobodo necator is a single celled biflagellate that can cause significant mortalities in fish, particularly young, tank-reared fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against Ichthybodosis in juvenile channel catfis...

  2. Effectiveness of copper sulfate and potassium permanganate on channel catfish infected with Flavobacterium columnare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were evaluated for their effectiveness to curtail mortality and decrease bacterial load in fish tissues and water in channel catfish Ictalurus punctatus naturally infected with Flavobacterium columnare, the causative agent of columnaris. Fis...

  3. Treating a natural outbreak of columnaris in channel catfish with copper sulfate and potassium permanganate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An F. Columnare-exclusive epizootic occurred in fingerling channel catfish (Ictalurus punctatus) during normal tank culture practices at SNARC. Fish were transferred to the ultra low-flow system and 2.1 mg/L copper sulfate or 3 mg/L potassium permanganate was administered; an untreated control was ...

  4. Modification of sodium and potassium channel gating kinetics by ether and halothane

    SciTech Connect

    Bean, B.P.; Shrager, P.; Goldstein, D.A.

    1981-03-01

    The effects of ether and halothane on the kinetics of sodium and potassium currents were investigated in the crayfish giant axon. Both general anesthetics produced a reversible, dose-dependent speeding up of sodium current inactivation at all membrane potentials, with no change in the rising phase of the currents. Double-pulse inactivation experiments with ether also showed faster inactivation, but the rate of recovery from inactivation at negative potentials was not affected. Ether shifted the midpoint of the steady-state fast inactivation curve in the hyperpolarizing direction and made the curve steeper. The activation of potassium currents was faster with ether present, with no change in the voltage dependence of steady-state potassium currents. Ether and halothane are known to perturb the structure of lipid bilayer membranes; the alterations in sodium and potassium channel gating kinetics are consistent with the hypothesis that the rats of the gating processes of the channels can be affected by the state of the lipids surrounding the channels, but a direct effect of ether and halothane on the protein part of the channels cannot be ruled out.

  5. Nitrosative stress and potassium channel-mediated neuronal apoptosis: is zinc the link?

    PubMed Central

    Pal, Sumon; He, Kai; Aizenman, Elias

    2010-01-01

    Nitrosative stress has been implicated in a large number of neurological disorders. The molecular mechanisms underlying the neuronal injury associated with this stimulus, however, are not clearly understood. Emerging evidence suggests that the liberation of intracellular zinc as well as over-activation of potassium channels may be two important components of nitrosative stress-induced neuronal death. PMID:15024658

  6. Altered potassium ATP channel signaling in mesenteric arteries of old high salt-fed rats

    PubMed Central

    Whidden, Melissa A.; Basgut, Bilgen; Kirichenko, Nataliya; Erdos, Benedek; Tümer, Nihal

    2016-01-01

    [Purpose] Both aging and the consumption of a high salt diet are associated with clear changes in the vascular system that can lead to the development of cardiovascular disease; however the mechanisms are not clearly understood. Therefore, we examined whether aging and the consumption of excess salt alters the function of potassium ATP-dependent channel signaling in mesenteric arteries [Methods] Young (7 months) and old (29 months) Fischer 344 x Brown Norway rats were fed a control or a high salt diet (8% NaCl) for 12 days and mesenteric arteries were utilized for vascular reactivity measurements. [Results] Acetylcholine-induced endothelium relaxation was significantly reduced in old arteries (81 ± 4%) when compared with young arteries (92 ± 2%). Pretreatment with the potassium-ATP channel blocker glibenclamide reduced relaxation to acetylcholine in young arteries but did not alter dilation in old arteries. On a high salt diet, endothelium dilation to acetylcholine was significantly reduced in old salt arteries (60 ± 3%) when compared with old control arteries (81 ± 4%). Glibenclamide reduced acetylcholine-induced dilation in young salt arteries but had no effect on old salt arteries. Dilation to cromakalim, a potassium-ATP channel opener, was reduced in old salt arteries when compared with old control arteries. [Conclusion] These findings demonstrate that aging impairs endothelium-dependent relaxation in mesenteric arteries. Furthermore, a high salt diet alters the function of potassium-ATP-dependent channel signaling in old isolated mesenteric arteries and affects the mediation of relaxation stimuli. PMID:27508155

  7. Renal outer medullary potassium channel knockout models reveal thick ascending limb function and dysfunction.

    PubMed

    Wang, Tong

    2012-02-01

    The renal outer medullary potassium channel (ROMK) is an adenosine triphosphate-sensitive inward-rectifier potassium channel (Kir1.1 or KCNJ1) highly expressed in the cortical and medullary thick ascending limbs (TAL), connecting segment (CNT) and cortical collecting duct (CCD) in the mammalian kidney, where it serves to recycle potassium (K(+)) across the apical membrane in TAL and to secrete K(+) in the CNT and CCD. ROMK channel mutations cause type II Bartter's syndrome with salt wasting and dehydration, and ROMK knockout mice display a similar phenotype of Bartter's syndrome in humans. Studies from ROMK null mice indicate that ROMK is required to form both the small-conductance (30pS, SK) K channels and the 70pS (IK) K channels in the TAL. The availability of ROMK(-/-) mice has made it possible to study electrolyte transport along the nephron in order to understand the TAL function under physiological conditions and the compensatory mechanisms of salt and water transport under the conditions of TAL dysfunction. This review summarizes previous progress in the study of K(+) channel activity in the TAL and CCD, ion transporter expression and activities along the nephron, and renal functions under physiological and pathophysiological conditions using ROMK(-/-) mice. PMID:22038261

  8. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy

    PubMed Central

    Diness, Jonas G.; Bentzen, Bo H.; Sørensen, Ulrik S.

    2015-01-01

    Abstract: Small-conductance Ca2+-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti–atrial fibrillation principle. PMID:25830485

  9. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy.

    PubMed

    Diness, Jonas G; Bentzen, Bo H; Sørensen, Ulrik S; Grunnet, Morten

    2015-11-01

    Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti-atrial fibrillation principle. PMID:25830485

  10. Structural dynamics of potassium channel gating revealed by single molecule FRET

    PubMed Central

    Borschel, William F.; Ha, Taekjip; Nichols, Colin G.

    2016-01-01

    Crystallography has provided invaluable insights to ion channel selectivity and gating, but to advance understanding to a new level, dynamic views of channel structures within membranes are essential. We labeled tetrameric KirBac1.1 potassium channels with single donor and acceptor fluorophores at different sites, and examined structural dynamics within lipid membranes by single molecule FRET. We found that the extracellular region is structurally rigid in both closed and open states, whereas the N-terminal slide helix undergoes marked conformational fluctuations. The cytoplasmic C-terminal domain fluctuates between two major structural states both of which become less dynamic and move away from the pore axis and away from the membrane in closed channels. Our results reveal mobile and rigid conformations of functionally relevant KirBac1.1 channel motifs, implying similar dynamics for similar motifs in eukaryotic Kir channels and for cation channels in general. PMID:26641713

  11. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain.

    PubMed

    Rizzi, Sandra; Knaus, Hans-Günther; Schwarzer, Christoph

    2016-07-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high-conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093-2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  12. Voltage sensor ring in a native structure of a membrane-embedded potassium channel

    PubMed Central

    Shi, Liang; Zheng, Hongjin; Zheng, Hui; Borkowski, Brian A.; Shi, Dan; Gonen, Tamir; Jiang, Qiu-Xing

    2013-01-01

    Voltage-gated ion channels support electrochemical activity in cells and are largely responsible for information flow throughout the nervous systems. The voltage sensor domains in these channels sense changes in transmembrane potential and control ion flux across membranes. The X-ray structures of a few voltage-gated ion channels in detergents have been determined and have revealed clear structural variations among their respective voltage sensor domains. More recent studies demonstrated that lipids around a voltage-gated channel could directly alter its conformational state in membrane. Because of these disparities, the structural basis for voltage sensing in native membranes remains elusive. Here, through electron-crystallographic analysis of membrane-embedded proteins, we present the detailed view of a voltage-gated potassium channel in its inactivated state. Contrary to all known structures of voltage-gated ion channels in detergents, our data revealed a unique conformation in which the four voltage sensor domains of a voltage-gated potassium channel from Aeropyrum pernix (KvAP) form a ring structure that completely surrounds the pore domain of the channel. Such a structure is named the voltage sensor ring. Our biochemical and electrophysiological studies support that the voltage sensor ring represents a physiological conformation. These data together suggest that lipids exert strong effects on the channel structure and that these effects may be changed upon membrane disruption. Our results have wide implications for lipid–protein interactions in general and for the mechanism of voltage sensing in particular. PMID:23401554

  13. Molecular Basis of Functional Myocardial Potassium Channel Diversity.

    PubMed

    Nerbonne, Jeanne M

    2016-06-01

    Multiple types of voltage-gated K(+) and non-voltage-gated K(+) currents have been distinguished in mammalian cardiac myocytes based on differences in time-dependent and voltage-dependent properties and pharmacologic sensitivities. Many of the genes encoding voltage-gated K(+) (Kv) and non-voltage-gated K(+) (Kir and K2P) channel pore-forming and accessory subunits are expressed in the heart, and a variety of approaches have been, and continue to be, used to define the molecular determinants of native cardiac K(+) channels and to explore the molecular mechanisms controlling the diversity, regulation, and remodeling of these channels in the normal and diseased myocardium. PMID:27261820

  14. Potassium

    MedlinePlus

    Klor-Con® Powder ... Klor-Con®/25 Powder ... Potassium comes in oral liquid, powder, granules, effervescent tablets, regular tablets, extended-release (long-acting) tablets, and extended-release capsules. It usually is taken two to four ...

  15. Molecular diversity and functional evolution of scorpion potassium channel toxins.

    PubMed

    Zhu, Shunyi; Peigneur, Steve; Gao, Bin; Luo, Lan; Jin, Di; Zhao, Yong; Tytgat, Jan

    2011-02-01

    Scorpion toxins affecting K(+) channels (KTxs) represent important pharmacological tools and potential drug candidates. Here, we report molecular characterization of seven new KTxs in the scorpion Mesobuthus eupeus by cDNA cloning combined with biochemical approaches. Comparative modeling supports that all these KTxs share a conserved cysteine-stabilized α-helix/β-sheet structural motif despite the differences in protein sequence and size. We investigated functional diversification of two orthologous α-KTxs (MeuTXKα1 from M. eupeus and BmP01 from Mesobuthus martensii) by comparing their K(+) channel-blocking activities. Pharmacologically, MeuTXKα1 selectively blocked Kv1.3 channel with nanomolar affinity (IC(50), 2.36 ± 0.9 nM), whereas only 35% of Kv1.1 currents were inhibited at 3 μM concentration, showing more than 1271-fold selectivity for Kv1.3 over Kv1.1. This peptide displayed a weak effect on Drosophila Shaker channel and no activity on Kv1.2, Kv1.4, Kv1.5, Kv1.6, and human ether-a-go-go-related gene (hERG) K(+) channels. Although BmB01 and MeuTXKα1 have a similar channel spectrum, their affinity and selectivity for these channels largely varies. In comparison with MeuTXKα1, BmP01 only exhibits a submicromolar affinity (IC(50), 133.72 ± 10.98 nM) for Kv1.3, showing 57-fold less activity than MeuTXKα1. Moreover, it lacks the ability to distinguish between Kv1.1 and Kv1.3. We also found that MeuTXKα1 inhibited the proliferation of activated T cells induced by phorbol myristate acetate and ionomycin at micromolar concentrations. Our results demonstrate that accelerated evolution drives affinity variations of orthologous α-KTxs on Kv channels and indicate that MeuTXKα1 is a promising candidate to develop an immune modulation agent for human autoimmune diseases. PMID:20889474

  16. Active Sites of Spinoxin, a Potassium Channel Scorpion Toxin, Elucidated by Systematic Alanine Scanning.

    PubMed

    Peigneur, Steve; Yamaguchi, Yoko; Kawano, Chihiro; Nose, Takeru; Nirthanan, Selvanayagam; Gopalakrishnakone, Ponnampalam; Tytgat, Jan; Sato, Kazuki

    2016-05-31

    Peptide toxins from scorpion venoms constitute the largest group of toxins that target the voltage-gated potassium channel (Kv). Spinoxin (SPX) isolated from the venom of scorpion Heterometrus spinifer is a 34-residue peptide neurotoxin cross-linked by four disulfide bridges. SPX is a potent inhibitor of Kv1.3 potassium channels (IC50 = 63 nM), which are considered to be valid molecular targets in the diagnostics and therapy of various autoimmune disorders and cancers. Here we synthesized 25 analogues of SPX and analyzed the role of each amino acid in SPX using alanine scanning to study its structure-function relationships. All synthetic analogues showed similar disulfide bond pairings and secondary structures as native SPX. Alanine replacements at Lys(23), Asn(26), and Lys(30) resulted in loss of activity against Kv1.3 potassium channels, whereas replacements at Arg(7), Met(14), Lys(27), and Tyr(32) also largely reduced inhibitory activity. These results suggest that the side chains of these amino acids in SPX play an important role in its interaction with Kv1.3 channels. In particular, Lys(23) appears to be a key residue that underpins Kv1.3 channel inhibition. Of these seven amino acid residues, four are basic amino acids, suggesting that the positive electrostatic potential on the surface of SPX is likely required for high affinity interaction with Kv1.3 channels. This study provides insight into the structure-function relationships of SPX with implications for the rational design of new lead compounds targeting potassium channels with high potency. PMID:27159046

  17. Atomic basis for therapeutic activation of neuronal potassium channels

    NASA Astrophysics Data System (ADS)

    Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.

    2015-09-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators.

  18. Magnesium modulates ROMK channel-mediated potassium secretion.

    PubMed

    Yang, Lei; Frindt, Gustavo; Palmer, Lawrence G

    2010-12-01

    The ability of intracellular and extracellular Mg(2+) to block secretory K(+) currents through ROMK channels under physiologic conditions is incompletely understood. We expressed ROMK2 channels in Xenopus oocytes and measured unitary currents in the inside-out and cell-attached modes of the patch-clamp technique. With 110 mM K(+) on both sides of the membrane, 0.2 to 5 mM Mg(2+) on the cytoplasmic side reduced outward currents, but not inward currents, at V(m) > 0. With 11 or 1.1 mM extracellular K(+) ([K(+)](o)), ≥0.2 mM Mg(2+) blocked outward currents in the physiologic V(m) range (0 to -60 mV). With decreasing [K(+)](o), the apparent dissociation constant of the blocker decreased, but the voltage dependence of block did not significantly change. Whole-cell recordings from principal cells of rat cortical collecting ducts revealed similar inhibitory effects of intracellular Mg(2+). Mg(2+) added to the extracellular solution also reduced single-channel currents with an affinity that increased as [K(+)](o) decreased. In conclusion, physiologic concentrations of intracellular and extracellular Mg(2+) can influence secretory K(+) currents through ROMK channels. These effects could play a role in the modulation of K(+) transport under conditions of K(+) and/or Mg(2+) depletion. PMID:21030597

  19. Atomic basis for therapeutic activation of neuronal potassium channels

    PubMed Central

    Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.

    2015-01-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2–5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators. PMID:26333338

  20. State-dependent block of HERG potassium channels by R-roscovitine: implications for cancer therapy

    PubMed Central

    Ganapathi, Sindura B.; Kester, Mark; Elmslie, Keith S.

    2009-01-01

    Human ether-a-go-go-related gene (HERG) potassium channel acts as a delayed rectifier in cardiac myocytes and is an important target for both pro- and antiarrhythmic drugs. Many drugs have been pulled from the market for unintended HERG block causing arrhythmias. Conversely, recent evidence has shown that HERG plays a role in cell proliferation and is overexpressed both in multiple tumor cell lines and in primary tumor cells, which makes HERG an attractive target for cancer treatment. Therefore, a drug that can block HERG but that does not induce cardiac arrhythmias would have great therapeutic potential. Roscovitine is a cyclin-dependent kinase (CDK) inhibitor that is in phase II clinical trials as an anticancer agent. In the present study we show that R-roscovitine blocks HERG potassium current (human embryonic kidney-293 cells stably expressing HERG) at clinically relevant concentrations. The block (IC50 = 27 μM) was rapid (τ = 20 ms) and reversible (τ = 25 ms) and increased with channel activation, which supports an open channel mechanism. Kinetic study of wild-type and inactivation mutant HERG channels supported block of activated channels by roscovitine with relatively little effect on either closed or inactivated channels. A HERG gating model reproduced all roscovitine effects. Our model of open channel block by roscovitine may offer an explanation of the lack of arrhythmias in clinical trials using roscovitine, which suggests the utility of a dual CDK/HERG channel block as an adjuvant cancer therapy. PMID:19244476

  1. Long-term correlation in single calcium-activated potassium channel kinetics

    NASA Astrophysics Data System (ADS)

    Campos de Oliveira, R. A.; Barbosa, C. T. F.; Consoni, L. H. A.; Rodrigues, A. R. A.; Varanda, W. A.; Nogueira, R. A.

    2006-05-01

    Ion channels are protein molecules found in biological membranes, which can assume distinct open and closed conformational states, a phenomenon called ion channel kinetics. The transitions from one state to another are dependent on the potential energy barrier that separates them and can be controlled by the electrical field, ions and/or drugs. Both Markovian and fractal models have been used for modeling the ion channel kinetics. Ion single channel records are characterized by successive openings and closings, which are correlated in time. Here the rescaled range analysis ( R/S Hurst analysis) is used to test for the occurrence of long-term correlation in the kinetics of a calcium-activated potassium channel of Leydig cells. A Hurst coefficient H=0.640±0.064 ( n=5) was found for the single calcium-activated potassium channel clamped at -80 mV and exposed to a free Ca 2+ concentration equal to 10 nM. This numerical value indicates the presence of long-term correlation (memory) in this kinetic process. However, when the R/ S analysis was applied to ion channel data simulated using Markovian and fractal models, it could not account for the long-term correlation previously found in the experimental data. In summary, in this work we show that: (i) opening and closing dwell times for the single calcium-activated potassium channel of Leydig cells present long-term correlation and (ii) Markovian and fractal models, which describe well the dwell time distributions, are not adequate to describe the memory found in the kinetics of this channel.

  2. Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons

    PubMed Central

    Sánchez-Ponce, Diana; DeFelipe, Javier; Garrido, Juan José; Muñoz, Alberto

    2012-01-01

    Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation. PMID:23119056

  3. K2P potassium channels, mysterious and paradoxically exciting.

    PubMed

    Goldstein, Steve A N

    2011-08-01

    New evidence reveals that the common electrolyte disorder hypokalemia can induce K2P1 channels that are normally selective for K+ to break the rules and conduct Na+. This defiant behavior leads to paradoxical depolarization of many cells in the heart, increasing the risk for lethal arrhythmia. The new research resolves a mystery uncovered 50 years ago and bestows an array of new riddles. Here, I discuss how K2P1 might achieve this alchemy--through stable residence of the K+ selectivity filter in a Na+-conductive state between its open and C-inactive configurations--and predict that other K+ channels and environmental stimuli will be discovered to produce the same excitatory misconduct. PMID:21868351

  4. Artificial phosphorylation sites modulate the activity of a voltage-gated potassium channel

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Zocchi, Giovanni

    2015-03-01

    The KvAP potassium channel is representative of a family of voltage-gated ion channels where the membrane potential is sensed by a transmembrane helix containing several positively charged arginines. Previous work by Wang and Zocchi [A. Wang and G. Zocchi, PLoS ONE 6, e18598 (2011), 10.1371/journal.pone.0018598] showed how a negatively charged polyelectrolyte attached in proximity to the voltage sensing element can bias the opening probability of the channel. Here we introduce three phosphorylation sites at the same location and show that the response curve of the channel shifts by about 20 mV upon phosphorylation, while other characteristics such as the single-channel conductance are unaffected. In summary, we construct an artificial phosphorylation site which confers allosteric regulation to the channel.

  5. Voltage-sensitive potassium channels in Limulus ventral photoreceptors

    PubMed Central

    1978-01-01

    The steady-state slope conductance of Limulus ventral photoreceptors increases markedly when the membrane is depolarized from rest. The ionic basis of this rectification has been examined with a voltage- clamp technique. Tail currents that occur when membrane potential is repolarized after having been depolarized have been identified. The tail currents reverse direction at a voltage that becomes more positive when Ko is increased. Rectification is reduced by extracellular 4- aminopyridine and by intracellular injection of tetra-ethyl-ammonium (TEA). These results indicate that the membrane rectification around resting potential is due primarily to voltage-sensitive K+ channels. The increase in gK caused by depolarization is not mediated by a voltage-dependent rise in in Cai++, since intracellular injection of Ca++ causes a decrease rather than an increase in slope conductance. TEA can be used to examine the functional role of the K+ channels because it blocks them without substantially affecting the light- activated Na+ conductance. The effect of TEA on response-intensity curves shows that the K+ channels serve to compress the voltage range of receptor potentials. PMID:621492

  6. Fluorogenic Probe for the Human Ether-a-Go-Go-Related Gene Potassium Channel Imaging

    PubMed Central

    2016-01-01

    The first small-molecule fluorogenic probe A1 for imaging the human Ether-a-go-go-Related Gene (hERG) potassium channel based on the photoinduced electron transfer (PET) off–on mechanism was described herein. After careful biological evaluation, this probe had the potential of detecting and imaging the hERG channel at the molecular and cellular level. Moreover, the competitive binding mechanism of this probe would presumably minimize the effects on the electrophysiological properties of the hERG channel. Therefore, this probe may serve as a powerful toolkit to the hERG-associated study. PMID:25665091

  7. Modeling the binding modes of Kv1.5 potassium channel and blockers.

    PubMed

    Yang, Qian; Du, Lupei; Wang, Xiaojian; Li, Minyong; You, Qidong

    2008-09-01

    The ultra-rapid delayed rectifier potassium current (I(Kur)), encoded by Kv1.5 gene, is the critical determinant of Phase I repolarization of action potential duration (APD). The evidences that Kv1.5 gene expresses more extensively in human atrial myocytes than in ventricle and the I(Kur) currents has not been recorded in the human ventricle, suggest Kv1.5 potassium channel as a selective target for the treatment of atrial fibrillation (AF). Recent mutagenesis studies have provided us some evidences that are useful in designing Kv1.5 blockers. In order to further evaluate these molecular biological information, the homology model of Kv1.5 potassium channel was established based on the Kv1.2 crystal structure (PDB entry: 2A79) using MODELLER 9v2 program. After the molecular dynamics refinement, the optimized homology model was assessed as a reliable structure by PROCHECK, ERRAT, WHAT-IF, PROSA2003 and DOPE graph. The results of molecular docking studies on different Kv1.5 inhibitors are in agreement with the published mutagenesis data. Based on the docking conformations, a pharmacophore model was developed by HipHop algorithm in order to probe the common features of blockers. By analyzing the results, active site architecture, certain key residues and pharmacophore common-features that are responsible for substrate specificity were identified on the Kv1.5 potassium channel, which would be very helpful in understanding the blockade mechanism of Kv1.5 potassium channel and providing insights into rational design of novel Kv1.5 blockers. PMID:18485768

  8. A bifunctional sea anemone peptide with Kunitz type protease and potassium channel inhibiting properties.

    PubMed

    Peigneur, Steve; Billen, Bert; Derua, Rita; Waelkens, Etienne; Debaveye, Sarah; Béress, László; Tytgat, Jan

    2011-07-01

    Sea anemone venom is a known source of interesting bioactive compounds, including peptide toxins which are invaluable tools for studying structure and function of voltage-gated potassium channels. APEKTx1 is a novel peptide isolated from the sea anemone Anthopleura elegantissima, containing 63 amino acids cross-linked by 3 disulfide bridges. Sequence alignment reveals that APEKTx1 is a new member of the type 2 sea anemone peptides targeting voltage-gated potassium channels (K(V)s), which also include the kalicludines from Anemonia sulcata. Similar to the kalicludines, APEKTx1 shares structural homology with both the basic pancreatic trypsin inhibitor (BPTI), a very potent Kunitz-type protease inhibitor, and dendrotoxins which are powerful blockers of voltage-gated potassium channels. In this study, APEKTx1 has been subjected to a screening on a wide range of 23 ion channels expressed in Xenopus laevis oocytes: 13 cloned voltage-gated potassium channels (K(V)1.1-K(V)1.6, K(V)1.1 triple mutant, K(V)2.1, K(V)3.1, K(V)4.2, K(V)4.3, hERG, the insect channel Shaker IR), 2 cloned hyperpolarization-activated cyclic nucleotide-sensitive cation non-selective channels (HCN1 and HCN2) and 8 cloned voltage-gated sodium channels (Na(V)1.2-Na(V)1.8 and the insect channel DmNa(V)1). Our data show that APEKTx1 selectively blocks K(V)1.1 channels in a very potent manner with an IC(50) value of 0.9nM. Furthermore, we compared the trypsin inhibitory activity of this toxin with BPTI. APEKTx1 inhibits trypsin with a dissociation constant of 124nM. In conclusion, this study demonstrates that APEKTx1 has the unique feature to combine the dual functionality of a potent and selective blocker of K(V)1.1 channels with that of a competitive inhibitor of trypsin. PMID:21477583

  9. Unique Features of Two Potassium Channels, OsKAT2 and OsKAT3, Expressed in Rice Guard Cells

    PubMed Central

    Hwang, Hyunsik; Yoon, Jinyoung; Kim, Hyun Yeong; Min, Myung Ki; Kim, Jin-Ae; Choi, Eun-Hye; Lan, Wenzhi; Bae, Young-Min; Luan, Sheng; Cho, Hana; Kim, Beom-Gi

    2013-01-01

    Potassium is the most abundant cation and a myriad of transporters regulate K+ homeostasis in plant. Potassium plays a role as a major osmolyte to regulate stomatal movements that control water utility of land plants. Here we report the characterization of two inward rectifying shaker-like potassium channels, OsKAT2 and OsKAT3, expressed in guard cell of rice plants. While OsKAT2 showed typical potassium channel activity, like that of Arabidopsis KAT1, OsKAT3 did not despite high sequence similarity between the two channel proteins. Interestingly, the two potassium channels physically interacted with each other and such interaction negatively regulated the OsKAT2 channel activity in CHO cell system. Furthermore, deletion of the C-terminal domain recovered the channel activity of OsKAT3, suggesting that the C-terminal region was regulatory domain that inhibited channel activity. Two homologous channels with antagonistic interaction has not been previously reported and presents new information for potassium channel regulation in plants, especially in stomatal regulation. PMID:23967316

  10. Electrostatics and the gating pore of Shaker potassium channels.

    PubMed

    Islas, L D; Sigworth, F J

    2001-01-01

    Various experiments have suggested that the S4 segment in voltage-dependent Na(+) and K(+) channels is in contact with a solvent-accessible cavity. We explore the consequences of the existence of such a cavity through the electrostatic effects on the gating currents of Shaker K(+) channels under conditions of reduced ionic strength S. We observe that approximately 10-fold reductions of intracellular S produce reductions of the measured gating charge of approximately 10%. These effects continue at even lower values of S. The reduction of gating charge when S is reduced by 10-fold at the extracellular surface is much smaller (approximately 2%). Shifts of the Q(V) curve because of a reduced S are small (<10 mV in size), which is consistent with very little fixed surface charge. Continuum electrostatic calculations show that the S effects on gating charge can be explained by the alteration of the local potential in an intracellular conical cavity of 20-24-A depth and 12-A aperture, and a smaller extracellular cavity of 3-A depth and the same aperture. In this case, the attenuation of the membrane potential at low S leads to reduction of the apparent gating charge. We suggest that this cavity is made by a bundle of transmembrane helices, and that the gating charge movement occurs by translocation of charged residues across a thin septum of approximately 3-7 A thickness. PMID:11134232

  11. Endoplasmic reticulum membrane potassium channel dysfunction in high fat diet induced stress in rat hepatocytes

    PubMed Central

    Khodaee, Naser; Ghasemi, Maedeh; Saghiri, Reza; Eliassi, Afsaneh

    2014-01-01

    In a previous study we reported the presence of a large conductance K+ channel in the membrane of endoplasmic reticulum (ER) from rat hepatocytes. The channel open probability (Po) appeared voltage dependent and reached to a minimum 0.2 at +50 mV. Channel activity in this case was found to be totally inhibited at ATP concentration 2.5 mM, glibenclamide 100 µM and tolbutamide 400 µM. Existing evidence indicates an impairment of endoplasmic reticulum functions in ER stress condition. Because ER potassium channels have been involved in several ER functions including cytoprotection, apoptosis and calcium homeostasis, a study was carried out to consider whether the ER potassium channel function is altered in a high fat diet model of ER stress. Male Wistar rats were made ER stress for 2 weeks with a high fat diet. Ion channel incorporation of ER stress model into the bilayer lipid membrane allowed the characterization of K+ channel. Our results indicate that the channel Po was significantly increased at voltages above +30 mV. Interestingly, addition of ATP 7.5 mM, glibenclamide 400 µM and tolbutamide 2400 µM totally inhibited the channel activities, 3-fold, 4-fold and 6-fold higher than that in the control groups, respectively. Our results thus demonstrate a modification in the ER K+ channel gating properties and decreased sensitivity to drugs in membrane preparations coming from ER high fat model of ER stress, an effect potentially linked to a change in ER K+ channel subunits in ER stress condition. Our results may provide new insights into the cellular mechanisms underlying ER dysfunctions in ER stress. PMID:26417322

  12. Diversity of Potassium Channels in Human Umbilical Artery Smooth Muscle Cells

    PubMed Central

    Martín, Pedro; Rebolledo, Alejandro; Palomo, Ana Rocio Roldán; Moncada, Melisa; Piccinini, Luciano

    2014-01-01

    Through their control of cell membrane potential, potassium (K+) channels are among the best known regulators of vascular tone. This article discusses the expression and function of K+ channels in human umbilical artery smooth muscle cells (HUASMCs). We review the bibliographic reports and also present single-channel data recorded in freshly isolated cells. Electrophysiological properties of big conductance, voltage- and Ca2+-sensitive K+ channel and voltage-dependent K+ channels are clearly established in this vessel, where they are involved in contractile state regulation. Their role in the maintenance of membrane potential is an important control mechanism in the determination of the vessel diameter. Additionally, small conductance Ca2+-sensitive K+ channels, 2-pore domains K+ channels and inward rectifier K+ channels also appear to be present in HUASMCs, while intermediate conductance Ca2+-sensitive K+ channels and ATP-sensitive K+ channels could not be identified. In both cases, additional investigation is necessary to reach conclusive evidence of their expression and/or functional role in HUASMCs. Finally, we discuss the role of K+ channels in pregnancy-related pathologies like gestational diabetes and preeclampsia. PMID:24084522

  13. Chronic ethanol-induced changes in cardiac and neuronal ATP-sensitive potassium channels

    SciTech Connect

    Bangalore, R.; Hawthorn, M.; Triggle, D.J. )

    1992-02-26

    The present study was designed to investigate the effect of chronic ethanol consumption on cardiac and neuronal ATP-sensitive potassium channels. These channels have been shown to be regulated under diseased conditions such as congestive heart failure. Rats were chronically fed with a liquid diet containing ethanol or equicaloric amount of dextrin for the three weeks. This diet induced tolerance to ethanol as assessed by the longer time the ethanol fed rats could stay on a rotorod compared to control rats when challenged with an i.p. injection of ethanol, ATP-sensitive potassium channels were characterized using ({sup 3}H)glibenclamide binding to membrane preparations from heart, olfactory bulb, hippocampus, striatum, cerebellum, cortex, brain stem and spinal cord. Chronic ethanol consumption caused a significant increase in the K{sub D} value in the hippocampus and cerebellum, and a significant decrease in the K{sub D} value in the cortex. The K{sub D} value did not change in other brain areas and heart with chronic ethanol consumption. In contrast, chronic ethanol caused a significant decrease in the B{sub max} value in the heart, and a slight but significant increase in the B{sub max} value in the spinal cord. Chronic ethanol did not affect the B{sub max} value in other brain areas. ATP-sensitive potassium channels are differently regulated by ethanol in cardiac and neuronal preparations.

  14. Eucalyptol induces hyperexcitability and epileptiform activity in snail neurons by inhibiting potassium channels.

    PubMed

    Zeraatpisheh, Zahra; Vatanparast, Jafar

    2015-10-01

    The effects of eucalyptol (1,8-cineole) were studied on the activity of central neurons of land snail Caucasotachea atrolabiata. Eucalyptol (3 mM) depolarized the membrane potential and increased the frequency of spontaneous activity in a time dependent and reversible manner. These effects were associated with suppression of afterhyperpolarization and significant reduction of amplitude and slope of rising and falling phases of action potentials. While the eucalyptol-induced suppression of action potential amplitude and rising slope were essentially dependent on membrane depolarization, its actions on repolarization slope and afterhyperpolarization were not affected by resetting the membrane potential close to the control value. These findings suggest an inhibitory action on the potassium channels that underlie repolarization and afterhyperpolarization. Eucalyptol also increased the frequency of driven action potentials but suppressed the post stimulus inhibitory period, indicating an inhibitory action on calcium-activated potassium channels. A higher concentration of eucalyptol, 5mM, reversibly changed the pattern of activity to burst firing associated with paroxysmal depolarization shift (PDS). Low doses of eucalyptol and potassium channel blockers, tetraethylammonium and 4-aminopyridine, synergistically acted to induce burst firing. At high concentration (30 mM), tetraethylammonium was able to induce burst firing and PDS. The sodium currents and ion channel phosphorylation by protein kinases A and C were not required for the eucalyptol-induced epileptiform activity, but calcium currents were essential for this action. Our findings show the excitatory and epileptogenic action of eucalyptol, which is most likely mediated through direct inhibitory action on potassium channels. PMID:26134504

  15. M-type potassium channels modulate Schaffer collateral-CA1 glutamatergic synaptic transmission.

    PubMed

    Sun, Jianli; Kapur, Jaideep

    2012-08-15

    Previous studies have suggested that muscarinic receptor activation modulates glutamatergic transmission. M-type potassium channels mediate the effects of muscarinic activation in the hippocampus, and it has been proposed that they modulate glutamatergic synaptic transmission. We tested whether M1 muscarinic receptor activation enhances glutamatergic synaptic transmission via the inhibition of the M-type potassium channels that are present in Schaffer collateral axons and terminals. Miniature excitatory postsynaptic currents (mEPSCs) were recorded from CA1 pyramidal neurons. The M1 receptor agonist, NcN-A-343, increased the frequency of mEPSCs, but did not alter their amplitude. The M-channel blocker XE991 and its analogue linopirdine also increased the frequency of mEPSCs. Flupirtine, which opens M-channels, had the opposite effect. XE991 did not enhance mEPSCs frequency in a calcium-free external medium. Blocking P/Q- and N-type calcium channels abolished the effect of XE991 on mEPSCs. These data suggested that the inhibition of M-channels increases presynaptic calcium-dependent glutamate release in CA1 pyramidal neurons. The effects of these agents on the membrane potentials of presynaptic CA3 pyramidal neurons were studied using current clamp recordings; activation of M1 receptors and blocking M-channels depolarized neurons and increased burst firing. The input resistance of CA3 neurons was increased by the application of McN-A-343 and XE991; these effects were consistent with the closure of M-channels. Muscarinic activation inhibits M-channels in CA3 pyramidal neurons and its efferents – Schaffer collateral, which causes the depolarization, activates voltage-gated calcium channels, and ultimately elevates the intracellular calcium concentration to increase the release of glutamate on CA1 pyramidal neurons. PMID:22674722

  16. Small-Conductance Ca2+-Activated Potassium Channels Negatively Regulate Aldosterone Secretion in Human Adrenocortical Cells.

    PubMed

    Yang, Tingting; Zhang, Hai-Liang; Liang, Qingnan; Shi, Yingtang; Mei, Yan-Ai; Barrett, Paula Q; Hu, Changlong

    2016-09-01

    Aldosterone, which plays a key role in maintaining water and electrolyte balance, is produced by zona glomerulosa cells of the adrenal cortex. Autonomous overproduction of aldosterone from zona glomerulosa cells causes primary hyperaldosteronism. Recent clinical studies have highlighted the pathological role of the KCNJ5 potassium channel in primary hyperaldosteronism. Our objective was to determine whether small-conductance Ca(2+)-activated potassium (SK) channels may also regulate aldosterone secretion in human adrenocortical cells. We found that apamin, the prototypic inhibitor of SK channels, decreased membrane voltage, raised intracellular Ca(2+) and dose dependently increased aldosterone secretion from human adrenocortical H295R cells. By contrast, 1-Ethyl-2-benzimidazolinone, an agonist of SK channels, antagonized apamin's action and decreased aldosterone secretion. Commensurate with an increase in aldosterone production, apamin increased mRNA expression of steroidogenic acute regulatory protein and aldosterone synthase that control the early and late rate-limiting steps in aldosterone biosynthesis, respectively. In addition, apamin increased angiotensin II-stimulated aldosterone secretion, whereas 1-Ethyl-2-benzimidazolinone suppressed both angiotensin II- and high K(+)-stimulated production of aldosterone in H295R cells. These findings were supported by apamin-modulation of basal and angiotensin II-stimulated aldosterone secretion from acutely prepared slices of human adrenals. We conclude that SK channel activity negatively regulates aldosterone secretion in human adrenocortical cells. Genetic association studies are necessary to determine whether mutations in SK channel subtype 2 genes may also drive aldosterone excess in primary hyperaldosteronism. PMID:27432863

  17. Pharmacological Conversion of a Cardiac Inward Rectifier into an Outward Rectifier Potassium Channel.

    PubMed

    Moreno-Galindo, Eloy G; Sanchez-Chapula, Jose A; Tristani-Firouzi, Martin; Navarro-Polanco, Ricardo A

    2016-09-01

    Potassium (K(+)) channels are crucial for determining the shape, duration, and frequency of action-potential firing in excitable cells. Broadly speaking, K(+) channels can be classified based on whether their macroscopic current outwardly or inwardly rectifies, whereby rectification refers to a change in conductance with voltage. Outwardly rectifying K(+) channels conduct greater current at depolarized membrane potentials, whereas inward rectifier channels conduct greater current at hyperpolarized membrane potentials. Under most circumstances, outward currents through inwardly rectifying K(+) channels are reduced at more depolarized potentials. However, the acetylcholine-gated K(+) channel (KACh) conducts current that inwardly rectifies when activated by some ligands (such as acetylcholine), and yet conducts current that outwardly rectifies when activated by other ligands (for example, pilocarpine and choline). The perplexing and paradoxical behavior of KACh channels is due to the intrinsic voltage sensitivity of the receptor that activates KACh channels, the M2 muscarinic receptor (M2R). Emerging evidence reveals that the affinity of M2R for distinct ligands varies in a voltage-dependent and ligand-specific manner. These intrinsic receptor properties determine whether current conducted by KACh channels inwardly or outwardly rectifies. This review summarizes the most recent concepts regarding the intrinsic voltage sensitivity of muscarinic receptors and the consequences of this intriguing behavior on cardiac physiology and pharmacology of KACh channels. PMID:27247338

  18. Transient outward potassium channel: a heart failure mediator.

    PubMed

    He, Qianwen; Feng, Ying; Wang, Yanggan

    2015-05-01

    Transient outward K(+) current (Ito) plays a crucial role in shaping the early phase of repolarization and setting the plateau voltage level of action potential. As a result, it extensively affects membrane current flow in the plateau window. A great body of evidence illustrates a transmural gradient of I to within ventricular wall with much higher density in epicardial than endocardial myocytes, which is important for the physiological ventricular repolarization. In heart failure (HF), this gradient is diminished due to a greater reduction of I to in epicardial myocytes. This attenuates the transmural gradient of early repolarization, facilitating conduction of abnormal impulses originated in the epicardium. In addition, I to reduction prolongs action potential duration and increases intercellular Ca(2+), thus affecting Ca(2+) handling and the excitation-contraction coupling. Furthermore, increased intercellular Ca(2+) could activate CaMKII and calcineurin whose role in cardiac hypertrophy and HF development has been well established. Based on the impact of I to reduction on electrical activity, signal conduction, calcium handling and cardiac function, restoration of I to is likely a potential therapeutic strategy for HF. In this review, we summarize the physiological and pathological role of cardiac I to channel and the potential impact of I to restoration on HF therapy with an emphasis of recent novel findings. PMID:25646587

  19. Detailed Examination of a Single Conduction Event in a Potassium Channel

    PubMed Central

    2013-01-01

    Although extensively studied, it has proved difficult to describe in detail how potassium ion channels conduct cations and water. We present a computational study that, by using stratified umbrella sampling, examines nearly an entire conduction event of the Kv1.2/2.1 paddle chimera and thereby identifies the expected stable configurations of ions and waters in the selectivity filter of the channel. We describe in detail the motions of the ions and waters during a conduction event, focusing on how waters and ions enter the filter, the rotation of water molecules inside the filter, and how potassium ions are coordinated as they move from a water to a protein environment. Finally, we analyze the small conformational changes undergone by the protein, showing that the stable configurations are most similar to the experimental crystal structure. PMID:24143269

  20. Identification of genes from pattern formation, tyrosine kinase, and potassium channel families by DNA amplification

    SciTech Connect

    Kamb, A.; Weir, M.; Rudy, B.; Varmus, H.; Kenyon, C. )

    1989-06-01

    The study of gene family members has been aided by the isolation of related genes on the basis of DNA homology. The authors have adapted the polymerase chain reaction to screen animal genomes very rapidly and reliably for likely gene family members. Using conserved amino acid sequences to design degenerate oligonucleotide primers, they have shown that the genome of the nematode Caenorhabditis elegans contains sequences homologous to many Drosophila genes involved in pattern formation, including the segment polarity gene wingless (vertebrate int-1), and homeobox sequences characteristic of the Antennapedia, engrailed, and paired families. In addition, they have used this method to show that C. elegans contains at least five different sequences homologous to genes in the tyrosine kinase family. Lastly, they have isolated six potassium channel sequences from humans, a result that validates the utility of the method with large genomes and suggests that human potassium channel gene diversity may be extensive.

  1. Stereoselective Inhibition of the hERG1 Potassium Channel

    PubMed Central

    Grilo, Liliana Sintra; Carrupt, Pierre-Alain; Abriel, Hugues

    2010-01-01

    A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1) channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom) is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS. PMID:21833176

  2. Suppression of the hERG potassium channel response to premature stimulation by reduction in extracellular potassium concentration

    PubMed Central

    Melgari, Dario; Du, Chunyun; El Harchi, Aziza; Zhang, Yihong; Hancox, Jules C.

    2014-01-01

    Abstract Potassium channels encoded by human ether‐à‐go‐go‐related gene (hERG) mediate the cardiac rapid delayed rectifier K+ current (IKr), which participates in ventricular repolarization and has a protective role against unwanted premature stimuli late in repolarization and early in diastole. Ionic current carried by hERG channels (IhERG) is known to exhibit a paradoxical dependence on external potassium concentration ([K+]e), but effects of acute [K+]e changes on the response of IhERG to premature stimulation have not been characterized. Whole‐cell patch‐clamp measurements of hERG current were made at 37°C from hERG channels expressed in HEK293 cells. Under conventional voltage‐clamp, both wild‐type (WT) and S624A pore‐mutant IhERG during depolarization to +20 mV and subsequent repolarization to −40 mV were decreased when superfusate [K+]e was decreased from 4 to 1 mmol/L. When [K+]e was increased from 4 to 10 mmol/L, pulse current was increased and tail IhERG was decreased. Increasing [K+]e produced a +10 mV shift in voltage‐dependent inactivation of WT IhERG and slowed inactivation time course, while lowering [K+]e from 4 to 1 mmol/L produced little change in inactivation voltage dependence, but accelerated inactivation time course. Under action potential (AP) voltage‐clamp, lowering [K+]e reduced the amplitude of IhERG during the AP and suppressed the maximal IhERG response to premature stimuli. Raising [K+]e increased IhERG early during the AP and augmented the IhERG response to premature stimuli. Our results are suggestive that during hypokalemia not only is the contribution of IKr to ventricular repolarization reduced but its ability to protect against unwanted premature stimuli also becomes impaired. PMID:25318749

  3. Breaking the silence: functional expression of the two-pore-domain potassium channel THIK-2.

    PubMed

    Renigunta, Vijay; Zou, Xinle; Kling, Stefan; Schlichthörl, Günter; Daut, Jürgen

    2014-09-01

    THIK-2 belongs to the 'silent' channels of the two-pore-domain potassium channel family. It is highly expressed in many nuclei of the brain but has so far resisted all attempts at functional expression. THIK-2 has a highly conserved 19-amino-acid region in its N terminus (residues 6-24 in the rat orthologue) that is missing in the closely related channel THIK-1. After deletion of this region (THIK-2(Δ6-24) mutant), functional expression of the channel was observed in Xenopus oocytes and in mammalian cell lines. The resulting potassium current showed outward rectification under physiological conditions and slight inward rectification with symmetrical high-K(+) solutions and could be inhibited by application of halothane or quinidine. Another THIK-2 mutant, in which the putative retention/retrieval signal RRR at positions 14-16 was replaced by AAA, produced a similar potassium current. Both mutants showed a distinct localisation to the surface membrane when tagged with green fluorescent protein and expressed in a mammalian cell line, whereas wild-type THIK-2 was mainly localised to the endoplasmic reticulum. These findings suggest that deletion of the retention/retrieval signal RRR enabled transport of THIK-2 channels to the surface membrane. Combining the mutation THIK-2(Δ6-24) with a mutation in the pore cavity (rat THIK-2(I158G)) gave rise to a 12-fold increase in current amplitude, most likely due to an increase in open probability. In conclusion, the characteristics of THIK-2 channels can be analysed in heterologous expression systems by using trafficking and/or gating mutants. The possible mechanisms that enable THIK-2 expression at the surface membrane in vivo remain to be determined. PMID:24297522

  4. Screening and cDNA Cloning of Kv1 Potassium Channel Toxins in Sea Anemones

    PubMed Central

    Yamaguchi, Yoshikazu; Hasegawa, Yuichi; Honma, Tomohiro; Nagashima, Yuji; Shiomi, Kazuo

    2010-01-01

    When 21 species of sea anemones were screened for Kv1 potassium channel toxins by competitive inhibition of the binding of 125I-α-dendrotoxin to rat synaptosomal membranes, 11 species (two species of Actiniidae, one species of Hormathiidae, five species of Stichodactylidae and three species of Thalassianthidae) were found to be positive. Furthermore, full-length cDNAs encoding type 1 potassium channel toxins from three species of Stichodactylidae and three species of Thalassianthidae were cloned by a combination of RT-PCR, 3′RACE and 5′RACE. The precursors of these six toxins are commonly composed of signal peptide, propart and mature peptide portions. As for the mature peptide (35 amino acid residues), the six toxins share more than 90% sequence identities with one another and with κ1.3-SHTX-She1a (Shk) from Stichodactyla helianthus but only 34–63% identities with the other type 1 potassium channel toxins. PMID:21339955

  5. Disruption of the potassium channel regulatory subunit KCNE2 causes iron-deficient anemia

    PubMed Central

    Salsbury, Grace; Cambridge, Emma L.; McIntyre, Zoe; Arends, Mark J.; Karp, Natasha A.; Isherwood, Christopher; Shannon, Carl; Hooks, Yvette; Ramirez-Solis, Ramiro; Adams, David J.; White, Jacqueline K.; Speak, Anneliese O.

    2014-01-01

    Iron homeostasis is a dynamic process that is tightly controlled to balance iron uptake, storage, and export. Reduction of dietary iron from the ferric to the ferrous form is required for uptake by solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2 (Slc11a2) into the enterocytes. Both processes are proton dependent and have led to the suggestion of the importance of acidic gastric pH for the absorption of dietary iron. Potassium voltage-gated channel subfamily E, member 2 (KCNE2), in combination with potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1), form a gastric potassium channel essential for gastric acidification. Deficiency of either Kcne2 or Kcnq1 results in achlorhydia, gastric hyperplasia, and neoplasia, but the impact on iron absorption has not, to our knowledge, been investigated. Here we report that Kcne2-deficient mice, in addition to the previously reported phenotypes, also present with iron-deficient anemia. Interestingly, impaired function of KCNQ1 results in iron-deficient anemia in Jervell and Lange-Nielsen syndrome patients. We speculate that impaired function of KCNE2 could result in the same clinical phenotype. PMID:25127743

  6. VARIATIONS IN POTASSIUM CHANNEL GENES ARE ASSOCIATED WITH BREAST PAIN IN WOMEN PRIOR TO BREAST CANCER SURGERY

    PubMed Central

    Langford, Dale J.; West, Claudia; Elboim, Charles; Cooper, Bruce A.; Abrams, Gary; Paul, Steven M.; Schmidt, Brian L.; Levine, Jon D.; Merriman, John D.; Dhruva, Anand; Neuhaus, John; Leutwyler, Heather; Baggott, Christina; Sullivan, Carmen Ward; Aouizerat, Bradley E.; Miaskowski, Christine

    2014-01-01

    Preoperative breast pain in women with breast cancer may result from a number of causes. Previous work from our team found that breast pain occurred in 28.2% of women (n=398) who were about to undergo breast cancer surgery. The occurrence of preoperative breast pain was associated with a number of demographic and clinical characteristics, as well as variation in two cytokine genes. Given that ion channels regulate excitability of sensory neurons, we hypothesized that variations in potassium channel genes would be associated with preoperative breast pain in these patients. Therefore, in this study we evaluated for associations between single nucleotide polymorphisms and inferred haplotypes among 10 potassium channel genes and the occurrence of preoperative breast pain in patients scheduled to undergo breast cancer surgery. Multivariable logistic regression analyses were used to identify those genetic variations that were associated with the occurrence of preoperative breast pain while controlling for age and genomic estimates of and self-reported race/ethnicity. Variations in four potassium channel genes: 1) potassium voltage-gated channel, delayed rectifier, subfamily S, member 1 (KCNS1); 2) potassium inwardly-rectifying channel, subfamily J, member 3 (KCNJ3); 3) KCNJ6; and 4) potassium channel, subfamily K, member 9 (KCNK9) were associated with the occurrence of breast pain. Findings from this study warrant replication in an independent sample of women who report breast pain following one or more breast biopsies. PMID:24392765

  7. Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.

    PubMed

    Mafé, Salvador; Pellicer, Julio

    2005-02-01

    We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance. PMID:15783362

  8. Single voltage-dependent potassium channels in rat peripheral nerve membrane.

    PubMed Central

    Safronov, B V; Kampe, K; Vogel, W

    1993-01-01

    1. Voltage-dependent potassium channels were investigated in rat axonal membrane by means of the patch-clamp recording technique. Three different types of channels (F, I and S) have been characterized on the basis of their single-channel conductance, activation, deactivation and inactivation properties. 2. The fast (F) channels were activated smoothly at potentials (E) between -50 and 50 mV (E50 = 4.6 mV). They had a conductance of 55 pS for inward current and 30 pS for outward current in solutions containing 155 mM K+ (high K+) on both sides of the membrane at 21-23 degrees C. The F-channels demonstrated the fastest deactivation, within 1-2 ms, and inactivated in a few hundreds of milliseconds. The time constant of inactivation was 143 ms at E = +40 mV. 3. The intermediate (I) channels activated steeply between E = -70 and -50 mV (E50 = -64.2 mv) and had a single-channel conductance of 33 pS for inward and 18 ps for outward currents. The I-channels deactivated with intermediate kinetics with the time constants of 20.4 ms and 10.1 ms at E = -80 mV and E = -100 mV, respectively. Complete inactivation of the channels developed over tens of seconds. The time constant of inactivation was 7.4 s at E = +40 mV. 4. The slow (S) channels were active at potentials positive to -90 mV. Their conductance was 10 pS for inward currents. The time constant of activation of the S-channels was strongly potential dependent. At a holding potential of -100 mV the channels deactivated during a long time interval between 30 ms and 1 s, producing long-lasting tail currents. The mean time constant of deactivation for S-channels was 129 ms. 5. The conductances of F- and I-channels measured under normal physiological conditions (Ringer solution in bath) were 17 and 10 pS, respectively. 6. Tetraethylammonium (TEA), the classic blocker of potassium channels, suppressed F-, I- and S-channels. It gradually reduced the apparent amplitude of unitary currents in a dose-dependent manner with IC50

  9. Crystal structure of the PAS domain of the hEAG potassium channel

    PubMed Central

    Tang, Xue; Shao, Juan; Qin, Xiaohong

    2016-01-01

    KCNH voltage-gated potassium channels play critical roles in regulating cellular functions. The channel is composed of four subunits, each of which contains six transmembrane helices forming the central pore. The cytoplasmic parts of the subunits present a Per–Arnt–Sim (PAS) domain at the N-terminus and a cyclic nucleotide-binding homology domain at the C-terminus. PAS domains are conserved from prokaryotes to eukaryotes and are involved in sensing signals and cellular responses. To better understand the functional roles of PAS domains in KCNH channels, the structure of this domain from the human ether-à-go-go channel (hEAG channel) was determined. By comparing it with the structures of the Homo sapiens EAG-related gene (hERG) channel and the Drosophila EAG-like K+ (dELK) channel and analyzing the structural features of the hEAG channel, it was identified that a hydrophobic patch on the β-sheet may mediate interaction between the PAS domain and other regions of the channel to regulate its functions. PMID:27487920

  10. High temperature sensitivity is intrinsic to voltage-gated potassium channels.

    PubMed

    Yang, Fan; Zheng, Jie

    2014-01-01

    Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors. PMID:25030910

  11. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning.

    PubMed

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  12. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning

    PubMed Central

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  13. Crystal structure of the PAS domain of the hEAG potassium channel.

    PubMed

    Tang, Xue; Shao, Juan; Qin, Xiaohong

    2016-08-01

    KCNH voltage-gated potassium channels play critical roles in regulating cellular functions. The channel is composed of four subunits, each of which contains six transmembrane helices forming the central pore. The cytoplasmic parts of the subunits present a Per-Arnt-Sim (PAS) domain at the N-terminus and a cyclic nucleotide-binding homology domain at the C-terminus. PAS domains are conserved from prokaryotes to eukaryotes and are involved in sensing signals and cellular responses. To better understand the functional roles of PAS domains in KCNH channels, the structure of this domain from the human ether-à-go-go channel (hEAG channel) was determined. By comparing it with the structures of the Homo sapiens EAG-related gene (hERG) channel and the Drosophila EAG-like K(+) (dELK) channel and analyzing the structural features of the hEAG channel, it was identified that a hydrophobic patch on the β-sheet may mediate interaction between the PAS domain and other regions of the channel to regulate its functions. PMID:27487920

  14. Cysteines control the N- and C-linker-dependent gating of KCNH1 potassium channels.

    PubMed

    Sahoo, Nirakar; Schönherr, Roland; Hoshi, Toshinori; Heinemann, Stefan H

    2012-05-01

    KCNH1 (EAG1) is a member of the Kv family of voltage-gated potassium channels. However, KCNH1 channels also show some amino-acid sequence similarity to cyclic-nucleotide-regulated channels: they harbor an N-terminal PAS domain, a C-terminal cyclic nucleotide binding homology domain (cNBHD), and N- and C-terminal binding sites for calmodulin. Another notable feature is the channels' high sensitivity toward oxidative modification. Using human KCNH1 expressed in Xenopus oocytes and HEK 293 cells we investigated how oxidative modification alters channel function. Intracellular application of H(2)O(2) or cysteine-specific modifiers potently inhibited KCNH1 channels in two phases. Our systematic cysteine mutagenesis study showed that the rapid and dominant phase was attributed to a right-shift in the voltage dependence of activation, caused by chemical modification of residues C145 and C214. The slow component depended on the C-terminal residues C532 and C562. The cysteine pairs are situated at structural elements linking the transmembrane S1 segment with the PAS domain (N-linker) and the transmembrane channel gate S6 with the cNBH domain (C-linker), respectively. The functional state of KCNH1 channels is determined by the oxidative status of these linkers that provide an additional dimension of channel regulation. PMID:22310694

  15. The Link between Ion Permeation and Inactivation Gating of Kv4 Potassium Channels

    PubMed Central

    Shahidullah, Mohammad; Covarrubias, Manuel

    2003-01-01

    Kv4 potassium channels undergo rapid inactivation but do not seem to exhibit the classical N-type and C-type mechanisms present in other Kv channels. We have previously hypothesized that Kv4 channels preferentially inactivate from the preopen closed state, which involves regions of the channel that contribute to the internal vestibule of the pore. To further test this hypothesis, we have examined the effects of permeant ions on gating of three Kv4 channels (Kv4.1, Kv4.2, and Kv4.3) expressed in Xenopus oocytes. Rb+ is an excellent tool for this purpose because its prolonged residency time in the pore delays K+ channel closing. The data showed that, only when Rb+ carried the current, both channel closing and the development of macroscopic inactivation are slowed (1.5- to 4-fold, relative to the K+ current). Furthermore, macroscopic Rb+ currents were larger than K+ currents (1.2- to 3-fold) as the result of a more stable open state, which increases the maximum open probability. These results demonstrate that pore occupancy can influence inactivation gating in a manner that depends on how channel closing impacts inactivation from the preopen closed state. By examining possible changes in ionic selectivity and the influence of elevating the external K+ concentration, additional experiments did not support the presence of C-type inactivation in Kv4 channels. PMID:12547775

  16. High temperature sensitivity is intrinsic to voltage-gated potassium channels

    PubMed Central

    Yang, Fan; Zheng, Jie

    2014-01-01

    Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors. DOI: http://dx.doi.org/10.7554/eLife.03255.001 PMID:25030910

  17. Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1.

    PubMed

    Srivastava, Shekhar; Panda, Saswati; Li, Zhai; Fuhs, Stephen R; Hunter, Tony; Thiele, Dennis J; Hubbard, Stevan R; Skolnik, Edward Y

    2016-01-01

    KCa2.1, KCa2.2, KCa2.3 and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NDPK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here, we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4(+) T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site. PMID:27542194

  18. Expression of two-pore domain potassium channels in nonhuman primate sperm*

    PubMed Central

    Chow, Gregory E.; Muller, Charles H.; Curnow, Eliza C.; Hayes, Eric S.

    2007-01-01

    Objective Two-pore domain potassium channels (K2P) play integral roles in cell signaling pathways by modifying cell membrane resting potential. Here we describe the expression and function of K2P channels in nonhuman primate sperm. Design Experimental animal study, randomized blinded concentration-response experiments. Setting University affiliated primate research center. Animal(s) Male nonhuman primates. Interventions Western blot and immunofluorescent analysis of epididymal sperm samples. Kinematic measures (VCL and ALH) and acrosome status were studied in epidydimal sperm samples exposed to K2P agonist (Docosahexaenoic acid) and antagonist (Gadolinium). Main outcome measures Semi-quantitative protein expression and cellular localization and quantitative changes in specific kinematic parameters and acrosome integrity. Results Molecular analysis demonstrated expression and specific regional distribution of TRAAK, TREK-1, and TASK-2 in nonhuman primate sperm. Docosahexaenoic acid produced a concentration-dependent increase in curvilinear velocity (p < 0.0001) with concomitant concentration-dependent reductions in lateral head displacement (p = 0.005). Gadolinium reduced velocity measures (p < 0.01) without significantly affecting lateral head displacement. Conclusion(s) The results demonstrated for the first time, expression and function of K2P potassium channels in nonhuman primate sperm. The unique, discrete distributions of K2P channels in nonhuman primate sperm suggest specific roles for this sub-family of ion channels in primate sperm function. PMID:17067589

  19. Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1

    PubMed Central

    Srivastava, Shekhar; Panda, Saswati; Li, Zhai; Fuhs, Stephen R; Hunter, Tony; Thiele, Dennis J; Hubbard, Stevan R; Skolnik, Edward Y

    2016-01-01

    KCa2.1, KCa2.2, KCa2.3 and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NDPK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here, we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4+ T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site. DOI: http://dx.doi.org/10.7554/eLife.16093.001 PMID:27542194

  20. Structure of the voltage-dependent potassium channel is highly conserved from Drosophila to vertebrate central nervous systems.

    PubMed Central

    Baumann, A; Grupe, A; Ackermann, A; Pongs, O

    1988-01-01

    Voltage-sensitive potassium channels are found in vertebrate and invertebrate central nervous systems. We have isolated a rat brain cDNA by cross-hybridization with a probe of the Drosophila Shaker gene complex. Structural conservation of domains of the deduced protein indicate that the rat brain cDNA encodes a voltage-sensitive potassium channel. Of the deduced amino acid sequence, 82% is homologous to the Drosophila Shaker protein indicating that voltage-sensitive potassium channels have been highly conserved during evolution. Selective pressure was highest on sequences facing the intracellular side and on proposed transmembrane segments S4-S6, suggesting that these domains are crucial for voltage-dependent potassium channel function. The corresponding rat mRNA apparently belongs to a family of mRNA molecules which are preferentially expressed in the central nervous system. Images PMID:3191911

  1. In silico identification of PAP-1 binding sites in the Kv1.2 potassium channel.

    PubMed

    Jorgensen, Christian; Darré, Leonardo; Vanommeslaeghe, Kenno; Omoto, Kiyoyuki; Pryde, David; Domene, Carmen

    2015-04-01

    Voltage-gated potassium channels of the Kv1 family play a crucial role in the generation and transmission of electrical signals in excitable cells affecting neuronal and cardiac activities. Small-molecule blockage of these channels has been proposed to occur via a cooperative mechanism involving two main blocking sites: the inner-pore site located below the selectivity filter, and a side-pocket cavity located between the pore and the voltage sensor. Using 0.5 μs molecular dynamics simulation trajectories complemented by docking calculations, the potential binding sites of the PAP-1 (5-(4-phenoxybutoxy)psoralen) blocker to the crystal structure of Kv1.2 channel have been studied. The presence of both mentioned blocking sites at Kv1.2 is confirmed, adding evidence in favor of a cooperative channel blockage mechanism. These observations provide insight into drug modulation that will guide further developments of Kv inhibitors. PMID:25734225

  2. Functional evidence for oxygen-sensitive voltage-gated potassium channels in human placental vasculature.

    PubMed

    Kiernan, M F; Barrie, A; Szkolar, J; Mills, T A; Wareing, M

    2010-06-01

    Hypoxic fetoplacental vasoconstriction (HFPV), involving voltage-gated potassium (K(V)) channels, has been suggested in human placenta; the identity of these channels remains unclear. Using wire myography, chorionic plate blood vessels were exposed to isoform-specific K(V) channel blockers. Dose-response curves (thromboxane mimetic U46619; 0.1-2000 nM) pre- and post-addition of K(V) channel modulator were analysed. Arterial U46619-induced contraction increased with margatoxin and stromatoxin-1, whilst only correolide increased U46619-induced contraction in veins (P < 0.05 two-way ANOVA). Basal tone was unaffected in arteries or veins. These data implicate K(V)1.2 and/or K(V)2.1 and K(V)1.5 in the control of agonist-induced contraction of human placental arteries and veins respectively. PMID:20451247

  3. Potassium channel blockers from the venom of the Brazilian scorpion Tityus serrulatus ().

    PubMed

    Martin-Eauclaire, Marie-France; Pimenta, Adriano M C; Bougis, Pierre E; De Lima, Maria-Elena

    2016-09-01

    Potassium (K(+)) channels are trans-membrane proteins, which play a key role in cellular excitability and signal transduction pathways. Scorpion toxins blocking the ion-conducting pore from the external side have been invaluable probes to elucidate the structural, functional, and physio-pathological characteristics of these ion channels. This review will focus on the interaction between K(+) channels and their peptide blockers isolated from the venom of the scorpion Tityus serrulatus, which is considered as the most dangerous scorpion in Brazil, in particular in Minas-Gerais State, where many casualties are described each year. The primary mechanisms of action of these K(+) blockers will be discussed in correlation with their structure, very often non-canonical compared to those of other well known K(+) channels blockers purified from other scorpion venoms. Also, special attention will be brought to the most recent data obtained by proteomic and transcriptomic analyses on Tityus serrulatus venoms and venom glands. PMID:27349167

  4. Separation of heteromeric potassium channel Kcv towards probing subunit composition-regulated ion permeation and gating

    PubMed Central

    Tan, Qiulin; Shim, Ji Wook; Gu, Li-Qun

    2010-01-01

    The chlorella virus-encoded Kcv can form a homo-tetrameric potassium channel in lipid membranes. This miniature peptide can be synthesized in vitro, and the tetramer purified from the SDS polyacrylamide gel retains the K+ channel functionality. Combining this capability with the mass-tagging method, we propose a simple, straightforward approach that can generically manipulate individual subunits in the tetramer, thereby enabling the detection of contribution from individual subunits to the channel functions. Using this approach, we showed that the structural change from only one subunit in the selectivity filter is sufficient to cause permanent channel inactivation (“all-or-none” mechanism), whereas the mutation near the extracellular entrance additively modifies the ion permeation with the number of mutant subunits in the tetramer (“additive” mechanism). PMID:20303961

  5. Opening paths to novel analgesics: the role of potassium channels in chronic pain

    PubMed Central

    Tsantoulas, Christoforos; McMahon, Stephen B.

    2014-01-01

    Chronic pain is associated with abnormal excitability of the somatosensory system and remains poorly treated in the clinic. Potassium (K+) channels are crucial determinants of neuronal activity throughout the nervous system. Opening of these channels facilitates a hyperpolarizing K+ efflux across the plasma membrane that counteracts inward ion conductance and therefore limits neuronal excitability. Accumulating research has highlighted a prominent involvement of K+ channels in nociceptive processing, particularly in determining peripheral hyperexcitability. We review salient findings from expression, pharmacological, and genetic studies that have untangled a hitherto undervalued contribution of K+ channels in maladaptive pain signaling. These emerging data provide a framework to explain enigmatic pain syndromes and to design novel pharmacological treatments for these debilitating states. PMID:24461875

  6. [Ion channels and demyelination: basis of a treatment of experimental autoimmune encephalomyelitis (EAE) by potassium channel blockers].

    PubMed

    Devaux, J; Beeton, C; Béraud, E; Crest, M

    2004-05-01

    Voltage-gated potassium channels (Kv channels) are ion channels, openings of which provide an outward flow of potassium ions repolarising the cell. In neurons, Kv channels play a crucial role in action potential repolarisation and in shaping neuronal excitability. In non-excitable cells, such as T lymphocytes, Kv channels and calcium-activated K+ channels (KCa channels) determine the driving force for Ca2+ entry. During T cell activation the calcium entry depolarises the cell and increases the cytosolic calcium concentration, which in return activates Kv and KCa channels. K+ channel opening repolarises the cell and drives the membrane potential to a negative voltage. The roles of Kv channels in nervous and immune systems have been investigated here by means of a rat experimental autoimmune disease of the central nervous system, the experimental autoimmune encephalomyelitis (EAE). EAE is characterised clinically by paralysis, and pathologically by inflammatory cell infiltrations into the brain and the spinal cord. Among the inflammatory cells, T lymphocytes play a major role. Hence, EAE can be adoptively transferred into syngenic animals by the injection of T cells reactive to myelin antigens. During adoptive-EAE, somato-sensory evoked potentials recorded along the spinal tracts decrease in amplitude and axonal propagation is disrupted. We have analysed the consequences of Kv channels blockade by peptidyl toxins on central nerve conduction, on T cell activation and on the time course of EAE. In rat optic nerves, Kv channels have been identified up from postnatal day 1. Their blockade by kaliotoxin (a scorpion toxin) or by dendrotoxin-I (a snake toxin) enlarges the compound action potentials, demonstrating the participation of Kv channels to spike repolarisation. This effect disappears at adult age due to the sequestration of Kv channels under the myelin, in the paranodal regions. During acute demyelination by lysophosphatidyl-choline, the surface area of compound

  7. Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels

    PubMed Central

    Yu, Haibo; Lin, Zhihong; Mattmann, Margrith E.; Zou, Beiyan; Terrenoire, Cecile; Zhang, Hongkang; Wu, Meng; McManus, Owen B.; Kass, Robert S.; Lindsley, Craig W.; Hopkins, Corey R.; Li, Min

    2013-01-01

    Voltage-gated KCNQ1 (Kv7.1) potassium channels are expressed abundantly in heart but they are also found in multiple other tissues. Differential coassembly with single transmembrane KCNE beta subunits in different cell types gives rise to a variety of biophysical properties, hence endowing distinct physiological roles for KCNQ1–KCNEx complexes. Mutations in either KCNQ1 or KCNE1 genes result in diseases in brain, heart, and the respiratory system. In addition to complexities arising from existence of five KCNE subunits, KCNE1 to KCNE5, recent studies in heterologous systems suggest unorthodox stoichiometric dynamics in subunit assembly is dependent on KCNE expression levels. The resultant KCNQ1–KCNE channel complexes may have a range of zero to two or even up to four KCNE subunits coassembling per KCNQ1 tetramer. These findings underscore the need to assess the selectivity of small-molecule KCNQ1 modulators on these different assemblies. Here we report a unique small-molecule gating modulator, ML277, that potentiates both homomultimeric KCNQ1 channels and unsaturated heteromultimeric (KCNQ1)4(KCNE1)n (n < 4) channels. Progressive increase of KCNE1 or KCNE3 expression reduces efficacy of ML277 and eventually abolishes ML277-mediated augmentation. In cardiomyocytes, the slowly activating delayed rectifier potassium current, or IKs, is believed to be a heteromultimeric combination of KCNQ1 and KCNE1, but it is not entirely clear whether IKs is mediated by KCNE-saturated KCNQ1 channels or by channels with intermediate stoichiometries. We found ML277 effectively augments IKs current of cultured human cardiomyocytes and shortens action potential duration. These data indicate that unsaturated heteromultimeric (KCNQ1)4(KCNE1)n channels are present as components of IKs and are pharmacologically distinct from KCNE-saturated KCNQ1–KCNE1 channels. PMID:23650380

  8. [Inhibition of oxygen free radicals in potassium channels of cardiac myocytes and the action of salvianolic acid A].

    PubMed

    Bao, G

    1993-10-01

    By using the patch clamp technique, the effect of oxygen free radicals on the single potassium channels of cardiac papillary muscle cells were studied, as well as the action of salvianolic acid A. It was found that xanthane-xanthane oxidase generated oxygen free radicals could apparently inhibited the unitary currents of the single potassium channel activity. This inhibition was reversed by salvianolic acid A, which is an effective component extracted from Salvia miltiorrhiza. PMID:8168213

  9. The inwardly rectifying potassium channel Kir1.1: development of functional assays to identify and characterize channel inhibitors.

    PubMed

    Felix, John P; Priest, Birgit T; Solly, Kelli; Bailey, Timothy; Brochu, Richard M; Liu, Chou J; Kohler, Martin G; Kiss, Laszlo; Alonso-Galicia, Magdalena; Tang, Haifeng; Pasternak, Alexander; Kaczorowski, Gregory J; Garcia, Maria L

    2012-10-01

    The renal outer medullary potassium (ROMK) channel is a member of the inwardly rectifying family of potassium (Kir) channels. ROMK (Kir1.1) is predominantly expressed in kidney where it plays a major role in the salt reabsorption process. Loss-of-function mutations in the human Kir1.1 channel are associated with antenatal Bartter's syndrome type II, a life-threatening salt and water balance disorder. Heterozygous carriers of Kir1.1 mutations associated with antenatal Bartter's syndrome have reduced blood pressure and a decreased risk of developing hypertension by age 60. These data suggest that Kir1.1 inhibitors could represent novel diuretics for the treatment of hypertension. Because little is known about the molecular pharmacology of Kir1.1 channels, assays that provide a robust, reliable readout of channel activity-while operating in high-capacity mode-are needed. In the present study, we describe high-capacity, 384- and 1,536-well plate, functional thallium flux, and IonWorks electrophysiology assays for the Kir1.1 channel that fulfill these criteria. In addition, 96-well (86)Rb(+) flux assays were established that can operate in the presence of 100% serum, and can provide an indication of the effect of a serum shift on compound potencies. The ability to grow Madin-Darby canine kidney cells expressing Kir1.1 in Transwell supports provides a polarized cell system that can be used to study the mechanism of Kir1.1 inhibition by different agents. All these functional Kir1.1 assays together can play an important role in supporting different aspects of drug development efforts during lead identification and/or optimization. PMID:22881347

  10. Sarcolemmal ATP-sensitive potassium channels modulate skeletal muscle function under low-intensity workloads

    PubMed Central

    Zhu, Zhiyong; Sierra, Ana; Burnett, Colin M.-L.; Chen, Biyi; Subbotina, Ekaterina; Koganti, Siva Rama Krishna; Gao, Zhan; Wu, Yuejin; Anderson, Mark E.; Song, Long-Sheng; Goldhamer, David J.; Coetzee, William A.; Hodgson-Zingman, Denice M.

    2014-01-01

    ATP-sensitive potassium (KATP) channels have the unique ability to adjust membrane excitability and functions in accordance with the metabolic status of the cell. Skeletal muscles are primary sites of activity-related energy consumption and have KATP channels expressed in very high density. Previously, we demonstrated that transgenic mice with skeletal muscle–specific disruption of KATP channel function consume more energy than wild-type littermates. However, how KATP channel activation modulates skeletal muscle resting and action potentials under physiological conditions, particularly low-intensity workloads, and how this can be translated to muscle energy expenditure are yet to be determined. Here, we developed a technique that allows evaluation of skeletal muscle excitability in situ, with minimal disruption of the physiological environment. Isometric twitching of the tibialis anterior muscle at 1 Hz was used as a model of low-intensity physical activity in mice with normal and genetically disrupted KATP channel function. This workload was sufficient to induce KATP channel opening, resulting in membrane hyperpolarization as well as reduction in action potential overshoot and duration. Loss of KATP channel function resulted in increased calcium release and aggravated activity-induced heat production. Thus, this study identifies low-intensity workload as a trigger for opening skeletal muscle KATP channels and establishes that this coupling is important for regulation of myocyte function and thermogenesis. These mechanisms may provide a foundation for novel strategies to combat metabolic derangements when energy conservation or dissipation is required. PMID:24344248

  11. Chaotic model and memory in single calcium-activated potassium channel kinetics

    NASA Astrophysics Data System (ADS)

    Bandeira, Heliovânio T.; Barbosa, Catão T. F.; Campos De Oliveira, Regina A.; Aguiar, José F.; Nogueira, Romildo A.

    2008-09-01

    Ion channels are pores formed by proteins and responsible for carrying ion fluxes through cellular membranes. The ion channels can assume conformational states thereby controlling ion flow. Physically, the conformational transitions from one state to another are associated with energy barriers between them and are dependent on stimulus, such as, electrical field, ligands, second messengers, etc. Several models have been proposed to describe the kinetics of ion channels. The classical Markovian model assumes that a future transition is independent of the time that the ion channel stayed in a previous state. Others models as the fractal and the chaotic assume that the rate of transitions between the states depend on the time that the ionic channel stayed in a previous state. For the calcium activated potassium channels of Leydig cells the R/S Hurst analysis has indicated that the channels are long-term correlated with a Hurst coefficient H around 0.7, showing a persistent memory in this kinetic. Here, we applied the R /S analysis to the opening and closing dwell time series obtained from simulated data from a chaotic model proposed by L. Liebovitch and T. Tóth [J. Theor. Biol. 148, 243 (1991)] and we show that this chaotic model or any model that treats the set of channel openings and closings as independent events is inadequate to describe the long-term correlation (memory) already described for the experimental data.

  12. Regulation of large conductance calcium- and voltage-activated potassium (BK) channels by S-palmitoylation.

    PubMed

    Shipston, Michael J

    2013-02-01

    BK (large conductance calcium- and voltage-activated potassium) channels are important determinants of physiological control in the nervous, endocrine and vascular systems with channel dysfunction associated with major disorders ranging from epilepsy to hypertension and obesity. Thus the mechanisms that control channel surface expression and/or activity are important determinants of their (patho)physiological function. BK channels are S-acylated (palmitoylated) at two distinct sites within the N- and C-terminus of the pore-forming α-subunit. Palmitoylation of the N-terminus controls channel trafficking and surface expression whereas palmitoylation of the C-terminal domain determines regulation of channel activity by AGC-family protein kinases. Recent studies are beginning to reveal mechanistic insights into how palmitoylation controls channel trafficking and cross-talk with phosphorylation-dependent signalling pathways. Intriguingly, each site of palmitoylation is regulated by distinct zDHHCs (palmitoyl acyltransferases) and APTs (acyl thioesterases). This supports that different mechanisms may control substrate specificity by zDHHCs and APTs even within the same target protein. As palmitoylation is dynamically regulated, this fundamental post-translational modification represents an important determinant of BK channel physiology in health and disease. PMID:23356260

  13. Dendrotoxins: structure-activity relationships and effects on potassium ion channels.

    PubMed

    Harvey, A L; Robertson, B

    2004-12-01

    Dendrotoxins are small proteins isolated from mamba (Dendroaspis) snakes. The original dendrotoxin was found in venom of the Eastern green mamba, Dendroaspis angusticeps, and related proteins were subsequently found in other mamba venoms. The dendrotoxins contain 57-60 amino acid residues cross-linked by three disulphide bridges, and they are homologous to Kunitz-type serine protease inhibitors, such as aprotinin (BPTI). The dendrotoxins have little or no anti-protease activity, but they block particular subtypes of voltage-dependent potassium channels of the Kv1 subfamily in neurones. Alpha-dendrotoxin from green mamba Dendroaspis angusticeps and toxin I from the black mamba Dendroaspis polylepis block cloned Kv1.1, Kv1.2 and Kv1.6 channels in the low nanomolar range; toxin K, also from the black mamba Dendroaspis polylepis, preferentially blocks Kv1.1 channels and is active at picomolar concentrations. Structural modifications and mutations to dendrotoxins have helped to define the molecular recognition properties of different types of K+ channels, although more work is needed to characterise the chemical features of the toxins that underlie their selectivity and potency at particular subtypes of channels. Dendrotoxins have been useful markers of subtypes of K+ channels in vivo, and dendrotoxins have become widely used as probes for studying the function of K+ channels in physiology and pathophysiology. With some pathological conditions being associated with voltage-gated K+ channels, analogues of dendrotoxins might have therapeutic potential. PMID:15579000

  14. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels

    SciTech Connect

    Xia Menghang; Shahane, Sampada A.; Huang, Ruili; Titus, Steven A.; Shum, Enoch; Zhao Yong; Southall, Noel; Zheng, Wei; Witt, Kristine L.; Tice, Raymond R.; Austin, Christopher P.

    2011-05-01

    The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K{sup +}) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially leads to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC{sub 50} potencies ranging from 0.26 to 22 {mu}M. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC{sub 50} value of 260 nM in the thallium influx assay and 80 nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo.

  15. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels

    PubMed Central

    Xia, Menghang; Shahane, Sampada; Huang, Ruili; Titus, Steven A.; Shum, Enoch; Zhao, Yong; Southall, Noel; Zheng, Wei; Witt, Kristine L.; Tice, Raymond R.; Austin, Christopher P.

    2011-01-01

    The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K+) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially lead to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC50 potencies ranging from 0.26 to 22 μM. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC50 value of 260 nM in the thallium influx assay and 80 nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo. PMID:21362439

  16. A potassium channel-MiRP complex controls neurosensory function in Caenorhabditis elegans.

    PubMed

    Bianchi, Laura; Kwok, Suk-Mei; Driscoll, Monica; Sesti, Federico

    2003-04-01

    MinK-related peptides (MiRPs) are single transmembrane proteins that associate with mammalian voltage-gated K(+) subunits. Here we report the cloning and functional characterization of a MiRP beta-subunit, MPS-1, and of a voltage-gated pore-forming potassium subunit, KVS-1, from the nematode Caenorhabditis elegans. mps-1 is expressed in chemosensory and mechanosensory neurons and co-localizes with kvs-1 in a subset of these. Inactivation of either mps-1 or kvs-1 by RNA interference (RNAi) causes partially overlapping neuronal defects and results in broad-spectrum neuronal dysfunction, including defective chemotaxis, disrupted mechanotransduction, and impaired locomotion. Inactivation of one subunit by RNAi dramatically suppresses the expression of the partner subunit only in cells where the two proteins co-localize. Co-expression of MPS-1 and KVS-1 in mammalian cells gives rise to a potassium current distinct from the KVS-1 current. Taken together these data indicate that potassium currents constitute a basic determinant for C. elegans neuronal function and unravel a unifying principle of evolutionary significance: that potassium channels in various organisms use MiRPs to generate uniqueness of function with rich variation in the details. PMID:12533541

  17. The Vasorelaxant Effect of p-Cymene in Rat Aorta Involves Potassium Channels

    PubMed Central

    Silva, Martapolyana T. M.; Ribeiro, Fernanda P. R. A.; Medeiros, Maria Alice M. B.; Sampaio, Pedrita A.; Silva, Yonara M. S.; Silva, Morganna T. A.; Quintans, Jullyana S. S.; Quintans-Júnior, Lucindo J.; Ribeiro, Luciano A. A.

    2015-01-01

    The monoterpenes are the main constituents of most essential oils and p-cymene is a monoterpene commonly found in various species of aromatic herbs, which has been reported for anti-inflammatory, antinociceptive, and antimicrobial activities. However, there is no report concerning its pharmacological activity on the vascular smooth muscle. The aim of current work was to investigate the effects of p-cymene in isolated rat aorta and also study its mechanism of action. In this work, we show that p-cymene has a relaxant effect, in a dose-dependent way, on the vascular smooth muscle, regardless of the presence of the endothelium. Using a nonselective potassium channel blocker, the CsCl, the relaxant effect of p-cymene was attenuated. In the presence of more selective potassium channels blockers, such as TEA or 4-AP, no change in the relaxant effect of p-cymene was evidenced, indicating that BKCa and KV channels are not involved in that relaxant effect. However, in the presence of glibenclamide or BaCl2, KATP and Kir blockers, respectively, the relaxant effect of p-cymene was attenuated. The data presented indicate that p-cymene has a relaxing effect on rat aorta, regardless of the endothelium, but with the participation of the KATP and Kir channels. PMID:25667938

  18. Interfacial gating triad is crucial for electromechanical transduction in voltage-activated potassium channels

    PubMed Central

    Chowdhury, Sandipan; Haehnel, Benjamin M.

    2014-01-01

    Voltage-dependent potassium channels play a crucial role in electrical excitability and cellular signaling by regulating potassium ion flux across membranes. Movement of charged residues in the voltage-sensing domain leads to a series of conformational changes that culminate in channel opening in response to changes in membrane potential. However, the molecular machinery that relays these conformational changes from voltage sensor to the pore is not well understood. Here we use generalized interaction-energy analysis (GIA) to estimate the strength of site-specific interactions between amino acid residues putatively involved in the electromechanical coupling of the voltage sensor and pore in the outwardly rectifying KV channel. We identified candidate interactors at the interface between the S4–S5 linker and the pore domain using a structure-guided graph theoretical approach that revealed clusters of conserved and closely packed residues. One such cluster, located at the intracellular intersubunit interface, comprises three residues (arginine 394, glutamate 395, and tyrosine 485) that interact with each other. The calculated interaction energies were 3–5 kcal, which is especially notable given that the net free-energy change during activation of the Shaker KV channel is ∼14 kcal. We find that this triad is delicately maintained by balance of interactions that are responsible for structural integrity of the intersubunit interface while maintaining sufficient flexibility at a critical gating hinge for optimal transmission of force to the pore gate. PMID:25311635

  19. NMR study of the tetrameric KcsA potassium channel in detergent micelles

    PubMed Central

    Chill, Jordan H.; Louis, John M.; Miller, Christopher; Bax, Ad

    2006-01-01

    Nuclear magnetic resonance (NMR) studies of large membrane-associated proteins are limited by the difficulties in preparation of stable protein–detergent mixed micelles and by line broadening, which is typical of these macroassemblies. We have used the 68-kDa homotetrameric KcsA, a thermostable N-terminal deletion mutant of a bacterial potassium channel from Streptomyces lividans, as a model system for applying NMR methods to membrane proteins. Optimization of measurement conditions enabled us to perform the backbone assignment of KcsA in SDS micelles and establish its secondary structure, which was found to closely agree with the KcsA crystal structure. The C-terminal cytoplasmic domain, absent in the original structure, contains a 14-residue helix that could participate in tetramerization by forming an intersubunit four-helix bundle. A quantitative estimate of cross- relaxation between detergent and KcsA backbone amide protons, together with relaxation and light scattering data, suggests SDS–KcsA mixed micelles form an oblate spheroid with ~180 SDS molecules per channel. K+ ions bind to the micelle-solubilized channel with a KD of 3 ± 0.5 mM, resulting in chemical shift changes in the selectivity filter. Related pH-induced changes in chemical shift along the “outer” transmembrane helix and the cytoplasmic membrane interface hint at a possible structural explanation for the observed pH-gating of the potassium channel. PMID:16522799

  20. Expression and Stress-Dependent Induction of Potassium Channel Transcripts in the Common Ice Plant1

    PubMed Central

    Su, Hua; Golldack, Dortje; Katsuhara, Maki; Zhao, Chengsong; Bohnert, Hans J.

    2001-01-01

    We have characterized transcripts for three potassium channel homologs in the AKT/KAT subfamily (Shaker type) from the common ice plant (Mesembryanthemum crystallinum), with a focus on their expression during salt stress (up to 500 mm NaCl). Mkt1 and 2, Arabidopsis AKT homologs, and Kmt1, a KAT homolog, are members of small gene families with two to three isoforms each. Mkt1 is root specific; Mkt2 is found in leaves, flowers, and seed capsules; and Kmt1 is expressed in leaves and seed capsules. Mkt1 is present in all cells of the root, and in leaves a highly conserved isoform is detected present in all cells with highest abundance in the vasculature. MKT1 for which antibodies were made is localized to the plasma membrane. Following salt stress, MKT1 (transcripts and protein) is drastically down-regulated, Mkt2 transcripts do not change significantly, and Kmt1 is strongly and transiently (maximum at 6 h) up-regulated in leaves and stems. The detection and stress-dependent behavior of abundant transcripts representing subfamilies of potassium channels provides information about tissue specificity and the complex regulation of genes encoding potassium uptake systems in a halophytic plant. PMID:11161018

  1. Actions of pinacidil at a reduced potassium concentration: a direct cardiac effect possibly involving the ATP-dependent potassium channel.

    PubMed

    Chi, L; Black, S C; Kuo, P I; Fagbemi, S O; Lucchesi, B R

    1993-02-01

    We investigated the effects of the ATP-dependent K+ channel antagonist glyburide and the ATP-dependent K+ channel agonist pinacidil in a Langendorff-perfused rabbit isolated heart subjected to a period of global hypoxia. A class III antiarrhythmic drug, E-4031, also was studied in this model. These studies aimed to define the mechanism of action of putative profibrillatory actions of pinacidil and the mechanism for the antifibrillatory effect of the class III antiarrhythmic drug, E-4031, in the hypoxic heart. After stabilization and determination of baseline functional parameters under normoxic perfusion conditions (95% O2/5% CO2), hearts were subjected to global hypoxia by switching to a 95% N2/5% CO2 saturated perfusion medium for a period of 12 min. After the hypoxic period, normoxia was re-established by switching to the oxygen-carbon dioxide saturated buffer medium for a period of 40 min. The oxygen tension of the perfusion buffer was reduced from approximately 400 mm Hg to below 50 mm Hg during the hypoxic period. All hearts subjected to hypoxia had reduced function: the left ventricular developed pressure and +/- dP/dt were reduced significantly. Myocardial tissue ATP concentrations were reduced (> 50%) in hearts subjected to hypoxia. Under conditions of hypoxic/reoxygenation and in the presence of a low (2.5 mM) potassium concentration ([K+]0), pinacidil (1.25 microM) facilitated the induction of ventricular fibrillation (80% fibrillation in the presence of pinacidil vs. 20% in the absence of pinacidil). Glyburide (10 microM) and E-4031 (1 and 10 microM) significantly reduced the incidence of ventricular fibrillation associated with pinacidil (20% fibrillation in the presence of hypoxia, pinacidil, and glyburide or 10 microM E-4031). Opening of the ATP-dependent K+ channel by pinacidil under normoxia and low K+ also facilitated the induction of ventricular fibrillation (60% ventricular fibrillation). Pinacidil failed to induce ventricular fibrillation under

  2. Breathing Stimulant Compounds Inhibit TASK-3 Potassium Channel Function Likely by Binding at a Common Site in the Channel Pore.

    PubMed

    Chokshi, Rikki H; Larsen, Aaron T; Bhayana, Brijesh; Cotten, Joseph F

    2015-11-01

    Compounds PKTHPP (1-{1-[6-(biphenyl-4-ylcarbonyl)-5,6,7,8-tetrahydropyrido[4,3-d]-pyrimidin-4-yl]piperidin-4-yl}propan-1-one), A1899 (2''-[(4-methoxybenzoylamino)methyl]biphenyl-2-carboxylic acid 2,4-difluorobenzylamide), and doxapram inhibit TASK-1 (KCNK3) and TASK-3 (KCNK9) tandem pore (K2P) potassium channel function and stimulate breathing. To better understand the molecular mechanism(s) of action of these drugs, we undertook studies to identify amino acid residues in the TASK-3 protein that mediate this inhibition. Guided by homology modeling and molecular docking, we hypothesized that PKTHPP and A1899 bind in the TASK-3 intracellular pore. To test our hypothesis, we mutated each residue in or near the predicted PKTHPP and A1899 binding site (residues 118-128 and 228-248), individually, to a negatively charged aspartate. We quantified each mutation's effect on TASK-3 potassium channel concentration response to PKTHPP. Studies were conducted on TASK-3 transiently expressed in Fischer rat thyroid epithelial monolayers; channel function was measured in an Ussing chamber. TASK-3 pore mutations at residues 122 (L122D, E, or K) and 236 (G236D) caused the IC50 of PKTHPP to increase more than 1000-fold. TASK-3 mutants L122D, G236D, L239D, and V242D were resistant to block by PKTHPP, A1899, and doxapram. Our data are consistent with a model in which breathing stimulant compounds PKTHPP, A1899, and doxapram inhibit TASK-3 function by binding at a common site within the channel intracellular pore region, although binding outside the channel pore cannot yet be excluded. PMID:26268529

  3. Human beta-defensin 1, a new animal toxin-like blocker of potassium channel.

    PubMed

    Feng, Jing; Xie, Zili; Yang, Weishan; Zhao, Yonghui; Xiang, Fang; Cao, Zhijian; Li, Wenxin; Chen, Zongyun; Wu, Yingliang

    2016-04-01

    The discovery of human β-defensin 2 (hBD2), as a Kv1.3 channel inhibitor with the unique molecular mechanism and novel immune modulatory function, suggests that human β-defensins are a novel class of channel ligands. Here, the function and mechanism of the human β-defensin 1 (hBD1) binding to potassium channels was investigated. Based on the structural similarity between hBD1 and Kv1.3 channel-sensitive hBD2, hBD1 was found to selectively inhibit human and mouse Kv1.3 channels with IC50 values of 11.8 ± 3.1 μM and 13.2 ± 4.0 μM, respectively. Different from hBD2 modifying Kv1.3 channel activation and increasing activation time constant, hBD1 did not affect the activation feature of both human and mouse Kv1.3 channels. In comparison with hBD2 simultaneously interacting with the extracellular S1-S2 linker and pore region of Kv1.3 channel, the chimeric channel and mutagenesis experiments showed that hBD1 only bound to the extracellular pore region of Kv1.3 channel instead of extracellular S1-S2 linker or S3-S4 linker. Together, these findings enhance knowledge of hBD1 as a new immune-related Kv1.3 channel blocker and highlight the major functional differences between hBD1 and hBD2 to explore in future research. PMID:26854370

  4. Kv1.3 potassium channel mediates macrophage migration in atherosclerosis by regulating ERK activity.

    PubMed

    Kan, Xiao-Hong; Gao, Hai-Qing; Ma, Zhi-Yong; Liu, Lin; Ling, Ming-Ying; Wang, Yuan-Yuan

    2016-02-01

    Ion channels expressed in macrophages have been tightly related to atherosclerosis by coupling cellular function. How the voltage-gated potassium channels (Kv) affect macrophage migration remain unknown. The aim of our study is to investigate whether Kv1.3-ERK signaling pathway plays an important role in the process. We explored the expression of Kv1.3 in coronary atherosclerotic heart disease and found Kv1.3 channel was increased in acute coronary syndrome patients. Treatment of RAW264.7 cells with Kv1.3 small interfering RNA, suppressed cell migration. The expression of phosphorylated ERK1/2 also decreased after knockdown of Kv1.3. On the other hand, overexpression of Kv1.3 channel promoted cell migration and ERK1/2 phosphorylation. U-0126, the mitogen-activated protein kinase inhibitors, could reverse macrophage migration induced by Kv1.3 channel overexpression. Downregulation of Kv1.3 channel by siRNA could not further inhibit cell migration when cells were treated with U-0126. It means that ERK is downstream signal of Kv1.3 channel. We concluded that Kv1.3 may stimulate macrophage migration through the activation of ERK. PMID:26748289

  5. Identification and localization of an arachidonic acid-sensitive potassium channel in the cochlea.

    PubMed

    Sokolowski, Bernd H A; Sakai, Yoshihisa; Harvey, Margaret C; Duzhyy, Dmytro E

    2004-07-14

    Receptor cells of the auditory and vestibular end organs of vertebrates acquire various types of potassium channels during development. Their expression and kinetics can differ along the tonotopic axis as well as in different cell types of the sensory epithelium. These variations can play a crucial role in modulating sensory transduction and cochlear tuning. Whole-cell tight-seal recordings of isolated hair cells revealed the presence of an arachidonic acid-sensitive A-type channel in the short (outer) hair cells of the chicken cochlea. This polyunsaturated fatty acid blocked the A-current, thereby increasing the amplitude and duration of the voltage response in these cells. We identified the gene encoding this channel as belonging to a member of the Shal subfamily, Kv4.2. Expression of the recombinant channel shows half-activation and inactivation potentials shifted to more positive values relative to native channels, suggesting that the native channel is coexpressed with an accessory subunit. RT-PCR revealed that transcription begins early in development, whereas in situ hybridization showed mRNA expression limited to the intermediate and short hair cells located in specific regions of the adult cochlea. Additional localization, using immunofluorescent staining, revealed clustering in apical-lateral regions of the receptor cell as well as in the cochlear ganglion. These experiments provide evidence that in addition to membrane proteins modulating excitation in these receptor cells, fatty acids contribute to the coding of auditory stimuli via these channels. PMID:15254081

  6. Potassium Channels in Peripheral Pain Pathways: Expression, Function and Therapeutic Potential

    PubMed Central

    Du, Xiaona; Gamper, Nikita

    2013-01-01

    Electrical excitation of peripheral somatosensory nerves is a first step in generation of most pain signals in mammalian nervous system. Such excitation is controlled by an intricate set of ion channels that are coordinated to produce a degree of excitation that is proportional to the strength of the external stimulation. However, in many disease states this coordination is disrupted resulting in deregulated peripheral excitability which, in turn, may underpin pathological pain states (i.e. migraine, neuralgia, neuropathic and inflammatory pains). One of the major groups of ion channels that are essential for controlling neuronal excitability is potassium channel family and, hereby, the focus of this review is on the K+ channels in peripheral pain pathways. The aim of the review is threefold. First, we will discuss current evidence for the expression and functional role of various K+ channels in peripheral nociceptive fibres. Second, we will consider a hypothesis suggesting that reduced functional activity of K+ channels within peripheral nociceptive pathways is a general feature of many types of pain. Third, we will evaluate the perspectives of pharmacological enhancement of K+ channels in nociceptive pathways as a strategy for new analgesic drug design. PMID:24396338

  7. Potassium Channel Block and Novel Autoimmune-Associated Long QT Syndrome.

    PubMed

    Boutjdir, Mohamed; Lazzerini, Pietro Enea; Capecchi, Pier Leopoldo; Laghi-Pasini, Franco; El-Sherif, Nabil

    2016-06-01

    This article reviews advances in the pathogenesis of anti-SSA/Ro antibody-induced corrected QT (QTc) prolongation in patients with autoimmune diseases; particularly connective tissue disease (CTD). Evidence shows that anti-SSA/Ro antibody-positive patients with CTD show QTc prolongation and complex ventricular arrhythmias. Molecular and functional data provide evidence that the human ether-a-go-go-related gene potassium channel conducting the rapidly activating delayed rectifier potassium current is directly inhibited by anti-SSA/Ro antibodies, resulting in action potential duration prolongation leading to QT interval lengthening. Routine electrocardiogram screening in anti-SSA/Ro antibody-positive patients and counseling for patients with other QTc prolonging risk factors is recommended. PMID:27261828

  8. Contributions of Counter-Charge in a Potassium Channel Voltage-Sensor Domain

    PubMed Central

    Pless, Stephan A.; Galpin, Jason D.; Niciforovic, Ana P.; Ahern, Christopher A.

    2016-01-01

    Voltage-sensor domains couple membrane potential to conformational changes in voltage-gated ion channels and phosphatases. Highly co-evolved acidic and aromatic side-chains assist the transfer of cationic side-chains across the transmembrane electric field during voltage-sensing. We investigated the functional contribution of negative electrostatic potentials from these residues to channel gating and voltage-sensing with unnatural amino acid mutagenesis, electrophysiology, voltage-clamp fluorometry and ab initio calculations. The data show that neutralization of two conserved acidic side-chains in transmembrane segments S2 and S3, Glu293 and Asp316 in Shaker potassium channels, have little functional effect on conductance-voltage relationships, although Glu293 appears to catalyze S4 movement. Our results suggest that neither Glu293 nor Asp316 engages in electrostatic state-dependent charge-charge interactions with S4, likely because they occupy, and possibly help create, a water-filled vestibule. PMID:21785425

  9. PKC and AMPK regulation of Kv1.5 potassium channels

    PubMed Central

    Andersen, Martin Nybo; Skibsbye, Lasse; Tang, Chuyi; Petersen, Frederic; MacAulay, Nanna; Rasmussen, Hanne Borger; Jespersen, Thomas

    2015-01-01

    The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K+ current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells. By confocal microscopy combined with electrophysiology we demonstrate that PKC activation reduces Kv1.5 current, through a decrease in membrane expressed channels. AMPK activation was found to decrease the membrane expression in MDCK cells, but not in HL-1 cells and was furthermore shown to be dependent on co-expression of Nedd4–2 in Xenopus oocytes. These results indicate that Kv1.5 channels are regulated by both kinases, although through different molecular mechanisms in different cell systems. PMID:26043299

  10. PKC and AMPK regulation of Kv1.5 potassium channels.

    PubMed

    Andersen, Martin Nybo; Skibsbye, Lasse; Tang, Chuyi; Petersen, Frederic; MacAulay, Nanna; Rasmussen, Hanne Borger; Jespersen, Thomas

    2015-01-01

    The voltage-gated Kv1.5 potassium channel, conducting the ultra-rapid rectifier K(+) current (IKur), is regulated through several pathways. Here we investigate if Kv1.5 surface expression is controlled by the 2 kinases PKC and AMPK, using Xenopus oocytes, MDCK cells and atrial derived HL-1 cells. By confocal microscopy combined with electrophysiology we demonstrate that PKC activation reduces Kv1.5 current, through a decrease in membrane expressed channels. AMPK activation was found to decrease the membrane expression in MDCK cells, but not in HL-1 cells and was furthermore shown to be dependent on co-expression of Nedd4-2 in Xenopus oocytes. These results indicate that Kv1.5 channels are regulated by both kinases, although through different molecular mechanisms in different cell systems. PMID:26043299

  11. The role of voltage-gated potassium channels in the regulation of mouse uterine contractility

    PubMed Central

    Smith, Ryan C; McClure, Marisa C; Smith, Margaret A; Abel, Peter W; Bradley, Michael E

    2007-01-01

    Background Uterine smooth muscle cells exhibit ionic currents that appear to be important in the control of uterine contractility, but how these currents might produce the changes in contractile activity seen in pregnant myometrium has not been established. There are conflicting reports concerning the role of voltage-gated potassium (Kv) channels and large-conductance, calcium-activated potassium (BK) channels in the regulation of uterine contractility. In this study we provide molecular and functional evidence for a role for Kv channels in the regulation of spontaneous contractile activity in mouse myometrium, and also demonstrate a change in Kv channel regulation of contractility in pregnant mouse myometrium. Methods Functional assays which evaluated the effects of channel blockers and various contractile agonists were accomplished by quantifying contractility of isolated uterine smooth muscle obtained from nonpregnant mice as well as mice at various stages of pregnancy. Expression of Kv channel proteins in isolated uterine smooth muscle was evaluated by Western blots. Results The Kv channel blocker 4-aminopyridine (4-AP) caused contractions in nonpregnant mouse myometrium (EC50 = 54 micromolar, maximal effect at 300 micromolar) but this effect disappeared in pregnant mice; similarly, the Kv4.2/Kv4.3 blocker phrixotoxin-2 caused contractions in nonpregnant, but not pregnant, myometrium. Contractile responses to 4-AP were not dependent upon nerves, as neither tetrodotoxin nor storage of tissues at room temperature significantly altered these responses, nor were responses dependent upon the presence of the endometrium. Spontaneous contractions and contractions in response to 4-AP did not appear to be mediated by BK, as the BK channel-selective blockers iberiotoxin, verruculogen, or tetraethylammonium failed to affect either spontaneous contractions or 4-AP-elicited responses. A number of different Kv channel alpha subunit proteins were found in isolated myometrium

  12. Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation.

    PubMed

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L; Bayliss, Douglas A; Viana, Félix

    2014-09-11

    Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold-sensitive neurons, combining bacterial artificial chromosome (BAC) transgenesis with a molecular-profiling approach in fluorescence-activated cell sorting (FACS)-purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3, and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  13. A Mutation in S6 of Shaker Potassium Channels Decreases the K+ Affinity of an Ion Binding Site Revealing Ion–Ion Interactions in the Pore

    PubMed Central

    Ogielska, Eva M.; Aldrich, Richard W.

    1998-01-01

    Under physiological conditions, potassium channels are extraordinarily selective for potassium over other ions. However, in the absence of potassium, certain potassium channels can conduct sodium. Sodium flux is blocked by the addition of low concentrations of potassium. Potassium affinity, and therefore the ability to block sodium current, varies among potassium channel subtypes (Korn, S.J., and S.R. Ikeda. 1995. Science. 269:410–412; Starkus, J.G., L. Kuschel, M.D. Rayner, and S.H. Heinemann. 1997. J. Gen. Physiol. 110:539–550). The Shaker potassium channel conducts sodium poorly in the presence of very low (micromolar) potassium due to its high potassium affinity (Starkus, J.G., L. Kuschel, M.D. Rayner, and S.H. Heinemann. 1997. J. Gen. Physiol. 110:539–550; Ogielska, E.M., and R.W. Aldrich. 1997. Biophys. J. 72:A233 [Abstr.]). We show that changing a single residue in S6, A463C, decreases the apparent internal potassium affinity of the Shaker channel pore from the micromolar to the millimolar range, as determined from the ability of potassium to block the sodium currents. Independent evidence that A463C decreases the apparent affinity of a binding site in the pore comes from a study of barium block of potassium currents. The A463C mutation decreases the internal barium affinity of the channel, as expected if barium blocks current by binding to a potassium site in the pore. The decrease in the apparent potassium affinity in A463C channels allows further study of possible ion interactions in the pore. Our results indicate that sodium and potassium can occupy the pore simultaneously and that multiple occupancy results in interactions between ions in the channel pore. PMID:9689030

  14. Involvements of calcium channel and potassium channel in Danshen and Gegen decoction induced vasodilation in porcine coronary LAD artery.

    PubMed

    Hu, Fan; Koon, Chi Man; Chan, Judy Yuet Wa; Lau, Kit Man; Kwan, Y W; Fung, Kwok Pui

    2012-09-15

    Danshen (Salviae Miltiorrhizae Radix) and Gegen (Puerariae Lobatae Radix) have been widely used in treating cardiovascular diseases for thousands of years in China. The present study was carried out to evaluate the effects of a Danshen and Gegen decoction (DG) on the vascular reactivity of a porcine isolated coronary artery and the underlying mechanisms involved. Porcine coronary rings were precontracted with 15 nM U46619. The involvement of endothelium-dependent mechanisms was explored by removing the endothelium; the involvement of potassium channels was investigated by the pretreatment of the artery rings with various blockers, and the involvement of the calcium channels was investigated by incubating the artery rings with Ca²⁺-free buffer and priming them with high [K⁺] prior to adding CaCl₂ to elicit contraction. The involvement of Ca²⁺ sensitization was explored by evaluating the Rho-activity expression. The results revealed that DG elicited a concentration-dependent relaxation on a U46619-precontracted coronary artery ring. These relaxation responses were not altered by the pretreatment of inhibitors of endothelium-related dilator synthases, cGMP and cAMP pathway inhibitors, potassium channel (BK(Ca), SK(Ca), K(V) and K(ATP)) blockers and endothelium removal. The K(IR) channel blocker BaCl₂ only slightly attenuated the DG-induced relaxation. However, the Ca²⁺-induced artery contraction was inhibited by DG. Additionally, the expression of the phosphorylated myosin light chain was inhibited by DG whereas the activity of RhoA was not affected. Therefore, DG could be a useful cardioprotective agent for vasodilation in patients who have hypertension. PMID:22889578

  15. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation.

    PubMed

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I; Lindahl, Erik; Elinder, Fredrik

    2016-01-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions - a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd(2+) bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K(+) coordination, a hallmark for C-type inactivation. An engineered Cd(2+) bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel. PMID:27278891

  16. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    NASA Astrophysics Data System (ADS)

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I.; Lindahl, Erik; Elinder, Fredrik

    2016-06-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions – a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel.

  17. Expression of the potassium channel ROMK in adult and fetal human kidney.

    PubMed

    Nüsing, Rolf M; Pantalone, Fiore; Gröne, Hermann-Josef; Seyberth, Hannsjörg W; Wegmann, Markus

    2005-06-01

    The renal potassium channel ROMK is a crucial element of K+ recycling and secretion in the distal tubule and the collecting duct system. Mutations in the ROMK gene (KCNJ1) lead to hyperprostaglandin E syndrome/antenatal Bartter syndrome, a life-threatening hypokalemic disorder of the newborn. The localization of ROMK channel protein, however, remains unknown in humans. We generated an affinity-purified specific polyclonal anti-ROMK antibody raised against a C-terminal peptide of human ROMK. Immunoblotting revealed a 45 kDa protein band in both rat and human kidney tissue. In human kidney sections, the antibody showed intense staining of epithelial cells in the cortical and medullary thick ascending limb (TAL), the connecting tubule, and the collecting duct. Moreover, a strong expression of ROMK protein was detected in cells of the macula densa. In epithelial cells of the TAL expression of ROMK protein was mainly restricted to the apical membrane. In human fetal kidney expression of ROMK protein was detected mainly in distal tubules of mature nephrons but not or only marginally in the collecting system. No expression was found in early developmental stages such as comma or S shapes, indicating a differentiation-dependent expression of ROMK protein. In summary, these findings support the proposed role of ROMK channels in potassium recycling and in the regulation of K+ secretion and present a rationale for the phenotype observed in patients with ROMK deficiency. PMID:15895241

  18. Pentameric Assembly of Potassium Channel Tetramerization Domain-Containing Protein 5 (KCTD5)

    PubMed Central

    Dementieva, Irina S.; Tereshko, Valentina; McCrossan, Zoe A.; Solomaha, Elena; Araki, Daniel; Xu, Chen; Grigorieff, Nikolaus; Goldstein, Steve A. N.

    2009-01-01

    We report the X-ray crystal structure of human potassium channel tetramerization domain-containing protein 5 (KCTD5), the first member of the family to be so characterized. Four findings were unexpected. First, the structure reveals assemblies of five subunits while tetramers were anticipated; pentameric stoichiometry is observed also in solution by scanning transmission electron microscopy mass analysis and analytical ultracentrifugation. Second, the same Bric-a-brac, Tramtrack, Broad Complex (BTB) domain surface mediates assembly of five KCTD5 and four voltage-gated potassium (Kv) channel subunits; four amino acid differences appear crucial. Third, KCTD5 complexes have well-defined N- and C-terminal modules separated by a flexible linker that swivels ~30°; the C-module shows a new fold and is required to bind Golgi re-assembling stacking protein 55 with ~1 μM affinity as judged by surface plasmon resonance and ultracentrifugation. Fourth, despite the homology reflected in its name, KCTD5 does not impact operation of Kv4.2, Kv3.4, Kv2.1 or Kv1.2 channels. PMID:19361449

  19. MiRP3 acts as an accessory subunit with the BK potassium channel

    PubMed Central

    Levy, Daniel I.; Wanderling, Sherry; Biemesderfer, Daniel; Goldstein, Steve A. N.

    2008-01-01

    MinK-related peptides (MiRPs) are single-span membrane proteins that assemble with specific voltage-gated K+ (Kv) channel α-subunits to establish gating kinetics, unitary conductance, expression level, and pharmacology of the mixed complex. MiRP3 (encoded by the KCNE4 gene) has been shown to alter the behavior of some Kv α-subunits in vitro but its natural partners and physiologic functions are unknown. Seeking in vivo partners for MiRP3, immunohistochemistry was used to localize its expression to a unique subcellular site, the apical membrane of renal intercalated cells, where one potassium channel type has been recorded, the calcium- and voltage-gated channel BK. Overlapping staining of these two proteins was found in rabbit intercalated cells, and MiRP3 and BK subunits expressed in tissue culture cells were found to form detergent-stable complexes. Electrophysiologic and biochemical evaluation showed MiRP3 to act on BK to reduce current density in two fashions: shifting the current-voltage relationship to more depolarized voltages in a calcium-dependent fashion (∼10 mV at normal intracellular calcium levels) and accelerating degradation of MiRP3-BK complexes. The findings suggest a role for MiRP3 modulation of BK-dependent urinary potassium excretion. PMID:18463315

  20. Remote and reversible inhibition of neurons and circuits by small molecule induced potassium channel stabilization

    PubMed Central

    Auffenberg, Eva; Jurik, Angela; Mattusch, Corinna; Stoffel, Rainer; Genewsky, Andreas; Namendorf, Christian; Schmid, Roland M.; Rammes, Gerhard; Biel, Martin; Uhr, Manfred; Moosmang, Sven; Michalakis, Stylianos; Wotjak, Carsten T.; Thoeringer, Christoph K.

    2016-01-01

    Manipulating the function of neurons and circuits that translate electrical and chemical signals into behavior represents a major challenges in neuroscience. In addition to optogenetic methods using light-activatable channels, pharmacogenetic methods with ligand induced modulation of cell signaling and excitability have been developed. However, they are largely based on ectopic expression of exogenous or chimera proteins. Now, we describe the remote and reversible expression of a Kir2.1 type potassium channel using the chemogenetic technique of small molecule induced protein stabilization. Based on shield1-mediated shedding of a destabilizing domain fused to a protein of interest and inhibition of protein degradation, this principle has been adopted for biomedicine, but not in neuroscience so far. Here, we apply this chemogenetic approach in brain research for the first time in order to control a potassium channel in a remote and reversible manner. We could show that shield1-mediated ectopic Kir2.1 stabilization induces neuronal silencing in vitro and in vivo in the mouse brain. We also validated this novel pharmacogenetic method in different neurobehavioral paradigms.The DD-Kir2.1 may complement the existing portfolio of pharmaco- and optogenetic techniques for specific neuron manipulation, but it may also provide an example for future applications of this principle in neuroscience research. PMID:26757616

  1. Alteration in rectification of potassium channels in perinatal hypoxia ischemia brain damage.

    PubMed

    Chen, Penghui; Wang, Liyan; Deng, Qiyue; Ruan, Huaizhen; Cai, Wenqin

    2015-01-15

    Oligodendrocyte progenitor cells (OPCs) are susceptible to perinatal hypoxia ischemia brain damage (HIBD), which results in infant cerebral palsy due to the effects on myelination. The origin of OPC vulnerability in HIBD, however, remains controversial. In this study, we defined the HIBD punctate lesions by MRI diffuse excessive high signal intensity (DEHSI) in postnatal 7-day-old rats. The electrophysiological functional properties of OPCs in HIBD were recorded by patch-clamp in acute cerebral cortex slices. The slices were intracellularly injected with Lucifer yellow and immunohistochemically labeled with NG2 antibody to identify local OPCs. Passive membrane properties and K(+) channel functions in OPCs were analyzed to estimate the onset of vulnerability in HIBD. The resting membrane potential, membrane resistance, and membrane capacitance of OPCs were increased in both the gray and white matter of the cerebral cortex. OPCs in both the gray and white matter exhibited voltage-dependent K(+) currents, which consisted of the initiated rectified potassium currents (IA) and the sustained rectified currents (IK). The significant alternation in membrane resistance was influenced by the diversity of potassium channel kinetics. These findings suggest that the rectification of IA and IK channels may play a significant role in OPC vulnerability in HIBD. PMID:25355958

  2. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    PubMed Central

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I; Lindahl, Erik; Elinder, Fredrik

    2016-01-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions – a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel. PMID:27278891

  3. Basolateral potassium (IKCa) channel inhibition prevents increased colonic permeability induced by chemical hypoxia

    PubMed Central

    Loganathan, A.; Linley, J. E.; Rajput, I.; Hunter, M.; Lodge, J. P. A.

    2011-01-01

    Major liver resection is associated with impaired intestinal perfusion and intestinal ischemia, resulting in decreased mucosal integrity, increased bacterial translocation, and an increased risk of postoperative sepsis. However, the mechanism by which ischemia impairs intestinal mucosal integrity is unclear. We therefore evaluated the role of Ca2+-sensitive, intermediate-conductance (IKCa) basolateral potassium channels in enhanced intestinal permeability secondary to chemical hypoxia. The effects of chemical hypoxia induced by 100 μM dinitrophenol (DNP) and 5 mM deoxyglucose (DG) on basolateral IKCa channel activity and whole cell conductance in intact human colonic crypts, and paracellular permeability (GS) in isolated colonic sheets, were determined by patch-clamp recording and transepithelial electrical measurements, respectively. DNP and DG rapidly stimulated IKCa channels in cell-attached basolateral membrane patches and elicited a twofold increase (P = 0.004) in whole cell conductance in amphotericin B-permeabilized membrane patches, changes that were inhibited by the specific IKCa channel blockers TRAM-34 (100 nM) and clotrimazole (CLT; 10 μM). In colonic sheets apically permeabilized with nystatin, DNP elicited a twofold increase (P = 0.005) in GS, which was largely inhibited by the serosal addition of 50 μM CLT. We conclude that, in intestinal epithelia, chemical hypoxia increases GS through a mechanism involving basolateral IKCa channel activation. Basolateral IKCa channel inhibition may prevent or limit increased intestinal permeability during liver surgery. PMID:20966032

  4. Suppression of KV7/KCNQ potassium channel enhances neuronal differentiation of PC12 cells.

    PubMed

    Zhou, Najing; Huang, Sha; Li, Li; Huang, Dongyang; Yan, Yunli; Du, Xiaona; Zhang, Hailin

    2016-10-01

    Membrane potential shift driven by electrical activity is critical in determining the cell fate of proliferation or differentiation. As such, the ion channels that underlie the membrane electrical activity play an important role in cell proliferation/differentiation. KV7/KCNQ potassium channels are critical in determining the resting membrane potentials in many neuronal cells. However, the role of these channels in cell differentiation is not well studied. In the present study, we used PC12 cells as well as primary cultured rat cortical neurons to study the role and mechanism of KV7/KCNQ in neuronal differentiation. NGF induced PC12 cell differentiation into neuron-like cells with growth of neurites showing typical growth cone-like extensions. The Kv7/KCNQ blocker XE991 promoted NGF-induced neurite outgrowth, whereas Kv7/KCNQ opener retigabine (RTG) inhibited outgrowth. M-type Kv7 channels are likely involved in regulating neurite growth because overexpression of KCNQ2/Q3 inhibited neurite growth whereas suppression of KCNQ2/Q3 with shRNA promoted neurite growth. Membrane depolarization possibly underpins enhanced neurite growth induced by the suppression of Kv7/KCNQ. Additionally, high extracellular K(+) likely induced membrane depolarization and also promoted neurite growth. Finally, T-type Ca(2+) channels may be involved in membrane-depolarization-induced neurite growth. This study provides a new perspective for understanding neuronal differentiation as well as KV7/KCNQ channel function. PMID:27450567

  5. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel

    PubMed Central

    Yazdi, Samira; Stein, Matthias; Elinder, Fredrik; Andersson, Magnus; Lindahl, Erik

    2016-01-01

    Voltage-gated potassium (KV) channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs) induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD), the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA) and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins. PMID:26751683

  6. The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice.

    PubMed

    Bausch, Anne E; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K; Ruth, Peter; Lukowski, Robert

    2015-07-01

    Kcnt1 encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual development. In particular, recent findings have shown that human Slack mutations produce very severe intellectual disability and that Slack channels interact directly with the Fragile X mental retardation protein (FMRP), a protein that when missing or mutated results in Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism in humans. We have now analyzed a recently developed Kcnt1 null mouse model in several behavioral tasks to assess which aspects of memory and learning are dependent on Slack. We demonstrate that Slack deficiency results in mildly altered general locomotor activity, but normal working memory, reference memory, as well as cerebellar control of motor functions. In contrast, we find that Slack channels are required for cognitive flexibility, including reversal learning processes and the ability to adapt quickly to unfamiliar situations and environments. Our data reveal that hippocampal-dependent spatial learning capabilities require the proper function of Slack channels. PMID:26077685

  7. ATP-sensitive potassium channels: uncovering novel targets for treating depression.

    PubMed

    Fan, Yi; Kong, Hui; Ye, Xinhai; Ding, Jianhua; Hu, Gang

    2016-07-01

    ATP-sensitive potassium (K-ATP) channels have been shown to couple membrane electrical activity to energy metabolism in a variety of cells and are important in several physiological systems. In the brain, K-ATP channels are strongly expressed in the neuronal circuitry. The distributional profile and functional significance of K-ATP channels suggest that they may be involved in stress-induced depression. First, we showed that chronic mild stress (CMS) significantly increased the expression of hippocampal Kir6.2 and Kir6.1 subunits of K-ATP channels. Next, using Kir6.2 knockout (Kir6.2(-/-)) mice, we presented that Kir6.2 deficiency resulted in antidepressant-like behaviors under non-stress conditions, but aggravated depressive behaviors accompanied by the loss of CA3 neuron and the reduction of brain-derived neurotrophic factor in hippocampus under chronic stress. Finally, we demonstrated that the K-ATP channel opener iptakalim, as well as a classical antidepressant fluoxetine, can reverse CMS-induced depression-related behaviors and counteract the deleterious effects of stress on hippocampus in wild-type mice, but only partially alleviate these symptoms in Kir6.2(-/-) mice. Collectively, our findings demonstrate that K-ATP channels are involved in the pathogenesis of depression and may be a promising target for the therapy of depression. PMID:26289962

  8. Scorpion Toxins Specific for Potassium (K+) Channels: A Historical Overview of Peptide Bioengineering

    PubMed Central

    Bergeron, Zachary L.; Bingham, Jon-Paul

    2012-01-01

    Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K+) channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K+-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria. Bioengineered scorpion toxins have been monumental to the evolution of channel science, and are now serving as templates for the development of invaluable experimental molecular therapeutics. PMID:23202307

  9. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Lange, Adam; Giller, Karin; Hornig, Sönke; Martin-Eauclaire, Marie-France; Pongs, Olaf; Becker, Stefan; Baldus, Marc

    2006-04-01

    The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane-similar to the catalytic function of the active site of an enzyme-and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.

  10. Calcium ions regulate K⁺ uptake into brain mitochondria: the evidence for a novel potassium channel.

    PubMed

    Skalska, Jolanta; Bednarczyk, Piotr; Piwońska, Marta; Kulawiak, Bogusz; Wilczynski, Grzegorz; Dołowy, Krzysztof; Kudin, Alexei P; Kunz, Wolfram S; Szewczyk, Adam

    2009-03-01

    The mitochondrial response to changes of cytosolic calcium concentration has a strong impact on neuronal cell metabolism and viability. We observed that Ca(2+) additions to isolated rat brain mitochondria induced in potassium ion containing media a mitochondrial membrane potential depolarization and an accompanying increase of mitochondrial respiration. These Ca(2+) effects can be blocked by iberiotoxin and charybdotoxin, well known inhibitors of large conductance potassium channel (BK(Ca) channel). Furthermore, NS1619 - a BK(Ca) channel opener - induced potassium ion-specific effects on brain mitochondria similar to those induced by Ca(2+). These findings suggest the presence of a calcium-activated, large conductance potassium channel (sensitive to charybdotoxin and NS1619), which was confirmed by reconstitution of the mitochondrial inner membrane into planar lipid bilayers. The conductance of the reconstituted channel was 265 pS under gradient (50/450 mM KCl) conditions. Its reversal potential was equal to 50 mV, which proved that the examined channel was cation-selective. We also observed immunoreactivity of anti-beta(4) subunit (of the BK(Ca) channel) antibodies with ~26 kDa proteins of rat brain mitochondria. Immunohistochemical analysis confirmed the predominant occurrence of beta(4) subunit in neuronal mitochondria. We hypothesize that the mitochondrial BK(Ca) channel represents a calcium sensor, which can contribute to neuronal signal transduction and survival. PMID:19399240

  11. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification

    PubMed Central

    Schumacher, Jennifer A.; Wang, Xiaohong; Merrill, Sean A.; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M.; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons. PMID:26771544

  12. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification.

    PubMed

    Alqadah, Amel; Hsieh, Yi-Wen; Schumacher, Jennifer A; Wang, Xiaohong; Merrill, Sean A; Millington, Grethel; Bayne, Brittany; Jorgensen, Erik M; Chuang, Chiou-Fen

    2016-01-01

    The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons. PMID:26771544

  13. Nonlinearity of a Voltage-Gated Potassium Channel Revealed by the Mechanical Susceptibility

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila; Zocchi, Giovanni

    2013-01-01

    The voltage-gated potassium channel from Aeropyrum pernix operates by coupling the voltage-driven motion of a charged group of amino acids to the opening and closing of the pore. In this experiment, we drive this charged group with an ac field and observe the effect on the gating. The measurements for different frequencies and amplitudes of the forcing reveal an essential nonlinearity in the mechanical behavior of the molecule. Within a continuum-mechanics description, we extract the effective dissipation parameter γ for this conformational motion and find γ≈0.2g/s, similar to recent nanorheology measurements on the conformational motion of an enzyme.

  14. Heterozygous disruption of renal outer medullary potassium channel in rats is associated with reduced blood pressure.

    PubMed

    Zhou, Xiaoyan; Zhang, Zuo; Shin, Myung Kyun; Horwitz, Sarah Beth; Levorse, John M; Zhu, Lei; Sharif-Rodriguez, Wanda; Streltsov, Denis Y; Dajee, Maya; Hernandez, Melba; Pan, Yi; Urosevic-Price, Olga; Wang, Li; Forrest, Gail; Szeto, Daphne; Zhu, Yonghua; Cui, Yan; Michael, Bindhu; Balogh, Leslie Ann; Welling, Paul A; Wade, James B; Roy, Sophie; Sullivan, Kathleen A

    2013-08-01

    The renal outer medullary potassium channel (ROMK, KCNJ1) mediates potassium recycling and facilitates sodium reabsorption through the Na(+)/K(+)/2Cl(-) cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Human genetic studies indicate that ROMK homozygous loss-of-function mutations cause type II Bartter syndrome, featuring polyuria, renal salt wasting, and hypotension; humans heterozygous for ROMK mutations identified in the Framingham Heart Study have reduced blood pressure. ROMK null mice recapitulate many of the features of type II Bartter syndrome. We have generated an ROMK knockout rat model in Dahl salt-sensitive background by using zinc finger nuclease technology and investigated the effects of knocking out ROMK on systemic and renal hemodynamics and kidney histology in the Dahl salt-sensitive rats. The ROMK(-/-) pups recapitulated features identified in the ROMK null mice. The ROMK(+/-) rats, when challenged with a 4% salt diet, exhibited a reduced blood pressure compared with their ROMK(+/+) littermates. More importantly, when challenged with an 8% salt diet, the Dahl salt-sensitive rats with 50% less ROMK expression showed increased protection from salt-induced blood pressure elevation and signs of protection from renal injury. Our findings in ROMK knockout Dahl salt-sensitive rats, together with the previous reports in humans and mice, underscore a critical role of ROMK in blood pressure regulation. PMID:23753405

  15. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel.

    PubMed

    Ishida, Itzel G; Rangel-Yescas, Gisela E; Carrasco-Zanini, Julia; Islas, León D

    2015-04-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13-14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker's, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  16. Voltage-dependent gating and gating charge measurements in the Kv1.2 potassium channel

    PubMed Central

    Ishida, Itzel G.; Rangel-Yescas, Gisela E.; Carrasco-Zanini, Julia

    2015-01-01

    Much has been learned about the voltage sensors of ion channels since the x-ray structure of the mammalian voltage-gated potassium channel Kv1.2 was published in 2005. High resolution structural data of a Kv channel enabled the structural interpretation of numerous electrophysiological findings collected in various ion channels, most notably Shaker, and permitted the development of meticulous computational simulations of the activation mechanism. The fundamental premise for the structural interpretation of functional measurements from Shaker is that this channel and Kv1.2 have the same characteristics, such that correlation of data from both channels would be a trivial task. We tested these assumptions by measuring Kv1.2 voltage-dependent gating and charge per channel. We found that the Kv1.2 gating charge is near 10 elementary charges (eo), ∼25% less than the well-established 13–14 eo in Shaker. Next, we neutralized positive residues in the Kv1.2 S4 transmembrane segment to investigate the cause of the reduction of the gating charge and found that, whereas replacing R1 with glutamine decreased voltage sensitivity to ∼50% of the wild-type channel value, mutation of the subsequent arginines had a much smaller effect. These data are in marked contrast to the effects of charge neutralization in Shaker, where removal of the first four basic residues reduces the gating charge by roughly the same amount. In light of these differences, we propose that the voltage-sensing domains (VSDs) of Kv1.2 and Shaker might undergo the same physical movement, but the septum that separates the aqueous crevices in the VSD of Kv1.2 might be thicker than Shaker’s, accounting for the smaller Kv1.2 gating charge. PMID:25779871

  17. 17Beta-Estradiol Inhibits Calcium-Activated Potassium Channel Expressions in Rat Whole Bladder

    PubMed Central

    2016-01-01

    Purpose: To investigate the effect of estrogen on the expression of calcium-activated potassium (KCa) channels in an overactive bladder rat model. To this end, mRNA and protein levels of KCa channel subtypes in the bladder of ovariectomized rats were measured by reverse transcription polymerase chain reaction and western blotting, respectively. Methods: Ten-week-old female Sprague-Dawley rats were divided randomly into 3 groups: sham-operated control group (n=11), ovariectomy group (n=11), and the group treated with estrogen after ovariectomy (n=12). Rats in the last group were subcutaneously injected with 17β-estradiol (50 μg/kg) every other day for 2 weeks, whereas rats in the other 2 groups received vehicle (soybean oil) alone. Two weeks after treatment, the whole bladder was excised for mRNA and protein measurements. Results: Protein levels of the large-conductance KCa (BK) channels in the ovariectomy group were 1.5 folds higher than those in the sham-operated control group. However, the protein levels of the other KCa channel subtypes did not change significantly upon bilateral ovariectomy. Treatment with 17β-estradiol after ovariectomy restored BK channel protein levels to the control value. In contrast, BK channel mRNA levels were not significantly affected by either ovariectomy alone or 17β-estradiol treatment. The small-conductance KCa type 3 channel (SK3) mRNA and protein levels decreased to 75% of control levels upon 17β-estradiol treatment. Conclusions: These results suggest that 17β-estradiol may influence urinary bladder function by modulating BK and SK3 channel expression. PMID:27032553

  18. Developmental expression of Kv1 voltage-gated potassium channels in the avian hypothalamus.

    PubMed

    Doczi, Megan A; Vitzthum, Carl M; Forehand, Cynthia J

    2016-03-11

    Specialized hypothalamic neurons integrate the homeostatic balance between food intake and energy expenditure, processes that may become dysregulated during the development of diabetes, obesity, and other metabolic disorders. Shaker family voltage-gated potassium channels (Kv1) contribute to the maintenance of resting membrane potential, action potential characteristics, and neurotransmitter release in many populations of neurons, although hypothalamic Kv1 channel expression has been largely unexplored. Whole-cell patch clamp recordings from avian hypothalamic brain slices demonstrate a developmental shift in the electrophysiological properties of avian arcuate nucleus neurons, identifying an increase in outward ionic current that corresponds with action potential maturation. Additionally, RT-PCR experiments identified the early expression of Kv1.2, Kv1.3, and Kv1.5 mRNA in the embryonic avian hypothalamus, suggesting that these channels may underlie the electrophysiological changes observed in these neurons. Real-time quantitative PCR analysis on intact microdissections of embryonic hypothalamic tissue revealed a concomitant increase in Kv1.2 and Kv1.5 gene expression at key electrophysiological time points during development. This study is the first to demonstrate hypothalamic mRNA expression of Kv1 channels in developing avian embryos and may suggest a role for voltage-gated ion channel regulation in the physiological patterning of embryonic hypothalamic circuits governing energy homeostasis. PMID:26845562

  19. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury.

    PubMed

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David L H

    2016-01-01

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury. PMID:27033551

  20. Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors.

    PubMed

    Wilke, Bettina U; Lindner, Moritz; Greifenberg, Lea; Albus, Alexandra; Kronimus, Yannick; Bünemann, Moritz; Leitner, Michael G; Oliver, Dominik

    2014-01-01

    The two-pore domain potassium (K2P) channels TASK-1 (KCNK3) and TASK-3 (KCNK9) are important determinants of background K(+) conductance and membrane potential. TASK-1/3 activity is regulated by hormones and transmitters that act through G protein-coupled receptors (GPCR) signalling via G proteins of the Gαq/11 subclass. How the receptors inhibit channel activity has remained unclear. Here, we show that TASK-1 and -3 channels are gated by diacylglycerol (DAG). Receptor-initiated inhibition of TASK required the activity of phospholipase C, but neither depletion of the PLC substrate PI(4,5)P2 nor release of the downstream messengers IP3 and Ca(2+). Attenuation of cellular DAG transients by DAG kinase or lipase suppressed receptor-dependent inhibition, showing that the increase in cellular DAG-but not in downstream lipid metabolites-mediates channel inhibition. The findings identify DAG as the signal regulating TASK channels downstream of GPCRs and define a novel role for DAG that directly links cellular DAG dynamics to excitability. PMID:25420509

  1. Altered potassium channel distribution and composition in myelinated axons suppresses hyperexcitability following injury

    PubMed Central

    Calvo, Margarita; Richards, Natalie; Schmid, Annina B; Barroso, Alejandro; Zhu, Lan; Ivulic, Dinka; Zhu, Ning; Anwandter, Philipp; Bhat, Manzoor A; Court, Felipe A; McMahon, Stephen B; Bennett, David LH

    2016-01-01

    Neuropathic pain following peripheral nerve injury is associated with hyperexcitability in damaged myelinated sensory axons, which begins to normalise over time. We investigated the composition and distribution of shaker-type-potassium channels (Kv1 channels) within the nodal complex of myelinated axons following injury. At the neuroma that forms after damage, expression of Kv1.1 and 1.2 (normally localised to the juxtaparanode) was markedly decreased. In contrast Kv1.4 and 1.6, which were hardly detectable in the naïve state, showed increased expression within juxtaparanodes and paranodes following injury, both in rats and humans. Within the dorsal root (a site remote from injury) we noted a redistribution of Kv1-channels towards the paranode. Blockade of Kv1 channels with α-DTX after injury reinstated hyperexcitability of A-fibre axons and enhanced mechanosensitivity. Changes in the molecular composition and distribution of axonal Kv1 channels, therefore represents a protective mechanism to suppress the hyperexcitability of myelinated sensory axons that follows nerve injury. DOI: http://dx.doi.org/10.7554/eLife.12661.001 PMID:27033551

  2. Lipid-dependent gating of a voltage-gated potassium channel

    PubMed Central

    Zheng, Hui; Liu, Weiran; Anderson, Lingyan Y.; Jiang, Qiu-Xing

    2011-01-01

    Recent studies hypothesized that phospholipids stabilize two voltage-sensing arginine residues of certain voltage-gated potassium channels in activated conformations. It remains unclear how lipids directly affect these channels. Here, by examining the conformations of the KvAP in different lipids, we showed that without voltage change, the voltage-sensor domains switched from the activated to the resting state when their surrounding lipids were changed from phospholipids to nonphospholipids. Such lipid-determined conformational change was coupled to the ion-conducting pore, suggesting that parallel to voltage gating, the channel is gated by its annular lipids. Our measurements recognized that the energetic cost of lipid-dependent gating approaches that of voltage gating, but kinetically it appears much slower. Our data support that a channel and its surrounding lipids together constitute a functional unit, and natural nonphospholipids such as cholesterol should exert strong effects on voltage-gated channels. Our first observation of lipid-dependent gating may have general implications to other membrane proteins. PMID:21427721

  3. Adenosine Triphosphate-Sensitive Potassium Channel Kir Subunits Implicated in Cardioprotection by Diazoxide

    PubMed Central

    Henn, Matthew C; Janjua, M Burhan; Kanter, Evelyn M; Makepeace, Carol M; Schuessler, Richard B; Nichols, Colin G; Lawton, Jennifer S

    2015-01-01

    Background ATP-sensitive potassium (KATP) channel openers provide cardioprotection in multiple models. Ion flux at an unidentified mitochondrial KATP channel has been proposed as the mechanism. The renal outer medullary kidney potassium channel subunit, potassium inward rectifying (Kir)1.1, has been implicated as a mitochondrial channel pore-forming subunit. We hypothesized that subunit Kir1.1 is involved in cardioprotection (maintenance of volume homeostasis and contractility) of the KATP channel opener diazoxide (DZX) during stress (exposure to hyperkalemic cardioplegia [CPG]) at the myocyte and mitochondrial levels. Methods and Results Kir subunit inhibitor Tertiapin Q (TPN-Q) was utilized to evaluate response to stress. Mouse ventricular mitochondrial volume was measured in the following groups: isolation buffer; 200 μmol/L of ATP; 100 μmol/L of DZX+200 μmol/L of ATP; or 100 μmol/L of DZX+200 μmol/L of ATP+TPN-Q (500 or 100 nmol/L). Myocytes were exposed to Tyrode’s solution (5 minutes), test solution (Tyrode’s, cardioplegia [CPG], CPG+DZX, CPG+DZX+TPN-Q, Tyrode’s+TPN-Q, or CPG+TPN-Q), N=12 for all (10 minutes); followed by Tyrode’s (5 minutes). Volumes were compared. TPN-Q, with or without DZX, did not alter mitochondrial or myocyte volume. Stress (CPG) resulted in myocyte swelling and reduced contractility that was prevented by DZX. TPN-Q prevented the cardioprotection afforded by DZX (volume homeostasis and maintenance of contractility). Conclusions TPN-Q inhibited myocyte cardioprotection provided by DZX during stress; however, it did not alter mitochondrial volume. Because TPN-Q inhibits Kir1.1, Kir3.1, and Kir3.4, these data support that any of these Kir subunits could be involved in the cardioprotection afforded by diazoxide. However, these data suggest that mitochondrial swelling by diazoxide does not involve Kir1.1, 3.1, or 3.4. PMID:26304939

  4. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction

    PubMed Central

    Kasahara, Kota; Shirota, Matsuyuki; Kinoshita, Kengo

    2016-01-01

    The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD) simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF) and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage. PMID:26950215

  5. Calcium-activated potassium channels mask vascular dysfunction associated with oxidized LDL exposure in rabbit aorta.

    PubMed

    Bocker, J M; Miller, F J; Oltman, C L; Chappell, D A; Gutterman, D D

    2001-05-01

    Endothelium-dependent vasodilation is impaired in atherosclerosis. Oxidized low density lipoprotein (ox-LDL) plays an important role, possibly through alterations in G-protein activation. We examined the effect of acute exposure to ox-LDL on the dilator responses of isolated rabbit aorta segments. We sought also to evaluate the specificity of this dysfunction for dilator stimuli that traditionally operate through a Gi-protein mechanism. Aortic segments were prepared for measurement of isometric tension. After contraction with prostaglandin F2alpha, relaxation to thrombin, adenosine diphosphate (ADP), or the endothelium-independent agonists, sodium nitroprusside (SNP) or papaverine was examined. Maximal relaxation to thrombin was impaired in the presence of ox-LDL (17.7+/-3.7% p<0.05) compared to control (no LDL) (52.6+/-4.0%). Ox-LDL did not affect maximal relaxation to ADP or SNP. However, in the presence of charybdotoxin (CHTX: calcium-activated potassium channel inhibitor) ox-LDL impaired relaxation to ADP (17.4+/-3.2%). CHTX did not affect control (no LDL) responses to ADP (69.6+/-5.0%) or relaxation to thrombin or papaverine. In conclusion, ox-LDL impairs relaxation to thrombin, but in the case of ADP, calcium-activated potassium channels compensate to maintain this relaxation. PMID:11605770

  6. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    PubMed

    Kasahara, Kota; Shirota, Matsuyuki; Kinoshita, Kengo

    2016-01-01

    The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD) simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF) and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage. PMID:26950215

  7. Gambierol inhibition of voltage-gated potassium channels augments spontaneous Ca2+ oscillations in cerebrocortical neurons.

    PubMed

    Cao, Zhengyu; Cui, Yanjun; Busse, Eric; Mehrotra, Suneet; Rainier, Jon D; Murray, Thomas F

    2014-09-01

    Gambierol is a marine polycyclic ether toxin produced by the marine dinoflagellate Gambierdiscus toxicus and is a member of the ciguatoxin toxin family. Gambierol has been demonstrated to be either a low-efficacy partial agonist/antagonist of voltage-gated sodium channels or a potent blocker of voltage-gated potassium channels (Kvs). Here we examined the influence of gambierol on intact cerebrocortical neurons. We found that gambierol produced both a concentration-dependent augmentation of spontaneous Ca(2+) oscillations, and an inhibition of Kv channel function with similar potencies. In addition, an array of selective as well as universal Kv channel inhibitors mimicked gambierol in augmenting spontaneous Ca(2+) oscillations in cerebrocortical neurons. These data are consistent with a gambierol blockade of Kv channels underlying the observed increase in spontaneous Ca(2+) oscillation frequency. We also found that gambierol produced a robust stimulation of phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2). Gambierol-stimulated ERK1/2 activation was dependent on both inotropic [N-methyl-d-aspartate (NMDA)] and type I metabotropic glutamate receptors (mGluRs) inasmuch as MK-801 [NMDA receptor inhibitor; (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate], S-(4)-CGP [S-(4)-carboxyphenylglycine], and MTEP [type I mGluR inhibitors; 3-((2-methyl-4-thiazolyl)ethynyl) pyridine] attenuated the response. In addition, 2-aminoethoxydiphenylborane, an inositol 1,4,5-trisphosphate receptor inhibitor, and U73122 (1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione), a phospholipase C inhibitor, both suppressed gambierol-induced ERK1/2 activation, further confirming the role of type I mGluR-mediated signaling in the observed ERK1/2 activation. Finally, we found that gambierol produced a concentration-dependent stimulation of neurite outgrowth that was mimicked by 4-aminopyridine, a universal

  8. Gambierol Inhibition of Voltage-Gated Potassium Channels Augments Spontaneous Ca2+ Oscillations in Cerebrocortical Neurons

    PubMed Central

    Cao, Zhengyu; Cui, Yanjun; Busse, Eric; Mehrotra, Suneet; Rainier, Jon D.

    2014-01-01

    Gambierol is a marine polycyclic ether toxin produced by the marine dinoflagellate Gambierdiscus toxicus and is a member of the ciguatoxin toxin family. Gambierol has been demonstrated to be either a low-efficacy partial agonist/antagonist of voltage-gated sodium channels or a potent blocker of voltage-gated potassium channels (Kvs). Here we examined the influence of gambierol on intact cerebrocortical neurons. We found that gambierol produced both a concentration-dependent augmentation of spontaneous Ca2+ oscillations, and an inhibition of Kv channel function with similar potencies. In addition, an array of selective as well as universal Kv channel inhibitors mimicked gambierol in augmenting spontaneous Ca2+ oscillations in cerebrocortical neurons. These data are consistent with a gambierol blockade of Kv channels underlying the observed increase in spontaneous Ca2+ oscillation frequency. We also found that gambierol produced a robust stimulation of phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2). Gambierol-stimulated ERK1/2 activation was dependent on both inotropic [N-methyl-d-aspartate (NMDA)] and type I metabotropic glutamate receptors (mGluRs) inasmuch as MK-801 [NMDA receptor inhibitor; (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate], S-(4)-CGP [S-(4)-carboxyphenylglycine], and MTEP [type I mGluR inhibitors; 3-((2-methyl-4-thiazolyl)ethynyl) pyridine] attenuated the response. In addition, 2-aminoethoxydiphenylborane, an inositol 1,4,5-trisphosphate receptor inhibitor, and U73122 (1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione), a phospholipase C inhibitor, both suppressed gambierol-induced ERK1/2 activation, further confirming the role of type I mGluR-mediated signaling in the observed ERK1/2 activation. Finally, we found that gambierol produced a concentration-dependent stimulation of neurite outgrowth that was mimicked by 4-aminopyridine, a universal potassium

  9. Iptakalim protects against hypoxic brain injury through multiple pathways associated with ATP-sensitive potassium channels.

    PubMed

    Zhu, H-L; Luo, W-Q; Wang, H

    2008-12-10

    The rapid and irreversible brain injury produced by anoxia when stroke occurs is well known. Cumulative evidence suggests that the activation of neuronal ATP-sensitive potassium (KATP) channels may have inherent protective effects during cerebral hypoxia, yet little information regarding the therapeutic effects of KATP channel openers is available. We hypothesized that pretreatment with a KATP channel opener might protect against brain injury induced by cerebral hypoxia. In this study, adult Wistar rats were treated with iptakalim, a new KATP channel opener, which is selective for SUR2 type KATP channels, by intragastric administration at doses of 2, 4, or 8 mg/kg/day for 7 days before being exposed to simulated high altitude equivalent to 8000 m in a decompression chamber for 8 h leading to hypoxic brain injury. By light and electron microscopic images, we observed that hypobaric hypoxia-induced brain injury could be prevented by pretreatment with iptakalim. It was also observed that the permeability of the blood-brain barrier, water content, Na+ and Ca2+ concentration, and activities of Na+,K+-ATPase, Ca2+-ATPase and Mg2+-ATPase in rat cerebral cortex were increased and the gene expression of the occludin or aquaporin-4 was down- or upregulated respectively, which could also be prevented by the pretreatment with iptakalim at doses of 2, 4, or 8 mg/kg in a dose-dependent manner. Furthermore, we found that in an oxygen-and-glucose-deprived model in ECV304 cells and rat cortical astrocytes, pretreatment with iptakalim significantly increased survived cell rates and decreased lactate dehydrogenate release, which were significantly antagonized by glibenclamide, a K(ATP) channel blocker. We conclude that iptakalim is a promising drug that may protect against brain injury induced by acute hypobaric hypoxia through multiple pathways associated with SUR2-type K(ATP) channels, suggesting a new therapeutic strategy for stroke treatment. PMID:18951957

  10. Mechanisms underlying the protein-kinase mediated regulation of the HERG potassium channel synthesis

    PubMed Central

    Krishnan, Yamini; Li, Yan; Zheng, Renjian; Kanda, Vikram; McDonald, Thomas V.

    2012-01-01

    The HERG (human ether-a-go-go related gene) potassium channel aids in repolarization of the cardiomyocyte membrane at the end of each action potential. We have previously shown that sustained protein kinase A or C (PKA and PKC) activity specifically enhances channel synthesis over the course of hours to days in heterologous expression and cardiac myocytes. The kinase-mediated augmentation of the channel is post-transcriptional and occurs near or at the endoplasmic reticulum. Here we report our further investigations into the mechanisms of kinase-mediated augmentation of HERG channel protein. We show that HERG channel phosphorylation alone is not sufficient for the PKA-dependent increase to occur. In vitro translation studies indicate that an additional factor is required for the process. Pharmacologic inhibitors suggest that the channel augmentation is not due to kinase-mediated alteration in proteasome or lysosome activity. PKA activation had no effect on stability of HERG mRNA and polyribosomal profiling showed that kinase activity did not elevate translation from low to high rates. Transcriptional inhibition results suggest that the additional cellular factor is a PKA-regulated protein. Together, these findings suggest that PKA-mediated augmentation of HERG abundance is more complex than previously appreciated involving enhancement of already active translation rates, phosphorylation of the channel protein and at least one other cAMP/PKA-responsive protein. Further exploration of molecular components of this regulatory pathway will be necessary to determine exact mechanism and the biomedical impact of this process in vivo. PMID:22613764